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Abstract

during growth and development.

processes specifically regulated by these proteins.

Phosphorylation, Dimerization

Background: The receptor for activated C-kinase 1 (RACK1) is a conserved protein belonging to the WD40 repeat
family of proteins. It folds into a beta propeller with seven blades which allow interactions with many proteins. Thus
it can serve as a scaffolding protein and have roles in several cellular processes.

Results: We identified the product of the Dictyostelium discoideum gpbB gene as the Dictyostelium RACK1 homolog.
The protein is mainly cytosolic but can also associate with cellular membranes. DARACK1 binds to phosphoinositides
(PIPs) in protein-lipid overlay and liposome-binding assays. The basis of this activity resides in a basic region located in
the extended loop between blades 6 and 7 as revealed by mutational analysis. Similar to RACK1 proteins from other
organisms DdRACKT1 interacts with G protein subunits alpha, beta and gamma as shown by yeast two-hybrid, pull-
down, and immunoprecipitation assays. Unlike the Saccharomyces cerevisiae and Cryptococcus neoformans RACKT
proteins it does not appear to take over GB function in D. discoideum as developmental and other defects were not
rescued in GB null mutants overexpressing GFP-DdRACKT. Overexpression of GFP-tagged DARACKT and a mutant
version (DdRACKTmut) which carried a charge-reversal mutation in the basic region in wild type cells led to changes

Conclusion: DARACKT interacts with heterotrimeric G proteins and can through these interactions impact on

Keywords: Dictyostelium discoideum, G protein signaling, RACK1, WD40 repeat protein, Phosphoinositides,

Background

Every cell has the capability to detect extracellular sig-
nals, and then mounts an appropriate response to these
signals. Specific stimuli include light, hormones, neuro-
transmitters, growth factors, and odorants. They are
sensed by cell surface receptors which in case of G
protein-coupled receptors interact with heterotrimeric
guanine nucleotide binding proteins (G proteins), key in-
termediates in cellular signaling processes that link the
receptors with intracellular effector proteins generating
cellular responses [1,2].
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The heterotrimeric G proteins consist of o, B, and y
subunits. Upon binding of agonist to the receptor, a con-
formational change in the Goa subunit promotes the
release of GDP and binding to GTP which then releases
Gpy [2]. The liberated GPy subunits play critical roles in
many cellular processes [3,4]. They regulate a variety of
effector molecules ranging from enzymes, such as
phospholipase Cp (PLCP) and adenylyl cyclase, to ion
channels. The GPy complex functions at many levels to
promote and restrict signaling at the plasma membrane.
It can act as a guanine nucleotide dissociation inhibitor
(GDI) to prevent spontaneous exchange of GTP for
GDP on Ga [5]. On the other hand, its activity is regulated
by a number of interacting proteins which can also repre-
sent effectors. Such proteins are phosducin, phosducin-
like proteins, and G protein-coupled receptor kinases
(GRKs) [6,7]. GP subunits adopt a distinct seven-bladed
propeller structure with each blade composed of a
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conserved core of ~40 amino acids flanked by Trp-Asp
(WD) [8,9]. Unlike higher eukaryotes in which multiple
Gp subunits have been identified [10], D. discoideum har-
bors a single Gf, one Gy, and twelve Ga subunits [11-13].
All the Ga subunits are expected to interact with the same
Gpy dimer. D. discoideum development is relatively sim-
ple as compared to higher eukaryotes. The roles of its in-
dividual Ga subunits, however, appear to be quite distinct
with respect to developmental morphology and cellular
differentiation as indicated by the phenotypes of gene
disruption or overexpression mutants. Ga2 is required for
adenylyl cyclase A (ACA), guanylyl cyclase (GC) and
phospholipase C (PLC) activation. Ga2-null mutants do
not aggregate and overexpression of wild-type Ga2 results
in precocious activation of guanylyl cyclase by cAMP in
vegetative cells [14]. Ga4 mediates responses to folic acid
[15], and Ga8 inhibits proliferation, promotes adhesion
and regulates cell differentiation [16]. D. discoideum cells
lacking functional G protein B subunit are severely defect-
ive in phagocytosis, chemotaxis, aggregation, and develop-
ment [17,12,18-21].

RACK1 (Receptor for activated C kinase 1) is present
in organisms from all eukaryotic kingdoms like plants,
fungi and animals. S. cerevisiae cells lacking RACKI are
viable whereas in a mouse model RACK1 depletion
causes lethality at gastrulation [22]. The protein was ori-
ginally found in association with activated protein kinase
C (PKC) where it acted as a scaffold protein serving as a
platform for connecting PKC with its substrates, and
was responsible for the association of activated PKC
with cellular membranes [23,24]. The mechanism of
membrane interaction is poorly understood. One predic-
tion is that the anchoring protein should always be local-
ized to the same site as its interaction partners. For
instance, RACK1 accompanies PKCPII to its site of ac-
tion in response to its activation [24]. RACK1 interacts
with many receptors and their precursors and is in-
volved in their localization. Furthermore RACKI1 has
been shown to interact with subunits of the heterotri-
meric G proteins [25-28].

RACK1 structurally mimics a G harboring seven WD
repeats which build up the seven-bladed beta-propeller.
Different from GB RACK1 lacks the typical N-terminal
alpha helix which is necessary for the tight interaction of
Gp with the Gy subunit. In S. cerevisiae and C. neofor-
mans, which possess only one GBy subunit but multiple
Ga subunits, RACK1 has been reported to interact with
free Ga and Gy; interactions with the heterotrimeric
GPy subunits were shown as well [29,30]. Furthermore,
RACKI1 was found as a part of the ribosome complex
and could thereby be involved in protein translation.
Thus RACKI1 is a versatile and dynamic component
which is involved in many cellular processes far more
than PKC could mediate [31,32].
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Here we show that D. discoideum GpbB (DDB0185122)
which is described as a Gp-like protein in the databases is
a RACK1 homolog. We initially identified GbpB as a
binding partner of RpkA, an unusual G protein coupled
receptor (GPCR) which functions in phagocytosis and
antibacterial defense in D. discoideum [33]. RpkA has a
lipid kinase domain at its C-terminus which contains the
interaction site for RACK1. We characterized the protein
with regard to its dimerization properties, studied its
localization and expression during development and pos-
sible interactions with G proteins. Furthermore we uncov-
ered a lipid binding property which is mediated by a
unique extended basic loop between blades 6 and 7 of the
propeller.

Results

Characterization of D. discoideum RACK1 (DdRACK1)

gpbB (DDB_G0275045) is located on chromosome 2 of
the D. discoideum genome and has 2 exons. The open
reading frame encompasses 1136 bp which encodes a
protein of 329 amino acids migrating as a 36 kDa pro-
tein on SDS polyacrylamide gels. Blast results showed
that GpbB is highly related to the RACK1 family of
proteins and the alignment of RACK1 sequences from
diverse organisms such as H. sapiens, D. melanogaster,
A. thaliana, D. discoideum and S. cerevisiae revealed sig-
nificant sequence identity. The greatest difference is
observed between propeller blades 6 and 7 where an
extended loop of mainly basic amino acids is present in
the D. discoideum and the A. thaliana RACK1 proteins
(Figure 1A).

