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Abstract We present a decision-support framework for speed-
ing up the ramp-up of modular assembly systems by learn-
ing from past experience. Bringing an assembly system to
the expected level of productivity requires engineers per-
forming mechanical adjustments and changes to the assem-
bly process to improve the performance. This activity is time-
consuming, knowledge-intensive and highly dependent on
the skills of the engineers. Learning the ramp-up process
has shown to be effective for making progress faster. Our ap-
proach consists in automatically capturing information about
the changes made by an operator dealing with disturbances,
relating them to the modular structure of the machine and
evaluating the resulting system state by analysing sensor
data. The feedback thus obtained on applied adaptations is
used to derive recommendations in similar contexts. Rec-
ommendations are generated with a variant of the k-nearest
neighbour algorithm through searching in a multidimensional
space containing previous system states. Applications of the
framework include knowledge transfer among operators and
machines with overlapping structure and functionality. The
application of our method in a case study is discussed.
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1 Introduction

Once the initial building of a complex assembly system has
finished, the system is not immediately capable of producing
at a high rate. There are frequent disruptions, the assembly
process is not entirely understood and may be still subject to
changes. As a consequence, the initial volume of production
and quality of the final product are below the targets. The
period between completion of development of a production
system and full capacity utilisation is known as production
ramp-up (Terwiesch and Bohn, 2001). Being able to shorten
this phase and bring rapidly to the market high volumes of
output whose quality has been assured would represent a
considerable economic advantage for manufacturers. This is
particularly important for advanced manufacturing systems,
which require a high utilisation of the equipment in order to
maximise the return on investments. Such systems are char-
acterised by tight manufacturing plans, shorter product life
cycles and increased amortisation of capital-intensive tech-
nologies (Almgren, 1999b).

In general, many sorts of problems in production sys-
tems can cause prolonged ramp-up times, of either techni-
cal or organisational nature: machines break down or do not
operate efficiently, oversights on product design are discov-
ered, personnel are not properly trained or do not have suf-
ficient experience, there are delays in material supply (Alm-
gren, 1999a; Terwiesch and Bohn, 2001). Ramp-up also takes
place when a machine is reconfigured to react to market
changes (Koren et al, 1999; Mehrabi et al, 2000) or is simply
transferred from its manufacturer to the customer or a new
plant.

In this paper, we focus on the engineering aspects of
ramp-up concerning assembly systems and address the prob-
lem that ramp-up is not an automated process but heavily
human-driven. As such, it requires detailed knowledge of
the assembly technologies and processes involved, and it is
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essentially carried out by trial and error, making a series of
adjustments and evaluating their effects. Furthermore, the
experience of an operator performing the ramp-up of a ma-
chine cannot be easily transferred to another operator for the
ramp-up of the same type of machine, let alone a different
one. In particular, the adjustments we consider are those re-
garding the control of assembly machines (e.g. locations of
pick-and-place operations, pressure, cam angles, speed) and
the geometry or design of the units involved (e.g. pallet ge-
ometry).

We present a decision-support framework for learning
how to configure and tune assembly systems during ramp-
up and reuse the acquired operational knowledge to speed
up the ramp-up process itself. The general idea is that all
adjustments made, whether they enhance the performance
or not, bring new information about the system’s evolution.
Experience on adaptations in different system states is accu-
mulated, where a state is represented by the status informa-
tion gathered by the machine’s sensors. Adaptations can be
related to either the entire system or one single module and
this information is modelled in the experience structure. If
we can quantify the variation in efficiency then, when faced
again with the same disruption, we can perform the adjust-
ments that caused an improvement in the past and avoid
those that had a negative impact. Such knowledge is related
to the particular machine, product and process it was cre-
ated on and can be utilised to provide decision support for
the ramp-up of that production system. In addition, it can be
employed on other machines with overlapping structure and
functionality, and similar products or processes.

The ramp-up phase and the learning effects associated
with it have been extensively studied from an economic per-
spective and many mathematical models have been devel-
oped to help control them. However, no computational frame-
work has been proposed for learning and recommending en-
gineering changes to equipment during ramp-up, apart from
an outline of such a system (Oates et al, 2012).

The remainder of this paper is organised as follows. Sec-
tion 2 illustrates typical problems occurring during ramp-up
and what is meant by learning in manufacturing. Section 3
presents a methodology for carrying out the ramp-up pro-
cess with the support of recommendations on adaptations.
Section 4 describes how experience is structured and cap-
tured. Section 5 presents a technique for generating recom-
mendations. In Section 6 a case study is discussed. Section 7
contains final remarks and conclusions.

2 Ramp-up and the role of learning

2.1 Characteristics of the ramp-up phase

As noticed by Surbier (2010), the “completion of develop-
ment” as starting point of the ramp-up phase, indicated by

Terwiesch and Bohn (2001), does not have well-defined bound-
aries. Although the development phase has finished, it is not
rare to have late engineering changes throughout ramp-up
or even production. These changes may be aimed at over-
coming product and process design oversights. Winkler et al
(2007) include in ramp-up a series of preparatory activi-
ties conducted in a pilot production phase, when prototypes
or the final product are produced for testing or demonstra-
tion purposes in close-to-production conditions (pre series)
or production conditions (pre production run). In this case,
shortening ramp-up also means reducing such a preparatory
phase.

Several characteristics of the ramp-up of production sys-
tems identified in the literature are summarised by Surbier
(2010). Most of them are particularly relevant to assembly
systems:

– The understanding of the process is poor when it starts.
Knowledge is then accumulated through continuous learn-
ing, although learning does not occur systematically and
with no difficulty;

– Cycle times are high and production capacity is lower
than expected;

– There are numerous disturbances affecting process and
product quality.

2.2 Critical events affecting progress

A wide range of events can occur during ramp-up, with ei-
ther a positive or negative impact. Fjällström et al (2009) call
them critical events and classify them in the following cate-
gories: product/quality, equipment/technique, process, sup-
pliers/supply, personnel/education and organisation. These
categories are similar to the four sources of disturbance iden-
tified by Almgren (1999a): product concept, material supply,
production technology and personnel.

