
A k-Nearest Neighbour Technique for Experience-Based Adaptation of
Assembly Stations

Daniele Scrimieri · Svetan M. Ratchev

Received: date / Accepted: date

Abstract We present a technique for automatically acquir-
ing operational knowledge on how to adapt assembly sys-
tems to new production demands or recover from disrup-
tions. Dealing with changes and disruptions affecting an as-
sembly station is a complex process which requires deep
knowledge of the assembly process, the product being as-
sembled and the adopted technologies. Shop floor operators
typically perform a series of adjustments by trial and error
until the expected results in terms of performance and qual-
ity are achieved. With the proposed approach such adjust-
ments are captured and their effect on the station is mea-
sured. Adaptation knowledge is then derived by generalis-
ing from individual cases using a variant of the k-nearest
neighbour algorithm. The operator is informed about po-
tential adaptations whenever the station enters a state sim-
ilar to one contained in the experience base, that is, a state
on which adaptation information has been captured. A case
study is presented, showing how the technique enables to
reduce adaptation times. The general system architecture in
which the technique has been implemented is described, in-
cluding the role of the different software components and
their interactions.

Keywords Knowledge-based systems · k-nearest neigh-
bour algorithm · Assembly · Architectures

1 Introduction

Dealing with disruptions, reconfiguring or simply enhancing
the performance of an assembly station requires knowledge
of the process which is difficult to define formally. Engi-
neers and shop-floor operators make decisions on changes

D. Scrimieri · S. M. Ratchev
Department of Mechanical, Materials and Manufacturing Engineering
University of Nottingham, Nottingham, NG7 2RD, UK
E-mail: {Daniele.Scrimieri,Svetan.Ratchev}@nottingham.ac.uk

and adaptations based on their experience. Typically they
acquire experience by experimenting with the machine, car-
rying out a trial and error process which is difficult to pre-
dict and plan. Knowledge built this way is not formalised
and cannot be easily transferred among operators and to new
production environments.

A method for capturing knowledge about adaptations is
required to avoid human knowledge loss and enable sharing
and reuse. Reuse of adaptation knowledge facilitates prob-
lem analysis and solving, supports decision making and guar-
antees higher responsiveness to disruptions and changes. Shar-
ing operators’ experience on machines and processes allows
to train operators to work in different production scenarios.
Specifically, an operator performing an adaptation can be
provided with details about what other operators did in sim-
ilar contexts and the outcome of their actions.

This paper presents an approach to automatically captur-
ing information on adaptations being performed and deriv-
ing knowledge. Adjustments to the system are recorded and
related to the current system state. The performance of the
system is measured before and after the change in order to
determine whether it has had a positive impact. This form of
experience on adaptations is constantly accumulated and the
feedback provided by the performance measurements allows
to learn how to adapt effectively the system.

When there is a disruption that has already occurred in
the past, an adjustment that has proven to be successful for
that specific disruption or a similar one is recommended to
the operator. Not only are successful adjustments recorded,
but also adjustments that failed. This is useful in order to
avoid reapplying those changes that did not cause any im-
provement.

Recommended adjustments are not applied automatically.
Instead, a ranked list of adjustments to choose from is pre-
sented to the operator, generated based on the available ex-
perience on the problem. The operator will then select one,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bradford Scholars

https://core.ac.uk/display/288104312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

normally the one ranked first, apply it and evaluate the re-
sulting state. If the effect is not satisfactory, a different ad-
justment from the list can be tried out.

This paper is an extended version of Scrimieri and Ratchev
(2013), presented at the 11th IFAC Workshop on Intelli-
gent Manufacturing Systems, São Paulo, Brazil, 22-24 May
2013. The new contribution of this paper is the presentation
of a case study and experimental results.

The paper is organised as follows. Section 2 contains
some background information on learning and adaptation.
Section 3 describes how experience on adaptations is cap-
tured. Section 4 presents a technique for providing decision
support on adaptations, based on experience. Section 5 con-
tains details on the software architecture. Section 6 presents
a case study and experimental results. Sections 7 and 8 con-
tain, respectively, a discussion with ideas for future work
and conclusions.

2 Background

Adaptation knowledge evolves and is updated by continu-
ous learning. This section summarises some approaches to
learning and adaptation in production systems, including as-
sembly systems.