Gp was the first WD-repeat protein to be character-
ized by X-ray crystallography [34]. Since then various
other crystal structures have been reported for WD-
repeat proteins [35,36] which include the recently deter-
mined structures for several RACK1 proteins, RACK1A
from A. thaliana, Asclp from S. cerevisiae, RACK1 from
T. thermophila and RACK1 from human [37-41]. These
structural studies confirmed the seven-bladed [-propeller
structure. In the RACK1 structure each propeller blade
consists of a four-stranded antiparallel p-sheet, where
strand A lines the central canal of the protein, and strand
D is present on the outer circumference. Adjacent blades
are connected by a loop bridging from strand D on one
blade to strand A on the next. These loops are exposed on
the top face of the propeller blade as are the B-turns link-
ing strands B and C in each blade. The loops connecting
strand A to B and strand C to D in each blade are located
on the reverse, slightly larger face of the propeller [31].
Most notably, the D-A loop between blades 6 and 7 in the
RACKT1 species is 8 to 19 residues longer than the cognate
region of GB; and forms a knob-like projection from the
upper face of the propeller (discovered in the crystal struc-
ture of A. thaliana RACK1A) [31]. This sequence is quite
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Figure 1 Structure of RACK1 proteins. (A) Sequence alignment of RACK1 orthologues and their UniProt accession numbers from H. sapiens
(P63244), D. melanogaster (018640), A. thaliana (024456), D. discoideum (DARACK1) (P46800) and S. cerevisiae (P38011). The WDA40 repeats and (-
propeller blade positions are written above the sequences. Alignment was done with the ClustalW program and processed through ESPript for
representation. All conserved residues are shown in red and similar residues in yellow. (B) Ribbon diagram of S. cerevisiae RACK1 (Asc1p) (PDB:
3FRX) which was used as template for DARACKT model. Shown are the seven B-propeller blades. Coordinates were retrieved from protein data
bank (PDB) (www.rcsb.org) and modelled with the aid of MODELLER v9 program and visualized by the software PyMOL. (C) Ribbon structure of
DdRACK1 (DDB0185122) showing (a), the side view of the 3-propeller blades with some of the residues in the extended loop between blades 6
and 7 shown in ball and stick model, (b) the top view of the B-propeller blades with the same extended loop as in (a), and (c) the surface
properties of DARACKT (WT) and DARACKTmut (mut). Arrowheads pointing to blue and red regions indicate non-mutated and mutated residues,

software PyMOL.

respectively. Structures were modeled and generated with the aid of MODELLER v9 program and visualized using molecular visualization

unusual in the D. discoideum protein as it is rich in lysine
residues. The general features described for RACK1 pro-
teins are also present in DARACK1 when we modelled the
DdRACK]1 sequence to the crystal structure of S. cerevi-
siae RACK1 (Asclp) which reveals a comparable structure
(Figure 1B, C).

Subcellular distribution and developmental expression
pattern of DdRACK1

When we expressed RFP-DARACK1 in AX2 cells
expressing the G protein beta-subunit as GFP-fusion
protein for labeling the plasma membrane we found the
protein present throughout the cytosol. A similar cyto-
solic RACK1 distribution was obtained when immuno-
fluorescence studies were performed with AX2 cells
stained with antibodies against DARACK1 and actin for
labeling the cell cortex (Figure 2A,B). On the other hand,
immunofluorescence studies with aggregation competent
AX2/GFP-Gp cells stained with anti-DdRACK1 antibodies
showed RACKI1 enrichment at the cell periphery and
also in cell protrusions (Additional file 1: Figure S1,
S2 (arrow)). Interestingly, in highly polarized cells, DARACK1
was enriched at the leading edge (Additional file 1:
Figure S3, arrow).

In cell fractionation assays a significant amount of
DARACK1 was present in both the cytosolic and the
pellet fraction. GFP-DdRACKI1 and GFP-DdRACKIlmut
were also relatively present in pellet fractions. a-Actinin
which served as cytosolic marker protein was exclusively
present in the cytosolic fraction (Figure 2C). A mem-
brane association of RACKI1 is not surprising as it has
been repeatedly found in phagosomal preparations from
mouse and Drosophila, and GpbB has been found in
phagosomal preparations from D. discoideum [42-45]. A
developmental analysis showed the presence of DARACK1
protein in nearly unaltered levels during all stages of
Dictyostelium development (Figure 2D).

Oligomerization potential of DARACK1

It has been suggested that RACK1 can dimerize in vivo
and this dimerization is required for specific processes
including the regulation of the N-methyl-D-aspartate

(NMDA) receptor by the Fyn kinase in the brain
[46-48,39,37]. Here, we tested the capability of DARACK1
to oligomerize using recombinant DARACK1 full length
protein that had been cleaved from the GST part. In the
presence of the cross-linking reagent glutaraldehyde
(0.001%), DARACK]1 formed dimers and even higher olig-
omers with increasing time of incubation as detected by
western blots using anti-DARACK1 polyclonal antibodies.
Interestingly, the native non-crosslinked DARACK1 sam-
ple also contained some amount of dimers and oligomers
(Figure 3A). This indicates that the dimerization charac-
teristic exhibited by RACK1 proteins also holds true for
DdRACK]1. Similarly, DARACKImut also displayed wild
type DARACK1 oligomerization capability (Figure 3B).
We further confirmed DARACK1 dimerization by co-
immunoprecipitation assays. Both GFP-DdRACK1 and
GFP-DARACKImut bound to GFP-trap beads precipi-
tated endogenous DARACK1 (Figure 3C). AX2 cell lysates
incubated with GFP-trap beads were used as control. Also,
neither GFP bound to GFP-trap beads nor RFP bound
to RFP-trap beads precipitated endogenous DdRACK1
(Figure 3C).

Post-translational modification of DdRACK1

Little is known about post-translational modifications of
RACKI1 apart from phosphorylation which is emerging
as an important factor that modulates the binding of
proteins to RACKI. Phosphorylation of specific tyrosine
residues and their corresponding functions has been
reported [31,49-54]. To determine if DdRACKI also
possesses the potential of becoming phosphorylated, we
enriched DdRACK1 by immunoprecipitating GFP-
DdRACK]1 from cell lysates that were prepared in the
presence or absence of phosphatase inhibitor cocktail
(PIC) and performed a western blot analysis using phos-
photyrosine specific mAb 5E7 antibodies [55]. These
antibodies recognized the GFP-DdRACK1 band on the
blot indicating that DdRACKI, like RACK1 proteins
from other species, can be phosphorylated on specific
tyrosine residues (Figure 3D). AX2 cell lysate incubated
with GFP-trap beads which was used as control showed
no band.
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Figure 2 Subcellular localization, and developmental level of expression of DARACK1. (A) To determine the localization of DARACK1, AX2
wild type cells co-expressing GFP-GB and RFP-DARACKT were used to perform confocal live cell microscopy. (B) Immunofluorescence studies of
AX2 wild type cells. Vegetative cells were fixed and stained with anti-DdRACK1 antibodies. mAb act1-7 against actin was used to visualize the cell
cortex. Scale bar, 5 um. (C) Subcellular fractionation of AX2 and AX2 expressing GFP-DARACKT and GFP-RACKTmut after lysis by passing through
Nucleopore filters. Protein aliquots separated by SDS PAGE were used to perform western blot analysis. WL, whole cell lysate; L, supernatant from
cell lysate (400 x g); S1, P1 (10,000 x g); S2, P2 (100,000 x q). S, supernatant; P, pellet. DARACK1 and relative amount of GFP-DdRACK1 and
GFP-DdRACKTmut were detected in supernatant as well as in pellet samples with polyclonal anti-DdRACK1 antibodies. mAb 47-16-8 detected the
cytosolic marker protein a-actinin which served as control. The a-actinin blot for AX2 is shown. (D) DARACKT expression levels during development.
Western blot analysis was performed with AX2 wild type cell samples collected during starvation in shaking suspension at indicated time points.
DdRACKT was detected with polyclonal anti-DdRACK1 antibodies. For loading control the blot was probed with mAb 188-19-95 which detects cap32.

