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Abstract: This paper reports about a novel three-dimensional chaotic system with three nonlinearities.
The system has one stable equilibrium, two stable equilibria and one saddle node, two saddle foci
and one saddle node for different parameters. One salient feature of this novel system is its multiple
attractors caused by different initial values. With the change of parameters, the system experiences
mono-stability, bi-stability, mono-periodicity, bi-periodicity, one strange attractor, and two coexisting
strange attractors. The complex dynamic behaviors of the system are revealed by analyzing the
corresponding equilibria and using the numerical simulation method. In addition, an electronic
circuit is given for implementing the chaotic attractors of the system. Using the new chaotic system,
an S-Box is developed for cryptographic operations. Moreover, we test the performance of this
produced S-Box and compare it to the existing S-Box studies.

Keywords: new chaotic system; multiple attractors; electronic circuit realization; S-Box algorithm

1. Introduction

The discovery of the well-known Lorenz attractor [1] in 1963 opened the upsurge of chaos research.
In the decades thereafter, a large number of meaningful achievements on chaos control, chaotification,
synchronization and chaos application have emerged continuously. Great changes have also been
made to the understanding of chaos. Scholars began to think more about a way to produce chaos rather
than blindly suppress chaos. The generation of chaotic attractors in three-dimensional autonomous
ordinary differential systems has been of particular interest. As we all know, a multitude of typical
systems with chaotic attractors were found, including Rössler system, Chen system, Sprott system,
Lü system, etc. [2–8].

With the further research of chaos, scientists found that some nonlinear dynamic systems not
only have a chaotic attractor but also coexist with multiple attractors for a set of fixed parameter
values. The coexisting attractors may be fixed points, limit cycles, strange attractors, etc. The number
and type of attractors are usually associated with parameters and initial conditions of the system.
Each attractor has its own basin of attraction which is composed of the initial conditions leading
to long-term behavior that settles onto the attractor. The phenomenon of multiple attractors can be
seen in many biological systems and physical systems [9–11]. In recent years, the low-dimensional
autonomous chaotic systems with multiple attractors have aroused scholars’ research enthusiasm.
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Li and Sprott found multiple attractors in chaotic systems by numerical analysis and introduced
the offset boosting method and conditional symmetry method for producing multiple attractors
in differential systems [12–16]. Kengne et al. analyzed the multiple attractors of simple chaotic
circuits, which can be described by differential equations [17,18]. Bao and Xu put forward some
memristor-based circuit systems with multiple chaotic attractors [19,20]. Lai et al. proposed some
three-dimensional and four-dimensional continuous chaotic systems with multiple attractors [21–23].
Wei et al. attempted to reveal the intrinsic mechanism of the multiple attractors by analyzing the
bifurcation of the system [24]. The investigation of chaos and multiple coexisting attractors is indeed a
very interesting research issue in academia. It helps to recognize the dynamic evolution of the actual
system and promote the study of complexity science.

Chaotic systems have been found to be used in many areas. The most valuable application is
cryptology. Chaotic system, in view of its rich dynamic behaviors and initial sensitivity, provides the
mixing and spreading properties, which are the general requirements of encryption [25,26]. The S-Box
is known as the most basic unit with scrambling function in block encryption algorithms. A good
S-Box can make the encryption algorithm have higher security and better ability to withstand attacks.
Although there have been many works on chaotic S-Box design, it is still important to generate S-Box
according to some unique chaotic systems. Before applying the chaotic system to engineering fields,
it is necessary to realize it through electronic circuits in order to prove its real existence. Based on
circuit theory and simple circuit elements, chaotic signals can be generated in oscilloscopes. So far, the
electronic circuit has become an important tool for the analysis of chaotic systems [27–30].

This present paper considers a special polynomial chaotic system with the following features:
(i) it has three nonlinearities xz, yz, xyz and the invariance of transformation (x, y, z) 7→ (−x,−y, z);
(ii) it performs a butterfly attractor; and (iii) it has a stable equilibrium, an unstable equilibrium and
two stable equilibria, three unstable equilibria for different parameter conditions, and experiences
mono-stability, bi-stability, mono-periodicity, bi-periodicity, one strange attractor and two coexisting
strange attractors. After investigating the dynamic behavior of the system, an electronic circuit and an
S-Box are designed according to the system.

