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Abstract
The self-consistent Born approximation quantitatively fails to capture disorder effects in semimetals. We present an alterna-

tive, simple-to-use non-perturbative approach to calculate the disorder induced self-energy. It requires a sufficient broadening
of the quasiparticle pole and the solution of a differential equation on the imaginary frequency axis. We demonstrate the
performance of our method for various paradigmatic semimetal Hamiltonians and compare our results to exact numerical
reference data. For intermediate and strong disorder, our approach yields quantitatively correct momentum resolved results.
It is thus complementary to existing RG treatments of weak disorder in semimetals.

Introduction.—Semimetals with point-like Fermi sur-
face are by now an established research field in con-
densed matter physics. Well-studied examples are two-
dimensional (2d) Dirac fermions in graphene [1], 3d
Weyl fermions in spin-orbit coupled compounds [2], or
parabolic band touching points in Bernal-stacked bilayer
graphene [3]. Many experimental properties of semimet-
als rely on the presence of impurities or disorder, ubiq-
uitous in solid state realizations, but under control in
cold atom setups via speckle potentials [4]. For exam-
ple, in undoped graphene the non-zero density-of-states
is purely disorder generated [5]. Likewise, in ARPES ex-
periments it is the disorder, which broadens the spectral
function at the nodal point and modifies its dispersion
away from it. Another example is a disorder driven phase
transition between a semimetallic and a metallic phase in
3d Weyl fermions [6]. In the following, motivated by the
observables described above, we focus on single-particle
properties.
Theoretically, however, the currently available analyt-

ical methods for disordered semimetals yield unsatisfac-
tory results. Weak disorder in semimetals can be treated
using the perturbative Wilsonian momentum shell renor-
malization group (RG) as pioneered in the context of 2d
Dirac systems by Ref. [7]. The starting point of this
approach is the functional integral formalism that can
be disorder averaged after the fermions have been repli-
cated. The bosonic disorder field is then eliminated in fa-
vor of a four-fermion pseudo-interaction whose coupling
constant flows as high energy shells are integrated out
perturbatively. The drawback of the perturbative RG
method is its inapplicability in the strong disorder regime
and the difficulty to extract quantitative information
about observables from the abstract RG flow. Another
standard approach to disorder is the non-perturbative
self-consistent Born approximation (SCBA). For met-
als, its validity relies on the smallness of the parameter
1/kF l that quantifies the suppression of diagrams with
crossed disorder lines omitted in SCBA [8]. Here, kF is
the Fermi momentum and l the mean free path. How-
ever, for semimetals with kF = 0, the SCBA cannot be
justified [9, 10].
In this work, we propose a novel non-perturbative

approach to disorder, systematically going beyond the
SCBA but free of its above restrictions. Our approach is
applicable for strong and intermediate Gaussian disorder
where it yields a quantitatively accurate and momen-
tum dependent self-energy. For semimetals, it is thus
complementary to the RG approach. We start from the
Fermi-Bose field theory mentioned above, but we do not
integrate out the disorder field. Instead we derive an ex-
act Schwinger-Dyson equation [11, 12] for the fermionic
self-energy, which is closed by replacing the Fermi-Bose
three-vertex with the help of a Ward-identity. This re-
placement is justified for strong disorder only. We arrive
at a set of ordinary differential equations on the imagi-
nary frequency axis that can be easily solved numerically.
We apply this Schwinger-Dyson–Ward (SDW) approach
for various paradigmatic semimetals and compare our re-
sults to exact numerical reference data computed with a
dedicated momentum space version of the kernel polyno-
mial method. We also compare our results to the SCBA
and a semi-classical approximation for strong disorder.

Model and main result.—We consider a generic two-
band semimetal Hamiltonian H0(~k) with a degeneracy
point at ~k = 0 located at zero energy, H0(~k = 0) = 0.
For simplicity, we assume an isotropic dispersion ±E0(k)
with particle-hole symmetry. These assumptions are
not crucial in the following but valid for many popular
choices of H0(~k) like Dirac nodes.

We add a smoothly correlated disorder potential V (~r)
which is assumed to be diagonal in band space. Its cor-
relation length ξ represents the disorder puddle’s typ-
ical linear extent. We define the fundamental energy
scale Eξ =E0(k= 1/ξ). For the statistical properties of
V , we assert a Gaussian probability distribution P [V ]
and define the disorder average of a quantity Q[V ] as
〈Q〉dis =

∫
DV Q[V ]P [V ]. We assume the disorder cor-

relator K(~r − ~r′) to have a Gaussian shape

K(~r − ~r′) = 〈V (~r)V (~r′)〉dis=
W 2E2

ξ

(2π)d/2
e−

1
2 |~r−~r

′|2/ξ2
. (1)

The dimensionless parameter W quantifies the strength
of disorder. It relates the typical potential in a puddle
∼
√
〈V (~r)2〉dis to the kinetic energy of a particle con-

fined to the puddle’s volume. We refer to W � 1 as
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weak and W � 1 as strong disorder, respectively. We
are interested in the zero-temperature retarded Green
function GRV (ω) = (ω + iη −H0 − V )−1 and, in particu-
lar, in its disorder average 〈GRV 〉dis ≡ GR ,

GR(ω,~k) = 1
ω + iη −H0(~k)− ΣR(~k, ω)

, (2)

at the nodal point energy ω = 0. This defines the disor-
der induced self-energy ΣR(~k, ω). Our main result is a
self-consistency equation for the self-energy on the imag-
inary frequency axis,

Σσ1σ2(iω,~k) = (3)∑
σ

∫
~q

K(~q)
[
δσ1σ − ∂iωΣσ1σ(iω,~k)

]
Gσσ2(iω,~k + ~q),

from which one may calculate ΣR(ω= 0,~k). The struc-
ture of Eq. (3) is reminiscent of the SCBA with ∂iωΣ as
a correction term. The derivation of Eq. (3), which re-
lies on Schwinger-Dyson equations, a Ward-identity and
an approximation that is valid for a sufficient broadening
of the quasiparticle pole, will be sketched after treating
a few examples. We refer to Eq. (3) as the Schwinger-
Dyson–Ward approximation (SDWA).