2.1 Learning

Knowledge acquired in a manufacturing organisation can
be measured with learning curves (Jaber, 2011). Learning
curves can estimate costs based on the cumulative volume
of production. The assumption is that costs decrease as cu-
mulative production increases. This is justified by the fact
that the more an organisation produces the more it learns
how to produce and becomes efficient.

If a product to manufacture is similar to another product
produced in the past, resources employed and knowledge
built for the production of the old product can be transferred
to the new one. The old process may be adapted. Therefore,
the starting costs will be lower than those that would be in-
curred if there was no prior knowledge.

Experimentation is another form of learning. Changes to
the process are made and the results are evaluated and com-
pared to the expectations. This is radically different from the
learning-by-doing underling learning curve theories, where
learning seems to happen autonomously.

Foguem et al (2008) formalise experience feedback in
the context of continuous improvement of industrial sys-
tems. The experience feedback process is modelled with con-
ceptual graphs and an ontology is built to define experiential
elements. The aim is to transform experience feedback into
explicit knowledge and know-how that can be shared among
the involved actors.

A particular stage of the life-cycle of production sys-
tems in which learning occurs is the ramp-up phase. This
phase represents the period of time it takes for a new produc-
tion system to reach high levels of production and product
quality (Korena et al, 1999). It has the following character-
istics (Surbier, 2010):

– The production capacity is low;
– There are frequent disturbances regarding the equipment,

the quality of the product and the supply chain;
– The initial level of knowledge about the product and the

process is low.

When the ramp-up phase starts the production process is
not entirely understood and discrepancies hinder efficiency.
The initial process recipe is not yet suitable for large vol-
umes of production. Although changes are required, they
may conflict with learning. Terwiesch and Xu (2004) con-
sider learning as the process of eliminating the discrepancies
between process specification and execution during ramp-
up. They analyse the trade-off between applying process changes
immediately and accomplishing learning tasks. A ramp-up
strategy called “copy-exactly” is proposed, which freezes
the process recipe for a certain period of time (i.e. does not
allow changes during it) to enable learning.

Fjällström et al (2009) analyse the types of information
needed to deal with critical events during ramp-up. The au-
thors consider problem, domain and problem solving infor-
mation in a case study in the automotive industry. They find
out that problem and domain information are the most im-
portant. In addition, the domain information required to re-
spond to a critical event is not exclusively related to the cat-
egory of the event. For example, handling a critical event
about a product may require domain information not only
about the product itself, but also about the process and the
equipment.

2.2 Adaptation

Flexible manufacturing systems can adapt themselves to pro-
duce anticipated product variations. This level of adaptabil-
ity is achieved a priori during design as opposed to when
new production demands arise. In contrast, reconfigurable
manufacturing systems can be adapted to new volumes of
production and new products. Their modular and adjustable
structure enables to change the hardware or control software
and offer new capacities and functionalities (ElMaraghy, 2006;
Korena et al, 1999).

Two types of adaptations can be identified: static adap-
tations performed “off-line” when the system is not run-
ning, consisting of long-term physical changes (e.g. installa-
tion of new equipment), and dynamic adaptations performed
“on-line” when the system is running, consisting of short-
term changes to alter, for example, scheduling or routing.



3

Static adaptations are normally planned by human experts or
through automatic planning methods, while dynamic adap-
tations are carried out autonomously by self-organising sys-
tems able to react to changing environments (Järvenpää, 2012;
Westkämper, 2006). A capability-based adaptation method-
ology that matches product requirements and available sys-
tem capabilities is proposed by Järvenpää (2012) to support
both human planning and reactive systems.

The multi-agent and holonic approaches are often used
for dynamic adaptation, to make logical or parametric changes
online. Self-managing evolvable assembly systems (Frei et al,
2009) can self-adapt at production time by changing param-
eters of their constituent modules, the distribution of tasks
among modules or the physical layout (e.g. adding, remov-
ing or moving modules). The system is controlled by a set
of distributed agents, each with certain capabilities. Agents
can form coalitions which can change dynamically to adapt
to new conditions. The automatic identification and config-
uration of new devices is inspired by the plug-and-produce
holonic system of Arai et al (2001).

Oates et al (2012) and Scrimieri et al (2013) describe
some automated techniques specifically designed for sup-
porting the operator during the ramp-up of an assembly sys-
tem. Two k-nearest neighbour algorithms are used to clas-
sify machine states, indicating which adjustment to perform
and which value to set. These works address in particular the
following challenges:

– The dimensionality of the data constantly changes. In
fact, the number of parameters used to describe machine
states changes as modules or sensors are added or re-
moved;

– The training set may not be large enough to generalise
from;

– The experience should be transferable among similar ma-
chines.