In the European research project FRAME,1 four key types
of events related to assembly systems and causing delays
during ramp-up were identified:

– Unpredicted equipment failures (e.g. parameters out of
tolerance due to either a slippage during production or a
design oversight, communication infrastructure errors);

– Maintenance operations, which occur more often during
ramp-up;

– Mistakes made by operators;
– Random events that require to restore the system to a

previous operational state.

The industrial partners of the project, which were in the
aerospace, automotive and medical devices sectors, faced
these problems through a time-consuming and iterative pro-
cess where process data were often manually collected and

1 http://www.frame-eu.org
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analysed. The aim of the project was to reduce the number
of occurrences of these events and the time needed to deal
with them through mechanisms for capturing information
on how to handle them, generalising and reusing it on future
occasions.

2.3 Learning by doing in production systems

Many managerial strategies are based on learning curves
(Jaber, 2011), expressed in models whereby costs decline
with rising cumulative output of production. Managerial strate-
gies are intended in a general sense and include any deci-
sion aimed at increasing productivity, in relation to either
the equipment or the personnel. In manufacturing, the more
an organisation produces the more it learns and gains experi-
ence which facilitates progress. As a consequence, less time
and lower costs for producing a unit are required. This is
the so-called learn-by-doing. Learning curves are sometimes
called interchangeably experience curves or progress func-
tions, although major differences can be identified (Dutton
et al, 1984). Such models have created a new understanding
of production efficiency, which is a dynamic phenomenon
and not a static one as it was assumed (i.e. solely dependent
on the chosen combination of production elements) (Dutton
et al, 1984).

Many factors can affect the way and rate an organisa-
tion learns and explain the differences in learning among
different organisations. Argote and Epple (1990) analyse or-
ganisational forgetting, turnover and transfer of productivity
gains. If knowledge is owned by individuals, turnover can
cause loss of experience, especially in the case of lack of
standardised procedures and when training new employees
in a short time is not possible.

Transfer of knowledge across products and processes al-
lows to be proficient in the manufacture of new products
when these are related to old ones. If two products are simi-
lar and one has already been produced in the past while the
other is going to be produced, the production of the new one
can adapt the old process, reuse resources and utilise the ex-
perience acquired on the old one. This is clearly beneficial
and makes ramp-up and learning of the new product faster.
At the same cumulative production, the cost of the new prod-
uct will be lower because of the higher accumulated knowl-
edge achieved by the transfer from the other product. This
difference will be reflected in the learning curve.

Argote and Ingram (2000) suggest that knowledge can
be transferred by moving “knowledge reservoirs” and net-
works, that is, members of the organisation, tools, tasks and
networks formed by combining them. This is, however, dif-
ficult to accomplish because of compatibility problems be-
tween networks. Alternatively, the knowledge reservoirs in
the recipient unit can be modified through communication
and training.

2.4 Learning by experimentation and learning strategies

In many studies of learning curves the only causal expla-
nation of learning is considered to be the cumulative num-
ber of units produced. Thus, learning and progress seem
to be achieved only by building up the cumulative volume
of production. As a result, ramp-up looks like a manage-
able and predictable process, where little room is left for
making decisions as pointed out by Terwiesch and Bohn
(2001). These authors, instead, model learning in terms of
experimentation and analyse the trade-off between short-
term experimentation costs and long-term productivity in-
crease. They demonstrate that early learning is more advan-
tageous than late learning. In their work, experimentation is
a form of induced learning, while production is seen as au-
tonomous learning. Experiments are usually conducted in a
series (Jaber, 2011, chap. 11). In a manufacturing process,
for example, engineers may first try to isolate the cause of
a problem, then test hypothesis explaining it and finally at-
tempt to solve it.

In the context of the continuous improvement theory,
Zangwill and Kantor (1998) criticise the approach of learn-
ing curves, which views learning as a “natural economic
phenomenon”. Learning curve theories can predict learning
and how fast it occurs. However, they do not suggest practi-
cal procedures for increasing the rate of learning. Zangwill
and Kantor argue that continuous improvement is activated
by some form of learning and propose making learning hap-
pen in cycles. In a cycle, several strategies to make improve-
ment are formulated and tested. If one appears to be effec-
tive it is adopted. The feedback obtained this way is used to
define new strategies in the next cycle. Learning as an on-
going cyclic process is the basis of the organisational learn-
ing model of Argote and Miron-Spektor (2011), in which
the organisational context affects the way experience is ac-
quired and how learning occurs. New knowledge is then in-
corporated into the organisational context and affects future
learning.

Terwiesch and Xu (2004) refer to learning during ramp-
up in high-tech industry as the process of reducing the dis-
crepancies between process specification and actual process
execution. Once discrepancies have been eliminated, new
improvement opportunities may arise (e.g. new technolo-
gies) and process modifications are needed. However, changes
to the process make all the procedures established for the
old process deprecated and new ones have to be laid down
taking into account the changes. The authors discuss the
“copy-exactly” ramp-up strategy, which consists in freez-
ing the process recipe for a certain period of time during
which learning can take place without being hindered by
changes. The trade-off between long-term profit and short-
term disruptions caused by process changes is also analysed
by Carrillo and Gaimon (2000). Nembhard and Birge (1998)
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discuss process adjustments during the ramp-up period of a
continuous mix manufacturing process. Ngwenyama et al
(2007) study the impact of software upgrades on productiv-
ity. Late upgrades cause a firm to miss the productivity gains
offered by the new technology, while early upgrades require
training and new routines.

Glock et al (2012) present a production-planning model
for analysing the interdependencies between learning and
growth in demand during the ramp-up of a manufacturing
process, with the objective of minimising costs. This mathe-
matical programming model indicates that, if finished prod-
ucts can be immediately shipped to customers, production
plans should be synchronised to demand and stocks min-
imised. Synchronisation is accomplished by controlling the
rate of learning or restructuring the workforce. The frame-
work that we propose can help control learning through a
better utilisation of the equipment and therefore provides a
practical tool to apply the model of Glock et al (2012).