The paper is arranged as follows: Section 2 describes the chaotic system and shows its butterfly
attractor. Section 3 analyzes the stability of the equilibria. Section 4 studies the dynamic behavior of
the system. Section 5 considers the electronic circuit realization of the system. Section 6 establishes the
S-Box according to the system, and Section 7 summarizes the conclusions of this paper.

2. The Description of a Chaotic System

The chaotic system proposed in this paper can be expressed as the following set of differential equations:
ẋ = ax− yz,
ẏ = −by + xz,
ż = −cz + xyz + k,

(1)

with state vector (x, y, z) ∈ R3 and parameter vector (a, b, c, k) ∈ R4. A butterfly attractor can be
observed by numerical simulation on Matlab software (Matlab 8.0, MathWorks, Natick, MA, USA).
The phase portraits of system (1) under parameters (a, b, c, k) = (4, 9, 4, 4) and initial condition
(1, 1, 1) are shown in Figure 1. It visually demonstrates that system (1) displays an attractor as
the system trajectories will eventually move to a bounded region. The Lyapunov exponents of the
system are calculated as l1 = 1.7729, l2 = 0.0000, l3 = −7.5949. The Lyapunov dimension is
Dl = 2− l1/l3 = 2.2334, so it can be determined that the attractor is a chaotic attractor. The time series
of z generated from two very close initial conditions (1, 1, 1) and (1, 1, 1.001) are plotted in Figure 2.
At the beginning, they are almost the same, but their differences are increasing after a number of
iterations. That is to say, system (1) is sensitive dependence on initial conditions and its future behavior
is unpredictable in the long term. The Poincaré map of system (1) is obtained via selecting the sections
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∆1 = {(x, y) ∈ R2 |z = 10} and ∆2 = {(y, z) ∈ R2 |x = 0} . As shown in Figure 3, the Poincaré map is
a sheet of point set. It is consistent with the nature of chaos.
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Figure 1. The butterfly attractor of system (1): (a) x− y− z; (b) x− y; (c) x− z; (d) y− z.
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Figure 2. The time series of variable z generated from initial conditions (1, 1, 1) (red color) and
(1, 1, 1.001) (blue color).
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Figure 3. The Poincaré maps of system (1) with crossing sections: (a) ∆1; (b) ∆2.

3. The Stability of Equilibria

Suppose that parameters a, b, c, k are all positive real numbers. The equilibria of system (1) can
be obtained by solving ẋ = ẏ = ż = 0. If k ≥ c

√
ab, system (1) has only one equilibrium O(0, 0, k/c).

If k < c
√

ab, system (1) has three equilibria as follows:

O(0, 0, k/c),

O1(
√
(c
√

ab− k)/a,
√
(c
√

ab− k)/b,
√

ab),

O2(−
√
(c
√

ab− k)/a,−
√
(c
√

ab− k)/b,
√

ab).

Proposition 1. Suppose that b > a > 0, k > 0, and the parameter c satisfies the following condition:

k√
ab

< c <
2k[(a2 + b2)

√
ab + k(b− a)]√

ab[(a + b)2
√

ab + k(b− a)]
, (2)

then the equilibria O1 and O2 of system (1) are asymptotically stable.

Proof. By linearizing the system (1) at the equilibrium, the Jacobian matrix is given by

H =

 a −z −y
z −b x

yz xz xy− c

 . (3)

By using |λI − H| = 0, the corresponding characteristic equation evaluated at O1, O2 is obtained as

λ3 + w1λ2 + w2λ + w3 = 0, (4)

where

w1 = (b− a +
k√
ab

),

w2 = (a− b)(c− 2k√
ab

),

w3 = 4ab(c− k√
ab

).
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According to the Routh–Hurwitz criterion, the equilibria O1, O2 are stable if all the roots of
Equation (4) have negative real parts. This requires that w1 > 0, w2 > 0, w3 > 0 and w1w2 > w3. It is
easy to verify that w1 > 0, w2 > 0, w3 > 0 if b > a > 0, k > 0 and

k√
ab

< c <
2k√
ab

. (5)

To make w1w2 > w3, the parameter c should meet

c < c0 =
2k[(a2 + b2)

√
ab + k(b− a)]√

ab[(a + b)2
√

ab + k(b− a)]
. (6)

Since c0 < 2k√
ab

, then O1, O2 are asymptotically stable if b > a > 0, k > 0, k√
ab

< c < c0. When the
parameter c passes through the critical value c0, then double Hopf bifurcation occur with two limit
cycles branched from O1, O2 and system (1) loses its stability.