3 Adaptation Contexts and Experience

By adaptation context we mean the state of the assembly sta-
tion when an adaptation is performed. A state is defined by
the process recipe in use, which specifies all process param-
eters, and the process status variables obtained by process-
ing sensor data.

We assume that a KPI (key performance indicator) can
be calculated on process variables. A KPI represents a man-
ufacturer-specific measure of performance and allows to de-
tect disruptions and evaluate the effect of an adaptation, thus
determining whether an adaptation has had a positive effect.
Typically a KPI is a function of volume of production and
quality, and is defined during system specification or de-
sign. At the same time, a target value is set. This value may
be chosen based on the KPI of a similar machine. During

Assembly

Station

Automated

Learning

Experience

Recognition

adjustments

recommended

adaptations

adaptation

context

experience

current context

operator

Fig. 1 Flow of information between the components and actors in-
volved

the ramp-up phase, the production process is constantly im-
proved until the target value is reached.

In our software implementation, process variables are
encapsulated in events that are transmitted across a distributed
architecture. There are two types of events: status events and
adjustment events. Status events contain, for example, cycle
times or quality measurements of the parts being assembled.
They depend on the modules and sensors installed. If a mod-
ule or sensor is removed, the information that it supplies will
no longer be available. This increases the complexity of the
similarity measure between states (Oates et al, 2012). Status
events are stored in an event base that can be queried for the
events generated in a specific time period. The event base
allows to construct a representation of the machine state at
a specific point in the past and is used in the experience cre-
ation process.

Adjustment events are generated when the operator ad-
justs the system. Adjustments can be performed either via
software or manually, that is, by making physical changes to
the machine. In the latter case, details of the change must be
entered into the system through a human-machine interface.
Examples of adjustments include changing pick-and-place
points, the pressure of grippers, the sequence of operations,
the pallet geometry, etc.

An adjustment is typically an atomic change that cannot
be split into several individual changes. Compound adjust-
ments can also be made, although in this case it is not possi-
ble to assess the effect of each single adjustment separately
from the others. Adjustments can be specified at different
level of detail. For example, an adjustment about changing
the pressure of a gripper could be specified as “change the
pressure”, “increase the pressure”, “set the pressure to x”,
and so on. We assume that a finite set of adjustments is de-
fined, where each adjustment is not a generalisation or spe-
cialisation of any others.

Fig. 1 illustrates the flow of information between the
components and actors involved in the adaptation process.
The Experience Recognition component is presented in Sec-
tion 3.1, while the Automated Learning component is de-
scribed in Section 4.



4

3.1 Experience Recognition

Adjustment events trigger the creation of new experience.
Experience represents changes to the system, including the
context in which they are made and the impact that they
have. Experience can be related to either successful or un-
successful adaptations, where the outcome is determined based
on the KPI. If the KPI of the machine state after the change
is higher than that of the initial machine state (i.e. the per-
formance has increased), the adaptation can be considered
successful.

The Experience Recognition component listens for ad-
justment events and creates new experience when one is re-
ceived. The experience creation process consists of the fol-
lowing operations:

1. Query the event base for the last status events generated
before the adjustment;

2. Construct a representation of the machine state x1 before
the adjustment, using the status information obtained in
the previous step and the process parameters in use be-
fore the adjustment;

3. Calculate the KPI on x1;
4. Wait for the effect of the adjustment to be measurable on

the system;
5. Query the event base for the latest status events;
6. Construct a representation of the machine state x2 after

the adjustment, using the status information obtained in
the previous step and the new process parameters;

7. Calculate the KPI on x2.

In particular, the duration of step 4 depends on the spe-
cific adjustment performed. Experience is stored in an ex-
perience base that is accessed when decision support is pro-
vided to the operator. An experience instance can be repre-
sented in the form

(x1,kpi(x1),adj,x2,kpi(x2))

where kpi is the KPI function and adj is the triggering ad-
justment. The machine state x1 is the adaptation context of
the experience instance.

4 Generation and Application of Adaptation Knowledge

When the operator requests support in a given adaptation
context, adaptation knowledge is derived from the experi-
ence. If the experience base contains instances which have
an initial state similar to the current adaptation context, these
instances can be used to aid the operator. In particular, the
experience base is searched for the most similar context and
the adjustment with the best result.

