
J
H
E
P
0
1
(
2
0
2
0
)
0
0
1

Published for SISSA by Springer

Received: July 22, 2019

Revised: November 16, 2019

Accepted: December 17, 2019

Published: January 2, 2020

Gauss’ Law and string-localized quantum field theory

Jens Mund,a Karl-Henning Rehrenb and Bert Schroerc,d

aDepartamento de F́ısica, Universidade Federal de Juiz de Fora,

Campus Universitário da UJFJ, Juiz de Fora 36036-900, MG, Brasil
bInstitute for Theoretical Physics, Georg-August-University Göttingen,

Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
cCentro Brasileiro de Pesquisas F́ısicas,

Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ, Brasil
dInstitut für Theoretische Physik, Freie Universität Berlin,

Arnimallee 14, 14195 Berlin, Germany

E-mail: jens.mund@ufjf.edu.br, krehren@gwdg.de,

schroer@zedat.fu-berlin.de

Abstract: The quantum Gauss Law as an interacting field equation is a prominent feature

of QED with eminent impact on its algebraic and superselection structure. It forces charged

particles to be accompanied by “photon clouds” that cannot be realized in the Fock space,

and prevents them from having a sharp mass [7, 19]. Because it entails the possibility of

“measurement of charges at a distance”, it is well-known to be in conflict with locality of

charged fields in a Hilbert space [3, 17]. We show how a new approach to QED advocated

in [25, 26, 30, 31] that avoids indefinite metric and ghosts, can secure causality and achieve

Gauss’ Law along with all its nontrivial consequences. We explain why this is not at

variance with recent results in [8].

Keywords: Gauge Symmetry, Global Symmetries, Space-Time Symmetries

ArXiv ePrint: 1906.09596

Dedicated to Detlev Buchholz on the occasion of his 75th birthday.

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP01(2020)001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Repository of the Freie Universität Berlin

https://core.ac.uk/display/288114138?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jens.mund@ufjf.edu.br
mailto:krehren@gwdg.de
mailto:schroer@zedat.fu-berlin.de
https://arxiv.org/abs/1906.09596
https://doi.org/10.1007/JHEP01(2020)001


J
H
E
P
0
1
(
2
0
2
0
)
0
0
1

Contents

1 The quantum Gauss Law 1

1.1 Some history 1

1.2 Implications of the quantum Gauss Law 2

1.3 The string-localized formulation of QED 4

2 Bogoliubov’s formula 6

3 An external field warm-up 7

4 Gauss’ Law in string-localized QED 8

5 Infra-particles 10

6 The hybrid approach 13

7 Photon cloud superselection 15

8 Conclusions 18

9 Outlook 19

A Some background material 20

A.1 Vector potentials and indefinite metric 21

A.2 Causality and observables 23

1 The quantum Gauss Law

1.1 Some history

Before turning to the new results announced in the abstract, we want to call to mind some

early developments and insights about the infrared intricacies of QED.

The message that interactions of photons with matter require a formulation which

differs from standard scattering theory goes back to the work of Bloch and Nordsieck [2]

in 1937 and Fierz and Pauli [18] in 1938. Decades later Yennie, Frautschi and Suura [36]

integrated these early proposals into the covariant renormalized perturbation theory of

QED. In this way the logarithmic on-shell infrared divergencies are encoded into the pre-

scription for a rotational-invariant infrared photon inclusive cross-section for the scattering

of charge-carrying particles. A closely related result of QED perturbation theory is (what

is nowadays referred to as) Weinberg’s soft photon theorem.
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As a matter of fact, apart from the rather indirect construction by Steinmann [32],

up to date these heuristic on-shell prescriptions have not been supplemented by a direct

construction of a physical1 Dirac field in causal perturbation theory. The present work is

intended to report on substantial progress in this direction.

Back in the early 1960s, the LSZ scattering theory (which established the existence

of in/out scattering states and the associated S-matrix as a consequence of the causal

separability and the existence of a mass gap) suggested that what is at stake in QED is

not only the large-time LSZ asymptotics, but the very concept of a Wigner particle with

a sharp mass-shell. At that time the only indication for such an “infra-particle” without

a sharp mass came from a model in 1+1 spacetime dimensions by one of us [29], that also

exhibited a non-trivial dynamical superselection structure.

More than another decade later, Ferrari, Picasso and Strocchi [17] proved that electri-

cally charged fields cannot be pointlike localized,2 simply because local fields must commute

with the charge operator, expressed as an integral over the electric field at spacelike infinity.

Yet, it is indispensible for scattering theory that charged operators remain causally separa-

ble. Fröhlich, Morchio and Strocchi [19] showed that charged states cannot exist in the Fock

representation and that the Lorentz symmetry is broken in irreducible charged representa-

tions. Buchholz [6] refined these insights by showing that there exists an uncountable set of

superselection rules related to the asymptotic shape of photon clouds. Lorentz symmetry

connects sectors with different such clouds. In the present paper we shall reveal an intimate

relation between this fact of QED and the superselection structure in the model of [29] —

even if there were no gauge fields in that model. In a follow-up paper [7] Buchholz also

proved that charge-carrying particles are necessarily infra-particles. The essential input

was not perturbation theory but rather a careful formulation of the quantum Gauss Law.

In more recent times there has been a growing interest in large distance aspects related

to interactions of massless fields of helicity h ≥ 1 with s < 1 matter fields, as documented in

the extensive monograph on this subject [34]. A prominent issue is the existence of infinitely

many “asymptotic symmetries”, whose associated conservation laws are responsible for the

asymptotic superselection structure.

1.2 Implications of the quantum Gauss Law

We present a brief review of the quantum Gauss Law (the measurement of the total electric

charge at infinite spacelike distance and the ensuing failure of locality of charged fields) and

its close relation to the uncountable set of “photon cloud” superselection rules. This cannot

be understood in terms of the gauge-dependent point-localized matter fields of gauge theory

that simply evade the conflict of the quantum Gauss Law with local commutation relations

by a gauge fixing term [17], cf. appendix A.1, rather than address its physical consequences;

instead we shall demonstrate how a new approach [25, 26, 30, 31] implements the many

infrared features of QED without the need for state spaces with indefinite metric (Krein

spaces) and ghosts to return to positive metric. In this approach, the physical interacting

1I.e., with positive definite correlation functions, cf. appendix A.1.
2Localization is always understood in the sense of causal commutation relations (vanishing commutator

at spacelike distance). For some comments on “causality” and “observables”, see appendix A.2.
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charge-carrying matter fields become “string-localized” via an interaction density coupling

the point-localized free fields to “string-localized potentials”.3

The Gauss Law allows to measure electric charges from a distance. The flux of the

electric field across a closed surface σ equals the total charge in the volume V enclosed by

the surface: ∮

x0=t, ~x∈σ

d~σ(~x) ~E(x) =

∫

x0=t, ~x∈V

d3x j0(x). (1.1)

It follows from the inhomogeneous Maxwell equation (the differential Gauss Law)

∂µF
µν(x) = jν(x). (1.2)

In QED, the Maxwell field strength and the charge density are interacting quantum fields

coupled through (1.2). The right-hand side equals −q times the Dirac current, where the

unit of charge q is the coupling constant of QED.

The limiting case V → R
3, the global Gauss Law

lim
R→∞

∮

x0=t, ~x∈R·S2

d~σ(~x) ~E(x) = Q, (1.3)

where the charge operator Q generates the U(1) symmetry of the Dirac field, is particularly

intriguing in the quantum theory: because the global charge operator is an integral over

the field strength at spacelike infinity, and has a nontrivial commutator with the charged

field, the latter cannot commute with the field strength at spacelike distance [3, 17].

This fact is only the first of a number of remarkable imprints of Gauss’ Law on the

algebraic structure of QED and the nature of charged particles, that are held to be char-

acteristic of QED as a gauge theory [21].

The global charge operator and hence the asymptotic flux operator is a multiple of 1

in every irreducible representation of the algebra of local observables, defining the charge

superselection rule. In contrast, local flux operators are dynamical quantities that are not

central operators.