Through a case study in a major Swedish automotive
company, Fjällström et al (2009) seek to find out what types
of information are required to handle critical events in ramp-
up, what the sources of information are, and how types and
sources of information vary based on the category of the crit-
ical event and the experience of the personnel. The types of
information they consider are problem, domain and problem-
solving information. They conclude that problem and do-
main information are the most commonly needed and that
domain information is not exclusively related to the class of
the critical event being handled. For example, the domain
information required to respond to a product-related critical
event may include domain information on the equipment or
process, in addition to the product itself. This suggests that
a broad domain knowledge on product/process/equipment
is necessary in order to handle events in any of these cate-
gories.

Organisations not only process information but also cre-
ate knowledge, both tacit and explicit. Although knowledge
is built by individuals, organisations play a crucial role in
its creation process. Nonaka (1994) introduces a model of
knowledge creation/conversion that explains how tacit or ex-
plicit knowledge creates new knowledge of the same type or
is converted to the other type. The conversion of tacit knowl-
edge into explicit knowledge is called “externalisation” and
includes communication to articulate and elicit knowledge
from, for example, customers or experts. The conversion
of explicit knowledge into tacit knowledge is called “in-
ternalisation” and is a form of individual learning that in-
volves absorbing explicit knowledge through practice and
experience. The model focuses on the dynamic interaction
between the two types of knowledge and their conversions,
and has triggered subsequent research and debate (Nonaka
and von Krogh, 2009). The methodology and computational
framework that we describe in this paper aim at facilitating

externalisation through automatic capture and formalisation
of individual knowledge.

3 Methodology

Our general view is that in the ramp-up of an assembly sys-
tem learning is accomplished through experimentation. With
experiments, engineers test changes and try to eliminate dis-
ruptions. Learning is effectively the result of generalising
the feedback obtained in each single experiment, building
systematic strategies that can be adopted in the course of
ramp-up.

3.1 Problems addressed and overall approach

Our methodology supports the decision-making process car-
ried out by engineers during the ramp-up of an assembly
machine. The aim is to reduce ramp-up time by automati-
cally acquiring knowledge on the ramp-up process itself and
reusing it in similar contexts to make informed choices on
adaptations. As we will see in detail in the following sec-
tions, this is achieved through learning from the experience
gained with experimentation. The methodology is meant to
be implemented in a software framework, which would ex-
tend the functionality of assembly stations with the capabil-
ity of learning from past experience.

The problems tackled by the methodology are twofold:

1. During ramp-up, the relationship between process pa-
rameters and performance of the assembly system is not
known. Therefore an adaptive control cannot be applied.
Ramp-up is conducted as a manual trial and error pro-
cess, performing a series of changes to the parameters of
the system and evaluating the impact, until a satisfactory
configuration is found. It is not always evident during
such a process whether the direction that is being fol-
lowed leads towards the efficiency goals established. In
fact, it may even bring the system into a non-functional
state.

2. The ramp-up of an assembly machine is a process highly
dependent on engineers’ skills and experience, which
requires knowledge not easily transferable among engi-
neers and to new ramp-up problems.

Engineers resort to heuristic rules, domain knowledge
and personal experience to adjust the system. Operational
knowledge on adaptations could be formalised based on the
domain of application. However, the domain may be too
large to be analysed. On the contrary, experience can be
formally defined and automatically captured (as it will be
shown in Section 4). In addition, it arises from the joint ap-
plication of heuristics and domain knowledge, so it implic-
itly includes them to some extent. Therefore, instead of try-



Learning and reuse of engineering ramp-up strategies for modular assembly systems 5

ing to find general adaptation rules, we can think of exploit-
ing accumulated experience for finding successful adapta-
tions.

A ramp-up process carried out without any external sup-
port boils down to the application of a sequence of changes
followed by an assessment of the progress. Having past ex-
perience on particular adaptations before performing them
would provide the engineer with insights into the effect of
potential changes and support the decision-making process.
The first step would be to distinguish adjustments that in-
crease efficiency from those that do not. If detailed infor-
mation on specific aspects of performance (e.g. cycle times,
product quality) is available, a more refined application could
consist in choosing adjustments based on a particular strat-
egy that favours some elements of performance over others.

3.2 Use of recommendations

By (context-aware) recommendation we mean an atomic adap-
tation (i.e. a single adjustment) which is suggested in the
current system state since it caused a positive result in a sim-
ilar state in the past. Sections 4 and 5 describe, respectively,
how to capture experience and use it for deriving recommen-
dations on adaptations. Here we only discuss when recom-
mendations are requested and how they are applied. We will
call strategy a sequence of atomic adaptations.

Decision support in ramp-up is needed in two different
but related cases:

1. The assembly system is not at the desired level of perfor-
mance and the engineer decides to perform an adaptation
to make improvement.

2. A disruption occurs, the performance drops and the en-
gineer has to recover the previous functional state.

Case 1 Fig. 1 shows a high-level description of the sequence
of steps executed during ramp-up with the support given by
recommendations based on experience. The assembly sys-
tem does not meet the efficiency goals and recommenda-
tions are requested to find a strategy for making progress
towards the goals. There is no specific disruption to deal
with. The available recommendations are dependent on the
acquired experience and the similarity between the current
system state and the states on which experience has been
captured. At each step, recommendations are requested and
if there are any, one is chosen, usually the one ranked first
according to the adopted order. After applying it, the result-
ing system state is analysed and if the outcome is considered
satisfactory, i.e. a performance gain has been achieved, the
process can go to the next step. Otherwise, the previous state
is restored and a different recommendation is followed, nor-
mally the next in the ranking. (It is assumed that changes

Request recommendations

Choose a recommendation

Apply it and

analyse the result

Is result OK?

Are there available

recommendations?

Return to the

previous state

Make an adjustment

without support

Have the

performance targets

been reached?
End

N

N

N

Y

Y

Y

Fig. 1 Use of recommendations on adaptations to find a strategy to
improve performance and reach the targets

are reversible, as it is usually the case.) If there are no (fur-
ther) available recommendations, it is necessary to perform
an adaptation autonomously. The process terminates when
the performance targets have been reached.