The similarity is measured with a distance function cal-
culated on contexts. Similar contexts are likely to capture

similar disruptions or adaptations. If we have some knowl-
edge on the changes made in one of them, then we can use
this knowledge in the other one to predict the impact of those
changes on the performance. This approach is general and
does not depend on the particular disruption or adaptation.
However, the accuracy of such a prediction is heavily depen-
dent on the representation of states, the KPI and the similar-
ity measure.

The adaptation context in which decision support is re-
quired is constructed similarly to experience. The event base
is queried for the latest status events. The current process
recipe in use and the values of the process variables obtained
from status events represent the current adaptation context.

4.1 Adaptation as Classification

The adaptations to recommend are determined by applying
a classification technique to the current adaptation context.
Classification is a machine learning problem whose aim is
to infer the class of a given instance. Instances are described
by a set of attribute-value pairs and can be partitioned into
classes. The class of an instance is identified based on a
given set of examples, called training set.

In our problem, a class is represented by all the adap-
tation contexts that can benefit from the same adjustment,
and it will be identified by the adjustment itself. The exam-
ples are given by the adaptations contained in the experience
base and the instances to classify are the adaptation contexts
where decision support is requested.

Some adjustments may not be applicable in a certain
context. This is the case, for example, when an adjustment
has already been applied, it is related to a device that is not
currently connected to the station, or some other precondi-
tions do not hold. Thus, the set of potential classes are de-
pendent on the specific adaptation context.

Every example in the training set consists of a input vec-
tor and a discrete output value. The output value represents
the class of the example. A classification algorithm normally
analyses the training set, generalises the association between
input vectors and output values, and constructs a classifier,
that is, a program that predicts the correct class of instances
not previously seen (i.e. not in the training set).

The technique that we are going to describe generalises
not only based on the association between input vector and
output, but also by estimating the impact of an adaptation.
Estimates are determined by calculating the difference in
KPI in the corresponding experience instances.

Classification is a type of supervised learning, which is
about learning from labelled examples. (The other type is
regression, where the output value of the examples is con-
tinuous and the output of the learning task is a regression
function). Common classification techniques include sup-
port vector machines, decision trees, neural networks and



5

k-nearest neighbour. Applications include classification of
faults in power distribution networks (Lazzaretti et al, 2013),
classification of power quality disturbances (Barbosa and
Ferreira, 2013) and transmission line protection (de Car-
valho et al, 2014).

Machine learning techniques have the advantage that they
derive knowledge directly from data. There is no need for
eliciting knowledge from experts and formalise it in declar-
ative or operational language. In addition, they are effective
also with unforeseen cases.

4.2 Search in the Instance Space

In the k-nearest neighbour algorithm (kNN), the instance to
classify is assigned a class which is a function of the classes
of the k nearest neighbours. Both the examples and the in-
stances to classify are vectors of a multidimensional feature
space. Distances between vectors are calculated, for exam-
ple, using the Euclidean distance, if the values are continu-
ous. If k = 1 the instance is assigned the class of the nearest
neighbour in the training set. If k > 1 a voting scheme must
be adopted to select a class among those of the k nearest
neighbours. The simplest scheme is the one that selects the
most common class.

In contrast with other classification techniques, the kNN
algorithm does not explicitly construct a classifier in the
form of a decision tree or some other structure. All the exam-
ples are kept in memory, in our case in the experience base.
The inductive generalisation does not occur when instances
are added to the training set. Instead, it takes place when an
instance has to be classified. This is why kNN techniques
are referred to as examples of lazy learning.

There is no computational overhead when new experi-
ence is generated, as it is simply added to the experience
base and no classification structure needs updating. This is
particularly suitable for an assembly system that undergoes
numerous changes, thereby generating new experience, for
example during reconfiguration and ramp-up.

Several variants of the kNN algorithm have been devel-
oped with different distance functions, voting schemes or
dynamically weighting neighbours. Application domains in-
clude shape recognition (Belongie et al, 2001), protein struc-
ture prediction (Kim, 2003) and database retrieval (Basri
et al, 2011).

