
FREIE UNIVERSITÄT BERLIN

EFFICIENT MULTI-SCALE SAMPLING METHODS
IN STATISTICAL PHYSICS

Luigi Sbailò

Dissertation
zur Erlangung des Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
am Fachbereich Mathematik und Informatik

der Freien Universität Berlin

Berlin, 2019

Luigi Sbailò, Efficient multi-scale sampling methods in statistical physics,
PhD thesis, FU Berlin, 2019.

Betreuer:
Prof. Dr. Frank Noé
Freie Universität Berlin
Fachbereich Mathematik und Informatik
Arnimallee 6
14195 Berlin

Gutachter:
Prof. Dr. Frank Noé, FU Berlin
Dr. Max von Kleist, Robert Koch Institut

Tag der Disputation:
19 Dezember 2019

Abstract

Computer simulations, with the aid of physical modeling, have
enabled us to reproduce complex biological processes with steadily
increasing level of detail. The different biological components are
modeled as objects whose physical interactions are known, then the
evolution of the system is evaluated numerically in accordance with
the laws of physics. From a partial and fragmented knowledge of a
biological system that is acquired with experimental techniques, it
is then possible to reconstruct computationally the full picture, and
predict states of the system that would not be accessible experimentally.
Results that have been achieved are already numerous, spanning from
the microscopic reproduction of protein-protein association [Plattner
et al. - Nature Chemistry, 2017] to the mesoscopic spatio-temporal def-
inition of metabolic networks [K. Takahashi et al. - PNAS, 2010], and
promises are even greater. Detailed simulations can indeed facilitate
the comprehension of many protein misfolding diseases, as Alzheimer’s
disease, and can give a core contribution in the construction of a
synthetic cell. The field of computational biology is, in fact, in rapid
expansion. This growth is being boosted by the continuous increase
in computational power and technological advances in experimental
biology, and results that few years ago seemed unreachable are now
within our reach. Computational resources and biological knowledge
currently available are incredibly vast, but the complexity of biological
systems is also enormous. In fact, the most ambitious goals in this
field demand a scrupulous and efficient consumption of the computa-
tional power required for simulations. The impact of the development
of algorithms computationally efficient becomes, in this context, as
relevant as never before.

This thesis deals with the development and formalization of algo-

v

rithms designed for an efficient simulation of biological systems. This
work is separated into two different parts, and in each part a different
algorithm is investigated. In the first part of the thesis, an algorithm
that is used to simulate biological systems at the mesoscopic scale is
outlined. The aforementioned algorithm is studied in detail, and several
improvements, theoretical, algorithmic and technical, are presented.
In the second part of the thesis, a novel sampling method is outlined,
which uses deep-learning to accelerate the computation of equilibrium
properties of systems defined with atomistic detail. The two parts lead
to applications at different scales, and, in the future, methods and
concepts developed in this thesis can be useful for the investigation of
biological processes defined with mesoscopic or microscopic detail.

vi

Zusammenfassung

Diese Arbeit beschäftigt sich mit der Entwicklung und Formal-
isierung von Algorithmen zur effizienten Simulation biologischer Sys-
teme. Die Arbeit ist in zwei Teile gegliedert und in jedem Teil wird ein
anderer Algorithmus untersucht. Im ersten Teil der Arbeit wird ein
Algorithmus vorgestellt, mit dem biologische Systeme im mesoskopis-
chen Maßstab simuliert werden. Dieser Algorithmus wird im Detail
analysiert und es werden verschiedene theoretische, algorithmische
und technische Verbesserungen vorgestellt. Im zweiten Teil der Ar-
beit wird eine neuartige Methode zur Erzeugung von Stichproben
vorgestellt, welche mithilfe von Deep-Learning die Berechnung von
Gleichgewichtseigenschaften von Systemen mit atomistischen Details
beschleunigt. Die beiden Teile führen zu Anwendungen in unter-
schiedlichen Maßstäben. In Zukunft können die in dieser Arbeit en-
twickelten Methoden und Konzepte für die Untersuchung biologischer
Prozesse nützlich sein, die in mesoskopischen oder mikroskopischen
Details definiert sind.

vii

Luigi Sbailò�

viii

" You may be sure this starts with atoms; they are what provide
The base of this unrest. For atoms are moving on their own,
Then small formations of them, nearest them in scale, are thrown
Into agitation by unseen atomic blows,
And these strike slightly larger clusters, and on and on it goes -
A movement that begins on the atomic level, by slight
Degrees ascends until it is perceptible to our sight,
So that we can behold the dust-motes dancing in the sun,
Although the blows that move them can’t be seen by anyone."

(Lucretius - De Rerum Natura)

Translation by E. Stallings, Penguin UK, (2007)

x

Publications

Parts of this thesis have been published or are in preparation for
publication:

• L. Sbailò, and F. Noé. (2017) An efficient multi-scale Green’s
function reaction dynamics scheme. J. Chem. Phys. 147, 184106;
https://doi.org/10.1063/1.5010190.

• L. Sbailò, and L. Delle Site. (2019) On the formalization of
asynchronous first passage algorithms. J. Chem. Phys. 150,
134106; https://doi.org/10.1063/1.5083147.

• L. Sbailò, M. Dibak, and F. Noé. (2019) Neural Mode Jump
Monte Carlo. Arxiv:1912.05216 (submitted).

xi

xii

Contents

1 Introduction 1

I Mesoscopic Scale 7

2 Modeling the motion of mesoscopic particles 9
2.1 Langevin Equation . 10
2.2 Multi-scale problem . 14
2.3 Einstein equation . 15
2.4 Combining Langevin integration and Einstein diffusion 18

3 MD-GFRD 19
3.1 Event-based propagation of freely diffusing particles . . 20
3.2 Algorithm outline . 22

4 Efficiency in MD-GFRD 27
4.1 Domain making scheme and minimal domain size . . . 28

4.1.1 MD-GFRD . 29
4.1.2 New domain-making scheme 31
4.1.3 New scheme for minimal domain size 36
4.1.4 α-values in minimal domain size 39

4.2 Results . 39
4.2.1 Efficiency comparisons of different MD-GFRD

schemes and direct Brownian dynamics 43

xiii

Contents

4.2.2 Minimization of the domain burst frequency . . 44
4.2.3 Large particle numbers 45

5 First passage schemes 47
5.1 Derivation of the first exit-time probability distribution 48
5.2 Sampling particle position before domain escape 51
5.3 Exit-time conditions on the position distribution proba-

bility . 53

6 Efficient sampling in first passage schemes 61
6.1 Sampling probability distributions with a root finding

algorithm . 62
6.2 Inflection point in the time cumulative function 67
6.3 Inflection point in the position cumulative function . . 68
6.4 Numerical convergence 71

II Atomistic Scale 77

7 Markov chain Monte Carlo 79
7.1 Sampling equilibrium distributions 81
7.2 Brute-force sampling of multidimensional probability

distributions . 82
7.3 Metropolis-Hastings algorithm 83

8 Neural Mode Jump Monte Carlo 89
8.1 Theory . 92
8.2 Constructing bijective functions with deep neural networks 95
8.3 Deep neural networks training 98
8.4 Results . 100

9 Conclusion and Outlook 105

xiv

Chapter 1

Introduction

Latest technological advances in super-resolution microscopy have
enabled us to probe intracellular structures with unprecedented reso-
lutions, and this has permitted quantitative measurements of single-
molecule localization [1][2][3][4]. However, the experimental investi-
gation of the spatio-temporal correlations of molecules in biological
processes is challenging, but many cellular functions can be explained
only in terms of the temporal succession of molecular interactions
and the exact position where interactions take place [5][6][7][8]. For
example, detailed spatio-temporal definition of molecular interactions
is crucial for modeling signaling pathway, where an external stimulus
on a microscopic receptor triggers a cascade of chemical reactions that
ultimately generates a macroscopically observable output [9][10][11]. A
biochemical cascade can be reproduced as a particle-based reaction dy-
namics (PBRD) system where each relevant biomolecule is represented
as a particle. The concerted motion of particles in PBRD simula-
tions allows to explain the mechanisms through which information is
processed in biochemical networks and to study the kinetics of the
investigated system.

PBRD is one of the most detailed types of simulation [12][13][14].
In contrast to other approaches to simulate molecular kinetics, as

1

Chapter 1. Introduction

concentration-based approaches or Gillespie’s dynamics [15][16], the
trajectory of all interacting particles is resolved, providing a reaction
kinetics model with high spatio-temporal detail. However, cells contain
an enormous number of molecules, and reaching biologically relevant
time scales with detailed simulations of this number of particles re-
mains challenging even with the most powerful processors. Hence, an
approximation is required, and only the motion of larger, or mesoscopic,
biomolecules is simulated, while the contribution of smaller molecules
is approximated as an average effect. At the mesoscopic scale, par-
ticles diffuse according to the Langevin equation (see section 2.1 for
a more detailed discussion). Particle motion is then integrated from
a brute-force discretization of the Langevin equation, and whenever
particles get close to each other, reactions can happen.

PBRD simulations have already seen many applications to bio-
chemical networks (some representative examples can be found in Refs.
[17][18][19][20]), and there is a wide range of simulation tools for PBRD
[21][22], including ReaDDy [23], Smoldyn [24], MCell [25], Cell++ [26],
eGFRD [8], mesoRD [27], spatiocyte [28], SpringSaLaD [29], and SR-
Sim [30]. However, an evident drawback for detailed simulations like
PBRD is the heavy computational effort that is required to simulate
the full dynamics of all tracked particles. This problem is particularly
evident when dilute systems are simulated, where the time particles
require to encounter each other can be long, and investigating the
reaction kinetics of the system becomes computationally demanding.
Indeed, in this case, most of the computational time is dedicated to
the simulation of free diffusion of particles, while only a fraction of
it is dedicated to particle interactions. The reason for this is given
by the difference between the time scale of reactions and the time
that molecules need to find each other when freely diffusing. The
exact dynamics of particles during free diffusion is not particularly
interesting, while it is critical to know the exact position and time

2

where interactions take place. It would be ideal to skip irrelevant
computations during free particle diffusion to instead dedicate com-
putational resources for molecular reactions. This, in fact, is the crux
idea of Molecular Dynamics - Green’s Function Reaction Dynamics
(MD-GFRD) [31], which is a multi-scale PBRD algorithm that gener-
ates large spatio-temporal displacements of free particles by computing
the exact position and time where the next molecular interaction takes
place.

MD-GFRD is an asynchronous algorithm that alternates event-
based particle propagations over long time scales and local time-driven
particle interactions. Asynchronous event-based particle propagations
avoid detailed simulation of the free diffusion, and computational
time is mainly dedicated to the time-driven integration of particle
interactions. While synchronous time-driven PBRD simulations treat
reactions and free diffusion within the same integration scheme, i.e.
time discretization of the Langevin equation, MD-GFRD separates
the two processes. This distinction allows for the incorporation of a
variety of effects during reactions, which are relevant at the molecular
level. Not only can reactions be defined with a basic binary reaction
scheme [32], but can also include anisotropic reactions [33][34], or
interaction potentials [14], and would be a natural place to include
the dynamics simulated by kinetic models obtained from all-atom
MD, e.g., Markov State Models (MSMs) [35][36][37][38][39] or multi-
ensemble Markov models (MEMMs) [40][41]. Differently, isolated non-
interacting particles are displaced with an event-based propagation.
This is attained with the construction of protective domains around
free particles, then first exit-times from the domains are computed and
particles are placed onto the domain borders at the sampled times.
Each domain contains only one particle, the underlying stochastic
dynamics are then analytically tractable and it is possible to solve the
relative first exit-time problem. MD-GFRD algorithm has been proven

3

Chapter 1. Introduction

to be several orders of magnitude faster than brute-force time-driven
integrations [31][33].

In the first part of this thesis, MD-GFRD is explained from an
algorithmic and theoretical perspective. It is shown that the criteria
used to select the size of protective domains are relevant for compu-
tational performance. A new scheme for the domain size selection
is proposed, and it is shown that it provides a tenfold improvement
in computational performance. Subsequently, the probability distri-
bution describing the particle position within protective domains is
derived analytically. In MD-GFRD, particle position might be updated
prematurely before escaping the domain, and the effects of exit-time
boundary conditions on the position sampling are investigated. It is
demonstrated that exit-time boundary conditions can be ignored only
under specific conditions, and the formalization of the algorithm is
put on a more solid theoretical ground. Finally, an efficient method to
effectively sample the probability distributions used in MD-GFRD is
presented.

The second part of this thesis deals with Markov chain Monte Carlo
(MCMC), a powerful and versatile method, also considered one of the
10 most important algorithms in the twentieth century [42]. MCMC
methods are used to sample probability distributions by constructing
Markov chains that, under specific conditions, asymptotically sample
the equilibrium distribution [43]. Possible applications are wide and
extend to all stochastic systems, naturally also including biological
systems. Statistical mechanics can indeed be used to explain processes
that take place at the molecular and cellular level in biology, allowing
for a stochastic description of these processes. Each component of the
system is described as a different atom, and a certain probability is
associated to every possible configuration of the atoms. Macroscopic
properties are then evaluated from a representative sample of the micro-
scopic configurations of the system. MCMC methods are rather simple

4

to implement, that have also contributed to increasing their popularity
and range of applications. However, these methods suffer from the
curse of dimensionality, because, as dimensionality is increased, the
fraction of physically meaningful microscopic configurations becomes
vanishingly small within the configuration space. Local MCMC can be
used to explore locally relevant conformations of the system, but this
approach generates highly correlated samples, and many samples are
required before convergence to equilibrium is reached. In this thesis,
a novel MCMC method - neural mode jump Monte Carlo (neural
MJMC) - is presented. This method makes use of deep learning to
accelerate convergence of the Markov chain, and it is combined with
local MCMC to preserve statistical consistency. It is then applied to a
non-trivial multi-dimensional distribution, and it is shown that this
method increases the generation rate of independent samples by many
orders of magnitude with respect to local MCMC. Neural MJMC is
general and transferable, and can be applied to any stochastic system.

5

Part I

Mesoscopic Scale

7

Chapter 2

Modeling the motion of
mesoscopic particles

Complex biological functions in living organisms are explainable in
terms of the coordinated interaction of elementary microscopic compo-
nents. Microscopic elements in biological organisms are biomolecules,
which carry different and specific functionality, and their sizes span
different orders of magnitude in length. Proteins are large biomolecules,
and they play a fundamental role in living organisms being involved in
essentially every aspect of cellular life. The functions of proteins are
various, and are mainly determined by their structure. For example,
proteins are responsible for signal transduction in living organisms. A
sequence of protein interactions permits an external signal to be trans-
mitted through a cell, which ultimately results in a cellular response.
Cells contain an enormous number of molecules, but signal transduc-
tion, as many other biological functions, can be cast in a simplified
model, where only protein interactions are relevant to describe the
mechanisms through which information is processed. Proteins diffuse
in a bath of smaller microscopic molecules whose exact motion is not
relevant and, when close to each other, interact. Their interaction
triggers a succession of events that finally produces a macroscopically

9

Chapter 2. Modeling the motion of mesoscopic particles

observable result.
We aim to reproduce in detail the aforementioned processes through

computer simulations. Assuming that particle-particle interaction is
known and is expressible as an interaction potential, the dynamics
of particles are described by Newton’s equations. Computers are a
natural tool to facilitate the integration of particle dynamics, but
even the most powerful processors must cope with limiting factors
due to the number of particles to be simulated. Models of biological
systems can include trillions of different particles, and a numerical
solution of systems of this size is clearly computationally unfeasible.
Hence, simplifications based on physically reasonable assumptions are
required. A reasonable modeling assumption is then to ignore the exact
dynamics of microscopic particles, and to consider their contribution
as an average effect on the dynamics of larger mesoscopic particles.
The name mesoscopic (from ancient Greek µεσoζ - middle) is used
to designate particles much larger than microscopic particles, which
are treated as a bath, but not large enough to be macroscopically
observable. The Langevin equation is perfectly suited for this purpose.

2.1 Langevin Equation

Each molecule in the system is modeled as a spherical particle, and
the interaction between particle i and particle j is reproduced with an
interaction potential Vij(rij, t), where rij is the distance between the
particles. The motion of particle i is described by Newton’s second
equation

m
d~vi(~xi, t)

dt
=

Nmicro∑
j

~Fij(rij, t), (2.1)

where the force ~F ij(rij, t) is derived from an interaction poten-
tial ~F (ij)(~rij, t) = −~∇Vij(rij, t), and the sum is iterated over all

10

2.1. Langevin Equation

Figure 2.1: Langevin equation is used to describe the motion of
mesoscopic particles (grey particles) diffusing in a bath of microscopic
particles (blue particles). Biological systems can contain en enormous
number of microscopic particles, and solving numerically their motion
is often computationally unfeasible. The main assumption of the
Langevin equation is that the dynamics of microscopic particles are not
numerically integrated, but their contribution is treated as a stochastic
effect on the motion of mesoscopic particles.

j = 1, . . . , Nmicro particles within interaction distance. The core as-
sumption in the Langevin equation is that only the interaction between
mesoscopic particles is resolved (see Fig. 2.1), while the contribution
of microscopic particles is treated as an average effect

m
d~vi(t)
dt

= ~Fmicro(~xi, t) +
Nmeso∑
j

~Fij(rij, t), (2.2)

where ~Fmicro(t) is the resulting force exerted by all microscopic
particles on the mesoscopic particles, and Nmeso is the number of
mesoscopic particles interacting with particle i. The contribution
of microscopic particles is separated into two different components:
(i) a deterministic hydrodynamic friction ~Fhydr, which resists motion;
(ii) a stochastic force ~Frand(t) characterizable through a probabilistic

11

Chapter 2. Modeling the motion of mesoscopic particles

description

m
d~vi(t)
dt

= ~Fhydr(t) + ~Frand(t) +
Nmeso∑
j

~Fij(rij, t). (2.3)

The hydrodynamic friction is described through Stokes’ law, which
tells us that the fluid contributes with a viscous force ~Fhydr(t) = −α~vi(t)
with opposite direction with respect to the particle velocity ~v(t), where
α is the dumping coefficient α = 6πaη, and a, η respectively are the
object radius and the fluid viscosity. The motion of mesoscopic particles
is then described by the Langevin equation

m
d~vi(t)
dt

= −α~vi + ~Frand(t) +
Nmeso∑
j

~Fij(rij, t). (2.4)

We assume that fluid is dense with respect to the particle mass,
which is reasonable for mesoscopic particles. Hence, inertial effects
are safely disregarded, and this brings us to the overdamped Langevin
equation, also known for describing Brownian dynamics

~vi = 1
α
~Frand(t) + 1

α

Nmeso∑
j

~Fij(rij, t). (2.5)

The position of the mesoscopic particle is observed at time intervals
of length long enough to include many random collisions, and the
central limit theorem states that the sum of independent random
variables tends asymptotically toward a normal distribution. Hence, if
we assume that collisions against mesoscopic particles are numerous
and uncorrelated, the resulting force exerted by microscopic particles
~F (t) is approximated by a Gaussian process

〈
~Frand(t)

〉
= 0,

〈
~Frand(t1)~Frand(t2)

〉
= σ2δ(t1 − t2), (2.6)

where σ is the variance of the Gaussian and gives the strength of

12

2.1. Langevin Equation

the fluctuating force. We have assumed that stochastic fluctuations of
the mesoscopic particles are the consequence of microscopic collisions.
We also know that the fluid friction is the result of the resistance
of the microscopic particles against the movement of the mesoscopic
particles. The friction term and the stochastic fluctuations must then be
connected, and this, in fact, is the result of the fluctuation-dissipation
theorem [44]

σ2 = 2kBTα, (2.7)

where T is the temperature and kB is the Boltzmann constant.
Fluctuations increase with the temperature, which is natural if we
consider that the temperature measures the kinetic energy of the fluid,
and that fluctuations are produced by the momenta of the microscopic
particles. Introducing the diffusion coefficient

D = kBTα, (2.8)

and redefining the stochastic process as a Gaussian process with uni-
tary variance F̃rand(t) = σFrand(t), the overdamped Langevin equation
becomes:

d~xi(t)
dt

=
√

2DF̃rand(t) + D

KBT

Nmeso∑
j

~Fij(rij, t). (2.9)

A time-driven discretization of the above equation allows for a
brute-force integration of the particle dynamics

~xi(t+ dt) = ~xi(t) +
√

2Ddt ξ(t) + D

KBT

Nmeso∑
j

~Fij(rij, t) dt, (2.10)

where dt is the integration step and ξ is a random number extracted
from a normal distribution.

