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Building fracton phases by Majorana manipulation

Yizhi You 1 and Felix von Oppen2,3

1Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA
2Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany

3Institute of Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA

(Received 22 February 2019; revised manuscript received 25 July 2019; published 16 August 2019)

Fracton topological phases host fractionalized topological quasiparticles with restricted mobility, with
promising applications to fault-tolerant quantum computation. While a variety of exactly solvable fracton models
have been proposed, there is a need for platforms to realize them experimentally. We show that a rich set of
fracton phases emerges in interacting Majorana band models whose building blocks are within experimental
reach. Specifically, our Majorana constructions overcome a principal obstacle, namely, the implementation
of the complicated spin cluster interactions underlying fracton stabilizer codes. The basic building blocks
of the proposed constructions include Coulomb blockaded Majorana islands and weak interisland Majorana
hybridizations. This setting produces a wide variety of fracton states and promises numerous opportunities for
probing and controlling fracton phases experimentally. Our approach also reveals the relation between fracton
phases and Majorana fermion codes and further generates a hierarchy of fracton spin liquids.
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I. INTRODUCTION

Searching for and exploring exotic phases of matter is a
principal goal of condensed matter physics. In the presence of
strong interactions, quantum many-body systems composed
of a limited number of elementary particles assume a remark-
able variety of exotic phases whose low-energy degrees of
freedom are much richer than suggested by their constituents.
Prominent examples of such emergent quantum phases are
topological phases, whose quasiparticle excitations carry frac-
tional quantum numbers and obey anyonic statistics [1,2]. The
low-energy properties of these topologically ordered states are
characterized by topological quantum field theories (TQFTs)
[3,4].

Recently, distinct long-range entangled states, transcend-
ing the TQFT paradigm and termed fracton phases, have
been discovered and intensively studied in exactly solvable
lattice models [5–17]. Fracton topological order shares many
features with topological order, including nontrivial braiding
statistics and symmetry fractionalization [12,15,17–32]. At
the same time, fracton phases have a subextensive ground-
state degeneracy depending on system size in addition to
lattice topology, and quasiparticles with restricted mobility,
moving within lower-dimensional manifolds such as planes,
lines, or fractals [5–11,13,23,24,26,33–37]. The subdimen-
sional nature of fracton excitations gives rise to unconven-
tional features including glassiness and subdiffusive dynamics
[9,38]. The restricted quasiparticle mobility makes fracton
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stabilizer codes interesting for quantum memories and quan-
tum computation [5,10,12,17–30,35,38–43].

While theoretical aspects of fracton phases have been
intensively explored via quantum stabilizer codes as well as
higher-rank gauge theories, their physical realization remains
a key challenge [6,11,13]. The principal obstacle is that mod-
els exhibiting fracton physics tend to be based on involved
spin cluster interactions. This raises the question whether
and how such exotic fracton states emerge in models with
more physical ingredients and interactions. These might then
be amenable to experimental implementation and, assuming
tunable interaction parameters, allow for controlling and ma-
nipulating fracton phases and excitations, e.g., for quantum
computing.

Here we show that many known fracton stabilizer codes
can be obtained from Majorana-band models with strong
on-site interactions. There is currently a major push to de-
velop the required ingredients for realizing such models in
the context of Majorana-based quantum computing [44], and
our work shows how to apply these developments to fracton
phases of matter. Our constructions include fracton phases of
both flavors, referred to as type-I and type-II fracton codes.
While excitations of the former are created by line or mem-
brane operators, excitations of type-II fractons are generated
by operators with fractal support.