The global Gauss Law also requires that in charged states, the expectation value of

the flux operator through a sphere of radius R has a finite limit as R → ∞. Hence, the

field strength Fµν(x) must decay in spacelike directions like r−2, and the asymptotic values

aµν(x) := lim
λ→∞

λ2(Ψ, Fµν(λx)Ψ) (1.4)

are eigenvalues of central observables limλ→∞ λ2 Fµν(λx) in the irreducible representation

of the state described by Ψ. Consequently, they define uncountably many “infrared” super-

selection rules. Lorentz symmetry connects different asymptotic field configurations (1.4)

and can therefore not be realized in irreducible charged sectors [19]. Buchholz has shown

in [7] (cf. section 5) that the condition of non-trivial limits in (1.4) along with a bound on

the fluctuations entails that charged one-particle states cannot be eigenvectors of the mass

3A “string” is a spacelike or lightlike ray extending from a point to infinity. (In contrast, strings of

String Theory are a classical concept that is not reflected in causal commutation relations.) String-localized

approaches to QED were previously advocated by Mandelstam [22] and by Steinmann [32, 33].
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operator M2 = PµP
µ, hence charged particles cannot have a sharp mass, see section 5. The

effect can be ascribed to the “infrared photon clouds” attached to charged particles whose

configuration is given by (1.4). This infra-particle nature of electrons is also responsible

for the breakdown of the usual methods of scattering theory, discussed in section 1.1.

It should be clear from the previous, that the issues raised concern properties of the

interacting fields themselves, and not just on-shell scattering amplitudes. The differential

Gauss Law, constituting an algebraic relation between Maxwell and Dirac fields, is of course

due to the interaction. The correct formulation of the interacting theory must be able to

properly implement it.

1.3 The string-localized formulation of QED

In covariant quantizations of the Maxwell potential with indefinite metric, Gauss’ Law does

not hold (see appendix A.1). In the usual λ gauges, there is a “fictitious current” jµfict =

−λ∂µ(∂A), that is added to (1.2) as a contribution from the free field, and thus causes the

global and local Gauss Laws to fail [3], cf. also section 4 and section 5. When the Gupta-

Bleuler condition is imposed, the interacting Dirac field is no longer defined on the resulting

physical Hilbert space, and charged states must be constructed in a different way, e.g., by

a limit of charge separation [21]. An alternative to the Gupta-Bleuler method to deal with

the indefinite metric is pursued in Steinmann’s perturbative construction of QED [33].

In an emerging approach [25, 26, 30, 31], a perturbative construction of QED is pro-

posed that avoids indefinite metric from the outset. Emphasizing fundamental principles of

relativistic quantum theory, this approach aims at completing the successful Lagrangean

construction of a unitary scattering matrix of QED by the construction of its Hilbert

space fields with a full control of their causality properties. It starts from the fact (cf.

appendix A.1), that the equation

Fµν(x) = ∂µAν(x, e)− ∂νAµ(x, e)

can be solved (as a cohomological problem) by “string-localized potentials” [27]

Aµ(x, e) :=

∫
∞

0
dsFµν(x+ se)eν , (1.5)

where e is any (spacelike) direction in R
4. The ray R+ · e is referred to as “string” (cf.

footnote 3). They are defined (as free fields) on the physical Hilbert space of the Maxwell

field strength.

The perturbative expansion (cf. section 2) of QED with the interaction density

L(x, e) = Aµ(x, e)j
µ(x) (1.6)

therefore proceeds on the tensor product of the free Maxwell and Dirac Hilbert spaces.

Technically, the potential and L(x, e) are distributions also in e and will require a suitable

smearing (that we suppress until section 7).

We show that in this approach, the inhomogeneous Maxwell equation (1.2) holds (al-

ready) in first perturbative order, and along with it the global and local Gauss Laws.
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We also show how the interacting Dirac field becomes string-localized, in accord with the

NoGo result of [17]. (This is of course due to the string-localized interaction density; but

the non-trivial part is to understand why the Dirac field is not worse than string-localized.)

We shall compute in the string-localized approach the asymptotic field configuration

in states Ψ = ψ∗(f)Ω, generated from the vacuum Ω by the smeared interacting Dirac field

ψ. The remarkable feature is that — while the observable electromagnetic field strength

remains string-independent — the unobservable charged field becomes string-dependent

through the interaction with the string-localized potential, and in fact localized along the

string. We find in this situation that the asymptotic electric flux in the string-dependent

state is concentrated in the direction of the string e. Thus, choosing the direction e (or an

average over directions), one can generate states with “designed” photon clouds.

A recent proposal by Duch [12] constructing the interacting field strength by using

a modified causal S-matrix in (2.1) below, also cures the global Gauss Law. Adapting

old ideas of Dollard [11] and Kulish and Faddeev [16], it defines the S-matrix by compar-

ison with a suitable (time-)asymptotic dynamics that takes the (space-)asymptotic pho-

ton clouds into account, corresponding to the “dressing transformations” of charged states

in [23, 24]. The localization of the interacting Dirac field is not addressed in that approach.

The findings presented here are not at variance with a recent result by Buchholz et

al. [8]. The authors show (in a model with static charges, to be thought of as a limit case

of QED with infinitely heavy charges) that it is impossible, with the help of only operators

belonging to the algebra of the Maxwell field strengths, to generate states of that algebra in

which the local flux operators take non-trivial values in accord with Gauss’ Law. Namely,

in the limit considered, the local flux operators are central elements of the algebra, and

no approximations with inner conjugations can change their values. If the algebra is given

(as is understood in [8]), an extension of the algebra is required. This can be conveniently

achieved by potentials with “longitudinal degrees of freedom” that are not present in the

field strengths. The string-localized potentials as in (1.5) cannot be used for the purpose.

In contrast, the construction of an interacting quantum field theory involves a change

of the algebra of the free fields and of its representation. Perturbation theory achieves these

changes. This is also true if the interaction density contains only observables, such as (1.6),

because perturbation theory is not an approximation by inner unitary conjugations with

degrees of freedom present in the interaction density. This is manifest in an external field

problem (section 3), where perturbation theory is exact and the algebra remains unchanged,

but the representation is manifestly changed: the local flux operators remain central but

take the values required by the local Gauss Law.

The actual role of the string-localized potentials in the QED interaction density is to

serve as “catalyzers” making the interacting Dirac fields string-localized, while the observ-

able Maxwell fields remain point-localized. This remarkable structural resolution of the

old locality issues of QED must have escaped the attention of the authors of [8] by their

focus on the generation of charged states.

In the case of full QED with the string-localized interaction density (1.6), we restrict

ourselves to first-order calculations. The results outlined before show that all the charac-

teristic features of Gauss’ Law in QED can be obtained in this way. In addition, we shall
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present a remarkable “semi-perturbative” formula, eq. (6.5), that reveals how the interact-

ing Dirac field “virtually” (in a sense to be explained) carries the longitudinal degrees of

freedom of the Maxwell potential of other approaches.

The full construction of the interacting charged field and the study of its large time

asymptotic infra-particle scattering behaviour lie well beyond the scope of this paper.

2 Bogoliubov’s formula

The perturbative approach is based on Bogoliubov’s formula [4, Chap. 17] via a causal

S-matrix functional of an IR cutoff function g(x) for the coupling constant. The formula

assigns to each free or composite free field χ an interacting field χ
∣∣
gL

where L is the interac-

tion density. This map deforms the algebraic relations, but it respects local commutativity

of the interacting observables, thanks of the causal properties of the S-matrix functional.

The renormalization is done in the Glaser-Epstein framework of causal perturbation theory.

Bogoliubov’s formula with an interaction density L(x) reads

∫
d4x f(x)χ

∣∣
gL
(x) ≡ χ

∣∣
gL
(f) := −i∂λS[g, 0]

∗S[g, λf ]
∣∣∣
λ=0

, (2.1)

where the causal S-matrix is the time-ordered exponential

S[g, f ] := Tei
∫
d4x [g(x)L(x)+f(x)χ(x)].

In first order,

χ
∣∣
gL
(x) = χ(x) +

∫
d4y g(y)R(L(y), χ(x)) +O(g2), (2.2)

where −iR(A(y), B(x)) := T [B(x)A(y)] − A(y)B(x) is the retarded commutator, and the

higher order terms are multiple retarded commutators [13]. By the Wick expansion, the

causal S-matrix S[g, f ] is expanded into a sum of Wick products times numerical retarded

(anti-)commutators of free fields. Already these propagators are ill-defined by the prescrip-

tion “θ(x0 − y0)[φ(x), χ(y)]±” (being products of distributions with overlapping singular

supports), even more so are products thereof appearing in loop diagrams ill-defined. Their

definition is a matter of renormalization and may introduce free parameters to be fixed by

renormalization conditions. In Glaser-Epstein causal perturbation theory, renormalization

is done in position space so as to keep control of localizations.