13

Chapter 2. Modeling the motion of mesoscopic particles

2.2 Multi-scale problem

The computational time that is required to simulate a definite biological
time scales linearly with the integration step dt in Eq. (2.10). The
length of the integration step gives the efficiency of the simulation,
i.e. computational time per unit of biological time, and efficiency
is increased by enlarging the time increment. On the other hand,
simulations must also be accurate, especially during interactions, and
this is achieved by decreasing the length of the integration step. Hence,
the length of the integration step should be optimized so as to select
the largest possible time increment to avoid missing critical information
in the simulation. In PBRD simulations, particles interact when in
proximity to each other, and integrations must be sufficiently short to
avoid missing particles’ interaction during motion. Hence, the choice
of the integration step must consider both the diffusivity and the size
of the particles. This means that fast particles, i.e. those with a large
diffusion coefficient, require a short integration step, and small particles
also require a short integration step. Considering that the diffusion
coefficient decays linearly with the particle radius 1 (see Eq. (2.8)),
the particle size gives a twofold contribution into the choice of the
integration step length.

In a multi-scale simulation with many particle types of different
size, different time increments are associated to different particle types.
Among all possible values, a trivial choice is to select a fixed value for
all particles, and this is given by the fastest particles. However, a fixed
value for all particles involves that large particles, slowly moving at
each iteration, require many iterations before encountering another

1An exact relationship between particle size and diffusivity was possible because
particles were assumed perfectly spherical, and this is clearly a strong assumption
especially for proteins with a highly irregular conformation. However, the intuition
that large proteins diffuse slower than small proteins, that can be derived solely
from theoretical speculations, is also corroborated by experimental evidence [45].

14

2.3. Einstein equation

particle. This computational overhead can be particularly severe in
dilute systems, but it can also be avoided if freely diffusing particles
are allowed to perform large spatial displacements, i.e. the length of
displacement is not directly determined by the fixed integration step.
Large displacements must be performed accurately to avoid missing
particle interactions, and, to facilitate that, domains are drawn around
free particles so as to assume that particles do not interact while
diffusing within the domain. The largest possible displacement within
a domain is a displacement that brings the particle directly onto the
domain borders, and this is verified at a time given by the first exit-
time from the domain. First exit-times from regular domains can be
computed with a probabilistic description of the particle position, which
is provided by Einstein model to describe the motion of a mesoscopic
particle.

2.3 Einstein equation

Diffusion of mesoscopic particles can be modeled using an approach
developed by Einstein before the formalization of the Langevin equa-
tion. The Brownian motion was firstly observed in the modern era 2 by
Robert Brown, a botanist that was observing pollen grains to under-
stand the mechanism by which grains move in the fertilization process.
A physical explanation of this motion was provided by Einstein in 1905
[46], and his solution was based on the intuition that pollen grains
were mesoscopic particles surrounded by many microscopic particles.
The motion of pollen grains is caused by the random collisions with

2An atomistic interpretation of the dust motion was already given by Lucretius
in "De Rerum Natura" in 60 BC. The random motion of dust in the air was used
by Lucretius to justify the existence of atoms. Dust motion was indeed the result
of underlying movements of atoms that are not directly visible. This interpretation
brings us back to the microscopic and mesoscopic distinction of particles, and
largely anticipates Brown’s observations.

15

Chapter 2. Modeling the motion of mesoscopic particles

microscopic particles, and it could be explained only probabilistically
because of the large number of collisions. Each observation of the
mesoscopic particle position is performed after a time interval τ that
is assumed large enough to contain many random collisions. After this
time interval, the particle experiences a position displacement ~∆ due
to all microscopic collisions. Considering their stochastic nature, a
displacement ~∆ in a time interval τ is described by the probability
distribution φτ (~∆)

∫ ∞
−∞

φτ (~∆) d~∆ = 1, φτ (~∆) > 0, ∀~∆. (2.11)

Probabilities are assumed symmetric with respect to the displace-
ment direction

φτ (~∆) = φτ (−~∆). (2.12)

Within this stochastic model, particle position is naturally described
by a probability distribution p(~x, t). Particle position after a time
interval τ is found by integrating over all possible paths starting from
the previous configuration

p(~x, t+ τ) =
∫ ∞
−∞

p(~x+ ~∆, t)φτ (~∆)d~∆. (2.13)

If we assume that the time interval τ is small, the probability
distribution of the position is approximated with a first-order Taylor
expansion in time

p(~x, t+ τ) = p(~x, t) + τ
∂p(~x, t)
∂t

. (2.14)

The displacement ~∆ is also assumed small, and a second-order
Tailor expansion in position approximates the particle probability

16

2.3. Einstein equation

distribution

p(~x+ ~∆, t) = p(~x, t) + ~∆∂p(~x, t)
∂~x

+
~∆2

2!
∂2p(~x, t)
∂~x2 . (2.15)

The Taylor expansions are inserted into the integral in Eq. (2.13)

p(~x, t) + ∂p(~x, t)
∂t

τ =p(~x, t)
∫ ∞
∞

φτ (~∆)d~∆+

+ ∂p(~x, t)
∂~x

∫ ∞
∞

~∆φτ (~∆)d~∆+

+ ∂2p(~x, t)
∂~x2

∫ ∞
∞

~∆2

2 φτ (~∆)d~∆.

(2.16)

The first-order term in the right side
∫∞
∞
~∆φτ (~∆)d~∆ of the equation

cancels for symmetry (see Eq. (2.12)), and, considering the normaliza-
tion property

(∫∞
−∞ φτ (~∆) d~∆ = 1

)
, p(~x, t) cancels in both sides of the

equation. The final result is the diffusion equation

∂p(~x, t)
∂t

= D
∂2p(~x, t)
∂x2 , (2.17)

where D is the diffusion coefficient

D = 1
τ

∫ ∞
−∞

~∆2

2 φτ (~∆)d~∆. (2.18)

The probability distribution of a mesoscopic particle freely diffusing,
then satisfies the diffusion equation. However, in this mathematical
model forces have not been defined, and motion of the mesoscopic
particle is only due to the effect of microscopic collisions. Differently,
Langevin’s equation, that according to Einstein is also "infinitely more
simple"[47], describes particle dynamics from Newton’s laws of motion.

17

Chapter 2. Modeling the motion of mesoscopic particles

2.4 Combining Langevin integration and
Einstein diffusion

The two mathematical models used to describe Brownian motions are
different, in that one fully describes particle position in probabilistic
terms, the other adds stochasticity as an additional term in the second
Newton’s equation. The two derivations are identical if the mesoscopic
particle is freely diffusing, i.e. if there is no external potential in the
overdamped Langevin equation. Because of the highly non-linear terms
in the particle interaction, the Langevin equation is solved numerically.
Einstein’s equation instead allows for studying analytically the particle
position as a flux of probability over longer time intervals. As already
mentioned, time discretization of the Langevin equation is not efficient
in dilute and multi-scale systems, where most of the computational
power is used to simulate the diffusion of non-interacting particles. On
the other hand, the stochastic motion of freely diffusing particles can
be treated analytically with Einstein’s probabilistic description. These
two approaches are then combined to conceive a multi-scale scheme
that treats particles interaction exactly with the Langevin equation,
and efficiently solves free particle dynamics with Einstein’s equation.
This combined scheme is Molecular Dynamics - Green’s Function
Reaction Dynamics (MD-GFRD) algorithm, and it is outlined in the
next chapter.

18

Chapter 3

MD-GFRD

Text and figures in this chapter have been previously published in:
L. Sbailò, and F. Noé. (2017) J. Chem. Phys. 147, 184106.

Molecular Dynamics - Green’s Function Reaction Dynamics (MD-
GFRD) algorithm is a multi-scale scheme developed to efficiently
simulate the dynamics of Brownian particles. The crux idea of this
algorithm is that particle dynamics can be treated analytically in
case of free diffusion, while a brute-force integration is required when
particles are interacting. In MD-GFRD, interacting particles, i.e.,
particles that are close in space, are simulated via short time steps,
whereas isolated particles are propagated via an event-based scheme
on longer time scales. Spherical domains are drawn around isolated
particles such that domains are not overlapping and contain only one
particle each, the underlying stochastic dynamics are then analytically
treatable. First exit-times are sampled in each domain and inserted in
a time ordered event list.

The event list is the core of the asynchronous event-based algorithm:
at every step, the system jumps to the next event and the list gets
updated with a new event. Domain escape events must also be com-

19

Chapter 3. MD-GFRD

bined with a time-driven integration of the Langevin equation to define
a multi-scale scheme. In this chapter, it is outlined how these two
particle propagation methods are combined into a unique multi-scale
algorithm as MD-GFRD. Domain escapes and particle updates within
the domain are sampled from distributions that are derived analytically
in the next chapter.

3.1 Event-based propagation of freely dif-
fusing particles

The volume of the system is decomposed into many disjoint sub-volumes
each containing one particle, and sub-volumes represent protective
domains within which a particle can freely diffuse. For simplicity,
domains Ω are spheres of radius b, and the domain size is chosen such
that domains contain only one particle and the whole sphere volume
is not subject to any external potentials, i.e. the interaction of other
particles, membranes, etc. The free diffusion of Brownian particles
is described by a probability distribution that satisfies the Einstein
equation

∂f(~r, t)
∂t

= D∆f(~r, t), (3.1)

where f(~r, t) is the probability distribution of a Brownian particle
with diffusion coefficient D, ~r = (r, θ, φ)> is the position of the particle
and ∆ is the Laplace operator in spherical coordinates. Given the
spherical symmetry of this problem, the evolution of the probability
distribution can be described by the radial function p(r, t), which
represents the probability of being on any point on the surface of a
sphere of radius r. The radial probability of being at a radius r < b,
without having previously hit the domain border b, is computed by
imposing absorbing boundary conditions on the domain borders ∂Ω,

20

3.1. Event-based propagation of freely diffusing particles

pΩ(b, t) = 0 [48]. By imposing this boundary condition and the initial
condition p(r0, t0) = δ(r0) on Eq. (3.1), we obtain:

pΩ(r, t|r0 = 0, t0) = 1
S(t)

∞∑
m=1

exp
{
−m2π

2D

b2 (t− t0)
}2πr
b2 m sin

(
mπr

b

)
,

r < b.

(3.2)

SΩ(t) is the survival probability

SΩ(t|r0 = 0, t0) = −2
∞∑
n=1

(−1)n exp
{
− n2π

2D

b2 (t− t0)
}
, (3.3)

which represents the probability that the particle is inside the domain
Ω at t, without having previously hit the borders. The first exit-time
probability q(t) is defined via the survival probability S(t)

qΩ(τ |r0 = 0, t0) = −dSΩ(τ)
dτ

=

= −2
∞∑
n=1

(−1)n exp
{
− n2π

2D

b2 (τ − t0)
}
n2π2

b2 D,

(3.4)

and it gives the probability that the particle escapes its domain for the
first time at τ .

In this derivation, it has been assumed that no other particle
enters the domain, and the particle inside the domain is not subject
to any external potentials or forces (e.g. exerted by particles near the
domain). However, in a multi-particle simulation this assumption is
not always valid. Let us assume that at t0 a protective domain has been
constructed around an isolated particle, and this particle has sampled

21

Chapter 3. MD-GFRD

a first exit time t0 + τ from its domain. In this situation, it is possible
that an external particle, whose motion is brute-force integrated, is
in proximity to the first domain at a time, t1 < t0 + τ , i.e. before
the escape time. The first exit time τ has been sampled assuming
that no other particle interacts with the domain, hence the intrusion
of another particle before that time would make the sampling of the
particle escape time invalid. Consequently, to ensure that particles
in protective domains are freely diffusing, a burst radius is defined
for each pair of particles to be at least the interaction length between
the intruding particle and the particle in the domain. Whenever a
particle approaches a protective domain to a distance below the burst
radius the domain is burst, i.e. destroyed. In that event, the particle
position is updated inside the domain t = t1, and the clock of the
two particles is synchronized to t1. The particle position inside the
domain is sampled directly from eq. (3.2). This is possible because
the bursting-time and the previously sampled exit time are assumed
to be uncorrelated.

3.2 Algorithm outline

In MD-GFRD, the particle propagation is performed alternatively via
direct time-step integrations or event-based first exit-time samplings.
The choice of the propagation method depends on the system config-
uration and, in particular, whether the particle is freely diffusing or
interacting with other particles. At each iteration of the algorithm, one
particle is selected from a time-ordered event-list. If this particle is not
interacting with other particles, the construction of a protective domain
is attempted. Domain constructions are not always accepted because
constructing a domain and sampling an event in it is computationally
more demanding than performing few brute-force Brownian motion
steps. Therefore, one typically avoids the construction of very small

22

3.2. Algorithm outline

5) 6)

3)

4)

1) 2)

Figure 3.1: Outline of the multi-scale MD-GFRD algorithm. 1)
Particles are placed in their initial configuration. 2) A protective
domain is drawn on all those particles that are not directly interacting.
Domains are effectively constructed only if their size is larger than the
particle’s minimal domain size (blue and orange particles). 3) Particles
which don’t have a protective domain are integrated with direct time
steps (purple and yellow particles), and as soon as a particle becomes
sufficiently distant from all others, a protective domain is generated
around it (yellow particle). 4) When a particle gets too close to a
domain (purple particle), this is burst and the inside particle samples
a new position (orange particle). 5) After a domain burst, the new
particle position can be sufficiently far from the intruding particle
to allow both particles to construct a protective domain (orange and
purple particles). 6) The global time advances to the next time from
the scheduled exit-times, and the exiting particle position is sampled
randomly from all points on the previous protective domain (blue
particle).

23

Chapter 3. MD-GFRD

domains and instead uses direct time step integration when the size of
a newly constructed domain is below the minimal domain size. The
construction is then accepted only if the domain radius is larger than
the minimal domain size, whenever the construction is rejected the
particle motion is instead brute-force integrated. Particles are then
distinguished between GFRD particles, i.e. particles within a domain,
and MD particles, i.e. particles undergoing a brute-force integration.

In this scheme, particle interactions are always evaluated on discrete
times {tn}, where tn = n dt, n is an integer, and dt is the MD integration
step. Therefore, a GFRD particle, that leaves a protective domain and
thus becomes an MD particle is mapped to the next discrete time via
a small Brownian motion step. MD particles that are evaluated at the
same time point t can be updated simultaneously and collectively as
in usual MD implementations. In the following pseudocode, however,
it is simpler to explain the algorithm as if all particles are treated by
an asynchronous event list.

Each particle possesses a current and a scheduled position and
time. Each particle is also associated with an event, that takes the
particle from its current position and time to its scheduled position
and time, if it is successfully executed. Events include MD integration
steps and scheduled exits from a protective domain, but they may be
modified due to events such as domain bursting. In the beginning
of the simulation, the domain making algorithm creates a protective
domain for each particle that is not involved in a direct interaction.
Domains larger than the minimal domain size ρ are constructed, and
first exit times are sampled via Eq. (3.4). These exit events are then
stored in a list ordered by increasing scheduled-time. All particles
that could not construct a protective domain are placed on top of
the event-list, forces between them are computed and their scheduled
positions are computed and stored. Based on this initial list, the
following asynchronous algorithm propagates the system state in time:

24

3.2. Algorithm outline

1. Pick the first particle i in the event-list:

(a) If the particle was in a protective domain: place it on
a position sampled uniformly at random on the domain
boundary. Then, propagate it to the next discrete time ti
via a free Brownian motion sampling.

(b) Else: update the particle position and time to the stored
scheduled position and time.

2. Compute the distances {rij}Nj=1 from the N neighboring particles.
The distances are between the centers of mass and are computed
between synchronous positions when particles are not located in
a protective domain; otherwise, the distance between the center
of mass of the particle i and the center of the protective domain
of the particle j is computed.

3. For all j = 1, ..., N : if the particle j is in a protective domain
and the i− j distance is below the burst radius (rij − rj < Ri

burst,
where rj is the domain size of the particle j):

(a) Burst the j-domain.

(b) Synchronize the scheduled time of particle j to ti and update
the scheduled position of particle j by sampling from Eq.
(3.2).

(c) Place particle j on top of the event-list.

(d) Update the rij distance.

4. Use the distances {r̃ij}Nj=1, where r̃ij = rij −Rij
int and R

ij
int is the

interaction length, in a domain making algorithm to create a
domain with radius ri:

(a) If the proposed radius is larger than the minimum domain
size, ri > ρi: accept the domain, sample the first exit time

25

Chapter 3. MD-GFRD

τi from Eq. (3.4), and increase the particle event time by
τi.

(b) Else: Update the scheduled position and scheduled time via
direct time-step propagation (this step might also involve
interactions and reactions).

5. Place the particle i in the event-list according to increasing event
time.

Note that if particles i and j construct domains that are in contact
and if following step 1a these particles have identical scheduled discrete
exit times, it is possible that the particle i, upon escape, bursts the
j-domain at a later time than the scheduled exit time of particle j. This
apparent inconsistency is due to the fact that in this serial algorithm
particle j has not executed the step 1a yet. Clearly, in this occasion
the position of particle j is updated by executing the step 1a rather
than sampling from Eq. (3.2).

In Fig. 3.1, a graphical representation of a possible outcome of this
algorithm is shown; there is not a match between the numbering in
the algorithm and the numbering in the figure.

26

Chapter 4

Efficiency in MD-GFRD

Text and figures in this chapter have been previously published in:
L. Sbailò, and F. Noé. (2017) J. Chem. Phys. 147, 184106.

MD-GFRD has been shown to be several order of magnitudes
faster than brute-force integration of Brownian dynamics [31, 33]. The
efficiency improvement is particularly evident in dilute systems, where
particles spend most of their time freely diffusing in the system before
encountering each other, which renders an event-based algorithm, that
directly samples encountering times, dramatically faster. However,
this efficiency is lost at high densities, while the efficiency of direct
time-step integration is only mildly dependent on the particle density
(e.g. through the number of neighbor interactions that need to be
evaluated in each time step). Indeed, constructing a domain and
sampling an event in it is computationally more demanding than
performing few brute-force Brownian motion steps. Therefore, one
typically avoids the construction of very small domains that would
burst rapidly, and instead uses direct time-step integration when the
size of a newly constructed domain is below the minimal domain size
[31, 33, 49]. Still, as the system becomes more dense, the efficiency of

27

Chapter 4. Efficiency in MD-GFRD

this scheme decreases, as the fraction of particles that are described by
direct time-step integration increases, and domains, which are required
to be non-overlapping, tend to be smaller and thus more prone to a
premature burst. In this context, determining the optimal size of the
minimal domain and avoiding unnecessary, premature bursts can be
critical to ensure computational performance.

4.1 Domain making scheme and minimal
domain size

The basic idea of domain making schemes is that larger domains corre-
late with more efficient computation, as the particle doesn’t participate
in direct time-step integration during the correspondingly longer exit-
times (see Eq. (3.4)). However, choosing domain sizes in a greedy
manner does not necessarily lead to optimal performance. For instance,
when a large domain is next to a much smaller one, or to a domain
close to its escape time, the latter domain is likely to experience a
particle exit very soon, which might in turn burst the large domain,
thereby annihilating the advantage of the long exit-time from that
domain. Domain bursting is not convenient, since it involves sampling
the particle position within the domain. Moreover, it represents an
unscheduled event that is difficult to treat efficiently in a parallel
implementation.

The minimal domain size determines whether the domain construc-
tion is accepted or not. Instead of sampling the first exit-time from
a small domain, it might be more convenient to simulate the same
particle propagation via direct time-step integrations. Indeed, solving
a first exit-time problem generally has a higher computational cost
than simulating a number of direct time-step integrations. Thus, in
MD-GFRD algorithms, the dimension of the smallest domain whose

28

4.1. Domain making scheme and minimal domain size

Rint

(a)

GF

r

Rint

(b)

BM

r

i

i

j

j

r i

r i

r
j

Figure 4.1: MD-GFRD domain making scheme suggested in [31, 33].
The domain size choice is made according to the status of the neigh-
boring particle: a) the prime neighbor is a GF particle, then the shell
takes all available space; b) the prime neighbor is a BM particle, then
only half of the available space is used.

construction is allowed must be determined: whenever the construction
of a domain of smaller size is attempted, this trial is rejected and the
particle is instead brute-force integrated.

