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Abstract 

Modern manufacturing companies face increased pressures to adapt to shorter product life cycles 

and the need to reconfigure more frequently their production systems to offer new product 

variants. This paper proposes a new multi-agent architecture utilising “plug and produce” 

principles for configuration and reconfiguration of production systems with minimum human 

intervention. A new decision-making approach for system reconfiguration based on tasks re-

allocation is presented using goal driven methods. The application of the proposed architecture is 

described with a number of architectural views and its deployment is illustrated using a validation 

scenario implemented on an industrial assembly platform. The proposed methodology provides an 

innovative application of a multi-agent control environment and architecture with the objective of 

significantly reducing the time for deployment and ramp-up of small footprint assembly systems. 
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1 Introduction 

In the past decades, manufacturing companies had to cope with increasingly 

unpredictable market trends and growing customer demands for high quality 

customised and personalised products. Consequently, modern markets are 

characterised by shorter product lifecycles, increased product diversity and shorter 

time to market. To meet these demands, manufacturing systems must guarantee 

high levels of responsiveness to changes in product design using new 

manufacturing technologies.  

 

The need for more flexible and adaptable manufacturing systems has long been 

recognised by industry and there has been a significant volume of research 

conducted in this area. Since the advent of the first reports on Flexible 

Manufacturing Systems (FMS), a number of paradigms have been introduced with 
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the aim of achieving higher levels of flexibility for cost effective manufacture. 

These include concepts such as Bionic Manufacturing Systems  [1],  Holonic 

Manufacturing  Systems [2,3],  Reconfigurable Manufacturing  Systems [4,5],  

Evolvable  Production  Systems  [6] and Evolvable  Assembly  Systems [7]. A 

common denominator of these trends has been the encapsulation of individual 

production functions into independent production units, like workstations or 

machines, that can be combined to build new, often modular, manufacturing 

systems or adapt existing ones.  

 

There have been a number of research studies focused on developing common 

architectural approach to manufacturing system configuration. The concept of 

“plug and produce” is about interchanging self-contained modules of 

manufacturing systems and derives from the “plug and play” devices used in 

computing. In manufacturing, plug and produce aims at enhancing the 

interoperability and reusability of modules, thus reducing integration times [8]. 

This helps to satisfy the requirement of rapid system configuration and 

reconfiguration and to achieve system scalability for cost effective response to 

product and volume changes. The major difference between “plug and produce” 

and “plug and play” is the level of complexity, which is higher for manufacturing 

equipment [9,10]. In particular, production equipment does not always comply 

with structural or configuration standards and there are complex levels of 

interactions [11]. For instance, two robots sharing the same workspace need 

additional constraints to avoid interference and collision [12,13].  

 

A three-layer architecture has been reported in [14] to enable the pluggability of 

modules. The lowest layer supervises the plug in and plug out of production 

components with specific electronic datasheets describing their functionalities and 

parameters. Their parameters are used in the configuration layer to setup the 

resources and integrate them into the system. The operator can then assign 

programs to the controller at the application layer. This approach enables plug and 

produce for robots and reduces configuration time by supporting self-

configuration. However, it does not allow new components to be detected by the 

system or respond to configuration changes by reassigning tasks or rerouting 

products. 
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Agent technology has been proposed as a key enabler for modularisation of 

production resources and efficient communication between them. A modular 

control system architecture based on agents is presented in [15] to satisfy the 

requirements of a scalable automation system in terms of variable production 

rates. The proposed architecture is based on different elements of the production 

resources controlled by sensor, actor and product agents. These agents send 

information to a planning agent, which coordinates their interactions (e.g. in 

relation to the definition of robot paths that avoid collisions). Any planning 

activity is monitored by a central supervisor agent, which reports to the operator. 

Whilst partially applicable, the architecture requires low-level control access to 

individual components such as sensors, which is often infeasible due to the 

constraints of proprietarily control systems. In our application, it is required to 

control a production resource only with a PLC and to treat a production resource 

as an encapsulated module.  

