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Mechanical deformations of graphene induce a term in the Dirac Hamiltonian which is reminiscent
of an electromagnetic vector potential. Strain gradients along particular lattice directions induce
local pseudomagnetic fields and substantial energy gaps as indeed observed experimentally. Ex-
panding this analogy, we propose to complement the pseudomagnetic field by a pseudoelectric field,
generated by a time dependent oscillating stress applied to a graphene ribbon. The joint Hall-like
response to these crossed fields results in a strain-induced charge current along the ribbon. We an-
alyze in detail a particular experimental implementation in the (pseudo) quantum Hall regime with
weak intervalley scattering. This allows us to predict an (approximately) quantized Hall current
which is unaffected by screening due to diffusion currents.

Graphene offers a fertile ground to explore the rich
physics of crystalline Dirac materials. A simple tight
binding Hamiltonian with a constant hopping amplitude
t between carbon atoms gives a fair band structure de-
scription of many graphene-based systems. Famous ex-
amples include single layer graphene with its linearly
dispersing (massless) Dirac fermions [1, 2], electrically-
biased bilayers with a displacement-field-induced band
gap [3, 4], or twisted layers with (almost) nondispersing
(flat) bands and externally tunable electron correlations
[5, 6]. Graphene is also outstanding in its mechanical
stability. The unit cell can stretch by more than 20%
without breaking [7], thus allowing for significant tuning
of the hopping amplitude t by applying external stress [8–
10]. Combining these unique electronic and mechanical
resources is highly appealing, and promises novel “strain-
tronic” phenomena as well as practical electromechanical
couplings.

One challenge is to open band gaps by straining the
monoatomic hexagonal lattice. The two Dirac points
appearing near the K and K ′ points are protected
against perturbations that keep inversion and time rever-
sal symmetries intact, as is the case for uniform (possibly
anisotropic) strain. Anisotropic strain replaces the single
parameter t by three hopping amplitudes t1, t2 and t3 [see
Fig. 1(a)] and shifts the Dirac points in reciprocal space.
Interestingly, the difference between the three amplitudes
translates into a fictituous vector potential ~A, appearing
in the Dirac Hamiltonian [11], H = vF~σ · (−i~~∇ ∓ e ~A),

with eAx = 1
2

~
at (t2 + t3 − 2t1) and eAy =

√
3

2
~
at (t3 − t2)

(with vF = 106ms−1 the Fermi velocity, a = 1.4Å the
lattice spacing, and t = 2.5eV). The strain-induced term
~A(~r, t), acts within each valley as an external electro-
magnetic vector potential. However, in order to preserve
time reversal symmetry, this “pseudo” vector potential
acquires opposite signs in the two valleys. Its magnitude
can be expressed in terms of the strain tensor components

εij [11–13],

~A =
βt

evF

(
εxx − εyy
−2εxy

)
, (1)

with β = − d log t
d log a

∼= 2.5. For carriers in a specific valley,

the pseudo vector potential ~A(~r, t) implies electric and

magnetic fields. The former, ~E = −d ~Adt , is induced by

time dependent strains, while the latter, ~B = (~∇× ~A)z ẑ,
requires specific strain gradients [13, 15–17]. Experimen-
tally, scanning tunneling spectroscopy [18, 19] on tri-
angularly strained graphene found tunneling resonances
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FIG. 1. (a) Graphene ribbon oriented along the armchair
direction, with a uniaxial stretch generating a larger defor-
mation at its narrow (top) end. The resulting strain gradient
is designed via the shape function W (y) to create a uniform

pseudomagnetic field ~B (Ref. 14). (b) A time varying (oscil-
lating) stress component generates an additional pseudoelec-

tric field ~E. The orientations of both ~B and ~E are opposite for
electrons in the K and K′ valleys. (c) Illustration of the val-
ley symmetric drift dynamics considering half an oscillating
period so that ~E has a fixed sign.
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with a Landau-level-like spacing that indicated remark-
ably large pseudomagnetic fields ~B exceeding 300T. Re-
cent ARPES spectra [20] on multiple triangular islands of
graphene further confirm the pseudo-Landau level (PLL)
picture of flat bands separated by more than ∼ 100meV.
The large energy gaps exceed room temperature and
promise fascinating correlation physics as well as prac-
tical technological opportunities. Detecting the pseu-
doelectric ~E fields on the other hand remains challeng-
ing [21]. Unavoidable lattice deformations also induce a
scalar potential φ(r, t) ∝ εxx(r, t) + εyy(r, t) due to com-
pression or dilation of the unit cell. While the scalar
field acts equally on both valleys, the pseudoelectric field
switches sign between the valleys, and generates valley
rather than charge currents.