4.1.1 MD-GFRD

The MD-GFRD domain making schemes employ the largest shell prin-
ciple to draw protective domains. Particles are distinguished between
Green’s function (GF) particles which are located in a protective do-
main and Brownian motion (BM) particles that are undergoing a direct
time-step integration. The domain making routine firstly computes
the center-center distance rij between the particle i of interest from all
neighboring particles j, subtracting the interaction length Rij

int of the

29

Chapter 4. Efficiency in MD-GFRD

particle pair. The resulting distance r̃ij = rij −Rij
int is then divided by

2 if the particle j is a BM particle. If the particle j is a GF particle,
the distance is reduced by the j-domain size rj (Fig. 4.1). In the case
of a BM particle only half of the total distance is used to let the other
particle construct a domain of equal size in the subsequent step. This
routine is iterated over all neighboring particles and the lowest value
obtained is finally selected. This domain creation makes domains as
large as possible while avoiding direct particle interaction.

In previous studies, the minimal domain size in MD-GFRD algo-
rithms has been set proportional to the particle radius [31, 33, 49],
where the sum of the particles radii gives the particles pairwise in-
teraction. In particular, the minimal domain size has been suggested
to be always larger or equal than the particle radius [49]. In the im-
plementation of Ref. [33], the minimal domain size ρ is chosen to be
equal to the particle radius. In the implementation of Ref. [31], ρ can
have different values depending on whether the particle is undergoing
a direct time-step integration (ρGFRD) or has just escaped a protective
domain (ρBD). The minimal domain value assumes a larger value when
the particle is under direct time-step integration (ρGFRD > ρBD). This
technique has been used to prevent particles from rapidly switching
between the GF and BM mode. Indeed, when the particle motion is
subject to direct time-step integration, it is likely to be located in a
crowded region of the system, where a domain is more likely to be
burst. Diminishing the number of domains constructed in this region
correlates with a lowering of the total number of bursts. This scheme
has been used to simulate particles interacting via a Lennard-Jones
potential, and the minimal domain values ρGFRD = 5σ and ρBD = 3σ
were used, where σ is the Van-der-Waals radius.

Finally, the bursting radius should be chosen equal to or larger than
the interaction length of the two particles. However, it cannot be larger
than the minimal domain size of any other particle to prevent the

30

4.1. Domain making scheme and minimal domain size

algorithm from entering into an infinite mutual bursting loop, where
a pair of isolated particles alternatively construct a domain which is
burst by the other particle in the subsequent step. In MD-GFRD, the
bursting radius is set equal to the interaction length plus the minimal
domain size of the particle, because whenever a particle is close to
another domain, that domain must be burst in order to allow creating
two new domains of significant size.

4.1.2 New domain-making scheme

The aim of the new scheme is to improve the algorithm’s computational
performance and to decrease the number of domain bursting events. In
order to keep the number of bursting events small, domains are sized
such that they have the same average first exit-time as the domains
that will be constructed in their proximity. The key idea is that when
domains are constructed, not only the first exit-time of the particle
is sampled, but also its exit-position. This information is used by
neighboring particles to propose an optimized domain size such that it
has the same average first exit-time as the domains that will be later
constructed on the memorized exit-positions (Fig. 4.2 1). In Ref. [50]
the importance of constructing optimized domains has already been
discussed, and it is suggested that domains should be constructed to
delay in time as far as possible the first event in the queue, which
corresponds to constructing domains with equal mean first exit-times.
However, this was achieved only when all domains are constructed
simultaneously, which optimizes only over the first event in queue. By
pre-sampling the exit-position of particles, it is instead possible to
construct balanced domains over a long series of events.

In order to further reduce the number of bursting events, the domain
size is then shrunk. Although the domains are not chosen to be of
maximum size, this approach significantly reduces the overall number

31

Chapter 4. Efficiency in MD-GFRD

(1)

r i,1
r
j

r

R
int

rnext

i j

j'

(2)

r
i,2

i j

r j'

r i,1

Figure 4.2: New domain making scheme for the case of an isolated pair
of particles. At time ti, particle i is attempting the construction of
the i-domain close to particle j that is already enclosed in a domain.
The escape time tj′ > ti and particle j’s escape position were sampled
when the domain was constructed. 1) Particle i constructs a domain
whose size ri,1 is such that its average first exit-time is the same as the
average first exit-time of particle j from the j′-domain that might be
constructed after the exit from its current j–domain. 2) The domain
size in the previous step obtained is further reduced to finally obtain
ri,2.

of bursts compared to the scheme described in Sec. 4.1.1. The choice
for the size reduction in the second step (Fig. 4.2 2) is performed to
obtain a balance between a low number of bursts and long domain
exit-times. Clearly, the specific setting of these parameters depends
on implementation details such as serial or parallel execution, and can
be adapted to the local setting. This algorithm is illustrated in the
simplest case of an isolated pair of particles in Fig. 4.2. In the new
scheme, the bursting radius is also chosen to be equal to the interaction
length plus the minimal domain size.

32

4.1. Domain making scheme and minimal domain size

In practice, if the domain is created close to a GF particle (Fig. 4.2
1) the first domain ri,1 is obtained by solving a system of two equations:

r2
j′

6Dj

+ ∆t =
r2
i,1

6Di

, (4.1)

r̃next = ri,1 + rj′ , (4.2)

where r̃next = rnext−Rint is the available space, rnext is the distance
between the center of particle i and the exit-position of particle j,
∆t = tj′ − ti is the time difference between the scheduled exit-time
of particle j and the current time, i.e. the time in which particle i is
attempting to construct a domain. The first equation imposes that the
average exit-time from the i-domain is the same as from the j′-domain,
where the expected exit-time 〈τ〉 of a Brownian particle with diffusion
coefficient D from a sphere of radius b is:

〈τ〉 = b2

6D. (4.3)

The second equation enforces the domains to be adjacent by taking
all available space, according to the largest shell principle. In contrast
to MD-GFRD, the largest domain principle is applied between the
i-domain and the j′-domain that is possibly constructed subsequently.

The solution to Eq. (4.1) has the following two roots:

ri,1 = r̃next

1±
√

1− (1− Dj
Di

)(1 + 6 ∆tDj
r̃2
next

)

1− Dj
Di

. (4.4)

Assuming that the condition ∆t < r̃2
next/6Di is satisfied, the argument

of the square root is nonnegative, resulting in two real-valued solutions.
In the following derivations, two different cases are studied depending
on Di and Dj.

33

Chapter 4. Efficiency in MD-GFRD

Firstly, Di > Dj is considered, which leads to 1−Dj
Di
> 0. In case the

discriminant is added, the factor that multiplies r̃next is clearly higher
than one, since diffusion coefficients are always positive, then we would
obtain ri,1 > r̃next, an unphysical solution. The discriminant must thus
be subtracted. Furthermore, imposing the condition r̃2

next

6Di > ∆τ , or
equivalently ∆τ

r̃2
next

< 1
6Di , it can be verified that if the discriminant is

subtracted:

ri,1 < r̃next
1−

√
1− (1− Dj

Di
)(1 + Dj

Di
)

1− Dj
Di

= r̃next. (4.5)

The condition ri,1 < r̃next is satisfied if the discriminant is subtracted.

In case Dj > Di, then 1− Dj
Di
< 0:

ri,1 = r̃next

1∓
√

1+ | 1− Dj
Di
| (1 + 6 ∆tDj

r̃2
next

)

| 1− Dj
Di
|

. (4.6)

In order to satisfy the condition ri,1 > 0, the discriminant must have a
positive sign. However, the sign of the discriminant has been inverted
by the modulus in the denominator, since it comes from the subtraction
of the discriminant.

To sum up, only the root obtained by subtracting the discriminant
satisfies the condition 0 < ri,1 < r̃next:

ri,1 = r̃next

1−
√

1− (1− Dj
Di

)(1 + 6 ∆tDj
r̃2
next

)

1− Dj
Di

. (4.7)

If the average first exit-time of particle i from the available space
ri,1 = r̃next is less than ∆t, the time interval to the scheduled exit-time
of particle j, the solution of the system in Eq. (4.1) has no real values,
which means that the i-domain and the j′-domain cannot have the
same average first exit-time. As the j-particle is not expected to burst

34

4.1. Domain making scheme and minimal domain size

the i-domain in this case, we use all available space for the i-domain,
i.e. ri,1 = r̃next. Consistently, inserting ∆t = r̃2

next/6Di in Eq. (4.1)
results in the solution ri,1 = r̃next.

The system in Eq. (4.1) is then solved only when ∆t < r̃2
next/6Di.

The optimal domain size is then given by:

ri,1 =

r̃next, ∆t ≥ r̃2

next
6Di .

r̃next

1−
√

1−(1−
Dj
Di

)(1+
6 ∆tDj
r̃2
next

)

1−
Dj
Di

, otherwise.
(4.8)

The square root argument in Eq. (4.8) is always positive if ∆t <
r̃2
next/6Di, therefore the solution is always real-valued.

If the two particles have identical diffusion coefficients D, the
solution simplifies to:

ri,1 = r̃next

2 + 3D∆t
r̃next

. (4.9)

The value ri,1 obtained is a function of the distance r̃next. Hence, ri,1
does not take the volume of the existing j-domain into account and
thus does not ensure to avoid overlap of the i and j domains. To
avoid such an overlap, the i-domain must be accordingly resized to the
largest possible value: ri,1 = r̃ − rj, where r̃ = r − Rint and r is the
center-center distance between particles i and j.

A similar approach is used if particle j is a BM particle. In this
case, the i-domain is created so as to leave enough space for particle j
to construct a domain whose first exit-time is equal to the i-domain:

ri,1 = r̃

1 +
√

Dj
Di

. (4.10)

Finally, the domain radius is further reduced as :

ri,2 = ri,1 − nred

√
2Dj dt, . (4.11)

35

Chapter 4. Efficiency in MD-GFRD

where nred is a parameter (Fig. 4.2 2). The domain reduction is set
proportional to the average displacement that the particle j performs
in one integration step. This reduction is performed to reduce the
probability that the particle j bursts the i-domain in cases where the
sampled escape time of the particle i is larger than the expected value.
Note that if ∆t > r2

i,1/6Di the particle j is expected to escape its
domain after the particle i, in this case there is no need to reduce
the size of the i-domain and thus the step in Eq. (4.11) is omitted.
When this scheme is applied to multi-particle systems, the previously
outlined approach is applied to all nearest-neighbor particle pairs, and
the lowest value of ri,2 is chosen.

4.1.3 New scheme for minimal domain size

In contrast to previous works, the minimal domain size is proposed
here to be proportional to the square root of the particle diffusivity,
rather than the particle size. The minimal domain size defines the
particle distance below which direct time-step integration is assumed
to be more efficient than sampling first exit-times. It is assumed that
the CPU time required to sample the probability density of the first
exit-time is approximately independent of domain size and diffusion
coefficient. In contrast, the CPU time spent to simulate first exit-times
via brute-force integrations depends on the domain size, on the particle
diffusion coefficient and on the time-step length.

Given the average first exit-time 〈τ〉 of a particle with diffusion
coefficient D from a sphere of radius b, Eq. (4.3), the average number
of steps 〈n〉 to simulate the first exit-time is:

〈n〉 = b2

6Ddt
, (4.12)

where dt is the time step. The average CPU time, 〈TBF (b)〉, spent to
compute escape times via brute-force integrations is proportional to

36

4.1. Domain making scheme and minimal domain size

0 2 4 6 8 10

D [µm2

s]

0.0

0.1

0.2

0.3

ρ
[nm

]

Figure 4.3: Minimal domain radius ρ as a function of D using the
time step dt = 0.1ns. The dots represent the radius of the minimal
protective domain where first exit-time sampling and direct time-step
integration have equal CPU costs. Simulations to compute the first
exit-time from the domain with size ρ were conducted for different
diffusion coefficients and domain sizes, using either direct time-step
integration or first exit-time sampling. For small domain sizes, the
direct time-step integration is always more efficient. The dashed
red line shows ρ = α

√
Ddt, as described in Eq. (4.16), with the

implementation-specific value α = 8.4 that has been found empirically.

the number of integration steps, and thus:

〈TBF (b)〉 ∝ b2

Ddt
. (4.13)

It is assumed that the average CPU time, 〈TGF (b)〉, spent to sample a
first exit-time is approximately constant.

〈TGF (b)〉 = Const. (4.14)

Let ρ be the domain size at which the CPU times are equal, 〈TBF (ρ)〉 =
〈TGF (ρ)〉, then:

ρ2 ∝ Ddt. (4.15)

37

Chapter 4. Efficiency in MD-GFRD

1.00
1.01
1.02
1.03 (a) c = 10−2µM (b) c = 10−1µM

1.00
1.02
1.04
1.06

R
el
at
iv
e
C
P
U

ti
m
e

(c) c = 100µM (d) c = 101µM

6 8 10 12 14 16
α

1.00
1.05
1.10
1.15 (e) c = 102µM

6 8 10 12 14 16
α

(f) c = 103µM

Figure 4.4: Relative CPU times required to perform the same simulation
as described in Fig. 4.5 a for different α values. In each plot, the
CPU times are relative to the minimum. The value α = 6 permits
the construction of very small domains, even when direct time-step
integration would be preferable. The optimal value α = 8.4 found in
Fig. 4.3 would represent the optimal value in case the constructed
domains do not burst. As α is increased from its optimal value α ≈ 9
the algorithm’s performance decreases.

Hence, the minimal domain radius ρ(D, dt) is defined as the threshold
that determines whether the domain construction is accepted or not.

ρ(D, dt) = α
√
Ddt. (4.16)

Simulations indicate that this function correctly describes the point
where a direct time-step integration becomes more efficient than a first
exit-time sampling (Fig. 4.3).

38

4.2. Results

4.1.4 α-values in minimal domain size

The minimal domain size is given by Eq. (4.16), where α is a parameter
that is determined in the beginning of the simulation. An optimal
value α = 8.4 has already been suggested in Fig. 4.3. However, that
value was selected by taking only the first exit-time sampler and the
direct time-step integrator into account. In general, it might seem
appropriate to insert a penalty for the possibility of a burst and then
to slightly rise the α value, where the penalty would be higher when a
higher number of bursts is expected.

Fig. 4.4 shows that the optimal value of α lies in the range 8 < α <

12, in agreement with Fig. 4.3, and α = 9 is chosen in the following
benchmark simulations.

4.2 Results

Here we compare the performance of the multi-scale MD-GFRD scheme
implemented in Refs. [31] and [33], the new scheme, and a direct time-
step integration scheme using Brownian dynamics. Two versions of the
new scheme are simulated, one with nred = 5 in Eq. (4.11) (new scheme
1), and one which does not use domain size reduction (nred = 0, new
scheme 2), thus tending to size domains more greedily. In addition, a
hybrid scheme is tested, which implements the minimal domain size as
described in Sec. 4.1.3 but employs the same domain making scheme
as proposed in Refs. [31] and [33]. For simplicity particles in a periodic
box and interacting with a harmonic repulsion are simulated:

V (r) = 1
2 k (Rint − r)2, r < Rint, (4.17)

where r is the inter-particle distance between the centers of mass,
k = 100 is the spring constant, and the interaction length Rint is equal
to the sum of particle radii. Reactions, more complex particle-particle

39

Chapter 4. Efficiency in MD-GFRD

10−3 10−2 10−1 100 101 102 103

Molar concentration [µM]

10−3

10−2

10−1

100

101

102

CP
U

tim
e

[s]

D =10 µm2

s

(a)

BD
MD-GFRD 1
MD-GFRD 2
Hybrid scheme
New Scheme 1
New scheme 2

10−3 10−2 10−1 100 101 102 103

Molar concentration [µM]

(b)

D1 =10 µm2

s

D2 =1 µm2

s

Figure 4.5: CPU time required to simulate 1ms of real time, using a
brute-force integration step of dt = 0.1ns. The number of particles is
kept fixed toN = 10, while the system volume is adapted to the selected
molar concentration. Simulations are performed in a cubic-shaped box
with periodic boundary conditions. Particles are spherical-shaped
with radius R = 2.5nm and diffusion coefficient D = 10µm2/s in
(a) and radii R1 = 1.5nm and R2 = 3.5nm and diffusion coefficients
D1 = 10µm2/s and D2 = 1µm2/s in (b). A binary interaction length
is defined as the sum of particles’ radii, when particles are within this
distance repulse according to a harmonic potential as in Eq. (4.17),
where k = 100. The minimal domain of the new schemes and of the
hybrid scheme uses the pre-factor α = 9 as defined in Eq. (4.16). In
new scheme 1, nred = 5; in new scheme 2, nred = 0, see Eq. (4.11).
In MD-GFRD 1, the minimal domain size is equal to the particle
radius[33]. In MF-GFRD 2, the minimal domain sizes ρGFRD = 2.5R
and ρBD = 1.5R[31] were used, where the pre-factors 1.5 and 2.5 have
been chosen to adapt to a different simulation than the pre-factors
used in Ref. [31], while preserving their same relative proportions. At
low concentrations, MD-GFRD schemes are several order of magnitude
faster than BD. The new schemes and the hybrid scheme are faster
than BD up to concentrations of 103 µM , while MD-GFRD schemes
are preferable over BD up to 102 µM.

40

4.2. Results

10−3 10−2 10−1 100 101 102 103

Molar concentration [µM]

101

102

103

104

105

106

107

108

To
ta
ln

um
be
ro

f
br
ut
e−

fo
rc
e
st
ep
s

D =10 µm2

s

(a)

MD-GFRD 1
MD-GFRD 2
Hybrid scheme
New Scheme 1
New scheme 2

10−3 10−2 10−1 100 101 102 103

Molar concentration [µM]

(b)

D1 =10 µm2

s

D2 =1 µm2

s

Figure 4.6: Total number of direct time-steps in the multi-scale MD-
GFRD simulations described in Fig. 4.5. As the particle density
increases, interactions between particles become more frequent, and
more simulation time is spent in conducting direct time-step integration.
The behavior of these curves is similar to that in Fig. 4.5, indicating
that the number of brute-force Brownian motion steps represent the
bottle-neck in the present simulations. The largest value in each
plot, 108, represents the condition where each of the 10 particles
have performed 107 direct time-steps, which means that no particle
propagation was made using first exit-time sampling.

10−3 10−2 10−1 100 101 102

Molar concentration [µM]

10−1

100

101

102

103

104

To
ta
ln

um
be
ro

f
bu

rs
ts

D =10 µm2

s

(a)

MD-GFRD 1
MD-GFRD 2
Hybrid scheme
New Scheme 1
New scheme 2

10−3 10−2 10−1 100 101 102

Molar concentration [µM]

(b)

D1 =10 µm2

s

D2 =1 µm2

s

Figure 4.7: Average total number of protective domain bursts in the
multi-scale MD-GFRD simulations described in Fig. 4.5. As the
molar concentration is increased, domains tend to be smaller and to
be constructed more often, which goes along with an increase of the
number of bursts. The average number of bursts in the new scheme
1 is lower than in the previous MD-GFRD implementations at any
density. Keeping the total number of bursts low can be important for
efficient parallelization, e.g. using Graphical Processing Units (GPUs).

41

Chapter 4. Efficiency in MD-GFRD

10−3 10−2 10−1 100 101 102

Molar concentration [µM]

10−2

10−1

Bu
rs
tin

д
pr
ob
ab
ili
ty

D =10 µm2

s

(a)

MD-GFRD 1
MD-GFRD 2
Hybrid scheme
New Scheme 1
New scheme 2

10−3 10−2 10−1 100 101 102

Molar concentration [µM]

(b)

D1 =10 µm2

s

D2 =1 µm2

s

Figure 4.8: Domain bursting probability, i.e. ratio of the total number
of domains burst over the total number of domains constructed in the
MD-GFRD simulations described in Fig. 4.5. The domain construction
schemes proposed here are clearly more efficient than previous schemes
and results in domains that are more likely to survive until the particles
contained therein make successful exits. The bursting probability is
always lower than 3% in the new scheme 1, while in the implementations
MD-GFRD 1,2 this value is roughly an order of magnitude larger at
the higher concentrations.

potentials, or other near-space interactions can be straightforwardly
integrated in the direct time-step integration regime that is used to
simulate interacting particles.

Two simulations have been performed using different diffusion
coefficients and particle radii:

1. 10 spherical particles with radius R = 2.5nm and diffusion
coefficient D = 10µm2/s.

2. 5 faster and smaller particles with radius R1 = 1.5nm and
diffusion coefficient D1 = 10µm2/s and 5 slower and larger
particles with radius R2 = 3.5nm and diffusion coefficient D2 =
1µm2/s.

42

4.2. Results

4.2.1 Efficiency comparisons of different MD-GFRD
schemes and direct Brownian dynamics

To obtain clean benchmarks, most calculations are run with ten parti-
cles and direct evaluation of all pairwise particle distances, while the
particle density is adjusted by choosing the box size. For a more com-
plex test, Sec. 4.2.3 simulates larger particle numbers with a neighbor
list implementation.

