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Zusammenfassung der Dissertation 

In ihrem natürlichen Lebensraum oder während Infektionen sind Bakterien häufig reaktiven 

Sauerstoffspezies (ROS) und reaktiven Chloridspezies (RCS) ausgesetzt, die oxidativen 

Stress und die Induktion anti-oxidativer Abwehrmechanismen verursachen. ROS und HOCl 

können alle Makromoleküle der Zelle schädigen, einschließlich Proteine, Nukleinsäuren und 

Lipide. Zur Bekämpfung von ROS und zur Erhaltung des reduzierten Zustands des 

Zytoplasmas, produzieren Bakterien niedermolekulare Thiole (LMW) als wichtige 

Antioxidantien zur Neutralisierung von ROS. Gramnegative Bakterien und Eukaryoten 

nutzen Glutathion als LMW-Thiol. Gram-positive Firmicutes und Actinomycetes kodieren 

jedoch nicht die Enzyme für die GSH-Biosynthese und produzieren stattdessen alternative 

LMW-Thiole, wie Bacillithiol (BSH) bzw. Mycothiol (MSH). Die verschiedenen 

Funktionen des LMW-Thiols BSH in Bacillus subtilis und Staphylococcus aureus sind in 

Kapitel 1 dieser Dissertation zusammengefasst. 

Unter oxidativem Stress sind die LMW-Thiole GSH, BSH und MSH an post-

translationalen Modifikationen mit Proteinthiolen beteiligt, die als Protein-S-

Glutathionylierungen, S-Bacillithiolierungen bzw. S-Mycothiolierungen bezeichnet werden. 

Protein-S-Thiolierungen schützen Proteinthiole vor irreversibler Überoxidation zu Cys-

Sulfonsäuren und sind an der Redoxregulation von Proteinen beteiligt. In S. aureus wurden 

zuvor etwa 57 Proteine gefunden, die unter HOCl-Stress S-bacillithioliert waren, 

einschließlich GapDH als Haupttarget. Die Reduktion von S-bacillithiolierten Proteinen wird 

durch Bacilliredoxine (Brx) katalysiert, die von BSH und der NADPH-abhängigen BSSB-

Reduktase (YpdA) im Brx/BSH/YpdA-Redoxweg regeneriert werden, wie in Kapitel 2 

beschrieben. Durch NADPH-gekoppelte Elektronentransfer-Assays konnte ich zeigen, dass 

YpdA als BSSB-Reduktase fungiert, deren Aktivität vom redox-aktiven Cys14 abhängig ist. 

Ich zeigte ferner, dass der Brx/BSH/YpdA-Weg die De-Bacillithiolierung von S-

bacillithioliertem GapDH in vitro katalysieren kann. Interessanterweise wurde gezeigt, dass 

YpdA an der Entgiftung von S-thioallyliertem BSH, das als Allylmercaptobacillithiol 

(BSSA) bezeichnet wird, unter Allicin-Stress beteiligt ist. Dies wird in Kapitel 3 dargestellt. 

Somit bewirken YpdA und Brx die Regenerierung des Pools von reduzierten LMW-Thiolen 

und Protein-Thiolen in S. aureus unter Allicin-Stress.  

In Eukaryoten wurden Glutaredoxine mit redox-sensitiven GFP2 (Grx-roGFP2) 

fusioniert, um dynamische Änderungen des GSH-Redoxpotentials bei hoher räumlich-

zeitlicher Auflösung zu messen. In Actinomyceten wurden verwandte Mycoredoxine 

genutzt, um Mrx1-roGFP2-Biosensoren für Messungen des MSH-Redoxpotentials (EMSH) in 
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Mycobacterium tuberculosis (Mtb) zu konstruieren, wodurch eine Heterogenität des EMSH 

während Makrophagen-Infektionen und in Antibiotika-resistenten Mtb-Isolaten aufgedeckt 

wurde. Eine Übersicht über Anwendungen der Redox-Biosensoren bei pathogenen Bakterien 

unter oxidativem Stress und Infektionen ist in Kapitel 4 zu finden. Die meisten dieser Redox-

Biosensoren werden auf Plasmiden ektopisch exprimiert, was zu unterschiedlichen 

Expressionsniveaus von roGFP2-Fusionen führen kann.  

Ein Ziel dieser Doktorarbeit war die Konstruktion eines stabil integrierten Mrx1-

roGFP2-Biosensors zur Quantifizierung von EMSH-Veränderungen in Corynebacterium 

glutamicum, der in Kapitel 5 beschrieben wird. Der Mrx1-roGFP2-Biosensor wurde in die 

Genome des C. glutamicum Wildtyps und in Mutanten integriert, denen Redoxregulatoren 

und antioxidative Enzyme fehlten. Es wurden EMSH-Änderungen während des Wachstums 

und unter oxidativem Stress gemessen. Biosensor-Messungen ergaben, dass C. glutamicum 

Wildtyp-Zellen während der gesamten Wachstumskurve ein stark reduzierendes EMSH mit 

basalen EMSH-Spiegeln von -296 mV aufrechterhalten. Aufgrund des H2O2-resistenten 

Phänotyps von C. glutamicum reagiert Mrx1-roGFP2 schwach auf 20-40 mM H2O2, wird 

jedoch durch niedrige NaOCl-Dosen schnell oxidiert. Wir beobachteten weiterhin die 

basalen EMSH-Veränderungen und die H2O2-Reaktion von Mrx1-roGFP2 in mshA-, mtr-, 

sigH-, oxyR-, mpx-, tpx- und katA-Mutanten, die in der Redoxregulation und der Entgiftung 

von Antioxidantien beeinträchtigt sind. Während der Biosensor in mshA- und mtr-Mutanten 

konstitutiv oxidiert wurde, war in der sigH-Mutante eine geringere Basal-Oxidation zu 

beobachten. Die Katalase KatA wurde als wichtiges H2O2-Entgiftungsenzym bestätigt, das 

für eine schnelle Reduktion des Biosensors nach Entgiftung von H2O2 erforderlich ist. Im 

Gegensatz dazu hatten die Peroxiredoxine Mpx und Tpx nur einen geringen Einfluss auf die 

Entgiftung von H2O2. Weitere Live-Imaging-Experimente mit konfokaler Laser-Scanning-

Mikroskopie dokumentierten die stabile Expression und Fluoreszenz des Biosensors auf 

Einzelzell-Ebene. Zusammenfassend wurde der stabil integrierte Mrx1-roGFP2-Biosensor 

erfolgreich als neuartiges Redox-Tool zur Messung dynamischer EMSH-Veränderungen in C. 

glutamicum während des Wachstums, unter oxidativem Stress und in verschiedenen 

Mutanten-Hintergründen eingesetzt, um die Funktionen von MSH, SigH und KatA für das 

intrazelluläres EMSH aufzudecken. 

 Wir waren weiterhin daran interessiert, neue Thiol-basierte Redox-Regulatoren zu 

identifizieren, die durch HOCl über Thioloxidation in Actinomyceten reguliert werden und 

vor oxidativem Stress schützen. Frühere Redox-Proteomik-Studien ergaben, dass der MarR-

Typ Regulator MSMEG_4471 (HypS) unter HOCl-Stress stark oxidiert ist. Als weiteres Ziel 
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dieser Arbeit habe ich die Funktion und den Regulationsmechanismus von HypS in 

Mycobacterium smegmatis charakterisiert, der in Kapitel 6 beschrieben wird. RNA-seq-

Transkriptomik- und qRT-PCR-Analysen der hypS-Mutante ergaben, dass hypS 

autoreguliert ist und die Transkription des co-transkribierten hypO-Gens reprimiert, das für 

einen Multidrug-Efflux-Transporter kodiert. Die DNA-Bindeaktivität von HypS an das 8-5-

8 bp-Inverted Repeat im Promoter des hypSO-Operons wurde unter NaOCl-Stress gehemmt. 

Die DNA-Bindung des HypSC58S-Mutantenproteins war jedoch nicht unter NaOCl-Stress 

in vitro beeinträchtigt, was auf eine wichtige Rolle von Cys58 beim Redox-Sensing von 

NaOCl-Stress hinweist. Es wurde gezeigt, dass HypS durch die Bildung von Cys58-Cys58‘-

intermolekularen Disulfiden zwischen den HypS-Untereinheiten unter HOCl-Stress 

inaktiviert wird, was zu einer Derepression der hypO-Transkription führt. Die Ergebnisse zu 

den Phänotypen der hypS-Mutante zeigten, dass das HypR-Regulon Resistenz gegenüber 

HOCl-, Rifamipicin- und Erythromycin-Stress verleiht. So wurde HypS als neuer redox-

sensitiver Repressor identifiziert, der Resistenz von Mykobakterien gegenüber HOCl-Stress 

und Antibiotika vermittelt. 

Zusammenfassend haben die Ergebnisse meiner Doktorarbeit zu einem tieferen 

Verständnis der Rolle von Redoxregulatoren und antioxidativen Enzymen auf die MSH-

Homöostase unter basalen Wachstumsbedingungen und oxidativem Stress in Actinomyceten 

beigetragen. Ich habe ferner einen neuen Redox-Regulator charakterisiert, der Resistenz 

gegenüber HOCl und Antibiotika verleiht und ein zukünftiges Target für Antibiotika zur 

Bekämpfung lebensbedrohlicher Tuberkulose-Infektionen sein könnte. 
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Summary of the dissertation 

In their natural habitat or during infections, bacteria are frequently exposed to reactive 

oxygen species (ROS) and reactive chloride species (RCS), which cause an oxidative stress 

response and the induction of antioxidant defense mechanisms. ROS and HOCl can damage 

all macromolecules of the cell, including proteins, nucleic acids and lipids. To cope with 

ROS and to restore the reduced state of the cytoplasm, bacteria produce low molecular 

weight (LMW) thiols as important antioxidants and scavengers of ROS. Gram-negative 

bacteria and eukaryotes utilize glutathione as major LMW thiol. However, Gram-positive 

firmicutes and actinomycetes do not encode the enzymes for GSH biosynthesis and instead 

produce alternative LMW thiol, such as bacillithiol (BSH) and mycothiol (MSH), 

respectively. The various functions of the LMW thiol BSH in Bacillus subtilis and 

Staphylococcus aureus are summarized in chapter 1.  

Under oxidative stress, the LMW thiols GSH, BSH and MSH were shown to form 

post-translational modifications with protein thiols, termed as protein S-glutathionylations, 

S-bacillithiolations and S-mycothiolations, respectively. Protein S-thiolations protect protein 

thiols from irreversible overoxidation to Cys sulfonic acids and function in redox regulation 

of proteins. In S. aureus, about 57 proteins were previously found S-bacillithiolated under 

HOCl stress including GapDH as major target. The reduction of S-bacillithiolated proteins 

is catalyzed by bacilliredoxins (Brx) which are regenerated by BSH and the NADPH-

dependent BSSB reductase (YpdA) in the Brx/BSH/YpdA redox pathway as described in 

chapter 2. Using NADPH-coupled electron transfer assays I showed that YpdA acts as 

BSSB reductase which depends on the redox-active Cys14. I further revealed that the 

Brx/BSH/YpdA pathway can catalyze de-bacillithiolation of S-bacillithiolated GapDH in 

vitro. Interestingly, YpdA was shown to be involved in detoxification of S-thioallylated 

BSH, termed as allylmercaptobacillithiol (BSSA), under allicin stress which is presented in 

chapter 3. BrxA catalyzed reduction of S-thioallylated GapDH to regenerate in part GapDH 

activity. Thus, YpdA and Brx function to restore the pool of reduced LMW thiols and protein 

thiols in S. aureus under allicin stress.  

 In eukaryotes, glutaredoxins have been fused to redox-sensitive GFP2 (Grx-roGFP2) 

to measure dynamic changes in the GSH redox potential at high spatio-temporal resolution. 

In actinomycetes, related mycoredoxins have been used to construct Mrx1-roGFP2 

biosensors for measurements of the MSH redox potential in Mycobacterium tuberculosis 

(Mtb), revealing heterogeneity of the MSH redox potential (EMSH) during macrophage 

infections and in antibiotics resistant Mtb isolates. An overview of redox biosensor 
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applications in pathogenic bacteria under oxidative stress and infections is presented in 

chapter 4. Most of these redox biosensors are expressed ectopically on plasmids, resulting 

in different expression levels of roGFP2 fusions.  

The first main goal of this PhD thesis was to construct a stable integrated Mrx1-

roGFP2 biosensor for quantification of EMSH changes in Corynebacterium glutamicum, 

which is described in chapter 5. The Mrx1-roGFP2 biosensor was integrated in the genomes 

of C. glutamicum wild type and mutants lacking redox regulators and antioxidant enzymes 

to measure EMSH changes during the growth and under oxidative stress. Biosensor 

measurements revealed that C. glutamicum wild type cells maintain a highly reducing 

intrabacterial EMSH throughout the growth curve with basal EMSH levels of -296 mV. Due to 

its H2O2 resistant phenotype, Mrx1-roGFP2 responds weakly to 20-40 mM H2O2, but is 

rapidly oxidized by low doses of NaOCl. We further monitored basal EMSH changes and the 

H2O2 response of Mrx1-roGFP2 in mshA, mtr, sigH, oxyR, mpx, tpx and katA mutants which 

are compromised in redox-signaling and the antioxidant defense. While the probe was 

constitutively oxidized in the mshA and mtr mutants, a small oxidative shift in basal EMSH 

was observed in the ∆sigH mutant. The catalase KatA was confirmed as major H2O2 

detoxification system required for fast biosensor re-equilibration upon return to non-stress 

conditions. In contrast, the peroxiredoxins Mpx and Tpx had only little impact on EMSH and 

H2O2 detoxification. Further live imaging experiments using confocal laser scanning 

microscopy documented the stable biosensor expression and fluorescence at the single cell 

level. In conclusion, the stable integrated Mrx1-roGFP2 biosensor was successfully applied 

as novel redox tool to monitor dynamic EMSH changes in C. glutamicum during the growth, 

under oxidative stress and in different mutant backgrounds revealing major roles of MSH, 

SigH and KatA for intracellular EMSH.  

 We were further interested to identify novel thiol-based redox regulators that sense 

HOCl via thiol-oxidation in actinomycetes and confer protection under oxidative stress. 

Previous redox proteomics studies identified the novel MarR-type regulator MSMEG_4471 

(HypS) as highly oxidized under HOCl stress. As second main goal of this PhD thesis, I have 

characterized the function and redox-regulatory mechanism of HypS in Mycobacterium 

smegmatis which is described in chapter 6. RNA-seq transcriptomics and qRT-PCR 

analyses of the hypS mutant revealed that hypS is autoregulated and represses transcription 

of the co-transcribed hypO gene which encodes a multidrug efflux pump. DNA binding 

activity of HypS to the 8-5-8 bp inverted repeat sequence upstream of the hypSO operon was 

inhibited under NaOCl stress. However, the HypSC58S mutant protein was not impaired in 
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DNA-binding under NaOCl stress in vitro, indicating an important role of Cys58 in redox 

sensing of NaOCl stress. HypS was shown to be inactivated by Cys58-Cys58’ intersubunit 

disulfide formation under HOCl stress, resulting in derepression of hypO transcription. 

Phenotype results revealed that the HypR regulon confers resistance towards HOCl, 

rifamipicin and erythromycin stress. Thus, HypS was identified as a novel redox-sensitive 

repressor that contributes to mycobacterial resistance towards HOCl stress and antibiotics.  

In summary, the results of my PhD thesis contributed to a deeper understanding of 

the impact of redox regulators and antioxidant enzymes towards MSH homeostasis under 

basal growth conditions and oxidative stress in actinomycetes. I further characterized a novel 

thiol-based redox regulator that confers resistance to HOCl and antibiotics and could be a 

future drug target to fight life-threatening tuberculosis infections.  
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Introduction and general conclusion 

1. Introduction of Corynebacterium glutamicum and Mycobacterium smegmatis as fast-

growing model bacteria for pathogenic actinomycetes 

Actinomycetes are gram-positive bacteria with a high GC-content in their genomic DNA 

(25,178). Actinomycetes are known to produce a variety of secondary metabolites, 

antibiotics, and other bioactive compounds that have been applied in medicine for treatment 

of infections (1,2,181). Some members of actinomycetes are pathogens, such as 

Mycobacterium tuberculosis (Mtb) and Corynebacterium diphtheriae causing severe 

diseases in humans and animals. The understanding of the mechanisms how these pathogens 

respond to oxidative stress under infections plays an important role to find new drug targets 

and to combat drug-resistant strains.  

C. glutamicum and C. diphtheriae are the best-investigated corynebacteria (18,129). 

C. diphtheriae infects humans through the respiratory tract or skin ulcerations, leading to the 

basic symptoms, including pharyngitis, fever, swelling of the neck or area surrounding the 

skin lesion (54,63). Lethality of C. diphtheriae is originated from diphtheria toxin that is one 

of the most potent exotoxins (172). With the development of high-throughput sequencing 

technologies, the complete genome sequences of C. diphtheriae and closely related species 

have been compared to reveal genomic variations, protein-protein interactions, regulatory 

mechanisms, and virulence factors. Sequencing of the 2.8 Mb genome of C. diphtheriae 

NCTC13129 revealed 2272 genes resulting in 5293 protein-protein interactions and 98 

pathways (67,179). The genome size of C. glutamicum ATCC13032 is 3.31 Mb, encoding 

for 5476 protein-protein interactions and 103 pathways. Only 263 genes of the C. glutamicum 

ATCC13032 genome are not present in the genome of C. diphtheriae (76,190). Based on a 

similar core genome, the industrial important C. glutamicum is considered as model 

bacterium for the pathogen C. diphtheriae. 

C. glutamicum is a fast growing, biotin-auxotrophic and predominantly aerobic soil 

bacterium, which was originally isolated in Japan due to its L-glutamate-producing 

capability (85). C. glutamicum is the most important industrial platform bacterium (85,92). 

About 3.1 million tons of L-glutamate and 2.2 million tons of L-lysine were produced in 

2015 during C. glutamicum fermentations (13,90). Additionally, strains derived from C. 

glutamicum DelAro are able produce plant polyphenols, including stilbene (pinosylvin, 

resveratrol, piceatannol) and (2S)-flavanones (naringenin, eriodictyol) (77-80). Polyphenols 

have been shown to exert anti-oxidant, anti-inflammatory and antibiotic effects (110,127). 



14 

 

However, excessive levels polyphenols lead to auto-oxidation and reactive oxygen species 

(ROS) generation, causing damaging effects (101). The understanding of oxidative stress 

responses in C. glutamicum could lead to improved production capability of bioactive 

compounds. 

Mycobacterium tuberculosis (Mtb) is the etiologic agent of life-threatening 

Tuberculosis disease, causing ~1.7 million human deaths worldwide, and 6.3 million infected 

patients (Global Tuberculosis Report, WHO 2017) (128). Mtb is a slow-growing bacterium 

that is transmitted through the respiratory tract (87). The treatment of tuberculosis infections 

are difficult and lengthy which require long-term combination therapies, resulting in 

multidrug-resistant and extensively drug-resistant strains. Due to its slow growth and 

intracellular replication inside the phagosome of macrophages, the treatment of Mtb 

infections is even more complicated (43,107,137). Mtb divides every 18–24 hours, requiring 

3-4 weeks to yield colonies on a Petri dish. The related Mycobacterium leprae, which is the 

causative agents of leprosy, can be only cultivated in the footpad of mice or within the nine‐

banded armadillo (147). Due to its fast growth, the non-pathogenic M. smegmatis often 

serves as model bacterium for slow-growing pathogenic mycobacteria. M. smegmatis mc2 

155 is a laboratory-adapted hyper-transformable strain with an efficient recombination 

system that maximizes the genetic manipulation in M. smegmatis (117). For example, by 

transformation of an Mtb cosmid library into M. smegmatis, Rv0577 and Rv0576 were 

shown to be important virulence factors in Mtb (7). Due to high level of sequence identity 

between M. smegmatis and Mtb, M. smegmatis was used to screen potential 

antimycobacterial compounds that inactivated the glutamate racemase leading to cell death 

(138,158). The function of genes that confer resistance to oxidative stress and antibiotics in 

Mtb have been further studied in the model M. smegmatis (14,186).  

We have employed M. smegmatis to study its adaptation towards oxidative stress 

using redox proteomics approaches and transcriptomics in previous studies (60). In the next 

chapters, I will summarize the main knowledge about the roles of LMW thiols and thiol-

switches under oxidative stress conditions in bacteria with special attention on mycobacteria 

and corynebacteria as high-GC content actinomycetes.  

2. The role of low molecular weight thiols in bacterial redox homeostasis 

2.1 Generation of reactive oxygen and chlorine species (ROS, RCS) in bacteria 

Low molecular weight (LMW) thiols are important for maintenance of the reduced state of 

the cytoplasm (14,36,69,98). The redox homeostasis is crucial for bacterial survival and 
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frequently disrupted by endogenous and exogenous sources of redox-active species. In 

aerobic bacteria, molecular oxygen (O2) is the best terminal electron acceptor and reduced 

by four electrons to water in the respiratory chain (21,55). The one-electron transfer to O2 

leads to generation of reactive oxygen species (ROS), including superoxide radicals (O2•
-), 

hydroxyl radicals (HO•) and hydrogen peroxide (H2O2) (55,68,182). O2•
- and H2O2 can be 

also produced by auto-oxidation of flavin co-factors of redox enzymes (89,106,157). 

Superoxide dismutases (SODs) play an important role in detoxification of O2•
- to generate 

H2O2 (3). About 87% of the total H2O2 is generated by incomplete O2 reduction in the 

respiratory chain in Escherichia coli (50). H2O2 leads to the inactivation of proteins and 

reacts with Fe2+ to the highly reactive HO• in the Fenton reaction. HO• is highly toxic and 

oxidizes all macromolecules of the cell, including nucleic acids, proteins, carbohydrates and 

lipids (70,73). Lipid peroxidation can further lead to organic hydroperoxides (ROOH) which 

require specific thiol-dependent peroxiredoxins, such as OhrA for detoxification (55,163).  

 

Figure 1. Production of ROS and hypochlorous acid (HOCl) in neutrophils after 

phagocytosis of pathogenic bacteria. NADPH-dependent oxidase (NOX) generates 

superoxide anion (O2
-) that is dismutated to hydrogen peroxide (H2O2) by superoxide 

dismutases (SODs). Granule-localized myeloperoxidase (MPO) catalyzes the reaction of 

H2O2 with Cl- to form the strong oxidant HOCl to kill bacteria in the phagolysosome. The 

figure is adapted from reference (88). 

 

In addition, pathogenic bacteria are exposed to the oxidative burst by activated 

macrophages and neutrophils during infections, such as ROS, RCS as the first line of defense 

of the innate immune defense (12,95,189). Specifically, O2
- is generated by the NADPH-

dependent oxidase (NOX) through the transfer of electrons from NADPH to O2 (88). SODs 
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subsequently dismutate O2•
- to H2O2. The myeloperoxidase (MPO) is released from the 

granules into the phagosome to catalyze the reaction of H2O2 with chloride (Cl-) to form the 

highly toxic and microbicidal oxidant hypochlorous acid (HOCl) (Fig. 1) (3,43,145). MPO 

generates also other reactive species, such as nitrogen dioxide radicals and tyrosine 

hydroperoxide (66,86). Since Cl- is the most abundant in neutrophils, HOCl is the main 

product of MPO, which kills effectively invading pathogens. HOCl is a strong two-electron 

oxidant and reacts with high reaction rates with cysteine and methionine, DNA, metal centers 

and lipids, leading to bacterial killing (12,74,189). In conclusion, bacteria are exposed to 

various reactive species that are produced during cellular metabolism and in response to 

external stressors as part of the host immune defense (145,184). 

2.2 Post-translational thiol-modifications in response to ROS 

It is well-known that excess of ROS causes cell death while physiological levels of ROS 

function in redox signaling during many physiological and pathological processes (21,145). 

The primary targets of ROS are the sulfur-containing amino acids cysteine (Cys) and 

methionine. Cys is the strongest nucleophile and the most rare amino acid in proteins 

contributing only to 1.9% of all amino acids present in proteins (48,182). Cys residues can 

undergo thiol-modifications due to the wide range of oxidation states (-2 to +6) of the sulfur 

atom (182). The reactivity of the Cys thiol group towards ROS depends on its pKa value 

(160). Specifically, Cys thiols with neutral pKa values of 8.4~8.6 are protonated and not 

redox-sensitive under oxidative stress (132,184). In contrast, Cys thiols with low pKa are 

present in the deprotonated thiolate anion form that is redox-sensitive to undergo thiol-

oxidation (132). For example, Cys pKa values of 3.5 and 10 were determined for two active-

site Cys residues of the DsbA disulfide oxidoreductase, but only the low pKa Cys was 

involved in thiol-oxidation of the substrate (121,132). Thus, the determination of the Cys 

pKa is essential to reveal the redox-sensing Cys residues in proteins and their function in 

redox signaling processes. 

Redox-sensitive Cys residues with low pKa values can undergo different reversible 

and irreversible post-translational thiol-modifications under oxidative stress. Reversible 

thiol-disulfide switches are involved in redox signaling processes and protect the thiol group 

against overoxidation (132). Under oxidative stress, the Cys thiolate anions are oxidized to 

Cys sulfenic acids (Cys-SOH), which are instable intermediates. Cys-SOH can be further 

oxidized either to irreversible Cys sulfinic (SO2H) and sulfonic acids (SO3H) or to reversible 

thiol-switches, such as intramolecular or intermolecular protein disulfides or S-thiolations 

with LMW thiols (e.g., S-glutathionylations, S-bacillithiolations and S-mycothiolations) 
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(Fig. 2) (59,98,173). S-thiolations function in redox regulation of protein activities and in 

thiol-protection to prevent the irreversible overoxidation of protein thiols under oxidative 

stress (98). Thus, S-thiolations ensure that essential thiol-containing proteins can be 

reactivated after recovery from oxidative stress to rescue cellular survival. The reduction of 

thiol-switches requires LMW thiols, such as glutathione (GSH), bacillithiol (BSH) and 

mycothiol (MSH) that are present in different bacteria. In addition, enzymatic thiol-disulfide 

reducing pathways are involved in regeneration of reduced protein thiols to restore protein 

activities, including the thioredoxin (Trx)/thioredoxin reductase (TrxR) pathway and the 

glutaredoxin (Grx)/GSH/glutathione reductase (Gor) pathway (98). As part of this PhD 

thesis, we applied Grx-related bacilliredoxins (Brx), the BSSB reductase (YpdA) and 

mycoredoxin-1 (Mrx1) in S. aureus and C. glutamicum which function in reduction mixed 

disulfides with the LMW thiols BSH and MSH, respectively (94,173). 

 

Figure 2. Post-translational thiol-modifications caused by ROS. Oxidation of the Cys 

thiol group by ROS leads to the Cys sulfenic acid intermediate (-SOH), which can be 

irreversibly overoxidized to Cys sulfinic (-SO2H) or sulfonic acids (-SO3H). In the presence 

of proximal thiols, Cys-SOH can undergo disulfide formation, including intramolecular or 

intermolecular protein disulfides, which are reduced by the thioredoxin (Trx)/thioredoxin 

reductase (TrxR) system. Cys-SOH can also further react to mixed disulfides with low 

molecular weight thiols (R-SH), termed as protein S-thiolations. The reduction of S-thiolated 

proteins is catalyzed by the glutaredoxin (Grx), bacilliredoxin (Brx) or mycoredoxin-1 

(Mrx1) pathways. The figure is adapted from references (59,98).  
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2.3 The role of low molecular weight thiols in Gram-positive bacteria 

LMW thiols are small non-protein thiols, which are often produced in millimolar 

concentrations in prokaryotic and eukaryotic cells (69,98,177). LMW thiols maintain the 

reduced state of the cytoplasm by detoxification of ROS, RCS, electrophiles, antibiotics and 

heavy metals (69). GSH is the major LMW thiol in eukaryotes and Gram-negative bacteria 

which evolved with cyanobacteria as protection mechanism against oxygen toxicity (39,69). 

However, Gram-positive bacteria do not encode the enzymes for GSH biosynthesis, but 

instead utilize alternative LMW thiols, such as BSH and MSH (Fig. 3). BSH and its 

derivatives are widespread distributed in the bacterial phyla Chlorobi, Bacteroidetes, 

Deinococcus-Thermus, Firmicutes, Acidobacteria, Chlamydiae, Gemmatimonadetes and 

Proteobacteria (62,98). MSH is the major LMW thiol in actinomycetes and has many 

functions as thiol cofactor of redox enzymes and in protection against redox stress 

(98,145,173).  

 

Figure 3. Structure of low molecular weight (LMW) thiols. The major LMW thiol in 

eukaryotes and Gram-negative bacteria is GSH. MSH and EGT are utilized as alternative 

LMW thiols in actinomycetes. Members of Chlorobi, Bacteroidetes, Deinococcus-Thermus, 

Firmicutes, Acidobacteria, Chlamydiae, Gemmatimonadetes and Proteobacteria produce 

BSH and its derivatives N-Me-BSH and hCys-BSH. CoASH may function as alternative 

LMW thiol in S. aureus, B. subtilis and Bacillus anthracis. The figure is adapted from 

references (62,69,98). 
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2.3.1 Biosynthesis, regulation and functions of mycothiol (MSH) 

2.3.1.1 Biosynthesis of MSH in actinomycetes  

The cysteinyl pseudo-disaccharide MSH is utilized as major LMW thiol in all actinomycetes, 

including mycobacteria, corynebacteria and streptomycetes (Fig. 3) (40,69). MSH 

biosynthesis is catalyzed by five enzymes using the substrates myo-inositol-1-phosphate 

(Ins-P), UDP-N-acetyl glucosamine (UDP-GlcNAc) and Cys (Fig. 4-5) (122). In the first 

step, the glycosyltransferase MshA conjugates Ins-P and UDP-GlcNAc to N-acetyl 

glucosamine myo-inositol-1-phosphate (GlcNAc-Ins-P). GlcNAc-Ins-P is dephosphorylated 

by the MSH phosphatase MshA2, followed by deacetylation by the metal-dependent 

deacetylase MshB to yield glucosamine inositol [1-O-(2-amino-1-deoxy-a-D-

glucopyranosyl)-D-myo-inositol]. In the third step, the Cys ligase MshC conjugates Cys to 

produce Cys-GlcN-Ins. The final step involved acetylation of the Cys amino group by the 

MSH acetyltransferase MshD to generate MSH (40,75). MSH is more resistant to metal-

catalyzed autoxidation compared to free Cys since the amino and carboxyl groups of Cys are 

conjugated in MSH (124). The MSH levels vary significantly among actinomycetes. While 

mycobacteria produce high MSH levels of ~4.6–19 μmol/g raw dry weight (rdw), much 

lower levels of ~0.3–4 μmol/g rdw were measured in corynebacteria (69,122). 

 

Figure 4. Conservation of gene organization of the mshA, mshB, mshC, mshD 

biosynthesis operons in C. glutamicum and M. smegmatis. 

 

The MSH biosynthesis genes mshA, mshB, mshC, mshD of C. glutamicum and M. 

smegmatis are transcribed in four independent operons. However, the gene organization of 

the mshA, mshB, mshC, mshD operons is different in both strains (Fig. 4). As demonstrated 

in M. smegmatis and Mtb, mshA and mshC mutants lack MSH, while 1-20 % of wild-type 

MSH levels were observed in mshB and mshD mutants (75). The remaining MSH levels in 
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the mshB and mshD mutants could be due to substitutions by other unknown enzymes. The 

lack of MSH leads to an impaired growth in M. smegmatis and Mtb, but not in C. glutamicum. 

It has been demonstrated that the LMW thiol ergothioneine (EGT) can compensate for 

absence of MSH in mycobacteria (153,155). 

2.3.1.2 Regulation of MSH biosynthesis in actinomycetes 

In mycobacteria and corynebacteria, MSH biosynthesis is regulated by the availability of 

Ins-P, which is an important precursor for the first step of MSH synthesis, but also essential 

for cell wall biosynthesis (Fig. 5) (11). Ins-P can be taken up from the culture medium or 

synthesized from glucose-6-phosphate (G6P). When Ins-P is limiting, the LacI-type 

regulator IpsA triggers Ins-P generation by activating the myo-inositol-1-phosphate synthase 

(Ino-1) that catalyzes the production of myo-inositol-3-phosphate (I3P) from glucose-6-

phosphate. Finally, I3P is dephosphorylated by inositol monophosphatase (IMP) to Ins-P 

(11). Since IpsA activates ino-1 expression in the absence of external inositol, deletion of 

ipsA led to an altered cell shape and abolished MSH synthesis (11). Recently, Ino-1 was 

shown to be involved in the defense against oxidative stress by regulation of MSH levels 

(26).  

 

Figure 5. Biosynthesis and regulation of MSH in actinomycetes. The MSH synthesis is 

catalyzed by five enzymes, including the glycosyltransferase MshA, the phosphatase 

MshA2, the deacetylase MshB, the ATP-dependent Cys ligase MshC and the 

acetyltransferase MshD. The genes for MSH biosynthesis enzymes are regulated by the 

disulfide stress specific sigma factor/anti sigma factor couple SigH/RshA. The 

transcriptional activator IpsA controls the myo-inositol-1-phosphate synthase (Ino-1). The 

figure is created from references (11,19,69,125,154). 
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In actinomycetes, the conserved ECF sigma factor SigH controls genes for 

biosynthesis and recycling of MSH under oxidative and disulfide stress (Fig. 5) (19,84). The 

activity of SigH is regulated by its cognate redox-sensitive ZAS anti sigma factor RshA, 

which senses ROS and other thiol-reactive compounds (19,30). Under reducing conditions, 

SigH is sequestered by RshA preventing the interaction of SigH with the RNA polymerase 

(RNAP) core enzyme (19,30). RshA is oxidized by diamide, NaOCl or H2O2 leading to Zn2+ 

release, inactivation of RshA and relief of SigH to initiate transcription of the large SigH 

disulfide stress regulon (30). The SigH regulon includes genes for the Trx/TrxR reducing 

system (trxB, trxB1, trxC), MSH biosynthesis and recycling (mshC, mshD, mca, mtr) and 

other stress responsive genes (19,118). The Trx/TrxR system and MSH function in reduction 

of oxidized proteins, including RshA to shut-down the SigH regulon and to restore redox 

homeostasis (30). Previous study revealed that the sigH mutant of C. glutamicum is sensitive 

in growth under H2O2 and NaOCl stress (30,168). The results of my PhD thesis revealed 

using Mrx1-roGFP2 biosensor measurement that the basal EMSH is highly reducing in the C. 

glutamicum wild type (-296 mV) and more oxidized to -286 mV in the sigH mutant (see 

chapter 5) (173). In contrast to C. glutamicum, SigH of Mtb controls genes involved in Cys 

biosynthesis and sulfate acquisition (100). Since Cys is essential for MSH biosynthesis, the 

Mtb sigH mutant was strongly impaired in survival and pathogenicity during infections 

(81,103). 