4.3 Similarity Between Machine States

Let x and y be two machine states over n variables (remem-
ber that the number of variables in two states can be different
as it is dependent on the modules and sensors installed at a

specific time). The distance between x and y, denoted by
d(x,y), is defined as:

d(x,y) =

√
n

∑
i=0

di(xi,yi) (1)

where di(xi,yi) is defined as
(xi − yi)

2

rangei
(rangei is the range

of variable i) if variable i is numerical. Otherwise (attribute
i is categorical), di(xi,yi) is defined as 1 if xi ̸= yi, else 0.
If an attribute is missing in one or both states, then di(xi,yi)

yields 1. This is the heterogeneous euclidean-overlap met-
ric (Wilson and Martinez, 1997) and we use it to measure
the similarity between machine states.

Attributes may not all have the same influence in deter-
mining the similarity between two states. Some attributes
can be noisy, irrelevant or redundant. To cope with these
problems, different weights can be assigned to attributes.
Equation 1 then becomes:

d(x,y) =

√
n

∑
i=0

widi(xi,yi) (2)

Wilson and Martinez (1996) present an evolutionary al-
gorithm for determining a set of weights that allows to ob-
tain estimates of accuracy significantly higher than those of
non-weighted distances.

4.4 Estimated Effect of Adaptations

Searching the experience base for neighbours allows to find
which adaptations were performed in the past in similar con-
texts. However, experience contains not only successful adap-
tations, but also adaptations that failed. Also, the effect of an
adaptation can be measured by calculating the KPI on the
relative experience. Thus, while searching the experience,
in addition to the similarity between contexts we take into
account the effect of adaptations, as measured by the KPI.

Suppose that an adaptation context x is to be classified
based on the stored experience. An estimate of the impact
on performance caused by an adjustment adj in the expe-
rience is given by the weighted mean of the difference in
KPI over all experience instances having adj as adjustment.
The weights are given by the inverse of the distance between
the adaptation contexts in the experience and x. Adaptation
contexts near x are assigned higher weights because it is as-
sumed that their adjustments will have a similar effect in x.
The accuracy of the estimate depends on how close to x the
adaptation contexts in the experience are.

Let x be an adaptation context, adj be a potential ad-
justment to assign to x, and y1, . . . ,yl be the experience in-
stances having adj as adjustment. The estimated effect E(x,adj)
of applying adj in x is given by

E(x,adj) =
l

∑
i=0

δi

d(x,yi)

l

∑
i=0

d(x,yi) (3)



6

where δi is the difference in KPI between the initial and final
state of experience instance i.

4.5 Ranking of Adaptations

A ranking of potential adjustments for an adaptation context
x can be produced by combining distances and estimated
effects, using the function

rx(y) =
d(x,y)

E(x,adj(y))
(4)

where adj(y) is the adjustment of experience instance y.
A list of adjustments adj(y1), . . . ,adj(ym) can then be pre-
sented to the user, ordered by rx(y).

4.6 Application of a Sequence of Adaptations

We have seen how to employ experience for providing deci-
sion support on which adjustment to apply in an adaptation
context. This process can be repeated until the performance
targets are reached. At each step, if experience related to the
current context is available, the operator is presented with a
list of recommended adjustments to choose from. The one
that is applied determines the next adaptation context.

The process is illustrated in Fig. 2. The first adaptation
context where decision support is sought is shown in (a).
The initial state is S1 and three adjustments a1, a2 and a3
are provided, ordered by rS1 . Adjustment a1 is applied and
the resulting state is S2 (b). The recommended adjustments
are now a21, a22 and a23. The operator can decide to either
choose one of them or backtrack to the previous state and
try out a different adjustment. The latter option is shown in
(c).

Of course, an operator is free to make an adjustment that
is not in the list of the recommended ones. This is common,
for example, in the initial stage of the ramp-up phase, when
little experience has been accumulated.

Whether or not adaptations are based on past experience,
they produce new experience. Performance measurements
of adaptations based on experience contribute to refining the
experience related to that type of adaptation.

5 Architectural Design

The adaptation framework presented in this paper has been
implemented within a larger system with a component-based
software architecture, developed in the FRAME project.1

One architectural requirement was to deploy the software

1 “Fast Ramp-up and Adaptive Manufacturing Environment”,
funded by the European Commission’s 7th Framework Programme.

S1

a1 a2 a3

S1

a1 a2 a3

S2

a21 a22 a23

S1

a1 a2 a3

S2 S3

(a)

(b)

(c)

Fig. 2 Application of a sequence of adjustments: initial state (a); the
first recommended adjustment a1 is applied (b); the second recom-
mended adjustment a2 is applied after backtracking (c)

on assembly systems comprising several stations, in a dis-
tributed fashion. Each station can run a number of compo-
nents for collecting or analysing data, acquiring experience
or providing decision support on adaptation.