Lipid interactions

The mechanism of membrane association of DdARACK1
is not known. In general, membrane association of
proteins can be achieved by various mechanisms. For
instance, polybasic clusters as defined by arginine- and
lysine-enriched amino acid sequences enable diverse
transmembrane and cytosolic proteins to bind lipids
[56]. Also, proteins can target specific membranes
through an interaction with phosphoinositides (PIPs).
Based on the initial characterization of RACK1 as an
interactor of RpkA, we tested the ability of DARACKI1 to
bind to different phosphoinositides in vitro using GST-
DdRACKT1 in dot-blot (PIP strips) overlay assays. Whereas
GST alone showed no PIP binding, GST-DdRACK1

bound with almost the same affinity to all the monopho-
sphorylated PIPs, except for PI (3) P for which we ob-
served stronger binding, to the bisphosphorylated PIPs as
well as to the triphosphorylated PIP. GST-DARACK1 also
bound to phosphatidylserine (Figure 4A).

Although dot-blot overlay assays are convenient as-
says, they need to be supported by different methods as
apparent specificities may be distorted and as they do
not allow reliable quantification [57]. We therefore exam-
ined the sedimentation of GST-DdRACK]1 with liposomes
containing 65% phosphatidylcholine, 20% phosphatidyl-
ethanolamine, 5% phosphatidylserine, reconstituted with
10% individual phosphoinositides. Although without any
specificity, GST-DARACK1 showed significant binding to
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Figure 3 DdRACK1 forms homodimers and oligomers and is a phosphotyrosine-containing protein. (A) and (B) Analysis of DARACK1

dimerization ability. 5-10 pg/100 pl of recombinant DARACKT (A) and DARACKTmut (B) were incubated with 0.001% of the cross-linker glutaraldehyde
and samples taken at the indicated time points of 5, 10 and 20 min. For both DARACK1 and DARACK1mut, in the absence of glutaraldehyde, the
monomers (36 kDa, mono), including dimers (72 kDa), and trimers (108 kDa) were detected. Protein bands which correspond to tetramers were also
detected for DARACK]. Proteins were detected with polyclonal anti-DdRACK1 antibodies. (C) Co-immunoprecipitation analysis using GFP-DARACKI
and GFP-DARACKTmut. Both GFP-DdRACKT and GFP-DARACKTmut bound to GFP-trap beads (upper panel) were able to immunoprecipitate
endogenous RACK1 (lower panel). For GFP-RACKT fusions, degradation bands were observed. GFP-trap beads incubated with AX2 wild type cell
lysate was used as control (Ctl). (D) Detection of DARACKT as a phosphotyrosine-containing protein. Western blot analysis was performed with

GFP-DARACKT in the IP (lower panel).

proteins from immunoprecipitated GFP-DdRACK1 cell lysates (upper panel) prepared in presence (+) or absence (-) of phosphatase inhibitor
cocktail (PIC). AX2 cell lysate incubated with GFP-trap beads was used as control (Ctl). The phosphotyrosine specific mAb 5E7 detected

these liposomes indicating a broad binding specificity for
membranes. GST was included as a control and did not
sediment with the liposomes (Figure 4B). To quantitatively
study to which PIPs DARACK]1 preferably bound, band in-
tensities of the Coomassie blue stained gels were scanned
and the pellet fractions plotted. This assay showed that
DdRACK]1 interacted equally well with all the different
PIPs (Figure 4C).

The A. thaliana and D. discoideurn RACK1 proteins
carry an insertion between propeller blades 6 and 7, which
contains primarily basic amino acids, in case of DARACK1
six lysine residues (Figure 1A,C). By charge-reversal
mutation analysis, the lysine residues (-KKKK-) were

replaced with glutamic acid to generate a GST fusion
mutant version of DARACK1 (GST-DdRACKI1mut). The
mutant protein was used in dot-blot protein overlay assays
where it still bound to PI (4,5) P, and PI (3,4,5) P,
whereas binding to all other PIP variants was completely
abolished (Figure 4A). In liposome sedimentation assays
GST-DARACKImut did not show significant binding to
any of the PIPs, which support the requirement of this
polybasic region for lipid binding (Figure 4B, C).

DdRACKT1 interacts with G proteins
Conventional GP subunits exhibit a high affinity for Gy
subunits and function as Gy heterodimers to bind and
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Figure 4 DARACK]1 binds to phosphoinositides. (A) PIP-Strip-membranes were incubated for 1 h at room temperature with 1 pug/ml GST
(control), GST-DARACK1 and GST-DdRACKTmut, respectively. Binding to PIPs on membranes was detected by incubation with polyclonal anti-GST
antibodies. (B) Binding of GST-DARACK1, GST-DARACKTmut and GST (control) to PIPs in a liposome binding assay. 5-10 pg of GST and the
GST-fusion proteins were incubated with liposomes containing 10% (wt/wt) of the indicated PIPs. Liposomes were collected by centrifugation,
and bound proteins resolved by SDS-PAGE and detected by Coomassie Blue staining (S = supernatant; P = pellet). (C) Quantification of bound
GST-DdARCK1 and GST-DARACKTmut in pellet samples from (B). Protein bands were quantified with ImageJ software.

stabilize GDP-bound Ga subunits. In addition, a GB can
associate with multiple individual Gy subunits [4]. The
interaction of Gy with RACK1 was first identified by a
yeast two-hybrid screen using the bovine GB1 sequence
as bait to screen a mouse brain library [26]. To test

whether DARACK1 likewise associates with the D.
discoideum Gp and Gy protein subunits, we performed a
yeast two-hybrid analysis using DARACK1 fused to the
pACT2-AD. GP and Gy subunits were fused to pAS2-
BD, respectively. We detected interactions between



Omosigho et al. Cell Communication and Signaling 2014, 12:37 Page 8 of 18
http://www.biosignaling.com/content/12/1/37

A ’
Positive control - B() kpa \“Q & $

n_lzl] 2

anti-GFP |

pACTDARACKI1+pASDAGB SS_E )
anti-RACKI

35 2

pACTDARACKI1+pASDAGy 3 antl-GFP | %

-

35 =
anti-RACK1

PACTDARACKI1+pASDdGa2 n|— - E
anti-RFP

]

3| = ||z
pACTDARACK1+pASDAGa8 : - anti-RACKI

W I
.1 Gud__Gas

- " 88 S

S Q &
pACTDARACK I+pASDdGad 5 s P FETISS
. 72_.' —l

anti-RFP
pACTDARACK1+pASvector 25— -_— =]
anti-RFP
35— —
Cc & 0 6 (5\ anti-RACK1
& SLEES 25— — |
Ka SFFFEE anti-GFP
35 —
anti-RACK1 D
AX2 LWé6 LW6/GFPR1
Ponceau S
E =AX2 3 =AX2
= LW6 " LW6
= LW6/GFP-DARACKI1 ® LW6/GFP-DdRACKI1

r ke
1.0 ™ T l ‘
208
-
;0.6 4
@

Yeast uptake (%)
[l I L - N |
- R-E-X-K-1

3 4 5 6
Time (Days)