 

The IDEAS (Instantly Deployable Evolvable Assembly Systems) project [16] 

developed three elements to implement plug and produce assembly systems, 

namely a new control paradigm for distributed control principles, an agent-based 

control architecture, and intelligent mechatronic devices. The approach utilises 

bespoke mechatronic devices to host the agent technology that can change the 

control logic. This limits the use of standard industrial technology and legacy 

production systems. The architecture of IDEAS derives from CoBASA, a multi-

agent architecture for shop floor control [17]. In CoBASA, agentified 

manufacturing components form dynamic coalitions that are regulated by 

contracts. Creation and modification of coalitions do not require programming, 

but only configuration in terms of changes to the associated contract. However, 

the coalition formation process is not efficient because it is not automatic and 

involves a number of interactions with the user, with limited support from the 

system. 

 

Agent-based systems have also been employed for the reconfiguration of real-time 

distributed control systems. In [18], an intelligent approach to dynamic 

reconfiguration is applied in real-time environments based on the IEC 61499 
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function block model. An interesting characteristic of this solution is that it 

exploits the holonic nature of IEC 61499 model in terms of modularity and 

recursiveness. The aim of this research is to shorten commissioning times and 

guarantee more responsiveness to disruptions. However, the IEC 61499 function 

block standard is not yet widely adopted in industry and, in particular, it has not 

been implemented on legacy systems. 

 

The authors in [19] propose a new manufacturing paradigm, called Grid 

Manufacturing, which allows products to negotiate directly with a grid of 

reconfigurable manufacturing systems (RMS) for a more flexible reconfiguration. 

The communication is provided by a multi-agent system, where agents represent 

the products and the machining systems. The route of products through the grids 

is calculated by translating mandatory product operations into agent 

understandable commands to operate the system. However, the process is 

controlled by the agent society, which is not permitted by our industrial 

requirements (see section 2). Moreover, the concept accommodates RMS but not 

any type of legacy system.  

 

Despite the significant research effort in this domain, there is still a significant gap 

in developing robust architectural models and methods to allow the wider 

implementation of plug and produce reconfigurable manufacturing systems that 

can use heterogeneous multi-vendor standard modules and be applicable to legacy 

environments. Furthermore, there is a lack of architectural approaches that can 

support seamless system adaptation after a plug and produce activity including 

reassignment of tasks after a machine breakdown or a machine replacement [20]. 

Most of the reported approaches for system adaptation rely on modified hardware 

to host the agent technology, whilst modern industrial environments require more 

streamlined approaches where, for instance, processes relying on real time 

execution are controlled by PLCs. 

 

The paper reports on a new agent-based architecture to enable plug and produce 

configuration of industrial production systems, which supports a reconfiguration 

methodology for task allocation. The main architectural requirements informing 

the research are presented in Section 2. The plug and produce reconfiguration 
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methodology and agent-based architecture are discussed in Section 3. The 

reconfiguration scenario applied to an industrial demonstrator is described in 

Section 4. Conclusions and future work are in Section 5.  

 

2 Industrial Requirements for Plug and Produce 

System Architecture  

This section describes the requirements that shaped the software architecture. 

Within the European project PRIME [21], a three-day facilitated method was used 

to capture the requirements of three industrial partners. This method is called 

Requirements Workshop and it is designed to engage system stakeholders to elicit 

the driving industrial requirements. Stakeholders are individuals on whom the 

system has a significant impact [22]. The workshop was an opportunity to gather 

stakeholders together to provide input about their needs and expectations, with 

respect to key requirements that were of particular concern to them [22].  

Requirements for a system come in a variety of forms, such as: textual 

requirements, mock-ups, existing systems, use cases and user stories. No matter 

the source, all requirements encompass the three categories [23] of Functional 

requirements, Constraints and Quality attribute requirements. 

 

The Functional requirements state what the system must do, and how it must 

behave or react to runtime stimuli. The functional requirements of the three 

companies are summarised below: 

- Production components, like machines or robots, are closed production 

components. In other words, the sensor and actuator structure is not visible by 

an external system (e.g. the agent system). The production components are 

controlled by the PLC and the control logic is not modifiable by an external 

system. However, it is possible to download an offline-tested PLC 

configuration from a database to the controller. 