2.3.1.3 Functions of MSH as redox cofactor to ensure redox homeostasis  

MSH is involved in the detoxification of various redox-active species, xenobiotics, 

antibiotics, heavy metals and aromatic compounds (69,98). The loss of MSH renders C. 

glutamicum and M. smegmatis more sensitive to different redox-active compounds 

(30,60,75). Under oxidative stress, MSH is oxidized to mycothiol disulfide (MSSM), which 

is recycled by the NADPH-dependent mycothiol disulfide reductase (Mtr) at the expense of 

NADPH (Fig. 6) (144). In the reductive half-reaction of MSSM reduction, Mtr is reduced by 

two electrons which are transferred from NADPH to the active site disulfide through the 

FAD cofactor (125). In the oxidative half-reaction, MSSM is reduced by the two-electron 

reduced Mtr, leading the formation of enzyme-substrate intermolecular disulfide and release 

of one MSH molecule (144). This intermolecular disulfide is reduced by a charge-transfer 

Cys residue to yield oxidized Mtr and to release the second MSH molecule (146) (Fig. 6). In 

Mtb, Mtr is a part of the redox-sensing WhiB3 regulon, which is required for detoxification 

of ROS and reactive nitrogen species during infections (104,105,146). In C. glutamicum, 

SigH controls mtr expression under oxidative stress. The results of the Mrx1-roGFP2 
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measurements of this study revealed that the C. glutamicum mtr mutant had a highly oxidized 

basal EMSH of -280 mV along all growth phases (173). Moreover, overexpression of Mtr in 

C. glutamicum resulted in increased resistance towards ROS, bactericidal antibiotics and 

heavy metals due to an increased MSH level which enhances antioxidant activities of MSH-

dependent redox enzymes (130,146).  

 
Figure 6. Catalytic mechanism of the mycothiol disulfide reductase Mtr. The oxidized 

Mtr (Mtrox) contains a Cys39-Cys44 disulfide bridge, which is reduced by electrons from 

NADPH via the flavin adenine dinucleotide (FAD) cofactor to generate reduced Mtr (Mtrred). 

MSSM is attacked by the interchange Cys39, leading to the formation of Cys39-SSM and 

liberation of first MSH moiety. Subsequently, the Cys39-SSM disulfide bond is attacked by 

the thiolate of Cys44 yielding Mtrox. The figure is adapted from references (75,125). 

 

MSH functions as an important thiol cofactor of many redox enzymes that are 

involved in detoxification of several redox-active compounds, such as arsenate, 

formaldehyde, RES, maleylpyruvate and methylglyoxal (Fig. 7) (69,75,98). The arsenate 

reductases (CgArsC1/CgArsC2) catalyze arsenate detoxification. First, an As(V)-SM adduct 

is formed, which is reduced by mycoredoxin-1 (Mrx1), leading to an Mrx1-SSM 

intermediate and As(III). As(III) is exported out of the cells by two arsenite permeases of the 

Acr3 family (180). Mrx1-SSM requires MSH for the regeneration of Mrx1, resulting in 

MSSM formation that is reduced by Mtr (98). For NO detoxification, the MSH-dependent 

detoxification enzyme MscR displays S-nitrosomycothiol (MSNO) reductase activity to 

generate MSH sulfonamide (MSO2H) (125,144). Both MscR and the MSH-dependent 

formaldehyde dehydrogenase AdhE are involved in the oxidation of formaldehyde to 
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formate. In C. glutamicum, the MSH-dependent maleylpyruvate isomerase converts 

maleylpyruvate to fumarylpyruvate in the gentisate pathway (42,194). 

 

Figure 7. The functions of mycothiol (MSH) in corynebacteria and mycobacteria. 

Under ROS, MSH is oxidized to mycothiol disulfide (MSSM), which is reduced by the 

NADPH-dependent mycothiol disulfide reductase (Mtr). MSH S-transferases (MST) 

conjugate MSH to electrophiles (RX) leading to MS-electrophiles (MSR) that are cleaved 

by the MSH S-conjugate amidase (Mca) to mercapturic acids (AcCyS-R). MSH-dependent 

peroxidases including Mpx, Tpx, MsrA, and AhpE are involved in ROS detoxification. 

MSH functions as thiol cofactor of the alcohol dehydrogenase MscR and formaldehyde 

dehydrogenase AdhE in detoxification of NO and formaldehyde. MSH is involved in 

isomerization of maleylpyruvate to fumarylpyruvate in C. glutamicum. Arsenate reductases 

CgArsC1/CgArsC2 conjugate arsenate As(V) to MSH, generating As(V)-SM which is 

reduced by mycoredoxin-1 (Mrx1) to As(III). MSH is required for the survival and 

virulence of mycobacteria under infection and antibiotic treatment. Under NaOCl and H2O2 

stress, proteins are S-mycothiolated and regenerated by the Mrx1/MSH/Mtr and Trx/TrxR 

pathways. The figure is adapted from references (69,98). 

 

Furthermore, MSH is involved in detoxification of xenobiotics and antibiotics (69). 

Antibacterial compounds, such as cerulenin and rifamycin, are conjugated with MSH either 

spontaneously or enzyme-catalyzed by MSH S-transferases (MST) (69,125). MSH-S-

conjugate amidase (Mca) cleaves MSH-S-conjugates to mercapturic acid (AcCys-R) and 

glucosaminylinositol (GlcN-Ins) (75,125). GlcN-Ins is recycled to MSH, and the 

mercapturic acid derivatives are exported out of the cell (144).  
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MSH is involved in the evolution of Mtb in response to antibiotics. MSH and catalase 

are important for activation of the first-line anti-TB drug isoniazid (INH) in Mtb (69). The 

enoyl-ACP reductase (InhA) is the target for INH and inhibited by formation of a NAD-INH 

adduct, which prevents mycolic acid biosynthesis and induces cell lysis (102,173). 

Sequencing of INH-resistant Mtb isolates reveals mutations in both katG and mshA (72,193). 

The MSH-dependent nitroreductase Rv2466c also functions in prodrug activation of 

nitrofurantoin derivatives and thienopyrimidine compounds (4,120,149). Resistant isolates 

have spontaneous mutations in Rv2466c (69,149).  

In addition, MSH can function as storage form for cysteine and GlcN-Ins to avoid 

auto-oxidation of free Cys (69,75,170). To mobilize Cys, MSH is cleaved by the Mca to 

GlcN-Ins and N-acetyl cysteine (146). The latter can be rapidly deacetylated to regenerate 

Cys (20,146). Cys can be further converted to pyruvate and alanine by the cysteine 

desulfhydrase and desulfurase, respectively (20,151,187). Moreover, GlcN-Ins is used as 

building block for cell envelope synthesis (123).  

2.3.1.4 Redox regulation of proteins by S-mycothiolation and the Mrx1/MSH/Mtr 

pathway in actinomycetes  

Protein S-mycothiolation is a reversible post-translational thiol-modification, which 

functions in redox-regulation and thiol-protection under oxidative stress (69,146). Under 

oxidative stress, protein thiols form mixed disulfides with MSH, termed as S-mycothiolation 

(30,98). The reversal of protein S-mycothiolations is catalyzed by Mrx1, which is the 

glutaredoxin homolog of actinomycetes. Mrx1 is part of the Mrx1/MSH/Mtr electron transfer 

pathway which uses NADPH as electron donor (Fig. 9) (69,176). The Mrx1 structure shows 

a Trx-like fold with a CGYC catalytic active site located at the N-terminus of the first α-

helix (69). The active site Cys14 is surface-exposed with a low pKa value, whereas the 

resolving Cys17 is buried (176). Mrx1 uses mainly a monothiol mechanism for the reduction 

of S-mycothiolated protein substrates (146). In the monothiol mechanism, the Mrx1 active 

site Cys14 attacks the S-mycothiolated protein, resulting in Mrx1-SSM formation, which is 

regenerated by MSH, leading to the release of Mrx1 and MSSM (30,69,176) (Fig. 8A). For 

reduction of the S-mycothiolated peroxidase AhpE, a dithiol mechanism has been proposed 

that requires both Cys residues of the CXXC motif of Mrx1 (65) (Fig. 8B). The active site 

Cys14 of Mrx1 forms an intermolecular disulfide with the AhpE substrate, followed by the 

release of reduced AhpE and oxidized Mrx1 with an intramolecular disulfide (146). Finally, 

two MSH moieties are required to recycle reduced Mrx1. AhpE has been shown to be 



25 

 

reduced by the monothiol and dithiol mechanisms of Mrx1 (65). The rate constant for S-

mycothiolation of Mrx1 in the monothiol mechanism is 10-fold lower than for the dithiol 

mechanism in vitro (65).  

 
Figure 8. Schematics of the monothiol and dithiol mechanism of Mrx1 for reduction 

of oxidized protein substrates. (A) The reversal of protein S-mycothiolations is catalyzed 

by Mrx1 according to the monothiol mechanism. (B) Mrx1 reduces disulfide bonds in 

proteins by the dithiol mechanism through the formation of a mixed disulfide between the 

nucleophilic cysteine of Mrx1 and the substrate. Oxidized Mrx1 is recycled to reduced Mrx1 

by two MSH molecules. The figure is adapted from references (125,176). 

 

Protein S-mycothiolation is a widespread redox modification in actinomycetes and 

occurred specifically under HOCl stress in corynebacteria and M. smegmatis (30,69,162). 

The identified targets for S-mycothiolations are mainly involved in cellular metabolism, 

protein translation, detoxification and redox-signaling. In C. glutamicum, 25 S-

mycothiolated proteins were identified that function in MSH biosynthesis (Ino1), glycolysis 

(Fba, Pta, XylB, PckA, GapDH), glycogen and maltodextrin degradation (MalP), serine, 

cysteine, methionine biosynthesis (SerA, Hom, MetE), nucleotide and thiamine cofactor 

biosynthesis (GuaB, PurL, NadC, ThiD1, ThiD2), antioxidant functions (Tpx, Mpx, MrsA), 

methionine sulfoxide reduction (MsrA), heme degradation (HmuO) and protein translation 

(RpsF, RpsC, RpsM, RplM, TufA, PheT) (Fig. 9) (30). Among these targets for S-

mycothiolations are MetE, GuaB1, GuaB2, Tuf and SerA, which are conserved S-thiolated 

proteins across actinomycetes and firmicutes (31,32).  

About 26 and 58 S-mycothiolated proteins were identified under NaOCl stress by 

shotgun proteomics in C. diphtheriae and M. smegmatis, respectively (30,60,61). The 

different extends of S-mycothiolated proteins in both strains could be due to different MSH 

contents. C. diphtheriae and C. glutamicum produce approximately 0.3 and 4 μmol/g raw 

dry weight (rdw) MSH, respectively, while 6 μmol/g rdw MSH was determined in M. 

smegmatis (61). It might be possible that the LMW thiol EGT compensates for the low level 
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of MSH as measured in corynebacteria (153). In this work, we have investigated the 

functions of the mycothiol peroxidase (Mpx) and thiol peroxidase (Tpx) under oxidative 

stress and their impact on the MSH redox potential in C. glutamicum. Both peroxiredoxins 

are major targets for S-mycothiolations in C. glutamicum. 

 
Figure 9. The reduction of protein S-mycothiolations by the Mrx1/MSH/Mtr redox 

pathway in actinomycetes. Under HOCl stress, proteins form mixed disulfides with MSH, 

termed as S-mycothiolations (protein-SSM). S-mycothiolated proteins are reduced by Mrx1, 

leading to Mrx1-SSM formation, which is regenerated by MSH and Mtr at expense of 

NADPH. The figure is adapted from references (11,26,30,146,162).  

Mpx is annotated as glutathione peroxidase and was shown to be involved in the 

defense against ROS and RCS in C. glutamicum (133,183). Mpx catalyzes detoxification of 

high levels of H2O2 and alkyl hydroperoxides in vitro (183). Mpx is S-mycothiolated under 

H2O2 stress at its peroxidatic Cys36, which inhibits the peroxidase activity (133). 

Reactivation of Mpx requires reduction by the Mrx1/MSH/Mtr pathway via the monothiol 

mechanism (30,133). Additionally, S-mycothiolated Mpx could be regenerated by the 

Trx/TrxR pathway. Trx reduces Mpx-SSM, leading to the transfer of MSH moiety to Trx 

and subsequent Trx intramolecular disulfide formation, which is reduced by TrxR on 

expense of NADPH (133). However, reduction of Mpx-SSM by the Trx/TrxR pathway was 

much slower compared to reduction by the Mrx1/MSH/Mtr pathway (133). The Trx/TrxR 

pathway might compensate when Mrx1 is busy in de-mycothiolation reactions of other 

proteins under oxidative stress (146). Thus, Mpx shows promiscuity in redox control by the 

Mrx1 and Trx redox pathways. In our phenotype analyses, we did not detect growth 

phenotypes of the mpx mutant under sub-lethal H2O2 stress (173). In addition, the mpx mutant 

did not show differences in the basal EMSH levels along the growth curve in C. glutamicum 

(173). However, the H2O2 sensitive phenotype of the mpx mutant was previously observed 
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only with high doses of H2O2 in C. glutamicum RES167 (133). The expression of mpx is 

controlled by the MarR-type repressor CosR, which is involved in the oxidative stress 

defense of C. glutamicum (161).  

 Apart from Mpx, the thiol-peroxidase Tpx is regulated by protein S-mycothiolations 

in C. glutamicum (30). Tpx was also shown to be required for the survival of C. glutamicum 

under H2O2 stress, but the specific function of Tpx depends on the H2O2 gradient inside the 

cell (30,164). Low H2O2 levels (< 7.5 mM) result in sulfenylation of the peroxidatic Cys63 

with subsequent formation of the Tpx Cys63-SS-Cys97 intramolecular disulfide, which is 

reduced by the Trx/TrxR system in vitro (164). Tpx oxidation inhibits expression of KatA 

and Mpx under low H2O2 levels. Moderate H2O2 levels (20 mM) and 0.5 mM MSH lead to 

S-mycothiolation of Tpx, which protects the peroxidatic Cys63 and is reversed by the 

Mrx1/MSH/Mtr redox pathway in vitro (30,164). Increased H2O2 levels also lead to 

induction of the OxyR and CosR regulons resulting in increased expression of KatA and 

Mpx (161,164). When exposed to an excess of H2O2 (25 mM), Cys63 is overoxidized to 

sulfonic acid, causing Tpx aggregation and formation of the tetrameric form which exhibits 

chaperone activity to prevent aggregation of oxidatively damaged proteins in vitro (164). In 

conclusion, Tpx functions in H2O2 removal as peroxidase and molecular chaperone which 

depends on the H2O2 gradient in the cell causing either reversible or irreversible thiol-

modifications in Tpx (164).  

Our phenotype results of tpx and mpx single and double mutants revealed that Tpx 

and Mpx are dispensible for H2O2 detoxification, while the catalase KatA plays the major 

role since only the katA mutant was significantly impaired in H2O2 detoxification in C. 

glutamicum (see chapter 5) (173). The katA mutant showed also a strongly enhanced Mrx1-

roGFP2 biosensor oxidation under H2O2 stress compared to the wild type, supporting its 

major contribution to the H2O2 resistance of C. glutamicum. In contrast, neither increased 

basal oxidation nor increased H2O2 responses were measured for the mpx and tpx mutants 

using the Mrx1-roGFP2 biosensor in C. glutamicum (173).  

2.3.2 Biosynthesis and functions of bacillithiol (BSH) in firmicutes 

2.3.2.1 Biosynthesis and functions of BSH in redox homeostasis 

BSH is the alpha-anomeric glycoside of L-cysteinyl-D-glucosamine with L-malic acid, 

which is utilized as LMW thiol in many firmicutes, including Bacillus and Staphylococcus 

species (see chapter 1) (24,44,69). Moreover, BSH and its derivatives were recently shown 

to be more widely distributed in the bacterial phyla Chlorobi, Bacteroidetes, Deinococcus-
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Thermus, Firmicutes, Acidobacteria, Chlamydiae, Gemmatimonadetes and Proteobacteria 

(62,98). BSH is synthesized from the three precursors UDP-N-acetylglucosamine, L-malate 

and Cys. BSH synthesis is catalyzed by the enzymes BshA, BshB1, BshB2 and BshC, 

although some bacteria have only one BshB enzyme (24,45). In the first step, the 

glycosyltransferase BshA conjugates malate to GlcNAc to form GlcNAc-Mal, which is 

deacetylated by BshB1/2. In the third step, the Cys ligase BshC adds Cys to GlcN-Mal 

generating BSH (44). BSH is involved in the defense against many thiol-reactive 

compounds, electrophiles, alkylating agents, toxic metals and antibiotics in different 

firmicutes, such as B. subtilis and S. aureus, since bsh mutants were sensitive to these 

compounds (24,98). Under oxidative stress, BSH is oxidized to bacillithiol disulfide (BSSB), 

which is reduced to BSH by the NADPH-dependent flavin disulfide reductase YpdA on 

expense of NADPH which was biochemically characterized as part of this thesis (Fig. 10) 

(94,111).  

 

Figure 10. The functions of bacillithiol (BSH) in firmicutes. BSH plays an important role 

in detoxification of redox-active species, including ROS, RCS, RSS, RES, heavy metals and 

antibiotics. ROS and allicin trigger the oxidation of BSH generating bacillithiol disulfide 

(BSSB) and S-allylmercaptobacillithiol (BSSA), respectively. The BSH-S-transferase (BstA) 

conjugates electrophiles (RX) to BSH forming BS-electrophiles (BSR). BSR is cleaved by 

the BSH-S-conjugate amidase (Bca) or BshB2 to generate CysSR and mercapturic acids 

(AcCySR) that are exported out of the cell. BSH functions as a thiol-cofactor for fosfomycin 

and methylglycoxal detoxification. BSH is involved in metal homeostasis as Zn2+ buffer and 

in FeS cluster assembly. Moreover, BSH is required for virulence of S. aureus under 

neutrophil and macrophage infections. Allicin, HOCl and H2O2 lead to S-thiolation of 

proteins. The reduction of S-thiolated proteins is catalyzed by the BrxA/BSH/YpdA pathway. 

This figure is adapted from references (24,69,98).  
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BSH is required for detoxification of fosfomycin, reactive electrophiles and 

methylglyoxal (Fig. 10) (23,24,148). The BSH-dependent thiol-S-transferase (FosB) 

conjugates BSH to the C2 position of the epoxide ring of fosfomycin for its detoxification 

(148). The BSH S-transferase BstA was shown to add BSH to toxic electrophiles, including 

chlorinated hydrocarbons and monobromobimane (126). The resulting BS-electrophiles 

(BSR) are degraded to GlcNAc-Mal and mercapturic acids (AcCysSR) by the BSH S-

conjugate amidases Bca or BshB2. AcCysSR is exported by efflux pumps encoded by yfiS 

and yfiU (126). Furthermore, BSH was shown to function as cofactor for glyoxalases in 

methylglyoxal detoxification in B. subtilis (23,69). BSH conjugates methylglyoxal to BS-

hemithioacetal which is isomerized by the glyoxalase-I (GlxA) to S-lactoyl-BSH and further 

hydrolyzed by glyoxalase-I (GlxB) to lactate that is secreted from the cell (23).  

 In addition, BSH functions in detoxification of heavy metals and metal homeostasis 

(24,58,99). Under Zn2+ excess, BSH acts as Zn2+ buffer to limit Zn2+ intoxication. The 

thiolate, amine and carboxylate groups of BSH have high affinities for metal ions and chelate 

Zn2+ leading to formation of the (BSH)2:Zn2+ complex (99). BSH-deficient mutants 

displayed an impaired accumulation of Zn2+ because of increased expression of CadA and 

CzcD efflux pumps (99). BSH also protects against Zn2+ toxicity in cells lacking Zn efflux 

pumps. In addition, BSH has been shown to be involved in Fe2+ and Cu2+ homeostasis 

probably by chelating these metals in B. subtilis and S. aureus (41,82,150).  

BSH was further shown to be required for virulence and macrophage infections in S. 

aureus (68,139). The S. aureus USA300 bshA mutant and the natural SH1000 bshC mutant 

were more sensitive and impaired in survival inside neutrophils and macrophages in whole 

blood phagocytosis assays (140,143). However, the contribution of BSH to the protection of 

S. aureus against antimicrobial compounds produced in neutrophils or macrophages is poorly 

understood. 

2.3.2.2 Redox regulation of proteins by S-bacillithiolation and the Brx/BSH/YpdA 

pathway in firmicutes  

BSH is involved in post-translational thiol-modifications of proteins, which is termed as 

protein S-bacillithiolation and occurs under HOCl stress (98,173). Protein S-

bacillithiolations are widespread in different firmicutes. In total, 54 S-bacillithiolated 

proteins were identified using shotgun proteomics under HOCl stress in B. subtilis, Bacillus 

amyloliquefaciens, Bacillus pumilus, Bacillus megaterium, Staphylococcus carnosus and S. 

aureus, including 8 common and 29 unique S-bacillithiolated proteins (31,32). The targets 

for S-bacillithiolations are involved in many cellular pathways, such as the biosynthesis of 
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amino acids, cofactors and nucleotides, protein translation, detoxification and redox-

signaling of ROS. In S. aureus, the glycolytic glyceraldehyde-3-phosphate dehydrogenase 

(GapDH) is the most abundant protein in the Cys-proteome, which is S-bacillithiolated under 

HOCl stress at the conserved active site Cys151 (68). S-bacillithiolation leads to inactivation 

of GapDH which could possibly cause a metabolic reconfiguration from glycolysis to the 

pentose phosphate pathway, providing NADPH for cellular reducing systems, such as the 

bacillithiol disulfide reductase (YpdA) and TrxR (135). In this work, we characterized the 

pathways for de-bacillithiolations as the complete Brx/BSH/YpdA redox pathway (94,97). 

Previous studies showed that BrxA and BrxB catalyze the reduction of S-bacillithiolated 

MetE and OhrR in B. subtilis (45,68,94). The bacilliredoxins BrxA and BrxB also catalyze 

the reduction of S-bacillithiolated GapDH in S. aureus, leading to Brx-SSB formation (45). 

However, the enzyme involved in regeneration of Brx activity has remained elusive for a 

long time.  

 
Figure 11. BSH and the Brx/BSH/YpdA pathway function in reversal of S-

bacillithiolations and S-thioallylations. (A) Brx catalyzes the reduction of S-

bacillithiolated proteins resulting in Brx-SSB formation that is recycled by BSH and YpdA. 

(B) The garlic compound allicin conjugates BSH to S-allylmercaptobacillithiol (BSSA), 

which can be reduced by YpdA to generate BSH and allyl thiol. (C) The complete 

Brx/BSH/YpdA pathway is involved in regeneration of S-thioallylated proteins under allicin 

stress. This figure is adapted from references (94,97). 

In this doctoral thesis, I contributed to the biochemical characterization of YpdA as 

BSSB reductase in vitro. YpdA belongs to the flavin disulfide reductase family which uses 

NADPH as electron donor for reduction of BSSB (111). As revealed by Nico Linzner, the S. 

aureus ypdA mutant showed a strongly enhanced BSSB level and a decreased BSH/BSSB 
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ratio under control conditions and oxidative stress, indicative for an impaired BSH redox 

balance (94). Brx-roGFP2 biosensor measurements of Nico Linzner further revealed that the 

ypdA mutant is impaired to regenerate the reduced BSH redox potential (EBSH) under 

oxidative stress (94). The Tpx-roGFP2 biosensor was applied to reveal an important function 

of YpdA in detoxification of H2O2 and NaOCl (94). Thus, YpdA is essential to regenerate 

the reduced EBSH during recovery from oxidative stress in vivo. I performed NADPH-coupled 

electron assays with purified YpdA for reduction of different LMW thiol disulfides, such as 

BSSB, glutathione disulfide (GSSG) and coenzyme A disulfide (94). NADPH consumption 

of YpdA was only stimulated with BSSB as substrate, but not with any other LMW disulfide. 

The BSSB reductase activity of YpdA was dependent on the conserved Cys14 active site, 

which is located in a glycine-rich Rossmann-fold NADPH binding domain (GGGPC14G) 

(94). We further provided evidence that Brx acts in concert with BSH and YpdA in the 

complete Brx/BSH/YpdA redox cycle for de-bacillithiolation of GapDH-SSB in vitro (94) 

(Fig. 11A). BrxA and BrxB reduce S-bacillithiolated GapDH, resulting in Brx-SSB 

formation. Brx-SSB is reduced by BSH to restore Brx activity, leading to BSSB formation, 

which is recycled by YpdA on expense of NADPH (see chapter 2) (94).  

We further studied the role of YpdA and the Brx/BSH/YpdA pathway in protection 

against allicin stress by regeneration of S-thioallylated LMW thiols and protein thiols in S. 

aureus (97). Allicin is a thiol-reactive antimicrobial produced in garlic plants (Allium 

sativum) upon wounding from alliin as precursor (141,167). Allicin was shown to cause a 

strong thiol-specific oxidative and sulfur stress response and protein damage in the 

transcriptome of S. aureus (97). Allicin leads to depletion of BSH and formation of S-

thioallylated BSH, termed as S-allylmercaptobacillithiol (BSSA) (97). Using biochemical 

assays I showed that YpdA also uses BSSA as substrate to regenerate BSH (see chapter 3) 

(97). Thus, YpdA can function as BSSA reductase, which depends on the conserved active 

site Cys14 (Fig. 11B) (97). In addition, allicin causes widespread S-thioallylation of 

abundant and redox-sensitive proteins in the proteomes of bacteria, yeast and human cells 

(9,52,113,115). I could further reveal that the Brx/BSH/YpdA redox pathway catalyzes 

reduction of S-thioallylated GapDH to regenerate its glycolytic activity in vitro (97) (Fig. 

11C). Taken together, YpdA, BSH and the Brx/BSH/YpdA pathway play important roles in 

the defense of S. aureus against allicin stress to reverse S-thioallylations of LMW and protein 

thiols. Future investigations should reveal the detailed catalytic mechanism of YpdA in 

BSSB and BSSA reduction. 
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3. Real-time monitoring of the intrabacterial redox potential with fluorescent protein 

based redox biosensors 

3.1. Dynamic roGFP2-fused redox biosensors for monitoring redox potential changes 

in eukaryotic and prokaryotic cells  

Redox-sensitive roGFP2-based biosensors are meanwhile state-of-the art for the 

quantification of a thiol-disulfide equilibrium within living cells. Over the last years roGFP2 

fused probes have been strongly improved regarding reversibility, quantification and 

ratiometric properties (108,116,156). The cysteine substitution mutants of the amino acids 

S147 and Q204 are located on the surface of the ß-barrel in roGFP2 facilitating disulfide 

bridge formation upon oxidation (38,56) (Fig. 12A). Reduction and oxidation of roGFP2 

causes ratiometric changes in the two excitation maxima at 405 and 488 nm, which can be 

quantified as oxidation degree of the biosensor (156). In reduced roGFP2, the intensity at the 

405 nm excitation maximum is low, while intensity at 488 nm excitation maximum is high. 

Oxidation of roGFP2 leads to increased intensity at the 405 nm maximum and decreased 

intensity at 488 nm maximum, leading to ratiometric changes in the excitation spectrum (Fig. 

12B) (108). The 405/488 nm excitation ratio is calculated as oxidation degree of the 

biosensor which reflects the intracellular GSH redox potential (EGSH) in eukarytotic cells 

(108,156). Genetically encoded roGFP2 biosensors are widely used to investigate EGSH 

changes under basal and oxidative stress conditions or in different mutants that are impaired 

in redox homeostasis. RoGFP2 has a midpoint potential of -280 mV, which enhances the 

sensitivity of the probe to oxidation (108). Moreover, roGFP2 shows resistance to 

photoswitching and insensitivity to physiological pH changes, facilitating to study redox 

potential changes in pathogens under infection conditions inside the acidic phagosome of 

macrophages (14,108). 

 

Figure 12. Principle of the ratiometric measurements of roGFP2 biosensor oxidation. (A) 
Structure of reduced and oxidized roGFP2 and (B) ratiometric changes in the excitation 

maxima at 405 nm and 488 nm upon oxidation. This figure is adapted from references (15,173). 
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Recently, the roGFP2 probes have been fused to redox enzymes, such as 

glutaredoxins (Grx) to increase their specificity towards the GSH/GSSG redox pair. Grx1-

roGFP2 allows specific equilibration between the 2GSH/GSSG and roGFP2red/ roGFP2ox 

redox couples (108,156). This biosensor is able to monitor nanomolar concentrations of 

GSSG at high spatio-temporal resolution in living cells and cellular compartments 

(116,156,173). The steady-state EGSH of cells expressing the Grx-roGFP2 biosensor is similar 

to that of cells expressing unfused roGFP2, confirming that fused Grx-roGFP2 does not 

affect the cellular GSH redox potential (108,156). Of note, the Grx1-roGFP2 fused biosensor 

was shown to be 100,000-fold more sensitive compared to unfused roGFP2 (53).  

3.2 Application of the genetically encoded Mrx1-roGFP2 biosensor in mycobacteria 

The Mrx1-roGFP2 biosensor has been widely applied as valuable tool to investigate 

oxidative stress defense mechanisms and the intracellular lifestyle during macrophage 

infections in the important human pathogen Mtb (14,104,114,130,173). The results of Mrx1-

roGFP2 measurements in Mtb revealed that EMSH inside infected macrophages is 

heterogeneous with sub-populations showing reduced (-300 mV), oxidized (-240 mV) and 

basal (-270 mV) levels of EMSH during macrophage infection which depends on different sub-

vacuolar macrophage compartments (14,96,173,175) (Fig. 13). In addition, the sub-

populations with reduced, oxidized and basal EMSH were different during the time course of 

infections and also between various multi-drug resistant/ extensively drug-resistant 

(MDR/XDR) Mtb isolates indicating a strongly varying redox balance between Mtb isolates. 

Immune activation further caused an oxidative shift of Mtb sub-populations, which resulted 

from NO stress as part of host innate immune defense (14). The Mtb sub-populations were 

investigated in different vacuolar compartments including early endosomes, 

autophagosomes and lysosomes. Interestingly, the Mtb sub-population located in 

autophagosome showed almost oxidized EMSH, while those residing in lysosomes were 58% 

oxidized and the sub-population in early endosomes showed mostly (54%) reduced EMSH. 

Thus, the biosensor identified the sources of redox heterogeneity as the specific 

compartments in which Mtb resides inside macrophages.  

The Mrx1-roGFP2 biosensor was further used to study the impact of ROS-generating 

anti-TB drugs (e.g., ATD-3169, DAB-10, clofazimine) on the cytoplasmic EMSH of drug-

resistant isolates (14,93,174). Low concentrations of ATD-3169 induced redox heterogeneity 

in MDR/XDR Mtb isolates with an irreversible oxidative shift in EMSH (174). This oxidative 

shift in EMSH might be caused by elevated superoxide generation by the redox-cycling action 

of the drug. In addition, combination therapies of isoniazid (INH) and inhibitors of 
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antioxidant responses were found as promising strategy to threat drug resistant Mtb isolates 

(130). Such inhibitors of antioxidant responses were ebselen, vancomycin and phenylarsine 

oxide that were highly effective in combination with INH to kill drug resistant Mtb isolates.  

 

Figure 13. Application of the Mrx1-roGFP2 biosensor for real-time monitoring of the 

MSH redox potential (EMSH) in Mtb to reveal mechanisms of virulence, survival and 

drug resistance. (1) The oxidative shift of EMSH heterogeneity in Mtb sub-populations is 

caused by specific sub-vacuolar macrophage compartments. (2) The WhiB3 sensor and 

EMSH control type-VII secretion systems and polyketide lipids under acid conditions in the 

phagosome to inhibit phagosomal maturation. (3) The WhiB4 redox sensor and EMSH control 

expression of ß-lactamase to induce augmentin tolerance in the reduced population and 

augmentin killing in the oxidized population. (4) Isoniazid (INH) resistant Mtb isolates have 

an oxidative EMSH and are highly ROS-sensitive, while INH-sensitive strains are resistant to 

ROS due to a reduced EMSH. (5) Mrx1-roGFP2 biosensor is useful to screen new ROS-

generating drugs for EMSH changes as killing mode. (6) The membrane-associated 

oxidoreductase complex (SodA-DoxX-SseA) is involved in radical detoxification and 

regulates EMSH. (7) The cystine-glutamate transporter xCT regulates cystine import into 

macrophages, resulting in increased host-GSH biosynthesis and reduced EMSH which 

contributes to TB in a mice infection model. This figure is adapted from references (93,173).  

Under infection conditions, Mtb utilizes WhiB-like proteins to overcome the 

oxidative burst of activated macrophages (173). The EMSH was shown to control the activity 

of the iron-sulfur cluster redox sensor WhiB3 (104). WhiB3 confers acid resistance of Mtb 

which allows survival of Mtb inside the acidic phagosome upon immune-stimulation 

(35,153,165). WhiB3 mediates acid resistance and inhibits phagosomal maturation, which is 

https://www.sciencedirect.com/topics/medicine-and-dentistry/drug-resistance
https://www.sciencedirect.com/topics/medicine-and-dentistry/oxidoreductase
https://www.sciencedirect.com/topics/medicine-and-dentistry/detoxication
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linked to changes in EMSH under infections. WhiB3 controls genes for lipid biosynthesis, 

secretion of the type-VII-secretion effectors and MSH metabolism under acidic stress. The 

limited decrease in pH upon acidification of the phagosome (pH ~6.2) results in a reductive 

shift of EMSH sub-populations. WhiB3 and MSH are key regulators for this reductive shift in 

EMSH. WhiB3 was shown to protect Mtb from acid stress by controlling genes that restrict 

phagosomal maturation to subvert acidification and by down-regulation of the innate 

immune response. These results revealed a link between phagosome acidification, the 

reductive shift in EMSH and virulence of Mtb that is controlled by WhiB3 mediating acid 

resistance and inhibiting phagosomal maturation as mechanism of persistent and chronic Mtb 

infections (104).  