Proposition 2. Suppose that b > a > 0, c > 0, k > 0, then: (i) the equilibrium O is unstable for c > k√
ab

;

and (ii) the equilibrium O is asymptotically stable for c ≤ k√
ab

.

Proof. The characteristic equation evaluated at O is given by

(λ + c)[c2λ2 + (b− a)c2λ + k2 − abc2] = 0. (7)

If c > k√
ab

, then Equation (7) has a root with a positive real part. Thus, O is unstable. If c < k√
ab

,

all the roots of Equation (7) have negative real parts, which implies that O is stable. When c = k√
ab

,
Equation (7) has three roots λ1 = 0, λ2 = a− b, λ3 = −c. Therefore, O is non-hyperbolic equilibrium.
It can be verified that O is asymptotically stable by applying the center manifold theorem.

4. The Evolution of Multiple Attractors

Detailed investigation of the complex dynamic behaviors of system (1) is presented in this section.
Simulation experiments including bifurcation diagrams, phase portraits, Lyapunov exponents, and
Poincaré maps give a close and intuitive look at system (1). There is a wealth of chaotic dynamics
associated with the fractal properties of the attractor in system (1). With the change of parameters,
system (1) experiences stable state, periodic state and chaotic state. For different initial values,
system (1) performs different types of attractors with independent domains of attraction.

4.1. Dynamic Evolution with Parameter c

Consider the dynamic evolution of system (1) with respect to parameter c under the given
parameter conditions a = 2, b = 8, k = 4. The bifurcation diagrams of system (1) versus c ∈ (0, 6)
are shown in Figure 4a, where the red color branch and blue color branch are yielded from initial
values x01 = (1, 1, 1), x02 = (−1,−1, 1), respectively. The overlapped regions of the red color and blue
color branches indicate that the trajectories of x01, x02 eventually tend to the same attractor, while the
separated regions indicate that the trajectories of x01, x02 tend to different attractors. Figure 4b is the
Lyapunov exponents of system (1) with initial value x01. It shows that the system (1) experiences stable
state, periodic state, chaotic state with the variation of c. When c ∈ (0, 1), system (1) is mono-stable
as it has only one stable equilibrium. When c ∈ (1, 1.396), system (1) performs bi-stability with
respect to the existence of two stable equilibria. As c increases across the critical value c0 = 1.396,
system (1) occurs double Hopf bifurcation at the equilibria. When c ∈ (1.396, 1.516), system (1)
performs bi-periodicity. When c ∈ (1.516, 2.257), system (1) changes into mono-periodic state.
When c ∈ (2.821, 3.096), system (1) yields two strange attractors from initial values x01, x02. When
c ∈ (3.310, 4.167)∪ (4.370, 5.324)∪ (5.480, 6), system (1) has only one chaotic attractor. Table 1 describes



Entropy 2018, 20, 12 6 of 15

the attractors of system (1) with different values of c. The phase portraits in Figure 5 illustrate the
existence of different types of attractors in system (1).

Table 1. Attractors of system (1) with different values of c.

Value of c Equilibrium Point Type of Attractor Figure

c = 0.8 Stable point: (0, 0, 5) A point attractor Figure 5a

c = 1.2
Saddle node: (0, 0, 3.3333)
Stable point: (±0.6325,±0.3162, 4) A pair of point attractors Figure 5b

c = 1.4
Saddle node: (0, 0, 2.8571)
Saddle focus: (±0.8944,±0.4472, 4) A pair of limit cycles Figure 5c

c = 1.6
Saddle node: (0, 0, 2.5)
Saddle focus: (±1.0954,±0.5477, 4) A symmetric limit cycle Figure 5d

c = 2.9
Saddle node: (0, 0, 1.3793)
Saddle focus: (±1.9494,±0.9748, 4) A pair of strange attractors Figure 5e

c = 3.1
Saddle node: (0, 0, 1.2903)
Saddle focus: (±2.0494,±1.0247, 4) A pair of limit cycles Figure 5f

c = 3.2
Saddle node: (0, 0, 1.25)
Saddle focus: (±2.0976,±1.0488, 4) A symmetric limit cycle Figure 5g

c = 3.6
Saddle node: (0, 0, 1.1111)
Saddle focus: (±2.2804,±1.1402, 4) A butterfly strange attractor Figure 5h
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Figure 4. The bifurcation diagrams (a) and Lyapunov exponents (b) of system (1) versus c ∈ (0, 6).
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Figure 5. The phase portraits of system (1) with: (a) c = 0.8; (b) c = 1.2; (c) c = 1.4; (d) c = 1.6;
(e) c = 2.9; (f) c = 3.1; (g) c = 3.2; (h) c = 3.6.

