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Practical Experiences with Regression Analysis

David A. Scott

Price Waterhouse, Canada

Wanda A. Wallace
College of William and Mary

Abstract

Price Waterhouse has conducted a field experiment on the application of
regression analysis, involving the launching of new software, micro-based train-
ing, and initial modeling for audit use. While the phases of the experiment
included alpha and beta testing of the software as described herein, the: core of
the experiment involved field applications of regression analysis by engagement
teams. Their experiences and reactions are described, as are the future plans of
the firm. Experiences in prior field applications are likewise shared, to illustrate
both the context in which regression analysis has been used and the nature of
inferences drawn, as well as the statistical profile achieved in modeling. Insights
are gained as to the tool’s feasibility, time demands in its application, and per-
ceptions of users.

Introduction

Ower the years, a number of papers have appeared suggesting the benefits of
using regression analysis as an analytical audit tool for risk identification and
error detection. In some cases the authors have described individual applications
of the technique. For example, Campbell and Rankin [1986] described the use
of regression analysis to develop expectations of sales in a manufacturing com-
pany;. Kask [1979] covered an application to identify out-of-line energy costs
for a group of hospitals, and Akresh and Wallace {1981} discussed: a public util-
ity application. Others [Knechel, 1986: and Wilson and Colbert, 1989] have
reported that regression analysis, compared with alternate analytical procedures,
is-a more accurate tool for identifying errors of varying sizes and patterns seed-
ed into simulated data.

Despite these purported conceptual advantages from using regression analy-
sis;. Deloitte ' & Touche is: the only major accounting firm that seems to have
used it regularly, in sampling applications [Stringer, 1975 ‘and Stringer and
Stewart,; 1986—referred to as. STAR]. While Price Waterhouse has had field
applications using regression analysis since 1979, the scope of application has
not been pervasive throughout the World Firm, for a number of reasons detailed
later in this paper. Overall, as has been reported by Daroca and Holder {1985]
and Spires and Yardley [1989], the use of regression analysis and other
advanced quantitative procedures by audit teams, across firms, has been rela-
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tively rare. As-usual, the marketplace is the ultimate proof of the pudding.
Among the barriers have been the need for relatively powerful computing capa-
bility, the perceived complexity of the technique for non-statisticians, and
uncertainty as to-how to relate the results of a regression analysis application to
an audit risk/satisfaction framework.

We have been involved in studying how and if these barriers could be over-
come at Price Waterhouse. In this paper we report on our experiences to date.

The Interest

For a number of years the Price Waterhouse audit methodology has included
an audit: satisfaction hierarchy wherein alternate audit procedures are ranked
based on their presumed efficiency [Walker and Pierce, 1988]. The actual pro-
cedures selected for the audit plan will depend on:inherent risk assessments by
assertion, assessed control risk, materiality, chent expectations, and other fac-
tors. However, all things being equal (which is rarely the case), audit planners
are encouraged to think first about relying-on analytical procedures, then on
internal controls, and to do detailed testing only when particular audit assertions
cannot be satisfied in any more cost-effective way. This approach is consistent
with evidence regarding the value of analytical procedures in risk assessment.
Empirical studies in an external audit context, such as those by Kreutzfeldt and
Wallace [1986 and Wright and Ashton [1988], have consistently shown that
forty to fifty percent of errors detected were disclosed by analytical procedures.
Coglitore and Berryman: [1988] have shown how better use of analytical proce-
dures might have prevented several well-publicized audit failures [also see
Wallace, 1991]. Analytical procedures are clearly an important risk assessment
tool.

Price Waterhouse believes that many advantages -accrue from using analyti-
cal procedures in the audit. For example:

¢ Analytical procedures:-enhance the auditor’s understanding of the
dynamics of the client’s business, which not-only improves the -quality
of the audit but also makes the auditor better able to offer sound busi-
ness advice to the client.

* Research confirms our own experience that analytical procedures can
be very effective at finding errors. For example, Wallace and
Kreutzfeldt [1986], Wright and Ashton [1988], and Knechel [1988a,
1988b] all present evidence along this line. However, Loebbecke and
Steinbart [1987], Kinney [1987], and Blocher and Cooper [1988] show
that trends and ratios are relatively ineffective, at least at the aggregate
level at which they are conventionally used. Research suggests some-
what of a' gulf between the effectiveness of trend and ratio procedures
on the one hand and modeling procedures on the other.

+ Analytical procedures are efficient because they usually provide evi-
dence for several audit assertions simultaneously (in contrast to a
detailed test which may address only one or two assertions).