- Once a production component is plugged into or out of the system, the agent 

society has to detect the change. This information must be made available 

within the system, so that agents can react (e.g. by changing the PLC 

configuration).  
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- The system has to cope with hot and cold plug and produce activities. Hot 

plug and produce takes place during normal operation. This could happen, for 

example, in case of machine breakdown or cable break. Cold plug and 

produce is the scenario where the system has been informed by the operator 

before the physical plug (e.g. to prevent injury). 

- The production system has to reconfigure itself after the introduction or 

removal of production components. This includes the assignment of 

production tasks to production components. 

 

The Constraints are design decisions with zero degrees of freedom. The principal 

constraint is that the architecture for enable plug and produce must be applicable 

to industrial standard technology. In the case of legacy production components, 

which use hardware that is not capable of hosting the agent technology, an 

external controller with the agent society running on it has to be integrated to 

interface the production components.  

 

The Quality attribute requirements (Non-functional requirements) are 

qualifications of the functional requirements. They detail specific scenarios in 

which certain characteristics of the system are expected. Table I contains 

examples of quality attribute requirements. 

TABLE I: Quality attribute requirements 

Quality attributes for the system integrators case 

Stimulus Plug/unplug a module (physical or logical)  

Response The system reconfigures the assembly system in terms 

of reassignment of tasks and the layout representation 

on the HMI 

Source of stimulus Cold plug and produce: Operator  

Hot plug and produce: Any failure, e.g. machine 

breakdown 

State of the 

Environment 

The production system is operating 

Quality attributes - The HMI refreshes the system layout within 2 sec 

- The assembly system’s components are configured 

within 15 sec  
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- The integration of new production components is 

quicker than without plug and produce 

- After a machine breakdown the system reconfigures 

itself quicker than without plug and produce 

 

3 Design of the multi agent-based architecture for 

plug and produce 

3.1 Systems reconfiguration approach and methodology 

An assembly system is defined in terms of its resources, subsystems and the 

capabilities associated with those resources. The products to assemble are defined 

by a product specification, which includes the definition of the sequence of 

assembly operations. Resources are defined here as pieces of equipment with 

skills to perform tasks of the assembly process: (1) by putting parts together, (2) 

by enabling other resources to put parts together or (3) by providing information 

about an assembly or subassembly, for instance, by testing it. These can comprise 

shuttle systems, robotic arms, grippers, etc.  

 

Let 𝑟௞ denote a resource 𝑘 in a production system 𝑹. Each resource has an 

associated set of capabilities. A capability is defined as a set of operations the 

resource can perform to complete an assembly task. A capability of a resource 𝑟௞ 

is formally denoted as  𝑪𝑲 and comprises a set of (sub)capabilities  𝑐௜
௞ ∈ 𝑪𝒌. A 

capability is a name and a set of associated parameters that instantiate that 

capability for a particular resource. This set contains hard parameters and soft 

parameters, where hard parameter must be fulfilled to perform a task like grip, 

while soft parameter can correspond to the quality of the task and are not 

mandatory, like compliance of tolerances.  

 

To represent the complete capabilities of the system, we define a subsystem as a 

set of resources needed to perform a common set of operations required to 

complete an assembly task. For example, a robot arm and a tool rack holding 

grippers used by the robot form a subsystem. Subsystems and their associated 
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capabilities can be depicted in a tree structure, where leaves are the capabilities of 

the resources and the root is the capability of the subsystem.  