In the case of our interest, the interaction density (1.6) is string-localized, where L(e)

must be averaged with a test function h(e). The renormalization is then subject to the

“principle of string-independence”: the S-matrix and observable fields must be independent

of the auxiliary string variable e or its averaging function h in the “adiabatic limit” g(x)→q.

The preservation of local commutativity of the observables is a crucial feature of Bo-

goliubov’s formula. Let us sketch (in first order) how the argument proceeds, and why it

fails for the non-observable Dirac fields in QED.

The commutator of two interacting fields A1, A2 in first order is
∫

d4y g(y)C(y), where C(y) = [R(L(y), A1), A2] + [A1, R(L(y), A2)].

– 6 –
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For sets X, Y ⊂ R
4, we say that X is later than Y (X < Y ) if for each x ∈ X and y ∈ Y ,

x is not in the closure of the causal past of y. Two sets are spacelike separated iff X < Y

and Y < X. Let Xi and Y be the localizations of Ai and L(y), respectively. They may be

points or strings.

Let the localizations Xi of the free field operators Ai be spacelike separated. If Y < X1

and Y < X2, then R(L(y), A1) = 0 = R(L(y), A2) and hence C(y) = 0. If Y 6< X1 and

Y 6< X2, then the retarded commutators coincide with the ordinary commutators, and

C(y) = 0 by the Jacobi identity. For the other two cases, assume first that Y = {y} is a

point. If y < X1 and y 6< X2, then C(y) = i[A1, [L(y), A2]]. Now y 6< X2, together with the

fact that X1 < X2 implies by [10, Lemma 2.5] that X1 < y, and because also y < X1, y is

spacelike separated from X1, and C(y) = 0 because A1 commutes with L(y) and with A2.

Similar for y < X2 and y 6< X1. Hence C(y) = 0 for all y. Thus, a point-local interaction

density preserves local commutativity of string-localized fields.

Lemma 2.5 in [10] does not apply when Y is a string y + R+e, even if Xi are points.

But when Ai(x) are observable fields, which, by definition, remain independent of e under

the interaction, one can exploit the option to choose e appropriately, so that the same

conclusion holds: commutativity of point-local observables is preserved by string-local

interactions. We shall present an alternative, more elegant argument in section 6.

For non-observable fields, one has to expect an uncontrolled delocalization under a

string-localized interaction, in general. However, for the interacting Dirac field in QED, we

shall present a remarkable formula in section 6 by which it behaves like a string-localized

field under a point-localized interaction. Thus, it “inherits” the string-localization of the

interaction density. This is in accord with the NoGo result of [17] mentioned in the intro-

duction. If e is chosen spacelike, this also ensures sufficient spacelike separability for the

needs of scattering theory.

3 An external field warm-up

We present a simple example, where perturbation theory is exact. The example is the

external field problem with Lh = Fµνhµν with an arbitrary classical source hµν(x). We shall

show that the Bogoliubov map changes the values of the central flux operators. This shows

that, even when the interaction density is a functional of the observables, the Bogoliubov

map is not an approximation by inner conjugations.

In the case at hand, Bogoliubov’s formula (2.1) simplifies to
∫

d4xFµν
h (x)fµν(x) ≡ Fh(f) = −i∂λS[h]

∗S[h+ λf ]
∣∣∣
λ=0

, (3.1)

where

S[h] := Tei
∫
d4xLh(x) = TeiF (h).

(As the external field h plays the role of the cutoff function g, an adiabatic limit is not

taken.)

The retarded propagator

R(F (f), F (h)) = Gret(f, h) · 1 ≡

∫
d4x d4y fµν(x)hκλ(y)G

µν,κλ
ret (x− y) · 1

– 7 –
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is given in terms of the massless scalar propagator Gret0(z) = −
∫ (2π)−4d4k

k2+iεk0
e−ikz:

Gµν,κλ
ret (z) = ∂[µην][λ∂κ]Gret0(z)

(the brackets denoting anti-symmetrization). Thus, standard use of Wick’s theorem implies

S[h] = e
i
2
Gret(h,h) · eiF (h)

and

S[h]∗S[h+ f ] = eiGret(f,h)+
i
2
Gret(f,f) · eiF (f).

Bogoliubov’s formula then yields

Fh(f) = F (f) +Gret(f, h) · 1, or Fµν
h (x) = Fµν(x) +

∫
d4y Gµν,κλ

ret (x− y)hκλ(y) · 1.

The string-localized interaction density Aµ(x, e)jµ(x) with a classical conserved source

jµ(x) is a special case, because the action can be written as

∫
d4xAµ(x, e)jµ(x) = F (he), (3.2)

where heµν(x) =
1
2

∫
∞

0 ds j[µ(x− se)eν].

When the Maxwell Green function is expressed in terms of the scalar Green function,

the shift term becomes

(Greth
e)µν(x) ≡

∫
d4y Gret0(x− y) ηκ[µ∂ν]∂λ

∫
∞

0
ds j[κ(y − se)eλ]. (3.3)

Because ∂λjλ = 0 and eλ∂
λj(y − se) = −∂sj(y − se), the derivative ∂λ of the s-integral

just yields jκ(y), which is independent of e. Actually, the retarded propagator of the field

strength is unique only up to a term c · (ηµκηνλ − ηνκηµλ)δ(x − x′). This term would

add a contribution to (3.3) that depends on e. The principle of e-independence fixes the

renormalization constant c = 0.

Thus, the shift term is independent of e and equals the classical retarded electromag-

netic field with source jµ,

Fµν
class(x) =

∫
d4y Gret0(x− y) ∂[νjµ](y). (3.4)

In particular, the flux operator is shifted by the classical value of the flux.

No unobservable quantum degrees of freedom are needed to achieve this result. This

instance is in contrast to the statement in the abstract of [8], that “[gauge] bridges are

needed in order to ensure the validity of Gauss’ law”.

4 Gauss’ Law in string-localized QED

The following explicit first-order calculation of the interacting flux operator in string-

localized QED shows that Bogoliubov’s formula changes the free flux operators to in-

teracting flux operators that satisfy Gauss’ Law as an operator equation, with the electric

– 8 –
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charge operator “on the right-hand side” plus a boundary term that weakly vanishes in the

adiabatic limit.

The string-localized interaction density is L(x, e) = Aµ(x, e)j
µ(x), where jµ = : ψγµψ :

is the Dirac current. We choose for simplicity e = (0, ~e).

The interacting field strength in first order is

Fµν

∣∣
gL(e)

(x) = Fµν(x) +

∫
d4y g(y)R(Aκ(y), Fµν(x))j

κ(y) +O(g2).

The retarded commutator arises from R(Fκλ(y+se), Fµν(x))e
λ by distributional integration

over the string according to (1.5). R(F, F ) is unique up to a renormalization as in section 3.

The choice c = 0 yields

R(0)(Aκ(y), Fµν(x)) = −
(
∂x
[µην]κ + ∂x

[µeν]∂
y
κI

y
e

)
Gret0(x− y) · 1,

where (Iye f)(y) :=
∫
∞

0 ds f(y + se) is the string integration operator with inverse −(e∂y).

Its divergence is

∂µ
xR

(0)(Aκ(y), Fµν(x)) =

[
− ηνκδ(x− y) + eν∂

x
κ

∫
∞

0
ds δ(x− y − se)

]
· 1. (4.1)

Thus,

∂µFµν

∣∣
gL(e)

(x) = −g(x)jν(x) + eν

∫
∞

0
ds ∂κg(x− se) · jκ(x− se) +O(g2). (4.2)

The first term becomes −qjν(x) in the adiabatic limit. For spacelike e, the second term,

evaluated in an electron state Ψ = ψ∗(f)Ω, ||Ψ||2 = 1, goes to zero in the adiabatic limit,

because as the region where g(x) = q increases, the support of ∂κg(x) moves to infinity in

a spacelike direction, where (Ψ, jκ(x)Ψ) decays rapidly. Thus, the adiabatic limit exists in

the weak sense, and the differential Gauss Law holds weakly. In the adiabatic limit,
∫

V

d3x (Ψ, ~∇ ~E
∣∣
qL(e)

(0, ~x)Ψ) = −q

∫

V

d3x (Ψ, j0(0, ~x)Ψ) +O(q2). (4.3)

If the volume V is large enough that its complement is spacelike separated from the support

of f , this equals −q. In particular, also the global Gauss Law (1.3) holds.

Because ∂µF
µν = 0 in 0th order, the 1st order corrections of ψ(f)

∣∣
qL(e)

do not con-

tribute, and the previous are the full first order results. Higher perturbative orders are

needed to turn the current on the right-hand side into the interacting current.