The efficiency of MD-GFRD strongly depends on the particle con-
centration, since in case of dilute systems particles are allowed for
constructing large domains and performing large time steps. Hence,
MD-GFRD algorithms are dramatically faster than BD schemes at low
concentrations. As the particle concentration is increased, MD-GFRD
becomes less efficient, while the BD efficiency remains constant. Conse-
quently, there is a concentration threshold where BD starts being more
efficient than MD-GFRD. In Fig. 4.5, the performance is compared
between the new schemes, the hybrid scheme, the previous MD-GFRD
schemes and direct BD simulation. It is evident that all MD-GFRD
schemes are several order of magnitude faster than BD at low densities.
Moreover, the new schemes are faster than the previous MD-GFRD
schemes at all densities, but performances are similar at low densities.
In particular, for both diffusion coefficients, the new schemes and the
hybrid scheme are preferable over BD for concentrations up to 103 µM,
whereas previous MD-GFRD schemes were preferable over BD only up
to molar concentrations of 102 µM. The schemes which implement the
new minimal domain size all show similar performance, and among
them the new scheme 2 is the fastest. These numbers may be different
in different implementations (codes and machines), and comparison is
therefore only meaningful within the same implementation.

The total number of direct integration time-steps performed in each
multi-scale MD-GFRD simulation increases with increasing particle

43

Chapter 4. Efficiency in MD-GFRD

concentration (Fig. 4.6). This growth is remarkably similar to the
growth in CPU time, indicating that the reason of the improved
performance of MD-GFRD schemes is essentially due to a reduction
of the direct time-integration steps that represent the computational
bottleneck. In the new schemes and in the hybrid scheme, the minimal
domain size is smaller than in previous MD-GFRD schemes, which
enables more protective domains to be constructed, which in turn
reduces the fraction of time spent in direct time-step integrations.
Although having equal minimal domain size, the new scheme 2 shows
a slightly lower number of direct integration time-steps with respect to
the hybrid scheme. This is essentially the result of the construction of
more balanced domains which allow for an optimization of the available
space. On the other hand, the new scheme 1 spends a larger fraction
of time under direct time-step integration, because after the reduction
step more domains are not sufficiently large for construction.

4.2.2 Minimization of the domain burst frequency

Despite the fact that domain sizes are small on average, Fig. 4.7 shows
that the total number of bursts is the lowest in new scheme 1, i.e.
when the domain reduction is included. The hybrid scheme involved
the highest number of bursts, since the construction of small domains
is allowed, but their sizes are not chosen optimally. The incorporation
of particle exit-positions into domain construction, and the choice
of domain sizes so as to balance the exit-times allows to reduce the
number of bursts to one third (new scheme 2); if a reduction step is
also added (new scheme 1), the number of bursts is further reduced
by approximately one order of magnitude. This improved efficiency
on the domain construction is evident in Fig. 4.8, which shows the
probability that a protective domain is burst prematurely by intrusion
of another particle rather than being annihilated by a regular exit of the

44

4.2. Results

particle contained therein. This quantity is computed as the ratio of
the total number of domain bursts over the total number of constructed
domains. At low concentrations the bursting probability is small, but
it increases with increasing particle density. The new domain-making
scheme clearly results in more efficient domains that are much less
probably to be burst prematurely compared to the previous MD-GFRD
scheme, especially at higher concentrations.

The full implementation of the new scheme (version 1) is to be
preferred to previous MD-GFRD schemes in both cases: when the serial
computational performance is most relevant and when the number
of total bursts is required to be low. The MD-GFRD implemented
in Ref. [33] is faster than the implementation in Ref. [31], while
the latter scheme has a lower number of domain bursts. The new
scheme 1 is instead superior in both computational performance and
number of domain bursts. More specifically, the implementation as
in new scheme 1 is optimal to drastically lower the number of bursts
while preserving efficiency. The new scheme 2 instead has a slightly
higher CPU performance in our implementation, but does not keep the
number of bursts small. The improvements result in up to an order of
magnitude of gain in the CPU performance and an order of magnitude
of gain in the total number of bursts.

4.2.3 Large particle numbers

The general trends observed in the benchmarks shown in the previous
sections are also expected to hold for systems with many particles.
However, in systems with many particles n, it is necessary to implement
a neighbor list to avoid that each time step scales with n2 as a result
of the pairwise distance calculations.

In order to validate that the new MD-GFRD scheme can still be
efficiently implemented with many particles, new scheme 1 is imple-

45

Chapter 4. Efficiency in MD-GFRD

Table 4.1: Computational time to simulate 1ms of real time, using a
brute-force integration step of dt = 0.1ns. In these simulations the
new scheme is more efficient than BD up to a molar concentration of
103µM .

Molar
concentration

Particles
number

CPU time
new scheme

CPU time
BD

102 µM 103 271 s 14.5 · 103 s
103 µM 104 230 · 103s 260 · 103s

mented with nred = 5 using a neighbor list. Particles are interacting
with harmonic repulsion with radius R = 2.5nm, k = 100, and periodic
boundary conditions are applied as described in the previous section.
The system volume is kept fixed to 17.576 106 nm3, while the number
of particles is adapted to achieve the desired molar concentration. All
particles have diffusion coefficient D = 10µm2/s.

In order to efficiently implement a neighbor list, a discretization of
the simulation box in cells of length Lcell = 5nm is used for the brute-
force BD simulations, and of Lcell = 10nm is used for the MD-GFRD
simulations. Each particle checks the cell it is located in and the 26
neighboring cells for possible neighbors. In such a cell discretization,
the smallest distance at which two particles can loose track of each
other is the cell length, and thus the maximum protective domain size
must be limited to at most half the cell length minus the interaction
length, which is the gap to be left between contiguous domains. Here,
the maximum domain size is limited to Rmax = 2.5nm.

The simulation results in Tab. 4.1 show that the new scheme
remains to be faster than a brute-force integration up to a molar
concentration of 103µM .

46

Chapter 5

First passage schemes

Text and figures in this chapter have been previously published in:
L. Sbailò, and L. Delle Site. (2019) J. Chem. Phys. 150, 134106.

MD-GFRD algorithm can be inserted into a broader class of first
passage algorithms that deploy first exit-time sampling in event-based
schemes. Applications of first passage algorithms, across different
subjects and disciplines, span from the determination of the ground
state of bosonic particles [51] to the clustering of the oncoprotein Ras
[52] (further representative examples can be found in Refs.[13, 53, 50,
54, 55, 56, 57, 8, 58, 59, 33]), and their first use can be dated back to
the 1970s.

The use of first passage propagators to simulate particle diffusion
was originally conceived by Kalos, Levesque and Verlet (KLV) in Ref.
[51] as a synchronous scheme: (i) protective domains are constructed
around each particle and the corresponding exit-time is sampled; (ii)
the shortest exit-time is determined and particles are propagated
to this time; (iii) finally, new protective domains are constructed
for all particles. The main disadvantage of the KLV scheme is that
local particle updates affect the total system. This algorithm is then

47

Chapter 5. First passage schemes

inefficient in simulating dishomogeneous multi-scale systems. Instead,
different time scales can be maintained through an asynchronous scheme
[60], as in the first passage kinetic Monte Carlo (FPKMC) [13]. In
asynchronous event-based schemes, the position of the particle involved
in the next exit-time event is updated locally, while next events of all
other particles are maintained in a time ordered event-list, which is
updated every time a new event is sampled. Finally, MD-GFRD pairs
the event-driven first exit-time sampling to a time-driven integration
of the particles motion, and is the most recent development of first
passage schemes.

In first passage schemes, the event-based particle propagation is
performed either by placing the particle randomly on the domain
borders when the pre-sampled exit-time is reached, or by prematurely
updating the particle position inside the domain before exit-time. These
values are sampled from probability distributions that are derived and
studied in this chapter.

5.1 Derivation of the first exit-time prob-
ability distribution

The motion of a Brownian particle is described stochastically by Ein-
stein’s diffusion equation

∂

∂t
f(~r, t) = D∆f(~r, t), (5.1)

where f(~r, t) is the probability of finding the particle in position
~r at time t, and D is the diffusion coefficient. We assume that the
particle position is known at time t0, and we are interested in the first
exit-time of the particle from a domain Ω that is constructed around
the particle. The domain Ω is supposed to be spherical and centered
on the particle position. Given the spherical symmetry of the system,

48

5.1. Derivation of the first exit-time probability distribution

the angular coordinates can be averaged out from Eq. (5.1)

f(~r, t) = const p(r, t). (5.2)

The first exit-time from a protective domain Ω is derived by impos-
ing absorbing boundary conditions on the domain boundary ∂Ω[48].
The domain Ω is here assumed to be a sphere of radius b

pΩ(r = b, t) = 0; ∀t. (5.3)

This condition ensures that once the particle hits the domain
borders, it is removed from the system. Firstly, the Green’s function
for the diffusion equation is found, then exit-time boundary conditions
are applied to the solution. The diffusion equation is only solved for
the radial component

∂p(r, t)
∂t

= D
1
r2

∂

∂r

(
r2∂p(r, t)

∂r

)
. (5.4)

The solution is found by assuming that it can be separated in the
variables t and r, p(r, t) = g(r)h(t),

1
Dh(t)

∂h(t)
∂t

= 1
g(r)r2

∂

∂r

(
r2∂g(r, t)

∂t

)
. (5.5)

Each term of the above equation has only one variable, in this case
both terms can be equated to a constant value resulting in two different
equations

1
Dh(t)

∂h(t)
∂t

= 1
g(r)r2

∂

∂r

(
r2∂g(r, t)

∂t

)
= −λ2. (5.6)

The solution of the first equation is an exponential function

h(t) = Ae−λ
2Dt. (5.7)

The second equation can be expressed as a harmonic oscillator

49

Chapter 5. First passage schemes

differential equation by substituting g̃(r) = r g(r). The solution is then
straightforward

g(r) = 1
r

(B sin(λr) + C cos(λr)) . (5.8)

The capital letters A,B,C used are normalization factors. Ab-
sorbing boundary conditions pΩ(b, t) = 0 are imposed on the equation
p(r, t) = g(r)h(t) obtained from Eqs. (5.7) and (5.8)

pΩ(r, t) = 1
r

∑
m

Ame
−m

2π2
b2

Dt sin
(
mπ

b
r
)
. (5.9)

The particle is known to be in r0 at t0

pΩ(r, t|r0, t0) = 1
2πb

1
r r0

∑
m

e−
m2π2
b2

D(t−t0) sin
(
mπ

b
r
)

sin
(
mπ

b
r0

)
.

(5.10)
The survival probability is obtained by integrating the above equa-

tion

SΩ(t|r0, t0) =
∫
~r∈Ω

pΩ(~r, t|r0, t0) d~r

= − 2b
πr0

∑
m

(−1)m
m

e−
m2π2
b2

D(t−t0) sin
(
mπ

b
r0

)
.

(5.11)

The first exit-time is then derived from the survival probability

qΩ(τ |r0, t0) = dSΩ(τ |r0, t0)
dτ

=

= −2πD
br0

∑
m

m(−1)me−
m2π2
b2

D(t−t0) sin
(
mπ

b
r0

)
.

(5.12)

First-exit times from protective domains are sampled from qΩ(τ |0, 0)
upon domain construction, then this time is inserted in the event list.

50

5.2. Sampling particle position before domain escape

The event-based particle propagation is performed either by placing
the particle randomly on the domain borders when the sampled exit-
time is reached, or by prematurely updating the particle position inside
the domain when this is burst before the exit-time. The position
update within domain is an unscheduled event that occurs when the
free potential assumption is broken, because this invalidates the exit-
time that has been sampled upon domain construction. The particle
position is updated before the scheduled domain escape, and this event
might affect the probability distribution of the particle position before
the sampled exit-time. Hence, a discussion about the correlations
between the sampled exit-time and particle position before escape is
required.

5.2 Sampling particle position before do-
main escape

In first passage schemes, the probability distribution used to update
the particle position is the Green’s function in Eq. (5.10) renormalized
by the survival probability

gΩ(~r, t|0, 0) = pΩ(~r, t|0, 0)
SΩ(t|0, 0) . (5.13)

However, the position sampling is carried out after the extraction of
the first exit-time from the domain, but in Eq. (5.13) the information
of the exact moment when the particle hits the boundary is missing as
a condition for the above probability distribution, despite this being
a requirement [61]. According to the Bayes theorem, the probability
distribution is conditional with respect to the sampled exit event

gΩ(~r, t|0, 0; τ) = qΩ(τ |~r, t)pΩ(~r, t|0, 0)
qΩ(τ |0, 0) . (5.14)

51

Chapter 5. First passage schemes

Indeed, when an observable is sampled at a time between the initial
time and the time of a determined event, the probability distribution
should be conditional until realization of the determined event. For
instance, if the particle position is sampled immediately before the exit-
time, the particle is expected to be in proximity to the domain borders.
Let us assume that the sampling-time t is equal to the exit-time τ minus
an infinitesimal time t = τ − dt, if the particle position ~r is sampled
at a finite distance ∆~R from the domain border ~Ω then ~r = ~Ω−∆~R,
which leads to the evidence that the particle travels a finite distance
∆~R in an infinitesimal time dt. This is a contradiction, which might
occur when the condition on the exit-time is missing. Despite the
conceptual contradiction underlined above, numerical applications of
first passage schemes have always been shown to correctly reproduce
the expected results. The discussion above naturally leads to the need
of a formal proof of correctness of the algorithm which can clarify the
issue about the reported conceptual contradiction.

The distinction between the conditional and unconditional proba-
bility becomes relevant when a systematic bursting of the domains is
performed, and this might be the case of MD-GFRD. In MD-GFRD,
the particles clock must be synchronized during their interaction, and
this synchronization can be obtained by projecting the exit-time onto
a discrete temporal grid. The projection can be performed after the
exit-event with a fractional Brownian motion propagation or before
the exit-event by sampling the particle position in the last discrete
time before the exit-time. For the latter case, the choice of the prob-
ability distribution is crucial, for the reason that a systematic use of
an unconditional probability distribution under these circumstances
would bring the simulation to inaccurate results.

52

5.3. Exit-time conditions on the position distribution probability

0

2

4
дΩ(r , t |0, 0) t = 0.01

t = 0.1

t = 0.99

0.0 0.2 0.4 0.6 0.8 1.0

r

0

2

4
дΩ(r , t |τ ; 0, 0)

Figure 5.1: Radial probability distributions as in Eq. (5.14) and Eq.
(5.13). The domain Ω is a sphere centered in the origin, and, given
the spherical symmetry of the problem, the probability distributions
depend only on the radial distance r from the origin. All variables are
adimensional. The first exit-time has been given a unitary value τ = 1;
plots have been performed for different values of the bursting-time t.
Immediately after the initial time the conditional and unconditional
probability distributions result identical. The particle is located in
proximity of the origin, and the information of the exit-time is es-
sentially irrelevant at this time. As time increases, the distributions
diverge, becoming clearly different when the bursting-time is close to
the extracted exit-time.

5.3 Exit-time conditions on the position
distribution probability

Eq. (5.14) and Eq. (5.13) are clearly different (see Fig. 5.1) and
the assumption that these two distributions can be used interchange-
ably might be surprising. In particular, in asynchronous schemes as
FPKMC and MD-GFRD, the correctness of the use of the uncondi-
tional probability is not evident, because one may ask how the position

53

Chapter 5. First passage schemes

probability of the particle inside the domain is characterized when
the position of other particles is updated and known. This can be
justified by considering the probability distribution conditional with
respect to the exit-time. Indeed, when the exit-time is extracted, it
is ensured that the particle is inside the domain and that the particle
position is probabilistically described by Eq. (5.14) until realization of
the exit-event.

It is possible to sample from Eq. (5.13), only when the sampling
time is independent of the exit-time extraction. The problem can
also be reformulated by introducing f(~r, t|0, 0), which represents the
unconditional probability that the particle is in −→r at t. The particle
is supposed to be initially placed in a protective domain Ω. According
to the Bayes theorem, the probability distribution f(~r, t|0, 0) can be
decomposed into two conditional probabilities with respect to the event
that the particle never crossed the domain borders ∂Ω until t

(5.15)f(~r, t|0, 0) = g(~r, t|0, 0;~r ∈ Ω∀t′ ≤ t)h(~r ∈ Ω∀t′ ≤ t)
+ (1− h(~r ∈ Ω∀t′ ≤ t))P(~r, t|∂Ω),

where h(~r ∈ Ω∀t′ ≤ t) is the probability that the particle has never
escaped the domain, and P(~r, t|∂Ω) is the probability that the particle
is in ~r after crossing the domain borders ∂Ω. The particle position at
t can be sampled from the above equation as follows:

1. Sample the first exit-time τ .

2. if t < τ : then the particle position is sampled from g(~r, t|0, 0;~r ∈
Ω∀t′ ≤ t).

3. else if t > τ : then the particle position is the result of a Wiener
process of time length t − τ , starting in a random position on
the domain borders.

54

5.3. Exit-time conditions on the position distribution probability

For a given observation time t the first exit-time τ is extracted,
the comparison between these times, i.e. the if statements in the list,
in effect samples h(~r ∈ Ω∀t′ ≤ t). The only relevant assumption to
sample h(~r ∈ Ω∀t′ ≤ t) is that t and τ are uncorrelated.

The probability distribution g(~r, t|0, 0;~r ∈ Ω∀t′ ≤ t) requires that
the particle is known to be inside the domain at time t and that it
has never left it before, conditions satisfied by both Eq. (5.14) and
Eq. (5.13). The connection between these probability distributions is
that Eq. (5.13) is given by the integral of Eq. (5.14) over all possible
exit-times τ > t weighted with their likelihood

gΩ(~r, t|0, 0) =
∫ ∞
t

dτ gΩ(~r, t|τ ; 0, 0) qΩ(τ |0, 0)
SΩ(t|0, 0) , (5.16)

where qΩ(τ |0, 0)/SΩ(t|0, 0) is the probability that the particle exits
at τ , conditional with respect to the information that at t is still inside
the domain. From Eq. (5.16) it is possible to infer that, given the
information that the particle at t is still inside the domain, the position
sampled from Eq. (5.13) is on average the same as if sampled from Eq.
(5.14), when the exit-time is extracted from Eq. (5.12). An evident
assumption that has been made is that t and τ are uncorrelated, other-
wise the integral in Eq. (5.16) could not be defined. This assumption
is the essential reason that explains why sampling from Eq. (5.13) and
from Eq. (5.14) are statistically equivalent, see Eqs. (5.15) and (5.16).

In Fig. 5.2, simulations have been performed using the two dis-
cussed probability distributions to update the particle position when
domains are burst. Since in these simulations the domain bursts occur
only in occasion of the random collision of an external particle with
the protective domain of another particle, it is reasonable to assume
that the bursting-time and the first exit-time are uncorrelated, hence
sampling from Eq. (5.13) is statistically equivalent to sampling from
Eq. (5.14). The mean squared displacement in a simple diffusive

55

Chapter 5. First passage schemes

0

20

40

60
M
S
D
[nm

2
]

дΩ(r, t |0, 0)
дΩ(r, t |0, 0; τ)
BD

0 250 500 750 1000
Time [ns]

0

2

4

6

8

N

Figure 5.2: Top: Mean squared displacement of Brownian particles
simulated with the hybrid MD-GFRD scheme as described in Ch. 4
and with a brute-force integration of the Brownian dynamics (BD).
The hybrid scheme was chosen to maximize the number of bursts
during simulations. The diffusion coeficient is D = 10µm/s and
the system volume is a box of length 14nm with periodic boundary
conditions. Particles interact with a harmonic repulsive potential when
within a distance of 5nm. The dashed line is the expected value for a
free diffusion, BD lies below this slope for crowding effects. Bottom:
Kinetics of a two species annihilation reaction-diffusion system. The
same simulation settings as above have been used. Particles are initially
equally assigned to two different species A,B, and they annihilate when
they collide with another particle of the same species, A + A → 0
and B + B → 0. In both plots, the MD-GFRD simulations have
been performed using conditional (gΩ(r, t|τ ; 0, 0), see Eq. (5.14)) and
unconditional (gΩ(r, t|0, 0), see Eq. (5.13)) distribution probabilities to
sample the particle position at bursts, both showing a good agreement
with the BD integration.