Case 2 The case when a disruption has occurred is handled
in a similar manner. Decision support is sought to devise a
strategy to recover from the disruption. The procedure to fol-
low is analogous to the one in Fig. 1, with the difference that
the process ends when the disruption has been eliminated.

4 Experience capture

Experience capture is the process of acquiring information
on adaptations being made, relating them to the modular
structure of the machine and measuring their effect. Recom-
mendations on executable adaptations are generated using
the experience captured (as described in Section 5).

4.1 Structure and control of a modular assembly system

A modular assembly system can be described as a collec-
tion of processing units or modules assembling or check-
ing parts. Each part is processed sequentially. The output of
a module is given as input to the next module in the line.
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Sub-assemblies of the same product can also be processed
in parallel.

Each module can be controlled either separately or in
conjunction with others. In the former case, a module has
no access to information about the sub-processes carried out
by the other modules or the overall assembly process. (It
could, however, inspect the parts received to obtain such in-
formation.) In the latter case, modules share process data. A
change in control affects all the controlled entities. Never-
theless, each individual module can additionally have a spe-
cific configuration which does not apply to the others. For
example, consider an assembly system where all the mod-
ules are driven by the same motor and drive shaft but there
are pick-and-place modules operating on different locations
or having different pressures.

Modules can be replaced with others having similar func-
tionality and interfaces in case of breakdown or changes
to the process specification. Indeed, during ramp-up sev-
eral modules might be replaced and tested. Modules are the
smallest entities we are interested in for learning and when
they are moved from one system to another we want to trans-
fer also the knowledge accumulated about them. The analy-
sis of the operation of a single module independently from
the others does not normally provide us with all the informa-
tion we need to measure its performance. This is evident in
systems where the check of an assembly operation happens
in a subsequent step by means of a dedicated module. In this
case, we can measure the quality of the output of a module
and assess its operation only when the check takes place.

Our object of study is given by systems providing in-
termediate quality checks on the parts being assembled and
a last check on the final product. Within the scope of this
paper, we use the following definitions:

Subsystem: a group of one or more modules performing
assembly steps and a module checking the quality of the
sub-assemblies at the end of these assembly steps;

System: a group of subsystems processing parts sequen-
tially, preceded by a module checking the presence of
parts and optionally followed by a further module check-
ing the quality of the final product.

The process executed by a subsystem can be configured
by setting subsystem-specific parameters in a process recipe.
We assume the specification of a process recipe for each sub-
system. In addition, there can be a process recipe for the en-
tire system, which defines system-level parameters affecting
more than one subsystem, possibly all. For instance, the lay-
out of the pallets carried by a conveyor belt and processed
by every subsystem is a system parameter specified in the
system recipe. For each subsystem and the whole system a
KPI (key performance indicator) is defined to measure the
performance. In this paper, we only assume that a KPI func-
tion takes non-negative values and is such that the higher the

Event

- timestamp

Status Event

- attribute

- type (parameter or output variable)

- value

- context

    - source (system or subsystem)

    - range

    - target value

    ...

Adjustment Event

- parameter

- new value

- context

    - system or subsystem

    - range

    ...

Disruption Event

- distance from target value

...

Fig. 2 Classification of event types

value, the better the performance. Usually KPIs are func-
tions of sub-assembly or assembly quality and throughput.

4.2 Generation of events and status information

We use assembly systems equipped with PLCs generating
real-time signals which are then transformed into high-level
data structures, handled by our software, that we call events.
Events contain information on cycle times, results of checks
or measurements, adjustments performed, modules added or
removed, product item or pallet being processed, and any-
thing else that can be monitored and is useful to characterise
the system state or measure its performance. In fact, events
are used to capture the state of the system at specific points
and identify changes being made.

We differentiate two types of events: status events, con-
veying information about the current status of the system,
and adjustment events, describing changes to the process
recipe. In addition, we identify a sub-type of status events,
called disruptive events, generated when a disruption occurs.
In general, by disruption we mean a significant variation in
a monitored variable. Disruptions can be detected by sta-
tistical process control or condition monitoring techniques.
Usually they are symptoms of suboptimal conditions or de-
veloping failures and require human intervention.

Let us call attribute each process parameter and moni-
tored variable whose detected values are transmitted by sta-
tus events. Attributes can be relative to either individual sub-
systems or the entire system. Not all attributes are available
all the time, since their presence is dependent on the mod-
ules and sensors installed at a specific moment. Fig. 2 sum-
marises event types and their content.

We do not make assumptions on the frequency of gen-
eration of status events. Also, different variables can get up-
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dated at different rates. However, it is required that the ex-
perience capture software be able to access the latest values
of all attributes. This means that, if the information gathered
is not up-to-date or incomplete, the software needs to wait
for the generation of new events containing the latest values.
In particular, the detection of a change involves the process-
ing of status events generated after it. The effect of a change
may not be immediately visible, though. For example, batch
statistics on a subsystem are obtained when it has finished
to process a batch. After a change, in order to get up-to-date
statistics or calculate a KPI, it is necessary to process an en-
tire new batch.

Associated with each attribute and adjustment there is
a context which specifies to which module and subsystem
they are related and provides the relevant domain informa-
tion (e.g. range of values, type, unit of measurement, tar-
get value). Attributes and adjustments by themselves do not
uniquely identify a module or subsystem. In fact, several
modules or processes can be grouped into classes sharing
the same set of attributes or adjustment types. For example,
all pick-and-place modules in a workstation can have the
same adjustment types for specifying the cam angles when
grippers open or close. Additional module-specific attributes
can also exist.

4.3 Representation and creation of experience

In our framework, experience is the representation of changes.
It describes an experiment made and its outcome. Its cre-
ation is triggered by adjustment events. At the subsystem
level, an experience instance is related to a change to a sub-
system and includes the effect of the change on the subsys-
tem. At the system level, experience is the result of either a
subsystem or system change and includes the effect of the
change on the whole system.