Furthermore, the role of EMSH was investigated in the mode of action of the 

combination therapy with augmentin, consisting of a β-lactam antibiotics (amoxicillin) and 

a β-lactamase inhibitor (clavulanate) (Fig. 13). Augmentin leads to an oxidative shift in EMSH 

by causing cell wall stress and ROS generation, which increased its killing effect (114). The 

FeS-cluster redox sensor WhiB4 was found to act as regulator of β-lactam antibiotics 

resistance and the oxidative shift in EMSH sub-population under augmentin treatment (114). 

The oxidized EMSH and oxidation of WhiB4 caused down-regulation of the β-lactamase-

encoding blaC gene which potentiates ß-lactam drug action to promote the killing of Mtb. In 

contrast, reduction of WhiB4 conferred tolerance to augmentin caused by derepression of 

the blaC gene (114).  

Due to the frequent treatment of Mtb infections with INH and combination therapies, 

there is an increasing prevalence of INH and MDR/XDR resistant Mtb strains. Thus, the 

EMSH values were compared for different antibiotic resistant isolates to shed light on the 

evolution of drug-resistant Mtb. Importantly, INH-resistant isolates, MDR/XDR and other 

drug-resistant clinical Mtb isolates displayed an oxidized EMSH, ranging from − 273 mV to 

− 280 mV (Fig. 13) (14,130). The higher ROS-sensitivity of antibiotics resistant isolates was 

observed using Mrx1-roGFP2 biosensor measurements and survival assays. Thus, the 

evolution of drug resistance is associated with changes in the basal EMSH and shifted to the 

oxidized redox state in multiple resistant Mtb isolates. It was also shown that antibiotics that 

produce ROS or block antioxidant responses are in combination with INH more potent to 

induce oxidative shift in EMSH during infections and should be promising strategies to tackle 

tuberculosis disease and to combat drug resistant isolates (130). 

The Mrx1-roGFP2 biosensor further revealed the function of the novel membrane-

associated oxidoreductase complex (MRC), which includes the superoxide dismutase 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/beta-lactamase
https://www.sciencedirect.com/topics/medicine-and-dentistry/beta-lactam-resistance
https://www.sciencedirect.com/topics/medicine-and-dentistry/beta-lactam-resistance
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(SodA), an integral membrane protein (DoxX) and the conserved thiol oxidoreductase 

(SseA), and was functionally linked to radical detoxification during the oxidative burst (Fig. 

13) (119,173). Single mutants in each MRC component are similar sensitive to radical stress 

and showed an oxidized EMSH. Thus, a link between the oxidative stress resistance MRC 

complex and EMSH in Mtb was identified to combat the oxidative burst under infections (119). 

 For a mice model of tuberculosis, the Mrx1-roGFP2 was applied to reveal a link 

between EMSH and the xCT transporter required for GSH-uptake into macrophages (173). 

The GSH pool of macrophages depends on the xCT cystine-glutamate transporter, which is 

induced during Mtb infection. The deletion of xCT resulted in protection against TB and 

decreased pulmonary pathology in the mice lung. Mtb populations showed an oxidized shift 

of EMSH in the infected mice xCT mutant, which is caused by a decreased GSH pool inside 

macrophages (Fig. 13). This study reveals a link between macrophage-derived GSH and Mtb 

EMSH. In addition, inhibitors of the xCT transporter were developed as host-directed drugs 

for TB treatment (22,173).  

In summary, the Mrx1-roGFP2 biosensor was applied to study the mechanisms of 

redox heterogeneity, persistence and survival of Mtb under acidic conditions inside 

macrophage vacuolar compartments, the evolution and changes in EMSH of drug resistant Mtb 

isolates, the regulation and mode of action of combination therapy involving ROS-generating 

antibiotics as promising future anti-TB drugs. These findings were written in the review 

published in Free Radical Biology Medicine as special biosensor review about applications 

in bacteria (see chapter 4) (173).  

3.3. Stable integration of the Mrx1-roGFP2 biosensor to monitor dynamic changes of 

the mycothiol redox potential in C. glutamicum 

As one major part of the PhD thesis, I designed a novel genome-encoded Mrx1-roGFP2 

biosensor to measure dynamic changes in EMSH in the industrial platform bacterium C. 

glutamicum (see chapter 5) (173). Expression of Mrx1-roGFP2 was previously shown to 

have no effect on cellular metabolism, stress resistance, enabling precise measurement of 

EMSH changes in Mtb (14,156). For construction of the Mrx1-roGFP2 biosensor in C. 

glutamicum, Mrx1 (Cg0964) with the redox-active CxxC motif was fused to roGFP2 (173). 

Under oxidative stress, increased MSSM levels should react with the Mrx1 active site Cys 

to S-mycothiolated Mrx1, followed by the transfer of the MSH moiety to roGFP2 which 

rearranges to the roGFP2 disulfide resulting in ratiometric changes of the 400/488 excitation 

ratios (Fig. 14).  

https://www.sciencedirect.com/topics/medicine-and-dentistry/membrane-protein
https://www.sciencedirect.com/topics/medicine-and-dentistry/thiol
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Figure 14. Structure and alignment of Mrx1 homologs, principle and specific response 

of the Mrx1-roGFP2 biosensor to MSSM. (A) The Mrx1 structure of C. glutamicum was 

modelled using the template of M. tuberculosis Rv3198A (PDB code: 2LQO). (B) The Mrx1 

homologs Cg0964 of C. glutamicum, Rv3198A of M. tuberculosis and MSMEG_1947 of M. 

smegmatis were aligned with ClustalW2 and presented in Jalview. (C) Under ROS stress, 

MSH is oxidized to MSSM which reacts with Mrx1 to S-mycothiolated Mrx1. MSH is 

transferred from Mrx1 to the roGFP2 moiety leading to S-mycothiolated roGFP2 which is 

rearranged to the roGFP2 disulfide. The roGFP2 disulfide leads to a structural change 

resulting in ratiometric changes of the 400 and 488 excitation maxima of Mrx1-roGFP2. This 

figure is from reference (173). 

 

Mrx1-roGFP2 was previously shown to be specifically oxidized by MSSM and 

oxidants in Mtb in vitro (14,173). Thus, we measured the direct response of Mrx1-roGFP2 

to oxidants in vitro. Our Mrx1-roGFP2 biosensor responds very fast to the oxidants H2O2 

and NaOCl in vitro, when compared to unfused roGFP2 (see chapter 5). These results are 

in agreement with the Grx1-roGFP2 responses to different oxidants as shown previously 

(96,116,173). However, expression of plasmid-encoded Mrx1-roGFP2 in C. glutamicum 

resulted only in roGFP2 fluorescence of < 20 % of cells. Thus, we constructed the genome-

encoded Mrx1-roGFP2 biosensor, which showed equal fluorescence in the majority of cells 

(99%) (Fig. 17) (173). The results of the genome-integrated Mrx1-roGFP2 biosensor 

revealed that C. glutamicum maintains a highly reducing intrabacterial EMSH throughout the 

growth curve with basal EMSH levels of ~-296 mV (173). Consistent with the H2O2 resistant 

phenotype, C. glutamicum responds only weakly to 40 mM H2O2, but is rapidly oxidized by 

low doses of NaOCl. We further monitored basal EMSH changes and the H2O2 response in 

various mutants which are compromised in redox-signaling of ROS (OxyR, SigH) and in the 

antioxidant defense (MSH, Mtr, KatA, Mpx, Tpx). While the probe was constitutively 

oxidized in the mshC and mtr mutants, a smaller oxidative shift in basal EMSH was observed 

in the sigH mutant (Fig. 15). The catalase KatA was confirmed as major H2O2 detoxification 

enzyme required for fast biosensor re-equilibration upon return to non-stress conditions. In 

contrast, the peroxiredoxins Mpx and Tpx had only little impact on EMSH and H2O2 
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detoxification (Fig. 16). Further live imaging experiments using confocal laser scanning 

microscopy revealed the stable biosensor expression and fluorescence at the single cell level 

(Fig. 17) (173).  

 
Figure 15. Deletions of mshC, mtr and sigH affected the basal EMSH during the growth 

of C. glutamicum. The basal level of EMSH was measured using Mrx1-roGFP2 along the 

growth curve in C. glutamicum wild type and in ∆mshC (A), ∆mtr (B), ∆sigH (C) and ∆oxyR 

(D) mutants. The basal EMSH showed an oxidative shift in the ∆mshC, ∆mtr and ∆sigH 

mutants, but not in the ∆oxyR mutant (D). This figure is from reference (173). 

 

 

Figure 16. Kinetics of H2O2 detoxification in C. glutamicum mutants deficient for 

redox-regulators (OxyR, SigH) or antioxidant enzymes (KatA, Mpx, Tpx). The Mrx1-

roGFP2 biosensor response and kinetics of recovery was analyzed under 40 mM H2O2 stress 

in C. glutamicum wild type and mutants deficient for the disulfide stress regulatory sigma 

factor SigH (A), the peroxide-sensitive repressor OxyR (B) and the catalases and 

peroxiredoxins for H2O2 detoxification (KatA, Mpx, Tpx) (C-F). This figure is from 

reference (173). 
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In conclusion, the stably expressed Mrx1-roGFP2 biosensor was successfully 

applied to monitor dynamic EMSH changes in C. glutamicum during the growth, under 

oxidative stress and in different mutants revealing the impact of Mtr, SigH, OxyR and KatA 

for the basal level EMSH and efficient H2O2 detoxification under oxidative stress. The Mrx1-

roGFP2 can be applied to monitor changes in EMSH during industrial production of amino 

acids and other bioactive compounds under fermentation conditions in C. glutamicum.   

 
Figure 17. Live-imaging of Mrx1-roGFP2 fluorescence changes in C. glutamicum 

wild type under H2O2 stress at the single cell level. (A) C. glutamicum wild-type cells 

expressing Mrx1-roGFP2 were challenged with 80 mM H2O2 for 20-60 min, block with 

10 mM NEM and visualized by confocal laser scanning microsopy. (B) The 

intracellular EMSH was calculated based on the 405/488 nm excitation ratio of C. 

glutamicum Mrx1-roGFP2 cells after H2O2 treatment using confocal imaging and 

microplate reader measurements. This figure is from reference (173). 
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4. Thiol based redox-sensor in response to oxidative burst 

ROS and RCS affect the cellular redox homeostasis and induce post-translational thiol-

modifications in proteins, including protein disulfides that are termed as thiol-redox 

switches. Bacterial redox-sensing transcription factors often sense ROS and RCS via thiol-

modifications, which functions in redox regulation to induce specific ROS or RCS 

detoxification pathways (34,182). Thiol-modifications of redox-sensing transcription factors 

often lead to structural and conformational changes of the DNA binding helix-turn-helix 

motifs, leading to inactivation or activation of the transcriptional regulators to induce 

transcription of regulons that protect cells against ROS or RCS toxicity (182). Thus far, many 

different redox-sensing regulators have been discovered as sensors of a wide range of redox-

active species (e.g. ROS, RCS, RES) and antibiotics in bacteria, which have been reviewed 

previously (49,59,95,159). As second part of my thesis, I discovered the novel HOCl-specific 

redox regulator HypS in mycobacteria, which confers resistance to HOCl stress and 

antibiotics. In this section, the current state-of-the art of redox-sensing transcriptional 

regulators for ROS and RCS will be summarized including the results about HypS redox-

regulation and functional characterization.  

4.1 OxyR as thiol-based peroxide redox sensor of C. glutamicum 

OxyR is the best-characterized redox-sensing transcription factors which was first 

discovered in E. coli and responds specifically to H2O2 stress (10). OxyR belongs to the 

widely distributed LysR-family of transcription factors, which were characterized as 

transcriptional activators or repressors (10,28,71,171). In E. coli, OxyR functions as 

tetrameric activator of transcription of a large peroxide regulon (33,191), while the OxyR 

homolog of C. glutamicum was characterized as transcriptional repressor (112,171). The 

redox-sensing mechanism of OxyR in E. coli involves the formation of an intramolecular 

disulfide between Cys199 and Cys206 in each subunit of the OxyR tetramer (33). OxyR 

oxidation induces a large conformational change which reorients the DNA binding HTH 

motifs in each subunit to recruit the RNA polymerase for initiation of transcription of the 

OxyR regulon (33,109).  

The OxyR regulon functions in the defense against H2O2 stress, including genes 

encoding NADH peroxidase (ahpCF), catalase (katG), glutathione reductase (gor), 

thioredoxin (trxC), glutaredoxin (grxA). Thus, the OxyR regulon is mainly involved in 

peroxide detoxification or reduction of protein disulfides to restore redox homeostasis in 

response to H2O2 stress (33,192). The OxyR repressor of C. glutamicum and C. diphtheriae 
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controls similar genes, which are associated with H2O2 removal and the repair of protein 

damages (Fig. 18) (83,171). In C. glutamicum, OxyR represses the transcription of 23 genes, 

including catalase (katA), ferrochelatase (hemH), Fe-storage miniferritin (dpS) and ferritin 

(ftn), Fe-S-cluster assembly machinery (sufR), putative MFS secondary transporter (proP) 

and subunits of cytochrome bd oxidase (cyd), which are derepressed in the wild type under 

H2O2 stress and in the oxyR mutant (112). The measurements with the Mrx1-roGFP2 

biosensor revealed a decreased biosensor response under H2O2 stress in the oxyR mutant, due 

to constitutive expression of the catalase KatA which confers a H2O2 resistance phenotype 

(173). In addition, the katA mutant was strongly impaired in H2O2 detoxification and 

displayed a very fast and strongly increased biosensor oxidation under H2O2 stress (173). 

These results indicate the major function of the OxyR-controlled catalase KatA in H2O2 

detoxification in C. glutamicum (112,134,173).  

 

 

Figure 18. The redox-switch mechanism of the H2O2-specific OxyR regulator in C. 

glutamicum. The OxyR repressor senses H2O2 stress by formation of an intramolecular 

disulfide between Cys206 and Cys215 in each subunit of the tetramer, leading to 

derepression of transcription of the OxyR regulon genes, encoding catalase (katA), 

ferrochelatase (hemH), Fe-storage miniferritin (dpS), ferritin (ftn), Fe-S-cluster assembly 

machinery (sufR), putative MFS secondary transporter (proP) and subunits of cytochrome 

bd oxidase (cyd). This figure is adapted from reference (59). 

 

The regulatory mechanism and structural changes of the OxyR repressor of C. 

glutamicum under H2O2 stress were recently investigated (134). The C. glutamicum OxyR 

protein has a tetrameric structure which differs from previously published structures of OxyR 

homologs of other bacteria. The structural and kinetic results revealed that C206, T107, 

R278, and T136 are located in OxyR active-site pocket and are essential for H2O2 binding 

and reduction. Four N-terminal DNA-binding domains of the OxyR tetramer bind to two 

distinct operators upstream and downstream of the katA transcription start point (134). 

Oxidation of the active-site Cys206 leads to intramolecular disulfide formation with Cys215, 

which causes allosteric structural changes at the C-terminal regulatory domain in the dimer 
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interface. The structural changes in OxyR upon oxidation leads to dissociation of the HTH 

motifs from the operators to facilitate initiation of transcription by the RNAP (134). The 

increased expression of KatA leads to ROS detoxification, promoting the growth of C. 

glutamicum during recovery from H2O2 stress (134,173).  

4.2 The MarR-family of oxidative stress and antibiotic resistance regulators in 

mycobacteria 

The MarR family of multiple antibiotics resistance regulators, as discovered originally for 

the MarR repressor of E. coli (5,6), plays an important role to control drug resistance 

mechanisms in many human pathogens (49). MarR family proteins are widespread in 

bacteria and archaea and control a variety of cellular functions, including adaptation to 

environmental changes, oxidative stress, virulence, metabolism and resistance to phenolic 

compounds, solvents, disinfections and antibiotics (37,51). In the major pathogen Mtb, eight 

MarR-family homologs have been annotated, including Rv0042c, Rv0880, Rv2011c, 

Rv1049, Rv2327, Rv0737, Rv2887 and Rv1404 (49). The MarR-type repressor Rv1404 

controls acid stress resistance and virulence (57). Rv0678 controls the resistance-nodulation-

cell division (RND) transporters MmpS5-MmpL5 (mycobacterial membrane protein small 

and large) which are involved in lipid and fatty acid export during cell wall biosynthesis 

(142). Rv0880 is involved in the resistance to the antibiotic bedaquiline (136) and Rv2887 

was shown to control the SAM-dependent methyltransferase Rv0560c, which confers 

resistance to the new anti-mycobacterial imidoazopyridine-based drugs MP-III-71 and 

pyridobenzimidazole 14 (185,188).  

Recently, the structural mechanism of ligand-mediated inhibition of DNA binding 

activity of Rv2887 was shown in the presence salicylate (SA) and para-aminosalicylic acid 

(PAS) as anti-mycobacterial drug analogue (46). This provides the basis to design new anti-

TB drugs which target MarR-type proteins to combat life-threatening TB-infections.  

Structural studies have revealed that MarR-family proteins are homodimers with 

winged helix-turn-helix (wHTH) motifs in each subunit that bind with their recognition -

helices to palindromic sequences in adjacent major groves of the DNA (37,51). The majority 

of MarR proteins are transcriptional repressors that negatively control transcription of 

divergently located genes. The DNA binding activity is often inhibited by small molecules, 

such as phenolic compounds (e.g. salicylate, benzoate, quinones) or metals, which act as 

ligands and bind a shared ligand-binding pocket between the wHTH motifs and dimerization 

domains leading to structural rearrangements of the DNA recognition helices (37,51).  
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Apart from ligand-binding, some MarR-type regulators have conserved Cys residues, 

act as redox switches and respond to ROS, RCS or RES by thiol-oxidation or S-alkylation 

(8,59). Structurally well characterized redox-sensitive MarR-type regulators are the 

MarR/OhrR- and MarR/DUF24-family regulators of B. subtilis, Xanthomonas campestris 

and S. aureus, which respond to ROS, HOCl and RES via thiol-based mechanisms and 

control oxidative stress defense mechanisms, quinone detoxification enzymes, virulence and 

antibiotics resistance (91,95,166). These MarR/OhrR-family proteins have been classified in 

one-Cys-type and two-Cys-type repressors based on the number of Cys residues and the 

resulting redox-switch model. Two different redox-switch models of the OhrR-repressors 

have been mechanistically and structurally characterized in B. subtilis and Xanthomonas 

campestri (8,37,51,59,64,91,131,169). The B. subtilis OhrRBs is the prototype of a one-Cys-

type repressor, which senses ROOH and NaOCl by thiol-oxidation to Cys-sulfenic acid that 

reacts further with the low molecular weight thiol bacillithiol to S-bacillithiolated OhrR 

protein (91,166). S-bacillithiolation leads to inactivation of OhrR and transcriptional 

derepression of the ohrA peroxiredoxin gene (Fig. 19).  

 

Figure 19. Redox-sensing mechanisms by 1-Cys and 2-Cys-type MarR/OhrR-family 

repressors. Under organic hydroperoxide (ROOH) stress, the 1-Cys OhrR protein of B. 

subtilis is S-bacillithiolated at its Cys15, leading to derepression of ohrA that encodes a thiol-

dependent peroxiredoxin. The 2-Cys OhrR protein of X. campestris is controlled by 

intersubunit disulfide formation between C22 and C127’ of opposing subunits under ROOH 

stress to regulate ohrA expression. This figure is adapted from reference (59).  
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In contrast, the 2-Cys-type OhrR protein of X. campestris was shown to sense OHP 

via intersubunit disulfide formation between the N-terminal redox-sensing Cys22 and the C-

terminal Cys127’ of opposing subunits of the OhrR dimer (Fig. 19) (64,131,169). This 2-

Cys-type oxidation model was confirmed for other two-Cys-type MarR/DUF24-family 

regulators (HypR, YodB) of B. subtilis which are inactivated by intersubunit disulfide 

formation between N- and C-terminal Cys residues of adjacent subunits (8,59). 

In Mtb, the redox-sensing MarR/OhrR-type repressor MosR represses transcription 

of the adjacent rv1050 gene encoding an uncharacterized oxidoreductase which is involved 

in the defense against oxidative stress by detoxification of H2O2 (17,37). MosR contains four 

Cys residues (Cys10, Cys12, Cys96, Cys147) and senses H2O2 by its redox-sensing Cys12 

leading to formation of a Cys10-Cys12 intramolecular disulfide. MosR oxidation occurs 

under H2O2 stress and by INF-γ-activated macrophages leading to structural changes in the 

DNA binding domain and derepression of rv1050 oxidoreductase (16). 

In the non-pathogenic M. smegmatis, OhrR controls expression of the ohr 

peroxiredoxin, which contributes to OHP and INH resistance (47,152). Moreover, the 

survival of ohrR mutant was improved inside macrophages. OhrR senses OHPs also via its 

conserved Cys13, but the detailed redox-sensing mechanism has yet be explored (47). Since 

OhrR of M. smegmatis belongs to the one-Cys-type OhrR proteins, it is possible that the 

redox-sensing mechanism of OhrR involves protein S-mycothiolation.  

Interestingly, the MexR repressor of Pseudomonas aeruginosa controls multidrug 

efflux pumps which are required for the defense against H2O2 stress and antibiotics (27,29). 

Antibiotic-induced ROS production was implicated in the thiol-oxidation sensing 

mechanism of MexR, which renders P. aeruginosa resistant to multiple clinical important 

antibiotics, such as quinolones, β-lactams, tetracycline, chloramphenicol and novobiocin 

(27,29). Thus, redox-sensing MarR-type repressors of pathogens often control oxidative 

stress defense mechanisms and antibiotics resistance to allow adaptation to the host 

environment. The discovery of new redox-sensing MarR-type regulators that regulate ROS 

and antimicrobial resistance in Mtb opens up new avenues in anti-TB drug research to 

combat Mtb infections. In this PhD I have contributed to this topic by characterization of the 

novel MarR-type repressor HypS which senses HOCl and controls a multidrug efflux pump 

HypO that confers HOCl and antibiotics resistance. The results are described in chapter 6 

and summarized in the following section.  
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4.3. HypS as a novel MarR-family redox sensor of hypochlorite stress in M. smegmatis 

The novel redox-sensing MarR-type repressor HypS (MSMEG_4471) of M. smegmatis is 

widely conserved across different mycobacteria including Mtb (Rv2327). In my PhD thesis, 

I have shown that HypS senses HOCl stress via its conserved Cys58 by intersubunit disulfide 

formation and regulates expression of the multidrug efflux pump HypO under HOCl stress 

(see chapter 6, Fig. 20 and 21). Based on the high conservation of the hypSO locus and of 

the regulatory promoter regions, the regulatory model and function of HypS should be 

similar also in Mtb. HypS was previously identified in the global redox proteomics approach 

OxICAT as highly oxidized exhibiting 42% increased oxidation at its single Cys58 under 

NaOCl stress (60). DNA binding assays showed that HypS binds specifically to 8-5-8 bp 

inverted repeat in the promoter regions of the hypSO operon, which is conserved across 

mycobacteria. HypS oxidation under NaOCl stress leads to its inactivation and dissociation 

of HypS from its promoter DNA. Mutation of Cys58 did not affect the DNA binding activity 

of HypS, but redox sensing of NaOCl was completely abolished. The role of Cys58 in redox-

sensing was further confirmed in growth and survival assays under NaOCl stress, since the 

hypSC58S mutant was unable to complement the NaOCl resistant survival phenotype of the 

hypS mutant.  

 

Figure 20. Deletion of hypS results in derepression of the hypSO operon. (A) The 

transcriptional landscape of the hypSO operon in M. smegmatis wild type and the hypS 

mutant confirmed the derepression of the efflux pump-encoding hypO in the hypS mutant. 

Transcription of hypS (B) and hypO (C) were analyzed using qRT-PCR in the M. smegmatis 

wild type and the hypS mutant before (control) and 30 min after exposure to 500 µM NaOCl 

stress. This figure is from the submitted manuscript (chapter 6).  
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Using non-reducing SDS-PAGE, we could show that HypS is reversibly oxidized 

under NaOCl stress to form intersubunit disulfides between Cys58-Cys58’ in opposing 

subunits in vitro (Fig. 21). Structural modelling revealed that Cys58 is located in close 

proximity to Cys58’ in the adjacent subunit of the HypS dimer to allow for disulfide 

formation. HypS oxidation causes its dissociation from the hypSO operator in vitro, 

indicating that the DNA binding activity is inhibited in oxidized HypS protein probably due 

to structural changes in the wHTH motif. However, CD measurements did not reveal major 

structural changes upon HypS oxidation, suggesting local changes in the wHTH motifs 

which might lead to loss of DNA binding. Future crystal structure analyses will reveal the 

conformational changes of HypS upon oxidation.  

 

Figure 21. HypS is oxidized to intersubunit disulfides under NaOCl stress. (A) HypS is 

oxidized by NaOCl to disulphide-linked HypS dimers migrating at the size of 35 kDa, which 

are reversible with DTT. (B) HypSC58S protein is not sensitive to oxidation. (C) The CD 

spectra of reduced and oxidized HypS proteins show a similar strong α-helical content and 

no major structural changes upon oxidation. (D) The structural model of HypS was generated 

using the template of M. tuberculosis H37Rv Rv0880 (PDB code: 4YIF). (E) Model for 

redox-regulation of HypS in M. smegmatis in response to NaOCl stress. HypS senses NaOCl 

stress by Cys58-Cys58’ intersubunit disulfide formation, leading to dissociation of HypS 

from its promoter and derepression of hypO transcription, which confers resistance to NaOCl 

and antibiotics. This figure is from the submitted manuscript (chapter 6). 
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Inhibition of the repressor activity of HypS due to thiol-oxidation causes derepression 

of the hypO-encoded multidrug efflux pump, which conferred resistance under NaOCl stress 

and antibiotic exposure, such as rifampicin and erythromycin (see chapter 6). The 

derepression of the hypSO operon in the hypS mutant was confirmed by RNA-seq 

transcriptomics and qRT PCR (Fig. 20). In addition, the deletion of hypS resulted in 

upregulation of 27 genes of the SOS/LexA regulon, indicating a DNA-damage response (see 

chapter 6). Among the LexA-regulated genes, MSMEG_0827 encodes another possible drug 

transporter, which could contribute to the antibiotics resistance phenotype observed in the 

hypS mutant. However, the conserved operator sequence was only detected upstream of the 

hypSO operon, not in any of the up-regulated LexA regulon genes, indicating no direct 

regulation of lexA or LexA-regulon genes by HypS. Thus, the up-regulation of the LexA 

regulon in the hypS mutant requires further investigation.  

In conclusion, we have characterized the redox-sensing MarR-type regulator HypS 

which controls HOCl and antimicrobial resistance through the HypO efflux pump, which is 

possibly involved in the export of HOCl and the antibiotics, such as rifampicin and 

erythromycin, in M. smegmatis. Of the eight annotated MarR proteins in Mtb, fours MarR-

type regulators were shown to be implicated in drug resistance, including Rv0678, Rv0880 

and Rv2887 (136,142,185,188). Thus, the Mtb homologue Rv2327 might be also involved 

in HOCl and antimicrobial resistance by the control of the HypO homologous efflux pump 

which remains an interesting subject for future investigations.  
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5. Conclusion and future perspectives 

Bacteria have developed various defense mechanisms for protection against ROS and RCS 

which are encountered during aerobic respiration, external stressors or infection conditions. 

LMW thiols, thiol-disulfide oxidoreductases and redox-sensing transcriptional factors are 

the main factors involved in redox-sensing, detoxification and protein repair to restore the 

redox and protein homeostasis during recovery from oxidative stress in bacteria. In this 

doctoral thesis, I have engineered a novel Mrx1-roGFP2 biosensor to monitor dynamic 

changes in EMSH in different C. glutamicum mutants along the growth curve and under 

oxidative stress. Further applications of this probe should be directed to monitor EMSH 

changes during industrial fermentation processes or during the switch from anaerobic to 

aerobic conditions. My results further contributed to the biochemical characterization of 

YpdA as BSSB and BSSA reductase under ROS and allicin stress in S. aureus. Finally, the 

MarR-family regulator HypS was described as a novel HOCl-sensing redox-switch which 

contributes to the resistance of M. smegmatis towards HOCl and antibiotics. These results 

shed light on adaptation mechanisms towards oxidative stress in different Gram-positive 

bacteria, including C. glutamicum, S. aureus, M. smegmatis. To identify redox-sensitive 

proteins that are essential for survival under infection conditions can pave the way for 

developing new drugs to combat life-threatening bacterial infections.  
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Haike Antelmann1*

1 Institute for Biology – Microbiology, Freie Universität Berlin, Berlin, Germany, 2 Plant Molecular Biology, Centre
for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany, 3 School of Pharmacy, University of East
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Staphylococcus aureus is a major human pathogen and has to cope with reactive
oxygen and chlorine species (ROS, RCS) during infections. The low molecular weight
thiol bacillithiol (BSH) is an important defense mechanism of S. aureus for detoxification
of ROS and HOCl stress to maintain the reduced state of the cytoplasm. Under HOCl
stress, BSH forms mixed disulfides with proteins, termed as S-bacillithiolations, which
are reduced by bacilliredoxins (BrxA and BrxB). The NADPH-dependent flavin disulfide
reductase YpdA is phylogenetically associated with the BSH synthesis and BrxA/B
enzymes and was recently suggested to function as BSSB reductase (Mikheyeva et al.,
2019). Here, we investigated the role of the complete bacilliredoxin BrxAB/BSH/YpdA
pathway in S. aureus COL under oxidative stress and macrophage infection conditions
in vivo and in biochemical assays in vitro. Using HPLC thiol metabolomics, a strongly
enhanced BSSB level and a decreased BSH/BSSB ratio were measured in the
S. aureus COL 1ypdA deletion mutant under control and NaOCl stress. Monitoring
the oxidation degree (OxD) of the Brx-roGFP2 biosensor revealed that YpdA is required
for regeneration of the reduced BSH redox potential (EBSH) upon recovery from oxidative
stress. In addition, the 1ypdA mutant was impaired in H2O2 detoxification as measured
with the novel H2O2-specific Tpx-roGFP2 biosensor. Phenotype analyses further
showed that BrxA and YpdA are required for survival under NaOCl and H2O2 stress
in vitro and inside murine J-774A.1 macrophages in infection assays in vivo. Finally,
NADPH-coupled electron transfer assays provide evidence for the function of YpdA in
BSSB reduction, which depends on the conserved Cys14 residue. YpdA acts together
with BrxA and BSH in de-bacillithiolation of S-bacillithiolated GapDH. In conclusion, our
results point to a major role of the BrxA/BSH/YpdA pathway in BSH redox homeostasis
in S. aureus during recovery from oxidative stress and under infections.

Keywords: Staphylococcus aureus, oxidative stress, bacillithiol, bacilliredoxin, bacillithiol disulfide reductase,
YpdA, roGFP2
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INTRODUCTION

Staphylococcus aureus is an important human pathogen, which
can cause many diseases, ranging from local soft-tissue and
wound infections to life-threatening systemic and chronic
infections, such as endocarditis, septicaemia, bacteraemia,
pneumonia or osteomyelitis (Archer, 1998; Lowy, 1998; Boucher
and Corey, 2008). Due to the prevalence of methicillin-resistant
S. aureus isolates, which are often resistant to multiple antibiotics,
treatment options are limited to combat S. aureus infections
(Livermore, 2000). Therefore, the “European Center of Disease
Prevention and Control” has classified S. aureus as one out of six
ESKAPE pathogens which are the leading causes of nosocomial
infections worldwide (Pendleton et al., 2013). During infections,
activated macrophages and neutrophils produce reactive oxygen
and chlorine species (ROS, RCS) in large quantities, including
H2O2 and HOCl with the aim to kill invading pathogens
(Winterbourn and Kettle, 2013; Hillion and Antelmann, 2015;
Beavers and Skaar, 2016; Winterbourn et al., 2016).

Low molecular weight thiols play important roles in the
defense against ROS and HOCl in bacterial pathogens and
are required for survival, host colonization, and pathogenicity
(Loi et al., 2015; Tung et al., 2018). Gram-negative bacteria
produce GSH as major LMW thiol, which is absent in most
Gram-positive bacteria (Fahey, 2013). Instead, many firmicutes
utilize BSH as alternative LMW thiol (Figure 1A), which is
essential for virulence of S. aureus in macrophage infection
assays (Newton et al., 2012; Pöther et al., 2013; Posada et al.,
2014; Chandrangsu et al., 2018). A recent study identified a
BSH derivative with an N-methylated cysteine as N-methyl-
BSH in anaerobic phototrophic Chlorobiaceae, suggesting that
BSH derivatives are more widely distributed and not restricted
to Gram-positive firmicutes (Hiras et al., 2018). In S. aureus
and Bacillus subtilis, BSH was characterized as cofactor of thiol-
S-transferases (e.g., FosB), glyoxalases, peroxidases, and other
redox enzymes that are involved in detoxification of ROS,
HOCl, methylglyoxal, toxins, and antibiotics (Chandrangsu et al.,
2018). In addition, BSH participates in post-translational thiol-
modifications under HOCl stress by formation of BSH mixed
protein disulfides, termed as protein S-bacillithiolations (Chi
et al., 2011, 2013; Imber et al., 2018a,c).

Protein S-bacillithiolation functions in thiol-protection and
redox regulation of redox-sensing regulators, metabolic enzymes
and antioxidant enzymes (Chi et al., 2011, 2013; Loi et al.,
2015; Imber et al., 2018a,b,c). In S. aureus, the glycolytic
glyceraldehyde-3-phosphate dehydrogenase (GapDH) and the
aldehyde dehydrogenase AldA were identified as most abundant
S-bacillithiolated proteins that are inactivated under HOCl stress
(Imber et al., 2018a,b). In B. subtilis, the methionine synthase

Abbreviations: BSH, bacillithiol; BSSB, bacillithiol disulfide; BrxA/B,
bacilliredoxin A (YphP)/bacilliredoxin B (YqiW); CFUs, colony forming units;
DTT, dithiothreitol; EBSH, bacillithiol redox potential; GapDH, glyceraldehyde
3-phosphate dehydrogenase; GSH, glutathione; GSSG, glutathione disulfide;
Gor, glutathione disulfide reductase; Grx, glutaredoxins; HOCl, hypochlorous
acid; LMW, low molecular weight; Mtr, mycothiol disulfide reductase; NaOCl,
sodium hypochlorite; OD500, optical density at 500 nm; rdw, raw dry weight; RCS,
reactive chlorine species; ROS, reactive oxygen species; YpdA, bacillithiol disulfide
reductase.