Here we propose a way to observe the pseudoelec-
tric field through charge currents by combining time-
dependent and spatially varying strains which introduce
both pseudo-E and pseudo−B fields. The concept is sim-
ilar to the Hall effect where a transverse drift velocity

~vd =
~B×~E
|B|2 is generated in the presence of non-parallel

fields. While the direction of each individual field is op-
posite for electrons from the two valleys, the Hall-like
drift velocity involves both fields and points in the same
direction for both valleys.

We demonstrate this general concept in a particular
and experimentally feasible geometry of a graphene rib-
bon under uniaxial stress [14]. As sketched in Fig. 1(a),
we set the stress and the lattice armchair direction along
the ribbon, while the width of the ribbon W is narrowing
toward its top end. The stress leads to t1 6= t2, t3 for this
orientation, while the change in W induces strain gradi-
ents and thus a pseudo−B field. To generate a pseudo−E
field in the transverse direction we add a small AC stress
component to the fixed DC strain, see Fig. 1(b). To-
gether, the two intrinsic fields generate a drift motion
along the ribbon for electrons from both valleys and thus
an oscillating charge current ~Iω, see Fig. 1(c). Classically,

the current is given by Iω = ne |Ex|
|B| W , where n is the den-

sity measured from the Dirac point. Defining the filling
factor ν = hn

eB , this non quantized current translates into

Iω = e2

h νVω, where Vω ∼ EW is an AC pseudo-voltage
difference induced by the intrinsic pseudo-E field. While
in principle detectable, we show that ~Iω is usually minute
for AC strain frequencies smaller than ∼ GHz due to fast
and efficient screening by diffusing electrons. Our main
prediction is that a sizable charge response can be ob-
served when the pseudo-B field is sufficiently strong to
cause the formation of PLLs. In this regime, the pres-
ence of energy gaps efficiently suppresses screening and
a Hall-like ~Iω is expected for a wide range of frequencies,
deformations, and doping levels, provided that interval-
ley scattering is weak. We suggest a particular device
realization where these requirements can be achieved,
and compare the conventional quantum Hall (QH) re-
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FIG. 2. (a) Strain tensor component εyy(x, y) calculated by
COMSOL. We set the vertical stretch ∆y to induce a max-
imum strain εyy of 20% (red). (b) Color plot of the calcu-

lated pseudomagnetic field (∇ × ~A)z, and arrow plot of the
pseudo vector potential calculated from Eq. (1), determining
the strength and direction of the pseudoelectric field for AC
strain. (c) Profiles of B, showing a relatively uniform ≈ 3T
over a microscale region (blue), and of Ax, allowing to extract
the pseudo-voltage of 0.1mV (see text).

sponse for static magnetic fields, both externally applied
and strain induced, to the dynamic pseudo QH response
which is the main prediction of this paper.

System— We envision a micrometer scale geometry as
shown in Fig. 2(a). The ribbon is clamped at the top
and bottom ends and pulled by metallic beams, which
are also used to measure the charge transport response.
We compute the mechanical response εij by COMSOL
finite element simulations, adjusting the external stretch
to ∆y ≈ 100nm to induce a maximum local strain of
20%. Beyond this stretch the narrow (top) part of the
ribbon will rupture. Naturally, variations in the ribbon’s
width W (y) translate into gradients in εyy along the y
direction [see Fig. 2(c)], and hence to a finite dAx

dy . More

specifically, the shape functionW (y) is selected such as to
optimize a constant gradient in εyy and hence a uniform
pseudo-B field over a large section of the ribbon [14, 22].
The color map in Fig 2(b) shows B = (∇ × A)z and
the calculated strain tensor components. For the specific
dimensions presented we obtain a nearly constant B ∼=
3T over 0.5µm at the center of the ribbon, see the black
line in Fig. 2(c).