The principal ingredients of our constructions are Ma-
jorana hybridization as well as interactions which fix local
fermion parities [45–51]. These interactions can be imple-
mented using Majorana islands, also referred to as Majo-
rana Cooper pair boxes, which underlie current designs for
Majorana-based topological qubits [44,45,52,53]. Each island
contains some number of Majoranas, e.g., at the ends of
semiconductor wires proximity coupled to a superconductor
[44,54,55]. The island’s charging energy fixes its fermion
parity, corresponding to a multi-Majorana interaction. In order
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FIG. 1. Construction for the planon-lineon code. (a) Body-
centered-cubic lattice with eight Majorana zero modes on all corner
(green) and center (red) sites. Majorana hybridization is illustrated by
dashed lines. (b) Setup for realizing the Majorana quartet interaction
in Eq. (2). Two Majorana quartets (red dots) are placed on floating
superconducting islands, fixing the corresponding fermion parities
via charging energy. The third quartet in Eq. (2) is generated by
the Majorana hybridizations indicated by the dashed lines. (c) The
two types of octahedral cells which support the stabilizers of the
planon-lineon code.

to realize fracton phases, the fermion parity typically has to
be fixed for overlapping sets of Majoranas. We show how
such interactions can be realized by judiciously hybridizing
Majoranas from multiple Majorana islands.

Our construction opens new avenues in the study of fracton
phases from both conceptual and applied perspectives. On
the theoretical side, our Majorana-based setups for fracton
models imply that fractonic phases of matter can emerge from
strongly interacting one-dimensional p-wave superconduc-
tors. Moreover, they expose the close relation between three-
dimensional (3D) Majorana fermion codes [56] and fracton
codes. On the experimental side, our Majorana-based models
not only provide a possible route towards realizing fracton
phases of matter, but might also give access to interesting
observables of fracton phases and their phase transitions.
In particular, the Hamiltonian can be tuned away from the
stabilizer limit to explore confinement and disorder effects on
fracton matter.

II. PLANON-LINEON CODE

A. Majorana representation

We begin with each site of a body-centered-cubic lattice
containing eight Majoranas γ 1, . . . , γ 8 which are each hy-
bridized with a Majorana on a nearest-neighbor site as shown
in Fig. 1. Thus, the Hamiltonian is

H = −it ′ ∑
〈i, j〉

(
γ 1

i γ 7
j + γ 2

i γ 8
j + γ 4

i γ 5
j + γ 3

i γ 6
j

)
(1)

and can be thought of as built from crossing one-dimensional
Kitaev chains along the (±1,±1, 1) directions.

We now consider on-site interactions which couple quartets
of Majoranas,

Hint = U
(
γ 1

i γ 3
i γ 8

i γ 5
i + γ 3

i γ 4
i γ 7

i γ 8
i + γ 4

i γ 2
i γ 6

i γ 7
i

)
, (2)

and suppress hopping of single Majoranas between sites. In
the strong-U limit, they project each site into the γ 1

i γ 3
i γ 8

i γ 5
i =

γ 3
i γ 4

i γ 7
i γ 8

i = γ 4
i γ 2

i γ 6
i γ 7

i = −1 subspace. The product of the
three parity constraints also implies γ 2

i γ 1
i γ 5

i γ 6
i = −1, con-

straining the Majorana quartets associated with the four verti-
cal faces of the red cube in Fig. 1.

Under these parity constraints, each site retains a single
spin-1/2 degree of freedom. We can choose the parities of the
top and bottom faces as the Pauli-Z operator σ z

i = γ 1
i γ 2

i γ 4
i γ 3

i
and the product of two Majoranas on any vertical edge as the
Pauli-X operator σ x

i , or vice versa. In the strong-U limit, the
Majorana hybridizations are a perturbation. The leading-order
Hamiltonian involves 16-Majorana terms for the octahedra in
Fig. 1 and becomes

H = −
∑

octahedra

{ ∏
i∈octaa

σ x
i +

∏
i∈octab

σ z
i

}
(3)

in the spin representation. Here octaa and octab refer to the
two types of octahedra in Fig. 1 with red (green) sites at
top and bottom and four green (red) sites in between. Thus,
our construction exactly reproduces the planon-lineon model
in Ref. [10] whose elementary quasiparticles are lineons and
planons with mobility restricted to the z direction and the xz
(yz) planes, respectively.