4.2. Dynamic Evolution with Parameter k

The bifurcation diagrams of system (1) for parameters (a, b, c) = (4, 9, 4), k ∈ (5, 25) are shown in
Figure 6a, where the red color branch and blue color branch are yielded from initial values x01, x02,
respectively. Obviously, the state of system (1) changes from chaos to period and then to stable when
parameter k increases from 5 to 25. It also can be illustrated by the Lyapunov exponents in Figure 6b.
The maximum Lyapunov exponent is positive with c ∈ (5, 13.6) ∪ (13.9, 14.8) ∪ (15.4, 15.9), negative
with c ∈ (19.8, 25), and equal to zero with c ∈ (13.7, 13.8)∪ (14.9, 15.3)∪ (16, 19.7). For c = 5, 15, 18, 25,
we can observe a strange attractor, a limit cycle, and a stable point of system (1), with their phase
portraits are shown in Figure 7. For c = 19, 20, we can observe two coexisting periodic attractors and
two coexisting point attractors of system (1), as shown in Figure 8.
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Figure 6. The bifurcation diagrams (a) and Lyapunov exponents (b) of system (1) versus k ∈ (5, 25).
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Figure 7. The phase portraits of system (1) with: (a) k = 5; (b) k = 15; (c) k = 18; (d) k = 25.
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Figure 8. The coexisting attractors of system (1): (a) projections on x− y with k = 19; (b) time series of
y with k = 19; (c) projections on x− y with k = 20; (d) time series of y with k = 20.

5. Electronic Circuit Realization

There are many works that are related to chaos based applications in the literature [31–36]. Here,
we will present the circuit realization of system (1) for realistically obtaining its chaotic attractors.
The numerical simulation in Figure 5e displays two coexisting strange attractors in system (1) for
(a, b, c, k) = (2, 8, 2.9, 4) and initial conditions (±1,±1, 1). For circuit realization of this state of
system (1), we need to refrain from saturation of circuit elements, and the effective way to achieve this
goal is to reduce the voltage values of the circuit via scaling the variables of system (1). In the process
of scaling, we assume (X, Y, Z) = (x, y, z/2) and then the scaled system is obtained as

Ẋ = aX− 2YZ,
Ẏ = −bY + 2XZ,
Ż = −cZ + XYZ + k

2 .
(8)

Figure 9 gives the new phase portraits of the scaled system (8) for (a, b, c, k) = (2, 8, 2.9, 4).
Evidently, the scaling process does not cause fundamental changes to the system (1), but just limits the
variables to a smaller region Ω = {(x, y, z) |x, y ∈ (−5, 5), z ∈ (0, 10)}.

The circuit diagram of system (8) raised by the OrCAD-PSpice programme (OrCAD 16.6,
OrCAD company, Hillsboro, OR, USA) is presented in Figure 10. It has three input (or output)
signals with respect to the variables X, Y, Z, and the operations between signals realized via the basic
electronic materials including resistors, capacitor, TL081 operational amplifiers (op-amps), and AD633
multipliers. By fixing R1 = R3 = 20 KΩ, R2 = 200 KΩ, R4 = 50 KΩ, R5 = R6 = 100 KΩ, R7 = 138
KΩ, R8 = 3000 KΩ, R9 = 4 KΩ, C1 = C2 = C3 = 1 nF, Vn = −15 V, Vp = 15 V and executing the
circuit on electronic card shown in Figure 11, we can obtain the outputs of circuit in the oscilloscope.
The oscilloscope graphics in Figure 12 show good consistency with the numerical simulations in
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Figure 9. Hence, we can come to a conclusion that the coexisting chaotic attractors in system (1) are
physically obtained.
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Figure 9. The phase portraits of the scaled system (8) for (a, b, c, k) = (2, 8, 2.9, 4): (a) x− y; (b) x− z;
(c) y− z.