Figure 5 DARACK1 interacts with G proteins. (A) Yeast two-hybrid analyses. Y190 strain was co-transformed with DARACKT in pACT2, and GB,
Gy, Go2, Ga4, and Ga8 in pAS2, respectively. 3-galactosidase activity was assayed for colonies grown on Pre-SD + 3AT agar plates. pACTDANCAP +
pASDANCAP is positive, pACTDARACKT + pAS is negative control. Images were taken between 1 to 6 hours of staining with the exception of Ga4 for
which the photograph was taken after 24 hours. (B) (i), Co-precipitation assays to confirm DdRACKT interaction with the GB, Gy and Ga2 protein subunits.
GFP-GB, Gy-YFP bound to GFP-trap beads and Ga2-RFP bound to RFP-trap beads precipitated endogenous DARACKT (IP). GFP-trap beads incubated with
AX2 lysates were used as control (Ctl). (ii), Ga4-RFP and Ga8-RFP bound to RFP-trap beads co-precipitated endogenous DARACKT (IP). GFP and RFP bound
to beads served as controls. mAb K3-184-2 detected GFP-tagged proteins, mAb K73-875-7 detected RFP-tagged proteins, polyclonal antibodies detected
DdRACKT. (C) GST pulldown experiments to confirm DARACK1 interaction with Ga subunits 2, 4 and 8, and Gy, respectively. DARACKT was detected with
polyclonal antibodies. The Ponceau S stained membrane is shown below to reveal the proteins employed in the pulldown. (D) Growth and development
of AX2, gB null mutants (LW6) and LW6/GFP-DARACK1 cells on a K agerogenes lawn. Images taken after 3 days are shown. Scale bar, 0.5 mm. (E) Measure-
ment of plaque diameter to determine size of plaques formed by AX2, LW6 and LW6/GFP-DARACK1 cells over several days. The bar represents the mean
and SD of ten independent experiments (***P < 0.001). (F) Phagocytosis was assayed using the strains from (E) and TRITC-labelled yeast. Approxi-
mately 200 cells from each strain were counted. The percentage of cells which had engulfed yeast after 30 min is shown in the graph (***f < 0.001).
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DdRACKI1 and Gp as well as between DdRACK1 and
Gy subunits as revealed by [-galactosidase production
(Figure 5A, blue staining of the colonies). Colonies from
yeast transformed with pACTDdRACK1 and pAS vector
did not grow on the selection plates. To confirm these
interactions we performed co-immunoprecipitation ana-
lyses. GFP-GP as well as Gy-YFP from AX2/GFP-Gp
and AX2/Gy-YFP cell lysates, respectively, which were
bound to GFP-trap beads, were able to independently
co-immunoprecipitate endogenous DdARACK1 (Figure 5B
(i)). AX2 wild type cell lysate incubated with GFP-trap
beads was used as control (Ctl). GFP and RFP bound
to beads did not immunoprecipitate DARACKI either
(Figure 5B (ii)). This provides further evidence that
DARACKI1 resembles RACK1 proteins and, like those,
interacts with G and Gy subunits.

For S. cerevisiae it is reported that the RACK1 ortho-
logue Asclp functions as a G subunit for a Ga (Gpa2)
[30]. Similarly, in the human pathogenic fungus C.
neoformans the RACK1 orthologue Gib2 functions as
GP for Gpal [29]. Like D. discoideum both organisms
have a single Gp gene. To investigate DdARACK1-Ga in-
teractions, yeast two-hybrid assays were performed using
DdRACKI1 fused to pACT2-AD. The Ga subunits Gal,
Ga2, Ga4, Gas, Gab, Ga7, Ga8, Ga9, Gal0, Gall and
Gal2 were fused to pAS2-BD. In these assays, we
detected stronger interactions between DdRACKI1 and
Ga2 as well as between DdARACK1 and Ga8, whereas a
weak interaction was detected between DARACKI1 and
Ga4 as concluded from the [-galactosidase staining
assay (Figure 5A). Colonies from DdRACK]1 interaction
with the other Ga subunits analyzed did not grow on
selection plates (Additional file 1: Figure S4). The
DdRACKI1 interactions with Ga 2, 4 and 8 were further
confirmed in co-immunoprecipitation and pulldown
experiments. Ga2-RFP, Ga4-RFP and Ga8-RFP bound to
RFP-trap beads immunoprecipitated DdRACKI1 from
AX2 cell lysates, respectively (Figure 5B (i, ii)). Further-
more, GST-Ga2, GST-Ga4, GST-Ga8 as well as GST-Gy
pulled down endogenous DdRACK1 whereas GST did
not (Figure 5C).

To analyze if DdRACKI1 also takes over the Gf
function for the Ga subunits in vivo, we ectopically
expressed DARACK1 as a GFP fusion in the g8 null
mutant LW6 [12,18] and analyzed whether it rescues the
phagocytosis, chemotaxis, aggregation and developmen-
tal defects. We found that expression of GFP-DdRACK1
in LW6 cells did not rescue the developmental defect.
When we plated the cells on a lawn of K. aerogenes, they
formed smooth plaques as observed for the mutant
strain. Remarkably the plaque size was even further
reduced when we compared the AX2, LW6 and LW6/
GFP-RACK1 strains (Figure 5D,E). This might be due to
a further reduction in the rate of phagocytosis or
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enhanced defects in cell motility. Hence we examined
their phagocytic capability following yeast particle up-
take and found that whereas fewer LW6 cells had
ingested one or more yeast particles after 30 min as
expected when compared with AX2 cells, even fewer
LW6/GFP-DARACK]1 cells took up yeast cells. Quantita-
tively, ~24% LW6 and ~15% LW6/GFP-DdRACK1
strains had taken up yeast cells as compared to ~64%
uptake level for AX2 (Figure 5F). We conclude that Gp
functions are not taken over by RACK1 upon ectopic
expression in D. discoideum.

Dictyostelium cells display an amoeboid type of cell
motility. We performed single cell random migration
assays with growth phase AX2, LW6 and LW6/GFP-
DdRACKT1 strains. Cells from all strains displayed simi-
lar motility with a speed of 6.62 +1.85 pm/min (AX2),
6.54+3.53 pm/min (LW6) and 6.34+1.95 pm/min
(LW6/GFP-DdRACK]1), respectively.