B. Experimental implementation

To implement this construction with interacting Majoranas,
we must establish that one can realize the on-site interaction
in Eq. (2). To this end, we distribute the eight Majoranas of
each site over two adjacent superconducting islands (SCIs)
(see Fig. 1). Each SCI could be made from two semiconductor
quantum wires proximity coupled to the same superconduc-
tor. The proximity-coupled quantum wires effectively realize
open Kitaev chains with two Majorana zero modes localized
at their ends, so there is a total of four Majoranas on each
SCI. By virtue of their charging energy, each SCI can be
tuned to have even fermion parity, effectively implementing
the interaction terms U (γ 1

i γ 3
i γ 8

i γ 5
i + γ 4

i γ 2
i γ 6

i γ 7
i ) in Eq. (2)

[52,53].
To generate the remaining four-Majorana interaction in

Eq. (2), we turn on interisland Majorana hybridization Ht =
it (γ 3γ 4 + γ 8γ 7) with amplitude t . Note that at the same time,
there is no hybridization between Majoranas γ 1

i and γ 2
i as well

as γ 5
i and γ 6

i . These interisland hybridizations can in principle
be implemented by direct tunnel coupling. Alternatively, one
can bridge between the two Majorana islands using a coherent
link [52]. Such a link consists of an additional proximity-
coupled quantum wire whose fermion parity is fixed by its
charging energy. The two Majorana end states would then
be tunnel coupled to the two Majoranas of the Majorana
islands which one wants to hybridize. Since the hybridization
between the Majoranas on the coherent link and the islands
can be realized through gate-controlled tunnel junctions, the
hybridization strength is tunable. The same hybridization
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via coherent link can be used to implement the Majorana
hybridizations between different sites as given by Eq. (1).

When a large charging energy fixes the fermion parities
of the SCIs, single-Majorana tunneling between the islands
is suppressed and the lowest-order processes involve pairs of
Majorana tunneling terms. The leading-order Hamiltonian is

Heff = U
(
γ 1

i γ 3
i γ 8

i γ 5
i + γ 4

i γ 2
i γ 6

i γ 7
i

) + ct2

U
γ 3

i γ 4
i γ 7

i γ 8
i , (4)

with c a number of order one. This produces an anisotropic
version of the on-site interaction in Eq. (2). The anisotropy
does not modify the ground-state manifold and thus the low-
energy spin-1/2 degree of freedom. The additional weak
hybridization t ′ of Majoranas on nearest-neighbor sites as
described by Eq. (1) generates the spin interactions on the oc-
tahedra. As a sufficient condition, the local spin-1/2 degrees
of freedom remain intact in the limit U > t > t ′ such that
t2/U > t ′, and the resulting effective Hamiltonian realizes the
planon-lineon code at leading order.

III. FRACTAL CHAMON CODE

Following this construction, one can realize many fracton
codes based on crossing Kitaev chains and strong on-site
interactions. We show now how a type-II fracton code, the
fractal Chamon code, emerges in this manner. Unlike type-I
fracton codes whose excitations are created by straight-line
or planar membrane operators, excitations of type-II fracton
codes involve operators with fractal support [5,34]. For the
fractal Chamon code [57], excitations exist at corners of 2D
Sierpinski triangles of side length 2n. (Note that we define
type-II fracton codes as having excitations which are created
by operators with fractal support. We do not require the
stricter condition that all excitations are generated by such
fractal operators.) These corner excitations are immobile in
the xy plane unless one enlarges the Sierpinski triangle to side
length 2n+1 which is inhibited by a large energy barrier.

The configuration of crossing Kitaev chains in Fig. 2
generates a hexagonal-close-packed lattice, with each site
containing eight Majoranas. Six of these labeled γ 1, . . . , γ 6

are paired to Majoranas on nearest-neighbor sites in the same
xy plane, while the remaining two (labeled γ A and γ B) pair
with Majoranas on neighboring sites along the ±z direction.