Figure 10. The circuit diagram of system (8).
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Figure 11. The experimental circuit of system (8).

(a) (b) (c)

(d) (e) (f)

Figure 12. The phase portraits of two coexisting attractors of system (8) on the oscilloscope for
(a, b, c, k) = (2, 8, 2.9, 4): (a,b) x− y; (c,d) x− z; (e,f) y− z.

6. S-Box Design and Its Performance Analysis

This section aims to raise a new chaotic S-Box algorithm by applying system (1). In the algorithm
design, first random number generation is performed and then S-Box is produced. The S-Box generation
algorithm pseudo code is shown in Algorithm 1. For establishing the S-Box production algorithm, we first
input the parameters (a, b, c, k) = (2, 8, 2.9, 4) and initial value (x0, y0, z0) = (−1,−1, 1) of the system
and then the float number outputs are produced. In order to generate more random outputs in the
analysis of the chaotic system, we select an appropriate step interval ∆h and used it as a sample value.
More random sequences are obtained by setting the appropriate step interval ∆h = 0.000001. System
(1) is solved by using the RK4 algorithm with the initial conditions and the specified sampling value,
and time series are obtained. In our designed chaotic S-Box algorithm, the outputs of y, z phases of
system (1) are used. Float number values (32 bits) obtained from these phases are converted to a binary
system. By taking 8 bits from the low significance parts (LSB) of the 32-bit number sequences generated
from both phases, these values are XORed. The obtained new 8-bit value is converted to a decimal
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number. This value is discarded if the decimal number was previously generated and included in
the S-Box, if not produced before, it is added to the S-Box. In this way, this process continues until
the distinct 256 values (between 0 and 255) are obtained on the S-Box. The generated S-Box is shown
in Table 2.

Algorithm 1 The S-Box generation algorithm pseudo code.

1: Start;
2: Inputting parameters and initial value of the system;
3: Sampling with step interval ∆h;
4: i = 1, S-Box = [];
5: while (i < 257) do
6: Solving system with RK4 algorithm and obtaining time series (y, z);
7: Convert float to binary number;
8: Take LSB-8 bit value from RNG y⊕ z phase;
9: Convert binary to decimal number (8 bit)

10: if (Is there decimal value in S-Box = yes) then
11: Go step 6.
12: else(Is there decimal value in S-Box = no)
13: Sbox[i]← decimal value;
14: i++;

15: end
16: end
17: S-Box← reshape(Sbox,16,16);
18: Ready to use 16× 16 chaos-based S-Box;
19: End.

Table 2. The chaotic S-Box of system (1).

199 30 5 41 38 140 230 139 66 0 11 195 76 204 54 23
254 198 50 108 231 92 87 182 217 28 56 253 219 232 215 49
102 151 68 86 176 248 12 32 126 249 141 154 82 138 174 165
145 62 115 150 201 104 170 148 78 97 192 247 252 96 211 153
45 98 40 91 109 113 196 107 209 83 144 120 191 75 242 208

175 246 100 181 85 70 197 136 235 210 93 216 71 105 162 149
88 240 31 238 42 171 90 73 112 243 255 128 239 121 26 34
25 226 59 244 135 142 53 36 146 157 117 124 116 10 205 60

173 29 2 72 203 3 214 224 127 241 143 74 6 156 122 61
110 8 1 233 79 51 77 47 236 222 185 152 180 15 103 234
206 227 169 202 137 221 177 179 163 52 245 67 89 80 220 7
237 183 17 4 101 37 39 57 178 194 58 69 213 147 18 228
46 35 225 84 14 125 95 134 129 63 99 55 106 161 218 27

250 21 13 24 207 193 48 184 189 114 111 167 16 160 188 123
155 132 158 130 118 166 164 168 33 159 223 64 44 81 190 172
212 20 229 186 65 251 133 22 131 43 119 94 19 9 187 200

In order to determine that the produced S-Boxes are robust and strong against attack, some
performance tests are applied. We mainly focus on these tests: nonlinearity, outputs’ bit independence
criterion (BIC), strict avalanche criterion (SAC), and differential approach probability (DP). In addition,
the comparisons of the performance between this new S-Box and the existing chaotic S-Box proposed by
Chen [37], Khan [38], Wang [39], Ozkaynak [40], Jakimoski [41], Hussain [42], Tang [43] are presented
in Table 3.