Growth and development of D. discoideum strains
Our attempts to generate either D. discoideum knockout
and/or knockdown mutants for RACK1 using different
molecular biology techniques were not successful. Since
RACK1 acts as a scaffold protein, interference with its
levels might lead to cellular defects which give an indica-
tion about its involvement in critical cellular roles.
Knowing fully well that an overexpression of RACK1
has effects on various cell types [58-61], we therefore
tried to also study the effects of RACKI1 overexpression
in a wild type background and characterized AX2 cells
expressing GFP-DdRACK1 and GFP-DdRACKImut. In
western blot analysis with AX2, AX2/GFP-DdRACK1
and AX2/GFP-DdRACKImut cells, we found that the
levels of RACKI1 with respect to GFP-RACKI1 and
endogenous RACKI1 were only moderately enhanced
(~17% in AX2/GFP-DARACK1 and ~13% in AX2/GFP-
DARACKImut cells, respectively) when the blot was
probed with anti-DdRACK1 polyclonal antibodies
(Figure 6A). Such a behavior may be the result of the scaf-
folding function. It has been proposed that the levels of
scaffold proteins should be tightly regulated as misregula-
tion might interfere with many cellular processes [62].
Growth in shaking suspension was comparable be-
tween AX2 and AX2 expressing GFP-DARACK1 and
GFP-DARACKImut with similar duplication times and
similar final densities (~1 x 107 cells/ml). However, once
the cells had reached maximum density, AX2/GEFP-
DdRACK1 and AX2/GFP-DdRACKImut cells did not
stay in the stationary phase for long like AX2 as cell
counts dropped rapidly (Figure 6B). Differences were
also observed during growth on lawns of K. aerogenes
on SM agar and E. coli B12 on nutrient agar (NA) plates.
In these assays we noticed an expanded growth zone
containing AX2/GFP-DdRACK1 amoebae when they
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Figure 6 D. discoideum cells overexpressing DARACK1 have growth and developmental defects. (A) Levels of DARACK1 overexpression.
Cell lysates from vegetative AX2, AX2/GFP-DARACK1 and AX2/GFP-DARACKTmut strains were analyzed by SDS-PAGE and western blot. DARACKT
and GFP-fusion proteins at 36 and 66 kDa were detected with polyclonal anti-DdRACK1 antibodies. (B) Growth in shaking suspension of D. discoideum
strains. 5 x 10%cells/ml were used for inoculation. (C) Growth of D. discoideum strains on lawns of K. aerogenes. Images were taken on days 4 and 5.
Scale bar, 1 mm. (D) Bar chart showing diameter of plaques formed by D. discoideum strains in (C) measured between days 4 and 7. The bar represents
the mean and SD of ten independent experiments (NS, not significant; P> 0.05). (E) Growth of D. discoideum strains on lawns of E. coli B12 and imaged
on days 3 and 6. Scale bar, T mm. (F) Bar chart showing diameter of plaques formed by D. discoideum strains in (E) measured between days 4 and 9.
The bar represents the mean and SD of ten independent experiments (**P < 0.01; *P < 0.05; NS, not significant; P > 0.05).
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were grown on K. aerogenes when compared with AX2
(Figure 6C). Upon growth on lawns of E. coli B12 the be-
havior for AX2/GFP-DdRACK]1 strain was conspicuously
different from AX2 on day 3 (Figure 6E). On K. aerogenes
lawns, AX2 cells expressing GFP-DdARACK1mut were like
wild type. AX2, AX2/GFP-DARACK1 and AX2/GFP-
DdRACKI1Imut displayed similar growth rates on lawns of
K. aerogenes when the plaque diameter was measured
between days 4 and 7 (Figure 6D). On E. coli lawns how-
ever, the AX2/GFP-DdRACK1 strain showed a signifi-
cantly higher growth rate after 9 days whereas AX2
showed slightly increased growth compared to AX2/GFP-

DARACKImut (Figure 6F). AX2 cells expressing GFP
displayed growth behavior like AX2 wild type cells on a K.
aerogenes lawn (Additional file 1: Figure S5). Faster growth
on a bacterial lawn could be due to increased phagocyt-
osis, altered cell motility or to a developmental defect.
Therefore we next analyzed development which is ini-
tiated by starvation. AX2 cells plated on phosphate agar
plates start to form multicellular aggregates between 8
to 12 hours and have formed fully differentiated fruiting
bodies after ~24 hours. In our experiments cells from all
strains had gathered into mounds at 10 hours. After
24 hours AX2 and AX2/GFP cells had formed fruiting
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bodies, whereas those of both AX2/GFP-DdRACK1 and To investigate development further, we examined the
AX2/GFP-DARACKImut were still present as tight aggregation behavior of these strains on a plastic surface.
aggregates and fruiting bodies which were much smaller =~ AX2 cells were highly elongated and formed well-defined
than those of AX2 were observed only after 42 hours. streams after 9 hours of starvation. After 11 hours the
There were still many mounds present (Figure 7A). streams became thicker and shorter. AX2/GFP-DdRACK1
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Figure 7 D. discoideum cells overexpressing DARACK1 show delays and alterations in formation of developmental patterns. (A) 5 x 10
AX2, AX2/GFP, AX2/GFP-DARACKT and AX2/GFP-DdRACKTmut cells were deposited on phosphate agar plates and imaged at the indicated hours of
development. Scale bar, 250 um. (B) 1 x 107 D. discoideum strains were starved on petri dishes under phosphate buffer. Images were taken at the
indicated hours. Scale bar, 250 um. (C) Time-dependent expression of csA. Cells from D. discoideum were collected during development in shaking
suspension at the indicated time points and analyzed by SDS-PAGE and western blot. csA was detected by mAb33-294, mAb 188-19-95 detected cap32
which was used as loading control. Since cap32 blot was similar for all strains, only the cap32 blot for AX2 is shown. (D) Cell samples of D. discoideum
strains were collected from submerged cultures in phosphate buffer and tested for csA expression. The cap32 blot for AX2 is shown.
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and AX2/GFP-DdRACKI1mut cells failed to form streams
after 9 hours. AX2/GFP-DARACK1 cells started to stream
and form aggregates after 11 hours. Start of aggregate for-
mation was even more delayed in AX2/GFP-DdRACK1-
mut cells (Figure 7B). An aggregation experiment with
AX2/GFP cells revealed the same developmental pattern
as seen for AX2 (Additional file 1: Figure S6). When we
monitored the expression of the strictly developmentally
regulated cell adhesion protein contact site A (csA) in cells
starved in shaking suspension, we observed a similar
expression pattern with a first detection after four hours
of starvation and a steady increase in all three strains
(Figure 7C). This was however not the case when we
monitored csA expression from cells starved on plates. In
AX2 and AX2/GFP-DARACKI1 csA was first detected
after six hours of starvation, AX2/GFP-DdRACKImut
cells showed delayed csA expression with first detection
after eight hours of starvation (Figure 7D) supporting the
data obtained by visual inspection (Figure 7B).

Discussion

Scaffold proteins uniquely integrate signals from mul-
tiple pathways. They generate lots of functional diversity
by mediating a series of interactions with a vast array of
protein partners. The receptor for activated C kinase 1
(RACK1) is a member of the evolutionarily conserved
family of WD40 repeat proteins which forms seven (-
propeller blades. It was initially discovered through its
ability to function as a scaffold protein, bringing in close
proximity protein kinase C (PKC) and its substrates
[63,23]. In this study we report a novel protein in D.
discoideum that is hitherto uncharacterized and displays
significant homology with RACK1 proteins that have
been well studied in various other species. Due to its
high similarity to these other RACK1 proteins, we have
named this protein DARACKI.