At the same time as analytical procedures were receiving increased emphasis
in the Price Waterhouse ‘auditing methodology, professional pronouncements
such as Statement on Auditing Standards No. 56: Analytical Procedures
[AICPA, 1988] and International Auditing Guideline 12 [IFAC, 1990] intro-
duced new requirements for the use of analytical procedures in the plarning and
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final review stages of ‘audit examinations. In fact, the auditing standard setters
were mandating what made common sense, and what, by and large, was already
being done in practice.

The strategic emphasis by Price Waterhouse on analytical procedures stimu-
lated an interest in regression analysis ds a tool for the auditor. The potential
advantages we saw from regression analysis were the following:

* In contrast to the judgmental predictive:models embodied in the simpler
analytical procedures such as ratio and trend analysis, regression dnaly-
sis, through measures of precision and goodness of fit, would give a
more objective assessment of the reliability of predictive audit models.

= Auditors generally have little difficulty assessing: whether the direction
of change in an accounting variable makes sense, but regression analy-
sis. could be a more effective tool for assessing the reasonableness of
the amount of change.

» With regression analysis, auditors would be able to define unusual
observations ‘using objective mathematical probabilities rather than the
subjective rules of thumb often associated with simpler analytical pro-
cedures. This should mean improved efficiency in detecting errors, a
supposition borne out by empirical research. For example, Knechel
[1986] concluded that “based on the analysis of Type l-and Type i
errors presented in this paper, the regression models were superior to
the nonstatistical approaches in most cases.” This finding ties to the
idea that the best analytical procedure is the one which alerts us when
errors exist in the data, while minimizing the number of false alarms
when the data is error-free. This concept is illustrated in Figure 1. The
two alternate decisions are investigate or do not investigate. The two
possible conditions of the accounting variable are that it is ‘or is not
materially in error. In the bottom left and top right quadrants, the risk
assessor makes the correct decision. In the top left quadrant, the evalua-
tor does an unnecessary investigation, referred to.as a Type I etror, in
line with AICPA literature (note difficulties with this use of terms
explored by Beck and Solomon [1985]). In the bottom right quadrant,
the decision maker fails to investigate a situation which in fact warrants
investigation, referred to as a Type Il error. Wilson and Colbert [1989]
reached a similar conclusion from their simulation tests that likewise
focus on Type I and Type II considerations.

» Regression analysis may help to quantify important interrelationships in
a client’s business which the auditor suspects exist, but cannot easily
express mathematically. For example, one would be able to quantify the
effect of categorical variables (like location) in addition to numerical
variables.

For all of these reasons, Price Waterhouse decided in 1988 to invest in a
research project related to regression analysis. The technique made sense con-
ceptually, but the big unknown was the broadness of market acceptance within
Price Waterhouse. Was it reasonable to expect audit partners and staff without
real expertise in statistical concepts to try regression analysis with enthusiasm
and confidence? Even if they were interested, would they conclude that the ben-
efit from using regression analysis is large enough to justify the cost of develop-
ing the applications?
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Figure 1. Considering Type I and Type II errors

Investigate
Type I error
Material Material
does not < » e
exist exists
Type Il error
Do not investigate
The Software

Regression analysis had been used on audits done by the firm since about
1980. At that time the Firm developed its own regression analysis software
which ran on a central mainframe accessible from the Firm’s U.S. offices. Some
early successes were reported by Wallace [1983]. Such examples are augmented
by ‘threé dctual case examples from field applications, reported in an Appendix
to this paper. However, the mainframe computing instructions were complicated
for those who did not use the software. often. In addition, turn-around time for
regression output was sometimes measured in terms of days rather than minttes
or hours. The :concept of regression analysis as an iterative model-building
process was not well served by the mainframe. As a result, during the decade of
the 1980’s, regression was used only by a small band of devotees in several of
the Firm’s U.S. offices, and not at all outside the U.S.

One of the first. imperatives was to secure. user-friendly regression analysis
software for a microcomputer. Price Waterhouse considered purchasing one of
the available commercial micro-based regression analysis packages, but decided
against that option. Some packages were replete with complex statistical jargon
which we were sure would inhibit potential users. On the other hand, certain
spreadsheet software packages offered regression analysis as an option, but
these were overly simplistic. modules which lacked the important statistical
checks necessary for auditors to ‘have confidence that their models were statisti-
cally valid. Also, none of the packages came with audit-relevant user help. A
meetinig of professionals who regularly used regression analysis in consulting
and litigation support settings led to the decision to modify the mainframe soft-
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ware to run on the microcomputers commonly used by Price Waterhouse part-
ners and staff. The framework for approaching regression analysis appears. in
Figure 2, as do sample screens that provide an idea of the user-friendliness and
documentary ‘nature. of the program. The user selects whether a time series or
cross-sectional regression model is to be estimated and what confidence level is
used.