Now consider the on-site interaction

H = U (γ 1γ 2γ 4γ 3 + γ 1γ 2γ 6γ 5 + γ 5γ 6γ Bγ A). (5)

For strong coupling, the eight Majoranas retain a spin-1/2
degree of freedom. As for the planon-lineon model, we can
define spin operators through σx = γ1γ3γ5γB = γ2γ4γ6γA and
σz = iγ1γ2 = iγ3γ4 = iγ5γ6. With these definitions, the low-
energy Hamiltonian takes the form of the fractal Chamon code
with five-qubit stabilizers defined on prisms as illustrated in
Fig. 2 [57]. The elementary excitations include lineons with
mobility restricted along the z direction, generated by a line of
σz operators, in addition to the fractal excitations at the corners
of 2D Sierpinski triangles within the xy planes.

The on-site interaction in Eq. (5) can be implemented
as for the planon-lineon code. The Majoranas involved in
γ 1γ 2γ 3γ 4 and γ Aγ Bγ 5γ 6 are placed onto two floating SCIs
as in Fig. 2. The charging energy of each SCI fixes their

FIG. 2. Majorana construction for the fractal Chamon code.
(a) Hexagonal close-packed lattice with eight Majoranas per site with
elementary prism. (b) The dashed purple and blue lines illustrate
Majorana hybridizations for γ 1, . . . , γ 6 and γ A, γ B, respectively.
(c) On-site projection is implemented by placing Majorana wires
on floating superconducting islands with interisland tunneling and
strong charging energy. (d) The effective Hamiltonian after projec-
tion becomes a sum of five-spin stabilizers on the elementary prisms.

fermion parity. Hybridizations it (γ 1
i γ 5

i + γ 2
i γ 6

i ) effectively
generate the remaining four-Majorana interaction γ 1

i γ 5
i γ 2

i γ 6
i ,

thereby exactly reproducing the interaction in Eq. (5).

IV. OCTAHEDRAL CHAMON CODE

We now consider a system of hybridized Majoranas on a
face-centered-cubic lattice with 12 Majoranas on each site.
Each of these Majoranas, placed on the edges of a cube,
pairs with their partner on one of the nearest-neighbor sites
as illustrated in Fig. 3.

For each site, we place the 12 Majoranas onto three SCIs
as shown in Fig. 3. The charging energy of the SCIs fixes the
fermion parities η1η2η9η12 = η4η3η10η11 = η7η6η5η8 = −1.
Weak tunneling between the different SCIs,

Ht ′ = it (η1η4 + η12η11 + η9η5 + η7η10), (6)

generates the effective Majorana interactions η1η4η12η11 and
iη9η5η7η10η12η11. These interactions project each site into
a single spin-1/2 degree of freedom and the corresponding
Hamiltonian becomes

H = −
∑

octahedra

σ x
r+ex

σ x
r−ex

σ z
r+ez

σ z
r−ez

σ
y
r+ey

σ
y
r−ey

, (7)

which is just the octahedral Chamon code [9].

V. CUBOCTAHEDRON FRACTON CODE

We now consider the same structure of crossing Kitaev
chains as in Eq. (6), yielding a face-centered-cubic lattice. At

013011-3



YIZHI YOU AND FELIX VON OPPEN PHYSICAL REVIEW RESEARCH 1, 013011 (2019)

FIG. 3. Majorana model for the octahedral Chamon code.
(a) Face-centered-cubic lattice with 12 Majoranas per site. (b) La-
beling and hybridization of Majoranas on one of the sites. (c) Strong
on-site interactions, realizable by this arrangement of floating su-
perconducting islands, project each site into a spin-1/2 degree of
freedom. (d) Stabilizers of the low-energy Hamiltonian exist on
the octahedra and the effective Hamiltonian becomes the octahedral
Chamon code.

each site, there are 12 Majoranas, each of which pairs with a
partner at a nearest-neighbor site.