56

5.3. Exit-time conditions on the position distribution probability

t=0
t0

τ

t0, r0

τ

t1 t1, r1

τ τ

τ

1) 2)

3) 4)

Figure 5.3: Graphical representation of the motion of a particle after
the bursting of its domain. (1) The blue particle constructs a domain
at time t = 0, and it samples τ as first exit-time from the domain. (2)
The orange particle bursts the domain at time t0. The blue particle
samples from Eq. (5.14) its position r0 at t0 and all successive free
displacements that will take place until the extracted exit-time τ . The
relative displacements are recorded and successively used for simulating
the free diffusion of the particle until τ . (3) The blue particle motion is
integrated synchronously with the other particles. Given the linearity
of the Langevin equation, it is possible to integrate the free diffusion
component and the interaction with other particles separately. At each
discrete temporal step the free diffusion displacement is taken from
the relative displacements already sampled at the bursting-time, while
the displacements due to interactions are iteratively given by the local
configuration of the system. (4) In case of no previous interactions the
particle is exactly located on the domain borders at τ .

57

Chapter 5. First passage schemes

0

20

40

60

M
S
D
[nm

2
]

дΩ(r, t |0, 0)
дΩ(r, t |0, 0; τ)
BD

0 250 500 750 1000
Time [ns]

0

2

4

6

8

N

Figure 5.4: Mean squared displacement of Brownian particles and
annihilation kinetics with the same properties and in the same system
as described in Fig. 5.2. In contrast to the schemes outlined in Ch. 4,
the clock synchronization is performed by sampling the particle position
at the last discrete step before the exit-time. This procedure involves
a systematic domain bursting, where the bursting-time is correlated to
the exit-time, making the sampling from Eq. (5.13) invalid.

process and the kinetics of a two species annihilation reaction-diffusion
system have been observed, and, as expected, the use of the conditional
and unconditional distributions led to indistinguishable results.

In asynchronous schemes such as FPKMC and MD-GFRD the
particle position is updated serially while other particles lie in protective
domains, but it is still an open question how the motion of particles
in such protective domains is characterized before their exit-time.
Sampling the particles position from Eq. (5.13) simply gives an average
behavior that is justifiable when the bursting-time is given randomly.
More rigorously, the particle position should be sampled from Eq.

58

5.3. Exit-time conditions on the position distribution probability

(5.14) until realization of the exit-time. Let us suppose that a domain
is burst at a time t and the particle that was inside the domain interacts
with another particle on the time grid {ti}ni=0, where ti+1 = ti + dt and
dt is the integration step. The particle position should be sampled
from Eq. (5.14) at all time steps until the pre-sampled exit time, t > τ .
However, in Eq. (5.14) the domain has been assumed to be interaction-
free until τ , but the particle is also assumed to be interacting. It is
still possible to use the conditional sampling because the Langevin
equation is linear, and the contribution of the free displacement can
be separated from the interaction term. When the particle is burst
at time t all particle displacements until τ are sampled and recorded.
These will give the free displacements of the particle that will then be
summed to the interaction term (see Fig. 5.3). The sampling procedure
just enlightened involves many integration steps between the bursting
time and the first-exit time, and in each of these steps the particle
position is sampled from Eq. (5.14). This is clearly computationally
more expensive than sampling once from Eq. (5.13), that can be done
efficiently using the rejection method as described in Refs. [53, 50]

In the above derivations t and τ have been assumed uncorrelated,
therefore it is possible to sample from Eq. (5.13). We have assumed the
uncorrelation assumption reasonable because the bursting-time is given
by the random collisions between different particles in a multi-particle
simulation. However, a systematic bursting at a time related to the
exit-time could be used in a multi-scale simulation as MD-GFRD. If
the particle synchronization, performed in this multi-scale algorithm,
is obtained by time-projection onto the last discrete time before the
exit-time of the particle, this systematic bursting would clearly insert
a correlation between t and τ . Eq. (5.16) would not be valid because
it is not possible to integrate τ independently from t and in Eq. (5.15)
h(~r ∈ Ω∀t′ ≤ t) is not sampled.

In Fig. 5.4, the mean squared displacements of particles simulated

59

Chapter 5. First passage schemes

as illustrated in Fig. 5.3 and particles that use the position sampling
from Eq. (5.13) are shown and compared to a brute-force integration
that is taken as reference. The synchronization step was performed be-
fore the exit-time during simulations, and it is clear from the figure that
the use of Eq. (5.13) makes the particles diffuse more slowly. Indeed,
immediately before the sampled exit-time the particle is expected to
be in proximity of the domain borders, but this is not ensured without
the condition on the exit-time (see Fig. 5.1). The correct slope of the
mean square displacement is instead reproduced when the Eq. (5.14)
is sampled. In the simulation, particles are interacting and their mean
squared displacements lie below the expected free diffusion value due
to crowding effects.

60

Chapter 6

Efficient sampling in first
passage schemes

First passage schemes have been thoroughly discussed in previous
chapters. In these asynchronous algorithms, Brownian particles per-
form large displacements in position and time, and each of these large
displacements can correspond to many small time-driven displacements
in a brute-force algorithm. The advantage of using an asynchronous
first passage algorithm over a brute-force discretization lies in the
lower total number of particle displacements in the simulation. In
first passage schemes, in fact, particle updates are delayed to the next
interaction event, but event-based sampling in first passage schemes is
also computationally more demanding than in time-driven integrations.
The efficiency of first passage schemes clearly depends also on the
computational time necessary for event-based sampling, and how this
compares to a brute force discretization of the Langevin equation.
Particle displacements in a brute-force discretization of the Langevin
equation is realized through a straightforward Gaussian extraction, an
operation that can be implemented efficiently. Asynchronous moves
must then also be optimized, otherwise, if the time needed to sample
one asynchronous move is several orders of magnitude larger than

61

Chapter 6. Efficient sampling in first passage schemes

the time needed to sample Gaussians, using first passage schemes is
advantageous only for extremely dilute systems. In Chapter 4, however,
it has been shown that a first passage scheme like MD-GFRD is more
efficient than brute-force integration up to a concentration of 103µM .
This result relied on the fact that large asynchronous displacements
were sampled efficiently, and the sampling method used is described in
detail in this chapter.

6.1 Sampling probability distributions with
a root finding algorithm

In first passage schemes, particle displacements are carried out through
a time extraction from qb(τ) or a position extraction from gb(r, t).
Target probability distributions qb(τ), gb(r, t) have already been derived
and studied in previous chapters, and are written here again for the
convenience of the reader :

qΩ(τ) = −2
∞∑
n=1

(−1)n exp
{
− n2π

2Dτ

b2

}
n2π2

b2 D, (6.1)

gΩ(r, t) = 1
SΩ(t)

∞∑
m=1

exp
{
−m2π

2Dt

b2

}2πr
b2 m sin

(
mπr

b

)
, r < b,

(6.2)
where SΩ(t) is the survival probability. It is possible to sample the

above distributions using samples generated from a uniform distribution
on the unitary interval w(x)

w(x) =

1, 0 ≤ x ≤ 1.

0, otherwise.
(6.3)

Let us assume that we are interested in sampling a generic distri-

62

6.1. Sampling probability distributions with a root finding algorithm

bution probability p(x) defined in the interval [a, b], whose cumulative
function P (X) is defined as:

P (X) =
∫ X

a
p(x) dx, X ∈ [a, b]. (6.4)

It can be noted that P (X) is a monotonically not decreasing func-
tion, p(x) never being negative. Two different probability distributions
can be equated with an appropriate variable transformation y = h(x)

p(x)dx = p̃(y)dy, (6.5)

where p̃(y) is a not negative function defined in y ∈ [h(a), h(b)]
and

∫ h(b)
h(a) p̃(y)dy = 1. The two cumulative functions are shown to be

identical by integrating Eq. (6.4)

P (X) =
∫ X

a
p(x) dx =

∫ h(X)

h(a)
p̃(y) dy =

∫ Y

h(a)
p̃(y)dy = P̃ (Y), (6.6)

where Y = h(X). If the cumulative of a uniform distribution is
taken

W (ξ) =
∫ ξ

0
w(x)dx = ξ; ξ ∈ [0, 1], (6.7)

which inserted in Eq. (6.6) results in

P (X) = W (ξ) = ξ, (6.8)

where ξ is a number extracted from a uniform distribution in the
unitary interval. Uniform distributions can be sampled with pseudo
random number generators. The inversion of the equation above allows
the extraction of a value X sampled from P (X)

X = P−1(ξ). (6.9)

63

Chapter 6. Efficient sampling in first passage schemes

The cumulative SΩ(t) of the time probability distribution (see Eq.
(6.1)),

SΩ(t) = −2
∞∑
n=1

(−1)n exp
{
− n2π

2Dt

b2

}
, (6.10)

and the cumulative of the position distribution (see Eq. (6.2))

GΩ(r, t) = 2
bπSΩ(t)

∞∑
m=1

exp
{
−m2π

2Dt

b2

} (
b

m
sin

(
mπr

b

)
− rπ cos

(
mπr

b

))
(6.11)

are not analytically invertible, which makes the direct sampling as
in Eq. (6.9) not applicable. However, p(x) can be sampled from Eq.
(6.8) also by finding numerically the root of the equation

P (X)− ξ = 0. (6.12)

The root above can be approximated numerically by different al-
gorithms, as the Newton-Raphson method. This method has the
advantage of converging quadratically, but convergence to the root is
not guaranteed and is quite sensitive to the starting point choice. How-
ever, if the root is searched in a function containing only one inflection
point, and the inflection point is chosen as starting point, convergence
is guaranteed. The target probability distributions qb(τ), gb(r, t) are
unimodal, which involves their cumulative functions having only one
inflection point, and this inflection point is used as starting point. The
exact position of the inflection points in the cumulative functions SΩ(τ)
and GΩ(r, t) can be approximated accurately through a numerical
study of the target distributions.

64

6.1. Sampling probability distributions with a root finding algorithm

0

5

q
Ω
(τ)

b = 1

0

100

d
q
Ω
(τ)

d
τ

b = 1
t ∗ = 0.0917517

0

1

q
Ω
(τ)

b = 2

0.0 0.2 0.4 0.6 0.8 1.0

τ

0

10

d
q
Ω
(τ)

d
τ

b = 2

0 1 2 3 4 5

b

0

1

2

τ

Figure 6.1: Location of the inflection point in the time cumulative
function SΩ(τ). Top) First (qΩ(τ)) and second (dqΩ(τ)

dτ
) derivative of the

cumulative function for different domain size b = 1, b = 2. The diffusion
coefficient is fixed D = 1. The orange dashed bar is placed at the time
of the inflection point. The inflection point is found numerically for
b = 1, D = 1 at τ ∗ = 0.0917517. Bottom) blue line - expected location
of the inflection point following Eq. (6.15) for different domain size and
fixed diffusion coefficient D = 1; orange cross - inflection point time
found numerically. It is possible to see that the time of the inflection
point scales quadratically with the domain size, as expected from Eq.
(6.15).

65

Chapter 6. Efficient sampling in first passage schemes

0.0

2.5

д
Ω
(r,

t) t = b2

100Dt

−25

0

25

∂
д
Ω
(r,
t)

∂
r

t = b2

100Dt

0

1

д
Ω
(r,

t) t = b2

Dt

0.0 0.2 0.4 0.6 0.8 1.0

r

−10

0

∂
д
Ω
(r,
t)

∂
r

t = b2

Dt

0.0 0.2 0.4

t

0.2

0.4

0.6

r

b = 1

0 20 40

t

2

4

6

b = 10

Figure 6.2: Location of the inflection point in the position cumulative
function PΩ(r, t). Top) First (gΩ(r, t)) and second (dgΩ(r,t)

dr
)) derivative

of the cumulative function at a small (t = b2/100Dt) and large (t =
b2/Dt) time. The diffusion coefficient and the domain size are fixed
D = 1, b = 1. The orange dashed bar is placed at the position of
the inflection point. Bottom) blue line - expected location of the
inflection point according to Eq. (6.21) for different domain size and
fixed diffusion coefficient D = 1; orange cross - inflection point time
found numerically. The two vertical dashed bars delimit short and
large times (tsmall = 0.0646 b2

D
, tlarge = 0.234 b2

D
).

66

6.2. Inflection point in the time cumulative function

6.2 Inflection point in the time cumula-
tive function

The objective is to find a function of the parameters b,D aimed at
accurately approximating the time position of the inflection point in
the cumulative function SΩ(τ). After deriving twice the cumulative
function, the inflection point is at the time τ ∗ that satisfies the following
equation:

fb,D(τ ∗) =
∞∑
n=1

(−1)nn2 exp
{
− n2π

2Dτ ∗

b2

}
= 0. (6.13)

In the above equation, the time τ ∗ is multiplied by the scaling
factor D/b2. Hence, once the inflection point τ ∗′ is known for some
specific parameters b′ , D′ , the inflection point can be inferred for other
parameters’ values

τ ∗
D

b2 = τ ∗
′D
′

b′2
. (6.14)

The inflection point is found numerically at τ ∗′ = 0.0917517 with
parameters b′ = 1, D′ = 1. Then the inflection point can be inferred
for other values according to the following rule:

τ ∗ = 0.0917517 b
2

D
. (6.15)

This approximation is tested in Fig. 6.1, where a good agreement
with values found numerically is evident.

67

Chapter 6. Efficient sampling in first passage schemes

6.3 Inflection point in the position cumu-
lative function

The cumulative function GΩ(r, t) depends on the position variable r in
a different, more complex, manner compared to the dependence of the
time cumulative function SΩ(τ) on τ , and finding a simple scaling rule
as above is not possible.

Moreover, GΩ(r, t) also has an additional external parameter, the
observation time t, other than the domain size b and the diffusion
coefficient D. However, based on the observation time t, it is possible
to approximate the cumulative function GΩ(r, t) to simpler functions
where the position of the inflection point is found analytically. The
observation time t is considered small or large considering how it
compares to the coefficient b2/D, which is a multiplicative factor of the
observation time in Eq. (6.11). Based on this consideration, different
approximations of the cumulative function can be used to find the
inflection point.

In case of small time, it can reasonably be assumed that the proba-
bility of the particle having escaped the domain is small. The target
probability distribution gΩ(r, t) is obtained by solving the diffusion
equation and imposing boundary conditions on the domain borders.
Boundary conditions are applied on the probability flux once it reaches
the domain borders, but if the time is small enough this probability
is small, and the effect of the boundary conditions is small as well.
Hence, at small times boundary conditions can be ignored, and gΩ(r, t)
approximated with a free diffusion probability pfree(r, t)

pfree(r, t) = r2√
4π(Dt)3

e−
r2

4Dt . (6.16)

The maximum position, or inflection point of the cumulative, in

68

6.3. Inflection point in the position cumulative function

the above equation r∗ is found analytically

r∗ =
√

2Dt. (6.17)

The model that has been used at small times was based on a physical
assumption, but as time increases this assumption is not verified; then,
at large times, a different model is used, which is built upon different
mathematical considerations. When time is large, the absolute value of
exponents in the sum in Eq. (6.2), which scales with Dt

b2
, is also large.

Considering that these exponents grow quadratically with the index
element m in the series, all terms for m > 1 are negligible compared
to m = 1 if the time is large enough. The equation then results in

gb(r, t) = 1
SΩ(t) exp

{
π2Dt

b2

}2πr
b2 sin

(
πr

b

)
. (6.18)

The position of the maximum of the equation above scales with the
variable b, and the exact proportionality coefficient is found numerically

r∗ ≈ 0.646 b. (6.19)

Two different approximation models of the position cumulative
function have been outlined. These models are alternatively valid at
small or large times, and they allow us to find analytically the position of
the inflection point. However, these two models are very different, and
are not capable of approximating accurately the cumulative function
at intermediate times. The small time model gives the inflection point
as a function of the diffusion coefficient D and the observation time
t, without considering the domain size b. On the contrary, in the
large time model the maximum position scales with the domain size b,
while the other parameters are ignored. In spite of these very different
behaviors, considering that the particle is diffusing, we assume that
the inflection point position is described over time by a monotonically

69

Chapter 6. Efficient sampling in first passage schemes

not decreasing function. Given the position of the inflection point
at a small and a large time, at intermediate times the position is
found with an interpolation between the two known values. Thresholds
that delimit small tsmall and large tlarge times are here defined after
numerical investigations:

tsmall = 0.0646b
2

D
, tlarge = 0.234b

2

D
. (6.20)

An exponential interpolation is then drawn between these two
values. The inflection point of the cumulative r∗ is approximated with
different functions depending on the observation time t:

t ≤ tsmall ⇒ r∗ = 2

√
Dt,

tsmall < t < tlarge ⇒ r∗ = β
(
1− exp

(
Dt
b2

))
+ γ,

t ≥ tlarge ⇒ r∗ = 0.646 b,

(6.21)

where the parameters β and γ have been fixed to ensure continuity
of the function

β = (r∗small−r
∗
large) exp(√tsmall+

√
tlarge)

exp(√tsmall)−exp(√tlarge) ,

γ = − r∗small(exp(√tsmall)−1) exp(√tlarge)−r∗large(exp(√tlarge)−1) exp(√tsmall)
exp(√tsmall)−exp(√tlarge) ,

r∗small = 2
√
Dtsmall,

r∗large = 0.0646 b.
(6.22)

In Fig 6.2, it is possible to see that the location of the inflection
points can be well approximated using the piecewise function intro-
duced above at small and large times. Although the interpolation at
intermediate times is not as accurate, the accuracy reached is still
enough for a fast and robust convergence of the Newton-Raphson

70

6.4. Numerical convergence

0.0 0.2 0.4 0.6 0.8 1.0

r

0

1

2

3

4

p(
r)

дΩ(r , t), t = b2

100D

pf r ee (r , t), t = b2

100D

дΩ(r , t), t = b2

10D

pf r ee (r , t), t = b2

10D

Figure 6.3: Comparison of the probability distributions in Eq. (6.2)
and Eq. (6.16) at different times. In gΩ(r, t) (Eq. (6.2)) absorbing
boundary conditions on the domain Ω have been applied, while bound-
ary conditions have not been applied in pfree(r, t) (Eq. (6.16)). In
the figure, it is possible to see that at small times t < b2

100D the two
distributions are indistinguishable. The reason is that after a short
time it is unlikely that the particle has escaped the domain, and the
effect of the boundary conditions is negligible. As time increases, the
probability of escaping the domain becomes significant, and the two
distributions differ.

method, which will be discussed in the next section.

6.4 Numerical convergence

Newton-Raphson method has the main advantage of converging fast,
but at each iteration it requires the computation of the function, whose
root is searched, and its derivative. In the specific application of this
method to cumulative functions as SΩ(τ) and GΩ(r, t), it should also
be ensured that convergence of sums in cumulative functions and their
derivatives is fast enough to make the method in effect convenient
(see Eq. (6.1), Eq. (6.2), Eq. (6.10), and Eq. (6.11)). Especially in
the case of the radial distribution probabilities gΩ(r, t) and GΩ(r, t),

71

Chapter 6. Efficient sampling in first passage schemes

converge can be extremely slow as the observation time becomes very
small t << b2/D. Application of the Newton-Raphson method in this
situation can be avoided because sampling gΩ(r, t) is not necessary
at this time scale. As already mentioned, when observation time is
very small, the particle distribution can be modeled without imposing
absorbing boundary conditions, and position can be sampled from Eq.
(6.16). In Fig. 6.3, it is possible to see that gΩ(r, t) and pfree(r, t) are
indistinguishable as the observation time is set to t = b2/(100D); this
value is then taken as threshold: when the observation time is smaller,
position is sampled directly from Eq. (6.16).

Convergence of sums in Eq. (6.1), Eq. (6.2), Eq. (6.10), and
Eq. (6.11) is verified because the succession in the series reaches
zero asymptotically, which is ensured by the exponential decay in
the succession. The series must be truncated in order to be evaluated
numerically, and this can be done within a controllable truncation error.
In Fig. 6.5, the number of evaluated elements in the succession to reach
converge within a fixed error is shown. At small times, convergence
happens more slowly, but it rarely needs more than 20 iterations to
reach convergence. Overall, the number of iterations is low, mostly
below 10.

Given the fast convergence of sums in target distributions, Newton-
Raphson method can be efficiently applied, and this method ensures
fast convergence. In Fig. 6.4, the Newton-Raphson method is applied
to find roots of equations as Eq. (6.12) for different values of ξ and for
the cumulative functions SΩ(τ) and GΩ(r, t). Initial conditions are set
as previously explained, and the method reaches always convergence.

Finally, the method is tested for a large number of random extrac-
tions, and in Fig. 6.6 it is possible to see that the target distributions
are correctly reconstructed.