 

Once, a resource is plugged in or out of the system, the agent society detects the 

resource as described in Section 3.3 and aggregates subsystems by the capability 

management agent, which then updates the available capability list. To reallocate 

tasks to available capabilities, tasks are matched against subsystem capabilities by 

both name and parameters set, where the hard parameter of the task must match 

the parameters of the capability. For the remaining capabilities that fulfil the hard 

parameter, we introduce a fitness function in order to select the fittest capability 

among a set of competing capabilities that can accomplish a given task. We define 

𝑫෩ 𝒋,𝒎
𝒍  (with 𝑑 ∈ 𝑫෩ 𝒍) as the set of soft parameters of capability 𝑐௝ of subsystem 𝑠௟ 

with respect to a task 𝑡௠, for which 𝑐௝ satisfies all its hard capabilities. The fitness 

function of capability 𝑐௝ relative to task 𝑡௠ is defined as follows: 

 

  (1) 

Where 𝑓ௗ ∈ [0, 1] is the fitness value of soft parameters 𝑑 of capability 𝑐௝ relative 

to task 𝑡௠ on subsystem 𝑠௟. The capability with the highest fitness is chosen. 

 

The overall reconfiguration methodology for a production system is shown in 

Figure 1.  

 

 

Figure 1 Reconfiguration methodology 

The steps involved in a common plug and produce activity and system 

reconfiguration are summarised below (the agents are introduced in the next 

𝐹൫𝑐𝑗 , 𝑡𝑚 , 𝑠𝑙 ൯ =  
1
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section): 

 

Step 1: Define the full set of the product specification and inform the system 

Step 2: Select a product on the HMI and start production  

Step 3: Calculate the fitness of the available capabilities for the tasks in the 

product specification, using (1) 

Step 4: Allocate tasks to the “fittest” capabilities and inform the associated agents  

Step 5: The agents download user defined PLC configurations from a database to 

the controllers associated with the selected capabilities 

Step 6: If the agent society detect a plug and produce activity, it informs the 

operator on the HMI  

Step 7: Repeat steps 3-6 

 

An example of the application of the above algorithm for a plug and produce 

scenario is described in section 4. 

 

3.2  General overview of the architecture  

The software architecture for a plug and produce assembly system is formalised as 

a set of structures needed to reason about the system, which comprises software 

elements as well as their interrelations and properties. The proposed architecture 

is presented in a decomposition architectural style [24] where the production 

components and the underlying agent functionality is abstracted into modules. 

Each module contains a group of interacting agents, which provide its 

functionality.  

 

The presented architecture includes four agent-based core modules which are 

described below (see Figure 2).  
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Figure 2 Decomposition view of the architecture 

3.2.1 Production Components Module 

The Production Components Module is a representation of the production 

components of a given production system. The agents that populate this module 

are the Production Component Agents. Any individual Component Agent in this 

module is associated with a production resource. A Component Agent is the 

interface between its associated production resource and the multi-agent system. 

 

A Component Agent is linked to its associated production component via the 

production component’s controller. Once this linking is successful, the 

Component Agent informs relevant modules. Then, it passes relevant data from 

the production component to the multi-agent system and the other way around. If 

the communication link to the controller is interrupted, the Component Agent is 

responsible for reporting this event to relevant modules.  

3.2.2 Monitoring and Data Analysis Module 

This module monitors and analyses data from the production components. It 

processes data that come from the Component Agents by calculating averages, 

medians, and energy consumptions for example. The module is able to write data 

to a database or directly display information on the HMI. The data in a database 

can be used for optimisation of key performance indicators for maintenance and 

 



11 

production. In this paper, the agents in this module are not considered further 

because they do not play any role during a plug and produce operation. 

3.2.3 Plug and Produce Management Module 

The Plug and Produce Management Module provides the interface between the 

HMI Module and the Production Component Module. It manages the plug and 

produce operations of a production component or a product. Therefore, it is aware 

of the Component Agents that are plugged in to the system and keeps a 

representation of the current plant layout. Once a new production resource is 

plugged in, a Component Agent is deployed, according to a saved production 

component description. The production component description provides access to 

configuration parameters of a resource. In case of a successful deployment, 

relevant modules are informed about the newly plugged resources. In addition to a 

plug and produce activity of a resource, it is possible to introduce a product 

change. Therefore, the Plug and Produce Management Module can compute 

feasible products, which can be produced with the given set of plugged production 

components. If a new product is introduced, the module is able to compute all 

feasible production layouts and thus, it can support the operator by providing 

advice and help in managing production resources. In case of a plug and produce 

reconfiguration activity, the module is responsible for calculating the fitness 

function guiding the decision making process. The key responsibilities of the Plug 

and Produce Management Module are delivered by four agents: Capability 

Management Agent, Deployment Agent, Product Agent, and Production 

Management Agent. The main responsibilities of each of the agents are outlined 

in Figure 3. 
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Figure 3 Agents in the Plug and Produce Management Module 

3.2.4 HMI Module  

The HMI Module accommodates the HMI agent, which interacts with the end 

user by taking input and delivering information from and to them. Once a 

production layout changes, the HMI agent delivers updated screens corresponding 

to the change.  