We place the 12 on-site Majoranas onto three SCIs as
shown in Fig. 4. Their charging energies fix the fermion
parities η5η6η7η8 = η1η3η10η12 = η2η4η11η9 = −1. Turning
on tunneling between the SCIs,

Ht ′ = it (η5η1 + η12η8 + η3η4 + η9η6), (8)

generates effective Majorana interactions η1η5η8η12 and
iη3η4η8η12η9η6. When combined with the parity fixing for
each SCI, these interactions project each site into a single
spin-1/2 degree of freedom and the Hamiltonian becomes the
cuboctahedron code as shown in Fig. 4. Each stabilizer is a
12-spin interaction on the cuboctahedra. (The cuboctahedra
are made of six corner-sharing plaquettes from the xy, yz, and
xz planes.) The 12-spin term on the cuboctahedron originates
from the product of the 24 Majorana pairs on the hinges. This
fracton code belongs to the family of type-I fracton codes
whose quasiparticles have restricted mobility. Similar to the
Chamon code, the ground-state degeneracy on a three-torus
depends on the greatest common divisor of the system size.

The construction of the cuboctahedron code shares many
similarities with the octahedral Chamon code in Eq. (7).
The geometry of this Majorana network corresponds to
four intersecting plaquettes sharing a corner at a site.
The four-Majorana projections γ 1γ 3γ 10γ 12, γ 5γ 6γ 7γ 8, and
γ 2γ 9γ 11γ 4 produce three intersecting Wen-plaquette models
on the xy, yz, and xz planes labeled by spin qubits (X 1, Z1),
(X 2, Z2), and (X 3, Z3). The remaining four- and six-Majorana
interactions couple the three intersecting Wen-plaquette mod-
els via an anyon condensate. By imposing Y1Y2Y3 = 1 and

FIG. 4. Majorana construction for the cuboctahedron code.
(a) Underlying face-centered-cubic lattice. (b) Interactions project
each site into a spin-1/2 degree of freedom. (c) SCI design for
implementing the on-site interactions. (d) The effective spin Hamil-
tonian is a cuboctahedron fracton code. Each stabilizer is a 12-spin
interaction on the cuboctahedron. The cuboctahedron is made of six
corner-sharing plaquettes from the xy, yz, and xz planes.

Z1X2 = 1 on each site, the three spin qubits are reduced
to one Pauli spin degree of freedom represented by σ x =
X1Z2, σ y = X2Z3, and σ z = X3Z1. The three corner-sharing
intersecting Wen-plaquette models form an octahedron which
exactly reproduces the Chamon code in Eq. (7). Likewise, if
we impose Y1Y2Y3 = 1 and X1Z2 = 1 on each site, the three
spin qubits are reduced to one Pauli spin degree of freedom
represented by σ̄ x = Z1X2, σ̄ y = Z2X3, and σ̄ z = Z3X1. This
exactly reproduces the cuboctahedron structure which ties
the six Wen-plaquette models on the six plaquette faces of
the cuboctahedron. En route, our construction also reveals the
relation between coupled (2D) toric code layers and the 3D
Chamon code via an anyon condensate.

VI. TRIANGLE ISING MODEL WITH FRACTAL
SYMMETRY BREAKING

Symmetries are indispensable for characterizing different
phases of matter. Typically, one deals with global symmetries,
whose operations act extensively on the entire volume of
the system. Fractal subsystem symmetries, which act only
on a subset of sites whose number scales with linear size
L as Ld with some fractal dimension d have attracted much
attention with the recent developments on fracton topological
order. Most notably, systems with such symmetries appear
in the context of glassiness. Examples are the triangle and
tetrahedral Ising models, whose Hamiltonians have fractal
Z2 symmetry when flipping spins on arbitrary Sierpinski
triangles. We now show how to utilize a crossing Majorana
network to generate the 2D triangle Ising model whose low-
energy ground states exhibit fractal symmetry breaking [34].
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FIG. 5. Shown on the right are crossing Kitaev wires yielding
a triangle lattice with six Majoranas per site. On the left we place
four Majoranas on one SCI and the other two on the other. The SCI
holding four Majoranas is subject to a charging energy with fixed
fermion parity. Majorana tunneling between the two SCIs is indicated
by dashed lines. This effectively produces the on-site interaction in
Eq. (9).