72

6.4. Numerical convergence

0.0 0.5 1.0

t

0

10

20

30

n
∗

q(t)

0.0 0.5 1.0

t

S(t)

0

10

20

30

m
∗

pΩ(r , t), t = b2

D PΩ(r , t), t = b2

D

r
0

10

20

30

m
∗

pΩ(r , t), t = b2

10∗D

r

PΩ(r , t), t = b2

10∗D

0.0 0.5 1.0

r

0

10

20

30

j∗

pΩ(r , t), t = b2

100∗D

0.0 0.5 1.0

r

PΩ(r , t), t = b2

100∗D

Figure 6.4: Iterations necessary to reach convergence in sums in
Eq. (6.1), Eq. (6.2), Eq. (6.10), and Eq. (6.11). Parameters are
fixed D = 1, b = 1, and radial distributions are studied for different
observation time t. Convergence of the sum to a finite value is ensured
because the succession decreases exponentially. Sums have alternating
sign, and, when convergence is evaluated, the sum of two consecutive
elements of opposite sign is considered as one term in the succession.
A convergence threshold is fixed to 10−5, and convergence is reached
when the sum of two elements in the succession is smaller than the
convergence threshold. The truncation error is then controllable, and
it is smaller than the convergence threshold.

73

Chapter 6. Efficient sampling in first passage schemes

0.0 0.5 1.0
ξ

0

5

10

i∗

b = 1

0.0 0.5 1.0
ξ

b = 100

0.0 0.5 1.0
ξ

0

5

10

j∗

b = 1, t = b2

Dt

0.0 0.5 1.0
ξ

b = 100, t = b2

Dt

0

5

10

j∗

b = 1, t = b2

10Dt b = 100, t = b2

10Dt

0

5

10

j∗

b = 1, t = b2

100Dt b = 100, t = b2

100Dt

Figure 6.5: Number of iterations in the Newton-Raphson method
to find the roots of SΩ(τ) − ξ (see Eq. 6.10) and GΩ(r, t) − ξ (see
Eq. 6.10). Diffusion coefficient is fixed D = 1, while the domain size
assumes two different values b = 1, 100. Starting point of the method is
chosen in proximity of the inflection point, and convergence is ensured
for all different values of ξ. It is possible to see in the figure that
convergence is always fast, at most about 10 iterations.

74

6.4. Numerical convergence

0.0 0.2 0.4 0.6 0.8 1.0

τ

0.00

0.02

0.04

0.06

q
Ω
(τ)

0.00

0.02

0.04

д
Ω
(r,

t)

t = b2

100D

0.00

0.02

0.04

д
Ω
(r,

t)

t = b2

10D

0.0 0.2 0.4 0.6 0.8 1.0

r

0.00

0.02

0.04

д
Ω
(r,

t)

t = b2

D

Figure 6.6: Target distributions qΩ(τ) and gΩ(r, t) are reconstructed
using values sampled from a uniform distribution in the unitary interval.
Parameters are fixed b = 1, D = 1, and gΩ(r, t) is evaluated at different
times. From random uniform samples, values of τ or r are obtained
using cumulative functions and the Newton-Raphson method to find
the root. These values are then grouped into different bin intervals
and plotted as a histograms. Black dashed curves are numerical
approximations of the sums in the target distributions in Eq. (6.1)
and Eq. (6.2). In the figure, it is shown that the outlined sampling
method accurately reconstructs the target distributions.

75

Part II

Atomistic Scale

77

Chapter 7

Markov chain Monte Carlo

Since the beginning of their invention, computers have being used
for simulations involving pseudo-random number extractions, or also
called Monte Carlo simulations. Markov Chain Monte Carlo (MCMC)
methods have been introduced by Metropolis et al. in 1953 to compute
"the properties of any substance which may be considered as composed
of interacting individual molecules" [62]. In the Metropolis algorithm,
molecules follow a random walk in the phase space, but individual
moves are randomly accepted with an acceptance rate determined
by the energy difference between initial and final configuration. At
each iteration, a new configuration is generated with a trial move,
then, if the proposed state is accepted, the system jumps into that
configuration, otherwise it remains in the previous configuration. The
ensemble of states generated with this procedure forms a Markov chain
that asymptotically samples the equilibrium distribution, and is used
to compute averages of macroscopic observables.

The Metropolis algorithm was generalized by Hastings in 1970 [63].
In this more general formalization it is suggested that molecules must
not necessarily move following a random walk, but trial configurations
are drawn from selection probabilities that can be arbitrarily designed
for the specific system that is investigated. The probability used to

79

Chapter 7. Markov chain Monte Carlo

accept trial moves then depends not only on the energy difference
between final and initial configuration, but also on the degree of
reversibility of the selection move. If the probability to propose a state
is the same as the probability to select back the original state from the
proposed one, moves are perfectly reversible and the reversibility factor
does not appear in the acceptance rate. For example, when moves are
generated with a random walk in the phase space as in the original
Metropolis scheme, moves are reversible and the acceptance rate is
only determined by the energy difference. On the other hand, if trial
moves are generated with an arbitrary algorithm, reversibility in the
acceptance probability must be evaluated at each iteration. The specific
scheme used to propose moves plays a key factor in the convergence
rate of the Markov chain, and in his work Hastings already warns
against "high rejection rates as indicative of a poor choice of transition
matrix", where transition matrix indicates the ensemble of selection
probabilities defined in the system. Since then, the development of
efficient proposal moves to accelerate the convergence rate in MCMC
has been an active research field.

In this chapter, the Metropolis-Hastings algorithm is outlined. It
is demonstrated that the Markov chain generated with this algorithm
asymptotically samples the equilibrium distribution of condensed-
matter systems at thermodynamic equilibrium. However, if moves
are proposed with a local random walk in the configuration space,
this algorithm produces highly correlated samples, and the evaluation
of macroscopic observables becomes computationally challenging for
multi-dimensional systems. The choice of the algorithm for proposing
trial configurations is crucial for fast convergence, and in the next
chapter it is shown how this convergence rate can be dramatically
increased with the aid of deep-learning in neural mode jump Monte
Carlo.

80

7.1. Sampling equilibrium distributions

7.1 Sampling equilibrium distributions

We study a stochastic system characterized by an equilibrium distribu-
tion π(~x), and our goal is to compute the expected value < A > of an
observable quantity A(~x) :

〈A〉 =
∫
d~xA(~x)π(~x). (7.1)

Computational time required to numerically solve this integral
scales with the phase space volume where it is defined, hence numerical
integration is not a reasonable choice for highly dimensional systems.
On the other hand, assuming that we are able to generate independent
samples from the equilibrium distribution, an estimate of the average
value AM over M samples is obtained from the following sum:

ÃM = 1
M

M∑
i=0

A(~xi). (7.2)

The central limit theorem then ensures that this sum converges to
the expected value

〈A〉 = lim
M→∞

ÃM . (7.3)

Many systems of interest in biology are at thermal equilibrium with
a reservoir at fixed temperature T . If the investigated system is closed,
i.e. the number of molecules is fixed, it is statistically described by the
canonical ensemble and the microscopic probability to be in the state
~x is given by the Boltzmann distribution

π(~x) = e−E(~x)/KBT

Z
, (7.4)

whereKB is the Boltzmann constant, and Z is the partition function

Z =
∫
e−E(~x)/KBT d~x. (7.5)

81

Chapter 7. Markov chain Monte Carlo

The next step is then to understand how a probability distribution
as in Eq. (7.4) can be sampled efficiently.

7.2 Brute-force sampling of multidimen-
sional probability distributions

An arbitrary mono-dimensional probability distribution can be sampled
using samples from the uniform distributions as described in Ch. 6.
Assuming that the system has N dimensions π(~x) = π(x1, . . . , xN), we
then would like to obtain N separate mono-dimensional probability
distributions, and individually sample from each of them. In the
trivial case of independent variables the joint distribution is directly
factorizable

π(x1, . . . , xN) = π(x1), . . . , π(xN). (7.6)

However, usually there are correlations between variables, and a
factorization into conditional probabilities is instead required

π(x1, . . . , xN) = π(x1), π(x2|x1), . . . , p(xN |x1, . . . , xN−1). (7.7)

A brute-force routine to sample the above conditional distribution
is defined below. Firstly, we sample from the mono-dimensional distri-
bution π(x1), and this distribution is obtained straightforwardly with
a marginalization of the joint probability

π(x1) =
∫
π(x1, . . . , xN) dx2 . . . dxN . (7.8)

The value x∗1 is then directly sampled from π(x1), and this specific
value conditions successive extractions through correlations. Hence,
to obtain the conditional probability distribution π(x2|x1), the joint

82

7.3. Metropolis-Hastings algorithm

probability π(x1, x2) is required, which is found by marginalizing the
joint distribution over the other N − 2 variables

π(x1, x2) =
∫
π(x1, . . . , xN) dx3 . . . dxN . (7.9)

Then, the Bayes theorem is applied

π(x2|x1) = π(x1, x2)
π(x1) . (7.10)

The value x∗1 is inserted into p(x2|x1), and x∗2 is extracted from
the conditional distribution. In turn, the same routine is repeated to
sample the third dimension, and this is iterated for all N dimensions.
The collection of N values x∗1, . . . , x∗N represents one sample of π(~x).

The just outlined brute-force approach has the advantage that
each sample ~xi is uncorrelated with respect to the previous one ~xi−1,
consequently convergence of Eq. (7.2) is attained after a relatively
small number of samplesM . However, for each dimension two integrals
must be solved: one to marginalize the joint probability, and one for the
cumulative function (see ch. 6). Excluding trivial cases, these integrals
do not have an analytical solution, and integrations are computationally
demanding, especially when the marginalization is performed over a
large number of dimensions. Interesting biological systems usually are
highly multi-dimensional, and a brute-force sampling is computationally
unfeasible.

7.3 Metropolis-Hastings algorithm

The generation of equilibrium samples for complex many-body systems
is arduous if this involves computations over the whole configuration
space. In fact, the canonical ensemble is characterized by a peaked
probability distribution that can be largely approximated to zero. The
fraction of configuration space that is relevant in integrals as in Eq.

83

Chapter 7. Markov chain Monte Carlo

(7.1) is vanishingly small for many dimensions, and the iteration of
numerical operations over this irrelevant region is unnecessary. Rather,
once the relevant region has been found in the configuration space,
it would be convenient to employ this knowledge in the successive
sampling and explore the surrounding area. Given the system in a
certain configuration, the probability distribution to sample the next
configuration should be conditional with respect to the current one,
but memory of previous configurations is not relevant. This generates
a memoryless stochastic process, also known as Markov chain.

The Metropolis-Hastings algorithm generates a Markov chain that
aims to sample a specific target distribution, in our case the Boltz-
mann distribution. At each iteration, given the system in the state
~xtn , a transition probability p(~xtn+1 |~xtn) is defined, and the next
state ~xtn+1 is drawn from this probability. The ensemble of states
~xt0 , . . . , ~xtn , ~xtn+1 , . . . visited by the system represents the Markov
chain. To facilitate the discussion, the system is now assumed to be
discrete, results can then be generalized to continuum. In a discrete
system there is a finite number of transition probabilities p(1)

ij to move
with one transition from a state ~xi to a state ~xj, and the probability
p

(2)
ij to move from state i to state j with two transitions is decomposable

into two consecutive one-transition moves

p
(2)
ik =

Q∑
j=1

p
(1)
ij p

(1)
jk , (7.11)

where Q is the total number of discrete states. In turn, the same
reasoning is applicable to the n-th transition

p
(n)
ik =

Q∑
j=1

p
(n−1)
ij p

(1)
jk . (7.12)

Assuming that the states i and j belong to the same ergodic class,

84

7.3. Metropolis-Hastings algorithm

it is possible to show [64] that the limit

lim
n→∞

p
(n)
ij = πj, j = 1, 2 . . . , Q (7.13)

exists for each j, and is independent of i. Initial conditions are then
irrelevant, because after a certain number of transitions the system
loses memory, and the probability πj to be in a state j does not depend
on the initial state i. Inserting the above equation into Eq. (7.12)

πk =
Q∑
j=1

πjpjk. (7.14)

This sum represents an eigenvector equation relative to the eigen-
value 1, that can be solved to find the eigenvector elements {πk} from
the transition probability {pik}. In our case, however, the problem is
the opposite, because the target distribution {πk} is known, i.e. the
Boltzmann distribution, but the transition probabilities {pjk} are to
be determined. The above equation can be rewritten as:

Q∑
j=1

πkpkj =
Q∑
j=1

πjpjk, (7.15)

where it has been considered that ∑Q
j=1 pkj = 1, i.e. starting from

j the system will certainly move into one of the Q states. One possible
solution of Eq. (7.15) is given by the condition of detailed balance

πkpkj = πjpjk. (7.16)

It is now possible to decide on the target distribution {πk} that
is asymptotically sampled from the transition probabilities {pjk}. A
discrete system has been used for simplicity in this derivation, but the
discussion can be generalized to a continuous target distribution π(~x)
and a continuous transition probability p(~x→ ~y).

Metropolis choice is to divide the transition probability into two

85

Chapter 7. Markov chain Monte Carlo

different logical steps: firstly, a new state is selected from a selection
probability pprop(~x → ~y); then, the proposed state is accepted with
an acceptance probability pacc(~x→ ~y). If the new state ~y is accepted,
this is added to the Markov chain and the next proposal starts from ~y;
otherwise, the starting state ~x is added to the Markov chain and the
next proposal starts again from ~x. According to this decomposition,
the condition of detailed balance becomes:

π(~x)pprop(~x→ ~y)pacc(~x→ ~y) = π(~y)pprop(~y → ~x)pacc(~y → ~x). (7.17)

If trial configurations are proposed with a random displacement in
the configuration space, as in the original Metropolis work, proposal
probabilities cancel out in the condition of detailed balance

e−βE(~x)pacc(~x→ ~y) = e−βE(~y)pacc(~y → ~x), (7.18)

where the Boltzmann distribution (Eq. (7.4)) has been used as
target distribution and β = KB T . The relative value of acceptance
probabilities is determined by the energy difference between initial and
final state:

pacc(~x→ ~y)
pacc(~y → ~x) = e−β(E(~y)−E(~x)). (7.19)

In the above equation the absolute value of the acceptance proba-
bilities is not given, and there is still a degree of freedom that can be
used to maximize the efficiency of the Markov chain. An indicator of
efficiency is given by the capability of the Markov chain to generate
independent samples, and generation of independent samples is clearly
accelerated if trial moves are frequently accepted. The acceptance
probability is then to be maximized with the constraint of having to
fulfill the detailed balance, and, obviously, it must be lower than or

86

7.3. Metropolis-Hastings algorithm

equal to 1 because it is a probability. This can be achieved with the
following choice for the acceptance probability:

pacc(~x→ ~y) =

e
−β(E(~y)−E(~x)), if E(~y) > E(~x).

1, otherwise.
(7.20)

To sum up, the Metropolis-Hastings scheme is an algorithm to
generate a Markov chain. This has been proven to asymptotically
sample a target distribution, in our case the Boltzmann distribution.
After an equilibration time, the algorithm generates states located in a
likely region of the system, and the probability of visiting a certain state
is proportional to the Boltzmann probability. Hence, states generated
with the Metropolis-Hastings algorithm can be used to compute average
quantities as in Eq. (7.2).

After proving that the Metropolis-Hastings algorithm samples the
Boltzmann distribution, we are concerned about the efficiency of the
Markov chain, i.e. the rate at which independent samples are generated.
Proposing states with a random walk in the phase space allows us to
ignore proposal probabilities in Eq. (7.19), because moves are fully
reversible, and this simplifies the acceptance probability. However,
random displacements must be very small to avoid the acceptance
probability dropping to zero. The reason of this is clear from Eq.
(7.19), where the acceptance probability decays exponentially with the
energy difference, and in rugged energy landscapes random selections
of new states often involve large energy differences. Choosing small
displacements in a local MCMC allows us to obtain a high acceptance
rate, but samples generated are also highly correlated. More specifically,
local MCMC allows for an accurate local exploration of the phase
space, but crossing energy barriers remains difficult. However, most
biologically relevant systems are composed of many metastable states

87

Chapter 7. Markov chain Monte Carlo

that are separated by high energy barriers, and it is required to cross
these energy barriers several times during simulations to converge to the
equilibrium distribution. It is practically impossible to design manually
long range moves that are capable of making a direct transition into
another metastable state, but this can be achieved with the aid of
deep-learning. This is the core idea of Neural Mode Jump Monte Carlo,
which is outlined in the next chapter.

88

Chapter 8

Neural Mode Jump Monte
Carlo

Text in this chapter has been previously published in:
L. Sbailò, M. Dibak, and F. Noé. (2019) Arxiv:1912.05216.

Local Markov chain Monte Carlo (MCMC) is not suited to sample
the equilibrium distribution of systems composed of many metastable
states that are separated by high energy barriers. In fact, transi-
tions between different metastable states might require an enormous
computational effort, and it is often impossible to cross the energy
barriers many times with unique simulations. The impossibility of
visiting all relevant regions in the configuration space leads to a prob-
lem known as broken ergodicity, or quasiergodicity, which implicates
that simulations do not converge properly. In the last decades, many
different methods have been developed to circumvent the problem of
broken ergodicity. One of the most widely recognized methods to
enhance MCMC sampling in quasiergodic systems is simulated temper-
ing [65]. Simulations based on simulated tempering randomly change
the temperature of the sampler while remaining at equilibrium in an

89

Chapter 8. Neural Mode Jump Monte Carlo

augmented configuration space. The strength of this method relies
on the fact that trajectories are more likely to cross energy barriers
as temperature is increased, and raising the temperature allows for a
faster exploration of the configuration space. However, a temperature
change is likely to be accepted only if there is a significant overlap in
the energetic distribution sampled at the two temperatures, and this
can be a problem if the energy barriers are particularly high and a
wide range of different temperatures is required to cross them. The
effectiveness of this method is, in fact, still susceptible to the height of
the energy barriers. Another approach recently developed [66, 67, 68]
constructs reversible moves between equilbrium states as a collection
of short out-of-equilbrium trajectories. However, this approach also
depends on the path connecting the equilibrium states, and a system
specific protocol to generate the candidate state must be designed.
Differently, Smart Darting Monte Carlo [69] is a promising method
that alternates local moves and long range moves from one region of
the configuration space to another that is arbitrarily far, outperforming
parallel tempering in a number of relevant potential energy surfaces
[70]. Small spheres of radius ε are drawn around local minima, and,
when the system is within one of those ε-spheres, long range moves
into another minimum can be attempted. The system is projected in
proximity of the new minimum, and projection is performed so as to
maintain the relative distance to the closest minimum. The rule used to
generate long range displacements is quite straightforward, and it does
not take into account the local energetic conformation of the different
minima. However, the energy difference proposed in trial moves must
be minimal according to Metropolis criterion [62], thus the volumes of
ε-spheres are forced to be small. Local explorations can be long before
entering ε-spheres, which makes this method difficult to apply in highly
dimensional systems where the fraction of ε-spheres volume becomes
vanishingly small. This problem is circumvented in ConfJumps [71]

90

by projecting the system into the closest minimum, and there long
range moves are attempted. In doing so, it is not required that small
ε-spheres are randomly found through local displacements, but this
approach still requires to search the configuration space before running
MCMC simulations to find all local minima.

The generation of long range moves is challenging when the energy
landscape is rough, since the potential energy surface in the region
surrounding local minima can drastically change between the different
minima. In this case, using trivial projections as long range moves
would mostly cause large energy differences, and trial moves are likely
rejected. Instead, a specific bijective function pairing points so as to
keep the energy difference small should be employed, but constructing
such bijection analytically is practically impossible in multi-dimensional
systems, which substantially limits applications of this method. On the
other hand, recent advances in the field of machine learning have per-
mitted to deal with problems that were not solvable with a sole human
understanding, and, more specifically, deep neural networks (DNNs)
are an ideal tool to facilitate the construction of the bijective function
we are concerned about. DNNs can approximate a target function
with arbitrary precision, and, in fact, they have already been applied
to enhance statistical sampling [72]. DNNs have also been employed
to construct MCMC moves, but current methods either optimize a
self-learning process over a known path in a discrete configuration space
[73] or are applied to bi-dimensional systems [74]. An agnostic method,
not system specific, capable to connect through DNNs regions that are
distant in the configuration space, and applicable to multi-dimensional
systems in continuum, is still missing.