To solve Eq. (3), we parameterize the momentum de-
pendence of Σ(iω,~k) using the symmetries of the clean
Hamiltonian H0, which are restored after the disorder
average. We isolate the derivative term and discretize
the momentum dependence, which yields a system of
first order ordinary differential equations (ODE) in ω
[13]. For the boundary condition, lim

ω→∞
G(iω) = 1

iω [14]
implies an at most sublinear asymptotic of Σ (iω) in iω.
Hence, at ω = ωmax � Eξ, we can approximately ne-
glect ∂iωΣ(iω) in Eq. (3). The resulting self-consistent
solution for Σ(iωmax) can be found algebraically in the
limit ωmax � Eξ. We finally apply standard routines
to solve the array-valued ODE numerically. We have
checked that the results for Σ(iω = iη) do not depend
on (large enough) ωmax.

Exact numerical results from KPM.—To gauge the
quality of the SDW approximation, we employ the kernel
polynomial method (KPM) [15] to obtain numerically
exact reference data for ΣRσ1σ2

(ω,~k). The standard iter-
ation procedure of KPM repeatedly applies the Hamil-
tonian as (H0 +V ) |ψ〉. In contrast to recent state-of-the
art studies for disordered Weyl nodes [16], we work in
momentum space |ψ〉 =

∑
~kσ ψ~kσ|~kσ〉, thus avoiding to

regularize H0 on a lattice. While H0 is diagonal in ~k, the
potential V is diagonal in real space. We employ a fast
Fourier transform (FFT) on ψ~kσ to get to real space, ap-
ply V and transform back to momentum space. We use
an equidistant k-space grid with spacing ∆k � ξ−1 and
a UV-cutoff Λ� ξ−1. We checked the convergence of
our final results with respect to the number of moments,
disorder realizations and lattice points. The limitation of
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Figure 1. (a) Imaginary part of the disorder induced retarded
self-energy for a 2d Dirac node at the nodal point as a func-
tion of disorder strength W . Our SDWA result (magenta
line) compares well to the exact KPM data (blue dots) and
asymptotically agrees with the Thomas-Fermi approximation
(orange). The SCBA result is shown in cyan. Inset: For very
small disorder, the SDWA deviates from the scaling found
by RG (green dashed line). (b) The momentum dependence
of the self-energy at W = 6.32 calculated from KPM (blue
symbols), the SDWA (magenta lines) and Thomas-Fermi ap-
proximation (orange lines).

the KPM is in the weak disorder regime, when the finite-
size energy starts to compete with the disorder induced
energy scale.

Application to 2d Dirac node.—We now apply the
SDWA to the case of a disordered 2d Dirac node,
H0(~k) = ~v(σxkx + σyky), with E0(k) = ~vk and the
fundamental energy scale Eξ = ~v/ξ. Using dimension-
less variables ~̄k=~k/ξ and ω̄= ω/Eξ, the ansatz for the
self-energy reads

Σ(iω̄, ~̄k)/Eξ = m(ω̄, k̄)[σx cos φ̄+ σy sin φ̄] + iM(ω̄, k̄),
(4)

where we switched to polar coordinates for ~̄k on the right
hand side. While m represents a renormalization of H0,
M can be interpreted as a scattering rate. Using this
ansatz in Eq. (3), we obtain two coupled ODEs:

∂ω̄M(ω̄, k̄) = 1+ J0(ω̄, k̄)M(ω̄, k̄)+J1(ω̄, k̄)m(ω̄, k̄)
W 2[J2

0 (ω̄, k̄) + J2
1 (ω̄, k̄)]

,

(5)

∂ω̄m(ω̄, k̄) = J0(ω̄, k̄)m(ω̄, k̄)− J1(ω̄, k̄)M(ω̄, k̄)
W 2[J2

0 (ω̄, k̄) + J2
1 (ω̄, k̄)]

, (6)

where the functions J0 and J1 themselves depend on m
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and M as{
J0(ω̄, k̄)
J1(ω̄, k̄)

}
=
∫ ∞

0
dq̄

{
M̃(ω̄, q̄)I0(k̄q̄)
m̃(ω̄, q̄)I1(k̄q̄)

}
q̄e−(q̄2+k̄2)/2/(2π)
m̃2(ω̄, q̄)+M̃2(ω̄, q̄)

.

(7)
Here, Ij are modified Bessel functions of the first kind
[17], m̃(ω̄, k̄) = k̄+m(ω̄, k̄) and M̃(ω̄, k̄) = ω̄ −M(ω̄, k̄).
The initial conditions for ω̄max � 1 read M(ω̄max, k̄) =
− W 2

2πω̄max and m(ω̄max, k̄) = 0.
The set of ODEs (5) and (6) can be solved numeri-

cally after discretizing the k̄-dependence of m and M on
a geometric grid. In Fig. 1(a) we compare the result-
ing disorder induced self-energy at the pole of the clean
Green function, MR(ω̄ = 0, k̄ = 0) = M(iω̄ = iη, k̄ = 0)
(magenta line) to the exact KPM data (blue dots), find-
ing good agreement. This is true even for the small-
est disorder strength W ' 0.8 that we can reach with
KPM, see inset. Based on the above comment about
the validity of SDWA, we consider this agreement for
MR(ω̄ = 0, k̄ = 0) � 1 as coincidental. In fact the
SDW solution for MR(ω̄ = 0, k̄ = 0) does not agree
asymptotically with the form ∼ exp(−π/W 2)/W , that is
inferred from the scale where the 2-loop Wilsonian RG-
flow crosses over to strong disorder [18] (green dashed
line in the inset). In the supplemental material [19] we
show additional KPM data confirming the validity of the
RG result for weak disorder, albeit using a modified un-
correlated disorder model, where even smaller MR can
be resolved.
In Fig. 1(a), we also illustrate the failure of the SCBA

for all disorder strengths [9, 10] (cyan line). The data
is obtained from an iterative numerical solution of the
SCBA-equation, i.e. Eq. (3) without the derivative.
The momentum dependence of the self-energy atW =