DdRACK1 is a WD40 repeat protein harboring a
seven-bladed B-propeller that shares similarities with the
heterotrimeric G protein 3 subunit. The modelled struc-
ture of DARACK]1 features the seven B-propeller archi-
tecture with each propeller blade arranged in sequential
order and made up of four-stranded antiparallel -
sheets. Although differences exist, particularly in the
extended loop that connects B-propeller blades 6 and 7,
the structures of RACKI1 from S. cerevisiae [40], A. thali-
ana [39] and human [41] show significant sequence
identity with DARACKI1. The region between the -
propeller blades 6 and 7 is quite conserved between
DdRACK]1 and A. thaliana RACK1A. The major differ-
ence between the WD repeats is in the loops that pro-
vide the distinct features of each member of the WD
family and distinguish RACK1 interactions from those
of other WD proteins [64,65]. The A. thaliana protein
was the first RACK1 orthologue to be structurally
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described [31]. Unlike in A. thaliana where RACK1 is
expressed by three genes, DARACK1 is expressed by
only one gene, gpbB, as in metazoans. Two conserved
surface regions of A. thaliana RACK1A have been pro-
posed to represent protein-protein interaction sites [39].
The first region is located on the top rim of the propel-
ler and involves side chains from residues R36, K38, S63,
H64 (blade 1), R42, K44, S70, H71; W83, D107 (blade
2), W90, D114; R125 (blade 3), R132; and W152 (blade
4), W158 in DARACKI. The second large conserved
surface region of RACKI is located on the bottom of the
propeller and is comprised of conserved residues P204,
D205, Y230 (blade 5), P208, D209, Y234; and N246,
Y248 and W249 (blade 6), N250, Y252 and W253 in
DdRACK]I. Besides the high sequence identity between
DdRACKI1 and RACK1 from other species, the presence and
conservation of these above mentioned regions indicates
that DARACKI is a member of the RACK1 family of WD40
repeats proteins and may undergo similar interactions.

Although DARACK]1 is mainly cytosolic as seen from
live confocal microscopy pictures, immunofluorescence
and fractionation studies, a portion of it was also found
in the membrane fraction, buttressing localization to cel-
lular membranes by proteins of the RACK1 family. Fur-
thermore, DARACKI1 was detected at the cell periphery
and the leading edge of highly polarized aggregation
competent cells. This implies that RACK1 regulates sig-
nal transduction at the leading edge. RACKI is essential
for cell migration, and the protein binds to many com-
ponents of the cell migration machinery including
kinases, phosphatases and the cytoplasmic domains of
cell surface receptors [65,66]. RACK1 is located in areas
of cell protrusios that are rich in paxillin [67,68] and can
increase the phosphorylation of FAK [68]. Furthermore,
RACK]1 has been reported to bind to components of the
cytoskeleton [69,70]. Mutations in DARACK1 did not
seem to alter its localization to membranes as was ob-
served from fractionation analysis in this study. One rea-
son could be that it may have accompanied interaction
partners to these sites.

RACKI1 dimerizes both in vivo and in vitro [40,41,46].
The physiological role is however still unclear. In the
regulation process of the NMDA receptor by Fyn,
RACKI1 dimerization is required to bring the two inter-
acting partners in close contact. RACK1 dimerization
allows exposing a new surface of the protein, buried
within the propeller core in the monomeric form [46].
We have provided evidence that DARACK1 also has
the potential to dimerize. The dimerization of human
RACKI1 is enhanced by phosphorylation [47] and one of
the putative phosphorylation sites was Ser146 in blade 3.
This residue is however not conserved in DdRACKI,
but there are other Ser/Thr residues present in this
region which could probably be potential targets in
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mediating DdARACK1 dimerization by phosphorylation.
On the other hand, an important factor which modulates
the binding of RACKI proteins to partners is tyrosine
phosphorylation [31]. Phosphorylation/dephosphoryla-
tion of different tyrosine residues of human RACK1
regulates various cellular processes [49,50,71]. These
tyrosine residues are also conserved in DdARACKI, and
we provided evidence that the DdRACKI1 protein is a
phosphotyrosine-containing protein. However, this study
did not associate the phosphorylation of DARACK1 with
a function.

Phosphoinositides (PIPs) regulate fundamental bio-
logical processes including cell growth and survival,
membrane trafficking and cytoskeletal dynamics [72].
PIPs are tightly regulated during chemotaxis in D. discoi-
deum, in particular, PI (3, 4, 5) P3 gradients are formed
within the plasma membrane [73]. They are thought
to be of differing importance for sensing of shallow
and steep gradients [74,75]. In the region between [3-
propeller blades 6 and 7 we noted a key polybasic cluster
(-KKKK-) in DARACK1 which turned out to be respon-
sible for binding to several PIPs; PI (3) P, PI (4) P, PI (5)
P, PI (3, 4) P2, PI (3, 5) P2, PI (4, 5) P2, and PI (3, 4, 5)
P3 without particular preference; and also to phosphati-
dylserine. The translocation of RACK1 from one subcel-
lular location to another has been shown to mediate
various cellular responses following a stimulus [25].
However, the mechanism of RACKI1 localization to
cellular membranes is not known. PIPs are clustered in
distinct intracellular membranes and serve as marker for
different organelles. We propose therefore that one way
by which RACK1 localizes to different cellular membranes
may be via its interaction with PIPs which in D.
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discoideum is mediated by the polybasic stretch. Whether
RACK1 proteins from other species also interact with
membrane lipids needs to be investigated.

G protein-linked signal transduction plays an essential
role in the developmental program of Dictyostelium
[76-78]. D. discoideum has twelve Ga subunits, one G
and one Gy subunit. It is generally assumed that Gp
forms heterotrimers with the y and all « subunits [79].
For RACK], interactions with G protein heterotrimer
and heterodimeric Py subunits were reported [26-28].
We describe here an interaction of DARACK1 with Ga
subunits 2, 4 and 8, as well as with the Gp and Gy sub-
units by yeast two-hybrid, co-immunoprecipitation and
pull down experiments. Whereas Ga subunits 2 and 4
are involved in chemotaxis, Ga8 was recently shown to
function in cell proliferation, adhesion and cell differen-
tiation. It is not very clear why DdRACKI selectively
interacts with these Ga subunits. However, RACKI has
been implicated in these cellular processes and the mu-
tant phenotypes that we observed after overexpression
revealed roles in cell growth and development. It further
confers RACK1 with functions in the regulation of sig-
naling processes in which these Ga subunits are involved
(Figure 8). This also does not completely rule out the
possibility of DARACK1 interaction with the other Ga
subunits which may be very weak to be detected by
these approaches. Further studies still have to be done to
determine structural mechanisms underlying DdARACK1
interaction with these Ga subunits.

Conclusion
We have identified the novel RACK1 orthologue in D.
discoideum (DARACK1) which has significant sequence
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identity with other previously studied RACK1 species
and similar biochemical features as bona fide RACK1
proteins. Together with the Arabidopsis protein it con-
tains an unusual polybasic region through which it can
bind to cellular membranes uncovering a further mech-
anism how RACK1 can be targeted to membranes. At
the biochemical level it interacts with several proteins
among them ribosomal proteins, enzymes, cytoskeletal
proteins and most notably heterotrimeric G proteins.
Upon overexpression we observe phenotypes that imply
changes in signaling pathways regulated by the interact-
ing G proteins. In summary (Figure 8), we propose that,
through these interactions, RACK1 is involved in the
regulation of several cellular processes.

Materials and methods

Growth, development and transfection

Cells were either grown on a lawn of K aerogenes on
SM agar plates, on a lawn of E. coli B12 on NA-agar or
cultivated in shaking suspension (160 rpm) or in a sub-
merged culture at 21-23°C in axenic medium [80]. De-
velopment was initiated by plating 5 x 107 cells which
were washed twice with Soerensen phosphate buffer
(17 mM Na'/K" phosphate, pH 6.0) on phosphate agar
plates and monitored. Development was also followed
for cells starved in Soerensen phosphate buffer in shaken
suspension (1 x 107 cells/ml; 160 rpm at 22°C) or in
petri dishes. Mutants were maintained in the presence of
appropriate antibiotics (2—4 pg/ml G418) (Roche Ap-
plied Science) (or 3-5 pg/ml Blasticidin) (MP Biomedi-
cals Inc, Eschwege, Germany). The following strains
have been used; AX2-214 (wild type) [81], AX2 express-
ing GFP-, YFP- or RFP-tagged fusion proteins, G null
mutants LW6 [12] and LW6 expressing GFP-DdRACKI.
The corresponding plasmids were introduced by electro-
poration using a Biorad electroporator Gene Pulser Xcell
(Biorad, Miinchen, Germany) according to the protocol
supplied.