Neural mode jump Monte Carlo (neural MJMC) is a novel method
to sample efficiently the equilibrium distribution of complex many-
body systems with unbiased Markov chains. In this, scheme neural
networks are trained to propose "neural" moves that directly connect

91

Chapter 8. Neural Mode Jump Monte Carlo

different metastable states. Local displacements and neural moves
are alternated in a combined scheme to accelerate the convergence
rate of Markov chains. A general formalism is proposed, where local
moves and neural moves are generated with specific kernels, and kernels
are randomly selected according to their selection probability. The
combined scheme satisfies detailed balance which requires that kernels
must be reversible, and, to facilitate that, neural moves are produced
with bijective functions that are constructed with reversible DNNs.
Equilibrium configurations are collected in the different metastable
states and are used to train the networks, which are then optimized
to produce high acceptance probability moves from one metastable
state to another. Local exploration ensures ergodicity of the scheme,
while neural moves accelerate convergence to equilibrium, realizing an
accurate and deep exploration of the configuration space.

8.1 Theory

Markov chains asymptotically sample the equilibrium distribution if
ergodic and if the condition of detailed balance is satisfied. Given the
system in a configuration ~x a new state ~y is added to the chain with a
transition probability p(~x→ ~y). The transition probability is defined
to satisfy the condition of detailed balance

π(~x) p(~x→ ~y) = π(~y) p(~y → ~x), (8.1)

where π(~x) is the equilibrium distribution. According to Metropolis-
Hastings algorithm [62, 63], the transition probability is decomposed
into two logical steps: firstly, a new configuration ~y is selected with a
proposal probability pprop(~x→ ~y); then, the new state is accepted with
an acceptance probability pacc(~x → ~y). If the transition is accepted,
the new state ~y is added to the Markov chain, otherwise the previous

92

8.1. Theory

state ~x is added to the Markov chain.

In neural MJMC, the proposal probability is in turn decomposed
into two logical steps: firstly, a selection-kernel Ki is extracted with
a probability piK(~x) from a pre-defined list of kernels {Ki}NKi=1, where
NK is the total number of kernels in the system; then, a new state ~y is
drawn from the proposal probability piprop(~x→ ~y) that is associated to
the extracted selection-kernel Ki. The resulting transition probability
is thus decomposed into three different steps, and the condition of
detailed balance is generalized as follows:

pacc(~x→ ~y)∑NK
i piK(~x) piprop(~x→ ~y)

pacc(~y → ~x)∑NK
j pjK(~y) pjprop(~y → ~x)

= π(~y)
π(~x) . (8.2)

Kernels are distinguished between local kernel and neural kernels,
where the local kernel generates local moves through Gaussian extrac-
tions, as already proposed in Metropolis scheme, and neural kernels
connect different metastable states. Let us assume that the configura-
tion space Ω is decomposed into a number of non overlapping subsets
called cores, each representing a different metastable state. We as-
sume that each neural kernel is accessible within only one specific core.
Given the neural kernel Ki, this is accessible only within the core
Ωα, and the probability to select the kernel Ki is constant within the
whole core, pi(~x) = pi if ~x ∈ Ωα, otherwise pi(~x) = 0. The formalism
indicating the list of probabilities to select a kernel {piK(~x)}NKi=0 is then
simplified with the use of characteristic functions {χi(~x) piK}

NK
i=0, where

χi(~x) = 1 if ~x ∈ Ωα, otherwise χi(~x) = 0. The local kernel is instead
defined over the whole configuration space, thus enforcing ergodicity.
The characteristic function associated to the local kernel always has
unitary value. The acceptance probability is then defined according to

93

Chapter 8. Neural Mode Jump Monte Carlo

Metropolis choice

pacc(~x→ ~y) = min

1,
π(~y)∑NK

i χi(~y) piK piprop(~y → ~x)
π(~x)∑NK

j χj(~x) pjK p
j
prop(~x→ ~y)

 . (8.3)

Let us take two different states in the configuration space ~x ∈ Ωα,
~y ∈ Ωβ. If the states are defined in different cores (α 6= β), we assume
that there is only one neural kernel Kj whose probability pj(~x→ ~y) to
generate ~y from ~x is larger than zero, and, to attain reversibility, there
is only one neural kernel Ki whose probability pi(~y → ~x) is larger than
zero. If instead the states are defined in the same core (α = β), we
assume that the transition between the two states can be generated
only through the local kernel. These assumptions allow to simplify the
acceptance probability

pacc(~x→ ~y) = min
{

1,
π(~y) piK piprop(~y → ~x)
π(~x) pjK p

j
prop(~x→ ~y)

}
. (8.4)

In case ~x and ~y belong to the same core the transition between
the two states is possible only with the local kernel, that is trivially
reversible, and proposal probabilities simplify in the acceptance proba-
bility. Still, we desire to simplify proposal probabilities also when ~x
and ~y belong to different cores. Given the neural kernels Ki and Kj

connecting the cores Ωα and Ωβ, we define a bijective function µαβ(·)
pairing the states defined in the two cores, i.e ~y = µαβ(~x), µ−1

αβ(~y) = ~x,
∀~x ∈ Ωα, where ~x ∈ Ωα , ~y ∈ Ωβ. The bijective function µαβ(·) and
its inverse µ−1

αβ(·) are then used as neural kernels Ki and Kj, which
involves that for each pair of different cores Ωα,Ωβ a bijective function
µαβ(·) is defined. The selection probability of neural moves, which are
generated with deterministic displacements, is then approximated with

94

8.2. Constructing bijective functions with deep neural networks

Dirac delta functions

pacc(~x→ ~y) = min
{

1,
π(~y) piK δ(~x− µ−1

αβ(~y))
π(~x) pjK δ(~y − µαβ(~x))

}
. (8.5)

According to the change of variable formula in the Dirac distribution
δ(~x − µ−1

αβ(~y)) = |det J(µαβ(~x))| δ(~y − µαβ(~x)), then the acceptance
probability can be simplified as follows:

pacc(~x→ ~y) = min
{

1, π(~y) piK
π(~x) pjK

|det J(µαβ(~x))|
}
. (8.6)

The bijective function µαβ(·) is constructed with specific reversible
neural networks as described in the following section.

8.2 Constructing bijective functions with
deep neural networks

Reversible neural networks can be constructed using real-valued non-
volume preserving (real NVP) transformations [75]. It has been proven
that feed forward deep neural networks are capable of approximating
any continuous function [76], but, in general, it is not possible to
invert these functions. However, reversibility can still be attained if the
architecture of the network is made of a sequence of trivially invertible
operations as multiplication and addition. The core idea of real NVP
networks is to divide the variables into two disjoint sets of coordinates
~x = (~x1, ~x2), then only simple operations are performed on the defined
sets. The variable transformation is thus defined as follows:

 ~z1 = ~x1,

~z2 = x2 exp(S(~x1; θ)) + T (~x1; θ),
(8.7)

where S and T are feed forward neural networks, and θ are the

95

Chapter 8. Neural Mode Jump Monte Carlo

x1

x2

x1 x1 x1 x1

x2 x2 x2x2

x y

Figure 8.1: Real NVP networks are invertible transformations, where
non linear operations are performed only on subsets of the system
coordinates. The input vector ~x is separated into two disjoint sets of
coordinates ~x1, ~x2, and at each iteration one subset is the input of feed
forward networks (blue line in the figure); the output of the networks
then modifies the other subset. The network is then invertible, that
allows us to reconstruct the input ~x from the output ~y. We define one
real NVP block as the concatenation of two consecutive transformation
on the two subsets. The network in the figure is constituted by two
real NVP blocks, and the different blocks are evidenced with dashed
lines.

96

8.2. Constructing bijective functions with deep neural networks

trainable parameters of the network. It is then possible to reconstruct
the input of the network from the output

 ~x1 = ~z1,

~x2 = (~z2 − T (~z1; θ)) exp(−S(~z1; θ)).
(8.8)

Nonlinearities are inserted into the transformation through the
neural networks S and T, but we note that these networks are defined
only on one set of the variables. To insert correlations between the
two sets of variables it is then necessary to serially concatenate many
variable transformations, iteratively alternating the subsets where
the feed forward networks are defined (see Fig. 8.1). The following
concatenation of variable transformations is then defined as one real
NVP block:

 ~z1 = ~x1,

~z2 = ~x2 exp(−S(m)(~x1; θ)) + T (m)(~x1; θ), ~y1 = ~z1 exp(−S(n)(~z2; θ)) + T (n)(~z2; θ),

~y2 = ~z2,
(8.9)

the block is also invertible
 ~z1 = (~y1 − T (n)(~y2; θ)) exp(S(n)(~y2; θ)),

~z2 = ~y2, ~x1 = ~z1,

~x2 = (~z2 − T (m)(~z1; θ)) exp(S(m)(~z1; θ)).
(8.10)

We notice that within one block non linear transformations are
defined on both variable sets, but a concatenation of many of these
blocks is actually required to effectively pass information between the
two variable sets. Another interesting property of real NVP transfor-

97

Chapter 8. Neural Mode Jump Monte Carlo

mations is that the determinant of the Jacobian J associated to the
variable transformation µαβ(~x) is trivial to compute

|det J(µαβ(~x))| = exp
∑
m,j

S(m)(xj)
 , (8.11)

where the sum is iterated over all dimensions per each transfor-
mation. The determinant of the Jacobian is then interpretable as the
change in entropy caused by the transformation. The entropy within
the core Ωα is defined as follows:

SΩα = −KB

∫
Ωα
π(~x) log (π(~x)) d~x. (8.12)

Considering the change of variable ~y = µ(~x):

SΩα = −KB

∫
Ωβ
π
(
µ−1(~y)

)
log

(
π(µ−1(~y)) |det J(µαβ(~x))|

)
d~y =

= SΩβ −KB

∫
Ωβ

log (|det J(µαβ(~x))|) d~y =

= SΩβ − EΩβ(log (|det J(µαβ(~x))|)).
(8.13)

Hence, the entropy difference between the two cores is given by the
expected value of the determinant of the Jacobian.

8.3 Deep neural networks training

Neural moves are generated with a bijective function that is constructed
using real NVP transformations. Let us take the cores Ωα, Ωβ, and
we aim to construct the bijective function µαβ(·) that is defined on
the two cores. Networks are trained with equilibrium configurations of
the system, and training sets {~xn}Nsetn=1 , {~yn}

Nset
n=1 are obtained running

local MCMC simulations in the different cores ~xn ∈ Ωα, ~yn ∈ Ωβ,

98

8.3. Deep neural networks training

where Nset is the total number of configurations in the training set.
Training of the network is performed so as to establish a bijection
between the two cores ~y = µαβ(~x), ~x = µ−1

αβ(~y), and this is achieved
through a supervised training. Each minibatch randomly selects Nmini

configurations from the two cores {~xn}Nminin=1 , {~yn}Nminin=1 , and in each
minibatch the average configuration is computed 〈~x〉 = ∑Nmini

n=1 ~x/Nmini,
〈~y〉 = ∑Nmini

n=1 ~y/Nmini. Average configurations are then used as labels
for the supervision. One term in the cost function is aimed to establish
a bijection between the two cores α, β

Cαβ =
Nmini∑
n=1
‖µαβ(~xn)− 〈~y〉‖2 .

Networks are trained to maximize the acceptance probability, that
is achieved by maximizing the following term

min
{

1, π(µαβ(~x))
π(~x) |det J(µαβ(~x))|

}
. (8.14)

We then assume the system in the canonical ensemble

min
{

1, e−β(V (µαβ(~x))−V (~x)) |det J(µαβ(~x))|
}
, (8.15)

being V (~x) the energy of the system and β the Boltzmann constant.
The above term must be maximized for both directions, i.e. for states
that belong to the core α and states that belong to the core β, that is
achieved if the following equation is satisfied:

e−β(V (µαβ(~x))−V (~x)) |det J(µαβ(~x))| = 1, (8.16)

and taking the logarithm of both terms in the equation

−β (V (µαβ(~x))− V (~x)) + log (|det J(µαβ(~x))|) = 0. (8.17)

99

Chapter 8. Neural Mode Jump Monte Carlo

The expected value of the above equation is physically interpretable
as the free energy difference caused by the transformation (see Eq.
(8.13)) for a derivation of the entropic term)

∆V + T ∆S = 0. (8.18)

The cost function then results as it follows:

C = γ0Cαβ + γ1 ‖V (µαβ(~x))− V (~x)‖ 2 + γ2 ‖S(µαβ(~x))− S(~x)‖2 ,

where γ0, γ1, γ2 are hyper-parameters. For simplicity, the cost
function has been here defined only for states ~x ∈ Cα and relative
image µαβ(~x). The same cost function is also applied to states ~y ∈ Cβ,
whose image is µ−1

αβ(~y), and each minibatch is set to contain the same
number of states from the two different cores. Finally, note that, to
facilitate the establishment of the bijection between the two cores,
training is initialized with the absolute value of the free energy terms
in the cost function, rather than the square.

8.4 Results

Neural MJMC is tested in a crowded condensed matter system com-
posed of strongly repelling particles confined in a two-dimensional
box. A bistable particle dimer is immersed in a fluid, where the dimer
is composed of a pair of particles interacting with a potential with
minima in closed or open configurations, that are separated by a high
energy barrier. Opening and closing of the dimer requires a concerted
motion of the 36 solvent particles, that makes it difficult to sample
the physical path connecting the two configurations (see Ref. [72]
for a more detailed description of the system). An efficient MCMC
sampler requires in this case the generation of neural moves between

100

8.4. Results

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

0

10

20

30

40

50

60

70

Fr
ee

 e
ne

rg
y

T=0.5 T=1 T=2

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Dimer distance

5

0

5

10

15

20

Di
m

er
 e

ne
rg

y

Figure 8.2: Free energy and dimer potential. The grey bands represent
values sampled with umbrella samplings within uncertainty. The neural
network has been trained at temperature T = 1, then simulations
at different temperatures have been performed using neural MJMC.
Simulations are run for 1000 steps, and error bars are produced using
bootstrapping. The average acceptance probability of neural moves
is about 21%. In this figure, we can see that after short simulations
the right distribution is already reconstructed. On the other hand, the
estimated time to cross the energy barrier with local MCMC moves
is 1012 steps at temperature T = 1, which makes the observation of
spontaneous crossing with local moves computationally unfeasible. We
also emphasize that, in contrast to umbrella sampling that requires
new iterations per each different temperature, neural MJMC is not
bound to the temperature used during training, and the same network
can be applied also to other temperatures.

101

Chapter 8. Neural Mode Jump Monte Carlo

0 200 400 600 800 1000
0.5

1.0

1.5

2.0

2.5

Di
m

er
 d

ist
an

ce

0 200 400 600 800 1000
MCMC steps

0.5

1.0

1.5

2.0

2.5

Di
m

er
 d

ist
an

ce

Figure 8.3: Dimer distance over a single realization using local MCMC
(top), and using neural MJMC (bottom). Right) Histogram of the
dimer distance averaged over many realizations. It is possible to see
that using local moves it is unlikely to observe spontaneous transitions
at this time scale, while using neural MJMC both metastable states
are explored in each trajectory.

0 200 400 600 800
time lag

0.0

0.2

0.4

0.6

0.8

1.0

au
to

co
rre

la
tio

n
fu

nc
tio

n

Local MCMC
Neural MJMC

Figure 8.4: Autocorrelation of the dimer distance. Neural moves
allow for a fast exploration of both metastable states, accelerating
the production of uncorrelated samples. In this figure, it is evident
that neural MJMC frequently generates uncorrelated samples, and
short trajectories are sufficient to reconstruct the right distribution.
In contrast, configurations generated with local MCMC are highly
correlated.

102

8.4. Results

Figure 8.5: Example of states in the closed (left) and open (right)
dimer configuration generated with neural moves in neural MJMC.
The dimer particles are evidenced in blue, while the solvent particles
are grey. The strongly repulsive potential does not allow for significant
overlaps between particles at equilibrium. Designing manually moves
that avoid particle overlaps when jumping between the open and closed
configuration is practically impossible, but this is achievable using
machine learning.

the two metastable states, but designing manually a bijective function
connecting equilibrium states of the system in the open and closed
configurations appear unfeasible due to the large number of possible
arrangements of the solvent particles.

Neural displacements are generated with deep neural networks that
are trained on equilibrium states of the system, which are collected in
the open and closed configurations of the dimer. The system is invariant
under permutation of the solvent particles, and permutation invariance
must be incorporated to facilitate the training. In fact, if each possible
particle exchange were considered a new configuration, the complexity
of the problem would scale factorially with the number of particles. The
identical permutations of the system are then removed by appropriately
relabeling the particles so as to minimize the distance to a reference
configuration, that is realized using the Hungarian algorithm [77].

DNNs training is performed with a real NVP network that is com-

103

Chapter 8. Neural Mode Jump Monte Carlo

posed of 50 blocks. Each feed-forward network contains 38 parameters,
which makes approximately 6×106 parameters in total. Neural MJMC
is then used to generate trajectories, all starting with equal initial
conditions in the closed dimer configuration. Neural moves cause di-
rect transitions between the two metastable states and thus a rapid
exploration of the configuration space, that facilitates converge to
the right distribution, as shown in Fig. 8.2. We also notice that the
network is transferable to different temperatures, and temperature is
just a parameter that is adjusted to the desired value after training.
Crossing the energy barrier is unlikely at this time scale with local
displacements (see Fig. 8.3), and exhausting simulations would be
necessary before ergodicity is verified. Samples generated with local
MCMC are indeed highly correlated, while the autocorrelation function
decays quickly in neural MJMC simulations (see Fig. 8.4). In Fig.
8.5, we see equilibrium configurations generated with neural moves
in neural MJMC. Particles strongly repulse with each other, and it
is unlikely to observe significant particle overlaps at equilibrium. An
analytic construction of a bijective function that pairs equilibrium
configurations from both metastable states is impossible due to the
difficulty of avoiding particle overlaps, which is instead possible with
the aid of deep neural networks.

104

Chapter 9

Conclusion and Outlook

In this thesis, several numerical methods to efficiently simulate biolog-
ical and condensed matter systems have been introduced. The first
part of the thesis deals with reaction-diffusion algorithms that are used
to simulate systems at the mesoscopic scale. These algorithms are
based on the assumption that mesoscopic particles diffuse according
to the Langevin equation, and when they are close to each other can
react. However, particle encounters can happen rarely in dilute sys-
tems, that makes it difficult to study the kinetics of the system over
long time scales. First passage algorithms circumvent this problem by
avoiding full resolution of free diffusion, using an event-based scheme
that directly calculates the time and position of particle encounters.
MD-GFRD is a recent first passage algorithm that alternates first
passage propagations within protective domains and particle interac-
tions. This algorithm has been shown to be many orders of magnitude
more efficient than brute-force approaches. We have seen that the
scheme used to determine the size of protective domains is relevant for
performance, and a novel scheme that enhances MD-GFRD providing
an additional tenfold improvement in computational efficiency has
been presented. Still, performance is susceptible to the time required
to sample particle displacements within protective domains, and an

105

Chapter 9. Conclusion and Outlook

efficient method to sample those displacements has been discussed.
Despite their popularity and wide range of applications, a rigorous for-
malization of first passage schemes was missing. Following the original
formalization, applications of these schemes might lead to conceptual
inconsistencies and, in some specific conditions, to misleading results.
In this thesis, first passage schemes have been reformalized so as to
avoid conceptual contradictions, thus placing first passage algorithms
on firm conceptual ground. MD-GFRD, being based on an event list,
is intrinsically sequential, but it would be desirable to deploy the com-
putational power provided by the most recent graphical processing
units (GPUs), which is possible only if this algorithm is parallelized.
A future improvement could then be the development of an efficient
parallel implementation of this algorithm. Combining the efficiency of
MD-GFRD and the computational capacity of GPUs would produce
a scheme incredibly efficient, opening up the doors to simulations of
enormous complexity, as, for instance, the simulation of a whole cell.

The second part of the thesis introduces a novel Markov chain
Monte Carlo (MCMC) scheme that makes use of deep learning to
accelerate convergence to equilibrium. MCMC methods sample the
microscopic equilibrium distribution relative to a stochastic system,
thus allowing to compute macroscopic observables as averages over
microscopic configurations of the system. This method has been shown
to asymptotically converge to the right distribution if the conditions
of detailed balance and ergodicity are satisfied. The condition of
detailed balance ensures that Markov chains remain within regions of
the system that are likely at equilibrium, while ergodicity ensures that
all likely regions in the system are visited. However, many interesting
systems are composed of basins of equilibrium states that are mutually
connected with out-of-equilibrium paths, which are arduous to sample.
Many different methodologies have been developed during the last
years, but they all either depend on out-of-equilibrium paths or are

106

difficult to apply to multi-dimensional systems. However, we have
seen that with the aid of neural networks it is possible to generate
displacements directly connecting equilibrium basins. These "neural"
moves are alternated with local random displacement in a combined
scheme that we call neural mode jump Monte Carlo (neural MJMC).
Neural MJMC is theoretically consistent and it is shown to satisfy
detailed balance and ergodicity, which ensures that it asymptotically
samples the equilibrium distribution. This method has been tested in
a non-trivial multi-dimensional particle system, and it has been shown
that convergence is rapidly reached. The neural networks employed
in this work are a special class of reversible networks (real NVP),
which are also used in the field of generative probabilistic modeling.
Considering the great attention this field is lately facing, and the
continuous technological advances in machine learning, it would not
be surprising to witness dramatic improvements in the performance
of such reversible networks. Efficiency and perspectives of neural
MJMC profoundly rely on the specific network employed, and more
sophisticated networks would allow us to deal with systems of increasing
complexity. Neural MJMC is a generable and transferable method, its
range of applications goes beyond biology, and we can expect it to be
applied to a wealth of different systems in the next few years.