6.32 is addressed in Fig. 1(b). Again, the SDW re-
sults (dashed and solid magenta lines) compare well with
exact KPM data (blue symbols). Note that mR(ω̄ =
0, k̄) ∝ −k̄ encodes a velocity suppression.
In the limit of large disorder, W � 1, the typical elec-

tron wavelength (at zero total energy) is on the order of
ξ/W , thus the electron motion in the disorder potential
varying on the scale ξ can be approximated as semi-
classical [20–22]. This motivates the Thomas-Fermi ap-
proximation, GR(ω,~k) =

∫∞
−∞ dU P1(U)[ω+iη−H0(~k)−

U ]−1 where P1(U) = exp
(
− U2

2K(~r=0)

)
/
√

2πK(~r = 0) is
the distribution function of the disorder potential at a
single point (see supplement [19] for details). At the
nodal point, the Thomas-Fermi estimate [4, 23]MR(ω̄=
0, k̄=0)Eξ = − 1

πP1(0) agrees with the KPM and SDWA
asymptotically [orange line in Fig. 1(a)]. Consequently,
this result can also be reproduced analytically from Eq.
(3) after setting H0 → 0. However, for finite momentum,
the Thomas-Fermi approximation fails even for strong
disorder, see Fig. 1(b).

Other dispersions.—To show the flexibility of the
SDWA, we now modify the clean Hamiltonian H0, mod-
eling other types of nodal semimetals. First, we consider
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Figure 2. The same as in Fig. 1(a) but for (a) a 3d Weyl and
(b) a 2d parabolic semimetal. The SDW results (magenta)
compare well to the exact KPM data (blue) except for small
|MR(ω̄ = 0, k̄ = 0)|, see insets.

the case of a 3d Weyl node, H0(~k) = ~v(σxkx + σyky +
σzkz), with E0 and Eξ as before. The Weyl node features
a disorder induced phase transition [6, 24], for W below
a critical disorder strength Wc, the self-energy vanishes
at k=0. The ansatz for the self-energy and the resulting
modifications to the ODEs (5) and (6) are detailed in the
supplement [19]. Fig. 2(a) compares the SDW results for
MR(ω̄=0, k̄=0) to KPM, SCBA and the Thomas-Fermi
approximation. Again, while the SCBA fails quantita-
tively, our SDWA is in good agreement with the exact
KPM data, except for small |MR(ω̄ = 0, k̄ = 0)| (see
inset). The Thomas-Fermi approximation clearly misses
the phase transition but is valid asymptotically and we
note Ref. [22] suggesting its systematic improvement for
the 3d Weyl case, albeit for a different disorder model.

Second, we consider a 2d semimetal H0(~k) =
~2k2

m [σx cos(2φ) + σy sin(2φ)] in polar coordinates. A
similar Hamiltonian (with discrete rotation symmetry)
occurs for Bernal-stacked bilayer graphene [3]. The dis-
persion is parabolic, E0(k) = ~2k2/m and we have Eξ =
~2ξ−2/m as the fundamental energy unit. The SDWA
(see supplement [19] for details) yields good agreement
to the KPM data, see Fig. 2(b), except in the small
|MR(ω̄ = 0, k̄ = 0)| regime below W ' 2.

Derivation of main result.—In the following, we sketch
the main ideas behind Eq. (3). For a detailed deriva-
tion we refer to the supplemental material [19]. Let
lnZV [η̄, η] be the generating functional for connected
Green functions for a fixed disorder configuration V . The
replica trick asserts that we can obtain the disorder av-
eraged Green functions from the generating functional

3



~q= 0

=

(b)

(a)

~k ~kΣ =
~k+~q

~q
~k ~k

~k ~k

~q= 0

− ∂iω Σ~k ~k
~k ~k

Figure 3. (a) Schwinger-Dyson equation for the fermionic
self-energy Σ and (b) the Ward-identity for the Fermi-Bose
vertex (triangle). Together, they form the basis of the pro-
posed SDWA. We suppress frequency and pseudo-spin in-
dices.

ZR [η̄, η] =
〈
ZRV [η̄, η]

〉
dis

as G12 = lim
R→0

1
R
δ2ZR[η̄,η]
δη̄1δη2

|η,η̄=0,
where ZRV [η̄, η] contains R replicated fermion species
ψα, α = 1, 2, ..., R, all coupling to the same disorder
potential V and the same source η̄ (analogous for ψ̄α
and η). We can now formally consider ZR [η̄, η] →
ZR [η̄α, ηα, J ] such that each fermion species couples to
separate sources ηα and η̄α and introduce a source J for
the bosonic field V . Now, the Green function from Eq.
(2) can be obtained as

G12 = lim
R→0

1
R

R∑
α=1

Gαα12 , Gαα12 = δ2ZR [η̄α, ηα, J ]
δη̄α1 δη

α
2

∣∣∣∣
η̄,η,J=0

,

(8)

and likewise for the self-energy Σ12, which is obtained as
the second functional derivative of the generating func-
tional of irreducible vertex functions [12].

Next, we consider the Schwinger-Dyson equation for
the self-energy, shown diagrammatically in Fig. 3(a).
In the diagram, we already anticipate the replica limit
that eliminates diagrammatic contributions with inter-
nal fermion loops [25]. In this way a Hartree-like di-
agram, still present for Σαα, vanishes. Likewise, the
bosonic self-energy, which contains internal fermion bub-
bles, is eliminated in the replica limit, such that the bo-
son propagator K(~q) is undressed (dashed line). Since
K(~q) is related to elastic scattering, no frequency is
carried. The fermionic propagator in the loop on the
right hand side does involve the fermionic self-energy
from the left hand side. Finally, the triangle repre-
sents the Fermi-Bose vertex that, besides its bare part,
subsumes the effect of all higher order diagrams with
crossed impurity lines missing in the SCBA. In Fig.
3(b) we depict a Ward-identity for our theory ZR. It
relates the Fermi-Bose vertex to the Matsubara fre-
quency derivative of the fermionic self-energy. This
relation follows from the invariance of the generating
functional ZR [η̄α, ηα, J ] under a temporal gauge trans-
formation ψασ (τ, ~r) = e+iAα(τ)ψ′ασ (τ, ~r) and ψ̄ασ (τ, ~r) =
e−iAα(τ)ψ̄′ασ (τ, ~r). At an intermediate stage of the deriva-
tion, a bosonic Schwinger-Dyson equation (not shown)
is used.