The local pseudo-E field is generated by a small AC
stress applied in the same direction. We envision a me-
chanical piezoelectric manipulator that can modulate the
strain at a frequency of, say, ω=10MHz, and assume a
small oscillation amplitude such that the device elongates
by ±∆yAC where ∆yAC ≈ 10nm (leaving B approxi-
mately unchanged). The orientation of E and its magni-



3

tude (scaled by a factor ∆yAC ×ω) are determined by A
and presented at several points in the ribbon by the ar-
rows (size and orientation) in Fig. 2(b). The magnitude
of A along the x = 0 line is plotted in Fig. 2(c). As shown,
the arrows are pointing primarily in the x−direction in-
dicating an AC pseudo-voltage difference between the
right and left sides of the ribbon. Upon integration,
Vω =

∫
dxE ∼WE, we find a value ∼ 0.1 mV.

Using a simple elastic theory one can also obtain
analytic approximations of the two pseudofields [22],

Ex(y) =
(

∆yAC

L

)
ω
(

1
1+fr

W (L)
W (y)

)(
4(1 + ν̄)β t

evF

)
, and

B =
(

∆y
L

)(
1−fr
1+fr

) (
1
L

)
× 6(1 + ν̄)β t

evF
. In the lat-

ter, the three factors display the dependence on the rib-
bon’s stretching deformation ∆y, narrowing parameter

fr = W (L)
W (0) , and overall dimension L. In the last di-

mensionful factor, ν̄ ≈ 0.17 [14] is the Poisson ratio
and t

evF
= 2.5Tµm. The field Ex depends directly on

εyy(y) and thus increases along the narrowing ribbon as
1/W (y), see Fig. 2(c). Finally, we note that the frequen-
cies considered are low compared to all relevant electronic
and elastic modes and hence we will treat the pseudo-E
field as quasi-static.

Both the simulated and analytic results presented
above show relatively large and uniform intrinsic fields
over a micrometer size sample. Compared to the nano-
scale systems considered to date, this leads to several
advantages: finite size effects are minute, the magnetic

length lB =
√

~
eB is significantly smaller than the system

size, and the cyclotron radius rc = pF
eB can be tuned below

the system’s dimensions L,W by an external gate. Thus,
the proposed system allows us to consider the QH regime
with ωcτ � 1 (with the cyclotron frequency ωc = vF /lB)
generated by pure strain.

Quantum Hall regime: static case— Before considering
AC strain and the associated pseudo-E field, we discuss
transport in the integer QH regime, contrasting the case
of an external magnetic field Bext against an intrinsic
pseudo-B field, as probed by a two-probe measurement.

Here, we focus on the clean case, and argue that disor-
der just renders the QH physics more robust [23–25]. To
visualize the LLs and PLLs for these two cases, Fig. 3(a),
consider a Corbino disk geometry (i.e., our geometry with
a periodic and translation invariant y direction). We can
then label states by their momenta ky, which are related
to x. For an external magnetic field ky = const + x/l2B .
In contrast, for a pseudo-B field ky and x are related
differently for the two valleys, ky = const± ± x/l2B . The
current follows by summing over the contributions of all
occupied states, I =

∑
kyocc I(ky). Once the Fermi level

lies in the bulk gap between LLs (or PLLs), each (P)LL
contributes a quantized current [23, 24]

ILL =
e

h

∫
occ

dky
dε

dky
=
e2

h
Vext (2)
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FIG. 3. (a) Plot of typical PLLs (or LLs) and edge states.
(b) Tilting PLLs due to bulk pseudoelectric field caused by
AC strain. A finite pseudo-voltage difference Vω between the
edges is indicated. (c) Strong intervalley scattering causes
equilibration within each edge.

in a two-terminal setup. Here, Vext is the external voltage
applied between the two terminals.

For an external magnetic field, the edge modes are chi-
ral. The voltage at the source terminal feeds into one of
the two edges, say the right edge, elevating its chemical
potential for both valleys with respect to the opposite
edge [26], i.e., eVext = ERF,K − ELF,K = ERF,K′ − ELF,K′ .
Summing over spin and valley, this leads to a sequence
of quantized plateaus in the two-terminal conductance
I
Vext

= e2

h |ν|, where ν = ±2,±6 . . ., see the black dashed
curve in Fig. 4. The current is quantized and protected
by the large distance between the counterpropagating
chiral edge modes.