3.3  Agent behaviour for plug and produce 

The plug and produce configuration process is based on agent interactions driven 

by the goal of fulfilling the system functional requirements (see section 2). The 

agent interactions are described using communication diagrams representing 

graphs of interacting agents and other elements and annotating each interaction 

with a number denoting order (see Figure 4). The left hand side communication 

diagram corresponds to a plug and produce operation. This operation starts by 

plugging in a resource to the production system, (Step (1), refer to Figure 4). The 

Plug and Produce Management Module monitors the system, and becomes aware 

of the just plugged resource (2). The Deployment Agent within this module 

deploys a Component Agent according to some resource description (3). The 

Component Agent connects to the resource via its associated controller (4). If the 

connection is successfully established, the Plug and Produce Management Module 

gets informed (5) so it can update the capabilities of the production system (6). 

The HMI Agent asks for the current plant layout (7) and it updates its relevant 

screens (8).  
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Figure 4: Communication diagram to integrate a new resource and update the capabilities  

 

The right hand side of Figure 4 corresponds to step (6) above. First, the 

Production Management Agent is informed about the just plugged in resource 

(*1). Then, the Production Management Agent updates the Capability 

Management Agent (*2). This update prompts the Capability Management Agent 

to aggregate the just acquired capabilities into new ones (*3). After this, the 

Production Management Agent is notified about the aggregated capabilities (*4). 

Finally, the available capabilities of the production system are compared with the 

necessary product capabilities on the database to generate production options (*5). 

4 A scenario for plug and produce on an industrial 

assembly platform 

We will use a real industrial production system from Feintool Automation, in 

order to implement the proposed plug and produce architecture. The production 

system is shown in Figure 5. Although the proposed architecture will be deployed 

on this assembly platform, it can, however, be implemented on other production 

systems and layouts. 

4.1  The production system layout 

The demonstrator to implement the agent architecture on is shown in Figure 5. It 

shows the production resources and layout. The production system assembles 

detent hinges, which are used for commercial trucks. It is possible to manufacture 

product variants, which shows the behaviour of the system by a product change. 
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The demonstrator contains eight stations; each station accommodates a production 

component or a fixture. Stations are connected through a transportation system, 

which is able to carry the product. The assembly platform is modular, which 

provides an independent mechanical and electrical structure for each station and 

the transportation system. This independence allows for convenient plugging and 

unplugging of stations.  

 

Figure 5: Modutec assembly platform 

Each station is controlled by a Beckhoff CX5010 embedded PC running 

TwinCAT 3 Automation Software. The platform also has a Beckhoff CX2030, 

which is responsible for the transportation system and the overall control of the 

production system. All controllers within the system are connected to an Ethernet 

switch.  

Each of the eight stations are allocated on a specific plug-and-produce unit (see 

Figure 6). Stations 1 and 8 are empty. The station 2 contains a fixture to hold the 

product during assembly. Robot 1 (a Kuka KR 5 six-axis robot) placed  at station 

3 uses the fixture at station 2 to perform assembly operations. Robot 1 uses five 

different interchangeable tools required to assemble the entire product, which are 

placed in a tool changing rack at Station 4. An overview is provided in Table II. 
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TABLE II: Tool rack overview 

Rack Position Tool Description 

1 Gripper Mechanical, small 

2 Gripper Pneumatic, small 

3 Pusher Mechanical, medium 

4 Gripper Mechanical, large 

5 Gripper Mechanical, large 

 