Data to be modeled may be assembled in a wide variety of formats, but most
commonly is collected in a common spreadsheet template. The software can
accommodate up to fifteen variables and up to 1,000 observations per variable,
subject to a maximum limitation of 5,000 data points. We have found that this is
sufficient for all but cross:sectional applications on very large multi-location
clients, such as major retailers with more than 1,000 stores. For such clients we
suggest partitioning the locations into groups, each containing fewer than 1,000
units, with a separate model being. created for each group. Figure 2 displays a
sample input screen for the software. Once entered into the software, several
analysis modules are designed to assess the data set prior to creating the regres-
sion equation. These modules provide the following information (see Wallace
[1991] for elaboration on statistical terms):

» ‘various measures of the distribution of each variable including the
largest and smailest values; the sum of all values; mean, median, and
quartile statistics; and measures of variation, skewness, and kurtosis.

* a matrix showing the degree of correlation between each variable and
every other variable.

* a table of autocorrelation statistics with lags from one to tventy-four
for each variable.

One purpose of the input analysis modules is to detect apparent data entry
errors at an early stage of the process before the user’s atterition is drawn to out-
liers, precision intervals; etc. To illustrate; by examining the largest and smallest
value for-each variable; or by comparing the total for each variable to predeter-
mined batch totals, one may expect to detect an incorrect value for a particular
variable. A second objective is to detect an unusual distribution or pattern in the
dependent variable. For example, it may prove to be skewed or to have kurtosis,
or the autocorrelation test may show a seasonal or cyclical pattern. In such
cases, the user is directed to the descriptor variables to see whether any reflect
the same distribution or pattern. Generally this will prove to be the case, but if
not, the user is asked to search for an additional descriptor variable to capture
the attribute being exhibited by the dependent variable. A third purpose.of input
analysis is to study the correlation among the variables in the model, looking for
relationships which in direction or magnitude are inconsistent with the auditor's
expectations. Investigation of such surprises frequently leads to model improve-
ments before the actual regression equation is produced:

Sometimes the analysis will lead the user to transform one: or more of the
variables. The software allows variables to be transformed into natural logs, rec-
iprocals, and deflated values (i.e., to remove heteroscedasticity or size effects),
and also facilitates the leading or lagging of variables. Figure 2 illustrates some
of these choices in menu format. Those observations to be used in the base ver-
sus prediction phase are specified, alongside descriptive statistics.
Transformations are facilitated, and help screens are available to provide the
sort of graphics guidance depicted in Figure 2.
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Once the user has responded to whatever conditions are revealed by the
input analysis, he or she is ready to use the software to specify the regression
equation. Unlike some other regression analysis products; the software does not
use the stepwise technique for variable selection as the primary means of model
creation, although stepwise is available as an option. We believe it is preferable

Figure 2. Overview of Software Design and Sample Screens
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for the user to specify the model based on his or her understanding -of the
client’s business, and to think carefully about the regression coefficients to see
whether they have the expected direction and magnitude. It is our judgment that
in‘an audit context, the use of the stepwise technique runs the risk of turning the
program into a “black box” which the user accepts without understanding.
Moreover, statistical criteria are only one of the considerations of an auditor;
indeed, descriptive power may be sacrificed intentionally in exchange for the
greater evidential value provided by externally-generated independent vari-
ables, as prescribed in Statement on Auditing Standards No. 31 [AICPA, 1980].
Nonetheless, an advanced module of the program is accessible that permits use
of stepwise, and overrides certain automated decisions integrated with the core
program (such as the time-series choice among levels, first-differences, and
Cochrane-Orcutt models)—see the end of Figure 2 for a sample menu.

Table 1
Automatic Statistical Checks
Statistical Tests
Considerati Pexfi i
AUTOCORRELATION ¢ Planning phase consideration of

autocorrelation

* Time-series model selection of first
difference and Cochrane-Orcutt
Runs test
Chi-square test of contingency table
Durbin - Watson test
Autocorrelation of residuals for twenty-four
lags
Goldfeld Quandt

« Non-parametric rank correlation
(These are performed for each independent variable.)

. e o e

HETEROSCEDASTICITY

NORMALITY « Planning phase consideration of descriptive
statistics.
Kolmogorov - Smirnov
Shapiro - Wilk
Chi squared goodness of fit.
Moment check for both skewness and
kurtosis.
Planning phase consideration of corrélation
matrix
» Haitovsky statistic.
CONTINUITY » Chow test if forty-eight observations are
available
» Alternate dummy variable test if fewer than
forty-eight observations are available

- L N

MULTICOLLINEARITY
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For each independent variable, the user is presented with a regression coeffi-
cient, a t-statistic, the confidence level associated with: the t-statistic, -and guid-
ance on interpretation. For the model as a whole, the user is presented with vari-
ous statistics, most notably R square, adjusted R square and the F statistic, again
with guidance on their interpretation. A sample screen of such output is provid-
ed in Figure 2. At this stage, the user will decide whether to proceed or whether
the model requires modification.