The architecture defines two levels (Fig. 3): a system
level and a station level. Analysis and learning can occur
at both levels. In addition to status events, the system level
receives aggregated data (e.g. experience, batch statistics)
from the stations. While learning at the station level is re-
lated to individual stations, learning at the system level is
related to the entire assembly system and regards adapta-
tions impacting some or all stations. One experience base
is constructed for each station, as well as one for the whole
system. In general, stations and system can be analysed us-
ing different KPIs. In addition, a recommended change to a
station may not be recommended at the system level.

The communication infrastructure includes both asyn-
chronous and synchronous communication mechanisms be-
tween components, which are employed in different scenar-
ios. The event-based communication (Section 3) represents
the asynchronous one and is based on the Data-Distribution
Service for Real-Time Systems (DDS) (OMG, 2013). It in-
volves sending data from a single component (publisher) to
every component that has declared an interest in it (sub-
scriber).



7

aggregated data

status

events
adjustments

adjustments

EB

Experience

Base

Station Level

System Level

status

events
adjustments

Station Level Station Level

adjustments
status

events

status

events

Assembly Line

aggregated data aggregated data

EB EB

 work

station

 work

station

 work

station

Fig. 3 2-level software architecture of the adaptation framework

Publishers and subscribers are decoupled and do not even
need to know of the existence of each other. The publisher of
a message marks it with a topic, while subscribers register
to receive messages of certain topics. There are no central
brokers transferring messages. All the communication takes
place using a peer-to-peer mechanism. Scalability and per-
formance are therefore higher because every message needs
less hops to get to the receiver and there is no central bottle-
neck.

The DDS communication is used for broadcasting events
because it is not known in advance which components will
be interested in receiving them. It is not even known which
components are running at a certain point. A station com-
ponent does not normally subscribe to other stations’ events
and system events. Instead, system-level components may
subscribe to both station and system events.

The Query/Response interface represents the synchronous
communication and is implemented with web-services. It is
a one-to-one communication between components, intended
for queries with potentially large volumes of data (e.g. query-
ing for all events generated in a specific period of time).

The Experience Recognition component, for example,
subscribes to adjustment events, whereas the Automated Learn-
ing component queries the Experience Recognition for ex-
perience instances.

6 Experimental Evaluation

The proposed technique was evaluated using a modular as-
sembly system for producing injection pens (Fig. 4). Two
groups of 3 operators were asked to adapt the machine to the
manufacture of a new product variant. The first group had
no external support, while the second could use the software

Fig. 4 Modular assembly system used in the experimental evaluation

framework implementing our technique and an experience
base.

The adaptation process was carried out by each operator
individually. All operators had comparable skills and expe-
rience. The initial process recipe was saved and after each
adaptation it was restored, so that every operator could start
from the same configuration and state. A KPI was calculated
at each adaptation step made by an operator. The results of
the two groups were compared.

An injection pen is composed of a body, a tank and a
cap. The system comprises pick-and-place modules for in-
serting the tank in the body and putting the cap on top, as
well as units for checking the presence and correct position-
ing of parts. The performance of the system is measured by



8

verifying the quality of the final product. If a pen passes all
checks then it is accepted, otherwise it is rejected. There is
no rework on bad parts because it is not cost effective. A
system KPI can be simply defined as the number of good
parts out of the total number of parts produced in a batch or
in a certain period of time.

After each assembly step, a checking unit verifies that
the step has been performed correctly on the product. An
individual assembly module, together with the associated
checking device, can be considered a station in our 2-level
architecture. The assembly system consists of 3 stations: one
for placing the tank in the body, one for placing the cap on
top and one for turning the pen upside down. A station KPI
can then be defined as the number of good parts out of the
total number of parts assembled by the station. By analysing
stations separately it is possible to generate station-specific
knowledge that can be reused when a station is installed on
a different system.

The process recipe includes parameters such as the types
of grippers and their pressure, the opening and closing an-
gles, the pressure of cylinders, the program numbers of cam-
eras and the type of pallet. The machine is cam-driven and
its operational speed is fixed. This implies that cycle times
cannot be altered and performance indicators based on cycle
times are therefore not meaningful.