The idea is to eliminate the Fermi-Bose vertex in the
Schwinger-Dyson equation (a) using the Ward-identity

~q

~k

~k+~q

+~q

~k

~k+~q ~k−~p+~q

~k−~p

~p~q

~k

~k+~q

+...=

(b)

(a)
Σ = + +...

Figure 4. (a) Self-consistent perturbation theory for the dis-
order problem. The corresponding expansion of the Fermi-
Bose vertex is shown in (b). Up to second order, it is used to
argue for the validity of the ~q = 0 approximation in the limit
of strong disorder. All internal fermion lines are self-energy
dressed propagators.

(b). Crucially, the Ward-identity requires vanishing
bosonic momentum ~q = 0. Thus, in order to use (b)
in (a), we need to approximate the Fermi-Bose vertex
with its value at ~q=0. Note that we keep ~q everywhere
else in the diagram. This yields Eq. (3).

To motivate the above approximation, note that in
the diagram of Fig. 3(a), we can restrict |~q| = q . 1/ξ
due to the finite range of the bosonic propagator K(~q) ∼
e−q

2ξ2/2. We argue for the validity of the approximation
on the basis of the standard self-consistent expansion of
the disorder self-energy [8], see Fig. 4(a). Comparing
to the Schwinger-Dyson Eq. 3(a), we obtain the ex-
pansion of the Fermi-Bose vertex shown in Fig. 4(b).
Alternatively, the expansion in Fig. 4(b) can be ob-
tained from a Schwinger-Dyson equation for the Fermi-
Bose vertex if the four-fermion vertex is treated pertur-
batively. The bare contribution is a constant and triv-
ially ~q-independent. The next contribution is a diagram
with an internal boson line. The value of the internal
(dressed) fermion propagators is dominant and nearly
constant for momenta with magnitude . 1/γ, where
γ is the length-scale associated to disorder broadening
of the pole; a finite Matsubara frequency ω > 0 only
increases γ. Our approximation is valid in the regime
γ . ξ, which means that the fermionic propagator with
momentum ~k−~p+~q does not change once ~q is set to zero.
It is plausible that this argument holds for all higher or-
der diagrams although we cannot give a general proof.
A priori, the relation between disorder strength W and
γ is not clear, but the condition γ . ξ can be checked
from the result of the SDW approach a posteriori. Note
however, that keeping the full momentum dependence of
G(~k+ ~q) in the diagram of Fig. 3(a) is essential, setting
~q = 0 yields considerably worse results.

Conclusion.—We presented a non-perturbative ap-
proach to calculate disorder averaged quasi-particle
properties beyond SCBA. The SDWA for the self-energy
requires a sufficient broadening of the quasiparticle pole
to control the approximation involved. Systematic im-
provement is possible using a higher level truncation of
the Schwinger-Dyson equations. This extended set may
then be closed by Ward-identities. This should also allow
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for the calculation of conductivities. In contrast to the
numerically expensive KPM, the analytical formulation
of the SDW makes this method amenable for integra-
tion in other, possibly interacting, theories. For future
work, one could try to the apply the SDWA to other
types of disorder with non-trivial Pauli matrix structure
[9, 26] or relax the particle-hole symmetry and isotropy
assumption on the dispersion to study disordered tilted
or anisotropic cones [27, 28]. The SDWA could also be
useful for semimetals with a co-dimension of their Fermi-

surface smaller than d, for example nodal-line semimet-
als in 3d [29].
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Supplemental material

for “Strong disorder in nodal semimetals: Schwinger-Dyson–Ward approach”

WEAK DISORDER IN 2D DIRAC NODE

We now consider weak disorder in a 2d Dirac node. In Fig. 5 we prove by comparison to exact KPM data (blue
dots) that the scaling MR(ω̄ = 0, k̄ = 0) ∼ W−1 exp(−π/W 2) inferred from the 2-loop momentum shell RG flow
equation [18] is correct (green dashed line). This result is obtained from the scale where the RG-flow crosses over
to strong disorder. To the best of our knowledge, this scaling has never been checked numerically. Note that the
RG uses a white-noise disorder correlator which cannot be implemented numerically and is responsible for the ∼
sign above. To obtain converged values of small MR over two orders of magnitude, we chose a discrete disorder
model where the “correlation length” ξ equals the real-space lattice constant a, such that the disorder correlator
ξ = a is not smooth on the lattice scale. Thus, the SDWA formulated for the field-theory limit ξ � a is not directly
applicable. The potential at each site of the real-space lattice is uniformly distributed, V (~r) ∈ [−

√
3W,
√

3W ]. This
yields

∑
~r

〈
V (~r)V (~0)

〉
dis

= 1
2
√

3W

∫ +
√

3W
−
√

3W dU U2 = W 2. We use P = 212 lattice points in both linear directions, such
that a = 2π

P∆k and 60000 moments for convergence of the KPM. We checked that the disorder induced energy scale
MR(ω̄ = 0, k̄ = 0)~v/a is always larger than the finite-size energy scale Efs = ~v∆k.