If the user proceeds, the next output module involves a series of statistical
checks for autocorrelation of residuals, heteroscedasticity, multicollinearity,
non-normality of residuals, and continuity. For most of these conditions, more
than one test is performed. For example, the checks for autocorrelation of resid-
uals include a runs test, a Chi-Square Test of a Contingency Table for residuals,
the Durbin Watson statistic, and a.test for autocorrelation in the residuals with
lags from one to twenty-four. The users are not expected to know how the vari-
ous statistics are calculated. More importantly from their perspective, heuristics
built into the software warn them when the tests indicate that there is a problem
with one or more of these conditions, If a problem is indicated. it is explained
and the user is provided with on-screen guidance on how best to respond. Table
1 summarizes the automatic statistical checks performed. Figure 2 provides a
sample screen for the summary of checks and illustrative detail-level screens.
Test statistics are reported at ninety, ninety-five, and ninety-nine percent levels
of confidence, to enable model builders to .evaluate how severe the problem is,
if detected.

Once the statistical checks have been reviewed, the next module compares
the recorded value with-the regression estimate for each observation in the data
set. Confidence intervals are presented for each observation and for the data set
as a whole. Over the years a variety of strategies have been presented for resid-
ual investigation—for example, by Kinney [1979], Kinney and Salamon [1982],
and Knechel [1988a]. While recognizing that this is a topic on which more re-
search is undoubtedly necessary, at present we are suggesting to-users that
aggregate precision for the reporting period should not exceed materiality, and
that all but very small outliers should be investigated. This operationalizes the
Kinney approach (extended to a multiple regression environment) of computing
an aggregate standard error for the regression model in both the base and pre-
diction phase, which can be compared with materiality. Related output appears
in Figure 2. As evidenced in such illustrative screens, the focus is on precision,
and the confidence level is derivative, rather than the other way around. A lower
than desired level of confidence will suggest the need for additional audit proce-
dures to be employed to achieve the desired level of audit satisfaction.

The outliers themselves are easily spotted through both tabular and graphical
presentation, ‘as illustrated in both Figures 2 and 3. To further assist the user in
identifying anomalous observations requiring investigation, the last module pre-
sents a:table of equiprobable residuals (and a related graphic) (again; extending
work by Kinney) to complement the outliers in the previous module. Choices
available for evaluating equiprobable residuals (reflective of one-tail and two-
tail concerns) are shown in Figure 2, with screen output. A summary of ‘the
most unusual observations permits:consideration of both evaluation tools: out-
liers. and equiprobable residuals. Users are encouraged to consider both outliers
and large equiprobable residuals when selecting items for investigation.

Some might feel that we are insufficiently prescriptive in our approach to
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Figure 3. Graphic presentation of regression outliers
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investigation of outliers. However, given the substantial amount of judgment
which underlies the audit process (for example, materiality determination or
inherent risk assessment), it-seems natural to us that context-sensitive profes-
sional judgment should play a role in developing a strategy: for residual in-
vestigation. Prediction phase screens-analogous to base model screens, one of
which is shown in Figure 2, are particularly useful in time-series applications.
Another issue raised: in the literature i$ the linkage between regression analy-
sis and statistical sampling. For example; Knechel [1988a, 1988b] shows how
analytical procedures can reduce sample sizes. It is a logical conceptual link,
because both forms:of evidence lend themselves to mathematical expression—
the playing: out, as it were, of the multiplicative risk model. In practice, we do
not expect ‘that audit teams will often need to develop integrated strategies
involving both regression analysis and sampling aimed ‘at the same audit asser-
tion. Sampling can be a very effective form of audit evidence when it is
required, but it can be costly evidence to obtain and may:not be required. For a
variety of reasons, we would prefer audit planners to combine regression analy-
sis and other analytical procedures with assessment of control risk below the
maximum level where possible, including tests of the client’s internal control
structure. To provide perspective as to the statistical profile of past field appli-
cations. Table 2 describes a sample of models. Dependent ‘and independent vari-
ables are described, comparisons:can be made between standard deviation and
standard errors ‘achieved. The types of precision and incidence of outliers are
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reported, alongside statistical problems and information on the descriptive
power of the various analyses. This profile suggests that models typically have a
limited number of independent variables, precision that ranges from under one
to 237 percent on an individual observation basis, substantial descriptive power,
and statistical flags that require separate attention.

Testing the Technique

The modified software was completed and alpha tested by the end of 1989.
We believed that we had good, user friendly software, but the question
remained: would auditors without any special mathematical training or bent
want to use regression analysis on actual client engagements? We decided to
use 1990 for limited beta testing of the software and the training material we
had developed to support it.