Suppose that we have a system consisting of m subsys-
tems. For each 1 ≤ i ≤ m, let Attri = {a1, . . . ,ani} be the
set of all attributes that can be used to characterise the state
of subsystem i over a certain period of time, and let D j

(1≤ j≤ ni) be the domain of attribute a j. Attri also includes
all the system-level attributes which are relevant to subsys-
tem i. We represent a state S of subsystem i at a certain point
in time by a mapping from i’s attributes to their respective
values, i.e. by a function S : Attri→

⋃
j D j∪{null} such that:

S(a j) =

{
d ∈ D j if attribute a j is present in state S
null otherwise

In addition, let DS denote the set of attributes present in state
S, i.e. all attributes a j such that S(a j) ∈ D j. We denote the
set of states of subsystem i by Statei. The KPI of subsystem
i is a function defined on Statei.

A subsystem enters a new state every time any of its at-
tributes changes or a module is added, removed or replaced.

When a new module is inserted, the associated attributes
become available, although not necessarily all at the same
time. On the contrary, when a module is removed, the asso-
ciated attributes are no longer available. A transition from S
to T will be written as S→ T . During its operation, a subsys-
tem enters a sequence of states S1→ S2→ ··· → Sl , where
for each 1 ≤ k ≤ l− 1 there exists a j such that one of the
following two conditions holds:

1. a j ∈DSk∩DSk+1 and Sk(a j) 6= Sk+1(a j) (i.e. a j has changed
value in the transition Sk→ Sk+1);

2. a j ∈DSk4DSk+1 (i.e. a j has been introduced or removed
in the transition Sk→ Sk+1).

An adjustment is specified by a type, which indicates
what the change is about (e.g. pressure, conveyor belt speed,
cam angles, pick-and-place positions), and a value, which
depends on the type. Let Adji be the set of adjustments for
subsystem i. An adjustment adj ∈ Adji has the form (t,v),
where t is the type and v is the value.

Subsystem experience We can now define an experience in-
stance exp for subsystem i as follows:

exp = (adj,S,C,S′)

where

– adj ∈ Adji;
– S ∈ Statei is the state when adj is made;
– C ⊂ Attri is the set of attributes that caused a disruption

in a certain period of time before performing adj;
– S′ ∈ Statei is the first state after adj has been performed

and all available attributes have been updated.

The creation of exp can be illustrated by the following se-

quence of transitions, where
adj→ denotes the transition when

adj takes place:

· · · → S = S0
adj→ S1→ ··· → Sk = S′

where 1≤ k≤ ni +1 and DS1 ⊂ ·· · ⊂DSk . For each 1≤ j≤
k, one of the following conditions holds:

1. S j contains an updated value for an attribute which is
also in S;

2. S j adds a new attribute which is not present in S (i.e. adj
is about the addition of a module);

3. in case j = 1 and a module has been removed or re-
placed, S1 is equal to S except for the absence of the
attributes related to the module removed.

The existence of intermediate states between S and S′ is due
to the fact that attributes can get updated at different rates
and, when a module is added, they may not all become avail-
able at the same time.
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System experience Let SysAdj be the set of system-level ad-
justments and, for 1≤ i≤ m, let:

– Si ∈ Statei be the state in which subsystem i is when adj
is made;

– C ⊂Attri be the set of attributes that caused a disruption
in subsystem i in a certain period of time before perform-
ing adj;

– S′i ∈ Statei be the first state of subsystem i after adj has
been performed and all available attributes have been up-
dated.

A system-level experience instance sysexp has the following
form:

sysexp = (adj,S,C,S′)

where adj ∈ SysAdj∪ (
⋃

i Adji), S =
⋃

i Si and S′ =
⋃

i S′i.
Note that system attributes are also specified (with the same
value) in all subsystem states in which they are relevant.
Analogously to subsystems, the system KPI is calculated on
a system state, given by the union of the subsystem states.

5 Derivation of adaptation recommendations

We have presented a general technique for capturing and
representing experience. What is still missing is an auto-
matic procedure employing stored experience in a profitable
context-aware way to systematically derive recommenda-
tions on adaptations and come up with a successful strategy.
Upon request the engineer should be provided with a list of
recommended adjustments, ranked from best to worst. They
will then choose one as described in Section 3. Adjustments
ranked last may deserve attention in order to avoid them.

The problem of finding an appropriate adjustment to per-
form in a specific system state can be seen as a classifica-
tion problem. This is a typical problem in machine learning,
where the system learns how to classify instances based on a
given set of examples. Each example contains an input vec-
tor and a discrete output value that specifies the class of the
example. The set of examples constitutes the training set
for the learning system. The system receives the training set
and tries to generalise the association between input vectors
and output classes. The output of this process is a classi-
fier program. When given a new instance not included in the
training set, the classifier predicts its correct class.

A variety of learning methods have been developed for
classification, such as artificial neural networks, instance-
based learning, support vector machines and decision trees
(Marsland, 2009). Applications in manufacturing include ar-
tificial neural networks for optimising a gas metal arc pro-
cess (Lin, 2012) and for reliability assessment of structural
systems (Patel and Choi, 2012), decision trees for container
stacking strategies (Kang et al, 2006), k-nearest neighbour
classifiers for tissue characterisation (Uchino et al, 2013)

and text categorisation of customers’ preferences (Li et al,
2009).

For the ramp-up problem and the experience model we
have defined, the initial states and adjustment types of expe-
rience instances represent the training set, with the adjust-
ment types being the classes. The instances to classify are
the states, entered by the assembly machine throughout the
ramp-up phase, in which the engineer requests support on
adaptation. The classification process guides the engineer in
finding an appropriate adjustment in each of these states. It
is important not only to find the optimal setting of parame-
ters, but also the sequence in which making changes as, in
general, there could be constraints on applicable changes in
a certain state.

5.1 A variant of the kNN algorithm

The technique that we present is a variant of the K-nearest
neighbour algorithm (kNN) (Cover and Hart, 1967; Aha et al,
1991). In kNN, given a case to classify, the aim is to find the
k nearest instances in the training set, minimising a certain
distance measure.2 The distance measure expresses the sim-
ilarity between examples in the sense that the smaller the
distance between two examples, the more similar they are
supposed to be. The class to assign to an instance is the most
common among the k neighbours or is chosen by adopting
some voting scheme.