If the same calculations leading to (4.2) were done in the point-local indefinite-metric

(Krein space) setting, for simplicity in the Feynman gauge λ = 1, the zeroth-order term

∂µFµν = −∂ν(∂A) would not vanish (the “fictitious current” mentioned in section 1.3, cf.

appendix A.1) and must be added to (4.2). We shall see in section 5 that the fictitious

current contributes to the expectation value of ∂µF
µν in states generated from the vacuum

by the interacting Dirac field, so as to cancel the global charge. In view of [17], this is

a necessity because the Dirac field is point-localized in indefinite-metric Feynman gauge

QED, and consequently commutes with the gobal charge operator. Conversely, in the
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string-localized approach, the global charge is the expected one, and the charged fields are

string-localized.

The bulk term −g(x)j(x) in (4.2) would be the same in the indefinite-metric setting,

but the boundary term would be instead
∫

d4y g(y)jκ(y) ∂κ∂νGret0(x− y) =

∫
d4y ∂κg(y) · j

κ(y)∂νGret0(x− y). (4.4)

This vanishes for large spacelike x where the support of Gret0(x− y) does not intersect the

support of ∂g(y). If the integral of the zero-component over the x0 = 0-plane is computed

before the adiabatic limit is taken, the integral over ∂0Gret0(x − y) yields θ(x0 − y0), and

by partial integration the boundary term (4.4) exactly cancels the bulk term. On the other

hand, the decay of (4.4) in the adiabatic limit for finite x is harder to control because

the integration extends over the intersection of the support of ∂g with the entire backward

lightcone of x: the concentration of the boundary term along the string in (4.2) is a technical

advantage of the string-localized approach.

The propagator of the field strength, and consequently also the retarded commutator,

has a renormalization freedom

R(c)[Fµν(x), Fκλ(y)] = R(0)[Fµν(x), Fκλ(y)] + c · (ηµκηνλ − ηνκηµλ)δ(x− y) · 1.

Integration over the string e = (0, ~e) gives the corresponding freedom for the retarded

commutator R(Aκ(y), Fµν(x)) of the electric field with the string-localized potential

−ic · ηκ[µeν]

∫
∞

0
ds δ(x− y − se).

Its divergence is c times (4.1). Thus, the renormalization freedom just renormalizes the

electric charge. In other words, if q is the physical unit of charge, then one must choose

c = 0, cf. also [24]. The same choice is also dictated by the principle of string-independence

(as in section 2).

5 Infra-particles

In order that the global charge operator = electric flux through the infinite sphere exists

and is non-zero in charged states Ψ, the field strength should decay like r−2 in spacelike

directions (corresponding to the classical Coulomb Law). Thus, for the interacting field

the limit

fµν(x) := lim
λ→∞

λ2Fµν(λx) (5.1)

for spacelike x should exist in the weak sense (matrix elements), be non-zero and have

finite fluctuations in charged states [7]. Because fµν(x) commutes with all local observ-

ables, it is a multiple of 1 in every irreducible representation: fµν(x) = aµν(x) · 1. This

asymptotic field configuration aµν(x) is by construction a homogeneous function of x of

degree −2. Buchholz [7] has shown that these properties imply that charged states can-

not be eigenvectors of the mass operator M2 = PκP
κ. (For a simplified argument, see

appendix A.2.)
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We conclude that the electrons of QED are “infra-particles” (particles without a sharp

mass), because Gauss’ Law enforces the decay like r−2 of the surrounding electromagnetic

field (the “photon cloud”). In the two-point function of fields describing infra-particles, the

δ function δ(p2 −m2) is replaced by some continuous function with a singularity (cf. the

2D model in [29]). This in turn entails that correlations decay faster in asymptotic time

than with a sharp mass. For this reason, the scattering theory for infra-particles needs a

nontrivial adjustment of the LSZ formalism.

We want to verify the infra-particle features of QED in the string-localized approach.

The validity of the global Gauss Law established in section 4 already entails the λ−2 decay of

the radial electric field (flux density). We want to calculate also its directional distribution.

To this end, we have to evaluate the asymptotic field configuration of the interacting

field in charged states Ψ
∣∣
gL(e)

:= ψ∗
∣∣
gL(e)

(f)Ω created by the interacting Dirac field:

aµν(x) = lim
λ→∞

λ2(Ψ, Fµν(λx)Ψ)
∣∣
gL(e)

In contrast to indefinite-metric approaches, this state defines a positive functional.

The three first-order contributions to ψ, ψ and F in
〈
ψ(f)Fµν(x)ψ(f)∗

〉
are in turn

X1 ≡
〈
ψ(1)(f)Fµν(x)ψ(f)

∗
〉
=

∫
d4y g(y)

〈
R(jκ(y), ψ(f))ψ(f)∗

〉
·Dy

κ,µν∆0(y − x),

X2 ≡
〈
ψ(f)Fµν(x)ψ

(1)(f)∗
〉
=

∫
d4y g(y)

〈
ψ(f)R(jκ(y), ψ(f)∗)

〉
·Dy

κ,µν∆0(x− y),

X3 ≡
〈
ψ(f)F (1)

µν (x)ψ(f)
∗
〉
=

∫
d4y g(y)

〈
ψ(f)jκ(y)ψ(f)∗

〉
·Dy

κ,µνGret0(x− y),

where ∆0 and Gret0 are the massless scalar 2-point functions and retarded propagator. The

tensor of integro-differential operators

Dy
κ,µν = (∂y

µηνκ − ∂y
νηµκ) + ∂y

κ (∂
y
µeν − ∂y

νeµ) I
y
e

arises from the two-point functions involving Fµν(x) and Aκ(y, e) = Iye eλFκλ(y). Notice

the split-up into a string-independent part (the only one that would be present in the

indefinite-metric approach in the Feynman gauge) and a string-dependent part.

With a hindsight from section 6 and 7, we anticipate that the relevant contributions

in the asymptotic limit arise only from the string-dependent parts of Dκ,µν in X1 and X2,

while the sum of all other contributions decays faster than λ−2. We defer the proof of the

latter statement to the end of the section.

In the relevant contributions, we partially integrate ∂y
κ, using

∂y
κ R(jκ(y), ψ(f)) = −if(y) · ψ(y), ∂y

κ R(jκ(y), ψ(f)∗) = if(y) · ψ∗(y). (5.2)

The boundary terms involving ∂κg(y) can be roughly estimated to vanish in the adiabatic

limit like T−3 if the cutoff function g(y) is chosen to drop from q to 0 in the interval

T ≤ |y0| ≤ T + 1. Specifically, the support of the retarded commutators is the backward

lightcone of the support of f , and intersects the support of ∂g in a strip of spatial volume
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∼ T 3. Taking into account the quadratic decay of two-point functions and propagators in

timelike directions, the boundary terms are ∼ T 3/T 6.

The bulk terms are

i

∫
d4y g(y)

(
f(y)·(∂y∧e)I

y
e∆0(y−x)·

〈
ψ(y)ψ(f)∗

〉
−
〈
ψ(f)ψ∗(y)

〉
·(∂y∧e)I

y
e∆0(x−y)·f(y)

)
.

In the adiabatic limit, we may assume that the support of f is contained in the region

where g(y) = q, and by the scaling behaviour λ2∆0(λx− y) = ∆0(x− y/λ) of the massless

two-point function, we may simply neglect y ∈ supp(f) against x. We obtain in first order

a(x)(1) = lim
λ→∞

λ2
〈
ψ(f)F (λx)ψ(f)∗

〉∣∣(1)
gL(e)

= q · (∂x ∧ e) Ix−eC0(x) ·
〈
ψ(f)ψ(f)∗

〉
, (5.3)

where C0 is the massless commutator function. The last factor is ||Ψ||2 = 1. If we choose

e0 = 0, then a(0, ~x)(1) evaluated in the plane x0 = 0 vanishes for the magnetic field, and

lim
λ→∞

λ2
〈
ψ(f) ~E(λ~x)ψ(f)∗

〉
= −q · ~e

∫
∞

0
ds δ(~x− s~e). (5.4)

for the electric field. Thus the asymptotic electric field is concentrated at the direction ~e

and points in the direction of −~e. The total flux is −q, as expected for the electron state Ψ,

by the global Gauss Law, and in accord with section 4. If L(e) is averaged with a smearing

function h(e), the asymptotic flux density in the direction ~x = r~e is −qh(e)/r2.