MetE and the OhrR repressor are S-bacillithiolated under
HOCl stress leading to methionine auxotrophy and derepression
of the OhrR-controlled ohrA peroxiredoxin gene, respectively
(Fuangthong et al., 2001; Lee et al., 2007; Chi et al., 2011).

Reduction of S-bacillithiolated OhrR, MetE, and GapDH
proteins is catalyzed by the bacilliredoxins (BrxA/B) in B. subtilis
and S. aureus in vitro (Gaballa et al., 2014; Chandrangsu
et al., 2018). BrxA (YphP) and BrxB (YqiW) are paralogous
thioredoxin-fold proteins of the UPF0403 family with an unusual
CGC active site that are conserved in BSH-producing firmicutes
(Supplementary Figure S1). Upon de-bacillithiolation, the BSH
moiety is transferred to the Brx active site, resulting in BrxA-
SSB formation (Figure 1B). However, the Brx associated thiol-
disulfide reductase involved in regeneration of Brx activity
is not known. In GSH-producing bacteria, Grx catalyze the
reduction of S-glutathionylated proteins, which requires GSH
for regeneration of Grx, resulting in GSSG formation (Lillig
et al., 2008; Allen and Mieyal, 2012). The regeneration of
GSH is catalyzed by the flavoenzyme Gor, which belongs
to the pyridine nucleotide disulfide reductases and recycles
GSSG on expense of NADPH (Argyrou and Blanchard, 2004;
Deponte, 2013).

Phylogenomic profiling of protein interaction networks using
EMBL STRING search has suggested the flavoenzyme YpdA
(SACOL1520) as putative NADPH-dependent BSSB reductase
(Supplementary Figure S1), since YpdA co-occurs together with
BrxA/B and the BSH biosynthesis enzymes (BshA/B/C) only
in BSH-producing bacteria, such as B. subtilis and S. aureus
(Supplementary Figure S2; Gaballa et al., 2010). While our work
was in progress, a recent study provides first evidence for the
function of YpdA as putative BSSB reductase in S. aureus in vivo
since an increased BSSB level and a decreased BSH/BSSB ratio
was measured in the 1ypdA mutant under control and H2O2
stress conditions (Mikheyeva et al., 2019). YpdA overproduction
was shown to increase the BSH level and contributes to

FIGURE 1 | Structure of the LMW thiol bacillithiol (BSH) (A) and mechanism of
the bacilliredoxin (Brx)/BSH/YpdA de-bacillithiolation pathway (B). (A)
Bacillithiol is composed of glucosamine, malate, and cysteine. (B) Under
HOCl stress, BSH leads to S-bacillithiolation of proteins which are reduced by
bacilliredoxins (BrxA/B), resulting in the transfer of BSH to the Brx active site
(Brx-SSB). BSH functions in Brx-SSB reduction to restore Brx activity, leading
to BSSB formation. The BSSB reductase YpdA (SACOL1520) regenerates
BSH on expense of NADPH.
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oxidative stress resistance, fitness, and virulence of S. aureus
(Mikheyeva et al., 2019). However, biochemical evidence for
the function of YpdA as BSSB reductase and the association of
YpdA to the BrxA/B enzymes have not been demonstrated in
B. subtilis or S. aureus.

In this work, we aimed to investigate the role of the complete
BrxAB/BSH/YpdA pathway in S. aureus in vivo and in vitro. We
used phenotype and biochemical analyses, HPLC metabolomics
and redox biosensor measurements to study the physiological
role of the Brx/BSH/YpdA redox pathway in S. aureus under
oxidative stress and macrophage infection assays. Our data point
to important roles of both BrxA and YpdA in the oxidative stress
defense for regeneration of reduced EBSH and de-bacillithiolation
upon recovery from oxidative stress. Biochemical assays further
provide evidence for the function of YpdA as BSSB reductase
in vitro, which acts in the BrxA/BSH/YpdA electron pathway in
de-bacillithiolation of GapDH-SSB.

MATERIALS AND METHODS

Bacterial Strains, Growth, and Survival
Assays
Bacterial strains, plasmids and primers used in this study are
listed in Supplementary Tables S1, S2, S3. For cloning and
genetic manipulation, Escherichia coli was cultivated in LB
medium. For stress experiments, S. aureus COL wild type and
mutant strains were cultivated in LB, RPMI, or Belitsky minimal
medium and exposed to the different compounds during the
exponential growth as described previously (Loi et al., 2017,
2018b). NaOCl, methylglyoxal, diamide, methylhydroquinone,
DTT, cumene hydroperoxide (80% w/v), H2O2 (35% w/v), and
monobromobimane were purchased from Sigma Aldrich.

Cloning, Expression, and Purification of
His-Tagged Brx-roGFP2, Tpx-roGFP2,
GapDH, BrxA, YpdA, and YpdAC14A
Proteins in E. coli
Construction of plasmids pET11b-brx-roGFP2 for expression
of the Brx-roGFP2 biosensor was described previously (Loi
et al., 2017). The pET11b-derived plasmids for overexpression
of the His-tagged GapDH and BrxA (SACOL1321) proteins
were generated previously (Imber et al., 2018a). The plasmid
pET11b-brx-roGFP2 was used as a template for construction
of the Tpx-roGFP2 biosensor to replace brx by the tpx gene
of S. aureus. The tpx gene (SACOL1762) was PCR-amplified
from chromosomal DNA of S. aureus COL using primers pET-
tpx-for-NheI and pET-tpx-rev-SpeI (Supplementary Table S3),
digested with NheI and BamHI and cloned into plasmid
pET11b-brx-roGFP2 to generate pET11b-tpx-roGFP2. To
construct plasmids pET11b-ypdA or pET11b-ypdAC14A,
the ypdA gene (SACOL1520) was PCR-amplified from
chromosomal DNA of S. aureus COL with pET-ypdA-for-
NdeI or pET-ypdAC14A-for-NdeI as forward primers and
pET-ypdA-rev-BamHI as reverse primer (Supplementary
Table S3), digested with NdeI and BamHI and inserted into

plasmid pET11b (Novagen). For expression of His-tagged
proteins (GapDH, BrxA, YpdA, YpdAC14A, Tpx-roGFP2),
E. coli BL21(DE3) plysS carrying plasmids pET11b-gap,
pET11b-brxA, pET11b-ypdA, pET11b-ypdAC14A and pET11b-
tpx-roGFP2 was cultivated in 1 l LB medium until an OD600
of 0.8 followed by addition of 1 mM IPTG (isopropyl-β-D-
thiogalactopyranoside) for 16 h at 25◦C. His6-tagged GapDH,
BrxA, YpdA, YpdAC14A, and Tpx-roGFP2 proteins were
purified using His TrapTM HP Ni-NTA columns (5 ml; GE
Healthcare, Chalfont St Giles, United Kingdom) and the ÄKTA
purifier liquid chromatography system (GE Healthcare) as
described (Loi et al., 2018b).

Construction of S. aureus COL
1ypdA,1brxAB and 1brxAB1ypdA Clean
Deletion Mutants and Complemented
Mutant Strains
Staphylococcus aureus COL 1ypdA (SACOL1520), 1brxA
(SACOL1464), and 1brxB (SACOL1558) single deletion mutants
as well as the 1brxAB double and 1brxAB1ypdA triple mutants
were constructed using pMAD as described (Arnaud et al., 2004;
Loi et al., 2018b). Briefly, the 500 bp up- and downstream regions
of ypdA, brxA, and brxB were amplified using gene-specific
primers (Supplementary Table S3), fused by overlap extension
PCR and ligated into the BglII and SalI sites of plasmid pMAD.
The pMAD constructs were electroporated into S. aureusRN4220
and further transduced into S. aureus COL using phage 81
(Rosenblum and Tyrone, 1964). The clean marker-less deletions
of ypdA, brxA, or brxB were selected after plasmid excision as
described (Loi et al., 2018b). All mutants were clean deletions
of internal gene regions with no genetic changes in the up-
and downstream encoding genes. The deletions of the internal
gene regions were verified by PCR and DNA sequencing. The
1brxAB and 1brxAB1ypdA double and triple mutants were
obtained by transduction and excision of pMAD-1brxB into
the 1brxA mutant, leading to the 1brxAB deletion and of
plasmid pMAD-1ypdA into the 1brxAB mutant, resulting in
the 1brxAB1ypdA knockout. For construction of ypdA, brxA,
and brxB complemented strains, the xylose-inducible ectopic
E. coli/S. aureus shuttle vector pRB473 was applied (Brückner
et al., 1993). Primers pRB-ypdA, pRB-brxA, and pRB-brxB
(Supplementary Table S3) were used for amplification of the
genes, which were cloned into pRB473 after digestion with
BamHI and KpnI to generate plasmids pRB473-ypdA, pRB473-
brxA, and pRB473-brxB, respectively. The pRB473 constructs
were confirmed by PCR and DNA sequencing and transduced
into the 1ypdA and 1brxAB deletion mutants as described
(Loi et al., 2017).

Construction of Tpx-roGFP2 and
Brx-roGFP2 Biosensor Fusions in
S. aureus COL
The tpx-roGFP2 fusion was amplified from plasmid pET11b-
tpx-roGFP2 with primers pRB-tpx-roGFP2-for-BamHI and
pRB-tpx-roGFP2-rev-SacI and digested with BamHI and SacI
(Supplementary Table S3). The PCR product was cloned into
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pRB473 generating plasmid pRB473-tpx-roGFP2, which was
confirmed by DNA sequencing. The biosensor plasmids pRB473-
tpx-roGFP2 and pRB473-brx-roGFP2 were electroporated into
S. aureus RN4220 and further transferred to the S. aureus
COL 1ypdA, 1brxAB and 1brxAB1ypdA mutants by phage
transduction as described (Loi et al., 2017).

Northern Blot Experiments
Northern blot analyses were performed using RNA isolated
from S. aureus COL before and 15 min after exposure to
0.5 mM methylglyoxal, 0.75 mM formaldehyde, 1 mM NaOCl,
10 mM H2O2, 2 mM diamide, and 45 µM methylhydroquinone
as described (Wetzstein et al., 1992). Hybridizations were
conducted using digoxigenin-labeled antisense RNA probes for
ypdA, brxA, and brxB that were synthesized in vitro using
T7 RNA polymerase and primers ypdA-NB-for/rev, brxA-NB-
for/rev, or brxB-NB-for/rev (Supplementary Table S3) as in
previous studies (Tam le et al., 2006).

HPLC Thiol Metabolomics for
Quantification of LMW Thiols and
Disulfides
For preparation of thiol metabolomics samples, S. aureus
COL WT, 1ypdA and 1brxAB mutants as well as the ypdA
complemented strains were grown in RPMI medium to an
OD500 of 0.9 and exposed to 2 mM NaOCl stress for 30 min.
The intracellular amounts of reduced and oxidized LMW thiols
and disulfides (BSH, BSSB, cysteine and cystine) were extracted
from the S. aureus cells, labeled with monobromobimane
and measured by HPLC thiol metabolomics as described
(Chi et al., 2013).

Western Blot Analysis
Staphylococcus aureus strains were grown in LB until an OD540
of 2, transferred to Belitsky minimal medium and treated with
100 µM NaOCl for 60 and 90 min. Cytoplasmic proteins
were prepared and subjected to non-reducing BSH-specific
Western blot analysis using the polyclonal rabbit anti-BSH
antiserum as described previously (Chi et al., 2013). The de-
bacillithiolation reactions with purified GapDH-SSB and the
BrxA/BSH/YpdA/NADPH pathway were also subjected to non-
reducing BSH-specific Western blots.

Brx-roGFP2 and Tpx-roGFP2 Biosensor
Measurements
Staphylococcus aureus COL, 1ypdA and 1brxAB mutant
strains expressing the Brx-roGFP2 and Tpx-roGFP2 biosensor
plasmids were grown in LB and used for measurements of
the biosensor oxidation degree (OxD) along the growth curves
and after injection of the oxidants H2O2 and NaOCl as
described previously (Loi et al., 2017). The fully reduced and
oxidized control samples of Tpx-roGFP2 expression strains were
treated with 15 mM DTT and 20 mM cumene hydroperoxide,
respectively. The Brx-roGFP2 and Tpx-roGFP2 biosensor
fluorescence emission was measured at 510 nm after excitation
at 405 and 488 nm using the CLARIOstar microplate reader

(BMG Labtech). The OxD of the Brx-roGFP2 and Tpx-roGFP2
biosensors was determined for each sample and normalized to
fully reduced and oxidized controls as described (Loi et al., 2017)
according to the Eq. (1):

O×D =
I405sample × I488red − I405red × I488sample

I405sample × I488red − I405sample × I488ox
+ I405ox × I488sample − I405red × I488sample

(1)

The values of I405sample and I488sample are the observed
fluorescence excitation intensities at 405 and 488 nm,
respectively. The values of I405red, I488red, I405ox, and
I488ox represent the fluorescence intensities of fully reduced and
oxidized controls, respectively.

Based on the OxD values and the previously determined
Eo
′

roGFP2 =−280 mV (Dooley et al., 2004), the BSH redox potential
(EBSH) can be calculated using to the Nernst equation (2):

EBSH = EroGFP2 = Eo
′

roGFP2 −

(
RT
2F

)
× In

(
1−OxD

OxD

)
(2)

Biochemical Assays for
NADPH-Dependent BSSB Reduction by
YpdA and De-Bacillithiolation of
GapDH-SSB Using the BrxA/BSH/YpdA
Electron Pathway in vitro
Before the activity assays, the purified BrxA, YpdA, and
YpdAC14A proteins were prereduced with 10 mM DTT
followed by DTT removal with Micro Biospin 6 columns
(Biorad). For the biochemical activity assays of the specific BSSB
reductase activity, 12.5 µM of purified YpdA and YpdAC14A
proteins were incubated with 40 µM BSSB, 40 µM GSSG,
or 40 µM coenzyme A disulfide and 500 µM NADPH in
20 mM Tris, 1.25 mM EDTA, pH 8.0. NADPH consumption
of YpdA and YpdAC14A was measured immediately after
the start of the reaction as absorbance change at 340 nm
using the Clariostar microplate reader. The NADPH-dependent
BrxA/BSH/YpdA electron pathway was reconstituted in vitro for
de-bacillithiolation of GapDH-SSB. About 60 µM of purified
GapDH was S-bacillithiolated with 600 µM BSH in the presence
of 6 mM H2O2 for 5 min. Excess of BSH and H2O2 were
removed with Micro Biospin 6 columns, which were equilibrated
with 20 mM Tris, 1.25 mM EDTA, pH 8.0. Before starting the
de-bacillithiolation assay using the BrxA/BSH/YpdA electron
pathway, 2.5 µM GapDH-SSB was incubated with 12.5 µM BrxA,
40 µM BSH, and 500 µM NADPH in 20 mM Tris, 1.25 mM
EDTA, pH 8.0 at room temperature for 30 min. Next, 12.5 µM
YpdA or YpdAC14A proteins were added to the reaction mix
at 30◦C for 8 min and NADPH consumption was measured at
340 mm. The biochemical activity assays were performed in four
replicate experiments.

Infection Assays With Murine
Macrophage Cell Line J-774A.1
The murine cell line J774A.1 was cultivated in Iscove’s modified
Dulbecco MEM medium (Biochrom) with 10% heat inactivated
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fetal bovine serum (FBS) and used for S. aureus infection
assays as described (Loi et al., 2018b). Macrophages were
infected with S. aureus cells at a multiplicity of infection
(MOI) of 1:25. One hour after infection, the cell culture
medium was replaced and 150 µg/ml gentamycin was added
for 1 h to kill extracellular bacteria and to stop the uptake
of S. aureus. The S. aureus cells were harvested at 2, 4, and
24 h post infection. To determine the percentage of surviving
S. aureus cells, infected macrophages were lysed with 0.1%
Triton X-100 and the supernatant of internalized bacteria
was plated on brain heart infusion (BHI) agar plates. The
CFUs were counted after incubation for 24–36 h at 37◦C
(Loi et al., 2018b).

Statistical Analyses
Statistical analysis of growth and survival assays was performed
using the Student’s unpaired two-tailed t-test by the graph
prism software. The statistics of the J-774.1 macrophage
infection assays was calculated using the one-way ANOVA and
Tukey’s multiple comparisons post hoc test by the graph prism
software. The results of the statistical tests are included in
the figure legends.

RESULTS

Transcription of ypdA, brxA, and brxB Is
Induced Under Disulfide Stress by
Diamide and NaOCl in S. aureus COL
The bacilliredoxins BrxA (SACOL1464) and BrxB (SACOL1558)
of S. aureus share an unusual CGC active site and are
highly conserved in BSH-producing firmicutes (Supplementary
Figure S1; Gaballa et al., 2014). The pyridine nucleotide
disulfide oxidoreductase YpdA (SACOL1520) belongs to the
FAD/NAD(P)-binding domain superfamily (IPR036188) and was
annotated as putative BSSB reductase due to its phylogenetic co-
occurence with the BSH biosynthesis enzymes and BrxA/B in
BSH-producing firmicutes (Supplementary Figure S2; Gaballa
et al., 2010). We used Northern blot analysis to investigate
whether transcription of brxA, brxB, and ypdA is co-regulated
and up-regulated under thiol-specific stress conditions, such as
0.5 mM methylglyoxal, 0.75 mM formaldehyde, 1 mM NaOCl,
10 mM H2O2, 2 mM diamide and 45 µM methylhydroquinone
(Figure 2). The brxA gene is co-transcribed with SACOL1465-
66-67 in a 2 kb operon and brxB is located in the 1.6 kb
SACOL1557-brxB-SACOL1559 operon. The genes co-transcribed
together with brxA and brxB encode proteins of unknown
functions. The Northern blot results revealed significant basal
transcription of the brxA, brxB, and ypdA genes and operons in
the control, and strong induction under disulfide stress provoked
by NaOCl and diamide. Of note, the brxB operon was stronger
induced under disulfide stress compared to the brxA operon
(Figure 2). No up-regulation of the brxA, brxB, and ypdA
specific mRNAs was detected upon H2O2, aldehyde and quinone
stress. The co-regulation of BrxA/B and YpdA under disulfide
stress suggests that they act in the same pathway to regenerate

FIGURE 2 | Transcription of brxA, brxB, and ypdA is induced by disulfide
stress in S. aureus. Northern blot analysis was used to analyze transcription of
brxA, brxB, and ypdA in S. aureus COL wild type before (co) and 15 min after
exposure to 0.5 mM methylglyoxal (MG), 0.75 mM formaldehyde (FA), 1 mM
NaOCl, 10 mM H2O2, 2 mM diamide (Dia), and 45 µM methylhydroquinone
(MHQ) stress at an OD500 of 0.5. The arrows point toward the transcript sizes
of the brxA, brxB, and ypdA specific genes and operons. The methylene
blue-stained bands of the 16S and 23S rRNAs are shown as RNA loading
control at the bottom.

S-bacillithiolated proteins under NaOCl stress upon recovery
from oxidative stress.

The BSSB Level Is Significantly
Increased and the BSH/BSSB Ratio Is
Decreased in the S. aureus 1ypdA
Mutant
To investigate the physiological role of BrxA/B and YpdA
under oxidative stress and in BSH redox homeostasis, we
constructed 1brxAB and 1ypdA deletion mutants. Using HPLC
thiol metabolomics, the intracellular levels of BSH and BSSB
were determined in the 1brxAB and 1ypdA mutants under
control and NaOCl stress after monobromobimane derivatisation
of LMW thiols and disulfides. In the S. aureus COL wild type,
a BSH level of 1.6–1.9 µmol/g rdw was determined, which was
not significantly different in the 1ypdA and 1brxAB mutants
(Figure 3A). Exposure of S. aureus to 2 mM NaOCl stress
caused a five to sixfold decreased intracellular BSH level in
the wild type, 1ypdA and 1brxAB mutants (Figure 3A). The
level of BSSB was similar in control and NaOCl-treated cells
of the wild type and 1brxAB mutant (∼0.05 µmol/g rdw)
(Figure 3B). Most interestingly, the 1ypdA mutant showed a
significantly twofold increased BSSB level under control and
NaOCl stress compared to the wild type (Figure 3B), confirming
previous data (Mikheyeva et al., 2019). Thus, the BSH/BSSB
ratio is∼2–3-fold decreased in the 1ypdA mutant under control
and NaOCl relative to the parent (Figure 3C). The increased
BSSB levels and the decreased BSH/BSSB redox ratio in the
1ypdA mutant could be restored to wild type levels in the
ypdA complemented strain. In addition, a significantly 1.5-fold
increased cysteine level was measured in the 1ypdA mutant
under NaOCl stress, but no changes in the level of cystine
(Supplementary Figures S3A–C). The cysteine levels could be
also restored to wild type level in the ypdA complemented
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FIGURE 3 | The BSSB level is strongly increased and the BSH/BSSB redox ratio is decreased in the S. aureus COL 1ypdA mutant under control and NaOCl stress.
The levels of BSH (A), BSSB (B) and the BSH/BSSB redox ratio (C) were determined in S. aureus COL wild type (WT), the 1ypdA and 1brxAB mutants as well as in
the ypdA complemented strain before (co) and 30 min after treatment with 2 mM NaOCl stress. LMW thiols and disulfides were labeled with monobromobimane and
measured using HPLC-thiol-metabolomics. Mean values and standard deviations (SD) of four biological replicates are shown. nsp > 0.05; ∗p ≤ 0.01,
and ∗∗∗p ≤ 0.001.

strain. These results indicate that YpdA is important to maintain
the reduced level of BSH under control and NaOCl stress,
supporting previous results (Mikheyeva et al., 2019), while
the bacilliredoxins BrxA/B are dispensible for the cellular
BSH/BSSB redox balance during the growth and under oxidative
stress in S. aureus.

The S. aureus1ypdA Mutant Is Impaired
to Regenerate the Reduced BSH Redox
Potential and to Detoxify H2O2 Under
Oxidative Stress
Next, we applied the Brx-roGFP2 biosensor to monitor the
changes of its OxD in S. aureus COL wild type, the 1ypdA and
1brxAB mutants during the growth and under oxidative stress
(Loi et al., 2017). Using the Nernst equation the OxD values
were used to calculate the changes in the BSH redox potential
(EBSH) in wild type and mutant strains (see section “Materials
and Methods” for details). Measurements of the Brx-roGFP2
OxD in LB medium along the growth did not reveal notable
differences in the basal level of EBSH between wild type, 1ypdA
and 1brxAB mutant strains (Supplementary Figures S4A,B,
S5A,B and Supplementary Table S4). The basal level of EBSH
varied from−282 to−295 mV in the wild type and from−286 to
−299 mV in the 1ypdA and 1brxAB mutants in different growth
phases (Supplementary Figures S5A,B and Supplementary
Table S4). Thus, we monitored the biosensor OxD and calculated
the EBSH changes in 1ypdA and 1brxAB mutants after exposure
to sub-lethal doses of 100 µM NaOCl and 100 mM H2O2 to
identify functions for BrxAB or YpdA under oxidative stress. The
Brx-roGFP2 biosensor was strongly oxidized under NaOCl and
H2O2 stress in the wild type, the 1ypdA and 1brxAB mutants
(Figures 4A–D). The calculated EBSH increased upon NaOCl
stress from −286 to −254 mV in the wild type, from −285 to
−247 mV in the 1ypdA mutant and from −288 to −259 mV
in the 1brxAB mutant (Supplementary Figures S5C,D and

Supplementary Table S5). This indicates a stronger increase of
EBSH by NaOCl stress in the 1ypdA mutant compared to the
wild type. Regeneration of the reduced basal level EBSH occurred
already after 2 h reaching values of−269 mV in the wild type and
−274 mV in the 1brxAB mutant (Figure 4B, Supplementary
Figure S5D, and Supplementary Table S5). However, the 1ypdA
mutant was significantly impaired to recover the reduced state
and EBSH values remained high with −252 mV after 2 h of
NaOCl stress (Figure 4A, Supplementary Figure S5C, and
Supplementary Table S5). Of note, the defect of the 1ypdA
mutant to restore the reduced state of EBSH was reproducible with
both oxidants, H2O2 and NaOCl (Figures 4A,C, Supplementary
Figures S5C,E, and Supplementary Table S6). While recovery
of reduced EBSH after H2O2 stress was fast in the wild type and
1brxAB mutant reaching EBSH values of −280 and −283 mV
already after 60 min, the 1ypdA mutant was still oxidized
after 2 h with high EBSH values of −264 mV (Supplementary
Figures S5E,F and Supplementary Table S6). These Brx-roGFP2
measurements document the important role of YpdA to reduce
BSSB and to regenerate the reduced EBSH during the recovery
phase of cells from oxidative stress.

We further hypothesized that the 1ypdA mutant is defective
in H2O2 detoxification due to its increased BSSB levels. To
analyse the kinetics of H2O2 detoxification in the 1ypdA mutant,
we constructed a genetically encoded H2O2-specific Tpx-roGFP2
biosensor. First, we verified that Tpx-roGFP2 showed the same
ratiometric changes of the excitation spectrum in the fully
reduced and oxidized state in vitro and in vivo as previously
measured for Brx-roGFP2 (Supplementary Figures S6A,B).
Tpx-roGFP2 was shown to respond strongly to low levels of
0.5–1 µM H2O2 in vitro and was fully oxidized with 100 mM
H2O2 inside S. aureus COL wild type cells indicating the
utility of the probe to measure H2O2 detoxification kinetics
in S. aureus (Supplementary Figures S6C,D). Measurements
of Tpx-roGFP2 oxidation along the growth in LB medium
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FIGURE 4 | Brx-roGFP2 and Tpx-roGFP2 biosensors measurements of the OxD indicate that the S. aureus1ypdA mutant is impaired to regenerate the reduced
state of EBSH and to detoxify H2O2 during recovery from oxidative stress. (A–D) Response of the Brx-roGFP2 biosensor to 100 µM NaOCl and 100 mM H2O2 stress
in S. aureus COL WT, the 1ypdA (A,C) and 1brxAB (B,D) mutants. (E,F) Response of the Tpx-roGFP2 biosensor under 100 mM H2O2 stress in the S. aureus COL
WT, the 1ypdA and 1brxAB mutants. The Brx-roGFP2 biosensor responses are shown as OxD values and the corresponding EBSH changes were calculated using
the Nernst equation and presented in Supplementary Figure S5 and Supplementary Tables S5, S6. Mean values and SD of three biological replicates are shown.

revealed a similar high OxD of ∼0.5–0.6 in the wild
type, 1brxAB and 1ypdA mutant strains (Supplementary
Figures S4C,D). The absence of BrxA/B or YpdA did not
affect the biosensor OxD under non-stress conditions, which
further provides evidence for roles under oxidative stress.
Thus, we monitored the H2O2 response of Tpx-roGFP2
and the kinetics of H2O2 detoxification in the 1ypdA and
1brxAB mutants. Interestingly, Tpx-roGFP2 showed a similar
response to 100 mM H2O2 in all strains, but the 1ypdA
mutant was significantly impaired in H2O2 detoxification
compared to the wild type (Figures 4E,F). These results clearly
confirmed that the 1ypdA mutant is defective to recover
from oxidative stress due to its higher BSSB level resulting
in an oxidized EBSH as revealed using Brx-roGFP2 and thiol-
metabolomics studies.

S-Bacillithiolation of GapDH Is Not
Affected in 1ypdA and 1brxAB Mutants
or in ypdA, brxA, and brxB
Complemented Strains
In S. aureus, the glyceraldehyde-3 phosphate dehydrogenase
GapDH was previously identified as most abundant
S-bacillithiolated protein under NaOCl stress that is visible
as major band in BSH-specific non-reducing Western
blots (Imber et al., 2018a). Since GapDH activity could be
recovered with purified BrxA in vitro previously (Imber et al.,
2018a), we analyzed the pattern of GapDH S-bacillithiolation
in the 1brxAB and 1ypdA mutants as well as in ypdA,
brxA and brxB complemented strains in vivo. However,
the amount of S-bacillithiolated GapDH was similar after
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100 µM NaOCl stress between wild type, 1brxAB and
1ypdA mutants and complemented strains (Figures 5A,B).
This indicates that the absence of the BrxAB/YpdA pathway
does not affect the level of S-bacillithiolation of GapDH
under NaOCl stress.

The Bacilliredoxins BrxA/B and the
Putative BSSB Reductase YpdA Are
Important for Growth and Survival Under
Oxidative Stress and Macrophage
Infections
Next, we analyzed the physiological role of the BrxA/B/YpdA
pathway for growth and survival of S. aureus under H2O2 and
NaOCl stress. The growth of the 1ypdA and 1brxAB mutants
in RPMI medium without stress exposure was comparable to
the wild type (Figures 6A,C). Interestingly, both 1brxAB and
1ypdA mutants displayed a small, but statistically significant
growth delay after exposure to sub-lethal amounts of 1.5 mM
NaOCl compared to the wild type, while no growth delay was
observed with sub-lethal 10 mM H2O2 (Figures 6A,C, 7A,B).
This might indicate that BrxAB and YpdA function in the same
pathway as already suggested by phylogenomic profiling using
STRING search (Supplementary Figure S2). Determination of
viable counts revealed significantly ∼2-fold decreased survival
rates of both 1brxAB and 1ypdA mutants after exposure to
lethal doses of 3.5 mM NaOCl and 40 mM H2O2 relative to the
wild type (Figures 6F,G, 7C,D). These oxidant sensitive growth
and survival phenotypes of the 1brxAB and 1ypdA mutants
could be restored back to wild type levels by complementation

with brxA and ypdA, respectively (Figures 6B,D,F,G, 7C,D).
However, complementation of the 1brxAB mutant with brxB
did not restore the growth and viability of the wild type
under NaOCl stress (Figures 6E,G), although xylose-inducible
brxB expression of plasmid pRB473-brxB could be verified
in Northern blots (Supplementary Figure S7). Moreover, the
1brxAB1ypdA triple mutant displayed the same sensitivity
as the 1brxAB mutant to 40 mM H2O2 and 3 mM NaOCl
indicating that BrxA and YpdA function in the same pathway
for reduction of S-bacillithiolated proteins (Figures 7D and
Supplementary Figure S8C).

To investigate the function of the BrxA/B/YpdA pathway
under infection-relevant conditions, we measured the
intracellular survival of the 1brxAB and 1ypdA mutants
in phagocytosis assays inside murine macrophages of the cell
line J-774A.1, as previously (Loi et al., 2018b). The viable counts
(CFUs) of internalized S. aureus cells were determined at 2, 4,
and 24 h post infection of the macrophages. The number of
surviving cells decreased to 21.3% at 24 h post infection for the
S. aureus COL wild type, but more strongly to 11.4 and 10.2%
for the 1ypdA and 1brxAB mutants (Figures 8A,C). Thus, the
number of viable counts was significantly∼2-fold lower for both
1brxAB and 1ypdA mutants at 24 h post infection compared
to the wild type. These sensitive phenotypes of the 1ypdA and
1brxAB mutants under macrophage infections could be restored
to 80% of wild type levels after complementation with plasmid-
encoded ypdA or brxA, respectively (Figures 8B,D). However,
complementation with brxB did not restore the survival defect
of the 1brxAB mutant, pointing again to the major role of BrxA
in this pathway.

FIGURE 5 | Protein S-bacillithiolation of GapDH is not affected in the 1ypdA and 1brxAB mutants (A) or in the ypdA, brxA, and brxB complemented strains (B) as
revealed by non-reducing BSH Western blots. The prominent GapDH-SSB band is visible in the cell extracts of NaOCl-treated S. aureus cells using non-reducing
BSH Western blots. Other bands visible under control and stress conditions are proteins cross-reactive with the polyclonal rabbit anti-BSH antibodies. The amount
of GapDH-SSB is similar in the WT, 1ypdA and 1brxAB mutants (A) as well as in the ypdA, brxA, and brxB complemented strains (B). The SDS PAGE loading
control is shown at the bottom for comparison.
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FIGURE 6 | The S. aureus1ypdA and 1brxAB mutants are more sensitive under NaOCl stress. (A–E) Growth curves of S. aureus COL WT, 1ypdA and 1brxAB
mutants as well as ypdA, brxA, and brxB complemented strains in RPMI medium after exposure to 1.5 mM NaOCl stress at an OD500 of 0.5. (F,G) Survival rates
were determined as CFUs for S. aureus COL WT, 1ypdA and 1brxAB mutants as well as ypdA, brxA, and brxB complemented strains at 2, 3, and 4 h after
treatment with 3.5 mM NaOCl. Survival of the untreated control was set to 100%. Mean values and SD of 3–4 biological replicates are presented. The statistics was
calculated using a Student’s unpaired two-tailed t-test by the graph prism software. Symbols are: nsp > 0.05, ∗p ≤ 0.05, and ∗∗p ≤ 0.01.

Taken together, our results revealed that the bacilliredoxin
BrxA and the putative BSSB reductase YpdA are required for
improved survival of S. aureus inside macrophages to resist
the oxidative burst. Our data suggest that BrxA and YpdA
act together in the BrxA/BSH/YpdA pathway to regenerate
S-bacillithiolated proteins and to restore the BSH redox potential
upon recovery from oxidative stress during infections.