The pseudo-B field, on the other hand, spatially
superimposes counterpropagating edge states from the
two valleys. Thus the system is no longer protected
against backscattering, and we expect a nonquantized
two-terminal conductance [27]. The external voltage
now imposes opposite interedge chemical potential dif-
ferences in the two valleys, eVext = ERF,K − ELF,K =

−(ERF,K′ − ELF,K′). Nevertheless, approximate quanti-
zation is expected if the disorder potential is smooth on
the atomic scale and intervalley scattering is suppressed,
see the blue curve in Fig. 4 [28, 29]. This is possible,
for example, by effectively introducing smooth edges as
described in Appendix B.

A few comments on our assumptions for the forma-
tion of PLLs are in order. To obtain translation invari-
ance along the y−direction we use the gauge Ay = −Bx
rather than Ax = By. Note that our synthetic gauge
theory is actually not gauge invariant in the presence of
generic intervalley coupling, since the two valleys trans-
form differently. Gauge invariance applies only to each
valley separately. Exploiting gauge invariance assumes
that valley is a good quantum number. This requires
negligible intervalley scattering both in the bulk and on
the edges, as discussed above. Additionally, we comment
that while Fig. 3(a) shows flat bands, PLLs are not nec-
essarily flat [31].
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FIG. 4. Schematics of QH vs pseudo QH response as a func-
tion of density near the Dirac point. Black dashed line: two-
terminal quantized conductance for external magnetic field
Bext and a voltage Vext applied through a chemical potential
difference between the terminals. Blue: two-terminal conduc-
tance for a pseudomagnetic field B and voltage Vext; backscat-
tering due to counter propagating valleys leads to deviations
from quantization. Red: AC current response to simultaneous
pseudo-B and pseudo-E fields generating an internal pseudo-
voltage difference Vω. The current is approximately quantized
at the plateaus, and strongly suppressed at the plateau tran-
sitions due to screening of the pseudo-E field [30]. Inset: DOS
consisting of extended states at the PLL energies surrounded
by localized states.

Quantum Hall regime: dynamic case— Now, rather
than considering a voltage difference between infinite
reservoirs, we dynamically apply an intrinsic pseudo-E
field, generating a potential difference Vω = EW be-
tween the edges. This leads to oppositely tilting PLLs
in the two valleys as shown in Fig. 3(b). As long as a
bulk gap remains open between the tilted PLLs, which
requires EW < ~ωc, the current depends solely on the
chemical potential difference between the edges. We
have eVω = ERF,K − ELF,K = −(ERF,K′ − ELF,K′), so that
Eq. (2) predicts approximately quantized plateaus for
weak intervalley scattering (cf. the two-terminal case
with pseudo-B field). Thus, in the gap-dominated regime

our AC pseudo Hall effect is quantized Iω
Vω

= e2

h ν with
ν = 4(N +1/2), even at low frequencies. This AC charge
current in response to the pseudo-E field is our main re-
sult. The resulting plateaus are schematically displayed
in Fig. 4 by the red curve. In the presence of inter-
valley scattering we expect the edges to equilibrate, see
Fig. 3(c). From the above estimate of a 0.1mV pseudo-
voltage, we obtain Iω ∼ 8nA for filling factor ν = 2.

Notice that while the two-terminal conductance is nec-
essarily positive, the pseudo-E response in fact changes
sign across the Dirac point, see the red curve in Fig. 4.
This is a consequence of the sign change in the group
velocity of the edge states upon going from electron to

hole doping.

Another crucial difference between the external volt-
age Vext between infinite reservoirs and the intrinsically
generated transverse voltage Vω is that the latter will
be screened by electronic diffusion across the ribbon on
time scales much faster than the AC frequency. This
is reflected in the red curve in Fig. 4 where the current
response drops to zero at QH transitions due to screen-
ing in these delocalized situations. The same effect of
the pseudo-E field will occur for any gapless system, in
particular for small pseudo-B fields with ωcτ � 1. We
now discuss this screening at finite frequency within a
semiclassical treatment.