Station 5 comprises of Robot 2, which is identical to Robot 1 in Station 3. The 

fixture to hold the product for robot 2 is located in the Station 6. Both robots share 

the same tools from the tool changing rack at Station 4, as a result, either robot 

can execute all assembly steps by utilising the appropriate tools for each 

operation. Station 7 is an inspection station with two different types of testing 

units. The first unit uses machine vision to perform a visual test for product 

integrity and checking the completeness of the assembly. The second unit tests the 

mechanical properties of the product by applying a set of predefined forces. The 

stations are served by a transportation system with the positions for loading the 

parts and unloading the assembled product indicated in the Figure 6. An operator 

manually loads and unloads the parts and supervises the platform via a Beckhoff 

CP6901 HMI unit. 

 

Figure 6: System structure from the top view 

 

The multi-agent system architecture is implemented as a communication and 

control infrastructure in JADE [25]. JADE has been selected as it supports a peer-

to-peer based communication approach for the agents using FIPA semantics as 

well as providing some basic technical operations to generate, execute, manage 

and terminate agents. 
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The multi-agent society is implemented in a distributed fashion on each controller 

attached to a station. The communication between stations is transmitted over a 

connected Ethernet network.  

The controller CX2030 hosts the Component Agent for the transportation system, 

the Plug and Produce Management Module, the Monitoring and Data Analysis 

Module and the HMI Module. The Component Agents for the remaining 

resources run on the controllers of the associated stations. As stated in the 

requirements, the system must cope with hot and cold plug and produce activities. 

Hot plug and produce activities are performed to handle unforeseen events, e.g. 

machine breakdowns. Cold plug and produce activities are performed after the 

system has been notified by the user about which change is going to happen. 

For example, if a resource is plugged out, the agents in the Plug and Produce 

Management Module analyse the scenario in order to determine if a suitable 

configuration of the remaining resources exists to continue production. If this is 

not possible, in the “cold” use case the operator is informed beforehand. While in 

the "hot" use case, the agents turn into a fail-safe state and halt production. 

 

4.2  A task assignment calculation scenario 

A plug and produce scenario has been implemented to demonstrate the 

reconfiguration process, including the reallocation of tasks to resources, when a 

plug and produce activity is carried out with the methodology presented in section 

3.  

 

After the production components that are plugged into the system have been 

identified, the Production Management Agent calculates the value of the fitness 

function. These values are used to establish if the gripper (tool 1) can perform task 

“Grip” with the hard parameters Payload (min. 0.32 g) and Width (min. 0.5 mm). 

Depending on the application, this model can be extended to accommodate 

additional hard parameters or model them as functions. For example, the 

acceleration parameter of a robot can be a function of the payload. The soft 

parameters for the tool are listed and calculated in Table III.  

TABLE III: Fitness value for task “Grip” 

Task/capability Task parameter Capability parameter Fitness Accumulated 
Fitness 
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Gripper closing 
time 

[0.1 s, 0.2 s] Min. 0.25 sec  (1/3)*0.5 = 0.167 0.167 

Finger position 
repeatability 

0.05 mm 0.07 mm (1/3)*0.2 =  0.67 0.234 

Fail safe Closes at failure  Opens at failure (1/3)*0 =        0 0.234 

 

The fitness value for the task “Grip” performed with the capability of tool 1 is 

0.234. After calculating the fitness of all current tools, this task is assigned to tool 

1, assuming that there is no other resource available in the system that has a 

higher fitness for this task.  

5 Conclusions 

A new multi-agent architecture has been introduced to enable plug and produce 

based configuration and reconfiguration of assembly systems. The architecture 

and methodology allow the system to detect the removal and inclusion of modules 

and adapt its capability and behaviour accordingly. The methodology is driven by 

a fitness function to assess the changes in the capability of the system and allocate 

tasks to resources. The methodology and architecture have been illustrated using a 

validation scenario implemented on an industrial assembly platform. The 

proposed methodology provides an inside into an innovative application of a 

multi-agent control environment and architecture with the objective of 

significantly reducing the time for ramp up and deployment of small footprint 

assembly systems. 
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