Consider a Majorana network on the honeycomb lattice
with six Majoranas per site and each Majorana hybridized
with a Majorana on a nearest-neighbor site as shown in Fig. 5.
This structure resembles three crossing Kitaev wires at angles
θ = 2Nπ/3. We impose the on-site interaction

H = −U
(
η1

i η
2
i η

3
i η

4
i + η3

i η
4
i η

5
i η

6
i + η1

i η
2
i η

5
i η

6
i

)
. (9)

In the large-U limit, the interaction enforces η1
i η

2
i η

3
i η

4
i =

η3
i η

4
i η

5
i η

6
i = η1

i η
2
i η

5
i η

6
i = 1. As the third term is the product

of the first two, these are two independent constraints and
the six site Majoranas are projected into a spin-1/2 subspace.
The resultant Hamiltonian involves the products of the three
Majorana pairs in the upward triangle. Written in the spin
basis, the Hamiltonian reduces to the triangle Ising model,

H =
∑
∇

∏
i∈∇

σ z
i . (10)

This Hamiltonian is invariant under fractal Z2 transformations
which flip the spins on arbitrary Sierpinski triangles. At zero
temperature, the ground state breaks this fractal symmetry as
characterized by the three-point correlator〈

σ z
i (r0)σ z

i (r0 + aer )σ z
i (r0 + aer′ )

〉
. (11)

This correlation function does not vanish at long wavelengths.
However, it fluctuates and becomes nonzero only when the
three points hit the corners of a large Sierpinski triangle with
distance a = 2nl0. This fractal structure breaks the discrete
scale invariance.

To implement the on-site fermion interaction in Eq. (9), we
place four and two Majoranas on one SCI each as shown in
Fig. 5. While the two-Majorana island is grounded, the SCI
with four Majoranas is floating so that its charging energy
fixes the parity η1η2η3η4 = −1. Weak tunneling it (η3η5 +
η4η6) between the islands effectively creates the other four-
Majorana interaction η3η4η5η6.

VII. FRACTONS FROM MAJORANA FERMION CODES

Our constructions suggest that many bosonic fracton mod-
els are equivalent to 3D Majorana fermion codes [56]. Enlarg-
ing each site of the bosonic model into a cell, the stabilizers

FIG. 6. On the left the truncated octahedron shares a face with
the top/bottom cubes and shares a hinge with the side cube. On
the right the stabilizer is defined on the four side faces of the cube
(yellow and blue), as well as the entire truncated-octahedron cell.

can be expressed as products over Majoranas located on
corners of certain cells or plaquettes, provided that similar
to color codes [58], the plaquettes and cells share an even
number of Majoranas.

We make this argument explicit for the planon-lineon code
in Fig. 1. We replace each site by a small cube with eight
Majoranas at its corners. The octahedra are then replaced by
truncated octahedra (Fig. 6) which share a face with cubes
below or above and a hinge with a side cube. The spin
Hamiltonian in Eq. (2) is replaced by the Majorana fermion
code

H = −
∑ { ∏

i∈octa

γi +
∏
i∈Pxz

γi +
∏
i∈Pyz

γi

}
. (12)

The first term is a product over the 16 Majoranas at the
corners of a truncated octahedron. The remaining terms in-
volve products of four Majoranas on the side plaquettes (xz
or yz) of the cube. This Majorana fermion code defines a
commuting-projector Hamiltonian which exactly reproduces
the ground-state manifold of the planon-lineon code.

The same stratagem works for the other fracton codes in
this paper. While a wide variety of 3D Majorana fermion
codes exhibiting Z2 × Z2 × Z2 order have been proposed [56],
our construction suggests that numerous fracton topological
orders can also be represented by Majorana fermion codes
akin to color codes. In particular, this reveals the equivalence
between Majorana fracton codes and bosonic fracton codes.