1.0 1.2 1.4 1.6 1.8 2.0 2.2
1/W2

10 2

10 1

M
R
(

=
0,

k=
0)

KPM
2-loop RG

Figure 5. Imaginary part of the disorder induced retarded self-energy for a 2d Dirac node with discrete disorder as a function
of disorder strength W . The exact KPM data is shown as blue dots, the RG prediction MR ∼ W−1 exp(−π/W 2) with an
appropriate prefactor fitted is shown as a green dashed line.
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THOMAS-FERMI APPROXIMATION FOR STRONG DISORDER

The Thomas-Fermi approximation [20, 22] amounts to approximate the disorder potential as a homogeneous effective
chemical potential term. Then, the disorder averaged Green function is approximated as

GR(ω,~k) =
∫ ∞
−∞

dU P1(U) 1
ω + iη −H0(~k)− U

, (9)

where P1(U) is the one-point distribution function, i.e. the probability that the local potential V (~r1) has the value
U . This probability can be obtained as the expectation value P1(U) = 〈δ (V (~r1)− U)〉dis which can be calculated by
representing the δ-function as an integral over an exponential and subsequently employing the rules for functional
integration over V . The result is

P1(U) =
〈

1
2π

∫ +∞

−∞
dx ei(V (~r1)−U)x

〉
dis

= 1
2π

∫ +∞

−∞
dx e−

1
2x

2〈V 2(~r1)〉
dis
−iUx = 1√

2πK(~0)
e
− U2

2K(~0) , (10)

where K(~0) =
〈
V 2(~r1)

〉
dis

= (2π)−d/2W 2E2
ξ .

We evaluate Eq. (9) for the 2d Dirac case in the helicity basis at ω = 0 and find

GRλ,λ′(ω̄ = 0, k̄)Eξ = −δλ,λ′
π

W

(
erfi
(

λk̄√
πW

)
+ i

)
e−(k̄)2/(πW 2). (11)

Here, erfi(z) is the imaginary error function defined as erfi(z) = erf(iz)/i [17]. With the ansatz

GRλ,λ′(ω̄ = 0, k̄)Eξ = δλ,λ′

−λ
[
k̄ +mR(ω̄ = 0, k̄)

]
− iMR(ω̄ = 0, k̄)

, (12)

we obtain

MR(ω̄ = 0, k̄) = −W
π

ek̄
2/(πw2)

erfi2
(

k̄√
πW

)
+ 1

= −W
π

+ (4− π)k̄2

Wπ3 +O(k̄3), (13)

mR(ω̄ = 0, k̄) = −k̄ + W

π

ek̄
2/(πw2)erfi

(
k̄√
πW

)
erfi2

(
k̄√
πW

)
+ 1

= −(1− 2/π2)︸ ︷︷ ︸
'0.8

k̄ +O(k̄2). (14)

DETAILS ON THE SDWA FOR 3D WEYL AND PARABOLIC 2D SEMIMETAL

For the 3d Weyl node with H0(~k) = ~v(σxkx + σyky + σzkz) we consider the self-energy ansatz

Σ(~k, iω)/Eξ =m(ω̄, k̄)
[
sin θ̄

(
σx cos φ̄+ σy sin φ̄

)
+ σz cos θ̄

]
+ iM(ω̄, k̄). (15)

Upon insertion into Eq. (3) we find that Eqs. (5) and (6) remain valid, but with the replacements {J0, J1} →
{Jw0 , Jw1 } where {

Jw0 (ω̄, k̄)
Jw1 (ω̄, k̄)

}
=
∫ ∞

0
dq̄

{
k̄q̄ sinh(k̄q̄)M̃(ω̄, q̄)[

k̄q̄ cosh(k̄q̄)− sinh(k̄q̄)
]
m̃(ω̄, q̄)

}
e−(q̄2+k̄2)/2/(2π2k̄2)
m̃2(ω̄, q̄) + M̃2(ω̄, q̄)

. (16)

In addition, the initial conditions are modified to M(ω̄max, k̄) = −W 2(2π)−3/2/ω̄max and m(ω̄max, k̄) = 0.
For the 2d parabolic semimetal, described by the clean Hamiltonian H0(~k) = ~2k2

m [σx cos(2φ) + σy sin(2φ)] we use
the self-energy ansatz

Σ(~k, iω)/Eξ = m(ω̄, k̄)
[
σx cos(2φ̄) + σy sin(2φ̄)

]
+ iM(ω̄, k̄). (17)

We arrive at Eqs. (5) and (6) with the redefinition m̃(ω̄, k̄) = k̄2 +m(ω̄, k̄) and the replacements {J0, J1} → {Jp0 , J
p
1 },

where {
Jp0 (ω̄, k̄)
Jp1 (ω̄, k̄)

}
=
∫ ∞

0
dq̄

{
M̃(ω̄, q̄)I0(k̄q̄)
m̃(ω̄, q̄)I2(k̄q̄)

}
q̄e−(q̄2+k̄2)/2/(2π)
m̃2(ω̄, q̄) + M̃2(ω̄, q̄)

. (18)

The initial conditions are the same as in the 2d Dirac case, M(ω̄max, k̄) = − W 2

2πω̄max and m(ω̄max, k̄) = 0.
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DETAILED DERIVATION OF THE SCHWINGER-DYSON-WARD APPROXI-
MATION

Within the following derivation, we mostly stick to the conventions and definitions of Ref. [12].