Beta Testing and Field Experience in 1990

Our approach was to train the engagement teams for a small number of
audits, with emphasis on large clients involved in retailing, financial services,
and utilities. These industries were selected as starting points because we knew
that existing audit strategies for clients in those industries often put significant
emphasis on analytical procedures incorporating operating and external data, as
well as accounting information. Eleven audit engagement teams were selected
from the United States, the United Kingdom, Australia, and Canada and were
trained in 1990. We referred to these teams as “new users”, because they were
deliberately selected to comprise people with no prior experience using regres-
sion analysis in auditing. Based on limited direction, each team collected data
for their regression application and brought it to the training program. This
facilitated “hands on” instruction using data familiar to them in a client context
with which they had experience.

The results of the 1990 tests were generally positive, although inevitably
they revealed a number of ‘areas where our software and supporting training
could be improved. The regression applications by these 1990 teams included:

Industry Model Type Dependent variable Descriptor variables

Retailer ~ Cross sectional  Inventory shrink Sales, inventory levels,
store security expense,
store size, type of store,
store insurance rating.

Retailer  Cross sectional ~ Store gross profit Sales, markdowns,
inventory, shrinkage,
geographic location
vis 4 vis competitors.

Utility Time series Revenue Volume, rate, number of
customers, degree days.
Utility Time series Revenue Volume, rates, number of

customers, degree days,
dew point, precipitation.
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In addition to course attendance time, the eight teams providing formal feed-
back reported that they had spent an average of seventy hours (with a high of
103 and a low of twenty-eight hours) developing their models, including con-
ceiving the application, obtaining the relevant data, and creating, modifying,
and interpreting: their regression model. The teams recognized that a regression
application would typically require a front-end investment in the first year, but
that the time required to maintain the application should drop substantially in
the second and subsequent years. Considering that the average number of annu-
al audit hours on the eight jobs was. 7,700 (with a range of 1,100 to 20,000), the
teams did not seem to consider that the required time investment was large.

Teams were asked whether they had changed the nature and extent of their
other audit procedures as a consequence of using regression analysis. One retail
team which used regression analysis primarily as an attention directing planning
tool reported that it had been able to select fewer stores than normal for investi-
gation as a consequence of improved risk :identification. This was: possible
because regression analysis indicated that stores which were not outliers were in
line with expectations, as quantified by the model. A banking team reported a
similar experience and estimated that 200-250 hours of investigatory work had
been saved. Four teams using regression analysis primarily as a source of audit
satisfaction intended to replace other audit procedures, either less effective ana-
lytics (three cases) or detailed tests of transactions (one case). Two teams did
not alter their other planned audit work in the first year because they were
uncertain what they would learn by using this new technique.

Teams were also asked whether using regression analysis resulted in them
learning anything new about the client. Six of the eight teams believed some-
thing important had been learned, typically additional insights into the interrela-
tionship among financial and operational variables. Given the fact that these
were large clients. on which considerable audit effort was already being ex-
pended, this result is noteworthy.

All teams but. one reported a favorable reaction from the client to Price
Waterhouse’s adoption of this new technique. Two of the clients already made
some use of regression analysis as part of their business planning activity.
Another client asked to license the software for use by its internal audit group.

The most revealing question ‘concerned the teams’ intentions regarding the
future use of regression analysis. Seven of the eight teams planned to continue
to use the application they had developed, while six of the eight planned to
develop additional applications for the client. Individuals were asked whether
they would like to use the technique on other clients, and eighty percent
responded in the affirmative. Based on the Firm’s experience in pilot testing a
variety of methodological and software tools over the years, these are high
approval ratings.

All eight teams believed there were industry-specific regression applications
which could be used on many audits in their client’s industry. To facilitate this,
a central ‘data base of all regression applications has been created which can be
accessed through the Firm’s wide area network. Thus a team contemplating a
banking application, for example, can easily determine what regression models
have been previously developed for bank audits, and who to contact for a
detailed description of each application.

Following the successful completion of the pilot program and some attendant
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internal publicity, a number of other engagement teams volunteered for training,
with the result that by the end of 1990, about fifty engagements were using the
software. Some of these represented engagemerits with previous mainframe
applications which have been converted to the microcomputer.

Experience in 1991

By the end of 1991, approximately eighty engagement teams had been
trained and more than 100 applications had been designed. Early in 1992, Price
Waterhouse decided to survey users to gain a better understanding of how the
use of regression analysis had affected their audit engagements. Key results
based on the twenty-six replies received to date are outlined in Table 3. The rel-
atively low response rate is the result of our sending the survey request out at a
very busy time of year for the audit practice. In-addition, a number of planned
applications are currently in process, and so the teams were unable to report
complete results at the time of this writing.