The assembly system was reconfigured for manufactur-
ing a new injection pen composed of parts similar to the
original ones but with slightly different dimensions. A num-
ber of mechanical adjustments to grippers and checking de-
vices were made to enable the production of the new variant.

The system KPI that was calculated was the number of
good parts divided by the total number of parts produced
in a time period of 1 minute. Operators had access to the
current KPI value all the time. Each operator was allowed
to make 30 atomic adjustments. (Further adjustments would
be required to achieve optimal performance.)

The first group adapted the machine without any external
support and an experience base was built by capturing all the
adjustments performed. Then, the second group repeated the
process with the support of our software and the experience
base. The operators of the second group followed the first
recommended change 22, 20 and 24 times, respectively, and
did not follow any of the recommended changes 3, 3 and 1
times, respectively.

Fig. 5 shows the KPI for the 3 operators that adapted
the machine without external support. Fig. 6 shows the KPI
for the 3 operators that adapted the machine with external
support. Fig. 7 shows the average KPI for the two groups of
operators. As it can be observed, Fig. 5 presents a number of
steep rises and drops, which do not appear or are less marked
in Fig. 6. This may be caused by a higher level of uncertainty
of the operators of the first group about which adjustment to
make. The average values in Fig. 7 indicate that the second

0.4

0.6

0.8

1

K
P
I

0

0.2

1 6 11 16 21 26
Steps

Op1 Op2 Op3

Fig. 5 KPI values for the operators that adapted the machine without
external support

0.4

0.6

0.8

1

K
P
I

0

0.2

1 6 11 16 21 26
Steps

Op4 Op5 Op6

Fig. 6 KPI values for the operators that adapted the machine receiving
recommendations on changes

group performed the adaptation faster and achieved a higher
KPI at the end of the process.

An analysis of the impact of changes on individual sta-
tions was conducted using station KPIs. This revealed that
the major difference in performance between the two groups
was related to the first and second stations (those for insert-
ing the tank in the body and placing the cap), while there
was little difference in relation to the third station.

7 Discussion

Effectiveness and accuracy of recommendations depend on
the adopted KPI and distance function. The estimated ef-
fect of an adaptation is based on the difference in KPI in
the associate experience instances. The drawback of this ap-
proach is that, although state similarity is taken into account,
an adaptation that caused a big improvement in a very bad
state could be preferred to one that caused a slight improve-
ment in a good state. To avoid this situation, absolute KPI
values should be considered as well.



9

0.4

0.6

0.8

1

K
P

I

0

0.2

1 6 11 16 21 26
Steps

Without support With support

Fig. 7 Average KPI values for the two groups of operators (the one
that received external support in the form of recommended changes,
and the one that did not)

Structural adaptations that change the physical configu-
ration of an assembly station can involve adding a new mod-
ule or device, or replacing an existing one. Such adaptations
are applicable only if the new module is compatible with
the rest of the system. Similar adaptations contexts, accord-
ing to the distance function, do not necessarily admit the
same structural adaptations. Therefore, recommendations on
adaptations provided exclusively on the basis of context sim-
ilarity are not guaranteed to be applicable.

Having a specification of modules’ physical requirements
and compatibility conditions, for both installed and available
modules, would allow to produce recommendations only on
applicable structural adaptations. Analogously, if capabil-
ity and logical requirements were also specified, the selec-
tion of structural adaptations could take them into account.
This way, a module would be replaced only with one having
equivalent capabilities and logical function in the system.

8 Conclusions

We have presented a technique for capturing information
on adaptations through event generation and experience cre-
ation. Experience is used for providing decision support on
adaptations. The problem of finding the best adjustment in a
certain adaptation context is framed as a classification prob-
lem. A kNN algorithm is used for finding the most similar
adaptation contexts in the experience. Adaptations are eval-
uated with a KPI and an estimate of the effect is calculated
based on the experience. The architecture of the software
framework implementing the technique has been outlined.

The effectiveness of the technique has been evaluated
in a case study, in which an adaptation process was carried
out on an assembly system to produce a new product vari-
ant. The experiment showed that the group that adapted the
system receiving support achieved higher KPI values. Fur-

ther experimentation with larger groups and more complex
adaptations is required to draw firm conclusions.

Although the technique requires an appropriate repre-
sentation of machine states and depends on the adopted KPI
and distance function, it is of general application and straight-
forward use. Some improvements regarding the use of the
KPI and future directions in relation to structural adaptations
and physical/logical requirements have been discussed. There
are also other aspects which are worth studying, such as the
use of the technique to transfer knowledge between similar
machines and operators with different skills, and the impact
in terms of costs saved in the long run.