A. Preliminaries

For a given disorder realization V (~r), the generating functional for fermionic imaginary-time Green functions is
given by

ZV [η̄, η] =
∫
Dψ̄Dψ e−SV [ψ̄,ψ]+(η̄,ψ)+(ψ̄,η), (19)

where SV
[
ψ̄, ψ

]
is the Euclidean action of the system in the presence of the disorder field V

SV
[
ψ̄, ψ

]
= S0

[
ψ̄, ψ

]
+
∑
σ

∫
~r,τ

ψ̄σ (~r, τ)V (~r)ψσ (~r, τ) . (20)

The index σ plays the role of a pseudo-spin, which is necessary to describe a two band model. Its clean part, S0
[
ψ̄, ψ

]
,

derives from the Hamiltonian H0(~k = −i~~∇) as follows [14, 25]

S0
[
ψ̄, ψ

]
=
∑
σσ′

∫
~r,τ

ψ̄σ (~r, τ)
[
∂τ +H0(−i~~∇)

]
σσ′

ψσ′ (~r, τ) . (21)

For the source terms, involving the Grassmann-valued fields η and η̄, we used the compact scalar product notation
(ψ̄, η) ≡

∑
σ

∫
~r,τ

ψ̄σ (~r, τ) ησ (~r, τ). The n-point Green functions at a fixed disorder field configuration can then be
obtained as an n-fold functional derivative of ZV with respect to the sources. For the two-point Green function, for
example, we have

GV,σσ′ (~r, τ ;~r′, τ ′) = −
〈
ψσ(~r, τ)ψ̄σ′(~r′, τ ′)

〉
= 1
ZV [0, 0]

δ2ZV [η̄, η]
δη̄σ(~r, τ) δησ′(~r′, τ ′)

∣∣∣∣
η=η̄=0

. (22)

Note the appearance of the V -dependent normalization ZV [0, 0]. The connected n-point Green functions at fixed
disorder configuration are defined as the n-fold derivative of the connected functional GV [η̄, η] = lnZV [η̄, η], just as
usual. Since our theory is non-interacting, the only non-vanishing connected correlator is the two-point function (22).
Since we are not interested in one particular disorder realization, but in a statistical ensemble of disorder potentials,
we have to perform an ensemble average. To this end, one has to specify the statistical properties of the ensemble,
which are summarized in a probability distribution P [V ]. Here, we choose the Gaussian probability distribution

P [V ] = N exp
(
−1

2

∫
~r,~r′

V (~r)K−1(~r − ~r′)V (~r′)
)
, (23)

where K−1 (~r − ~r′) is the distributional inverse of the fundamental disorder correlator 〈V (~r)V (~r′)〉dis = K (~r − ~r′),
and N is a normalization constant. The disorder average of a general quantity Q[V ] is then defined as 〈Q〉dis =∫
DV Q[V ]P [V ]. To obtain disorder averaged correlation functions one would have to either average each n-point

function individually, or average the normalized generating functional (19), that is 〈ZV [η̄, η]/ZV [0, 0]〉dis, which
would serve as the generating functional of disorder averaged Green functions. However, due to the V -dependent
normalization ZV [0, 0] in the denominator, it is not possible to naively perform the disorder average.
To circumvent this problem and get rid of the denominator there are three possibilities [25]: (1) work in real time

using the Keldysh technique; (2) rewrite the denominator as a bosonic Gaussian integral, a technique known as
supersymmetry method; or (3) “replicate the system” and perform an analytical continuation to zero replicas at the
end. Here, we choose the latter option. The trick is to rewrite the connected functional GV [η̄, η] as follows

GV [η̄, η] = lnZV [η̄, η] = lim
R→0

1
R

(
eR lnZV [η̄,η] − 1

)
= lim
R→0

1
R

(
ZRV [η̄, η]− 1

)
, (24)

which allows us to perform the disorder average. The disorder averaged replicated partition function then reads

ZR [η̄, η] ≡
〈
ZRV [η̄, η]

〉
dis

=
∫
Dψ̄αDψαDV exp

(
−SR[ψ̄α, ψα, V ] +

R∑
α=1

(η̄, ψα) +
R∑
α=1

(ψ̄α, η)
)
, (25)
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with the replicated action SR[ψ̄α, ψα, V ] ≡
∑R
α=1 SV [ψ̄α, ψα] + 1

2
∫
~r,~r′

V (~r)K−1(~r − ~r′)V (~r′). Note that there is
only a single source for all replicas and only a single disorder potential coupling identically to the replica bilinears
in SV [ψ̄α, ψα]. In the standard treatment one would integrate out the disorder field to obtain a quartic pseudo-
interaction term for the fermions [25], but here we take another path. Instead of performing the bosonic Gaussian
integral, we consider a generalization of Eq. (25), where a bosonic source J coupling to V is introduced and where
the fermionic sources now carry a replica index as well

ZR [η̄, η]→ ZR [η̄α, ηα, J ] =
∫
Dψ̄αDψαDV exp

(
−SR

[
ψ̄α, ψα, V

]
+

R∑
α=1

(η̄α, ψα) +
R∑
α=1

(ψ̄α, ηα) + (J, V )
)
. (26)

Introducing the super-field vector Φ = (ψα, ψ̄α, V ), the super-source vector J = (η̄α,−ηα, J), and the scalar product
(J,Φ) =

∑R
α=1(η̄α, ψα) +

∑R
α=1(ψ̄α, ηα) + (J, V ), we can write this new functional in the compact form ZR [J] ≡∫

DΦ exp (−SR [Φ] + (J,Φ)). Putting everything together we find the disorder averaged connected Green function

〈GV,12〉dis =
〈
δ2 lnZV [η̄, η]

δη̄1δη2

∣∣∣∣
η̄=η=0

〉
dis

(24)−(26)= lim
R→0

1
R

R∑
α=1

δ2ZR [J]
δη̄α1 δη

α
2

∣∣∣∣
J=0
≡ lim
R→0

1
R

R∑
α=1

Gαα12 . (27)

Here, the numerical indices 1 and 2 are a compact notation, which include space, imaginary-time and pseudo-spin
indices. In the following we consider a finite number of replicas R – the replica limit will only be taken at the end of
the calculation – and compute Gαα12 = δ2ZR[J]

δη̄α1 δη
α
2

∣∣
J=0 = −

〈
ψα1 ψ̄

α
2
〉
SR

. The subscript at the average is just a reminder
that it has to be performed with respect to the replicated action SR in Eq. (26).