The Flavin Disulfide Reductase YpdA
Functions in BSSB Reduction and
De-Bacillithiolation of GapDH-SSB in the
BrxA/BSH/YpdA Electron Transfer Assay
in vitro
Next, we aimed to analyze the catalytic activity of purified YpdA
in a NADPH-coupled assay with BSSB as substrate in vitro,
since biochemical evidence for the function of YpdA as BSSB

reductase activity in vitro is still missing (Mikheyeva et al., 2019).
The His-tagged YpdA protein was purified as yellow colored
enzyme and the UV-visible spectrum revealed the presence of
the FAD co-factor indicated by the two absorbance peaks at 375
and 450 nm (Supplementary Figure S9). Incubation of YpdA
protein with BSSB resulted in significant and fast consumption of
NADPH as measured by a rapid absorbance decrease at 340 nm
(Figure 9A). Only little NADPH consumption was measured
with YpdA alone in the absence of the BSSB substrate supporting
previous finding that YpdA consumes NADPH alone (Mikheyeva
et al., 2019). However, in our assays, BSSB significantly enhanced
NADPH consumption by YpdA compared to the control reaction
without BSSB. No increased NADPH consumption was measured
with coenzyme A disulphide (CoAS2) or GSSG as substrate
indicating the specificity of YpdA for BSSB (Figure 9A). In
addition, we investigated the role of the conserved Cys14 of YpdA
for the BSSB reductase activity in the NADPH-coupled assay.
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FIGURE 7 | The S. aureus1ypdA and 1brxAB mutants show increased sensitivities to H2O2 stress. (A,B) Growth curves of S. aureus COL WT, the 1ypdA and
1brxAB mutants in RPMI after exposure to 10 mM H2O2 stress at an OD500 of 0.5. (C,D) Survival rates were determined as CFUs for S. aureus COL WT, 1ypdA,
1brxAB and 1brxAB1ypdA mutants as well as ypdA, brxA, brxB complemented strains at 2, 3, and 4 h after treatment with 40 mM H2O2. Survival of the untreated
control was set to 100%. Mean values and SD of 3–5 biological replicates are presented. The statistics was calculated using a Student’s unpaired two-tailed t-test
by the graph prism software. Symbols are: nsp > 0.05, ∗p ≤ 0.05, and ∗∗p ≤ 0.01.

NADPH-consumption of YpdAC14A upon BSSB reduction was
much slower and similar to the control reaction of YpdA and
YpdAC14A without BSSB (Figure 9B).

Our in vivo data support that YpdA and BrxA act together
in the BrxA/BSH/YpdA de-bacillithiolation pathway. Thus, we
analyzed NADPH-consumption by the BrxA/BSH/YpdA
electron pathway in de-bacillithiolation of GapDH-SSB
in vitro. The de-bacillithiolation assays revealed fast NADPH
consumption in the complete BrxA/BSH/YpdA coupled assays
(Figure 9C). NADPH consumption by YpdA was slower in the
absence of BrxA and might be caused by residual BSSB in the
BSH samples. The control reaction of GapDH-SSB with BrxA did
not consume NADPH and only little NADPH consumption was
measured with BrxA, BSH and the YpdAC14A mutant protein
in de-bacillithiolation of GapDH-SSB (Figure 9D).

In addition, BSH-specific non-reducing Western blots were
used to investigate if BrxA and the complete BrxA/BSH/YpdA
pathway catalyze de-bacillithiolation of GapDH-SSB
(Figure 9E). The BSH-blots showed that BrxA is sufficient
for de-bacillithiolation of GapDH-SSB, since all reactions of
GapDH-SSB with BrxA lead to complete de-bacillithiolation with
and without YpdA or YpdAC14A plus NADPH. However, the
reactions of GapDH-SSB with YpdA/NADPH alone did not lead
to reduction of GapDH-SSB, indicating the main role of BrxA
in de-bacillithiolation while YpdA functions in regeneration of
BSH in the BrxA/BSH/YpdA/NADPH redox cycle.

In conclusion, our biochemical assays revealed that YpdA
functions as BSSB reductase in an NADPH coupled assay. Cys14
of YpdA is important for the BSSB reductase activity in vitro.
Thus, YpdA facilitates together with BrxA the reduction of
S-bacillithiolated GapDH in the BrxA/BSH/YpdA redox pathway
upon recovery from oxidative stress.

DISCUSSION

The putative disulfide reductase YpdA was previously shown
to be phylogenetically associated with the BSH biosynthesis
enzymes and bacilliredoxins (Supplementary Figure S2),
providing evidence for a functional Brx/BSH/YpdA pathway
in BSH-producing bacteria (Gaballa et al., 2010). Recent work
confirmed the importance of YpdA for the BSH/BSSB redox
balance and survival under oxidative stress and neutrophil
infections in S. aureus in vivo (Mikheyeva et al., 2019). Here, we
have studied the role of the bacilliredoxins BrxA/B and the BSSB
reductase YpdA in the defense of S. aureus against oxidative stress
in vivo and their biochemical function in the de-bacillithiolation
pathway in vitro. Transcription of brxA, brxB and ypdA is
strongly upregulated under disulfide stress, provoked by diamide
and NaOCl. About two to fourfold increased transcription
of ypdA, brxA, and brxB was previously found under H2O2,
diamide and NaOCl stress, by the antimicrobial surface coating
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FIGURE 8 | YpdA and BrxA/B promote the intracellular survival of S. aureus inside murine macrophages during infections. (A,B) The survival of S. aureus WT,
1ypdA and 1brxAB mutants and complemented strains was analyzed 2, 4 and 24 h post infection (p.i.) of the murine macrophage cell line J-774A.1 by CFU
counting. The percentages in survival of the 1ypdA and 1brxAB mutants and complemented strains were calculated after 4 and 24 h in relation to the 2 h time
point, which was set to 100%. (C,D) The average percentage in survival was calculated for 1ypdA and 1brxAB mutants (C) and complemented strain (D) in relation
to the WT and WT with empty plasmid pRB473, which were set to 100%. Error bars represent the SEM and the statistics were calculated using one-way ANOVA
and Tukey’s multiple comparisons post hoc test using the graph prism software (p = 0.0050 for WT/1ypdA, p = 0.0022 for WT/1brxAB and p = 0.026 for WT
pRB473/1brxAB brxB). Symbols: nsp > 0.05; ∗p ≤ 0.05, and ∗∗p ≤ 0.01.

composed of Ag+ and Ru+ (AGXX R©) and after exposure to
azurophilic granule proteins in S. aureus (Palazzolo-Ballance
et al., 2008; Posada et al., 2014; Mäder et al., 2016; Loi et al.,
2018a,b; Mikheyeva et al., 2019). The elevated transcription of
brxA, brxB, and ypdA under disulfide stress correlated with
the up-regulation of the bshA, bshB, and bshC genes for BSH
biosynthesis in S. aureus and B. subtilis (Chi et al., 2011; Nicolas
et al., 2012; Loi et al., 2018a,b). The bshA, bshB, and bshC genes
and operons are under control of the disulfide stress-specific
Spx regulator in B. subtilis, which controls a large regulon for
thiol-redox homeostasis (Gaballa et al., 2013). Thus, genes for
BSH biosynthesis and the BrxA/B/YpdA pathway might be also
regulated by Spx in S. aureus.

The co-regulation of BrxA/B and YpdA under disulfide stress
points to their function in the same pathway in S. aureus. HOCl,
diamide and AGXX R© were shown to cause a strong disulfide stress
response in the transcriptome and protein S-bacillithiolation in
the proteome of S. aureus (Imber et al., 2018a; Loi et al., 2018a,b).
Thus, the BrxA/B and YpdA redox enzymes are up-regulated
under conditions of protein S-bacillithiolations, connecting their
functions to the de-bacillithiolation pathway. We could show

here that NaOCl stress leads to five to sixfold depletion of the
cellular pool of reduced BSH in the S. aureus COL wild type,
which was not accompanied by an enhanced BSSB level. In the
previous study, 20 mM H2O2 resulted in twofold reduction of
BSH and threefold increase of BSSB in the S. aureus wild type
(Mikheyeva et al., 2019). Most probably, the increased BSSB level
under NaOCl stress was used for protein S-bacillithiolation in our
study (Imber et al., 2018a), while sub-lethal 20 mM H2O2 might
not lead to an increase in S-bacillithiolation in the previous study
(Mikheyeva et al., 2019).

The BSH/BSSB redox ratio of S. aureus wild type cells was
determined as ∼35:1 under control conditions and decreased
threefold to 10:1 under NaOCl. Of note, this basal BSH/BSSB
ratio in S. aureus COL wild type was higher compared to
the basal BSH/BSSB ratio of ∼17:1 as determined previously
in the bshC repaired SH1000 strain (Mikheyeva et al., 2019).
In E. coli, the GSH/GSSG redox ratio was determined in
the range between 30:1 and 100:1 (Hwang et al., 1995; Van
Laer et al., 2013), which is similar as measured for the basal
BSH/BSSB ratio in S. aureus COL. The differences in the
BSH/BSSB ratios might be related to different S. aureus strain
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FIGURE 9 | YpdA functions as BSSB reductase in the NADPH-coupled BrxA/BSH/YpdA electron pathway for de-bacillithiolation of GapDH-SSB in vitro. (A) Purified
YpdA is able to reduce BSSB back to BSH with electrons from NADPH as measured by the absorbance change at 340 nm. Only little NADPH consumption was
measured with YpdA alone in the absence of BSSB, with coenzymeA disulfide (CoAS2) or glutathione disulfide (GSSG) (A) and in the YpdAC14A mutant (B)
indicating the function of the conserved Cys14 as active site of YpdA for BSSB reduction. (C) NADPH consumption of YpdA was measured in the coupled
BrxA/BSH/YpdA de-bacillithiolation assay for reduction of GapDH-SSB. While fast NADPH consumption was measured upon de-bacillithiolation of GapDH-SSB with
purified YpdA (C), the reaction was much slower with the YpdAC14A mutant (D). The coupled assays were conducted with 2.5 µM Gap-SSB, 12.5 µM BrxA, 40 µM
BSH, 500 µM NADPH in 20 mM Tris, 1.25 mM EDTA, pH 8.0. After 30-min incubation, 12.5 µM YpdA or YpdAC14A proteins were added to the reaction mix and
NADPH consumption was monitored at 340 nm as a function of time. Mean values and SEM of four independent experiments are shown. (E) The de-bacillithiolation
of GapDH-SSB is catalyzed by BrxA or the complete BrxA/BSH/YpdA pathway, but not by YpdA alone as shown by non-reducing BSH-specific Western blots. The
loading controls are shown below as Coomassie-stained SDS-PAGE with the same de-bacillithiolation reactions of GapDH-SSB as in the BSH-blot.

backgrounds or growth conditions. Nevertheless, NaOCl and
H2O2 decreased the BSH/BSSB ratio in our and the previous
study (Mikheyeva et al., 2019). In the S. aureus 1brxAB mutant,
we also measured a threefold decrease of the BSH/BSSB ratio
from control conditions (38:1) to NaOCl (12:1). However, the
1ypdA mutant showed a twofold enhanced BSSB level in control
and NaOCl-treated cells, leading to a significantly decreased
BSH/BSSB ratio under control (17:1) and NaOCl stress (5:1).
These results support previous results of the bshC repaired
SH1000, showing a decreased BSH/BSSB ratio under control (6:1)
to H2O2 stress (2:1) (Mikheyeva et al., 2019), although both
ratios were again much lower as in our study. Taken together,
our data indicate that BrxAB are dispensable for the BSH redox
homeostasis, while YpdA is essential for BSSB reduction to
maintain the reduced pool of BSH and a high BSH/BSSB ratio
in S. aureus.

Brx-roGFP2 biosensor measurements provide further
support that YpdA is the candidate BSSB reductase. The 1ypdA
mutant was significantly impaired to restore reduced EBSH
during recovery from NaOCl and H2O2 stress as calculated
using the Nernst equation based on the OxD values of
the Brx-roGFP2 biosensor measurements (Supplementary
Tables S5, S6). Moreover, application of the Tpx-roGFP2
biosensor revealed a delay in H2O2 detoxification in 1ypdA
mutant cells during the recovery phase. These results clearly
support the important role of YpdA as BSSB reductase

particularly under oxidative stress to recover reduced EBSH
required for detoxification of ROS.

These in vivo data were further corroborated by biochemical
activity assays of YpdA for BSSB reduction in a NADPH-
coupled assay. While little NADPH consumption was measured
in the presence of YpdA alone, BSSB significantly enhanced
NADPH consumption, supporting the crucial role of YpdA
as BSSB reductase in vitro. Further electron transfer assays
revealed that YpdA functions together with BrxA and BSH in
reduction of GapDH-SSB in vitro. Previous de-bacillithiolation
assays have revealed regeneration of GapDH activity by BrxA
in vitro (Imber et al., 2018a). Here, we confirmed that BrxA
activity is sufficient for complete de-bacillithiolation of GapDH-
SSB in vitro, while YpdA alone had no effect on the GapDH-SSB
reduction. Thus, BrxA catalyzes reduction of S-bacillithiolated
proteins and YpdA is involved in BSH regeneration in the
complete BrxA/BSH/YpdA redox cycle.

The BSSB reductase activity of YpdA was shown to be
dependent on the conserved Cys14, which is located in
the glycine-rich Rossmann-fold NAD(P)H binding domain
(GGGPC14G) (Bragg et al., 1997; Mikheyeva et al., 2019).
Cys14 might be S-bacillithiolated by BSSB and reduced by
electron transfer from NADPH via the FAD co-factor. Cys14
was previously identified as oxidized under NaOCl stress in the
S. aureus redox proteome using the OxICAT method, further
supporting its role as active site Cys and its S-bacillithiolation
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during the BrxA/BSH/YpdA catalytic cycle (Imber et al., 2018a).
The catalytic mechanism of BSSB reduction via Cys14 of YpdA is
an interesting subject of future studies.

Previous phenotype results of the 1ypdA mutant revealed
that YpdA is important for survival of S. aureus in infection
assays with human neutrophils (Mikheyeva et al., 2019). Our
phenotype analyses further showed protective functions of
the complete BrxA/BSH/YpdA redox pathway for growth and
survival of S. aureus under oxidative stress in vitro and
in macrophage infections in vivo. The 1ypdA and 1brxAB
mutants were significantly impaired in growth and survival
after exposure to sub-lethal and lethal doses of NaOCl and
displayed survival defects under lethal H2O2. Moreover, the
H2O2 and NaOCl-sensitivity and the defect to recover reduced
EBSH in the 1brxAB1ypdA triple mutant was comparable with
that of the 1ypdA mutant (Figure 7D and Supplementary
Figure S8). These results clearly indicate that BrxA/B and
YpdA function in the same de-bacillithiolation pathway, which
is an important defense mechanism of S. aureus against
oxidative stress.

Based on previous bacilliredoxin activity assays in vitro, both
BrxA and BrxB should use a monothiol mechanism to reduce
S-bacillithiolated client proteins, such as OhrR, GapDH and
MetE in B. subtilis and S. aureus (Gaballa et al., 2014; Imber et al.,
2018a). Most di-thiol Grx of E. coli (Grx1, Grx2, and Grx3) use
the monothiol mechanism for de-glutathionylation of proteins
(Lillig et al., 2008; Allen and Mieyal, 2012; Loi et al., 2015). In the
monothiol mechanism, the nucleophilic thiolate of the Brx CGC
motif attacks the S-bacillithiolated protein, resulting in reduction
of the protein substrate and Brx-SSB formation. Brx-SSB is
then recycled by BSH, leading to increased BSSB formation.
YpdA reduces BSSB back to BSH with electrons from NADPH
(Figure 1B). The oxidation-sensitive phenotypes of 1ypdA
and 1brxAB mutants could be complemented by plasmid-
encoded ypdA and brxA, but not brxB, respectively. These results
provide evidence for the function of the BrxA/BSH/YpdA de-
bacillithiolation pathway using the monothiol-Brx mechanism
in S. aureus.

Similar phenotypes were found for mutants lacking related
redox enzymes of the GSH and mycothiol pathways in other
bacteria. In E. coli, strains lacking the Gor and Grx are
more sensitive under diamide and cumene hydroperoxide stress
(Alonso-Moraga et al., 1987; Vlamis-Gardikas et al., 2002; Lillig
et al., 2008). In Mycobacterium smegmatis, the mycoredoxin-1
mutant displayed an oxidative stress-sensitive phenotype (Van
Laer et al., 2012). In Corynebacterium glutamicum, deficiency of
the Mtr resulted in an oxidized mycothiol redox potential (Tung
et al., 2019), and Mtr overexpression contributed to improved
oxidative stress resistance (Si et al., 2016). Taken together, our
results revealed that not only BSH, but also BrxA and YpdA are
required for virulence and promote survival in infection assays
inside murine macrophages.

In several human pathogens, such as Streptococcus
pneumoniae, Listeria monocytogenes, Salmonella Typhimurium,
and Pseudomonas aeruginosa, LMW thiols or the Gor are
required for virulence, colonization and to resist host-
derived oxidative or nitrosative stress (Potter et al., 2012;

Song et al., 2013; Reniere et al., 2015; Tung et al., 2018;
Wongsaroj et al., 2018). S. aureus BSH deficient mutants
showed decreased survival in murine macrophages and in
human whole blood infections (Pöther et al., 2013; Posada
et al., 2014). The virulence mechanisms might be related
to a lack of BSH regeneration and decreased recovery of
inactivated S-bacillithiolated proteins inside macrophages.
Future studies should elucidate the targets for S-bacillithiolations
that are reduced by the BrxA/BSH/YpdA pathway inside
macrophages, increasing survival, metabolism or persistence
under infections.

In summary, our results showed the importance of the
BrxA/BSH/YpdA redox pathway to resist oxidative stress and
macrophage infection in S. aureus. Through measurements of
the BSH/BSSB redox ratio and EBSH, we provide evidence that
the NADPH-dependent disulfide reductase YpdA regenerates
BSH and restores reduced EBSH upon recovery from oxidative
stress in S. aureus. Finally, biochemical evidence for YpdA as
BSSB reductase and for the role of BrxA/BSH/YpdA pathway
in de-bacillithiolation was provided in vitro. The detailed
biochemical mechanism of YpdA and the cross-talk of the Trx
and Brx systems in de-bacillithiolation under oxidative stress and
infections are subject of our future studies.
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A R T I C L E I N F O
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A B S T R A C T

Mycothiol (MSH) functions as major low molecular weight (LMW) thiol in the industrially important
Corynebacterium glutamicum. In this study, we genomically integrated an Mrx1-roGFP2 biosensor in C. gluta-
micum to measure dynamic changes of the MSH redox potential (EMSH) during the growth and under oxidative
stress. C. glutamicum maintains a highly reducing intrabacterial EMSH throughout the growth curve with basal
EMSH levels of ~−296mV. Consistent with its H2O2 resistant phenotype, C. glutamicum responds only weakly to
40mM H2O2, but is rapidly oxidized by low doses of NaOCl. We further monitored basal EMSH changes and the
H2O2 response in various mutants which are compromised in redox-signaling of ROS (OxyR, SigH) and in the
antioxidant defense (MSH, Mtr, KatA, Mpx, Tpx). While the probe was constitutively oxidized in the mshC and
mtr mutants, a smaller oxidative shift in basal EMSH was observed in the sigH mutant. The catalase KatA was
confirmed as major H2O2 detoxification enzyme required for fast biosensor re-equilibration upon return to non-
stress conditions. In contrast, the peroxiredoxins Mpx and Tpx had only little impact on EMSH and H2O2 de-
toxification. Further live imaging experiments using confocal laser scanning microscopy revealed the stable
biosensor expression and fluorescence at the single cell level. In conclusion, the stably expressed Mrx1-roGFP2
biosensor was successfully applied to monitor dynamic EMSH changes in C. glutamicum during the growth, under
oxidative stress and in different mutants revealing the impact of Mtr and SigH for the basal level EMSH and the
role of OxyR and KatA for efficient H2O2 detoxification under oxidative stress.

1. Introduction

The Gram-positive soil bacterium Corynebacterium glutamicum is the
most important industrial platform bacterium that produces millions of
tons of L-glutamate and L-lysine every year as well as other value-added
products [1–4]. In addition, C. glutamicum serves as model bacterium
for the related pathogens Corynebacterium diphtheriae and Cor-
ynebacterium jeikeium [5]. In its natural soil habitat and during in-
dustrial production, C. glutamicum is exposed to reactive oxygen species

(ROS), such as hydrogen peroxide (H2O2) which is generated as con-
sequence of the aerobic lifestyle [6–8]. The low molecular weight
(LMW) thiol mycothiol (MSH) functions as glutathione surrogate in
detoxification of ROS and other thiol-reactive compounds in all acti-
nomycetes, including C. glutamicum and mycobacteria to maintain the
reduced state of the cytoplasm [9–11]. Thus, MSH-deficient mutants are
sensitive to various thiol-reactive compounds, although the secreted
histidine-derivative ergothioneine (EGT) also functions as alternative
LMW thiol [12–16].
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Abbreviations: Brx, bacilliredoxin; Brx-roGFP2, bacilliredoxin-fused roGFP2 biosensor; BSH, bacillithiol; BSSB, bacillithiol disulfide; CBB, Coomassie Brilliant Blue;
CLSM, confocal laser scanning microscopy; CHP, cumene hydroperoxide; DTT, dithiothreitol; ECF, extracytoplasmic function; EGT, ergothioneine; EMSH, mycothiol
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MSH is a thiol-cofactor for many redox enzymes and is oxidized to
mycothiol disulfide (MSSM) under oxidative stress. The NADPH-de-
pendent mycothiol disulfide reductase (Mtr) catalyzes the reduction of
MSSM back to MSH to maintain the highly reducing MSH redox po-
tential (EMSH) [17,18]. Overexpression of Mtr has been shown to in-
crease the fitness, stress tolerance and MSH/MSSM ratio during ex-
posure to ROS, antibiotics and alkylating agents in C. glutamicum [19].
Under hypochloric acid (HOCl) stress, MSH functions in protein S-my-
cothiolations as discovered in C. glutamicum, C. diphtheriae and Myco-
bacterium smegmatis [15,16,20]. In C. glutamicum, 25 S-mycothiolated
proteins were identified under HOCl stress that include the peroxir-
edoxins (Tpx, Mpx, AhpE) and methionine sulfoxide reductases (MsrA,
MsrB) as antioxidant enzymes that were inhibited by S-mycothiolation
[16,21–26]. The regeneration of their antioxidant activities required
the mycoredoxin-1 (Mrx1)/MSH/Mtr redox pathway, but could be also
coupled to the thioredoxin/ thioredoxin reductase (Trx/TrxR) pathway
which both operate in de-mycothiolation [9,10,27]. Detailed bio-
chemical studies on the redox-regulation of antioxidant and metabolic
enzymes (Tpx, Mpx, MsrA, GapDH) showed that both, the Mrx1 and Trx
pathways function in de-mycothiolation at different kinetics. Mrx1 was
much faster in regeneration of GapDH and Mpx activities during re-
covery from oxidative stress compared to the Trx pathway
[20,21,23–26].
The enzymes for MSH biosynthesis and the Trx/TrxR systems are

under control of the alternative extracytoplasmic function (ECF) sigma
factor SigH which is sequestered by its cognate redox-sensitive anti
sigma factor RshA in non-stressed cells [28–30]. RshA is oxidized under
disulfide stress leading to structural changes and relief of SigH to in-
itiate transcription of the large SigH disulfide stress regulon
[16,31–33]. In addition, the LysR-type transcriptional repressor OxyR
plays a major role in the peroxide response in C. glutamicum which
controls genes encoding antioxidant enzymes for H2O2 detoxification
and iron homeostasis, such as the catalase (katA), two miniferritins
(dps, ftnA), the Suf machinery and ferrochelatase (hemH) [30,34]. Thus,
SigH and OxyR can be regarded as main regulatory systems for the
defense under disulfide and oxidative stress to maintain the redox
balance in actinomycetes.
The standard thiol-redox potential of MSH was previously de-

termined with biophysical methods as E0′(MSSM/MSH) of − 230mV
which is close to that of glutathione (GSH) [35]. However, Mrx1 was
also recently fused to redox-sensitive green fluorescent protein
(roGFP2) to construct a genetically encoded Mrx1-roGFP2 redox bio-
sensor for dynamic measurement of EMSH changes inside mycobacterial
cells. EMSH values of ~-300mV were calculated using the Mrx1-roGFP2
biosensor in mycobacteria that were much lower compared to values
obtained with biophysical methods [35,36]. This Mrx1-roGFP2 bio-
sensor was successfully applied for dynamic EMSH measurements in the
pathogen Mycobacterium tuberculosis (Mtb). Using Mrx1-roGFP2, EMSH
changes were studied in drug-resistantMtb isolates, during intracellular
replication and persistence in the acidic phagosomes of macrophages
[36–38]. Mrx1-roGFP2 was also applied as tool in drug research to
screen for ROS-generating anti-tuberculosis drugs or to reveal the mode
of action of combination therapies based on EMSH changes [36,39–41].
The Mtb population exhibited redox heterogeneity of EMSH during in-
fection inside macrophages which was dependent on sub-vacuolar
compartments and the cytoplasmic acidification controlled by WhiB3
[36,38]. Thus, application of the Mrx1-roGFP2 biosensor provided
novel insights into redox changes of Mtb. However, Mrx1-roGFP2 has
not been applied in the industrial platform bacterium C. glutamicum.
In this work, we designed a genetically encoded Mrx1-roGFP2 bio-

sensor that was genomically integrated and expressed in C. glutamicum.
The biosensor was successfully applied to measure dynamic EMSH
changes during the growth, under oxidative stress and in various mu-
tant backgrounds to study the impact of antioxidant systems (MSH,
KatA, Mpx, Tpx) and their major regulators (OxyR, SigH) under basal
and oxidative stress conditions. Our results revealed a highly reducing

basal EMSH of ~-296mV that is maintained throughout the growth of C.
glutamicum. H2O2 stress had only little effect on EMSH changes in the
wild type due to its H2O2 resistance, which was dependent on the
catalase KatA supporting its major role for H2O2 detoxification.
Confocal imaging further confirmed equal Mrx1-roGFP2 fluorescence in
all cells indicating that the biosensor strain is well suited for industrial
application to quantify EMSH changes in C. glutamicum at the single cell
level.

2. Materials and methods

2.1. Bacterial strains and growth conditions

Bacterial strains, plasmids and primers are listed in Tables S1 and
S2. For cloning and genetic manipulation, Escherichia coli was culti-
vated in Luria Bertani (LB) medium at 37 °C. The C. glutamicum
ATCC13032 wild type as well as the ΔmshC, Δmtr, ΔoxyR, ΔsigH, ΔkatA,
Δmpx, Δtpx and Δmpx tpx mutant strains were used in this study for
expression of the Mrx1-roGFP2 biosensor which are described in Table
S1. All C. glutamicum strains were cultivated in heart infusion medium
(HI; Difco) at 30 °C overnight under vigorous agitation. The overnight
culture was inoculated in CGC minimal medium supplemented with 1%
glucose to an optical density at 500 nm (OD500) of 3.0 and grown until
OD500 of 8.0 for stress exposure as described [16]. C. glutamicum mu-
tants were cultivated in the presence of the antibiotics nalidixic acid
(50 μg/ml) and kanamycin (25 μg/ml).

2.2. Construction, expression and purification of His-tagged Mrx1-roGFP2
protein in E. coli

The mrx1 gene (cg0964) was amplified from chromosomal DNA of
C. glutamicum ATCC13032 by PCR using the primer pair Cgmrx1-
roGFP2-NdeI-FOR and pQE60-Cgmrx1-roGFP2-SpeI-REV. The PCR
product was digested with NdeI and SpeI and cloned into plasmid
pET11b-brx-roGFP2 [42] to exchange the brx sequence by mrx1 with
generation of plasmid pET11b-mrx1-roGFP2 (Table S1). The correct
sequence was confirmed by PCR and DNA sequencing.
The E. coli BL21 (DE3) plysS expression strain containing the

plasmid pET11b-mrx1-roGFP2 was grown in 1 l LB medium until OD600
of 0.6 at 37 °C, followed by induction with 1mM IPTG (isopropyl-β-D-
thiogalactopyranoside) for 16 h at 25 °C. Recombinant His6-tagged
Mrx1-roGFP2 protein was purified using His Trap™ HP Ni-NTA columns
(5ml; GE Healthcare, Chalfont St Giles, UK) and the ÄKTA purifier li-
quid chromatography system (GE Healthcare) according to the in-
structions of the manufacturer (USB). The purified protein was dialyzed
against 10mM Tris-HCl (pH 8.0), 100mM NaCl and 30% glycerol and
stored at − 80 °C. Purity of the protein was analyzed after sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and
Coomassie brilliant blue (CBB) staining.

2.3. Construction of katA, mtr, mpx and tpx deletion mutants in C.
glutamicum

The vector pK18mobsacB was used to create marker-free deletions in
C. glutamicum (1). The gene-SOEing method of Horton (2) was used to
construct pK18mobsacB derivatives to perform allelic exchange of the
katA and mtr genes in the chromosome of C. glutamicum ATCC13032
using the primers listed in Table S2. The constructs include the katA and
mtr genes with flanking regions and internal deletions (ΔkatA [1555 bp]
and Δmtr [1382 bp]). The pK18mobsacB derivatives were sub-cloned in
E. coli JM109 (Table S1) and transformed into C. glutamicum
ATCC13032. The pK18mobsacB::Δtpx plasmid containing the tpx
flanking regions was constructed previously (3) and transformed into
the C. glutamicum Δmpx mutant (3). The gene replacement in the
chromosome of C. glutamicum ATCC13032 resulted in ΔkatA and Δmtr
single deletion mutants and the gene replacement of tpx in the
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chromosome of C. glutamicum Δmpx resulted in the C. glutamicum Δmpx
tpx double deletion mutant. The deletions were confirmed by PCR using
the primers in Table S2.

2.4. Construction of C. glutamicum Mrx1-roGFP2 biosensor strains

For construction of the genomically integrated Mrx1-roGFP2 bio-
sensor, a 237 bp fragment of mrx1 (cg0964) was fused to roGFP2 con-
taining a 30-amino acid linker (GGSGG)6 under control of the strong
Ptuf promoter of the C. glutamicum tuf gene encoding the translation
elongation factor EF-Tu. The Ptuf-Mrx1-roGFP2 fusion was codon-opti-
mized, synthesized with flanking MunI and XhoI restriction sites and
sub-cloned into PUC-SP by Bio Basic resulting in PUC-SP::Ptuf-mrx1-
roGFP2. For genomic integration of the biosensor into the cg1121-
cg1122 intergenic region of C. glutamicum (Table S1), the vector
pK18mobsacB-cg1121-cg1122 was used [43], kindly provided by Julia
Frunzke, Forschungszentrum Jülich. The vector was PCR amplified with
primers pk18_MunI and pk18_XhoI to swap the restrictions sites. After
digestion of the pk18mobsacB-cg1121-cg1122 PCR product and the
PUC-SP::Ptuf-mrx1-roGFP2 plasmid with MunI and XhoI, both digestion
products were ligated to obtain pK18mobsacB-cg1121-cg1121-Ptuf-mrx1-
roGFP2. The resulting plasmid was sequenced with biosensor_seq_-
primer_1 and biosensor_seq_primer_2. Transfer of the plasmid into C.
glutamicum strains (Table S1) was performed by electroporation and
screening for double homologous recombination events using the con-

ditional lethal effect of the sacB gene as described [16,43]. Correct
integration of Ptuf-mrx1-roGFP2 into the cg1121-cg1122 intergenic re-
gion was verified by colony PCR using 2 primer pairs (pk18_INT_Cg_-
Test_rev, pk18_INT_Cg_Test_fwd and FUB_7_seq_wo_linker_fwd; FUB_8_-
seq_wo_linker_rev) (Table S2).
The Mrx1-roGFP2 biosensor was further cloned into the E. coli-C.

glutamicum shuttle vector pEKEx2 for ectopic expression of Mrx1-
roGFP2 under the IPTG-inducible tac promoter. The mrx1-roGFP2 fu-
sion was amplified from plasmid pET11b-mrx1-roGFP2 using primer
pair pEKEx2-Cgmrx1-BamHI-For and pEKEx2-roGFP2-KpnI-Rev (Table
S2). The PCR product and plasmid pEKEx2 were digested with BamHI
and KpnI, followed by ligation to generate plasmid pEKEx2-mrx1-
roGFP2. The resulting plasmid was cloned in E. coli, sequenced and
electroporated into C. glutamicum. Induction of the C. glutamicum strain
expressing pEKEx2-encoded Mrx1-roGFP2 was performed with 1mM
IPTG.

2.5. Characterization of recombinant Mrx1-roGFP2 biosensor in vitro

The purified Mrx1-roGFP2 protein was reduced with 10mM di-
thiothreitol (DTT) for 20min, desalted with Micro-Bio spin columns
(Bio-Rad), and diluted to a final concentration of 1 µM in 100mM po-
tassium phosphate buffer, pH 7.0. The oxidation degree (OxD) of the
biosensor was determined by calibration to fully reduced and oxidized
probes which were generated by treatment of the probes with 10mM
DTT and 5mM diamide for 5min, respectively [42]. The thiol disulfides
and oxidants were injected into the microplate wells (BD Falcon
353219) 60 s after the start of measurements. Emission was measured at
510 nm after excitation at 400 and 488 nm using the CLARIOstar mi-
croplate reader (BMG Labtech) with the Control software version 5.20
R5. Gain setting was adjusted for each excitation maximum. The data
were analyzed using the MARS software version 3.10 and exported to
Excel. Each in vitro measurement was performed in triplicate.

2.6. Measurements of Mrx1-roGFP2 biosensor oxidation in C. glutamicum
in vivo

C. glutamicum wild type and mutant strains expressing stably in-
tegrated Mrx1-roGFP2 were grown overnight in HI medium and in-
oculated into CGC medium with 1% glucose to a starting OD500 of 3.0.
For stress experiments, the strains were cultivated for 8 h until they
have reached an OD500 of 14–16. Cells were harvested by centrifuga-
tion, washed twice with CGC minimal medium, adjusted to an OD500 of
40 in CGC medium and transferred to the microplate reader. Aliquots
were treated for 15min with 10mM DTT and 20mM cumene hydro-
peroxide (CHP) for fully reduced and oxidized controls, respectively.
Injection of the oxidants was performed 5min after the start of mi-
croplate reader measurements.
For the OxD measurements along the growth curves, cells were

harvested by centrifugation at different time points and washed in
100mM potassium phosphate buffer, pH 7.0. Aliquots were treated
with 20mM CHP and 10mM DTT for fully reduced and oxidized con-
trols, respectively. Samples and controls were incubated with 10mM N-
ethylmaleimide (NEM) to block free thiols and transferred to microplate
wells. The Mrx1-roGFP2 biosensor fluorescence emission was measured
at 510 nm after excitation at 400 and 488 nm using the CLARIOstar
microplate reader (BMG Labtech). The OxD of biosensor was calculated
for each sample and normalized to fully reduced and oxidized controls
as described previously [42,44] based to the following Eq. (1).