Gapless (screened) regime— The interplay of a dissi-
pative conductivity σ with the edges of the sample and
the resulting valley polarization can be described via the
transport equation

~j± = ±σ ~Eω −D~∇n± ∓ (ωcτ)~j± × ẑ, (3)

for the current densities ~j±(x, y) and charge densities
n±(x, y) of the two valleys. The conductivity σ is related
to the diffusion coefficient D via the Einstein relation.
The last term in Eq. (3) is a Hall term. The edges of
the sample imply the boundary condition jx(x = 0, y) =
jx(x = W, y) = 0. We provide a closed form solution
of this equation (combined with the continuity equation)
in Appendix C. It can be written in terms of two di-
mensionless parameters. In addition to ωcτ , the typical
time scale for traversing the sample, τT = W 2/D, in-
troduces a second dimensionless parameter ωτT , which
controls the reduction of the current due to screening by
valley-dependent diffusion currents.

For ωτT � 1 screening is not effective. In this regime

the current takes the Drude form Iω
Vω

= σ(ωcτ)
1+(ωcτ)2 for an

infinite system, and is in phase with the pseudo-E field.
At low frequencies, we find [22] Iω

Vω
= i

12σ(ωτT )(ωcτ),
which is out of phase with the pseudo-E field. In the
system in Fig. 1, with ω = 10MHz, we estimate ωτT ≈
10−3, leading to a strong reduction of the current at the
QH transitions. For ωcτ ≈ 1 we obtain I ∼ pA. In
principle, however, the effect can be observed even in
a gapless regime, provided the frequency is sufficiently
high, ωτT & 1.

Conclusion— We presented a novel mechanism to gen-
erate charge currents from space and time dependent
strain fields in graphene, by combining crossed pseudo-B
and pseudo-E fields. A related charge current response
was found [47] by gapping out graphene by a mass cor-
responding to a sublattice potential (e.g. due to h-BN
encapsulation), which plays the role of the time reversal
invariant and tunable PLL gap in our case. The charge
current response should be contrasted with previous the-
oretical works on transport in strained graphene, pre-
dicting valley-polarized currents in the presence of ex-
ternal magnetic fields [27, 32–36], including valley fil-



5

ters or switches [37–43], by combination with polarized
light [44], parametric pumping [45, 46], or even in equi-
librium in a zigzag graphene ribbon [31].

The relatively simple and analytic gauge field treat-
ment of long-wavelength strain in graphene allowed us
to analyze inversion symmetry breaking on macroscopic
scales, design a tunable static strain-induced bulk gap,
and use these to induce a dynamic charge current. We
expect this general concept to extend to a wider set of
systems and materials, including (3D) Weyl semimetals,
which show similar synthetic gauge field effects [48–51].
The proposed effect also allows for measuring the edge
contribution to intervalley scattering, to which it is highly
sensitive even in the static case.
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[34] S. Milovanović and F. Peeters, J. Phys.: Cond. Matt. 29,
075601 (2016).

[35] M. Settnes, J. H. Garcia, and S. Roche, 2D Materials 4,
031006 (2017).
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Appendix A: Programmable gauge fields

In this appendix we briefly review the relation between
strain fields and synthetic gauge fields in the geometry of
Zhu et. al. [14]. For completeness we review their main
ideas and obtain some further useful formulas specifically
for the pseudoelectric field.

Consider applying a force F along the y direction in
Fig. 1. It leads to a stretch by ∆y. Force balance along
any cut at constant y implies F = WhY εyy where σyy =
Y εyy is the stress along y, h is the “width” of graphene,
and Y is the Young modulus. Using this simple relation
one obtains a y-dependent strain controlled by the width
function W (y),

εyy(y) =
F

hY

1

W (y)
. (4)

Thus, a narrowing width yields a strain gradient

∂εyy
∂y

= − F

hY

∂W (y)
∂y

W (y)2
. (5)

In order to obtain a constant gradient
∂εyy

∂y one needs
to choose a specific width function. The specific shape
function is

W (y) =
frL

fr(L− y) + y
W (0), (6)

where fr = W (L)
W (0) .