To show the vanishing of the sum of the remaining contributions X3 and the string-

independent parts of X1, X2, we content ourselves with showing that their contribution to

∂µ
〈
ψ(f)Fµνψ(f)

∗
〉
is a sufficiently well-localized charge distribution of total charge zero,

so its asymptotic field configuration vanishes. We use

∂xµ(∂y
µηνκ − ∂y

νηµκ)∆0 = (−ηνκ�
y + ∂y

ν∂
y
κ)∆0 = ∂y

ν∂
y
κ ∆0,

∂xµDy
κ,µνGret0 = −

(
ηνκ + eνI

y
e ∂

y
κ

)
�yGret0 = −

(
ηνκ + eνI

y
e ∂

y
κ

)
δ(x− y),

in the string-independent parts of X1 and X2, and in X3, respectively.

Partial integration of ∂y
κ in the former produces bulk terms from the action on the

propagators, as before, and boundary terms that identically cancel the corresponding con-

tributions of the boundary terms in the string-dependent parts (because −(e∂) inverts the

string-integration Ie). Partial integration of ∂y
κ in the latter produces only a boundary

term that is identical with the rapidly decaying boundary term in (4.2).

Having settled the boundary terms, we collect the bulk terms:

q ·

∫
dx1dx2f(x1)f(x2)∂

x
ν

(
− i∆0(x1 − x) + i∆0(x− x2)

)
·
〈
ψ(x1)ψ

∗(x2)
〉

− g(x)
〈
ψ(f)jν(x)ψ(f)

∗
〉
.

For large x, one may again neglect xi in the arguments of ∆0. For ν = 0 and x0 = 0,

the first two terms combine into ∂0
xC0(x) = δ(~x). The resulting contribution to the charge

density in the asymptotic limit is

〈
ψ(f)

[
qδ(~x)− g(x)j0(0, ~x)

]
ψ(f)∗

〉
. (5.5)
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This result exhibits a compensating point charge qδ(~x) that one recognizes as coming from

the “fictitious current”. Indeed, its “position at x = 0” is fictitious because it is “seen

from infinity”. In the Feynman gauge calculation, the string-dependent part (5.4) would

be absent and the total result would be (5.5).

The total charge in (5.5) vanishes in the adiabatic limit, hence the contribution to

the asymptotic field configuration vanishes, too. Multi-pole radiation fields (that are not

excluded by the vanishing total charge, and have a slower spatial decay) also have zero

asymptotic field configurations, because the precise definition of the asymptotic limit [7]

involves also an averaging in time that suppresses the oscillations.

6 The hybrid approach

The “hybrid approach” [26] allows to study the relation between the string-localized and

the indefinite-metric approach. In particular, it sheds light on how the superselection

structure of QED arises dynamically (section 7).

Let Aµ(x) be the usual point-localized vector potential, for simplicity in the Feynman

gauge. In order to emphasize that it is defined only in a space with indefinite metric (Krein

space, see appendix A.1), we denote it as AK
µ (x). It can be decomposed as

AK
µ (x) = Aµ(x, e)− ∂µφ

K(x, e). (6.1)

The string-localized potential Aµ(x, e), defined as the string integral (1.5) over the field

strength, directly descends to the physical Hilbert space, whereas the massless “escort field”

φK(x, e) :=

∫
∞

0
dsAK

µ (x+ se)eµ (6.2)

lives on the Krein space. (The two parts of the operator Dκ,µν in section 5 precisely

correspond to AK
µ (x) and ∂µφ

K(x, e), respectively.)

The interaction density splits accordingly as

LK = AK
µ jµ = Aµ(e)j

µ − ∂µ
[
φK(e)jµ

]
. (6.3)

L(e) = Aµ(e)j
µ thus differs from LK by a total derivative that should be ineffective in the

adiabatic limit. L(e) is a priori defined on the Krein space, but descends to the physical

Hilbert space, while the indefinite-metric degrees of freedom are “disposed of” with the

discarded total derivative. We have checked up to second order [26] that the S matrix with

interaction density gLK−∂µg ·φ
K(e)jµ coincides with the S matrix with interaction gL(e),

i.e., the former descends to the Hilbert space where the latter is defined.

This pattern prevails in many models of interest: there is a string-independent point-

localized interaction density Lp, possibly on a Krein space, such that L(e) descends to the

physical Hilbert space and Lp − L(e) is a total derivative:

L(e) = Lp + ∂µV
µ(e).

By definition, an interacting field is observable if and only if

χ
∣∣
gL(e)

= χ
∣∣
gLp−∂g·V (e)

. (6.4)
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In particular, the left-hand side is defined on the Hilbert space and the right-hand side, in

the adiabatic limit ∂g = 0, does not depend on the string e of the interaction density and is

local because Lp is point-localized, by the argument given in section 2. By equality, χ
∣∣
gL(e)

enjoys both properties. This broad definition also includes cases like A(x, e′)
∣∣
L(e)

in QED,

that satisfies (6.4) and hence is independent of e and remains localized along the string e′.

For the interacting Dirac field in QED, a remarkable formula is expected to hold:

ψ(x)
∣∣
gL(e)

= :eigφ
K(x,e)ψ(x):

∣∣
gLK−∂g·jφK . (6.5)

(We have explicitly verified it up to second order [26]. In first order, it is equivalent to

∫
d4y R(jµ(y), ψ(x))

[
g(y)

(
Aµ(y, e)−AK

µ (y)
)
+ ∂µg(y)φ

K(y)
]
= ig(x)φK(x, e)ψ(x),

which is true by (6.1) upon partial integration, using (5.2).) The same holds if both L(e)

and φK(x, e) are smeared with a test function h(e).4 Let us discuss its consequences.

The left-hand side is defined on the Hilbert space. Thus, it allows to define positive

states on the algebra of the Maxwell field of the form ω(X) = (Ω, ψ|gL(e)Xψ|∗
gL(e)Ω) before

the adiabatic limit g(y) → q is taken, and these states remain positive in the adiabatic

limit. Thus, the interacting Dirac field complies with Hilbert space positivity.

On the other hand, ψ
∣∣
gL(e)

is a priori badly delocalized in the adiabatic limit due to the

string-localized interaction density (cf. section 2). But the right-hand side is manifestly

string-localized (because with ∂g = 0, e appears only in the free field, and not in the

interaction density). By equality, the interacting Dirac field is string-localized — without

being just a string-integral over a point-localized field as (1.5).

String-localization is the best one may expect for the charged interacting Dirac field

(cf. [9] for theories with a mass gap), and it is physically essential because string-localized

fields do not commute with the asymptotic flux operators that measure the total charge [17].

It also secures enough causal separability for the needs of scattering theory.

Notice the “semi-perturbative” nature of (6.5), where the exponential already involves

a partial summation in the coupling constant. It is this feature that allows to discern the

emergence of superselection sectors in the next section.

The appearance of the exponential of the escort field on the right-hand side is also

interesting in the context of the questions raised in [8]. Ignoring for the moment their

singular nature, we note that operators like ψ
∣∣
qL(e)

(x1)ψ
∗
∣∣
qL(e)

(x2) involve, via (6.5),

eiq(φ
K(x1,e)−φK(x2,e)). (6.6)

If (for simplicity) the string e is chosen parallel to a straight line γ from x1 to x2, it holds

∫

γ

d~x · ~AK(~x) = φK(~x1, e)− φK(~x2, e), (6.7)

4Since the free operator on the right-hand side of (6.5) is a special case of [22, eq. (2.6)] and [32, eq.

(1.1)], the string-localized interaction on the left-hand side naturally implements these previous ideas of

“QED in terms of gauge invariant fields”.
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so that the operators (6.6) coincide with the unitaries (“gauge bridges”) used in [8] to

implement the local Gauss Law. In this guise, via the equality (6.5), the longitudinal

degrees of freedom are “virtually present” in the string-localized QED on the Hilbert space.

The next section puts these formal considerations onto a more solid ground.

7 Photon cloud superselection

The exponentials of the free escort field appearing in (6.5) are highly singular objects. We

shall demonstrate how they can be regularized in such a way that (a) Hilbert space positiv-

ity is guaranteed (despite their original definition on the Krein space), and (b) they generate

states with “photon clouds”, and are therefore responsible for the uncountable superselec-

tion structure [6]. Thus, we believe them to be the “carriers” of the infinitely many asymp-

totic symmetries of the “infrared triangle” [34]. (The multiplying Dirac field in (6.5) plays

no essential role in the argument and will be omitted from our simplified presentation.)