In addition to similarity between system states, our ap-
proach to classification uses performance estimates based
on KPI values calculated on the experience. The resulting
measure is not itself a distance function, though (i.e. a non-
negative and symmetric function satisfying the triangle in-
equality). The method is equally applicable at both subsys-
tem and system level.

5.2 Distance function

We define the distance d(S1,S2) between system states S1
and S2 over attributes a1, . . . ,an. Since we handle both nu-
merical and categorical attributes, we use the heterogeneous
euclidean-overlap metric (Wilson and Martinez, 1997):

d(S1,S2) =

√
n

∑
i=1

(di(S1,S2))2,

where di(S1,S2), for 1 ≤ i ≤ n, is the distance between S1
and S2 on attribute ai:

di(S1,S2) =


1 S1(ai) = null or

S2(ai) = null,
overlap(S1(ai),S2(ai)) ai is nominal,
rndiffi(S1(ai),S2(ai)) otherwise.

2 k is usually a small odd integer.
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The function overlap gives the value 0 if its arguments are
the same, otherwise the value 1. The function rndiffi (range
normalised difference), calculated if attribute ai is numeri-
cal, is defined as:

rndiffi(x,y) =
|x− y|

max(ai)−min(ai)
,

where max(ai) and min(ai) are, respectively, the maximum
and minimum values of ai observed in the training set.

Neighbours are found using the distance function, which
calculates distances on all attributes. Redundant, irrelevant,
interacting or noisy attributes have a negative impact on the
similarity search. To deal with these issues, many weight-
setting methods have been proposed. They are categorised
and compared by Wettschereck et al (1997). A scheme tai-
lored to our problem would assign higher weights to at-
tributes that have caused a disruption either in the state where
a recommendation is requested or in the experience. With
such a scheme, states exhibiting the same disruption would
be considered closer than those that do not.

5.3 Similarity-performance function

We are interested not only in finding the most similar ex-
perience instances, but also those containing the best adap-
tations, i.e. producing the highest KPI values. An experi-
ence instance with an initial state identical to the one we
want to classify, but whose adjustment causes a performance
drop would not be helpful. Based on this observation, we
also analyse the KPI of the final state in the experience. Let
E = (adj,S,C,S′) be an experience instance, T be a state and
kpi be a KPI function. We define the similarity-performance
function ekpi(E,T ) as follows (kpi(S′) 6= 0):

ekpi(E,T ) =
d(S,T )
kpi(S′)

If kpi(S′)= 0, it means that adj made the system non-functional,
so ekpi(E,T ) is defined to be infinitely large in this case.
Apart from the similarity between states, this function takes
into account the performance according to the experience
acquired. The smaller the value of this function, the better
the adjustment of the experience is supposed to be in the
state being examined.

5.4 Vote weighting

Given a state T in which recommendations are needed and
a KPI function kpi, we search for the k experience instances
Ei with the smallest values of ekpi(E,T ). Once they have
been found, a simple way of classifying T is to assign to
it the most common class among the experience instances’
classes. In kNN, the value k is usually chosen as a small, odd

integer, e.g. 1, 3 or 5. Even numbers are not used to avoid ties
that would have to be resolved by some other voting scheme.
Higher values may reduce the effect of noise. A suitable k is
typically chosen by cross-validation.

If k > 1, the problem with this approach is that the most
frequent class in the training set is likely to appear in the
majority of the selected k instances. Several solutions to this
problem have been suggested. They normally take into ac-
count the distance from the neighbours to the instance to
classify. Dudani (1976) uses the distance from the neigh-
bours as weight in the voting, giving more influence to the
closest ones. Other variations include radial basis function
networks (Wasserman, 1993) and probabilistic neural net-
works (Specht, 1992), where all instances are weighted and
contribute to the voting, albeit the distant ones have little
influence. Thus, in this case there is no longer the need of
choosing an appropriate k. Garcı́a-Laencina et al (2008) use
mutual information to weight the distance.

Following the idea of weighting votes with the respec-
tive distances, we propose the following weighting scheme
that considers both distance and performance impact of adap-
tations, according to the similarity-performance function ekpi.
Let E1, . . . ,Ek be the k experience instances with the small-
est values of ekpi(E,T ), in ascending order. We assume that
ekpi(Ek,T ) 6= ekpi(E1,T ) (in particular that k 6= 1) and assign
a weight w(Ei) to experience instance Ei, given by:

w(Ei) =
ekpi(Ek,T )− ekpi(Ei,T )
ekpi(Ek,T )− ekpi(E1,T )

For each class, the weights of its examples among E1, . . . ,Ek
are summed up. Instance T is assigned the class with the
largest sum of weights.

5.5 Construction and ranking of recommendations

Let T be the state in which recommendations are requested
and kpi be a KPI function. Recommendations can be gen-
erated only if there exist experience instances with a final
state having a KPI value greater than kpi(T ) and with an
adjustment applicable in the current state (e.g. not already
applied). We distinguish two cases:

k = 1 Suppose that E ′ = (adj,S,C,S′) is the experience in-
stance that minimises ekpi(E,T ). The recommended ad-
justment is adj, which specifies both the type of adjust-
ment (i.e. the class to assign to T ) and the value to set.
The KPI being sought is kpi(S′). If there is more than
one instance minimising ekpi(E,T ), the one whose final
state has the highest KPI is selected. Further recommen-
dations can be generated based on other experience in-
stances, in ascending order of ekpi. They can be about
other adjustment types or just different values.



10 Daniele Scrimieri et al.

k > 1 The recommended adjustment type t is given by the
class selected over experience instances E1, . . . ,Ek using
the voting scheme with the similarity-performance func-
tion ekpi. The adjustment value is given by the weighted
mean of the adjustment values of all experience instances
among E1, . . . ,Ek with adjustment type t. The weights
are the same ones used in the voting (i.e. the weight as-
signed to Ei’s adjustment value is w(Ei)). Analogously,
the KPI being sought is given by the weighted mean of
the KPI values of the final states of all experience in-
stances among E1, . . . ,Ek with adjustment type t. Fur-
ther recommendations are given by the other classes of
E1, . . . ,Ek, in descending order of sum of weights.