The values of I400sample and I488sample are the observed fluores-
cence excitation intensities at 400 and 488 nm, respectively. The values
of I400red, I488red, I400ox and I488ox represent the fluorescence in-
tensities of fully reduced and oxidized controls, respectively.
Based on the OxD and E o

roGFP2=−280mV [45], the MSH redox
potential was calculated according to the Nernst Eq. (2) as follows:

= =E E E RT
2F

*In 1 OxD
OxD

o
MSH roGFP2 roGFP2 (2)

2.7. Confocal laser scanning microscopy of Mrx1-roGFP2 biosensor strains

C. glutamicum wild type expressing Mrx1-roGFP2 was grown in HI
medium for 48 h, exposed to 80mM H2O2 for different times and wa-
shed in potassium phosphate buffer, pH 7.0. Cells were blocked with
10mM NEM, and imaged using a LSM 780 confocal laser-scanning
microscope with a 63× /1.4 NA Plan-Apochromat oil objective con-
trolled by the Zen 2012 software (Carl-Zeiss, Jena, Germany).
Fluorescence excitation was performed at 405 and 488 nm with laser
power adjustment to 15% and 25%, respectively. For both excitation
wavelengths, emission was collected between 491 and 580 nm. Fully
reduced and oxidized controls were prepared with 10mM DTT and
10mM diamide, respectively. Images were analyzed by the Zen 2
software and Fiji/ImageJ [42,46]. Fluorescent intensities were mea-
sured after excitation at 405 and 488 nm and the images false-colored
in red and green, respectively. Auto-fluorescence was recorded and
subtracted. Quantification of the OxD and EMSH values was performed
based on the 405/488 nm excitation ratio of mean fluorescence in-
tensities as described [42,46].

=
× ×

× × + × ×
I I I I

I I I I I I I I
OxD

400 488 400 488
400 488 400 488 400 488 400 488

sample red red sample

sample red sample ox ox sample red sample (1)
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3. Results

3.1. The Mrx1-roGFP2 biosensor of C. glutamicum responds most
specifically to MSSM in vitro

Previous studies have revealed a specific response of the Mrx1-
roGFP2 biosensor to MSSM in vitro, which was based on a fusion of
mycobacterial Mrx1 to roGFP2 [36]. Here we aimed to engineer a re-
lated Mrx1-roGFP2 biosensor for the MSH-producing industrially im-
portant bacterium C. glutamicum. Mrx1 (Cg0964) of C. glutamicum ex-
hibits a similar redox-active CxxC motif and shares 46.8% and 42.1%
sequence identity with Mrx1 homologs of M. tuberculosis H37Rv
(Rv3198A) and M. smegmatis mc2155 (MSMEG_1947), respectively
(Fig. 1AB) [27]. The principle of the Mrx1-roGFP2 biosensor to measure
intrabacterial EMSH changes was shown previously [14,36]. MSSM re-
acts with Mrx1 to form S-mycothiolated Mrx1, followed by the transfer
of the MSH moiety to roGFP2 which rearranges to the roGFP2 disulfide
resulting in ratiometric changes of the 400/488 excitation ratio [14,36]
(Fig. 1C).
Mrx1 of C. glutamicum was fused to roGFP2 and first purified as His-

tagged Mrx1-roGFP2 protein to verify the specific Mrx1-roGFP2 bio-
sensor response to MSSM in vitro. In addition, Mrx1-roGFP2 was

integrated into the genome of C. glutamicum wild type in the intergenic
region between cg1121-cg1122 and placed under control of the strong
Ptuf promoter using the pK18mobsacB-int plasmid as constructed pre-
viously [43]. First, the Mrx1-roGFP2 biosensor response of the purified
biosensor and of the stably integrated Mrx1-roGFP2 fusion were com-
pared under fully reduced (DTT) and fully oxidized (diamide) condi-
tions. The Mrx1-roGFP2 biosensor fluorescence excitation spectra were
similar under in vitro and in vivo conditions exhibiting the same ex-
citation maxima at 400 and 488 nm for fully reduced and oxidized
probes (Fig. 1DE). Thus, the Mrx1-roGFP2 probe is well suited to
monitor dynamic EMSH changes during the growth and under oxidative
stress in C. glutamicum. In addition, it was verified that purified Mrx1-
roGFP2 reacts very fast and most strongly to low levels of 100 µM
MSSM, although weaker responses were also observed with bacillithiol
disulfide (BSSB) and glutathione disulfide (GSSG) which are, however,
not physiologically relevant for C. glutamium (Fig. 1F).
Furthermore, we assessed the direct response of Mrx1-roGFP2 and

unfused roGFP2 to the oxidants H2O2 and NaOCl to compare the sen-
sitivities of the probes for direct oxidation (Fig. 2). This was important
since a previous study showed a high sensitivity of fused Grx-roGFP2
and roGFP2-Orp1 to 10-fold molar excess of 2 µM NaOCl [47]. In our in
vitro experiments, the Mrx1-roGFP2 and roGFP2 probes did not respond

Fig. 1. Structure and alignment of Mrx1 homologs, principle and specific response of the Mrx1-roGFP2 biosensor to MSSM. (A) The Mrx1 structure of C.
glutamicum was modelled using SWISS-MODEL (https://swissmodel.expasy.org/) and visualized with PyMol using the template of M. tuberculosis Rv3198A (PDB
code: 2LQO). The Cys12 active site and Cys15 resolving site of the CXXC motif of Mrx1 are labelled with arrows. (B) The Mrx1 homologs Cg0964 of C. glutamicum,
Rv3198A of M. tuberculosis and MSMEG_1947 of M. smegmatis were aligned with ClustalW2 and presented in Jalview. Intensity of the blue color gradient is based on
50% identity. Conserved Cys residues are marked with asterisks. (C) The principle of the Mrx1-roGFP2 biosensor oxidation is shown. Under ROS stress, MSH is
oxidized to MSSM which reacts with Mrx1 to S-mycothiolated Mrx1. MSH is transferred from Mrx1 to the roGFP2 moiety leading to S-mycothiolated roGFP2 which is
rearranged to the roGFP2 disulfide. The roGFP2 disulfide leads to a structural change resulting in ratiometric changes of the 400 and 488 excitation maxima of Mrx1-
roGFP2. (D, E) The ratiometric response of the Mrx1-roGFP2 biosensor in the reduced and oxidized state in vitro (D) and after expression in C. glutamicum in vivo (E).
For fully reduced and oxidized Mrx1-roGFP2, 10mM DTT and 5mM diamide were used in vitro as well as 10mM DTT and 20mM CHP in vivo (n= 5). The
fluorescence excitation spectra were monitored using the microplate reader. (F) The purified Mrx1-roGFP2 biosensor (1 µM) responds most strongly to 100 µM of
MSSM, but only weakly to BSSB and GSSG in vitro (n=3). The thiol disulfides were injected into the microplate wells 60 s after the start of the measurements of the
Mrx1-roGFP2 biosensor response. The control (Co) indicates the measurement of the Mrx1-roGFP2 biosensor response without thiol-disulfides. The OxD was cal-
culated based on the 400/488 nm excitation ratio with emission measured at 510 nm. Mean values and standard error of the mean (SEM) are shown in all graphs.
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to 100 µM H2O2 as in previous studies. Only 1–5mM H2O2 lead to a
direct oxidation of both probes with a faster response of the Mrx1-
roGFP2 fusion. Both probes were rapidly oxidized by 10–40 µM NaOCl
in vitro, and again Mrx1-roGFP2 was more sensitive to thiol-oxidation
by NaOCl compared to unfused roGFP2 (Fig. 2). The rapid oxidation of
roGFP2 and fused roGFP2 biosensors to low levels of HOCl is in
agreement with previous studies [47] and was also observed using the
Brx-roGFP2 biosensor in S. aureus [42]. The higher sensitivity of fused
roGFP2 biosensors (Brx-roGFP2, Mrx1-roGFP2) to NaOCl indicates that
the redox active Cys residues of Brx or Mrx1 are more susceptible for
thiol-oxidation compared to the thiols of roGFP2. In conclusion, our
Mrx1-roGFP2 probe is highly specific to low levels of MSSM. The re-
sponse of Mrx1-roGFP2 to higher levels of 1mM H2O2 in vitro are not
expected to occur inside C. glutamicum cells due to its known H2O2
resistance mediated by the highly efficient catalase.

3.2. The intracellular redox balance was affected in mutants with defects of
MSH, Mtr and SigH

Next, we applied the genomically expressed Mrx1-roGFP2 biosensor
to monitor the perturbations of basal level EMSH along the growth curve
in various C. glutamicum mutant backgrounds, which had deletions of
major antioxidant systems (MSH, Mtr, KatA, Tpx, Mpx) and redox-

sensing regulators (OxyR, SigH) (Figs. 3 and 4). The oxidation degree
was calculated in C. glutamicum wild type and mutants during the
5–12 h time points representing the log phase and transition to sta-
tionary phase in defined CGC medium. The biosensor oxidation of each
C. glutamicum sample was normalized between 0 and 1 based on the
fully reduced (DTT) and oxidized (CHP) controls. It is interesting to
note, that C. glutamicum wild type cells maintained a highly reducing
and stable EMSH of ~-296mV with little fluctuations during the log and
stationary phase (Table S3). Thus, this basal level EMSH of C. glutamicum
is very similar to that measured in M. smegmatis previously (EMSH of
~−300) [36].
In agreement with previous studies of bacillithiol (BSH)- and GSH-

deficient mutants, the absence of MSH resulted in constitutive oxidation
of the Mrx1-roGFP2 biosensor in the mshC mutant (Fig. 3A). This in-
dicates an impaired redox state in the mshC mutant and the importance
of MSH as major LMW thiol to maintain the redox balance in C. glu-
tamicum (Fig. 3A). We hypothesize that increased levels of ROS may
lead to constitutive biosensor oxidation in the MSH-deficient mutant
since the mshC mutant had a H2O2-sensitive phenotype in previous
studies [48]. The high MSH/MSSM redox balance is maintained by the
NADPH-dependent mycothiol disulfide reductase Mtr which reduces
MSSM back to MSH [9]. The importance of Mtr to maintain a reduced
EMSH was also supported by our biosensor measurements which

Fig. 2. The response of the purified Mrx1-roGFP2 and roGFP2 biosensors to H2O2 and NaOCl in vitro. Purified Mrx1-roGFP2 and roGFP2 probes (1 µM) were
treated with increasing concentrations of 0.1–5mM H2O2 (A, B) and 10–40 µM NaOCl (C, D), respectively. The oxidants were injected into the microplate wells 60 s
after the start of the measurements of the Mrx1-roGFP2 biosensor response as indicated by arrows. The control (Co) indicates the measurement of the Mrx1-roGFP2
and roGFP2 response without oxidants. The OxD was calculated based on the 400/488 nm excitation ratios with emission at 510 nm and related to the fully oxidized
(5mM diamide) and reduced controls (10mM DTT). Mean values of 5 independent experiments are shown and error bars represent the SEM.
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revealed an oxidative shift in EMSH to −280.2mV in the mtr mutant
during all growth phases (Fig. 3B, Table S3).
The alternative ECF sigma factor SigH controls a large disulfide

stress regulon mainly involved in the redox homeostasis, including
genes for thioredoxins and thioredoxin reductases (TrxAB), mycor-
edoxin-1 (Mrx1) and genes for MSH biosynthesis and recycling (MshA,
Mca, Mtr) [9,28,29,32]. The C. glutamicum sigH mutant showed an in-
creased sensitivity to ROS and NaOCl stress [16,28,29]. Mrx1-roGFP2
biosensor measurements confirmed a slightly more oxidized EMSH of
− 286mV in the sigH mutant supporting the regulatory role of SigH for
the redox balance (Fig. 3C, Table S3). However, the oxidative EMSH shift
was lower in the sigH mutant compared to the mtr mutant. In conclu-
sion, our Mrx1-roGFP2 biosensor results document the important role
of MSH, Mtr and SigH to maintain the redox homeostasis in C. gluta-
micum during the growth.
In addition to MSH, C. glutamicum encodes many antioxidant en-

zymes that are involved in H2O2 detoxification and confer strong re-
sistance of C. glutamicum to millimolar levels of H2O2. The H2O2
scavenging systems in C. glutamicum are the major vegetative catalase
(KatA) and the peroxiredoxins (Tpx, Mpx). The catalase is highly effi-
cient for detoxification at high H2O2 levels while Tpx and Mpx are more
involved in reduction of physiological low levels of H2O2 generated
during the aerobic growth [49]. In C. glutamicum, expression of katA is
induced by H2O2 and controlled by the redox-sensing OxyR repressor
which is inactivated under H2O2 stress [34]. Thus, the oxyR mutant
exhibits increased H2O2 resistance due to constitutive derepression of
katA [34]. Here, we were interested in the contribution of OxyR, and
the antioxidant enzymes KatA, Tpx and Mpx to maintain the reduced
basal level EMSH in C. glutamicum. In all mutants with deletions of oxyR,

katA, tpx and mpx, the basal level of EMSH was still highly reducing and
comparable to the wild type during different growth phases (Fig. 3D,
Fig. 4A–D, Table S3). Thus, we can conclude that the major antioxidant
enzymes for H2O2 detoxification (KatA, Mpx and Tpx) do not contribute
to the reduced basal EMSH level in C. glutamicum during aerobic growth.
These results further point to the main roles of these H2O2 scavenging
systems under conditions of oxidative stress to recover the reduced state
of EMSH which was investigated in the next section.

3.3. Mrx1-roGFP2 biosensor responses in C. glutamicum under oxidative
stress in vivo

Next, we were interested to determine the kinetics of Mrx1-roGFP2
biosensor oxidation in C. glutamicum under H2O2 and NaOCl stress and
the recovery of reduced EMSH. C. glutamicum can survive even 100mM
H2O2 without killing effect which depends on the very efficient catalase
KatA [34]. In accordance with the H2O2 resistant phenotype, the Mrx1-
roGFP2 biosensor did not respond to 10mM H2O2 in C. glutamicum wild
type cells and was only weakly oxidized by 40mM H2O2 (Fig. 5A). C.
glutamicum cells were able to recover the reduced EMSH within
40–60min after H2O2 treatment. Importantly, even 100mM H2O2 did
not further enhance the biosensor oxidation degree, indicating highly
efficient antioxidant systems (data not shown).
In contrast, C. glutamicum was more sensitive to sub-lethal doses of

NaOCl stress and showed a moderate biosensor oxidation by 0.5–1mM
NaOCl, while 1.5 mM NaOCl resulted in the fully oxidation of the
probe. Moreover, cells were unable to regenerate the reduced basal
level of EMSH within 80min after NaOCl exposure, which could be only
restored with 10mM DTT (Fig. 5B).

Fig. 3. Deletions of mshC, mtr and sigH affected the basal EMSH during the growth of C. glutamicum. The basal level of EMSH was measured using Mrx1-roGFP2
along the growth curve in C. glutamicum wild type and in ∆mshC (A), ∆mtr (B), ∆sigH (C) and ∆oxyR (D) mutants. The basal EMSH showed an oxidative shift in the
∆mshC, ∆mtr and ∆sigHmutants, but not in the ∆oxyRmutant (D). OxD was calculated based on the 400/488 nm excitation ratios with emission at 510 nm and related
to the fully oxidized and reduced controls. Mean values and SEM of four independent experiments are shown and p-values were calculated by the Student's unpaired
two-tailed t-test by the graph prism software (nsp > 0.05; *p< 0.05; **p<0.01; ***p<0.001; and ****p< 0.0001).
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Since H2O2 is the more physiological oxidant in C. glutamicum, we
studied the biosensor response under 40mM H2O2 stress in the various
mutants deficient for MSH and Mtr, antioxidant enzymes (KatA, Mpx,
Tpx) and redox regulators (SigH, OxyR). The sigH mutant showed an

increased basal level of EMSH of ~-286mV as noted earlier (Fig. 3C), but
a similar oxidation increase with 40mM H2O2 and recovery of the re-
duced state after 40min compared to the wild type (Fig. 6A). The si-
milar kinetics of biosensor oxidation and regeneration in wild type and

Fig. 4. The absence of the antioxidant enzymes KatA, Tpx and Mpx has no influence on the basal level EMSH during the growth of C. glutamicum. The basal
level of EMSH was measured using the Mrx1-roGFP2 along the growth curve in C. glutamicum wild type and ∆katA (A), ∆tpx (B), ∆mpx (C) and ∆tpx mpx (D) mutants,
but was not affected compared to the wild type. OxD was calculated based on the 400/488 nm excitation ratios with emission at 510 nm and related to the fully
oxidized and reduced controls. Mean values and SEM of four independent experiments are shown and p-values were calculated by the Student's unpaired two-tailed t-
test by the graph prism software (nsp > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001).

Fig. 5. The Mrx1-roGFP2 biosensor responds weakly to H2O2 and strongly to NaOCl in C. glutamicum wild type cells. The Mrx1-roGFP2 biosensor was weakly
oxidized by 10–40mM H2O2 in C. glutamicum wild type (p=0.0002 at 20mM H2O2; p < 0.0001 at 40mM H2O2) (A), but rapidly and fully by low doses of
0.5–1.5mM NaOCl (p=0.007 at 0.5mM NaOCl; p=0.0004 at 1.0mM NaOCl; p < 0.0001 at 1.5mM NaOCl) (B).While cells could recover the reduced state after
50min of H2O2 exposure (A), regeneration of Mrx1-roGFP2 was not possible in NaOCl-stressed cells (B). To analyze the reversibility of Mrx1-roGFP2 oxidation in
NaOCl-treated cells, 10mM DTT was added 45min after NaOCl exposure resulting in recovery of reduced EMSH (B). Mean values and SEM of three independent
experiments are shown in all graphs and p-values are calculated by a Student's unpaired two-tailed t-test by the graph prism software. The addition of oxidants to C.
glutamicum cells was performed 5min after the start of the measurements and is indicated by arrows. The control (Co) denotes the response of the Mrx1-roGFP2 probe
inside C. glutamicum wild type cells in the absence of oxidants.
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sigH mutant cells may indicate that MSH is not directly involved in
H2O2 detoxification. In contrast, the oxyR mutant showed a lower H2O2
response than the wild type, but required the same time of 40min for
recovery of the reduced state of EMSH (Fig. 6B). The derepression of
katA in the oxyR mutant is most likely responsible for the lower bio-
sensor oxidation under H2O2 stress [34,50]. This hypothesis was sup-
ported by the very fast response of katA mutant cells to 40mM H2O2
stress, resulting in fully oxidation of the biosensor due to the lack of
H2O2 detoxification in the absence of KatA (Fig. 6C). Exposure of katA
mutant cells to 40mM H2O2 might cause enhanced oxidation of MSH to
MSSM leading to full biosensor oxidation with no recovery of the re-
duced state. In contrast, kinetic biosensor measurements under H2O2
stress revealed only slightly increased oxidation in the tpx mutant while
the mpx mutant showed the same oxidation increase like the wild type
(Fig. 6DE). However, the H2O2 response of the mpx tpx mutant was
similar compared to the wild type, indicating that Tpx and Mpx do not
contribute significantly to H2O2 detoxification during exposure to high
levels of 40mM H2O2 stress, while KatA plays the major role (Fig. 6F).
The small oxidation increase in the tpx mutant might indicate addi-
tional roles of Tpx for detoxification of low levels of H2O2 as found in
previous studies [51]. Altogether, our studies on the kinetics of the
Mrx1-roGFP2 biosensor response under H2O2 stress support that KatA
plays the most important role in H2O2 detoxification in C. glutamicum.
To correlate increased biosensor responses under H2O2 stress to

peroxide sensitive phenotypes, we compared the growth of the wild
type and mutants after exposure to 80mM H2O2 (Fig. 7). Exposure of
the wild type to 80mM H2O2 did not significantly affect the growth rate

indicating the high level of H2O2 resistance in C. glutamicum. Of all
mutants, only the katA mutant was significantly impaired in growth
under non-stress conditions and lysed after exposure to 80mM H2O2
(Fig. 7C). In contrast, deletions of sigH, oxyR, tpx and mpx did not
significantly affect the growth under control and H2O2 stress conditions
(Fig. 7AB, DE). However, we observed a slightly decreased growth rate
of the mpx tpx mutant in response to 80mM H2O2 stress supporting the
residual contribution of thiol-dependent peroxiredoxins in the peroxide
stress response (Fig. 7F). Overall, the growth curves are in agreement
with the biosensor measurements indicating the major role of KatA for
detoxification of high levels of H2O2 and the recovery of cells from
oxidative stress.

3.4. Single cell measurements of EMSH changes under H2O2 stress using
confocal imaging

To verify the biosensor response under H2O2 stress in C. glutamicum
at the single cell level, we quantified the 405/488 nm fluorescence
excitation ratio in C. glutamicum cells expressing stably integrated
Mrx1-roGFP2 using confocal laser scanning microscopy (CLSM)
(Fig. 8A). For control, we used fully reduced and oxidized C. glutamicum
cells treated with DTT and diamide, respectively. In the confocal mi-
croscope, most cells exhibited similar fluorescence intensities at the 405
and 488 nm excitation maxima, respectively, indicating that the Mrx1-
roGFP2 biosensor was equally expressed in 99% of cells. Fully reduced
and untreated C. glutamicum control cells exhibited a bright fluores-
cence intensity at the 488 nm excitation maximum which was false-

Fig. 6. Kinetics of H2O2 detoxification in C. glutamicummutants deficient for redox-regulators (OxyR, SigH) or antioxidant enzymes (KatA, Mpx, Tpx). The
Mrx1-roGFP2 biosensor response and kinetics of recovery was analyzed under 40mM H2O2 stress in C. glutamicum wild type and mutants deficient for the disulfide
stress regulatory sigma factor SigH (A), the peroxide-sensitive repressor OxyR (B) and the catalases and peroxiredoxins for H2O2 detoxification (KatA, Mpx, Tpx) (C-
F). The sigH mutant showed a higher EMSH basal level of EMSH, but the response and recovery under H2O2 stress was similar to the wild type (A). The constitutive
derepression of katA in the oxyR mutant resulted in a lower Mrx1-roGFP2 biosensor response under H2O2 stress (p=0.006WT versus oxyR H2O2) (B). The catalase
KatA is essential for H2O2 detoxification as revealed by the strong oxidation increase of the katA mutant and the lack of regeneration of reduced EMSH
(p < 0.0001WT versus katA H2O2) (C). The Mrx1-roGFP2 biosensor response of the tpxmutant was only slightly increased under H2O2 stress (p=0.0017WT versus
tpx H2O2) (E), but not in mpx and mpx tpx mutants (p=0.7981 or p=0.9489WT versus tpx or mpx tpx H2O2) (D, F). Mean values and SEM of three independent
experiments are shown in all graphs and p-values are obtained by a Student's unpaired two-tailed t-test by the graph prism software. The addition of oxidants to C.
glutamicum wild type and mutant cells was performed 5min after the start of the measurements and is indicated by arrows. The control (Co) shows the response of the
Mrx1-roGFP2 probe inside C. glutamicum wild type and mutant cells without H2O2 treatment.
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colored in green, while the 405 nm excitation maximum was low and
false-colored in red (Fig. 8A). In agreement with the microplate reader
results, the basal EMSH was highly reducing and calculated as −307mV
for the single cell population (Fig. 8B, Table S4). Treatment of cells
with 80mM H2O2 for 20min resulted in a decreased fluorescence in-
tensity at the 488 nm excitation maximum and a slightly increased
signal at the 405 nm excitation maximum, causing an oxidative shift of
EMSH. Specifically, the EMSH of control cells was increased to −263mV
after 20min H2O2 treatment. The recovery phase could be also mon-
itored at the single cell level after 40 and 60min of H2O2 stress, as
revealed by the regeneration of reduced EMSH of −271mV and
−293mV, respectively (Fig. 8B, Table S4). The oxidative EMSH shift
after H2O2 treatment and the recovery of reduced EMSH were compar-
able between the microplate reader measurements and confocal ima-
ging (Fig. 8B). This confirms the reliability of biosensor measurements
at both single cell level and for a greater cell population using the
microplate reader.

4. Discussion

Here, we have successfully designed the first genome-integrated
Mrx1-roGFP2 biosensor that was applied in the industrial platform
bacterium C. glutamicum which is of high biotechnological importance.
During aerobic respiration and under industrial production processes,
C. glutamicum is frequently exposed to ROS, such as H2O2. Thus, C.
glutamicum is equipped with several antioxidant systems, including
MSH and the enzymatic ROS-scavengers KatA, Mpx and Tpx. Moreover,
Mpx and Tpx are dependent on the MSH cofactor required for recycling
during recovery from oxidative stress [16,21,22]. The kinetics of H2O2
detoxification has been studied for catalases and peroxiredoxins in

many different bacteria. However, the roles of many H2O2 detoxifica-
tion enzymes are unknown and many seem to be redundant and not
essential [49]. There is also a knowledge gap to which extent the H2O2
detoxification enzymes contribute to the reduced redox balance under
aerobic growth conditions and under oxidative stress.
Thus, we applied this stably integrated Mrx1-roGFP2 biosensor to

measure dynamic EMSH changes to study the impact of antioxidant
systems (MSH, KatA, Mpx, Tpx) and their major regulators (OxyR,
SigH) under basal conditions and ROS exposure. The basal EMSH was
highly reducing with ~-296mV during the exponential growth and
stationary phase in C. glutamicum wild type, but maintained reduced
also in the katA, mpx and tpx mutants. In contrast, the probe was
strongly oxidized in mshC and mtr mutants indicating the major role of
MSH for the overall redox homeostasis under aerobic growth condi-
tions. While the enzymatic ROS scavengers KatA, Mpx and Tpx did not
contribute to the reduced basal level of EMSH during the growth, the
catalase KatA was essential for efficient H2O2 detoxification and the
recovery of the reduced EMSH under H2O2 stress. In contrast, both MSH-
dependent peroxiredoxins Tpx and Mpx did not play a significant role in
the H2O2 defense and recovery from stress, which was evident in the tpx
mpx double mutant. These results were supported by growth phenotype
analyses, revealing the strongest H2O2-sensitive growth phenotype for
the katA mutant, while the growth of the mpx tpx double mutant was
only slightly affected under H2O2 stress. These biosensor and phenotype
results clearly support the major role of the catalase KatA for H2O2
detoxification.
Since expression of katA is controlled by the OxyR repressor, we

observed even a lower H2O2 response of the oxyR mutant, due to the
constitutive derepression of katA as determined previously [34]. In
contrast, the sigH mutant showed an enhanced basal EMSH during

Fig. 7. H2O2 sensitivity of C. glutamicum mutants deficient for redox-regulators (OxyR, SigH) or antioxidant enzymes (KatA, Mpx, Tpx). The growth of
various mutants with deletions of redox-sensitive regulators and antioxidant systems was compared after exposure to 80mM H2O2, including ∆sigH (A), ∆oxyR (B),
∆katA (C), ∆mpx (D), ∆tpx (E), ∆mpx tpx mutants (F). Only the absence of KatA resulted in a strong H2O2 sensitive phenotype, while all other mutants were not
affected by 80mM H2O2 similar as the wild type. Mean values and SEM of three independent experiments are shown in all graphs. The time points of H2O2 exposure
during the growth curves are set to ‘0’ and denoted with arrows. The control (Co) shows the growth curve of the C. glutamicum wild type and mutant strains without
H2O2 stress exposure.
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aerobic growth, since SigH controls enzymes for MSH biosynthesis and
recycling (MshA, Mca, Mtr) which contribute to reduced EMSH [29,32].
However, the sigH mutant was not impaired in its H2O2 response of
Mrx1-roGFP2, since H2O2 detoxification is the role of KatA. Thus, we
have identified unique roles of SigH and Mtr to control the basal EMSH
level, while OxyR and KatA play the major role in the recovery of re-
duced EMSH under oxidative stress.
In previous work, the kinetics for H2O2 detoxification by catalases

and peroxiredoxins was been measured using the unfused roGFP2
biosensor in the Gram-negative bacterium Salmonella Typhimurium
[52]. The deletion of catalases affected the detoxification efficiency of

H2O2 strongly, while mutations in peroxidases (ahpCF, tsaA) had only a
minor effect on the H2O2 detoxifying power. These results are con-
sistent with our data and previous results in E. coli, which showed that
catalases are the main H2O2 scavenging enzymes at higher H2O2 con-
centrations, while peroxidases are more efficient at lower H2O2 doses
[53]. The reason for the lower efficiency of H2O2 detoxification by
peroxidases might be due to low NAD(P)H levels under oxidative stress
that are not sufficient for recycling of oxidized peroxidases under
high H2O2 levels [53]. Overall, these data are in agreement with our
Mrx1-roGFP2 measurements in the katA, tpx and mpx mutants in
C. glutamicum.

Fig. 8. Live-imaging of Mrx1-roGFP2 fluor-
escence changes in C. glutamicum wild type
under H2O2 stress at the single cell level.
(A) C. glutamicum wild type cells expressing
Mrx1-roGFP2 were challenged with 80mM
H2O2 for 20–60min, blocked with 10mM NEM
and visualized by confocal laser scanning mi-
croscopy (CLSM). The time point ‘0’ indicates
the untreated C. glutamicum wild type sample.
Fully reduced and oxidized control samples
were obtained after treatment of cells with
10mM DTT and 10mM diamide, respectively.
Fluorescence intensities at the 405 and 488 nm
excitation maxima are false-colored in red and
green, respectively. Emission was measured
between 491 and 580 nm. The oxidation de-
gree is shown as overlay images of the trans-
mitted light (TL)/405/488 channels. Images
were analyzed by Zen software and Fiji/
ImageJ at separate channels. (B) The in-
tracellular EMSH was calculated based on the
405/488 nm excitation ratio of C. glutamicum
Mrx1-roGFP2 cells after H2O2 treatment using
confocal imaging and microplate reader mea-
surements. Mean values and SEM of three in-
dependent experiments are shown. Bars, 5 µm.
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However, C. glutamicum differs from E. coli by its strong level of
H2O2 resistance since C. glutamicum is able to grow with 100mM H2O2
and the biosensor did not respond to 10mM H2O2. In contrast, 1–5mM
H2O2 resulted in a maximal roGFP2 biosensor response with different
detoxification kinetics in E. coli [52]. Since the high H2O2 resistance
and detoxification power was attributed to the catalases, it will be in-
teresting to analyze the differences between activities and structures of
the catalases of C. glutamicum and E. coli. Of note, due to its remarkable
high catalase activity, KatA of C. glutamicum is even commercially ap-
plied at Merck (CAS Number 9001-05-2). However, the structural fea-
tures of KatA that are responsible for its high catalase activity are un-
known.
While our biosensor results confirmed the strong H2O2 detoxifica-

tion power of the catalase KatA [51], the roles of the peroxiredoxins
Mpx and Tpx for H2O2 detoxification are less clear in C. glutamicum.
Both Tpx and Mpx were previously identified as S-mycothiolated pro-
teins in the proteome of NaOCl-exposed C. glutamicum cells [16]. S-
mycothiolation inhibited Tpx and Mpx activities during H2O2 detox-
ification in vitro, which could be restored by the Trx and Mrx1 pathways
[16,21,22]. Moreover, Tpx displayed a gradual response to increasing
H2O2 levels and was active as Trx-dependent peroxiredoxin to detoxify
low doses H2O2 while high levels H2O2 resulted in overoxidation of Tpx
[51]. Overoxidation of Tpx caused oligomerization to activate the
chaperone function of Tpx. Since mpx and katA are both induced under
H2O2 stress, they were suggested to compensate for the inactivation of
Tpx for detoxification of high doses of H2O2. Previous analyses showed
that the katA and mpx mutants are more sensitive to 100–150mM H2O2
[21,22]. In our analyses, the mpx mutant was not more sensitive to
80mM H2O2 and displayed the same H2O2 response like the wild type,
while the katA mutant showed a strong H2O2 sensitivity and responded
strongly to H2O2 in the biosensor measurements. Thus, our biosensor
and phenotype results clearly support the major role of KatA in de-
toxification of high doses H2O2 in vivo.
Finally, we confirmed using confocal imaging further that the gen-

omically expressed Mrx1-roGFP2 biosensor shows equal fluorescence in
the majority of cells indicating that the biosensor strain is suited for
industrial application to quantify EMSH changes in C. glutamicum at the
single cell level or under production processes. Previous Mrx1-roGFP2
biosensor applications involved plasmid-based systems which can result
in different fluorescence intensities within the cellular population due
to different copy numbers. Moreover, plasmids can be lost under long
term experiments when the selection pressure is decreased due to de-
gradation or inactivation of the antibiotics.
We also compared the fluorescence intensities of the plasmid-based

expression of Mrx1-roGFP2 using the IPTG-inducible pEKEx2 plasmid
with the stably integrated Mrx1-roGFP2 strain in this work (Fig. S1).
Using confocal imaging, the plasmid-based Mrx1-roGFP2 biosensor
strain showed only roGFP2 fluorescence in< 20% of cells, while the
genomically expressed biosensor was equally expressed and fluorescent
in 99% of cells. The integration of the Mrx1-roGFP2 biosensor was
performed into the cg1121–1122 intergenic region and the biosensor
was expressed from the strong Ptuf promoter using the pK18mobsacB
construct designed previously for an Lrp-biosensor to measure L-valine
production [54]. Previous live cell imaging using microfluidic chips
revealed that only 1% of cells with the Lrp-biosensor were non-fluor-
escent due to cell lysis or dormancy [54]. Thus, expression of roGFP2
fusions from strong constitutive promoters should circumvent the pro-
blem of low roGFP2 fluorescence intensity after genomic integration.
The advantage and utility of a stably integrated Grx1-roGFP2 biosensor
has been also recently demonstrated in the malaria parasite Plasmodium
falciparum which can circumvent low transfection frequency of plasmid-
based roGFP2 fusions [55]. Moreover, quantifications using the mi-
croplate reader are more reliable, less time-consuming and re-
producible with strains expressing genomic biosensors compared to
measurements using confocal microscopy [55]. Thus, stably integrated

redox biosensors should be the method of the choice for future appli-
cations of roGFP2 fusions to monitor redox changes in a greater cellular
population.
In conclusion, in this study we designed a novel Mrx1-roGFP2 bio-

sensor to monitor dynamic EMSH changes in C. glutamicum during the
growth, under oxidative stress and in mutants with defects in redox-
signaling and H2O2 detoxification. This probe revealed the impact of
Mtr and SigH to maintain highly reducing EMSH throughout the growth
and the main role of KatA and OxyR for efficient H2O2 detoxification
and the regeneration of the redox balance. This probe is now available
for application in engineered production strains to monitor the impact
of industrial production of amino acids on the cellular redox state. In
addition, the effect of genome-wide mutations on EMSH changes can be
followed in C. glutamicum in real-time during the growth, under oxi-
dative stress and at the single cell level.