One can relate the force and the stretch ∆y. Using

∆y =
∫ L

0
εyy(y)dy, and Eqs. (4) and (6), we have

∆y = L
F

hY

1 + fr
2frW (0)

. (7)

Next we would like to obtain all the strain tensor
components in order to calculate the pseudo vector po-
tential from Eq. (1). We use the constitutive relations
σxx = Y

1−ν̄2 (εxx + ν̄εyy), σyy = Y
1−ν̄2 (εyy + ν̄εxx), and

σxy = 2Gεxy, as well as stress equilibrium
∑
i=x,y ∂iσij =

0. Here ν̄ is the Poisson ratio, and G = E
2(1+ν̄) the shear

modulus. Assuming uniaxial stretch we have

εxx + ν̄εyy = 0. (8)

Combining these relations one obtains [14]
∂εxy

∂y = 0 and
∂εxy

∂x = −(1+ν̄)
∂εyy

∂y . Under the condition of
∂εyy

∂y = const
we have

εxy(x, y) = −(1 + ν̄)
∂εyy(x, y)

∂y
x. (9)

Thus, this simple elasticity theory allows us to de-
termine the synthetic gauge fields in the device using
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Eq. (1),

Ax = −c(1 + ν̄)εyy, Ay = −2cεxy. (10)

where c = tβ
evF

.
Consider an adiabatically slow time-dependent Force

of the form F (t) = FDC + FAC cos(ωt). Using Eq. (1)
and the above relations we have

B(x, y, t) = 3c(1 + ν̄)∂yεyy = −3c(1 + ν̄)
F

hY

∂yW (y)

W (y)2
,

Ex(x, y, t) = c(1 + ν̄)∂tεyy = c(1 + ν̄)
∂tF

hY

1

W (y)
,

Ey(x, y, t) = 2c∂tεxy = 2c(1 + ν̄)
∂tF

hY

∂yW (y)

W (y)2
x. (11)

Relating the force to the stretch ∆y(t) = ∆y +
sin(ωt)∆yAC using Eq. (7), and here ignoring ∆yAC ,
gives

B =

(
∆y

L

)(
1− fr
1 + fr

)
1

L
× 6c(1 + ν̄). (12)

The first, second, and third factors show the relation be-
tween the pseudomagnetic field and the relative stretch,
the narrowing percentage, and the overall dimensions of
the ribbon. The last dimensionfull factor can be esti-
mated for graphene using t

evF
≈ 2.5µm T. For a relative

stretch of 20%, fr = 1/2, and L = 1µm, as in Fig. 2, as
well as β ≈ 2.5 and ν̄ = 0.17, this estimate gives 3 Tesla,
which is close to our COMSOL simulation.

Similarly, the pseudoelectric field along x reads

Ex(y, t) =

(
∆yAC
L

)
ω

(
1

1 + fr

W (L)

W (y)

)
×4(1+ν̄)c cos(ωt).

(13)
Note the y dependence of the pseudoelectric field as given
by W (y)−1 ∝ fr(L− y) + y from Eq. (6), consistent with
our COMSOL simulation in Fig. 2(b),(c).

Appendix B: Suppressing intervalley scattering
using smooth edges

The pseudo QH effect described in this paper strongly
relies on the absence of intervalley scattering. Intraedge
intervalley relaxation will suppress the current by a factor
∼ e−L/Liv where L is the length of the edge and Liv is
the intervalley scattering length.

In this appendix we argue that this assumption can
be satisfied in the modified device in Fig. 5. The idea is
that any sort of edge physics on the atomic scale, which
typically contain an irregular combination of zigzag and
armchair edges, produces intervalley scattering. How-
ever one can push the effective edges into the interior of
the device, where their scattering becomes dominated by
the disorder potential stabilizing the QH effect [24, 25]
whose characteristic length scale is typically assumed to

significantly exceed the atomic distance. As a result, the
trajectories in the interior of the sample will have an ap-
proximately conserved valley quantum number.