Now imagine we have four Majoranas per site, with
each flavor forming a Majorana fermion code as given in
Eq. (12). By imposing a strong on-site interflavor interaction
Uγ1γ2γ3γ4, each site is reduced to a spin-1/2 degree of free-
dom. The resulting spin Hamiltonian is the SO(3) invariant
fracton spin liquid

H = −
∑

a=x,y,z

{ ∏
i∈octa

σ a
i +

∏
i∈Pxz

σ a
i +

∏
i∈Pyz

σ a
i

}
. (13)

One can also take 2N Majoranas per site and apply interflavor
interactions to obtain an SO(2N − 1) invariant Hamiltonian.
To be concrete, we place 2N Majoranas on each site, with
each flavor forming a Majorana fermion code as given in
Eq. (8). By imposing a strong on-site interflavor interaction
Uγ1, . . . , γ2N , each site is constrained to even fermion parity
and the corresponding low-energy Hilbert space is reduced to
spin-(2N − 1)/2 degrees of freedom. One can use the Clifford
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FIG. 7. Measuring and manipulating fracton phases. (a) Adding
an on-site Majorana hybridization applies an effective Zeeman field
to the low-energy spin degree of freedom associated with a site.
(b) Coupling the Majoranas to a single level quantum dot shifts
the quantum dot level energy by an amount which depends on the
Majorana parity associated with the bilinear. Thus, spectroscopy of
the energy shift provides a measurement of the Majorana bilinear.
Similar schemes can be implemented when the spin component is
represented by a product of four Majoranas.

algebra for the Sp(2N − 1) representation

�a = iγ1γa+1 (a = 1, . . . , 2N − 1), (14)

and the resulting spin Hamiltonian is the SO(2N − 1)-
invariant spin liquid

H = −
∑

a=1,...,2N−1

{ ∏
i∈octa

�a
i +

∏
i∈Pxz

�a
i +

∏
i∈Pyz

�a
i

}
(15)

yielding fractonic behavior.

VIII. DISCUSSION

We have demonstrated the emergence of fracton phases of
matter in interacting Majorana band models. On the theoreti-
cal side, our construction exposes the relation between fracton
models and Majorana fermion codes. By extension, such
Majorana fermion codes enable us to generate a hierarchy
of fracton spin liquids with SO(N ) symmetry. In addition to
the examples discussed here explicitly, interacting Majoranas
can also realize additional fracton models in particular and
topological phases in general, including the checkerboard
model proposed in Ref. [59], the 3D toric code, and the
X-cube model (see the Appendix).

On the experimental side, this provides a platform for
exploring these novel strongly interacting phases. Initial ex-
periments may focus on small fracton codes for which the
ground-state degeneracy as a function of linear dimension or
boundary stabilizers would be a characteristic observable. For
larger system sizes, it is also interesting to go beyond realizing
the exactly solvable stabilizer Hamiltonians of fracton codes.
Sufficiently strong transverse fields applied to the local spin
degrees of freedom drive the fracton phase into a confined
phase [60]. In our platform, such transverse fields are readily
implemented by adding local Majorana hybridization terms as
illustrated in Fig. 7, providing access to these phases and the
intervening phase transition. While fracton phases lack a local
order parameter, their phases and phase transitions are char-
acterized by nonlocal string or membrane order parameters.
For instance, the expectation values of certain planar Wilson
loop operators may obey perimeter or area laws depending
on the phase [60]. Such expectation values can be read out
by repeated preparation of a ground state and subsequent
projective measurements of, say, the σz components of all

involved sites. Averaging the results for the string operators
over the repeated measurements then provides access to the
desired expectation value. Such projective measurements of
local spins correspond to the measurement of local two- or
four-Majorana parities for which several readout schemes
have been proposed [52,53]. A promising scheme to measure,
say, a two-Majorana parity couples a single-level quantum
dot to the two Majoranas. The resulting energy shift of the
quantum dot level will then depend on the Majorana parity.
This is illustrated in Fig. 7. The same scheme can be extended
to measure four-Majorana parities [52].