The photon clouds are characterized by the expectation values of asymptotic field

operators as in section 5, that in turn define uncountably many superselection sectors.

The method below was first used in a 1 + 1-dimensional model in order to understand the

appearance of infra-particles [29]. Its application to QED is a new result. It shows along

the way that the model was on the right track, even if its massless particles were not the

photons of a gauge theory. The crucial fact is that the infrared state vectors do not exist in

the original photon Fock space (tensored with the Dirac Fock space), but in a GNS Hilbert

space reconstructed from the state functional, as it was also emphasized in Steinmann’s

approach [33] to QED.

The escort field itself is singular due to the logarithmic divergence of its two-point

function. We first regularize it by introducing a mass m:

wm(x− x′, e, e′) =

∫

H+
m

dµm(p) e−ip(x−x′) −e · e′

(p · e− iε)(p · e′ + iε)
, (7.1)

where dµm(p) = (2π)−3d4p δ(p2 −m2)θ(p0). When the string directions are smeared with

real test functions on the hyperboloid e2 = −1, one gets

wm(x− x′, h, h′) =

∫

H+
m

dµm(p) e−ip(x−x′)[−t(p, h)µt(p, h
′µ],

where

t(p, h)µ :=

∫
∞

0
ds

∫

S2

dσ(e) eip·se h(e)eµ = i

∫

S2

dσ(e)
h(e)eµ

(p · e) + iε
.

The positivity of −t(p, h)µt(p, h)
µ can be guaranteed by restricting the support of h to

the sphere e = (0, ~e) (or any Lorentz transform of it), so that t(p, h) = (0,~t(p, h)), and

−t(p, h)µt(p, h)
µ = |~t(p, h)|2 ≥ 0.

The massless limit of the distribution w(z, h, h′) is defined only for test functions g(z)

with
∫
g(z) d4z = ĝ(0) = 0. In order to enable the massless limit for arbitrary test functions,
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we define

wm,reg(g, h, h
′) :=

∫

H+
m

dµm(p) [ĝ(p)− ĝ(0)v(p)]~t(p, h)~t(p, h′)

= wm(g, h, h′)− ĝ(0) · cm,v(h, h
′), (7.2)

where v is any test function with v(0) = 1. A different choice of v leads to an additive

constant, and one can see that this is the only freedom of renormalization. On test functions

with ĝ(0) 6= 0, both wm(g, h, h′) and ĝ(0) ·cm,v(h, h
′) diverge in the massless limit, but their

difference is finite. Due to the subtraction, wm,reg(x− x′, h, h) is no longer positive.

We define the regularized exponential eiqφ
K(x,e) of the escort field as

Vm(f, h) := e−
1
2
q2 cm,v(h,h) · : exp iφK

m(f, h):,

where the real test functions have total weights
∫
d4x f(x) = q and

∫
S2 dσ(~e)h(e) = 1. Vm

is defined on the GNS Hilbert space of the positive two-point function wm(x − x′, e, e′).

The massless limit can be taken as follows.

Let g(z) :=
∫
dy f(z + y)f(y), hence ĝ(0) = q2. By Wick’s theorem,

〈
Vm(f,h)Vm(−f,h′)

〉
=exp

[
wm(g,h,h′)−

1

2
q2cm,v(h,h)−

1

2
q2cm,v(h

′,h′)

]
= (7.3)

=eiα(g,h,h
′)exp

[
−
1

2
wm(g,h−h′,h−h′)

]
e

1
2
wm,reg(g,h,h)+

1
2
wm,reg(g,h′,h′),

where α(g, h, h′) = Imwm(g, h, h′).

Because ĝ(0) 6= 0, wm(g, h− h′, h− h′) → +∞ diverges and consequently

〈
Vm(f, h)Vm(−f, h′)

〉
→ 0

in the limit m → 0, unless for all p

|~t(p, h− h′)|2 = 0. (7.4)

Write ~H(~e) = (h− h′)(0, ~e)~e. Then

1

(2π)3

∫
d3p ei~p·r~e ~t(p,H) =

∫

S2

dσ(~e ′)

∫
∞

0
ds δ(r~e− s~e ′) ~H(~e ′) = r−2 · ~H(~e), (7.5)

and (7.4) is equivalent to h′ = h. Thus,

〈
V (f, h)V (−f, h′)

〉
=

{
0 if h′ 6= h

limm→0 e
wm,reg(g,h,h) > 0 if h′ = h.

(7.6)

As limits of states (after insertion of field operators), 〈V (f, h) . . . V (−f, h)〉 are states on the

free Maxwell field algebra. Because of the orthogonality (7.6), the GNS construction (cf.

appendix A.2) yields uncountably many superselection sectors labelled by the directional

smearing functions h, exhibiting the expected breakdown of Lorentz invariance [19], cf.

section 1.2.
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We now compute the expectation values of the electromagnetic field strength in states

of charge −q implemented by the regularized exponentials V (−f, h) of the free escort field.

Again, we omit the multiplying Dirac field. By reproducing the same asymptotic field

configurations determined by the directional smearing function h as in section 5, we see

that only these exponential fields are responsible for the photon clouds.

In the sequel, F and φK are free fields, hence their commutator is a multiple of 1. The

state obtained from the vacuum by the adjoint action of V (f, h)

〈
Fµν(x)

〉
f,h

:=

〈
V (f, h)Fµν(x)V (−f, h)

〉
〈
V (f, h)V (−f, h)

〉 = −i[Fµν(x), φ
K(f, h)]

differs from the vacuum by the automorphism β(F ) = F − i[F, φK(f, h)]. (The two terms

of the commutator correspond to the asymptotic limits of the string-dependent parts of

X1 and X2 in the calculation in section 5. The remaining terms that were shown in

section 5 not to contribute asymptotically anyway, are absent here because we ignore the

multiplying Dirac field.) The commutator is [Fµν(x), φ
K(y, e)] = i(∂x ∧ e)IyeC0(x − y)) in

accord with (5.3), smeared with f(y) and h(e). Repeating the calculation after (5.3), gives

the same result

lim
r→∞

r2
〈
~E(re)

〉
f,h

= −q · h(e)~e. (7.7)

In other words, operators V (f, h) with test functions f(x) and h(e) as specified, substitute

the singular expression eiqφ
K(x,h), that is only perturbatively defined in (6.5) (with ψ

∣∣
L(h)

on the left-hand side). They yield charged states with the asymptotic electric flux density

−qh(e)/r2 in accord with the global Gauss Law, and with the first-order result (5.4) of full

QED. Perturbing the Dirac field with different averages L(h) =
∫
dσ(e)h(e)L(e), one can

construct states with arbitrary “photon clouds” whose shape is given by the function h.

For a full treatment, the interacting Dirac field must be taken into account, and not

only its “factor” eiqφ
K

in (6.5). It is clear from the above indirect construction of the

exponential in a GNS representation, that (6.5) does not remain a tensor product in the

interacting field: it is impossible to split “infrared matter” into charged particles and

their photon clouds. This important algebraic message goes well beyond more formal

treatments as in [34]. With a hindsight from the 2D model [29], it is expected that the

presence of this “factor” will reduce the large-time fall-off below the kinematic LSZ fall-

off. As a consequence, and in accord with [36], cross sections with zero photon resolution

vanish, and one has to resort to the Bloch-Nordsieck prescription (soft-photon inclusive

cross sections, [2]). We hope to return to these issues in a separate paper.

Quite analogous results concerning the localization of the asymptotic flux and the

inequivalence of representations, derived in an external field setting, have been reported

in [14]. Interestingly, while in our approach the choice of the string-dependent interacting

Dirac field creating the charged state is responsible for the string-dependent expectation

value of the string-independent field operators, in [14] the string-dependence is attributed

to the field operator itself, via the choice of an axial gauge condition in Dirac’s quantization

prescription.
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8 Conclusions

Gauss’ Law is of eminent importance in QED. Its impact on the algebraic structure and

the nature of charged particles seems to be the decisive feature that distinguishes (abelian)

gauge theories [21].

We have presented several explicit perturbative calculations, showing that the con-

struction of QED with the help of string-localized potentials does implement Gauss’ Law

in states with local charge distributions. In particular, the result in [8] that in QED

(once it is constructed), string-localized potentials cannot be used for the implementation

of “gauge bridges”, is not an argument against the possibility of the perturbative con-

struction of QED. To the contrary, Bogoliubov’s formula applied to the string-localized

interaction density implies Maxwell’s equations and, by turning local free charged fields

into string-localized interacting fields, resolves the well-known conflict [17] that the global

Gauss Law cannot hold in a QED with local charged fields.