Acknowledgements

The authors wish to thank Julia Frunzke (Forschungszentrum
Jülich, Germany) for providing the plasmid pK18mobsacB-cg1121-
cg1122. This work was supported by an European Research Council
(ERC) Consolidator grant (GA 615585) MYCOTHIOLOME and grants
from the Deutsche Forschungsgemeinschaft, Germany (AN746/4-1 and
AN746/4-2) within the SPP1710 on “Thiol-based Redox switches”, by
the Research Training Group GRK1947 (project C01) and by the
SFB973 (project C08) to H.A. This work is further supported by the DFG
TR84 (project B06) to A.C.H. and H.A.

Author disclosure statement

No competing financial interests exist.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the
online version at doi:10.1016/j.redox.2018.11.012.

References

[1] S.A. Heider, V.F. Wendisch, Engineering microbial cell factories: metabolic en-
gineering of Corynebacterium glutamicum with a focus on non-natural products,
Biotechnol. J. 10 (8) (2015) 1170–1184.

[2] V.F. Wendisch, J.M.P. Jorge, F. Perez-Garcia, E. Sgobba, Updates on industrial
production of amino acids using Corynebacterium glutamicum, World J. Microbiol.
Biotechnol. 32 (6) (2016) 105.

[3] J. Yang, S. Yang, Comparative analysis of Corynebacterium glutamicum genomes: a
new perspective for the industrial production of amino acids, BMC Genom. 18
(Suppl. 1) (2017) S940.

[4] J. Becker, G. Giesselmann, S.L. Hoffmann, C. Wittmann, Corynebacterium gluta-
micum for sustainable bioproduction: from metabolic physiology to systems meta-
bolic engineering, Adv. Biochem. Eng. Biotechnol. 162 (2018) 217–263.

[5] J. Frunzke, M. Bramkamp, J.E. Schweitzer, M. Bott, Population heterogeneity in
Corynebacterium glutamicum ATCC 13032 caused by prophage CGP3, J. Bacteriol.
190 (14) (2008) 5111–5119.

[6] J.A. Imlay, Transcription factors that defend bacteria against reactive oxygen spe-
cies, Annu. Rev. Microbiol. 69 (2015) 93–108.

[7] J.A. Imlay, Cellular defenses against superoxide and hydrogen peroxide, Annu. Rev.
Biochem. 77 (2008) 755–776.

[8] J.A. Imlay, The molecular mechanisms and physiological consequences of oxidative
stress: lessons from a model bacterium, Nat. Rev. Microbiol. 11 (7) (2013) 443–454.

[9] V.V. Loi, M. Rossius, H. Antelmann, Redox regulation by reversible protein S-
thiolation in bacteria, Front. Microbiol. 6 (2015) 187.

[10] A.M. Reyes, B. Pedre, M.I. De Armas, M.A. Tossounian, R. Radi, J. Messens,
M. Trujillo, Chemistry and redox biology of mycothiol, Antioxid. Redox Signal 28
(6) (2018) 487–504.

[11] G.L. Newton, N. Buchmeier, R.C. Fahey, Biosynthesis and functions of mycothiol,
the unique protective thiol of Actinobacteria, Microbiol. Mol. Biol. Rev. 72 (3)
(2008) 471–494.

[12] C. Sao Emani, M.J. Williams, I.J. Wiid, N.F. Hiten, A.J. Viljoen, R.D. Pietersen,
P.D. van Helden, B. Baker, Ergothioneine is a secreted antioxidant in Mycobacterium
smegmatis, Antimicrob. Agents Chemother. 57 (7) (2013) 3202–3207.

[13] P. Ta, N. Buchmeier, G.L. Newton, M. Rawat, R.C. Fahey, Organic hydroperoxide

Q.N. Tung et al. Redox Biology 20 (2019) 514–525

524

https://doi.org/10.1016/j.redox.2018.11.012
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref1
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref1
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref1
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref2
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref2
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref2
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref3
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref3
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref3
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref4
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref4
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref4
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref5
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref5
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref5
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref6
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref6
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref7
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref7
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref8
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref8
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref9
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref9
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref10
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref10
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref10
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref11
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref11
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref11
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref12
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref12
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref12
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref13


resistance protein and ergothioneine compensate for loss of mycothiol in
Mycobacterium smegmatis mutants, J. Bacteriol. 193 (8) (2011) 1981–1990.

[14] Q.N. Tung, N. Linzner, V.V. Loi, H. Antelmann, Application of genetically encoded
redox biosensors to measure dynamic changes in the glutathione, bacillithiol and
mycothiol redox potentials in pathogenic bacteria, Free Radic. Biol. Med. 128
(2018) 84–96.

[15] M. Hillion, J. Bernhardt, T. Busche, M. Rossius, S. Maass, D. Becher, M. Rawat,
M. Wirtz, R. Hell, C. Rückert, J. Kalinowski, H. Antelmann, Monitoring global
protein thiol-oxidation and protein S-mycothiolation in Mycobacterium smegmatis
under hypochlorite stress, Sci. Rep. 7 (1) (2017) 1195.

[16] B.K. Chi, T. Busche, K. Van Laer, K. Bäsell, D. Becher, L. Clermont, G.M. Seibold,
M. Persicke, J. Kalinowski, J. Messens, H. Antelmann, Protein S-mycothiolation
functions as redox-switch and thiol protection mechanism in Corynebacterium glu-
tamicum under hypochlorite stress, Antioxid. Redox Signal 20 (4) (2014) 589–605.

[17] V.K. Jothivasan, C.J. Hamilton, Mycothiol: synthesis, biosynthesis and biological
functions of the major low molecular weight thiol in actinomycetes, Nat. Prod. Rep.
25 (6) (2008) 1091–1117.

[18] A. Kumar, W. Nartey, J. Shin, M.S.S. Manimekalai, G. Gruber, Structural and me-
chanistic insights into mycothiol disulphide reductase and the mycoredoxin-1-al-
kylhydroperoxide reductase E assembly of Mycobacterium tuberculosis, Biochim.
Biophys. Acta 1861 (9) (2017) 2354–2366.

[19] M. Si, C. Zhao, B. Zhang, D. Wei, K. Chen, X. Yang, H. Xiao, X. Shen, Overexpression
of mycothiol disulfide reductase enhances Corynebacterium glutamicum robustness
by modulating cellular redox homeostasis and antioxidant proteins under oxidative
stress, Sci. Rep. 6 (2016) 29491.

[20] M. Hillion, M. Imber, B. Pedre, J. Bernhardt, M. Saleh, V.V. Loi, S. Maass, D. Becher,
L. Astolfi Rosado, L. Adrian, C. Weise, R. Hell, M. Wirtz, J. Messens, H. Antelmann,
The glyceraldehyde-3-phosphate dehydrogenase GapDH of Corynebacterium diph-
theriae is redox-controlled by protein S-mycothiolation under oxidative stress, Sci.
Rep. 7 (1) (2017) 5020.

[21] B. Pedre, I. Van Molle, A.F. Villadangos, K. Wahni, D. Vertommen, L. Turell,
H. Erdogan, L.M. Mateos, J. Messens, The Corynebacterium glutamicum mycothiol
peroxidase is a reactive oxygen species-scavenging enzyme that shows promiscuity
in thiol redox control, Mol. Microbiol. 96 (6) (2015) 1176–1191.

[22] M. Si, Y. Xu, T. Wang, M. Long, W. Ding, C. Chen, X. Guan, Y. Liu, Y. Wang, X. Shen,
S.J. Liu, Functional characterization of a mycothiol peroxidase in Corynebacterium
glutamicum that uses both mycoredoxin and thioredoxin reducing systems in the
response to oxidative stress, Biochem. J. 469 (1) (2015) 45–57.

[23] M.A. Tossounian, B. Pedre, K. Wahni, H. Erdogan, D. Vertommen, I. Van Molle,
J. Messens, Corynebacterium diphtheriae methionine sulfoxide reductase A exploits a
unique mycothiol redox relay mechanism, J. Biol. Chem. 290 (18) (2015)
11365–11375.

[24] M. Hugo, K. Van Laer, A.M. Reyes, D. Vertommen, J. Messens, R. Radi, M. Trujillo,
Mycothiol/mycoredoxin 1-dependent reduction of the peroxiredoxin AhpE from
Mycobacterium tuberculosis, J. Biol. Chem. 289 (8) (2014) 5228–5239.

[25] M. Si, Y. Feng, K. Chen, Y. Kang, C. Chen, Y. Wang, X. Shen, Functional comparison
of methionine sulphoxide reductase A and B in Corynebacterium glutamicum, J. Gen.
Appl. Microbiol. 63 (5) (2017) 280–286.

[26] M. Si, L. Zhang, M.T. Chaudhry, W. Ding, Y. Xu, C. Chen, A. Akbar, X. Shen, S.J. Liu,
Corynebacterium glutamicum methionine sulfoxide reductase A uses both mycor-
edoxin and thioredoxin for regeneration and oxidative stress resistance, Appl.
Environ. Microbiol. 81 (8) (2015) 2781–2796.

[27] K. Van Laer, L. Buts, N. Foloppe, D. Vertommen, K. Van Belle, K. Wahni, G. Roos,
L. Nilsson, L.M. Mateos, M. Rawat, N.A. van Nuland, J. Messens, Mycoredoxin-1 is
one of the missing links in the oxidative stress defence mechanism of Mycobacteria,
Mol. Microbiol. 86 (4) (2012) 787–804.

[28] T.H. Kim, H.J. Kim, J.S. Park, Y. Kim, P. Kim, H.S. Lee, Functional analysis of sigH
expression in Corynebacterium glutamicum, Biochem. Biophys. Res. Commun. 331
(4) (2005) 1542–1547.

[29] S. Ehira, H. Teramoto, M. Inui, H. Yukawa, Regulation of Corynebacterium gluta-
micum heat shock response by the extracytoplasmic-function sigma factor SigH and
transcriptional regulators HspR and HrcA, J. Bacteriol. 191 (9) (2009) 2964–2972.

[30] M. Hillion, H. Antelmann, Thiol-based redox switches in prokaryotes, Biol. Chem.
396 (5) (2015) 415–444.

[31] J.B. Bae, J.H. Park, M.Y. Hahn, M.S. Kim, J.H. Roe, Redox-dependent changes in
RsrA, an anti-sigma factor in Streptomyces coelicolor: zinc release and disulfide bond
formation, J. Mol. Biol. 335 (2) (2004) 425–435.

[32] T. Busche, R. Silar, M. Picmanova, M. Patek, J. Kalinowski, Transcriptional reg-
ulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-
sigma factor RshA, and control of its regulatory network in Corynebacterium gluta-
micum, BMC Genom. 13 (1) (2012) 445.

[33] J.G. Kang, M.S. Paget, Y.J. Seok, M.Y. Hahn, J.B. Bae, J.S. Hahn, C. Kleanthous,

M.J. Büttner, J.H. Roe, RsrA, an anti-sigma factor regulated by redox change, EMBO
J. 18 (15) (1999) 4292–4298.

[34] J. Milse, K. Petri, C. Rückert, J. Kalinowski, Transcriptional response of
Corynebacterium glutamicum ATCC 13032 to hydrogen peroxide stress and char-
acterization of the OxyR regulon, J. Biotechnol. 190 (2014) 40–54.

[35] S.V. Sharma, K. Van Laer, J. Messens, C.J. Hamilton, Thiol redox and pKa properties
of mycothiol, the predominant low-molecular-weight thiol cofactor in the
Actinomycetes, Chembiochem 17 (18) (2016) 1689–1692.

[36] A. Bhaskar, M. Chawla, M. Mehta, P. Parikh, P. Chandra, D. Bhave, D. Kumar,
K.S. Carroll, A. Singh, Reengineering redox sensitive GFP to measure mycothiol
redox potential of Mycobacterium tuberculosis during infection, PLoS Pathog. 10 (1)
(2014) e1003902.

[37] A.J. Meyer, T.P. Dick, Fluorescent protein-based redox probes, Antioxid. Redox
Signal 13 (5) (2010) 621–650.

[38] M. Mehta, R.S. Rajmani, A. Singh, Mycobacterium tuberculosis WhiB3 responds to
vacuolar pH-induced changes in mycothiol redox potential to modulate phagosomal
maturation and virulence, J. Biol. Chem. 291 (6) (2016) 2888–2903.

[39] S. Mishra, P. Shukla, A. Bhaskar, K. Anand, P. Baloni, R.K. Jha, A. Mohan,
R.S. Rajmani, V. Nagaraja, N. Chandra, A. Singh, Efficacy of beta-lactam/beta-
lactamase inhibitor combination is linked to WhiB4-mediated changes in redox
physiology of Mycobacterium tuberculosis, Elife 6 (2017) e25624.

[40] J. Padiadpu, P. Baloni, K. Anand, M. Munshi, C. Thakur, A. Mohan, A. Singh,
N. Chandra, Identifying and tackling emergent vulnerability in drug-resistant my-
cobacteria, ACS Infect. Dis. 2 (9) (2016) 592–607.

[41] P. Tyagi, A.T. Dharmaraja, A. Bhaskar, H. Chakrapani, A. Singh, Mycobacterium
tuberculosis has diminished capacity to counteract redox stress induced by elevated
levels of endogenous superoxide, Free Radic. Biol. Med. 84 (2015) 344–354.

[42] V.V. Loi, M. Harms, M. Müller, N.T.T. Huyen, C.J. Hamilton, F. Hochgräfe, J. Pane-
Farre, H. Antelmann, Real-time imaging of the bacillithiol redox potential in the
human pathogen Staphylococcus aureus using a genetically encoded bacilliredoxin-
fused redox biosensor, Antioxid. Redox Signal 26 (15) (2017) 835–848.

[43] A.M. Nanda, A. Heyer, C. Kramer, A. Grünberger, D. Kohlheyer, J. Frunzke, Analysis
of SOS-induced spontaneous prophage induction in Corynebacterium glutamicum at
the single-cell level, J. Bacteriol. 196 (1) (2014) 180–188.

[44] B. Morgan, M.C. Sobotta, T.P. Dick,, Measuring, E(GSH) and H2O2 with roGFP2-
based redox probes, Free Radic. Biol. Med. 51 (11) (2011) 1943–1951.

[45] C.T. Dooley, T.M. Dore, G.T. Hanson, W.C. Jackson, S.J. Remington, R.Y. Tsien,
Imaging dynamic redox changes in mammalian cells with green fluorescent protein
indicators, J. Biol. Chem. 279 (21) (2004) 22284–22293.

[46] M. Schwarzländer, M.D. Fricker, C. Müller, L. Marty, T. Brach, J. Novak,
L.J. Sweetlove, R. Hell, A.J. Meyer, Confocal imaging of glutathione redox potential
in living plant cells, J. Microsc. 231 (2) (2008) 299–316.

[47] A. Müller, J.F. Schneider, A. Degrossoli, N. Lupilova, T.P. Dick, L.I. Leichert,
Systematic in vitro assessment of responses of roGFP2-based probes to physiologi-
cally relevant oxidant species, Free Radic. Biol. Med. 106 (2017) 329–338.

[48] Y.B. Liu, M.X. Long, Y.J. Yin, M.R. Si, L. Zhang, Z.Q. Lu, Y. Wang, X.H. Shen,
Physiological roles of mycothiol in detoxification and tolerance to multiple poiso-
nous chemicals in Corynebacterium glutamicum, Arch. Microbiol. 195 (6) (2013)
419–429.

[49] S. Mishra, J. Imlay, Why do bacteria use so many enzymes to scavenge hydrogen
peroxide? Arch. Biochem. Biophys. 525 (2) (2012) 145–160.

[50] H. Teramoto, M. Inui, H. Yukawa, OxyR acts as a transcriptional repressor of hy-
drogen peroxide-inducible antioxidant genes in Corynebacterium glutamicum R, FEBS
J. 280 (14) (2013) 3298–3312.

[51] M. Si, T. Wang, J. Pan, J. Lin, C. Chen, Y. Wei, Z. Lu, G. Wei, X. Shen, Graded
response of the multifunctional 2-Cysteine peroxiredoxin, CgPrx, to increasing le-
vels of hydrogen peroxide in Corynebacterium glutamicum, Antioxid. Redox Signal 26
(1) (2017) 1–14.

[52] J. van der Heijden, S.L. Vogt, L.A. Reynolds, J. Pena-Diaz, A. Tupin, L. Aussel,
B.B. Finlay, Exploring the redox balance inside gram-negative bacteria with redox-
sensitive GFP, Free Radic. Biol. Med. 91 (2016) 34–44.

[53] L.C. Seaver, J.A. Imlay, Alkyl hydroperoxide reductase is the primary scavenger of
endogenous hydrogen peroxide in, Escherichia coli, J. Bacteriol. 183 (24) (2001)
7173–7181.

[54] N. Mustafi, A. Grunberger, R. Mahr, S. Helfrich, K. Noh, B. Blombach, D. Kohlheyer,
J. Frunzke, Application of a genetically encoded biosensor for live cell imaging of L-
valine production in pyruvate dehydrogenase complex-deficient Corynebacterium
glutamicum strains, PLoS One 9 (1) (2014) e85731.

[55] A.K. Schuh, M. Rahbari, K. Heimsch, F. Mohring, S. Gabryszewski, S. Weder,
K. Buchholz, S. Rahlfs, D.A. Fidock, K. Becker, Stable integration and comparison of
hGrx1-roGFP2 and sfroGFP2 redox probes in the malaria parasite Plasmodium fal-
ciparum, ACS Infect. Dis. 4 (11) (2018) 1602–1612.

Q.N. Tung et al. Redox Biology 20 (2019) 514–525

525

http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref13
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref13
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref14
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref14
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref14
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref14
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref15
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref15
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref15
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref15
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref16
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref16
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref16
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref16
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref17
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref17
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref17
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref18
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref18
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref18
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref18
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref19
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref19
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref19
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref19
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref20
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref20
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref20
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref20
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref20
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref21
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref21
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref21
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref21
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref22
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref22
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref22
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref22
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref23
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref23
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref23
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref23
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref24
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref24
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref24
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref25
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref25
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref25
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref26
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref26
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref26
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref26
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref27
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref27
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref27
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref27
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref28
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref28
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref28
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref29
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref29
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref29
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref30
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref30
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref31
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref31
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref31
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref32
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref32
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref32
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref32
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref33
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref33
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref33
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref34
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref34
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref34
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref35
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref35
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref35
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref36
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref36
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref36
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref36
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref37
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref37
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref38
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref38
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref38
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref39
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref39
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref39
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref39
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref40
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref40
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref40
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref41
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref41
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref41
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref42
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref42
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref42
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref42
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref43
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref43
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref43
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref44
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref44
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref45
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref45
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref45
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref46
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref46
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref46
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref47
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref47
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref47
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref48
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref48
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref48
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref48
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref49
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref49
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref50
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref50
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref50
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref51
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref51
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref51
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref51
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref52
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref52
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref52
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref53
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref53
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref53
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref54
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref54
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref54
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref54
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref55
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref55
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref55
http://refhub.elsevier.com/S2213-2317(18)30819-X/sbref55


Chapter 6 
 

 

The redox-sensing MarR-type repressor HypS controls 

hypochlorite and antimicrobial resistance in  

Mycobacterium smegmatis 
 

 

Quach Ngoc Tung1, Tobias Busche2, Vu Van Loi1, Jörn Kalinowski2 and Haike 
Antelmann1# 

 
1Freie Universität Berlin, Institute for Biology-Microbiology, D-14195 Berlin, 
Germany 
2Center for Biotechnology, Bielefeld University, D-33594 Bielefeld, Germany 
 

Submitted to: Free Radical Biology and Medicine in Nov. 2019 

 

  

 
#Corresponding author: haike.antelmann@fu-berlin.de 

 

 

Personal contribution:  

My contribution included the genetic construction of the hypS mutant and 

complemented strains, the gel shift assays, cloning and purification of HypS (Fig. 

4). Furthermore, I was involved in the circular dichroism spectroscopy, structural 

modelling, qRT PCR results and phenotype assays of mutant strains (Fig. 5, 6, 7). 

I drafted all figures and wrote the manuscript together with Haike Antelmann. 
 



1 

 

The redox-sensing MarR-type repressor HypS controls hypochlorite and antimicrobial 

resistance in Mycobacterium smegmatis 

Quach Ngoc Tung1, Tobias Busche2, Vu Van Loi1, Jörn Kalinowski2 and Haike Antelmann1*  

 

Departments & Institutions: 

1Institute for Biology-Microbiology, Freie Universität Berlin, D-14195 Berlin, Germany 

2Center for Biotechnology (CeBiTec), Universitätsstraße 25, 33615 Bielefeld, Germany 

 

Running title: Control of HOCl resistance by HypS in M. smegmatis 

 

*Corresponding author:  

Haike Antelmann, Institute for Biology-Microbiology, Freie Universität Berlin,  

Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany, 

Tel: +49-(0)30-838-51221, Fax: +49-(0)30-838-451221 

E-mail: haike.antelmann@fu-berlin.de 

 

Key words: MarR-type regulator/ hypochlorite/ redox-sensing/ Mycobacterium smegmatis 

 

 

 

 

 

 

 

 

  

mailto:haike.antelmann@fu-berlin.de
mailto:haike.antelmann@fu-berlin.de


2 

 

ABSTRACT 

 

MarR family transcription factors often control antioxidant enzymes, multidrug efflux pumps or 

virulence factors in bacterial pathogens and confer resistance towards oxidative stress and 

antibiotics. In this study, we have characterized the function and redox-regulatory mechanism 

of the MarR-type regulator HypS in Mycobacterium smegmatis. RNA-seq transcriptomics and 

qRT-PCR analyses of the hypS mutant revealed that hypS is autoregulated and represses 

transcription of the co-transcribed hypO gene which encodes a multidrug efflux pump. DNA 

binding activity of HypS to the 8-5-8 bp inverted repeat sequence upstream of the hypSO 

operon was inhibited under NaOCl stress. However, the HypSC58S mutant protein was not 

impaired in DNA-binding under NaOCl stress in vitro, indicating an important role of Cys58 in 

redox sensing of NaOCl stress. HypS was shown to be inactivated by Cys58-Cys58’ 

intersubunit disulfide formation under HOCl stress, resulting in derepression of hypO 

transcription. Phenotype results revealed that the HypS regulon confers resistance towards 

HOCl, rifampicin and erythromycin stress. In conclusion, HypS was identified as a novel redox-

sensitive repressor that contributes to mycobacterial resistance towards HOCl stress and 

antibiotics.  
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INTRODUCTION 

Mycobacterium tuberculosis (Mtb), the etiologic agent of live-threatening tuberculosis disease 

(TB), remains a major health problem with 1.5 million human deaths in 2019 [1]. Due to its 

intracellular replication and slow-growing lifestyle, treatment of Mtb infections are difficult and 

lengthy which often require drug combination therapies. Extensive use of antibiotics results in 

multiple, extensively and totally drug resistant isolates (MDR, XDR, TDR) as well as latent or 

persistent Mtb infections, which are ineffective to antibiotic treatment [2-5]. There is an urgent 

need to discover new drugs or antibiotics targets and to understand the underlying resistance 

mechanisms to combat the emerging problem of drug resistance in TB infections.  

The MarR family of multiple antibiotics resistance regulators, as discovered originally 

for the MarR repressor of E. coli [6, 7], plays an important role to control drug resistance 

mechanisms in many human pathogens [8]. MarR family proteins are widespread in bacteria 

and archaea and control a variety of cellular functions, including adaptation to environmental 

changes, oxidative stress, virulence, metabolism and resistance to phenolic compounds, 

solvents, disinfections and antibiotics [9, 10]. In Mtb, eight MarR-family homologs have been 

annotated, including Rv0042c, Rv0880, Rv2011c, Rv1049, Rv2327, Rv0737, Rv2887 and 

Rv1404 [8]. The MarR-type repressor Rv1404 has been shown to regulate acid stress 

resistance and virulence [11]. Rv0678 controls the resistance-nodulation-cell division (RND) 

transporters MmpS5-MmpL5 (mycobacterial membrane protein small and large) which are 

involved in lipid and fatty acid export during cell wall biosynthesis [12]. Rv0880 is involved in 

the resistance to the antibiotic bedaquiline [13] and Rv2887 was shown to control the SAM-

dependent methyltransferase Rv0560c, which confers resistance to the new anti-

mycobacterial imidoazopyridine-based drugs MP-III-71 and pyridobenzimidazole 14 [14, 15]. 

Recently, the structural mechanism of ligand-mediated inhibition of DNA binding activity of 

Rv2887 was shown in the presence salicylate (SA) and para-aminosalicylic acid (PAS) as anti-

mycobacterial drug analogue [16]. This provides the basis to design new anti-TB drugs which 

target MarR-type proteins to combat life-threatening TB-infections.  
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Structural studies have revealed that MarR-family proteins are homodimers with 

winged helix-turn-helix (wHTH) motifs in each subunit that bind with their recognition -helices 

to palindromic sequences in adjacent major groves of the DNA [9, 10]. The majority of MarR 

proteins are transcriptional repressors that negatively control transcription of divergently 

located genes. The DNA binding activity is often inhibited by small molecules, such as phenolic 

compounds (e.g. salicylate, benzoate, quinones) or metals, which act as ligands and bind a 

shared ligand-binding pocket between the wHTH motifs and dimerization domains leading to 

structural rearrangements of the DNA recognition helices [9, 10].  

Apart from ligand-binding, some MarR-type regulators have conserved Cys residues, 

act as redox switches and respond to reactive oxygen, chlorine or electrophile species (ROS, 

RCS, RES) by thiol-oxidation or S-alkylation [17, 18]. Structurally well characterized redox-

sensitive MarR-type regulators are the MarR/OhrR- and MarR/DUF24-family regulators of 

Bacillus subtilis, Xanthomonas campestris and Staphylococcus aureus, which respond to 

ROS, HOCl and RES via thiol-based mechanisms and control oxidative stress defense 

mechanisms, quinone detoxification enzymes, virulence and antibiotics resistance [17-23]. In 

Mtb, the redox-sensing MarR/OhrR-type repressor MosR represses transcription of the 

adjacent rv1050 gene encoding an uncharacterized oxidoreductase which is involved in the 

defense against oxidative stress [9, 24]. Interestingly, the MexR repressor of Pseudomonas 

aeruginosa controls multidrug efflux pumps which are required for the defense against H2O2 

stress and antibiotics [25, 26]. Antibiotic-induced ROS production was implicated in the thiol-

oxidation sensing mechanism of MexR, which renders P. aeruginosa resistant to multiple 

clinical important antibiotics, such as quinolones, β-lactams, tetracycline, chloramphenicol and 

novobiocin [25, 26]. Thus, redox-sensing MarR-type repressors of pathogens often control 

oxidative stress defense mechanisms and antibiotics resistance to allow adaptation to the host 

environment. The discovery of new redox-sensing MarR-type regulators that regulate ROS 

and antimicrobial resistance in Mtb opens up new avenues in anti-TB drug research to combat 

Mtb infections.  
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We used Mycobacterium smegmatis as model to identify a new redox-sensing MarR-

type repressor MSMEG_4471, which has a close homolog in Mtb (Rv2327) and confers 

resistance to the strong oxidant HOCl and antibiotics. MSMEG_4471 was previously identified 

using the redox proteomics approach (OxICAT) as highly oxidized (42%) at its single Cys58 

residue under HOCl stress and hence was renamed as HypS [27]. In this work, we have 

characterized the function and redox-sensing mechanism of HypS under HOCl stress in M. 

smegmatis. Transcriptional studies revealed that HypS negatively controls its own expression 

and that of the co-transcribed MSMEG_4472 (hypO) gene that codes for a multidrug efflux 

pump of the major facilitator superfamily (MFS). Our results showed that Cys58 of HypS is 

important for redox-sensing of HOCl stress. The thiol-based sensing mechanism involves 

HypS oxidation to intermolecular disulfides under HOCl stress leading to repressor 

inactivation. Phenotype analyses further revealed that the HypS-regulated efflux pump HypO 

confers HOCl and antimicrobial resistance. Thus, HypS is important to ensure mycobacterial 

survival under ROS and antibiotics stress and could be a valuable future drug target to design 

new anti-TB drugs.  

 

MATERIALS AND METHODS 

Bacterial strains, growth and survival assays. Bacterial strains, plasmids and primers are 

listed in Tables S1 and S2. For cloning and genetic manipulation, E. coli was cultivated at 

37°C in Luria Bertani (LB) medium. M. smegmatis mc2155 wild type and hypS mutant strains 

were grown as overnight culture in LB supplemented with 0.05% Tween80 at 37°C under 

vigorous agitation. The overnight culture was transferred to Hartmans-de Bont minimal 

medium as described [28] and adjusted to an optical density at 500 nm (OD500) of 0.02-0.04. 

M. smegmatis was cultivated until an OD500 of 0.4 and treated with oxidants and antibiotics, 

including 100 µM NaOCl, 14 µM erythromycin, 12 µM rifampicin to monitor growth and survival 

phenotypes [27, 29]. For survival assays, 10 µl of serial dilutions were spotted onto LB agar 

plates with 0.05% Tween80 for 72 hours. Antibiotics were used for selection as follows: 
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ampicillin (100 µg/ml), kanamycin (50 µg/ml), hygromycin (200 µg/ml), zeocin (25 µg/ml) for E. 

coli, and hygromycin (50 µg/ml), zeocin (10 µg/ml) for M. smegmatis.  

 

Cloning, expression and purification of His6-tagged HypS and HypSC58S mutant 

proteins in E. coli. MSMEG_4471 (renamed hypS) was amplified from chromosomal DNA of 

M. smegmatis mc2155 by PCR using primers MSMEG_4471_fw and MSEMG_4471_rev 

(Table S2). The PCR product was digested with NheI and SacI and ligated into expression 

vector pET28aTEV that was cut by the same enzymes to generate plasmid pET28aTEV-hypS. 

The resulting plasmid was confirmed by PCR and DNA sequencing.  

For construction of the expression plasmid encoding the HypSC58S protein, primers 

MSMEG_4471_fw_Csy_Ser and MSMEG_4471_rev_Csy_Ser were used to amplify plasmid 

pET28aTEV-hypS (Table S2). The PCR product was digested with DpnI, which cleaves 

methylated DNA to remove the parental plasmid, and transformed into E. coli DH5α competent 

cells [30]. Plasmid pET28aTEV-hypSC58S was verified by PCR and DNA sequencing.  

The E. coli BL21 (DE3) plysS expression strains with plasmids pET28aTEV-hypS or 

pET28aTEV-hypSC58S were grown in 1 l LB to an OD600 of 0.6 at 37°C, followed by induction 

with 1 mM IPTG (isopropyl-β-D-thiogalactopyranoside) for 4 hours at 37°C. Recombinant His6-

tagged HypS and HypSC58S proteins were purified using His Trap™ HP Ni-NTA columns (5 

ml; GE Healthcare, Chalfont St Giles, UK) and the ÄKTA purifier liquid chromatography system 

(GE Healthcare) according to the instructions of the manufacturer (USB). The proteins were 

extensively dialyzed against 10 mM Tris-HCl (pH 8.0), 100 mM NaCl and 30% glycerol and 

stored at -80°C. Purity of the proteins was analyzed after sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) and Coomassie brilliant-blue staining.  

 

Construction of the hypS deletion mutant, hypS and hypSC58S complemented strains. 

The hypS deletion mutant was constructed using a specialized mycobacterial recombination 

system based on phage Che9c-encoded proteins [31]. 500 bp up- and downstream regions of 

hypS were amplified from the genome of M. smegmatis mc2155 wild type using primers listed 
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in Table S2. The up- and downstream PCR products were ligated as left and right flanking 

regions, respectively, together with the hygromycin cassette of plasmid pJSC284. The 

construct was digested with XbaI and XhoI to obtain the linear allelic exchange substrate that 

was electroporated into M. smegmatis mc2155-pJV53 [32]. Hygromycin-resistant colonies 

were isolated and streaked out several times to select for the loss of pJV53. The hypS deletion 

mutant was confirmed by PCR.  

The complemented hypS and hypSC58S strains were constructed using the pSGV53 

plasmid as described previously [32]. The hypS gene was amplified from the genome of M. 

smegmatis mc2155 using primers Pmpt64-hypS-NdeI-F and pSGV53-hypS-Bam-R. The 

hypSC58S allele was generated using in two first-round PCRs using primers Pmpt64-hypS-

NdeI-F, pSGV53-hypSC58R and pSGV53-hypSC58F, pSGV53-hypS-Bam-R. The two PCR 

products were hybridized and subsequently fused together in the second-round PCR using 

primers Pmpt64-hypS-NdeI-F and pSGV53-hypS-Bam-R (Table S2). The hypS and 

hypSC58S constructs were digested with NdeI and BamHI and inserted into plasmid pSGV53 

digested with the same enzymes to generate plasmids pSGV53-hypS and pSGV53-

hypSC58S. The plasmids were electroporated into the hypS mutant to construct the hypS and 

hypSC58S complemented strains.  

 

RNA-seq transcriptome analysis and bioinformatics. M. smegmatis mc2155 wild type and 

hypS mutant strains were grown to an OD500 of 0.4 in 3 biological replicates and harvested 

before (control) and 30 min after exposure to 500 µM NaOCl stress. Cells were disrupted in 

lysis buffer containing 3 mM EDTA and 200 mM NaCl with a Precellys Evolution ribolyzer 

(Bertin technologies). RNA isolation was performed using the acid phenol extraction protocol 

as described [33]. The RNA quality was checked by Trinean Xpose (Gentbrugge, Belgium) 

and the Agilent RNA Nano 6000 kit using an Agilent 2100 Bioanalyzer (Agilent Technologies, 

Boblingen, Germany). Library preparation, next generation cDNA sequencing and read 

assembly were carried out as described previously [34]. Differential gene expression analysis 

of 3 biological replicates was performed using DESeq2 [35] with ReadXplorer v2.2 [33] as 
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described [34] using an adjusted p-value cut-off of P ≤ 0.01 and a signal intensity ratio (M-

value) cut-off of ≥ 1.0 or ≤ -1.0. The RNA-seq raw data are available in the Array Express 

database https://www.ebi.ac.uk/arrayexpress/ under the accession number E-MTAB-8534.  