Regression analysis is being used on audits in a wide variety of industries,
but as we had initially expected, retailing, financial services, and utilities seem
to present particularly promising opportunities because of the wealth of objec-
tive operating information upon which models can be built to predict financial
performance. Oil and gas, publishing. commodities, and hotels have also yield-
ed several interesting applications.

There are an almost equal number of time-series and cross-sectional applica-
tions. Nearly all of the time-series applications involve modeling monthly finan-
cial data, and from two to five years of monthly observations are used to build
the base model. The cross-sectional applications are generally used to identify
anomalous locations in a multiple location business (e.g., retailing) and have
involved from about thirty to 1,400 locations.

Most teams have chosen a confidence level of either ninety or ninety-five
percent because they have found that this yields sufficiently tight precision rela-
tive to audit planning materiality, while minimizing the number of outliers to be
investigated.. Most of the models built have excellent explanatory power. Of the
twenty-four teams which reported the value of adjusted R-squared in their apph-
cation, eighteen had achieved ninety percent or better. (Note that R-square must
be viewed in tandem with: precision and is typically lower for balance sheet
accounts than income statement accounts due to lower variability in such
accounts),

The first-year time cost to develop and execute a regression application has
varied considerably from twenty-two hours to 212 hours, with a mean of seven-
ty-four hours. We estimate that the cost to repeat the application in the second
year will be less than half this amount because the costs of learning about the
technique, designing the application, and obtaining data will be substantially
reduced.

It is currently difficult to tell how much time elsewhere ‘in an .audit can be
saved because of this time investment. We have noticed that most teams, being
uncertain of the value of this new technique, have opted to retain their previous-
ly planned detailed tests of balances and transactions “just in case”. With only a
few exceptions, the only effect of regression was to replace similar but less
sophisticated analytical procedures.. A better measure of savings would come in
the second year of use when teams will be planning their audits with ‘a much
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w

Impact of regression analysis on the audit

11.. Used as attention-directing tool during planning?

Yes 6
No 19
Did not respond 1

26

12. If yesto 11, did the use during planning change the extent of the work during execution phase?

Yes 1
No 5
6

13, Used to provide satisfaction during execution phase?

Yes 20
No 5
Did not respond i

26

i

note that when management inquiry suggests an explanation for results differing from expectations, the regression model
can be rerun to borate the reasonabl and sufficiency of management's explanations.

14. Did regression replace other procedures which would otherwise have been carried out?

Yes 10
No 16
26
- g Ily ion analysis replaced less sophisticated analytical proced

in a srall number of cases regression analysis enabled a reduction in detailed testing at various locations of multi-location

'

clients.
15. Did regressi lysis imp dit effecti 7
Yes 12
No 14

26

0

since past audits were viewed as effective, the “No" responses can merely suggest comparable effectiveness.

16. Did you learn anything new about your client's business as a result of using regression analysis?

Yes 16
No 10
26
17. Does the:client use il lysis for i 1 g purposes?
Yes 4
No. 22
26

18:. Clientreaction to the auditor's use of regression analysis (1-5, Where 55 very supportive)
Mean 3.59
Future plans: for using regression analysis

19, Will repeat this application?

Yes 23
No 2
Did not respond 1

26

20: Will develop-other applications on this client?

Yes 6
No 20
26
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better understanding of what they can expect from regression analysis.

The use of regression analysis has had a number of very positive results. One
positive result was that sixteen. of the twenty-six teams reported gaining new
insights into their client’s business as a‘consequence of the use of regression
analysis. Most often, the learning involved an improved appreciation of how
key financial variables respond to changes in different operating variables.
Another positive result was the reaction of clients, very few of whom make use
of regression analysis themselves. Most were very interested in and supportive
of what the auditors were doing. However, there was some degree of polariza-
tion in the answers, because a small minority of the clients were somewhat
skeptical of a technique with which they were not familiar.

The most revealing question-concerned the teams® intentions regarding the
future use of regression -analysis. Nearly all teams intend to continue with the
application which they had developed. However, somewhat surprisingly, only
six. teams. indicated plans to develop other applications for the same client.
Since cross-sectional applications often focus on a single model, ‘this result
could be skewed by the nature of respondents. Moreover, training tends to focus
on the revenue stream, whereas multiple-year experience has led to diverse
modeling of income and expense streams, as well as balance sheet accounts.

Conclusions

Our experiences to. date with regression analysis have been generally posi-
tive:

» The software works well and teams find it easy to use.

* Once teams build an application, they nearly always maintain it.

» Auditors have been able to improve their understanding of clients’
businesses through the use of this technique:

+ ‘Most clients:react positively to the use of a technique which they con-
sider to be thoughtful and innovative.

On the other hand, some sobering realities are apparent:

* A minimum of two days’ training is required before auditors are rea-
sonably self-sufficient.