Nonlinearity is regarded to be the most core part of all the performance tests. The nonlinearity
values of the S-Box yielded by system (1) are obtained as 104, 106, 104, 104, 108, 104, 110 and 104.
Accordingly, its average value, minimum value and maximum value are computed as 105, 104 and 110.
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By comparing the nonlinearity of other S-Box shown in Table 3, we can claim that the new S-Box is
better than others in some measure.

Table 3. The comparison of different chaotic S-Boxes (BIC: bit independence criterion; SAC: strict
avalanche criterion; DP: differential approach probability).

S-Box
Nonlinearity BIC-SAC BIC SAC

DP
Min Avg Max Nonlinearity Min Avg Max

Proposed S-Box 104 105 110 0.5028 102.75 0.3906 0.5014 0.5937 10
Chen [37] 100 103 106 0.5024 103.1 0.4218 0.5000 0.6093 14
Khan [38] 96 103 106 0.5010 100.3 0.3906 0.5039 0.6250 12
Wang [39] 102 104 106 0.5070 103.8 0.4850 0.5072 0.5150 12

Ozkaynak [40] 100 103.2 106 0.5009 103.7 0.4218 0.5048 0.5938 10
Jakimoski [41] 98 103.2 108 0.5031 104.2 0.3761 0.5058 0.5975 12
Hussain [42] 102 105.2 108 0.5053 104.2 0.4080 0.5050 0.5894 12

Tang [43] 99 103.4 106 0.4995 103.3 0.4140 0.4987 0.6015 10

SAC is put forward by Webster et al. [44]. Generally speaking, the establishment of SAC implies a
possibility that half of each output bit will be changed with the change of a single bit. Table 3 tells the
average, minimum and maximum SAC values of the new S-Box as 0.5014, 0.3906, 0.5937. Evidently,
the average value of the new S-Box is close to the ideal value 0.5. BIC is also an important criterion
found by Webster et al. [44]. It can partially measure the security of cryptosystems. The set of vectors
generated by reversing one bit of the open text is tested to be independent of all the pairs of avalanche
variables. While the relation between avalanches is measured, variable pairs are necessary to calculate
the correlation value [45]. BIC-SAC and BIC-Nonlinearity values are calculated when the BIC value is
calculated. When the values in Table 3 are examined, the BIC-SAC values are calculated as follows:
average value 0.5028, minimum value 0.4394 and maximum value 0.5312. The average value is almost
equal to the optimum value 0.5.

DP is another performance index for testing the S-Box, which is established by Biham et al. [46].
In this analysis, the XOR distribution balance between the input and output bits of the S-Box is
determined. The very close probability of XOR distribution between input and output bits often
indicates the ability to resist the differential attack of the S-Box. The low DP value suggests that
the S-Box is more resistant to attack. The minimum and maximum DP values of the new S-Box are
determined as 4.0 and 10. From Table 3, we know that the DP value of the new S-Box is the same as
the S-Boxes presented by Tang and Ozkaynak.

After testing the performance of the new S-Box by using some important indices and
comparing with other S-Boxes, we can determine that the new S-Box generated by system (1)
has better performance than other S-Boxes. Thus, it will be more suitable for attack resistant and
strong encryption.

7. Conclusions

A special chaotic system with multiple attractors was studied in this letter. The complex dynamic
behaviors of the system were mainly presented by numerical simulations. Bifurcation diagrams and
phase portraits indicated that the system exhibits a pair of point attractors, a pair of periodic attractors,
and a pair of strange attractors with the variation of system parameters. In addition, an electronic
circuit was designed for realizing the chaotic attractors of the system. Moreover, a new S-Box was
generated by applying the chaotic system, and the performance evaluation and comparison of the
S-Box were presented. It showed that the new S-Box has better performance than some existing S-Boxes.
Actually, the study of chaotic system with multiple attractors is of recent interest. More important
issues corresponding to this topic will be addressed in our future paper.



Entropy 2018, 20, 12 14 of 15

Acknowledgments: This work was supported by the National Natural Science Foundation of China (No. 61603137,
61603127),the Jiangxi Natural Science Foundation of China (No. 20171BAB212016) and Sakarya University
Scientific Research Projects Unit (No. 2016-09-00-008, 2016-50-01-026).

Author Contributions: Qiang Lai designed the study and wrote the paper. Akif Akgul and Ünal Çavuşoğlu
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