The mechanism rendering charged fields string-localized when coupled to string-

localized potentials, while preserving the point-localization of observables, is perhaps the

most interesting achievement of these potentials. It was not anticipated when they were

originally proposed [27, 30, 31] in order to improve the UV behaviour of perturbation the-

ory. Their role is certainly not to provide the degrees of freedom necessary to construct

charged states — which they cannot as emphasized by [8].

The string-localized potentials themselves appear only in the interaction density: the

quantities of interest of the resulting theory are the local interacting field strengths (along

with their fluxes) and the string-localized interacting matter fields (along with their point-

localized currents), related by the interacting Maxwell equation (1.2).

We acknowledge that the paper [8] has made it clear that the quantum implementation

of Gauss’ Law requires degrees of freedom beyond the observables. We have presented a

“hybrid formulation” that makes explicit the relation between the indefinite-metric and

string-localized approaches. It reveals in particular how these degrees of freedom are “vir-

tually present” (in the sense explained in section 6) in the guise of escort fields. Their

role is to mediate between gauge theory and string-localized quantum field theory, by sup-

plementing gauge theoretic observables with string-localized charge-carrying interpolating

fields in a positivity-preserving way.

We have also shown that the approach satisfies Buchholz’ infra-particle criterium

(quadratic decay of the electric flux density) in first order, with the asymptotic field config-

uration specified by the direction of the string. Interestingly, what might seem to be just a

gauge degree of freedom, becomes a feature of the charged state created by the Dirac field.

Moreover, string-localized QED has an infrared mechanism (the 4D version of a mechanism

first studied by one of us in a 2D model [29]) to understand the superselection structure of

QED due to asymptotic photon clouds.

The perturbative construction of QED is not done on the observables separately. In-

stead, we perturb the Maxwell and Dirac fields simultaneously. The former, being observ-

ables, are then distinguished by remaining local under the string-localized perturbation,

while the latter become genuinely string-localized. In this way, the dynamics of the theory
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itself “selects” the interacting observables (including the currents) in terms of their causal

localization properties. Concerning the currents, the hybrid picture and (6.4) are the tool

to establish the expectation that they are point-localized observables. The exponentiated

escort fields in (6.5) intrinsically provide the “gauge bridges” that Brandt [5] constructed

in terms of potentials with longitudinal degrees of freedom.

9 Outlook

We conclude with some remarks, tracing out the perspective that is expected to emerge

from string-localized QFT (SLF) in more general theories.

Approaching a theory from different directions may better reveal its “inner makings”.

This is particularly worthwhile for gauge theories that hitherto seem to defy the framework

of Local Quantum Physics [21].

SLF can be successfully applied to large classes of models beyond QED [31], includ-

ing SM weak interactions [20]. We consider it as a promising alternative to the gauge

theory plus BRST setting, that does not explicitly use indefinite metric at intermediate

steps. In many important instances, it produces superficially the same results as gauge

theory, e.g., comparing [20] with [15], but remains more economic (no ghosts) and physi-

cally transparent (e.g., massive vector bosons are massive from the outset). Its “hybrid”

description (section 6) provides the laboratory necessary to recognize the relation (and

hopefully equivalence) to the corresponding theory in the usual approach, and to explain

the “miracle” why Gauge Theory despite its violation of positivity is so incredibly suc-

cessful. Specifically, it allows to control the localization of the charged fields in QED.

Through the exponentiation of the logarithmically divergent “escort field”, it promises a

new interpretation of the Bloch-Nordsieck prescriptions in scattering theory, by shifting

the emphasis from momentum space to causal localization in spacetime.

In theories with massive vector particles, SLF allows to maintain renormalizability of

the interaction with the Dirac current, because string-localized massive vector fields have

a better short-distance behaviour than the Proca field. On the other hand, a version of

the hybrid approach allows to use SLF to control positivity if massive QED is described

by the renormalizable interaction with the indefinite massive Feynman gauge potential.

SLF extends gauge theory in the sense that gauge theoretical observables are comple-

mented with gauge-invariant interpolating fields (in fact, in the hybrid approach this is

literally what happens). They are subject to the same spectral analyticity properties of lo-

cal QFT, and the fundamental Spin-Statistics and PCT Theorems also apply. This has the

enormous benefit of providing a natural construction of particle states and scattering ampli-

tudes for which the analytic on-shell properties are a consequence of causal separability of

interpolating fields, as envisaged by the pioneers of dispersion relations in particle physics.

SLF becomes essential, and goes beyond the usual Lagrangean approaches, whenever

particles of spin (or helicity) ≥ 1 are involved. This fact is linked to the issue of symme-

tries [28] that is much less subtle when only s = 0 or s = 1
2 particles are present.

A prominent instance is “charge screening” in theories with massive vector bosons: the

expectation value of the global charge operator associated with a local conserved current
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necessarily vanishes [35]. (Notice that this fact is at variance with the idea of “spontaneous

symmetry breaking” which would require a divergent expectation value.)5 It is presently

not clear whether the charge screening effect extends to non-Abelian currents coupled to

massive vector fields in SLF, so as to explain why Nature does not provide examples with

exact particle multiplets (besides PCT). Specifically, as in gauge theory non-Abelian cur-

rents will not be gauge-invarint, they may not be local observables in SLF. This important

question deserves further attention.

Thinking of SLF as an alternative to gauge theory, can only work if it is equally

successful in determining the “correct” SM interactions. In contrast to interactions between

particles of spin 0 or 1
2 , where the model-building physicist can choose interactions “at will”,

interactions involving particles of spin or helicity > 1 are strongly constrained by causality

and positivity. Indeed, in SLF with several massive or massless spin-one particles, like the

electro-weak interactions, the Lie algebra structure arises not by a symmetry principle,

but instead (via the principle of string-independence) as a consistency condition on the

interaction density.

We expect that the new understanding of QED in terms of SLF will also shed new

light on helicity 2: perturbative gravity. Specifically, SLF will provide a new look at the

asymptotic (Bondi-Metzner-Sachs) symmetries at h = 2 that avoids the NoGo theorems in

point-local gauge theory.

SLF may eventually help to extend the conceptional framework of Axiomatic QFT,

without giving away its roots in Locality and Positivity [21]. Especially Algebraic QFT

is designed with the focus only on the observables, and regards charged fields as a useful

device, that must (and can) be “added by hand” to conveniently describe charged sectors.

In contrast, SLF, starting from a perturbation theory supplemented by a new underlying

“principle of string-independence”, first introduces free observables and charged fields on

the same footing, and then bases the distinction between the interacting fields on the

intrinsic difference in their causal localization properties. This difference is particularly

instrumental in the case of the charge superselection rule.
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A Some background material

We compile some pertinent facts about quantum fields as operator-valued distributions.

They may be obscured in the modern path integral treatments which encode algebraic

5This conflict with the terminology of the Higgs mechanism does not enjoy the attention that it deserves.

The absence of SSB does not mean that there is no Higgs particle — only it is not the driving agent, but its

presence is a necessity for the self-consistency of the theory, both in gauge theory [1] and in SLF [26, 31].

– 20 –



J
H
E
P
0
1
(
2
0
2
0
)
0
0
1

properties like Hilbert spaces and commutation relations in a rather indirect way, and they

fall outside the focus of purely fibre-bundle views of gauge theory that usually do not talk

about operators at all. Along the way, we explain some arguments used in the main text.

A.1 Vector potentials and indefinite metric

Adding a gauge-fixing term −λ
2 (∂A)

2 to the QED Lagrangean results in the equations of

motion

�Aν = (1− λ)∂ν(∂A)− q ψγνψ, (A.1)

where −q ψγνψ = jνelm is the electromagnetic current. The field strength Fµν = ∂µAν −

∂νAµ trivially satisfies the homogeneous Maxwell equation

∂µFνκ + ∂νFκµ + ∂κFµν = 0 (A.2)

and, as a consequence of (A.1), the inhomogeneous equation

∂µF
µν = jνfict + jνelm, (A.3)

where the “fictitious current” jνfict = −λ∂ν(∂A) on the right-hand side is present also

without interaction (q = 0, hence jνelm = 0). It prevents the validity of Gauss’ Law,

because the integral over the fictitious charge density is a non-vanishing operator. (In the

Lorenz gauge λ = ∞, where (∂A) = 0 but �Aν 6= 0, the right-hand side of (A.1) is not

defined, and the fictitious current turns out to be jνfict = �Aν instead.)