107

Acknowledgement

I am grateful to many people for the help and support that I
received during the years of my PhD.

I would like to thank Frank for giving me the freedom to follow
my intuition, providing me with exceptionally interesting topics, and
guiding me through them. I thank Luigi, firstly, for assisting me in
the theoretical development of one project, and also for the many
interesting scientific discussions we had. We share many common
interests, and I am glad that I have had the opportunity to work with
him. I am grateful to Giovanni Ciccotti, because I believe that the
attention to detail that I have learned from him has been very useful
throughout my PhD. During these years, I have been collaborating
and interacting with all members of the CMB group. In this group,
I had the pleasure to constantly learn from many brilliant persons. I
have also interacted with many other members of the Mathematics
Department and Zuse Institute in a fantastic atmosphere, that was
tangible, for example, during the Winterseminars. I would like to
thank Christof Schütte for creating such an exciting atmosphere, and
also Marcus Weber for many inspiring discussions. The support that I
have received from Kirsten and Katja is unmeasurable, and I feel lucky
to have met these exceptional persons.

I thank all my friends for the great time I had during these years.
Firstly, the friends, not just colleagues, in the CMB group. It is hard
to find a research group composed of so many people with outstanding
scientific and social skills as in the CMB group. My friends from Rome
and the ones spread over Europe supported me in many occasions,
and I am grateful for that. Among them, I shared the beginning of
this journey with Daniele. We share similar passions, and our long
discussions have fueled the development of my scientific work. Similarly,

109

I am grateful to Angelo, the very first friend I had with whom I shared
this passion for science. I also thank Matteo for having visited me
in many occasions in Berlin. Lastly, thank you, Katharina, for the
unforgettable time together during most part of our PhDs.

I would like to thank the Max Planck Institute, the European
Research Commission, the Zuse Institute Berlin, and the Deutsche
Forschungsgemeinschaft for the financial support that I received.

Finally, I thank my father and my mother, and all my family. They
brought me here, without their support this would have not been
possible.

110

Bibliography

[1] Jie Xiao and Yves F. Dufrêne. Optical and force nanoscopy in
microbiology. Nature Microbiology, 1:16186 EP –, 10 2016.

[2] Philip R Nicovich, Dylan M Owen, and Katharina Gaus. Turn-
ing single-molecule localization microscopy into a quantitative
bioanalytical tool. Nature Protocols, 12:453 EP –, 02 2017.

[3] Steffen J. Sahl, Stefan W. Hell, and Stefan Jakobs. Fluorescence
nanoscopy in cell biology. Nature Reviews Molecular Cell Biology,
18:685 EP –, 09 2017.

[4] Giuseppe Vicidomini, Paolo Bianchini, and Alberto Diaspro. Sted
super-resolved microscopy. Nature Methods, 15:173 EP –, 01 2018.

[5] Vsevolod V. Gurevich and Eugenia V. Gurevich. How and why
do gpcrs dimerize? Trends in Pharmacological Sciences, 29(5):234
– 240, 2008.

[6] M. Gunkel, J. Schöneberg, W. Alkhaldi, S. Irsen, F. Noé, U.B.
Kaupp, and A. Al-Amoudi. Higher-order architecture of rhodopsin
in intact photoreceptors and its implication for phototransduction
kinetics. Structure, 23:628–638, 2015.

[7] Jun Xing, David D. Ginty, and Michael E. Greenberg. Coupling
of the ras-mapk pathway to gene activation by rsk2, a growth
factor-regulated creb kinase. Science, 273(5277):959–963, 1996.

111

Bibliography

[8] Koichi Takahashia, Sorin Tănase-Nicolad, and Peter Rein ten
Wolde. Spatio-temporal correlations can drastically change the
response of a mapk pathway. Proceedings of the National Academy
of Sciences, 107(6):2473– 2478, 2009.

[9] B. Trzaskowski, D. Latek, S. Yuan, U. Ghoshdastider, A. De-
binski, and S. Filipek. Action of molecular switches in gpcrs -
theoretical and experimental studies. Current Medicinal Chem-
istry, 19(8):1090–1109, 2012.

[10] Vladimir J. Kefalov. Rod and cone visual pigments and photo-
transduction through pharmacological, genetic, and physiological
approaches. Journal of Biological Chemistry, 287(3):1635–1641,
2012.

[11] Volker Haucke, Erwin Neher, and Stephan J. Sigrist. Protein
scaffolds in the coupling of synaptic exocytosis and endocytosis.
Nature Reviews Neuroscience, 12:127 EP –, 02 2011.

[12] Jeroen S. van Zon and Pieter Rein ten Wolde. Simulating bio-
chemical networks at the particle level and in time and space:
Green’s function reaction dynamics. Phys. Rev. Lett., 94:128103,
Apr 2005.

[13] Tomas Opplestrup, Vasily V. Bulatov, George H, Gilmer, Malvin H.
Kalos, and Babak Sadigh. First-passage monte carlo algorithm:
Diffusion without all the hops. Phys. Rev. Lett., 97:230602, 2006.

[14] J. Schöneberg and F. Noé. Readdy - a software for particle based
reaction diffusion dynamics in crowded cellular environments.
PLoS ONE, 8(e74261), 2013.

[15] D. T. Gillespie. A general method for numerically simulating
the stochastic time evolution of coupled chemical reactions. J.
Comput. Phys., 22:403, 1976.

112

Bibliography

[16] Stefanie Winkelmann and Christof Schütte. The spatiotemporal
master equation: Approximation of reaction-diffusion dynamics
via markov state modeling. J. Chem. Phys., 145:214107, 2016.

[17] J. Schöneberg, M. Heck, K.-P. Hofmann, and F. Noé. Explicit
spatio-temporal simulation of receptor-g protein coupling in rod
cell disk membranes. Biophys. J., 107:1042–1053, 2014.

[18] Radek Erban and S. Jonathan Chapman. Stochastic modelling of
reaction-diffusion processes: algorithms for bimolecular reactions.
Physical Biology, 6(4):046001, 2009.

[19] Jeroen S. van Zon and Pieter Rein ten Wolde. Green’s-function
reaction dynamics: A particle-based approach for simulating bio-
chemical networks in time and space. The Journal of Chemical
Physics, 123(23):234910, 2019/07/05 2005.

[20] Johannes Schöneberg, Martin Lehmann, Alexander Ullrich, York
Posor, Wen-Ting Lo, Gregor Lichtner, Jan Schmoranzer, Volker
Haucke, and Frank Noé. Lipid-mediated px-bar domain recruit-
ment couples local membrane constriction to endocytic vesicle
fission. Nat. Commun., 8:15873, 2017.

[21] J. Schöneberg, A. Ullrich, and F. Noé. Simulation tools for
particle-based reaction-diffusion dynamics in continuous space.
BMC Biophysics, 7:11, 2014.

[22] Steven S. Andrews. Particle-Based Stochastic Simulators, pages
1–5. Springer New York, New York, NY, 2018.

[23] Moritz Hoffmann, Christoph Fröhner, and Frank Noé. Readdy
2: Fast and flexible software framework for interacting-particle
reaction dynamics. PLOS Computational Biology, 15(2):1–26, 02
2019.

113

Bibliography

[24] Steven S Andrews. Smoldyn: particle-based simulation with rule-
based modeling, improved molecular interaction and a library
interface. Bioinformatics, 33(5):710–717, 12 2016.

[25] R. Kerr, T. Bartol, B. Kaminsky, M. Dittrich, J. Chang, S. Baden,
T. Sejnowski, and J. Stiles. Fast monte carlo simulation methods
for biological reaction-diffusion systems in solution and on surfaces.
SIAM Journal on Scientific Computing, 30(6):3126–3149, 2008.

[26] Chris Sanford, Matthew L.K. Yip, Carl White, and John Parkin-
son. Cell++?simulating biochemical pathways. Bioinformatics,
22(23):2918–2925, 10 2006.

[27] Johan Hattne, David Fange, and Johan Elf. Stochastic reaction-
diffusion simulation with MesoRD. Bioinformatics, 21(12):2923–
2924, 04 2005.

[28] Satya Nanda Vel Arjunan and Masaru Tomita. A new multi-
compartmental reaction-diffusion modeling method links transient
membrane attachment of e. coli mine to e-ring formation. Systems
and Synthetic Biology, 4(1):35–53, Mar 2010.

[29] Paul J. Michalski and Leslie M. Loew. Springsalad: A spatial,
particle-based biochemical simulation platform with excluded vol-
ume. Biophysical Journal, 110(3):523 – 529, 2016.

[30] Gerd Gruenert, Bashar Ibrahim, Thorsten Lenser, Maiko Lohel,
Thomas Hinze, and Peter Dittrich. Rule-based spatial model-
ing with diffusing, geometrically constrained molecules. BMC
Bioinformatics, 11(1):307, 2010.

[31] A. Vijaykumar, P.G. Bolhuis, and P.R. ten Wolde. Combining
molecular dynamics with mesoscopic green’s function reaction
dynamics simulations. J. Chem. Phys., 143:214102, 2015.

114

Bibliography

[32] Masao Doi. Theory of diffusion-controlled reaction between non-
simple molecules. i. Chemical Physics, 11(1):107 – 113, 1975.

[33] A. Vijaykumar, T.E. Ouldridge, P.R. ten Wolde, and P.G. Bolhuis.
Multiscale simulations of anisotropic particles combining molecular
dynamics and green’s function reaction dynamics. J. Chem. Phys.,
page 114106.

[34] Jakob Schluttig, Christian B. Korn, and Ulrich S. Schwarz. Role of
anisotropy for protein-protein encounter. Phys. Rev. E, 81:030902,
Mar 2010.

[35] Jan-Hendrik Prinz, Hao Wu, Marco Sarich, Bettina Keller, Martin
Senne, Martin Held, John D. Chodera, Christof Schütte, and
Frank Noé. Markov models of molecular kinetics: Generation
and validation. The Journal of Chemical Physics, 134(17):174105,
2011.

[36] Gregory R. Bowman, Vijay Pande, and Frank Noé. An Intro-
duction to Markov State Models and Their Application to Long
Timescale Molecular Simulation, volume 797. 01 2014.

[37] Ch. Schütte and M. Sarich. Metastability and Markov State Mod-
els in Molecular Dynamics: Modeling, Analysis, Algorithmic Ap-
proaches. American Mathematical Society, 2013.

[38] Nuria Plattner, Stefan Doerr, Gianni De Fabritiis, and Frank
Noé. Complete protein-protein association kinetics in atomic
detail revealed by molecular dynamics simulations and markov
modelling. Nat. Chem., 9:1005–1011, 2017.

[39] Manuel Dibak, Mauricio J. del Razo, David De Sancho, Christof
Schütte, and Frank Noé. Msm/rd: Coupling markov state models
of molecular kinetics with reaction-diffusion simulations. Journal
of Chemical Physics, 148(214107), 2018.

115

Bibliography

[40] Hao Wu, Antonia S. J. S. Mey, Edina Rosta, and Frank Noé.
Statistically optimal analysis of state-discretized trajectory data
from multiple thermodynamic states. The Journal of Chemical
Physics, 141(21):214106, 2014.

[41] Hao Wu, Fabian Paul, Christoph Wehmeyer, and Frank Noé.
Multiensemble markov models of molecular thermodynamics
and kinetics. Proceedings of the National Academy of Sciences,
113(23):E3221–E3230, 2016.

[42] Jack Dongarra and Francis Sullivan. Top ten algorithms of the
century. Computing in Science and Engineering - C in SE, 01
2000.

[43] Daan Frenkel and Berend Smit. Chapter 3 - monte carlo simula-
tions. In Daan Frenkel and Berend Smit, editors, Understanding
Molecular Simulation (Second Edition), pages 23 – 61. Academic
Press, San Diego, second edition edition, 2002.

[44] R Kubo. The fluctuation-dissipation theorem. Reports on Progress
in Physics, 29(1):255–284, 1966.

[45] Anja Nenninger, Giulia Mastroianni, and Conrad W. Mullineaux.
Size dependence of protein diffusion in the cytoplasm of escherichia
coli. Journal of Bacteriology, 192(18):4535–4540, 2010.

[46] A. Einstein. Annalen der Physik, 322(8):549–560, 1905.

[47] C. W. Gardiner. Handbook of stochastic methods for physics,
chemistry and the natural sciences, volume 13 of Springer Series
in Synergetics. Springer-Verlag, Berlin, third edition, 2004.

[48] S. Redner. A Guide to First-Passage processes. Cambridge Uni-
versity Press, 2001.

116

Bibliography

[49] T.R. Sokolowski. pp. 48-49. PhD thesis, 2013.

[50] A. Donev, V. V. Bulatov, T. Oppelstrup, G. H. Gilmer, B. Sadigh,
and M. H. Kalos. A first-passage kinetic monte carlo algorithm
for complex diffusion-reaction systems. J. Comp. Phys., 229:3214–
3236, 2010.

[51] M. H. Kalos, D. Levesque, and L. Verlet. Helium at zero tempera-
ture with hard-sphere and other forces. Phys. Rev. A, 9:2178–2195,
May 1974.

[52] Martijn Wehrens, Pieter Rein ten Wolde, and Andrew Mugler.
Positive feedback can lead to dynamic nanometer-scale clustering
on cell membranes. J. Chem. Phys., 141(20):205102, 2014.

[53] T. Oppelstrup, V. V. Bulatov, A. Donev, M. H. Kalos, G. H.
Gilmer, and B. Sadigh. First-passage kinetic monte carlo method.
Phys. Rev. E, 80:066701, 2009.

[54] V. I. Tokar and H. Dreyssé. Accelerated kinetic monte carlo
algorithm for diffusion-limited kinetics. Phys. Rev. E, 77:066705,
Jun 2008.

[55] Ava J. Mauro, Jon Karl Sigurdsson, Justin Shrake, Paul J.
Atzberger, and Samuel A. Isaacson. A first-passage kinetic monte
carlo method for reaction–drift–diffusion processes. J. Comp.
Phys., 259(Supplement C):536 – 567, 2014.

[56] Andri Bezzola, Benjamin B. Bales, Richard C. Alkire, and Linda R.
Petzold. An exact and efficient first passage time algorithm for
reaction–diffusion processes on a 2d-lattice. J. Comp. Phys.,
256(Supplement C):183 – 197, 2014.

[57] Karsten Schwarz and Heiko Rieger. Efficient kinetic monte carlo
method for reaction–diffusion problems with spatially varying

117

Bibliography

annihilation rates. J. Comp. Phys., 237(Supplement C):396 – 410,
2013.

[58] Thomas R. Sokolowski, Joris Paijmans, Laurens Bossen, Martijn
Wehrens, Thomas Miedema, Nils B. Becker, Kazunari Kaizu,
Koichi Takahashi, Marlieen Dogterom, and Pieter Rein ten Wolde.
egfrd in all dimensions. arXiv:1708.09364, 2017.

[59] Joris Paijmans and Pieter Rein ten Wolde. Lower bound on the
precision of transcriptional regulation and why facilitated diffusion
can reduce noise in gene expression. Phys. Rev. E, 90:032708, Sep
2014.

[60] Aleksandar Donev. Asynchronous event-driven particle algorithms.
SIMULATION, 85(4):229–242, 2019/02/01 2009.

[61] Uttam Bhat and S Redner. Intermediate-level crossings of a first-
passage path intermediate-level crossings of a first-passage path
intermediate-level crossings of a first-passage pathintermediate-
level crossings of a first-passage path intermediate-level crossing of
a first passage path. J. Stat. Mech. Theory Exp., 2015(6):P06035,
2015.

[62] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller,
and E. Teller. Equation of State Calculations by Fast Computing
Machines. The Journal of Chemical Physics, 21:1087–1092, June
1953.

[63] W. K. Hastings. Monte carlo sampling methods using markov
chains and their applications. Biometrika, 57(1):97–109, 1970.

[64] W. Feller. An Introduction to Probability Theory and Its Applica-
tions, volume 1. Wiley, January 1968.

118

Bibliography

[65] E Marinari and G Parisi. Simulated tempering: A new monte
carlo scheme. Europhysics Letters (EPL), 19(6):451–458, jul 1992.

[66] Harry A. Stern. Molecular simulation with variable protona-
tion states at constant ph. The Journal of Chemical Physics,
126(16):164112, 2007.

[67] Jerome P. Nilmeier, Gavin E. Crooks, David D. L. Minh, and
John D. Chodera. Nonequilibrium candidate monte carlo is an ef-
ficient tool for equilibrium simulation. Proceedings of the National
Academy of Sciences, 108(45):E1009–E1018, 2011.

[68] Yunjie Chen and Benoît Roux. Constant-ph hybrid nonequilibrium
molecular dynamics monte carlo simulation method. Journal of
Chemical Theory and Computation, 11(8):3919–3931, 2015. PMID:
26300709.

[69] Ioan Andricioaei, John E. Straub, and Arthur F. Voter. Smart dart-
ing monte carlo. The Journal of Chemical Physics, 114(16):6994–
7000, 2001.

[70] K. Roberts, R. Sebsebie, and E. Curotto. A rare event sampling
method for diffusion monte carlo using smart darting. The Journal
of Chemical Physics, 136(7):074104, 2012.

[71] Lionel Walter and Marcus Weber. Confjump : a fast biomolecular
sampling method which drills tunnels through high mountains.
Technical Report 06-26, ZIB, Takustr. 7, 14195 Berlin, 2006.

[72] Frank Noé, Simon Olsson, Jonas Köhler, and Hao Wu. Boltzmann
generators: Sampling equilibrium states of many-body systems
with deep learning. Science, 365(6457), 2019.

[73] Huitao Shen, Junwei Liu, and Liang Fu. Self-learning monte carlo
with deep neural networks. Phys. Rev. B, 97:205140, May 2018.

119

Bibliography

[74] Daniel Levy, Matt D. Hoffman, and Jascha Sohl-Dickstein. Gen-
eralizing hamiltonian monte carlo with neural networks. In Inter-
national Conference on Learning Representations, 2018.

[75] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density
estimation using real nvp. 2017.

[76] G. Cybenko. Approximation by superpositions of a sigmoidal
function. Mathematics of Control, Signals and Systems, 2(4):303–
314, Dec 1989.

[77] H. W. Kuhn. The hungarian method for the assignment problem.
Naval Research Logistics Quarterly, 2(12):83–97, 1955.

120

Selbstständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig
verfasst habe und alle dabei verwendeten Hilfsmittel und Hilfen angegeben
habe. Die Arbeit ist nicht schon einmal in einem früheren Promo-
tionsverfahren eingereicht worden.

Berlin, September 2019, ..

	Introduction
	I Mesoscopic Scale
	Modeling the motion of mesoscopic particles
	Langevin Equation
	Multi-scale problem
	Einstein equation
	Combining Langevin integration and Einstein diffusion

	MD-GFRD
	Event-based propagation of freely diffusing particles
	Algorithm outline

	Efficiency in MD-GFRD
	Domain making scheme and minimal domain size
	MD-GFRD
	New domain-making scheme
	New scheme for minimal domain size
	-values in minimal domain size

	Results
	Efficiency comparisons of different MD-GFRD schemes and direct Brownian dynamics
	Minimization of the domain burst frequency
	Large particle numbers

	First passage schemes
	Derivation of the first exit-time probability distribution
	Sampling particle position before domain escape
	Exit-time conditions on the position distribution probability

	Efficient sampling in first passage schemes
	Sampling probability distributions with a root finding algorithm
	Inflection point in the time cumulative function
	Inflection point in the position cumulative function
	Numerical convergence

	II Atomistic Scale
	Markov chain Monte Carlo
	Sampling equilibrium distributions
	Brute-force sampling of multidimensional probability distributions
	Metropolis-Hastings algorithm

	Neural Mode Jump Monte Carlo
	Theory
	Constructing bijective functions with deep neural networks
	Deep neural networks training
	Results

	Conclusion and Outlook