B. Schwinger-Dyson equations

As is well-known, in classical field theory the equations of motions follow from a least action principle. Its
generalization to quantum field theories and the corresponding quantum equations of motion follow from a functional
analog of the fundamental theorem of calculus, stating that the functional integral over a total derivative vanishes
[11, 12]

0 =
∫
DΦ δ

δΦi
e−SR[Φ]+(J,Φ) =

∫
DΦ

(
−δSR
δΦi

+ ζiJ i
)
e−SR[Φ]+(J,Φ) ≡

〈
−δSR
δΦi

+ ζiJ i
〉

J
. (28)

Here, the index i encompasses space, imaginary time, the discrete pseudo-spin index as well as the super-field
component, see our definition above. Furthermore, ζi is a statistical factor, which is −1 for a fermionic source and
+1 for a bosonic one, and the subscript J at the functional average indicates that it has to be performed in the
presence of the source fields. We can rewrite these expectation values as functional differential equations by replacing
the Φ-dependence of δSRδΦi

with their corresponding source-derivatives(
−δSR
δΦi

[
δ

δJ

]
+ ζiJ i

)
ZR [J] = 0. (29)

This set of equations is known as Schwinger-Dyson equations and they serve as master equations, which can be
functionally differentiated to obtain an infinite hierarchy of coupled integral equations for the one-particle irreducible
vertex functions.
To obtain such equations one has to switch to the connected functional GR[J] = lnZR[J], and perform a Leg-
endre transformation to the effective action LR[Φ] = −GR[J] + (J,Φ). Here, the super-field vector Φ is the
quantum expectation value Φ = δGR[J]

δJ in the presence of the source fields J. It shall not be confused with
the integration variables in Eqs. (26) and (28). Following Ref. [12], we write LR[Φ] = S0[Φ] + ΓR[Φ], where
S0[Φ] ≡

∑R
α=1 SV=0[ψ̄α, ψα] + 1

2
∫
~r,~r′

V (~r)K−1(~r − ~r′)V (~r′) is the bare quadratic action and ΓR[Φ] is the generat-
ing functional of one-particle irreducible vertex functions, or vertex functional for short. As a result, we find the
Schwinger-Dyson equations in the form

δΓR[Φ]
δψ̄ασ (~r, τ)

= V (~r)ψασ (~r, τ) + δ2GR[J]
δJ(~r)δη̄ασ (~r, τ) , (30)

δΓR[Φ]
δψασ (~r, τ) = −ψ̄ασ (~r, τ)V (~r) + δ2GR[J]

δηασ (~r, τ)δJ(~r) , (31)

δΓR[Φ]
δV (~r) =

R∑
α=1

∑
σ

∫
τ

ψ̄ασ (~r, τ)ψασ (~r, τ)−
R∑
α=1

∑
σ

∫
τ

δ2GR[J]
δηασ (~r, τ)δη̄ασ (~r, τ) . (32)
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On the right hand side, the second functional derivatives of GR still have to be replaced by second functional
derivatives of ΓR, using the inversion relation between the Hesse matrices of GR and LR, see Refs. [12, 14]. This
substitution eliminates the remaining source field dependence, but it leads to rather complex expressions. For this
reason we leave the above equations in this compact mixed form. To obtain the infinite hierarchy of integral equations
for the one-particle irreducible vertex functions as advertised above, one has to expand the vertex functional ΓR in
a Taylor series in terms of fields, insert the expression on the left and right hand sides and compare coefficients.
Alternatively one may simply apply a corresponding amount of field derivatives δ

δΦ to the above set of equations and
set the sources J to zero afterwards. When the sources J are set to zero, the fields in ΓR are set to their possibly
finite expectation value Φc = Φ|J=0 = δG[J]

δJ

∣∣
J=0 [12]. (In the present case only the bosonic field may develop a finite

expectation value.) In the Taylor expansion of ΓR one should account for that fact by expanding around Φ = Φc,
instead of Φ = 0, such that the vertex functions are defined as field-derivatives of ΓR evaluated at Φ = Φc.
The Schwinger-Dyson equation for the fermionic self-energy, which is defined by Σ12 = −δ2ΓR/δψ̄1δψ2|Φ=Φc , may

be obtained from Eq. (30) after applying the derivative δ
δψ . A short calculation yields the following equation in

Fourier space

Σαασ1σ2

(
iω,~k

)
= δσ1,σ2K(0)

R∑
β=1

∑
σ

∫
~k′,ω′

Gββσσ(iω′,~k′)

−
∑
σ

∫
~q

F (~q) δ3Γ
δψ̄ασ1

(iω,~k)δψασ (iω,~k + ~q)δV (−~q)

∣∣∣∣
Φ=Φc

Gαασσ2
(iω,~k + ~q), (33)

with
∫
~q

=
∫

ddq
(2π)d . The term in the first line, involving a closed fermion loop and the bare disorder propagator at

vanishing momentum, is the Hartree contribution to the self-energy. It represents the influence of a finite expectation
value of V on the fermions, and has been obtained by employing Eq. (32) at J = 0. The term in the second
line represents the Fock exchange self-energy, where the third derivative of ΓR is the full Fermi-Bose three vertex.
Furthermore, Gαασ1σ2

(iω,~k) and F (~q) are the full fermionic and bosonic propagators, respectively. The former involves
the fermionic self-energy, which makes Eq. (33) a self-consistency equation, while the latter involves the bosonic self-
energy – polarization bubbles, for which there exists a separate equation, that derives from Eq. (32) after applying
δ
δV . We emphasize that the closed fermion loops in the Hartree term and the polarization bubbles are finite prior
to taking the replica limit. They only vanish in the replica limit, which we will discuss at the end, see Sec. D.
Anticipating the replica limit, Eq. (33) is depicted in Fig. 3(a).