* Building a regression application is time-consuming; particularly when
the values of key operating variables are not immediately available (as
is frequently the case). At the same time, it should be noted: that a sig-
nificant portion of the first-year time investment is non=recurring.

» “The firm must maintain, as:a centralized resource, people who: possess
an enhanced level of understanding of both theory and application
issues regarding regression analysis.

» Even after implementing the technique on a significant number of
engagements, it'is not yet obvious: that regression analysis will save
more audit time than it costs.

While teams generally reported that the use of regression analysis improved the
effectiveness. of their audit, it is difficult to link the identification of specific
adjusting journal entries to the sample under study. However. it would be wrong
to conclude that regression analysis failed to find significant errors which exist-
ed. Most of the clients in this sample are large and well-controlled. and would
not be expected to make significant errors in their financial statements. Qur
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experience to date does not lead us to challenge the results reported by
researchers who have studied the performance of regression analysis in simula-
tion experiments. Indeed, among the findings of past regression applications
are:

« discovery of reporting errors by branch operations,

 atheft ring that accounted for a retailer’s poor performance,

= recognition of a change in cost allocation techniques that had not been
disclosed,

* identification of a $300,000: transaction improperly placed in a sus-
pense account which should have been in the share balance, and

» selection of five units to visit, three of which had just been discovered
by management as having serious problems.

It is the intention of Price Waterhouse, for the balance of 1992, to continue to
expand the use of the technique in a controlled manner, focusing on industries
such as financial services and retailing where we have begun to accumulate a
significant number of successful applications, with underlying concepts:that can
be easily replicated at other client settings.

We believe that for regression analysis to have a chance of success in audit-
ing, auditors need software which is audit-oriented and easy to understand, yet
statistically rigorous. They also need proper training and support, and an appro-
priate client situation in which to use the technique. Given all of these require-
ments, regression analysis can be a very useful tool. Its promise is at last being
realized.
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Appendix
Field Applications

A Time-Series Illustration for Revenues

Bank audits are often highly reliant on analytical procedures, One reason is
the availability of a pervasive, readily available, totally objective descriptor
variable in the form of the bank primie rate of interest.

The audit team at a money center bank decided to build a regression model
to predict the bank’s interest income each month on the commercial loan port-
folio. The bank was well-controlled and the team reasoned that if they satisfied
themselves with the controls over the production of accounting information
using an integrated test facility, and did quality analytical procedures on the
aggregate commercial loan interest income, it would be possible to eliminate
much time-consuming detailed testing of individual interest income calcula-
tions.

Often regression models are built by thinking of the price and quantity
dimensions of the variable of interest. In this case, a quantity dimension was the
average monthly loan portfolio, for which audit satisfaction had been derived in
part from a test.circularization of customers. However, the team first excluded
non-performing loans from the portfolio since they were typically not generat-
ing any income. A second quantity dimension included in the model was time,
since the number of days in a given month could vary from twenty-eight to thir-
ty-one. The price dimension was provided by the average market rate of interest
for each month. Some experimentation. was done with both U.S. prime and the
London interbank overnight rate (LIBOR) individually and'in combination,
before it was established that the inclusion of U.S. prime alone resulted in the
model with the best predictive power.

The model ‘'was built to predict monthly recorded interest income. However,
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the auditors recognized that monthly income was sometimes affected by certain
non-routine transactions, of which the three most common examples were the
following:

* Interest was sometimes received on non-performing loans and credited
to income,

* When a loan was classified as non-performing,.any unpaid interest
accrued on that loan was reversed.

« On occasion, a non-performing loan was restored to the performing
category, and previously reversed income was restored (usually
because the customer had paid the arrears).

The audit team decided that it would wish to know of and examine non-rou-
tine transactions individually, and so they were extracted from the monthly
recorded income figure used for the regression model.

Monthly data for the two years preceding the year subject to audit were
obtained for average adjusted performing loans, average U.S. prime, number of
days in the month, and adjusted interest income. The resulting regression model
was able to predict about ninety-four percent of the month-to-month fluctuation
in interest income during this base pertod, which the auditors regarded as satis-
factory reliability. All of the descriptor variables had significant t-statistics,
indicating that they were contributing meaningfully to the model. Statistical
tests did not indicate any problems. Therefore, the model was used to predict
monthly interest income for the year subject to audit.

The results were very satisfactory. The aggregate of the twelve months’
recorded income was only thirteen percent different from the aggregate of the
twelve months’ regression predictions, a difference which the audit team did not
consider to be significant. The -aggregate precision of the estimates for the pre-
diction period was +/- 2.1%; which was considered to be acceptably tight rela-
tive to the materiality for the engagement. In fact, this precision will very likely
improve in the future as more months’ data are added to the base model-used to
create the regression equation. Finally, none of the individual monthly recorded
balances were statistically different (ninety-five percent confidence was used)
from the corresponding regression estimates.