Consider adding three gates along the device as shown
in Fig. 5(a), allowing independent control of the density
in the three regions. We envision these regions to sta-
bilize separate gapped QH states, with the filling factor
in the central region being ν1(= ±2,±6,±10 . . . ), con-
trolled by Vg1, and ν2 6= ν1 in the exterior regions which
is assumed to be fixed and controlled by Vg2. In the bulk,
the QH states consist of localized states, and the different
QH states are separated by extended states, as shown in
Fig. 5(b) where the typical disorder length exceeds the
atomic scale. While the external edge mode trajectories
between the ν2 region and vacuum are sensitive both to
bulk disorder and to atomically sharp irregularities of
the physical edge of the graphene sample, the interface
edge modes between the ν1 and ν2 regions are determined
solely by the smooth disorder potential.

As a result of the smoothness of the disorder potential,
the semiclassical trajectories corresponding to a superim-
posed fast cyclotron motion on top of a slow drift velocity

vd =
~B×∇Vdis

| ~B|2
around the disorder potential, Vdis, have

a well defined valley character. On the other hand, the
edge modes near the edges of the sample are strongly
affected by atomically sharp edge scattering and thus
undergo intervalley scattering. These two types of 1D
modes are spatially separated by the ν2 gapped QH re-
gion of localized states.

These filling factors dictate the number of edge modes
at each interface. For a real magnetic field the number
of chiral edge modes is given by the filling factor ν, or by
the difference of filling factors at an interface between two
different QH states. But for a pseudomagnetic field these
modes are equally split at each edge into the two chiral-
ities, i.e., there are ν/2 modes moving in each direction.
As denoted in Fig. 5(b) the number of edge modes of
each chirality is ν2/2 at the exterior edge and |ν1− ν2|/2
at the interior interface between ν1 and ν2 filling factors.
Let us assume ν1 ≥ ν2 > 0 for simplicity.

Without intervalley scattering anywhere, the total two-
terminal conductance as determined by the number of
modes is dictated by the largest filling factor

I

Vext
|no iv scattering =

e2

h
ν1 (14)

In the presence of strong intervalley scattering we assume
that the external edge modes of the ν2 region are gapped
out and do not contribute. Then the two-terminal con-
ductance becomes

I

Vext
|strong iv scattering =

e2

h
(ν1 − ν2). (15)

As a function of the gate voltage Vg1 controlling ν1 the
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Intervalley
scattering

FIG. 5. Device designed to suppress intervalley scattering at the effective edges. (a) Adding parallel gates allows one to
define three parallel regions in the quantum Hall regime with different filling factors. (b) Schematic electron trajectories in the
presence of the disorder potential, which is assumed to be smooth on the atomic scale. The exterior edge states are sensitive to
the graphene termination which is expected to cause intervalley scattering, while the internal interface modes are only sensitive
to the smooth potential and hence preserve the valley index. The total number of edge modes at each edge or interface are
indicated, and are equally split among the two chiralities.

conductance will exhibit nearly quantized plateaus. The
AC pseudo Hall effect will follow a similar behavior.

This analysis also implies that one can use such a de-
vice to probe the importance of intervalley scattering at
the outer edge and test the length scale Liv.

Appendix C: AC pseudo Hall current in the
diffusive regime

As the density is tuned through the extended PLL
states, bulk transport takes place. This means that the
pseudoelectric field leads to a finite valley current per-
pendicular to the edges of the sample. Since the electric
field is opposite for the two valleys, this leads to a val-
ley polarization near the edges, which eventually in the
DC limit leads to a diffusive current effectively screening
the external pseudo-E field and suppressing I. For finite
frequency, this opposing diffusive current does not fully
develop. In this appendix we present an approximate
semiclassical analysis of the current at finite frequency.

We consider a transport equation for the current den-
sities of the two valleys ~j±, which includes a dissipative
conductance σ, a diffusion current, and a Hall effect, as

well as the continuity equation,

~j± = ±σ ~E(t)−D~∇n± ∓ (ωcτ)~j± × ẑ, (16)

0 = ~∇ ·~j± +
dn±
dt

. (17)

Here D is the diffusion constant. The currents ~j± and the
densities n± are related by the continuity Eq. (17), and
also satisfy boundary conditions jx(x = 0, y) = jx(x =
W, y) = 0. Again here we ignore intervalley scattering
and hence obtain uncoupled equations for the two valleys.