Cloning of RACK1 cDNA and expression of recombinant
proteins

For expression of recombinant D. discoideum RACK1 as
glutathione S transferase (GST) fusion protein in E. coli,
a full-length ¢cDNA was cloned into pGEX-4 T-1 vector
(GE Healthcare Life Sciences). E. coli strain XL1 Blue
was used for expression of the GST fusion protein. In-
duction of protein expression was with 0.25 mM isopro-
pyl B-D-thio-galactoside (IPTG) when an ODgy of 0.8
was reached. Cells were further cultured at 30°C for
3 hours. They were harvested, lysed in 50 mM Tris/HCl,
pH 7.4 to 8.0, 100 mM NaCl, supplemented with Prote-
ase inhibitors (0.5 mM PMSF, 1 mM Benzamidine and
Complete (Roche) and 1 mM DTT) with an EmulsiFlex
cell homogenizer (Avestin Europe GmbH, Mannheim,
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Germany). Lysates were separated into soluble and insol-
uble fractions by centrifugation at 18,000 x g. The fusion
proteins from the soluble fraction were purified using
GST-Sepharose beads (GE Healthcare).

For cleavage of proteins from GST-Sepharose beads,
the GST fusion proteins were washed 5 times with cleav-
age buffer (20 mM Tris/HCI, pH 7.4, 150 mM NaCl and
0.2% Sarcosyl). Beads were then resuspended in cleavage
buffer and 3-10 U thrombin/mg fusion protein were
added to the beads and incubated with little agitation at
room temperature overnight. As RACK1 was released
from the beads together with some GST, we next per-
formed an anion exchange chromatography step in order
to separate the proteins. For this the protein solution
was dialyzed against 20 mM Tris/HCl, pH 8.0, and
1 mM EDTA overnight before loading onto a DE-52
Sephadex column which had been calibrated with
50 mM Tris/HCI, pH 8.0, 1 mM EDTA. The protein was
eluted with 1 M NaCl and the eluate dialyzed and ana-
lyzed by SDS-PAGE.

For expression in AX2 the RACK1 ¢cDNA was cloned
into pBsr-N2-GFP vector (N-terminal GFP) and ex-
pressed as GFP-RACK1 under control of the actin 15
promoter and also into mRFPmars plasmid (N-terminal
RFP) for RFP-RACKI1 [82,83]. A PCR-mediated site-
directed mutagenesis (QuikChange Site-Directed Muta-
genesis Kit, Stratagene) was used to generate mutations
in the GST-RACK1 and GFP-RACK]1 plasmids. The mu-
tations were confirmed by sequencing.

Phosphoinositide binding assay

PIP-strips supplied by Echelon Biosciences, Inc. (Salt
Lake City, Utah, USA) were used to perform phosphoi-
nositide binding according to the supplied protocol.
Briefly, GST and GST-fusion proteins were eluted from
the glutathione agarose beads with elution buffer
(20 mM reduced glutathione, 50 mM Tris/HCI, pH 7.4,
100 mM NaCl, 0.2% Tween-20, and 100 mM DTT).

The membranes were blocked with 0.1% ovalbumin
(Sigma # A-5253) in TBS for one hour at room tem-
perature. After discarding the blocking solution mem-
branes were incubated with 1 mg/ml GST-fusion
proteins in TBS-T (50 mM Tris/HCI, pH 7.4, 100 mM
NaCl, 0.2% Tween-20) at room temperature for one
hour. The protein solution was then discarded and the
membranes were washed with TBS-T three times 10 mi-
nutes each. Bound protein was detected by western blot
analysis with GST polyclonal antibodies as primary and
anti-rabbit IgG-peroxidase (Sigma # A-6154) as second-
ary antibody followed by enhanced chemiluminescence.

Lipid vesicle preparation and sedimentation assay
Phosphatidylserine (PS), phosphatidylcholine (PC), phos-
phatidylethanolamine (PE), PI (3) P, PI (4) P, PI (5) P, PI
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(3,4) P2, PI (3,5) P2, PI (4,5) P2, and PI (3,4,5) P3 were
obtained from Sigma and diluted in chloroform. Lipo-
some binding experiments were performed with a modi-
fied published liposome binding assay protocol [84].
Lipid mixtures containing 65% PC, 20% PE, 5% PS and
10% individual phosphoinositides were produced by
mixing appropriate lipid solutions in chloroform/metha-
nol. Slow flow nitrogen gas was used for the production
of a film on the glass and vacuum desiccation for 30 min
for solvent removal. Sterile-filtered sucrose binding buf-
fer (20 mM HEPES, pH 7.4, 100 mM KCI, 1 mM EDTA,
0.1 M sucrose) was added to a final lipid concentration
of 1 mg/ml and incubated at 37°C for 2 h. Lipids were
then sonicated in a waterbath-sonicator for 10 sec. To
test liposome binding, a 100 pl reaction mixture of
freshly prepared liposomes and 5 pg of purified protein
were incubated for 15 min at room temperature and
centrifuged at 100,000 x g (42,000 rpm) at 4°C for
25 min in a Beckman table top ultracentrifuge Optima TLX
(TLA 45 rotor). The supernatant was saved, and the pellet
was resuspended in 100 pl of sucrose binding buffer.

Both fractions were then analyzed by SDS-PAGE
followed by Coomassie blue staining. Image] was used
for quantification.

Yeast two-hybrid interaction
For the yeast two-hybrid screen, the full-length cDNAs
of D. discoideum G protein p-, y-, al-, a2-, ad-, a5-, a6-,
a7-, a8-, a9-, al0-, all- and al2-subunits were cloned
in frame into the yeast pAS2-1 vector (Clontech), re-
spectively, resulting in fusion to the GAL4-DNA-BD
(BD, binding domain). Full-length ¢cDNA of DdRACK1
was cloned into the yeast pACT2 vector (Clontech)
resulting in a fusion to the GAL4-DNA-AD (AD, activa-
tion domain). Yeast Y190 strain was used for this assay.
Candidate colonies expressing interacting proteins
were screened by plating on SD/-Leu/-Trp/-His/+3AT
plates after which membrane colonies-lift -galactosidase
activity assay was performed according to the MATCH-
MAKER Y2H system manual. Briefly, colonies on SD/-
Leu/-Trp/-His/+3AT selection plates were transferred to a
Nitrocellulose membrane (Protran BA 85) by placing the
membrane over colonies on selection plates for 20 min.
The filter was carefully lifted off the agar plates and
transferred (with colonies facing up) to a pool of liquid
nitrogen for 10 sec. The frozen filter was then allowed
to thaw at room temperature and placed on a Whatman
filter paper presoaked in freshly prepared X-Gal solution
(60 mM Nay,HPO,, 40 mM NaH,PO, 10 mM KC(I,
1 mM MgSO, pH 7.0, 50 mM [-mercaptoethanol,
X-Gal (1 mg/ml final concentration)) and incubated at
30°C and checked between 1 to 6 h, and after 24 h (for
detection of weak interactions) for the appearance of
blue colonies.
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Pull down and immunoprecipitation assays