References

Arai T, Aiyama Y, Sugi M, Ota J (2001) Holonic assembly system with
plug and produce. Computers in Industry 46:289–299

Barbosa B, Ferreira D (2013) Classification of multiple and single
power quality disturbances using a decision tree-based approach.
Journal of Control, Automation and Electrical Systems 24:638–648

Basri R, Hassner T, Zelnik-Manor L (2011) Approximate nearest sub-
space search. IEEE Transactions on Pattern Analysis and Machine
Intelligence 33(2):266–278

Belongie S, Malik J, Puzicha J (2001) Shape matching and object
recognition using shape contexts. IEEE Transactions on Pattern
Analysis and Machine Intelligence 24:509–522

de Carvalho J, Coury D, Duque C, Paula B (2014) A new transmis-
sion line protection approach using cumulants and artificial neural
networks. Journal of Control, Automation and Electrical Systems
25:237–251

ElMaraghy HA (2006) Flexible and reconfigurable manufacturing sys-
tems paradigms. International Journal of Flexible Manufacturing
Systems 17:261–276

Fjällström S, Säfsten K, Harlin U, Stahre J (2009) Information en-
abling production ramp-up. Journal of Manufacturing Technology
Management 20(2):178–196

Foguem BK, Coudert T, Béler C, Geneste L (2008) Knowledge for-
malization in experience feedback processes: An ontology-based
approach. Computers in Industry 59:694–710

Frei R, Ferreira B, Serugendo GDM, Barata J (2009) An architecture
for self-managing evolvable assembly systems. In: Proceedings of
the 2009 IEEE International Conference on Systems, Man, and Cy-
bernetics

Jaber MY (ed) (2011) Learning Curves: Theory, Models, and Applica-
tions. CRC Press

Järvenpää E (2012) Capability-based adaptation of production systems
in a changing environment. PhD thesis, Tampere University of Tech-
nology, Finland

Kim S (2003) Protein β -turn prediction using nearest neighbour
method. Bioinformatics 20(1):40–44

Korena Y, Heiselb U, Jovanec F, Moriwakid T, Pritschowb G, Ul-
soya G, Brussel HV (1999) Reconfigurable manufacturing systems.
CIRP Annals - Manufacturing Technology 48:527–540

Lazzaretti A, Ferreira V, Neto H, Riella R, Omori J (2013) Au-
tonomous neural models for the classification of events in power
distribution networks. Journal of Control, Automation and Electri-
cal Systems 24:612–622

Oates RF, Scrimieri D, Ratchev S (2012) Accelerated ramp-up of as-
sembly systems through self-learning. In: Proceedings of the 6th
IFIP WG 5.5 International Precision Assembly Seminar (IPAS
2012), Springer, pp 175–182



10

OMG (2013) Data-distribution service for real-time systems.
http://portals.omg.org/dds/, accessed on 31 January 2014

Scrimieri D, Ratchev S (2013) Capture and application of adaptation
knowledge on assembly stations. In: Proceedings of the 11th IFAC
Workshop on Intelligent Manufacturing Systems, pp 87–92

Scrimieri D, Oates R, Ratchev S (2013) Learning and reuse of engi-
neering ramp-up strategies for modular assembly systems. Journal
of Intelligent Manufacturing DOI 10.1007/s10845-013-0839-6

Surbier L (2010) Problem and interface characterization during ramp-
up in the low volume industry. PhD thesis, Institut polytechnique de
Grenoble, France

Terwiesch C, Xu Y (2004) The copy-exactly ramp-up strategy: trading-
off learning with process change. IEEE Transactions On Engineer-
ing Management 51(1):70–84

Westkämper E (2006) Factory transformability: Adapting the struc-
tures of manufacturing. In: Daschenko A (ed) Reconfigurable Man-
ufacturing Systems and Transformable Factories, Springer Berlin /
Heidelberg, pp 371–381

Wilson DR, Martinez TR (1996) Instance-based learning with geneti-
cally derived attribute weights. In: Proceedings of the International
Conference on Artificial Intelligence, Expert Systems and Neural
Networks (AIE’96), pp 11–14

Wilson DR, Martinez TR (1997) Improved heterogeneous distance
functions. Journal of Artificial Intelligence Research 6:1–34