The unique covariant two-point function of a free quantum field satisfying (A.1) with

q = 0 is

(Ω, Aµ(x)Aκ(y)Ω) = −

∫
d4k

(2π)3
θ(k0)

(
ηµκδ(k

2) +
(
1− λ−1

)
kµkκδ

′(k2)
)
e−ik(x−y).

(A.4)

The two-point function determines the scalar product of states |f〉 =
∫
d4x fµ(x)Aµ(x)Ω:

〈f |g〉 =

∫
d4k

(2π)3
θ(k0)

[
− ηµκf̂µ(k)ĝκ(k) · δ(k2)−

(
1− λ−1

)
(kf̂(k))(kĝ(k)) · δ′(k2)

]
. (A.5)

These are obviously indefinite (there are states of negative norm-square) because of the

presence of the Lorentz tensor and of the derivative δ′(k2) (the latter being absent in the

Feynman gauge λ = 1). The indefinite-inner-product space generated by this field from

the vacuum is called a “Krein space”.

With the inner product (A.5), one finds four linearly independent states for each

momentum, as opposed to the two physical photon polarization states. The unphysical

states have to be eliminated by the Gupta-Bleuler or BRST method, defining the physical

Hilbert space as a quotient space (a semi-definite subspace modulo the null states). States

generated by the fictitious current have norm-square zero and are eliminated; but the vector

potential is not defined on the quotient space.

The resulting two-point function of the field strength

(Ω, Fµν(x)Fκλ(y)Ω) =

∫
d4k

(2π)3
δ(k2) θ(k0) k[µην][κkλ] e

−ik(x−y). (A.6)
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gives rise to a positive definite inner product, hence a Hilbert space. The subspace gen-

erated from the vacuum by the field strength is well-known to coincide with the physical

quotient space, and it is the Fock space over the sum of the irreducible helicity ±1 Wigner

representations (corresponding to the physical photon states).

In particular, the string-localized vector potential

Aµ(x, e) :=

∫
∞

0
dsFµκ(x+ se)eκ (A.7)

is defined on the physical Hilbert space. One easily computes, using the homogeneous

Maxwell equation (A.2):

∂µAν(x, e)− ∂νAµ(x, e) = −

∫
∞

0
ds ∂κFµν(x+ se)eκ = −

∫
∞

0
ds

d

ds
Fµν(x+ se) = Fµν(x).

On the other hand, the field strength is also defined on the indefinite Krein space where

Aµ(x) is defined. On this space, the same string-localized potential (A.7) decomposes as

Aµ(x, e) =

∫
∞

0
ds (∂µAκ(x+ se)− ∂κAµ(x+ se))eκ = Aµ(x) + ∂µφ(x, e) (A.8)

where the string-localized field φ(x, e) :=
∫
∞

0 dsAκ(x+ se)eκ is called “escort field”. Only

the sum of the two terms on the right-hand side descends to the physical Hilbert space,

where the two terms are not seperately defined.

The hybrid approach of section 6 makes use of the decomposition (A.8) in the Krein

space, in order to gain insight on the coupling of Aµ(x, e) to the Dirac field on the physical

Hilbert space.

Distributional aspects. Strictly speaking, string-localized fields are distributions in

both variables x and e. Thus, they should be smeared with a test function f(x, e) so as to

produce well-defined operators. In the case of the QED interaction density Aµ(x, e)j
µ(x),

we choose f(x, e) = g(x)h(e) and think of h as an averaging with
∫
dσ(e)h(e) = 1. The

principle of string-independence requires that in the adiabatic limit g(x) → q, the resulting

interacting observables do not depend of the details of the function h(e). In the case of the

exponentiated escort field, the formal expression eiqφ(x,e) is too singular to be considered

without smearing. Thus, we smear the exponent with f(x)h(e). Because of the “semi-

perturbative” nature of the hybrid approach, it is sufficient to study the exponential of the

free escort field where the coupling constant appears in the exponent. Thus, we do not

need a cutoff function g(x) for the interaction density. Instead, we regard both f and h as

averagings and absorb the coupling constant into the function f . This yields the conditions∫
d4xf(x) = q and

∫
dσ(e)h(e) = 1.

Massive case. In the massive case (Aµ = Proca field), there is no problem with indefinite

metric. The same formulas (A.7) and (A.8) define a string-localized potential and its escort

field, both on the physical Hilbert space. The benefit of Aµ(x, e), as compared to the

Proca field, is in this case the improved short-distance behaviour of the two-point function

and the associated propagator, turning massive QED into a renormalizable theory [25, 30].

Interestingly, the massless string-localized potential is a smooth limit of the massive string-

localized potential [25], in marked contrast to the point-localized case.
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A.2 Causality and observables

Einstein Causality is the fundamental principle that two (experimentally realizable) op-

erations on a system taking place at spacelike distance must not influence each other.

Quantum field theory implements this principle by the postulate that the commutator of

two observables localized at spacelike distance vanishes. Notice that only operators of

observable quantities correspond to realizable operations of a system.

This makes of course no statement about non-observable quantities, but it implies that

fields of half-integer spin that anti-commute at spacelike distance, cannot be observable.

Only quadratic expressions such as currents can be observable.

The Spin-Statistics theorem is ofted said to state that quantum fields of half-integer

spin must anti-commute at spacelike distance, and must commute with integer-spin fields.

A closer look at the proof reveals that the correct statement is rather that half-integer spin

fields cannot commute at spacelike distance, and the usual argument is only conclusive if

no other options besides “commute” or “anti-commute” are allowed. This conclusion is in

particular correct for free fields.

In string-localized QFT, “spacelike distance” means that the entire strings along which

fields may be localized, are spacelike separated, cf. footnote 3.

Independent of the Spin-Statistics connection, charged fields in gauge theories are not

observable because they are not gauge-invariant. Consequently, there is no apriori reason

why they should obey any specific spacelike commutation properties at all, as long as their

observable currents commute among themselves and with all other observables.

Gauss’ Law, localization, and superselection sectors. The argument of [FPS] on

QED shows that, if the global Gauss Law holds, the interacting Dirac field cannot commute

like a point-localized field with the Maxwell field at spacelike distance. It can do so in the

Krein space where the Gauss Law fails. The present work shows that in the Hilbert space

the Dirac field becomes string-localized by the coupling to the vector potential, so that it

still commutes with the Maxwell field in spacelike separation from the string. Because the

string extends to infinity, it does not commute with the electric flux at infinity, and the

conflict with Gauss’ Law is resolved.

Because the electric field is observable, the limits

lim
r→∞

r2F 0i(0, r~e) (A.9)

(“asymptotic flux densities” localized on the “sphere at spacelike infinity”) commute with

every local observable (but certainly not with string-localized quantities). By Schur’s

Lemma, they are multiples of 1 in every irreducible representation of the algebra of local

observables. Different values of these operators characterize inequivalent representations

(superselection sectors).

In section 5, we determine their values in charged states by computing the expectation

values (Ψ, f0i(r~e)Ψ). If the charged states Ψ are generated from the vacuum by interacting

Dirac field operators, we find that the asymptotic flux density distribution has the same

shape as the smearing function of the string direction used for the interaction.
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The “GNS construction” mentioned in section 7 assigns to a state (a positive expecta-

tion value functional on an algebra) a Hilbert space with a representation of that algebra

in which the state is realized by a vector. Even if the functional is approximated by vectors

in some Hilbert space, the resulting GNS Hilbert space may be unrelated to the Hilbert

space used for the approximation. This happens in the case at hand, where the photon

cloud superselection sectors are not realized in a Fock space.

Gauss’ Law and infra-particles. As stated in section 5, weak convergence of the op-

erator limλ→∞ λ2Fµν(λx) for spacelike x to a homogeneous function aµν(x) times the unit

operator implies that charged particles cannot have a sharp mass [7], i.e., one-particle

states cannot be eigenvectors of the mass operator. The (simplified) argument proceeds by

observing that for eigenvectors Ψ one has

0 = (Ψ, [PκP
κ, Fµν(x)]Ψ) = 2i(P κΨ, ∂κFµν(x)Ψ)− (Ψ,�Fµν(x)Ψ).

In the asymptotic limit (1.4), Fµν can be replaced by aµν , and the second term decays

more rapidly than the first, so that ∂κaµν(x) · (P
κΨ,Ψ) must vanish. Because the scalar

product here is generically non-zero, one concludes ∂κaµν(x) = 0 which by homogeneity

entails aµν(x) = 0. Hence, Ψ can be an eigenvector only if its total charge is zero.
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