6 Case study

We have applied our framework in the ramp-up of an as-
sembly system for injection pens in the medical industry.
An injection pen is composed of three parts: a body, a tank
and a cap. Parts are fed in the line by pallets carried on a
conveyor. Each pallet contains nests for holding the parts
needed for assembling 3 pens, that is, 3 bodies, 3 tanks and
3 caps. The assembled pens are placed on the same pallet
that initially contained their individual parts. The assembly
machine is cam-driven and consists of 7 modules perform-
ing the following operations:

1. Check of the presence of all parts on the pallet;
2. Pick-and-place of tanks into bodies;
3. Check of the correct insertion of tanks in bodies;
4. Pick-and-place of caps on pens;
5. Check of the correct insertion of caps on pens;
6. Reversal of pens;
7. Check after reversal.

Each pick-and-place module operates 3 grippers, one for
each pen to assemble. The machine is highly flexible, as all
modules can be configured through a set of module-specific
parameters based on the product to assemble. Fig. 3 shows
a picture of the machine, where all modules are visible from
left to right (except for module 3, which was not installed at
that moment). Three subsystems can be identified:

– Subsystem 1 comprising modules 2 and 3;
– Subsystem 2 comprising modules 4 and 5;
– Subsystem 3 comprising modules 6 and 7.

For each subsystems, the KPI is given by the percentage of
parts in a batch passing the subsystem’s check. The system
KPI is the percentage of good pens in a batch and coincides
with the KPI of subsystem 3 .

Table 1 contains some system-level experience instances
created during the ramp-up of this machine. They describe
changes made to the closing angles of the grippers. Only a
small subset of the attributes is shown. All other attributes

have the same or very close values in those instances and in
the machine states examined in the rest of this section.

We illustrate two examples of use of this small expe-
rience base, where we apply the search with k = 1. They
are both related to adaptations made to the machine after a
breakdown and the replacement of some mechanical compo-
nents. They illustrate how to work out a strategy for chang-
ing the grippers’ closing angles in two different cases. While
in the first example recommendations are based on identical
or very similar experience states and all adaptations are suc-
cessful, in the second the similarity is lower and some rec-
ommended adaptations do not cause an improvement. The
distance between states is calculated only on the attributes
listed, which are the most relevant, and is thus an approx-
imation. In particular, the distance (and therefore the ekpi
function) may be 0 for states which are very close but not
identical. The range of the numerical attributes, used for nor-
malising the distance, is 20.

Example 1 Table 2 shows the sequence of states the ma-
chine goes through by applying our method. Fig. 4 shows
the recommendations provided at each step in a tree-like
representation. Nodes represent machine states. Edges rep-
resent recommended changes. The labels associated with
edges have the form experience instance/similarity-performance,
where experience instance is an instance E from Table 1 and
similarity-performance is given by ekpi(E,T ), with T being
the state from which the edge starts. The children of a node
are the states that can be reached by applying the recom-
mended changes indicated in the respective edges. Children
are ordered from left to right by increasing values of ekpi
(in the figure a maximum of 3 children are shown). Nodes
depicted with solid circles are the states actually entered by
the machine and contain the relative KPI. Nodes depicted
with dashed circles are states relative to recommendations
not used. The root node is the initial state of the machine.

The machine is initially in state 1. We perform the fol-
lowing recommended adaptations:

1. The first recommended change is given by experience
instance 2, at distance 0, which should take the KPI to
80.8%. It suggests that the angle of the cap gripper be
changed to 320. We follow this recommendation and the
machine enters state 2. The KPI increases to 80.2%.

2. At this point, the best adjustment is given by instance
6, again at distance 0. This adjustment is about changing
the angle of the tank gripper to 320. With this change we
achieve a better performance (82.5%) and the new state
is state 3. Note that also instance 8 is at distance 0, but
we choose instance 6 because of the slightly higher KPI.

3. The only relevant experience instance is 10. As a result
of the recommended change (setting the cap gripper an-
gle to 318), the machine enters state 4, with a KPI equal
to 86.1%.
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Fig. 3 The assembly machine for medical injection pens of the case study

Exp. Tank Tank Cap Reversal Good parts Adjustment Good parts
instance gripper gripper gripper gripper before change after change

angle type angle angle (%) (%)
1 318 T1 322 318 79.3 set reversal gripper angle to 320 74.5
2 318 T1 322 318 78 set cap gripper angle to 320 80.8
3 318 T1 322 318 76.5 set tank gripper angle to 322 71.2
4 318 T1 322 320 72 set reversal gripper angle to 318 79
5 318 T1 322 320 75.4 set tank gripper angle to 320 77.4
6 318 T1 320 318 80 set tank gripper angle to 320 81.9
7 318 T1 320 318 77.5 set tank gripper angle to 322 73.5
8 318 T1 320 318 82.8 set cap gripper angle to 318 81.4
9 322 T1 320 318 70.3 set tank gripper angle to 320 82.4
10 320 T1 320 320 79.2 set cap gripper angle to 318 83.1
11 322 T1 320 318 75 set cap gripper angle to 318 75.6
12 318 T2 318 318 75.3 set cap gripper angle to 320 73.5
13 318 T2 318 318 72 set tank gripper angle to 322 80.8

Table 1 A small subset of the experience captured (showing only the attributes relevant to the examples discussed)

Now, there is no instance in Table 1 which could further
increase the KPI, so the search stops. To sum up, we have
got a KPI increase from an initial value of 76% to 86.1% in
3 steps.