We solve these equations under simplifying assump-
tions of (i) no y−dependence of neither the width
W (y) → W nor the fields E(y) → E, and (ii) the AC
electric field points along the x direction only. Then
the y component of Eq. (16) gives jy = ωcτjx, with
jx,y ≡ (j+)x,y, and the x component of Eq. (16) yields
the differential equation

[1 + (ωcτ)2]jx = σE +
D

iω
∂2
xjx, (18)

with boundary condition jx(0) = jx(W ) = 0. The elec-
tric field is the real part of Eeiωt and the current contains
both in and out of phase components. From the diffusion
time across the width of the sample

τT ≡
W 2

D
, (19)
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we form a dimensionless parameter ωτT (which takes very
low values in our system as estimated below). One re-
casts the differential equation in terms of dimensionless
coefficients, a dimensionless variable x̃ = x/W , and a
source term,

jy =
ωcτ

1 + (ωcτ)2
σE +

1

i(ωτT )(1 + (ωcτ)2)
∇2
x̃jy, (20)

with boundary conditions jy(x̃ = 0) = jy(x̃ = 1) = 0. It
is solved by

jy(x, t) =
σE(ωcτ)

1 + (ωcτ)2
× j̃(x/W )

j̃(x̃) = 1 +

[
e−A − 1

eA − e−A
eAx̃ + (A→ −A)

]
, (21)

where A2 = i(ωτT )[1 + (ωcτ)2]. Having solved for j+
(valley K), we can obtain ~j− by replacing B → −B and
E → −E. Flow lines and the current profile as function
of x̃ are plotted in Fig. 6.

At high frequency screening does not have time to de-

velop. With A → ∞ we have jy(x, t) = σE(ωcτ)
1+(ωcτ)2 , except

right on the edge. This current is in phase with the elec-
tric field.

At low frequency we expect a strong suppression of
the current due to screening. Expanding the solution for
small A, corresponding to low frequency, we obtain

jy −−−−−→
ωτT�1

i

2
σE · (ωcτ) · (ωτT ) · x

W

( x
W
− 1
)
, (22)

which is out of phase with respect to the electric field. We
see the suppression factor (ωτT ) due to the scrreening ef-
fect, which becomes efficient when ωτT � 1. Integrating
over the width of the sample yields

I =

∫ W

0

dxjy(x) =
i

12
σEW · (ωcτ) · (ωτT ). (23)

We now estimate the diffusion time τT = W 2/D for a
width W ≈ 0.5µm. Doe the diffusion coefficient D we

use Einstein’s relation σ = De2dn/dEF with σ ≈ e2

h a
typical experimental value for the longitudinal conduc-
tivity in graphene at QH transitions [2, 52]. The density

of states dn/dEF depends on disorder as depicted in the
inset of Fig. 4. Here we estimate dn/dEF very crudely by
assuming a density of states of a clean LL, B

Φ0
δ(E−ELL),

spread due to disorder over an energy approximately
given by the LL spacing ~ωc = vF

√
~eB. This estimate

is equivalent as an order of magnitude to the Dirac den-
sity of states dn/dEF = 2

π
kF
~vF with kF determined from

the electronic density of a full LL, k2
F ∼ B

Φ0
. For B = 3T

this gives kF ∼ 102µm−1 and we obtain D ∼ 0.01m2s−1

giving a time of τT ≈ 10−10 s. For a typical piezoelectric-
mechanical frequency ω ≈ 107Hz we have ωτT ∼ 10−3.

While here we considered piezoelectric modulators,
which sets an upper limit for possible frequencies, the
effect can in principle be observed at higher frequencies.

𝑅𝑒෩𝑗 𝐼𝑚෩𝑗

Ԧ𝑗+

𝑥/𝑊 𝑥/𝑊

arctan(𝜔𝑐𝜏)
Ԧ𝑗−

𝐸 sin(𝜔𝑡) 𝐸 sin(𝜔𝑡)

𝐾′

−𝐵

𝐾

+𝐵

𝜔
current in phase current out of phase

FIG. 6. Plot of the current distribution Eq. (21) in the diffu-
sive regime as function of frequency ω. The parameter A ∝ ω
takes the values 10, 3.3, 2. In the high-frequency regime the
current is in phase with the electric field, except near the
boundaries, since screening is not effective. At low frequen-
cies we obtain the parabolic current distribution in Eq. (22)
which is primarily out of phase.
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