For pull down and immunoprecipitation experiments
D. discoideum cells were lysed in 50 mM (10 mM for
immunoprecipitation assay) Tris/HCl, pH 7.4, 150 mM
NaCl, 0.5% NP40, supplemented with protease inhibitor
cocktail (Sigma), 0.5 mM PMSE 0.5 mM EDTA, and
1 mM Benzamidine by passing them through a 25G syr-
inge (10-20 strokes) and incubated with agitation for
15 min at 4°C (to ensure complete cell lysis) followed by
a centrifugation step at 16,000 rpm for 10 min. The
supernatants were either incubated with GST and GST-
fusion proteins, respectively, or with GFP-trap beads
(ChromoTek, Martinsried, Germany). After incubation
for 3 h GST beads were washed three times with wash
buffer (50 mM Tris/HCI, pH 7.4, 150 mM NacCl, prote-
ase inhibitor cocktail, 0.5 mM PMSF, 0.5 mM EDTA,
1 mM Benzamidine), GFP-trap beads were washed with a
different wash buffer (10 mM Tris/HCI, pH 7.4, 150 mM
NaCl, protease inhibitor cocktail, 0.5 mM PMSEF, 0.5 mM
EDTA, 1 mM Benzamidine). The beads were resuspended
in SDS sample buffer, incubated at 95°C for 5 min and the
proteins separated by SDS-PAGE and analyzed by western
blot. The G and Gy subunits used in this study were
previously cloned into GFP (N-terminal) and YFP (C-
terminal) vectors, respectively [85,13].

In vitro cross-link assay

Purified DARACK1 was used for a multimerization ex-
periment as previously described [86]. Briefly, 5-10 pg/
100 ul of RACK1 in 1 x PBS, pH 7.4, was incubated at
room temperature in the presence of 0.001% (v/v) glu-
taraldehyde for various time points. The reaction was
stopped by addition of glycine to a final concentration of
0.1 M after 5, 10 and 20 min, respectively. Samples were
analyzed by SDS-PAGE and western blot.

Test for presence of phosphotyrosine in DARACK1
Samples from immunoprecipitation experiments from
GFP-DARACK1 bound to GFP-trap beads in the pres-
ence or absence of phosphatase inhibitors were analyzed
by western blots and probed with anti-phosphotyrosine
monoclonal antibody (5E7) [55].

Immunofluorescence analysis and life cell imaging

Immunofluorescence study was performed as previously
described [82]. Briefly, cells were transferred onto cover-
slips in Petri dishes and fixed by ice-cold methanol
(5 min, 20°C). Cells were treated twice for 15 min (room
temperature) with blocking solution (1x PBS containing
0.5% (wt/vol) BSA and 0.1% (vol/vol) fish gelatin). The
appropriate antibodies were diluted in the blocking solu-
tion and applied on the cells for 1 h at room tem-
perature; the excess of antibodies was removed by
washing with the blocking solution before the 1 h
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incubation with the corresponding secondary antibodies.
For live cell studies, cells were placed in 35 mm Petri
dishes (ibidi GmbH-Martinsried, Germany) and allowed
to adhere to the surface. Analysis of fixed and live cells
was done by laser scanning confocal microscopy using a
Leica TCS SP5 microscope equipped with a HyD
detector.

Cell migration studies

This analysis was done as previously described [73,82].
Briefly, growing cells were plated in a chamber (ibidi
GmbH-Martinsried, Germany) and random motility was
followed. Images were recorded at intervals of 6 s using
a Leica DM-IL inverse microscope (Deerfield, IL; 40x
objective) and a conventional CCD video camera and
analyzed using Dynamic Image Analysis Software (DIAS,
Soll Technologies, lowa City, IA).

Miscellaneous methods

Cell fractionation of AX2 cells was done as previously
described [73]. Antibodies used in this study were mouse
monoclonal antibodies mAb 47-16-8 directed against a-
actinin [87], mAb 33-294 against the cell adhesion mol-
ecule csA [88], mAb 188-19-95 against the 32 kDa subunit
of heterodimeric capping protein cap32/34 [89], mAb 5E7
against phosphorylated tyrosine residues [55], mAb K3-
184-2 against GFP [90], mAb actl-7 against actin [91],
mAb K73-875-7 against mRFPmars, rabbit polyclonal
antibodies against GST [86]. Detection in western blots
was with anti-mouse-IgG conjugated to peroxidase or
peroxidase conjugated anti-rabbit-IgG antibodies.

For generation of rabbit polyclonal antibodies against
DARACKI1, the GST-part of GST-DARACK1 was re-
moved by thrombin cleavage and DdRACKI was used to
immunize rabbits (Pineda, Berlin, Germany). The anti-
bodies specifically recognized the bacterially produced
recombinant protein, the RFP- and GFP-tagged fusion
proteins as well as the endogenous protein in western
blots of whole cell lysates; they were used in immuno-
precipitation experiments as well as for immunofluores-
cence studies. Monoclonal antibody K73-875-7 was
generated against bacterially expressed mRFPmars [83].

Protein sequences of RACKI1 proteins from H. sapiens
(P63244), D. melanogaster (018640), A. thaliana (024456),
S. cerevisiae (P38011), and D. discoideum (P46800) were
retrieved from Uniprot protein database and aligned using
Clustal W program with Blosum 62 matrix. The aligned
sequences were processed through EsPript for representa-
tion. The structural coordinates of S. cerevisiae RACK1
(Asclp) was obtained from protein databank (PBD: 3FRX)
(Figure 1B) and used as a template for modelling D. discoi-
deum RACKI1. MODELLER v9 was used to generate
DdRACK1 model. Structures in Figure 1B and C were
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generated with the aid of the molecular visualization
software PyMOL.

Experiments on animals followed internationally rec-
ognized guidelines and were approved by the authorities
of the state of Northrhine-Westfalia.

Additional file

Additional file 1: Figure S1. Distribution of endogenous DdRACKT in
AX2/GFP-GP cells. Some enrichment of RACKT was seen at the cell
periphery. Polyclonal RACK1 specific antibodies were used. Nuclei were
stained with DAPI. Scale bar, 5 um. Figure S2. Localization of DARACK1
in aggregation competent AX2 cells. Aggregation competent AX2 cells
formed extensions which are enriched for RACK1 (arrow). RACK1 was
detected with polyclonal antibodies, actin with mAb act1-7. Nuclei were
stained with DAPI. Scale bar, 5 um. Figure S3. Localization of DARACK1
in polarized cells. In this image, DARACKT was seen at the leading edge
of polarized aggregation competent cells (arrow). Antibodies were as in
Figure S2. Scale bar, 5 um. Figure S4. Yeast two-hybrid analyses and
-galactosidase activity staining. Yeast Y190 strain that has lacZ and His3
reporter genes was co-transformed with DARACK1 in pACT2 vector and
the Ga5, Ga6, Ga7, Ga9 and Ga12 protein subunits in pAS2 vector,
respectively. Colonies did not grow on selection plates. Figure S5.
Growth on lawns of K. aerogenes of AX2/GFP strain. Images of AX2/GFP
strain on K. aerogenes lawns were taken between days 4 and 6. Plaque
expansion was similar to that of AX2. Scale bar, 1 mm. Figure S6.
Development of AX2/GFP strain on petri dishes under phosphate buffer.
1 % 107 cells were starved on petri dishes and images taken at the
indicated time points. The developmental behavior was similar to that of
AX2. Scale bar, 250 um.
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