In addition to static expectation values, one can also ex-
tract dynamic correlation functions of the fracton codes from
linear-response measurements. Applying a time-dependent
transverse field and reading out the spins at a later time
provides access to spin-spin correlation functions of the frac-
ton code. The dynamic properties of 3D fracton codes are
particularly interesting due to their glassy dynamics which
results from the restricted quasiparticle mobility. Moreover,
disorder in the stabilizer flip energies or the transverse fields
would would allow for studies of many-body localization.
Both kinds of disorder are easily tunable in this setting as
intersite hybridization and on-site stabilizer energies are con-
trollable via gate-tuned coherent links.
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APPENDIX: THREE-DIMENSIONAL TORIC
CODE AND X-CUBE MODEL

Following the strategy in the main text, one can readily
obtain the 3D toric code and the X-cube model from a similar
Majorana construction. As pointed out in Ref. [14], both
models can be obtained via coupled layer constructions based
on the 2D toric code. Moreover, the 2D toric code can be
obtained via a Majorana network construction [45,59].

We briefly review the Majorana construction for the 2D
toric code. Consider a Majorana model on a square lattice
with four Majoranas per site. Each Majorana hybridizes with
its closest neighbor, as shown in Fig. 8 and described by the
Hamiltonian

H = −it
∑

j

(
γ 1

j γ
3
j+er

+ γ 2
j γ

4
j+e′

r

)
. (A1)

Here the lattice sites are enumerated by j and connected
by lattice vectors er and e′

r . Each site can be viewed as a
SCI whose charging energy fixes the site’s fermion parity
γ 1

j γ
2
j γ

3
j γ

4
j = −1. The low-energy Hilbert space reduces to an

effective spin-1/2 degree of freedom on each site for which
one can define Pauli operators (see, e.g., [59]). Treating the
Majorana hybridizations as perturbations, the leading-order
Hamiltonian involves Majorana hopping terms around all
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FIG. 8. Majorana constructions for the X-cube model and 3D
toric code. (a) Toric code as a low-energy theory for an interacting
Majorana band model. Each site supports a spin 1/2 and the plaquette
operators involve products of σ z (σ x) for white (yellow) plaquettes.
(b) Majorana interactions effectively implementing the coupled-layer
construction. Each link of the cubic lattice has two SCIs with four
Majoranas per island which form 2D toric codes on the i j layers. On
the left the interaction HA leads to the 3D X-cube model. On the right
the interaction HB leads to the 3D toric code. (c) Cubic lattice with
two SCIs on each link.

elementary plaquettes. In terms of spin operators, the pla-
quette terms form a checkerboard pattern and become∏

� σ z
i σ z

j σ
z
k σ z

l and
∏

� σ x
i σ x

j σ
x
k σ x

l for white and yellow pla-
quettes, respectively (see Fig. 8). This is just the toric (or
surface) code.

We can now implement the coupled layer construction by
placing two SCIs on each link of a cubic lattice. Each SCI

hosts four Majoranas forming a 2D toric code on each i j
layer. The model resembles decoupled 2D toric codes with
each i link holding qubits from the i j and ik layers as shown
in Fig. 8.

We can now add additional tunneling terms between Ma-
joranas on the same site but different SCIs (see Fig. 8). We
consider two separate cases, described by the two Hamiltoni-
ans

HA = −it
(
γ 1

a γ 3
b + γ 2

a γ 4
b

)
,

HB = −it
(
γ 1

a γ 3
b + γ 3

a γ 1
b

)
. (A2)

Here a and b label the two SCIs on the same site. These
tunneling terms, together with the fixed fermion parities of
each SCI, generate effective on-site XX or ZZ interactions
between spins from perpendicular layers, but on the same link.
This couples the perpendicular 2D toric code layers. In the
strong-coupling limit, the interaction HB leads just to the 3D
toric code model

Heff =
∑ ⎧⎨

⎩
∏

i∈vertex

σ x
i +

∏
i∈plaquette

σ z
i

⎫⎬
⎭. (A3)

The Hamiltonian involves six-spin vertex interactions involv-
ing σ z and four-spin plaquette interactions via σ x. This model
exhibits 3D Z2 topological order with nontrivial particle loop
braiding. Likewise, the interaction HA leads to the 3D X-cube
model

Heff =
∑ {∏

i∈vi j

σ x
i +

∏
i∈cube

σ z
i

}
. (A4)
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