 

Electrophoretic mobility shift assay (EMSA). The 262 bp DNA promoter fragment covering 

the region from -177 to +85 relative to the transcriptional start site (TSS) was amplified using 

PCR with primers prom_4471_up and prom_4471_down (Table S2). For the DNA-binding 

assays with the shorter DNA fragment, a 40 bp hypS promoter fragment was amplified using 

primers HypS_4471_hypS_fwd and HypS_4471_hypS_rev according to the previously 

published protocol [36]. As negative control, the 154 bp upstream region of MSMEG_5346 

encoding a c-di-AMP receptor regulator (DarR), was amplified using primers DarR-

competitive-F, DarR-competitive-R (Table S2) [37]. To identify the inverted repeat as specific 

DNA binding sequence, T and G at the right half of the repeat were each replaced by G and T 

using PCR mutagenesis. Briefly, two PCRs were performed using primers HypS-4471-8-5-8-

F, HypS-M-R and HypS-M-F, HypS-4471-8-5-8-R and subsequently fused together to 

generate the mutated 150 bp promoter probe (IR-M). For DNA binding reactions, 0.75 ng of 

the promoter fragments were incubated with DTT-reduced or NaOCl-oxidized HypS or 

HypSC58S proteins for 30 min at room temperature in EMSA binding buffer [34]. EMSAs were 

performed using 4% native PAGE as described [34].  

 

Quantitative real-time PCR (qRT-PCR) analysis. RNA was isolated from 2 biological and 2 

technical replicates from the M. smegmatis mc2155 wild type and the hypS mutant under 

control conditions and 30 min after exposure to 500 µM NaOCl as described [27, 34]. The 

relative abundance of mRNA levels of hypS and hypO were analyzed using qRT-PCR analysis 

as described previously [38]. 

 

Circular dichroism (CD) spectroscopy. CD spectra of reduced and NaOCl-oxidized HypS 

were obtained using a Jasco J-810 spectropolarimeter with a HAAKE WKL recirculating chiller 

https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
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(D-76227, Karlsruhe). The reduced and oxidized proteins were measured at 10 µM in 20 mM 

potassium phosphate buffer (pH 7.5). The quartz cuvettes (2 mm path length, Suprasil Hellma) 

were set at a constant temperature of 25°C with a Jasco PTC-423S Peltier-type thermocouple 

[34]. Secondary structure elements were calculated using the program DichroWeb 

(http://dichroweb.cryst.bbk.ac.uk). 

 

RESULTS 

The MarR-type repressor MSMEG_4471 (HypS) was identified as NaOCl-sensitive thiol 

switch in the redox protome of Mycobacterium smegmatis. We have previously used the 

redox proteomics approach OxICAT to quantify the redox state of 1098 Cys residues in M. 

smegmatis [27]. In total, 381 Cys residues (33.6%) showed >10% increased oxidations under 

NaOCl stress, including 40 S-mycothiolated proteins. Among those NaOCl-sensitive proteins 

were redox-sensitive transcriptional regulators, including the RseA and RshA anti-sigma 

factors and the Zur and NrdR repressors. These redox regulators were inactivated by oxidation 

as revealed by the increased transcription of the SigH, SigE, Zur and NrdR regulons in the 

RNA-seq transcriptome. The uncharacterized MarR-type regulator MSMEG_4471 (HypS) was 

among the most strongly oxidized proteins under NaOCl stress with 12% basal oxidation and 

54% oxidation under NaOCl stress at its single Cys58 [27] (Fig. 1).  

Based on the genome location, hypS is co-transcribed with its downstream target gene, 

MSMEG_4472 (renamed hypO), encoding a multidrug efflux pump of the major facilitator 

superfamily (MFS) of secondary PMF-dependent transporters [39-41]. In addition, the 

MSMEG_4469-70 (cbiOQ) operon is divergently transcribed upstream of the hypSO operon. 

The cbiOQ operon is predicted to encode a cobalt ABC transport system. Both hypSO and 

cbiOQ operon are highly conserved and co-occur in the genomes of other mycobacteria (Fig. 

S1A). In addition, HypS shares the conserved Cys58 and an overall sequence identity of 

68.5% with orthologs of M. tuberculosis H37Rv (Rv2327), M. bovis AF2122/97 (Mb2354) and 

M. marinum (MMAR_3627) (Fig. S1B). Based on the increased oxidation of HypS at Cys58 

http://dichroweb.cryst.bbk.ac.uk/
http://dichroweb.cryst.bbk.ac.uk/
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under NaOCl stress, we were interested to study the role and redox-sensing mechanism of 

HypS under NaOCl stress and antibiotics in more detail in M. smegmatis. 

 
Figure 1. HypS is strongly oxidized at its redox-sensing Cys58 under NaOCl stress. 
Previous OxICAT analysis indicated a 42% oxidation increase at the Cys58 peptide under 
NaOCl stress [27]. For OxICAT, cytoplasmic proteins were harvested before (control) and 30 
min after NaOCl stress and reduced Cys residues labelled by light 12C-ICAT [27]. All 
disulfides were reduced by Tris (2-carboxyethyl) phosphine (TCEP) and labelled by heavy 
13C-ICAT reagent. The oxidation state of Cys58 was determined as 12 % and 54 % under 
control and NaOCl stress conditions, respectively.  

RNA-seq transcriptomics identifies HypS as repressor of the hypSO operon. To study 

the function of HypS in M. smegmatis, a hypS deletion mutant was constructed using the 

mycobacterial recombination system based on phage Che9c-encoded proteins to replace 

hypS by the hygromycin resistance cassette [31]. RNA was isolated from the wild type (WT) 

and the hypS mutant under control and NaOCl stress and subjected to RNA-seq transcriptome 

analysis to quantify the changes in gene expression using DeSeq2 [35]. For significant 

expression changes, the log2 fold change (M-value) cut off of ±1.00 was chosen (95% 

confidence, p ≤ 0.01) representing a minimal change of 2-fold. In total, 347 genes were 

significant differentially transcribed based on the M-value threshold of 2-fold in the hypS mutant 

as compared to the wild type under control conditions (Fig. 2, Table S3-S5). These included 

223 up-regulated and 124 down-regulated genes in the hypS deletion mutant. Among the most 

strongly up-regulated transcripts in the hypS mutant was the hypS co-transcribed hypO gene, 

encoding the multi drug efflux pump (log2 fold change of 5.1). This indicates that HypS 

represses transcription of hypO under non-stress conditions. Apart from hypO, some 
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remaining reads mapped also to the truncated hypS transcript of 71 nucleotides as shown in 

the ReadExplorer view (Fig. 2) explaining the 2-fold induction in the hypS mutant. The 

expression of hypS and hypO is also induced under NaOCl stress in the transcriptome of the 

wild type (log2 fold changes of 1.9). The RNA-seq results were verified by qRT-PCR showing 

4.0-fold and 2.8-fold upregulation of hypS and hypO in the wild type under NaOCl stress and 

20-fold constitutive derepression of hypO in the hypS mutant control (Fig. 3AB). Together our 

data support that HypS acts as repressor of the hypSO operon under control conditions and is 

inactivated under NaOCl stress, leading to derepression of transcription of the hypSO operon. 

 
Figure 2. RNA-Seq transcriptomics of the M. smegmatis hypS mutant versus the wild 
type under control conditions. For RNA-seq transcriptome profiling, M. smegmatis wild 
type and the hypS mutant were grown in 3 biological replicates and harvested during the 
exponential growth at an OD500 of 0.4. The gene expression profile of the hypS mutant 
compared to wild type is shown as ratio/intensity scatter plot (M/A-plot) which is based on 
the differential gene expression analysis using DeSeq2 [35]. Colored dots indicate 
significantly induced (red) or repressed (green) transcripts (M-value ≥ 1.00 or ≤ -1.00; 
adjusted P-value ≤ 0.01). Dots surrounded with black thick lines represent transcripts 
significantly induced in the wild type under NaOCl stress. Black symbols are genes 
transcribed below the M-value cut off of 1.00 > M > -1.00 (P ≤ 0.01). Grey symbols denote 
transcripts with no fold-changes in the hypS mutant (P > 0.01). LexA regulon genes (yellow) 
are up-regulated in the hypS mutant. Genes of the SigH regulon (light green) and DosR 
regulon (light blue) are down-regulated in the hypS mutant. The corresponding RNA-Seq 
expression data are presented in Tables S3-S4.  
 

In addition, the majority of 27 LexA regulon genes were highly up-regulated in the hypS 

mutant control. Among these, MSMEG_0827 encodes for a major facility superfamily 

transporter and was most strongly induced (log2 fold change of 5.7) in the hypS mutant 
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(Tables S3-S5, Fig. 2). Using the MEME suite, we identified the M. tuberculosis LexA binding 

site (published in the collecTF database) in the promoter region of 22 LexA regulon genes that 

are upregulated in hypS mutant [42, 43] (Table S8). The LexA regulon indicates an SOS and 

DNA damage response controlling DNA repair enzymes, such as endonucleases, DNA repair 

polymerases and helicases. Interestingly, the LexA regulon was also strongly induced under 

NaOCl stress in the wild type transcriptome (Table S4) (log2 fold changes up to 6.4). Whether 

the induction of the SOS response in the hypS mutant is a direct or indirect regulatory effect 

of hypS deletion remains to be elucidated. In addition, other genes for transcriptional regulators 

are up-regulated in the hypS mutant, such as sigma factors SigH2 (MSMEG_0573), 

MSMEG_1970 and MSMEG_0219) as well as regulators of the AraC family (MSMEG_5563), 

SmoR (MSMEG_5575), LuxR family (MSMEG_0331, MSMEG_5651, MSMEG_0330), DeoR 

family (MSMEG_3606 and MSMEG_3264) and LacI family (MSMEG_3599) (Table S3-S4). 

In the hypS mutant, 124 genes are significantly down-regulated (M-value ≥ 1.00 or ≤ -

1.00; adjusted P-value ≤ 0.01), which include 23 genes regulated by the disulphide stress 

specific ECF sigma factors SigH and SigE (Tables S3,S4,S6). The SigH and SigE regulons 

are most strongly up-regulated by 500 µM NaOCl in the wild type with log2 fold changes 

between 4-7 as described previously [27] (Table S5-S6). Among those SigH/SigE regulons 

genes, several genes for hypothetical proteins (MSMEG_3004, MSMEG_5558, 

MSMEG_4141, MSMEG_0757, MSMEG_6498) are 2-3-fold up-regulated in the hypS mutant. 

Four genes encoding oxidoreductases/dehydrogenases (MSMEG_1114, MSMEG_6859, 

MSMEG_3137, MSMEG_6753) display log2 fold changes of 4.6-6.3 in the wild type under 

NaOCl stress and are 2-3 fold induced in the hypS mutant, which could be involved in the 

oxidative stress response. The down-regulation of the SigH regulon in the hypS mutant could 

be caused by the increased resistance towards NaOCl stress due to up-regulation of the HypO 

efflux pump.  

Apart from the SigH regulon, 14 genes of the DosR dormancy regulon, also known as 

DevR regulon, are 2-3-fold down-regulated in the hypS mutant (Table S7). All down-regulated 

DosR regulon genes in the hypS mutant are strongly induced in the wild type under NaOCl 



13 

 

stress, such as devR2 (MSMEG_5244), genes encoding universal stress proteins 

(MSMEG_5245, MSMEG_3945 and MSMEG_3950) and hypothetical proteins 

(MSMEG_3935, MSMEG_3942, MSMEG_3943 and MSMEG_3949). The down-regulation of 

many stress-related genes may be related again to the higher oxidative stress resistance of 

the hypS mutant.  

 
Figure 3. Deletion of hypS results in derepression of the hypSO operon. (A) The 
transcriptional landscape of the hypSO operon in M. smegmatis wild type and the hypS 
mutant is displayed with Read-Explorer [33], which confirmed the derepression of the efflux 
pump-encoding hypO in the hypS mutant. The mapped reads of the gene expression profile 
of the hypSO operon and the divergently transcribed cbiOQ operon were shown for three 
merged biological replicates. (B, C) Transcription of hypS (B) and hypO (C) was analyzed 
using qRT-PCR in the M. smegmatis wild type and the hypS mutant before (control) and 30 
min after exposure to 500 µM NaOCl stress. The transcript levels were normalized to the 
mRNA level of the wild type under control conditions which were set to 1. Error bars 
represent the standard deviation of mean (SEM) of 2-3 biological replicates and the statistics 
was calculated using a Student's unpaired two-tailed t-test by the GraphPad Prism software 
(p = 0.0412 for hypS-fold change; p = 0.0487 for hypO-fold change). Symbols: nsp > 0.05; *p 
≤ 0.05 
 

 

HypS recognizes a palindromic motif and specifically binds to its promoter in vitro. The 

RNA-seq and qRT-PCR results revealed that HypS functions as redox-sensing repressor and 

negatively regulates expression of the hypSO operon. The single Cys58 of HypS should be 

the redox-sensing Cys that is oxidized under NaOCl stress, leading to the dissociation of HypS 
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from its promoter region and derepression of hypSO operon transcription. As MarR-type 

repressor, the HypS dimer should bind directly to an inverted repeat overlapping with the 

hypSO promoter region.  

 

Figure 4. DNA binding activity of HypS to an upstream inverted repeat is inhibited 
under NaOCl stress in vitro. (A) Mapping of the 5’ end (TSS) and the SigA-dependent 
promoter upstream of the hypSO operon was performed using 5’ RNA-seq. An 8-5-8 bp 
inverted repeat was identified as HypS operator overlapping with the -10 and -35 promoter 
regions upstream of the hypSO operon. The upstream promoter regions of the hypSO 
homologues of different mycobacteria share the conserved operator as aligned using 
ClustalW2. The consensus sequence of the inverted repeat was generated by WebLogo. 
(B) EMSAs were conducted with increasing amounts of HypS and HypSC58S proteins to 
analyse the specific DNA binding activity of HypS to its upstream promoter region in vitro. 
The DNA probes include a 262 bp promoter fragment (-177 to +85), a 40 bp HypS operator 
fragment, the unspecific darR promoter probe and a 150 bp HypS operator probe with two 
base substitutions. (C) The DNA binding activity of HypS could be inhibited with NaOCl and 
restored with 10 mM DTT. (D) However, DNA binding activity of HypSC58S mutant protein 
was not abolished under NaOCl stress, indicating that Cys58 is required redox-sensing of 
NaOCl. ‘‘P’’ indicates the free probe, ‘‘C’’ is the HypS-DNA complex. 

 

Based on 5’ RNA-seq data, we used the MEME software to identify the putative 

promoter sequence and a conserved inverted repeat in the upstream region of the hypSO 

operon (Fig. 4A). The transcriptional start site (TSS) of hypS was mapped at position 

4,554,138 which is preceded by typical SigA dependent promoter TTGGAT-N17-TAAGGT 

matching the SigA promoter consensus TTGACA-N18-TANNNT [44]. The 8-5-8 bp inverted 
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repeat sequence TTGCATAG-N4-CTATGTAA with one mismatch was detected in the hypSO 

upstream region as possible HypS binding site that overlapped with the -35 and -10 promoter 

regions (Fig. 4A). We searched for the conservation of the putative HypS operator sequence 

upstream of homologous hypSO operons in the genomes of other mycobacteria. Multiple 

sequence alignment revealed a high conservation of the 8-5-8 bp inverted repeat sequence in 

the hypSO upstream promoter regions across various mycobacteria (Fig. 4A).  

Next, we used electrophoretic mobility shift assays (EMSA) to examine the binding of 

HypS to the 262 bp hypSO upstream promoter region ranging from −177 to +85 relative to the 

TSS in vitro. The DNA binding assays revealed that HypS binds with high affinity at a Kd of 

0.07 µM to the hypSO promoter region (Fig. 4B). To verify that HypS binds specifically to the 

predicted 8-5-8 bp operator sequence, EMSAs were performed using a shorter 40 bp DNA 

probe that just covered the -10 and -35 promoter region including the IR. HypS was able to 

bind with slightly decreased affinity to the short 40 bp IR probe. However, HypS was unable to 

bind to the DNA probe with mutated IR sequences (IR-M) in which the bases T and G of the 

right half of the repeats were exchanged by G and T (Fig. 4B). In addition, no band-shift was 

observed in the HypS DNA binding reaction with the non-specific darA promoter DNA 

containing a 14 bp DarR binding motif (ATACT-N5-AGTAT) [37]. These results indicate that 

HypS binds specifically to the 8-5-8 bp operator sequence in the hypSO upstream promoter 

region.  

Since Cys58 of HypS was identified as NaOCl-sensitive using OxICAT, we analyzed 

the effect of the C58S mutation on DNA-binding and redox-sensing of HypS. HypSC58S 

protein showed ~2.2-fold decreased DNA binding affinity compared to HypS under reducing 

conditions, indicating that Cys58 is not essential for DNA binding activity of HypS (Fig. 4B). 

However, treatment of HypS with 20-30 µM NaOCl resulted in loss of DNA binding activity and 

dissociation of HypS from the operator DNA (Fig. 4C). The DNA binding activity of NaOCl-

treated HypS could be restored with DTT, indicating that HypS is inactivated by reversible thiol-

oxidation under NaOCl stress. Additionally, DNA binding of the HypSC58S mutant protein to 

promoter probe was not inhibited after NaOCl exposure (Fig. 4D). These results support that 
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HypS senses HOCl stress via the redox-sensing Cys58 by a reversible thiol-switch mechanism 

leading to HypS inactivation and dissociation from the hypSO promoter DNA.  

 

HypS senses NaOCl stress by intersubunit disulfide formation. To investigate the redox-

sensing mechanism of HypS under NaOCl stress, we used non-reducing SDS-PAGE to study 

whether HypS forms intermolecular disulfides upon NaOCl oxidation. Treatment of HypS with 

20-30 µM NaOCl resulted in the formation of HypS disulfide linked dimers at the size of 35 

kDa, which could be reversed with DTT (Fig. 5A). Since Cys58 is the only Cys residue present 

in the HypS protein sequence, NaOCl leads to inactivation of HypS by formation of Cys58-

Cys58’ intersubunit disulfides, crosslinking both subunit of the HypS dimer. As control, no 

disulfide linked dimer formation was observed for the HypSC58S mutant protein under NaOCl 

stress in the non-reducing SDS-PAGE (Fig. 5B). These results suggest that Cys58 is 

positioned in close vicinity in both subunits in the structure of the HypS dimer, allowing 

intersubunit disulfide formation upon oxidation.  

To confirm this notion, the structure of HypS was modelled based on available crystal 

structures of related MarR-type regulators that are present in the PDB database. HypS shares 

29% sequence identity to the MarR-type regulator Rv0880 of M. tuberculosis, which served as 

template to model the HypS structure with SWISS-MODEL (https://swissmodel.expasy.org) 

(Fig. 5D). In the structural model of the HypS dimer, each subunit consists of six -helices and 

two -sheets, arranged in the order 1-2-3-4-1-2-5-6, similar as in other MarR-type 

regulators (Fig. 5D, Fig. S2). While the 1, 5 and 6 helices are involved in dimerization, the 

2, 3, 4 helices and the 1, 2 sheets form the DNA binding wHTH motif [9, 10]. In the 

predicted HypS structure, Cys58 is located in the loop that connects the 3 and 4 helices in 

each monomer (Fig. 5D). Thus, both Cys58 and Cys58’ residues of adjacent subunits could 

be positioned in close vicinity, which might enable intersubunit disulfide formation without 

major conformation changes.  
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Figure 5. HypS is oxidized to intersubunit disulfides under NaOCl stress. (A, B) Non-
reducing SDS-PAGE of HypS and HypSC58S mutant proteins revealed that HypS is 
oxidized by NaOCl to disulphide-linked HypS dimers migrating at the size of 35 kDa, which 
are reversible with DTT (A). HypSC58S protein is not sensitive to oxidation (B). (C) The CD 

spectra of reduced and oxidized HypS proteins show a similar strong -helical content and 
no major structural changes upon oxidation. (D) The structural model of HypS was 
generated using SWISS-MODEL (https://swissmodel.expasy.org/) and visualized with 
PyMol using the template of M. tuberculosis H37Rv Rv0880 (PDB code: 4YIF) [45]. Cys58 

is located in the flexible loop between the 3 and 4 helices. (E) Model for redox-regulation 
of HypS in M. smegmatis in response to NaOCl stress. HypS senses NaOCl stress by 
Cys58-Cys58’ intersubunit disulfide formation, leading to dissociation of HypS from its 
promoter and derepression of hypO transcription, which confers resistance to NaOCl and 
antibiotics.  

 

To further investigate whether HypS undergoes structural changes in the secondary 

structural elements upon oxidation, we used CD spectroscopy in the far-UV range. Both 

reduced and oxidized HypS showed very similar far UV-CD spectra, containing a significant 

high  helical content (Fig. 5C). This reflects the six  helices of the dimer interface and HTH 

motif, which are common in structures of MarR-type regulators [9, 10]. The lack of structural 

changes in the secondary structural elements upon HypS oxidation as revealed in the CD 

spectra confirms our predictions that Cys58 and Cys58’ are likely positioned in close 

neighborhood and undergo disulfide bond formation without major conformational changes. In 

https://swissmodel.expasy.org/
https://swissmodel.expasy.org/
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conclusion, our results revealed that HypS is a redox-sensing repressor that senses NaOCl 

stress by intersubunit disulfide formation between Cys58 and Cys58’ of both subunits of the 

HypS dimer, leading to inactivation of HypS and derepression of the hypSO operon (Fig. 5E).  

 
Figure 6. HypS confers resistance to NaOCl stress in M. smegmatis. Growth 
phenotypes (A, B) and survival assays (C) of the wild type (WT), hypS mutant, hypS and 
hypSC58S complemented strains before (control) and after exposure to sub-lethal 
concentration of 100 µM NaOCl at an OD500 of 0.4. The time point before NaOCl exposure 
was set to ‘0’. For the survival assay, 10 µl of serial dilutions were spotted after 3 and 4 h of 
NaOCl exposure onto LB agar plates with 0.05% Tween80. The NaOCl-resistant phenotype 
of the hypS mutant is reversed to wild type level by using plasmid-encoded hypS, but not in 
the hypSC58S complemented strain. The results are from 3 biological replicates. Error bars 
indicate the standard deviation (SD) and the statistics was calculated using a Student's 
unpaired two-tailed t-test by the GraphPad Prism software. Symbols are: nsp > 0.05; *p ˂ 
0.05, **p ≤ 0.01, ***p ≤ 0.001, and ****p ˂ 0.0001. 

 

The HypS-controlled efflux pump HypO confers resistance to NaOCl and antibiotics. 

The redox-sensing MarR-type repressor HypS was shown to control the efflux pump HypO 

which could be involved in the oxidative stress defense and antibiotic resistance. Thus, we 

analyzed the phenotypes of the hypS mutant in comparison to the hypS and hypSC58S 

complemented strains under NaOCl stress and antibiotics treatments (Fig. 6 and 7). The 

growth under control condition was similar for all strains, indicating that the hypS mutation did 

not affect the growth and fitness of M. smegmatis. However, the hypS mutant was more 

resistant to NaOCl stress and showed an improved growth with 100 µM NaOCl in comparison 
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to the NaOCl-sensitive wild type (Fig. 6A). Complementation of the hypS mutant with plasmid-

encoded hypS restored the NaOCl-sensitivity to wild type level (Fig. 6B). Similarly, in survival 

assays the hypS mutant showed a strongly enhanced resistance under NaOCl stress relative 

to the wild type and to the hypS complemented strain (Fig. 6C). However, the hypSC58S 

mutant was unable to complement the NaOCl resistant survival phenotype of the hypS mutant 

(Fig. 6C). These results demonstrate that the HypS-controlled efflux pump functions as 

important mycobacterial defense mechanism under NaOCl stress. In addition, the conserved 

Cys58 was shown to be essential for redox-regulation of HypS under NaOCl stress to control 

HypO expression.  

 
Fig. 7. The hypS mutant showed an increased resistance to the antibiotics rifampicin 
and erythromycin. Growth phenotype analyses of the wild type, hypS mutant, hypS and 
hypSC58S complemented strains were performed after exposure to sub-lethal 
concentrations of 14 µM erythromycin (A, B), 12 µM rifampicin (C, D) at an OD500 of 0.4. The 
time points of antibiotics treatment were set to ‘0’. Mean values and SD of three independent 
experiments are shown and p-values were calculated by the Student’s unpaired two-tailed 
t-test by the graph prism software (nsp > 0.05; *p ˂ 0.05; **p ˂ 0.01; ***p ˂ 0.001; and ****p 
˂ 0.0001). 

 

 Multidrug efflux pumps are well-known antimicrobial resistance mechanisms. Thus, we 

used growth assays after rifampicin and erythromycin exposure to analyse if the HypS-

controlled HypO transporter confers antimicrobial resistance in M. smegmatis. The hypS 
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mutant displayed an increased tolerance after treatment with sub-lethal doses of 12 µM 

rifampicin and 14 µM erythromycin in comparison to the sensitive wild type (Fig. 7AC). The 

growth sensitivity of the wild type after rifampicin and erythromycin treatment could be restored 

in the hypS complemented strain (Fig. 7BD). However, the hypSC58S mutant was unable to 

complement the rifampicin resistance of the hypS mutant to the sensitive wild type level (Fig. 

7BD). These results confirm that HypO functions as multidrug efflux pump and contributes to 

rifampicin and erythromycin resistance in M. smegmatis. The redox-sensing Cys58 functions 

might sense and respond to ROS which are perhaps generated under antibiotics treatment to 

up-regulate the HypO efflux pump expression. Taken together, our phenotype results clearly 

support the important role of the HypSO regulon in the mycobacterial oxidative stress defense 

and under antibiotics treatment.  

DISCUSSION 

In this work, we have characterized the function and regulatory mechanism of the novel 

redox-sensing MarR-type repressor HypS of M. smegmatis, which is conserved across 

mycobacteria including Mtb (Rv2327). HypS senses HOCl stress via its conserved Cys58 and 

regulates expression of the multidrug efflux pump HypO under HOCl stress. Based on the high 

conservation of the hypSO locus and of the regulatory promoter regions, the regulatory model 

and function of HypS should be similar also in Mtb. HypS was previously identified in the global 

redox proteomics approach OxICAT as highly oxidized exhibiting 42% increased oxidation at 

its single Cys58 under NaOCl stress [27]. DNA binding assays showed that HypS oxidation 

under NaOCl stress leads to its inactivation and dissociation of HypS from its promoter DNA. 

Mutation of Cys58 did not affect the DNA binding activity of HypS, but redox sensing of NaOCl 

was completely abolished. The role of Cys58 in redox-sensing was further confirmed in growth 

and survival assays under NaOCl stress, since the hypSC58S mutant was unable to restore 

the NaOCl susceptibility back to wild type level.  

Using non-reducing SDS-PAGE, we could show that HypS is reversibly oxidized under 

NaOCl stress to form intersubunit disulfides between Cys58-Cys58’ in opposing subunits in 

vitro. Structural modelling revealed that Cys58 is located in close proximity to Cys58’ in the 
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adjacent subunit of the HypS dimer to allow for disulfide formation. HypS oxidation causes its 

dissociation from the hypSO operator in vitro, indicating that the DNA binding activity is 

inhibited in oxidized HypS protein probably due to structural changes in the wHTH motif. 

However, CD measurements did not reveal major structural changes upon HypS oxidation, 

suggesting local changes in the wHTH motifs which might lead to loss of DNA binding. Future 

crystal structure analyses will reveal the conformational changes of HypS upon oxidation.  

Inhibition of the repressor activity of HypS due to thiol-oxidation causes derepression 

of the hypO-encoded multidrug efflux pump, which conferred resistance under NaOCl stress 

and antibiotic exposure, such as rifampicin and erythromycin. Many MarR family transcription 

factors with wHTH motifs, including the originally discovered MarR protein of E. coli, are known 

to sense ROS, RES and antibiotics due to thiol-oxidation of redox-sensing Cys residues [9, 

10]. However, the regulatory mechanisms vary and have been classified in one- and two-Cys-

type models based on the conserved MarR-family OhrR-repressor mechanistically and 

structurally characterized in B. subtilis and Xanthomonas campestri [9, 10, 17, 18, 23, 46-48]. 

The B. subtilis OhrRBs is the prototype of a one-Cys-type repressor, which senses organic 

hydroperoxides (OHP) and NaOCl by thiol-oxidation to Cys-sulfenic acid that reacts further 

with the low molecular weight thiol bacillithiol to S-bacillithiolated OhrR protein [46, 49, 50]. S-

bacillithiolation leads to inactivation of OhrR and transcriptional derepression of the ohrA 

peroxiredoxin gene.  

In contrast, the two-Cys type OhrR protein of X. campestris was shown to sense OHP 

via intersubunit disulfide formation between the N-terminal redox-sensing Cys22 and C-

terminal Cys127’ of opposing subunits of the OhrR dimer [23, 47, 48]. This two-Cys-type 

oxidation model was confirmed for other two-Cys-type MarR/DUF24-family regulators (HypR, 

YodB) of B. subtilis which are inactivated by intersubunit disulfide formation between N- and 

C-terminal Cys residues of adjacent subunits [17, 18]. However, the model for thiol-oxidation 

of the M. smegmatis HypS protein is different and revealed that MarR protein still can undergo 

intersubunit disulfide formation when the single Cys residues of both subunits are located in 

close proximities in the dimeric structure. This regulatory model of Cys17-Cys17’ intersubunit 
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disulfide formation was further revealed for the single Cys-type MarR/DU24-family regulator 

QorR which senses quinones and controls a quinone reductase in Corynebacterium 

glutamicum [17, 18, 51].  

Apart from HypS, the MarR/OhrR-family repressor MosR of Mtb was previously 

characterized as redox-sensing repressor that senses and responds to H2O2 and OHP via 

Cys10-Cys12 intrasubunit disulfide formation in each subunit of the MosR dimer [24]. MosR 

negatively regulates expression of rv1050 encoding an uncharacterized exported 

oxidoreductase which contributes to survival inside macrophages [24]. The E. coli MarR 

repressor was shown to be inactivated by many different ligands and antimicrobial compounds, 

such as salicylate, tetracycline, chloramphicol, norfloxacin, ampicillin, aromatic acid 

metabolites and lipophilic compounds (plumbagin, p-hydroxyenzoate, plumbagin, menadione) 

[7-10, 52]. In addition, E. coli MarR was recently shown to be redox-controlled in response to 

antibiotics, including norfloxacin and ampicillin [52]. The redox-sensing Cys80 of MarR is 

oxidized by intracellular Cu2+ leading to structural changes, dissociation of the MarR tetramer 

from its promoter DNA leading and derepression of the marRAB operon [52]. 

The MarR protein of E. coli controls a large regulon and confers multiple antimicrobial 

resistance in E. coli [53, 54]. HypS of M. smegmatis was shown to sense HOCl stress via the 

conserved Cys58 and controls the HypO efflux pump as main target which confers resistance 

to oxidative stress and the antibiotics erythromycin and rifampicin. The derepression of the 

hypSO operon in the hypS mutant was confirmed by RNA-seq transcriptomics and qRT PCR. 

In addition, the deletion of hypS resulted in upregulation of 27 genes of the SOS/LexA regulon, 

indicating a DNA-damage response. Among the LexA-regulon genes, MSMEG_0827 was 

most highly up-regulated encoding another major facilitator superfamily protein as possible 

drug transporter. MSMEG_0827 could possibly further contribute to the antibiotics resistance 

phenotype observed in the hypS mutant. However, the conserved operator sequence was only 

detected upstream of the hypSO operon, not in any of the up-regulated LexA regulon genes, 

indicating no direct regulation of lexA or LexA-regulon genes by HypS.  
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In addition, we observed the down-regulation of the disulfide-stress-specific SigH and 

SigE regulons under basal conditions in the hypS mutant, which could be caused by the 

oxidative stress resistant phenotype of the hypS mutant. Activity of SigH is controlled by the 

redox-sensitive cognate anti sigma factor RshA (MSMEG_1915), which is inactivated by 

NaOCl stress due to thiol-oxidation, resulting in expression of the SigH regulon. Due to the 

resistance of the hypS mutant towards NaOCl stress, the RshA sigma factor could be more 

reduced and active as anti sigma factor to sequester SigH, leading to stronger repression of 

genes exclusively transcribed by SigH-containing RNAP. In support of this notion, the 5’-RNA-

Seq data revealed that all SigH-dependently down-regulated genes in the hypS mutant are 

transcribed from a single TSS and have high basal levels in the wild type (Table S8). It might 

be possible that down-regulation of SigH and SigE causes an increased DNA-damage 

response resulting in up-regulation of the observed LexA regulon genes.  

We further analysed the phenotypes of the hypS mutant under NaOCl and antibiotics 

exposure. The hypS mutant was resistant to NaOCl and the antibiotics rifampicin and 

erythromycin, which could be restored back to wild type level in the hypS complemented strain. 

Since HypS controls the HypO efflux pump as major target, the resistance might be mediated 

by export of NaOCl and antibiotics through the efflux pump out of the cell. Similarly, the Bacillus 

subtilis YfmP repressor controls the multidrug efflux transporter YfmO protein which functions 

in the export of toxic metal ion, such as cadmium, cooper to avoid metal intoxification [55]. 

Since HypO shares 54% sequence identity to YfmO, we analyzed the phenotypes of the M. 

smegmatis hypS mutant under H2O2 and Cu2+ stress, but did not observe any defect in growth 

or survival (data not shown). Thus, the redox-sensing MarR-type regulator HypS seems to be 

specific to control HOCl and antimicrobial resistance through the HypO efflux pump involved 

in the export of HOCl and the antibiotics rifampicin and erythromycin in M. smegmatis. Of the 

eight annotated MarR proteins in Mtb, fours MarR-type regulators were shown to be implicated 

in drug resistance, including Rv0678, Rv0880 and Rv2887 [12-15]. Thus, the Mtb homologue 

Rv2327 might be also involved in HOCl and antimicrobial resistance by the control of the HypO 

homologous efflux pump which remains to be investigated in future studies.  
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