C. Ward identity

According to Noether’s theorem a continuous symmetry in a classical field theory leads to conservation laws. In a
quantum field theory such symmetries lead to Ward identities, which connect various vertex functions to one another
[12]. In the present case the fermions obey a global U(1)⊗R symmetry, which formally expresses the fact that the
particle number for each replica is conserved. To obtain a relation between different correlation functions we have to
consider a local U(1)⊗R symmetry transformation

ψασ (τ, ~r) = e+iAα(τ)ψ′ασ (τ, ~r), ψ̄ασ (τ, ~r) = ψ̄′ασ (τ, ~r)e−iA
α(τ). (34)

(Here, we took the phase field Aα to be local in imaginary time only. Spatial locality is not relevant, but could be
incorporated without problems.) This transformation leads to an additional term in the action,

SR
[
ψ̄α, ψα, V

]
= SR

[
ψ̄′α, ψ′α, V

]
+
∑
σ

∫
~r,τ

ψ̄′ασ (τ, ~r) {∂τ iAα(τ, ~r)}ψ′ασ (τ, ~r), (35)

but it leaves the functional integral measure and the partition function itself invariant. As a consequence of the latter
fact we obtain the following relation

0 =
∫
DΦ

(
e(η̄,ψ)+(ψ̄,η) − e−

∑
σ

∫
~r,τ

ψ̄ασ (τ,~r)
{
∂τ iA

α(τ,~r)
}
ψασ (τ,~r)+(η̄,eiAψ)+(ψ̄e−iA,η)

)
e−SR[Φ]+(J,V ). (36)

Considering only an infinitesimal phase transformation this identity becomes

0 =
〈

R∑
α=1

∑
σ

∫
~r,τ

(
− ψ̄ασ (τ, ~r)

{
∂τA

α(τ)
}
ψασ (τ, ~r) + η̄ασ (τ, ~r)Aα(τ)ψασ (τ, ~r)− ψ̄ασ (τ, ~r)Aα(τ)ηασ (τ, ~r)

)〉
J

. (37)
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The phase field Aα may be eliminated entirely by taking the derivative δ
δAα(τ) . After performing a Fourier transform

we find

0 =
〈∑

σ

∫
~k,ω

(
iνψ̄ασ (iω + iν,~k)ψασ (iω,~k) + η̄ασ (iω + iν,~k)ψασ (iω,~k)− ψ̄ασ (iω + iν,~k)ηασ (iω,~k)

)〉
J

. (38)

Performing the same steps as in the previous section, that is, write the above equation as a functional differential
equation for ZR, switch to GR and finally perform a Legendre transform, we find

∑
σ

∫
~k,ω

{
iν

δ2GR [J]
δηασ (iω + iν,~k)δη̄ασ (iω,~k)

+ δΓR
δψασ (iω + iν,~k)

ψασ (iω,~k) + ψ̄ασ (iω + iν,~k) δΓR
δψ̄ασ (iω,~k)

}
= 0. (39)

Once again, the second functional derivative of GR should be replaced by second functional derivatives of ΓR. In
analogy to the Schwinger-Dyson equations found above one may obtain the symmetry relations between different
vertex functions by applying derivatives with respect to the fields.
Here, we want to obtain a relation between the fermionic self-energy and the Fermi-Bose three-vertex. To this end,
we divide Eq. (39) by iν, sum over the replica index and apply the derivative δ2/δψ̄ασ1

(iω + iν,~k)δψασ2
(iω,~k). In the

limit ν → 0, we find

δ2

δψ̄ασ1
(iω + iν,~k)δψασ2

(iω,~k)

R∑
β=1

∑
σ

∫
~k′,ω′

δ2GR [J]
δηβσ(iω′,~k′)δη̄βσ(iω′,~k′)

=lim
ν→0

1
iν

[
δ2ΓR

δψ̄ασ1
(iω + iν,~k)δψασ2

(iω + iν,~k)
− δ2ΓR
δψ̄ασ1

(iω,~k)δψασ2
(iω,~k)

]
+ · · · . (40)

The remaining terms, indicated as dots “· · · ”, vanish after the sources have been set to zero. Next, we need to invoke
the Fourier transformed bosonic Schwinger-Dyson equation (32) at vanishing boson momentum ~q = 0 and insert it
into the left hand side of Eq. (40) to replace the second functional derivative of GR. Finally, we set the source fields
to zero, which yields the Ward-identity presented in Fig. 3(b) of the main text

− δ3ΓR
δψ̄ασ1

(iω,~k)δψασ2
(iω,~k)δV (0)

∣∣∣∣
Φ=Φc

= δσ1,σ2 − lim
ν→0

1
iν

[
Σαασ1σ2

(iω + iν,~k)− Σαασ1σ2
(iω,~k)

]
= δσ1,σ2 − ∂iωΣαασ1σ2

(iω,~k). (41)

D. Replica limit

To make use of the Ward identity (41) within the Schwinger-Dyson equation (33), we have to make the crucial
approximation

δ3ΓR
δψ̄ασ1

(iω,~k)δψασ2
(iω,~k + ~q)δV (−~q)

∣∣∣∣
Φ=Φc

−→ δ3ΓR
δψ̄ασ1

(iω,~k)δψασ2
(iω,~k)δV (0)

∣∣∣∣
Φ=Φc

, (42)

whose range of validity has been discussed in the main text. Within this approximation the self-energy (33) becomes

Σαασ1σ2

(
iω,~k

)
= δσ1,σ2K(0)

R∑
β=1

∑
σ

∫
~k′,ω′

Gββσσ(iω′,~k′) +
∑
σ

∫
~q

F (~q)
[
δσ1,σ − ∂iωΣαασ1σ(iω,~k)

]
Gαασσ2

(iω,~k + ~q). (43)

The physical self-energy is given by the replica limit Σ = lim
R→0

1
R

∑R
α=1 Σαα. In this limit the Hartree term vanishes,

since it comes with an excess factor of R. (Note that the Hartree self-energy for a single replica α already contains a
summation over a replica index β, and thus is proportional to R.) Likewise, the bosonic self-energy, which involves
internal fermion loops as well, vanishes, such that the full bosonic propagator F (~q) is replaced by the bare propagator
K(~q). Thus, we arrive at Eq. (3) of the main paper,

Σσ1σ2

(
iω,~k

)
=
∑
σ

∫
~q

K (~q)
[
δσ1,σ − ∂iωΣσ1σ(iω,~k)

]
Gσσ2(iω,~k + ~q). (44)
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