Example 2 Table 3 shows the sequence of states the ma-
chine goes through by applying our method. Fig. 5 shows the
recommendations provided at each step in the tree-like rep-
resentation described above. The machine is initially in state
1. Note that the type of the tank gripper is T2, while in most
of the experience instances it is T1. The two types are used
in two different modules. Since they are very similar we can
reuse the experience acquired on type T1 in this configura-
tion. We perform the following recommended adaptations:

1. The first recommendation is based on experience instance
13, which is about changing the tank gripper angle to

76

80.2

2/0

6/0.1221

82.5

6/0

8/0

10/0.12

86.1

8/0.1229

13/1.24

Fig. 4 Recommendations provided at each step in example 1
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State Tank Tank Cap Reversal Good parts Exp. instance used ekpi
gripper gripper gripper gripper (%) in recommendation
angle type angle angle

1 318 T1 322 318 76 - -
2 318 T1 320 318 80.2 2 0
3 320 T1 320 318 82.5 6 0
4 320 T1 318 318 86.1 10 0.12

Table 2 Sequence of states the machine goes through in example 1

71.3

13/0.124

10/1.215

6/1.221

9/1.214 10/1.215

74.1

9/1.22

76.3

78.4

81

Fig. 5 Recommendations provided at each step in example 2

322. With this change, the machine enters state 2 and
the KPI becomes 78.4%.

2. The next recommended adaptation derives from instance
9, which was generated using a T1 tank gripper. We ap-
ply it (setting the tank gripper angle to 320). The ma-
chine enters state 3 and the KPI drops to 74.1%. We
then decide to backtrack to the previous configuration.
The new state (state 4) is identical to state 2 except that
the KPI calculated this time is slightly different (76.5%).
Note that, if we had asked for recommendations, the
same change that brings back to the previous configu-
ration would have been suggested.

3. We opt for the next available recommendation (set the
cap gripper angle to 318), given by instance 10. This
adaptation is successful. The machine enters state 5 and
the KPI increases to 81%.

4. The only applicable adaptation to try out is given again
by instance 9. We apply it and the machine enters state 6
which is worse, so we backtrack to the previous config-
uration and the search stops.

To sum up, we have achieved a KPI increase from 71.3% to
80% in 6 steps (including backtracking), using experience
generated on tank grippers of type T1 and T2.

7 Conclusions and discussion

We have presented a method for learning from experience
captured on modular assembly systems. The recommenda-
tions generated guide the engineer throughout the ramp-up
process. The use of a machine learning technique has two
main advantages over other approaches to the construction
of knowledge-based systems. First, there is no need for a
knowledge engineer eliciting knowledge from shop floor op-
erators, codifying it in a knowledge representation language
and seamlessly integrating it in the knowledge base. In par-
ticular, the knowledge elicitation step presents several dif-
ficulties (Cooke (1994) reviews knowledge elicitation tech-
niques, discussing their strengths and weaknesses). Second,
in a traditional knowledge-based system, the knowledge in-
cludes a fixed set of patterns intended to cover all expected
cases. A comprehensive knowledge base for ramp-up may
be difficult or impractical to build because of the large amount
of data to analyse or the intrinsic complexity of the domain.
In contrast, a machine learning system does not require the
manual construction of an explicit knowledge base. The knowl-
edge, in this case, is automatically built directly from the
data.

The similarity-performance function provides a simple
yet powerful way of classifying system states and giving rec-
ommendations on adaptations by employing past experience
on adjustments and performance measurements. There is no
pre-built model of classification. The entire training set, rep-
resented by the experience captured, is stored and learning
is delayed until classification time. For this reason, k-nearest
neighbour algorithms are referred to as examples of lazy
learning. During ramp-up, experience is accumulated until
the targets on productivity have been reached. Afterwards,
experience is still captured whenever changes are made to
meet new demands or recover from disruptions. Therefore,
the training set is constantly updated. Since a lazy learning
algorithm does not require classification models to be con-
structed, there is no updating needed when new examples
are added to the training set.

The accuracy of the technique depends on the similarity-
performance function, and thus on the distance and KPI func-
tions. The use of a distance function is based on the assump-
tion that the more similar two states, the more likely an ad-
justment has the same effect on them. Without a weighting
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State Tank Tank Cap Reversal Good parts Exp. instance used ekpi
gripper gripper gripper gripper (%) in recommendation
angle type angle angle

1 318 T2 320 318 71.3 - -
2 322 T2 320 318 78.4 13 0.124
3 320 T2 320 318 74.1 9 1.214
4 322 T2 320 318 76.5 backtracking -
5 322 T2 318 318 81 10 1.215
6 320 T2 318 318 76.3 9 1.22
7 322 T2 318 318 80 backtracking -

Table 3 Sequence of states the machine goes through in example 2

scheme, all attributes equally affect the similarity measure.
However, some attributes may be more important than oth-
ers, in the sense that their similarity is more crucial in or-
der to have the same adaptation effect. Furthermore, there
may be interacting or noisy attributes. A review of weight-
setting techniques to deal with these problems is presented
by Wettschereck et al (1997).

Adaptation strategies are determined by searching for
the best adaptation at each step, where the best adaptation
is the one minimising the similarity-performance function.
This is an example of hill climbing search: the adaptation
found at each step is the best locally, i.e. considering only the
neighbours, but it is not necessarily the best globally. This
means that there could be a strategy bringing the machine in
a better final state passing through intermediate states that
do not minimise the similarity-performance function.

Although it has not happened in our experiments, a large
experience base can result in high memory requirements and
slow classification. Wilson and Martinez (2000) present some
instance reduction algorithms that substantially reduce the
memory required (also removing noisy instances), while main-
taining generalisation accuracy. Samet (2006) discusses in-
dexing techniques in multidimensional spaces and approxi-
mate searches to increase search speed. However, they may
become less effective as the dimensionality grows (Beyer
et al, 1999).

Oates et al (2012); Scrimieri and Ratchev (2013) de-
scribe some preliminary work on how to classify adaptations
on assembly systems with different searches. Testing and re-
configuring by replacing modules is inspired by the plug and
produce concept of Arai et al (2001), where an holonic sys-
tem automatically recognises newly added devices. Further
work in this direction includes the representation of devices’
capabilities and physical requirements, and of assembly pro-
cesses, in order to dynamically assign resources to processes
and schedule operations. Evolvable assembly systems (Frei
et al, 2007) have similar objectives.
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