In this case the audit team believes that the use of regression analysis has
helped to reduce substantially the time required by them to obtain audit satisfac-
tion with respect to a substantial proportion of the client’s interest income. At
the same time,. the auditors’ awareness of the non-routine transactions was
heightened by their need to identify them and exclude them from the recorded
income figures used in the regression model. The audit effort is properly
focused on ensuring that the accounting for these transactions is correct.

A Time-Series Illustration for Expenses

The auditors of a Fortune 500 company decided to use regression analysis
software for their audit of payroll costs at a major division. Their objective was
to assess the risk that recorded payroll costs might be misstated for any quarter.

They decided to use gross payroll costs as the dependent variable. after first
excluding incentive compensation which they decided to test in detail. As
explained above, many regression models have measures of price and quantity
as descriptor variables. After considering various possibilities, the audit team
selected the average monthly number of employees as the quantity variable, as
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obtained from personnel department statistics, and the consumer price index as
the price variable.

Actual data was obtained for the previous five years, or for twenty quarters
in total. It was then realized that during the period, two special events had
occurred which were not reflected in the model. During one quarter, the divi-
sion had incurred a significant level of severance costs :as-part of a staff reduc-
tion program, while just before the end of another quarter a significant level of
new hiring had taken place, affecting the headcount statistics significantly for
that quarter, but having only ‘a negligible effect upon the compensation costs.
Additional variables were created to control for the effect of those two. pro-
grams.

Based on the data for the twenty quarters, a regression model was created
which was able to explain about ninety-five percent of the quarter-to-quarter
fluctuation in payroll costs. However, six of the twenty quarters exhibited dif-
ferences between actual and predicted payroll costs which were statistically sig-
nificant at a confidence level of ninety-five percent. Of those six, two quarters
had particularly large differences on the order of four to five percent of the
recorded payroll costs. Further analysis was planned to understand better the
causes of these fluctuations. If the causes, once understood, were reflected in
the model, the model would become an even more effective prediction tool. In
other payroll applications, descriptor variables have included vacation pay, sick
pay, overtime, down-time; and part-time employee factors, as well as the influ-
ence of the mix of unionized and non-union personnel.

While possible refinements to the base model differences were being investi-
gated, the andit team used the existing model to assess the risk of error in pay-
roll costs for the first two quarters of the current year. The aggregate payroll
cost for the six months exceeded the regression estimate by about two percent,
and the auditors decided that no further detailed testing of payroll costs was
required.

The benefit of this regression application was to direct the attention of the
auditors to quarters where payroll costs were significantly different from expec-
tation, and to minimize or even eliminate work on quarters which were closely
aligned with expectations. It should be noted that the concept would apply
equally to monthly payroll data, except that fewer than five years’ history would
suffice for model-building purposes.

A Cross-Sectional Illustration

A large food processor operates about forty plants producing the same baked
goods product line for sale to food retailers in their local geographic area. Part
of the audit strategy calls for field visits to a selected number of plants to assess
internal controls and to test accounting balances and transactions. The auditors
desired to develop a more sophisticated risk-based approach for deciding which
plants they would visit.

Each ‘plant is a profit center with its own balance sheet and income state-
ment. The principal items onthe balance sheet are receivables, inventories, and
accounts payable. Two important income statement items are cost of ingredients
and payroll costs. The auditors decided to build separate cross-sectional predic-
tive models for each of these five ‘accounting variables, using .as independent
variables other-accounting information and operating statistics such as sales.
pounds produced, and number of employees. The descriptor variables for each
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model varied depending on what was considered to be most relevant. The mod-
els produced were all effective at predicting most of the plant-to-plant variabili-
ty, ranging from about eighty-two percent of the fluctuations in payables to
ninety-eight percent of the fluctuations in payroll costs.

The auditors judgmentally ranked the risk of material error:for each of the
five dependent variables as 3, 2 or 1 (3 being highest risk) based on the past his-
tory of errors and other factors. The regression models were run, and the residu-
als captured for each variable for each plant (the residual is the difference
between the recorded amount and the regression estimate). The five residuals
for each plant were first standardized to take into account differences in the size
of the plants and the variables, then were weighted by the inherent risk factors,
and finally were added together to produce a single overall risk score for each
plant. The auditors intend to focus their location visits on the plants with the
highest risk scores. In addition, unusual fluctuations for any of the variables for
a location not visited are to be at least discussed with the plant controller to
determine whether there is a plausible explanation.

The auditors believe they have developed a much more objective approach to
selecting plants to visit. However, they recognize that their models are capable
of continutous improvement as they gain an improved understanding of the busi-
ness by investigating differences between actual and expected performance.
These investigations have identified such relevant factors as the introduction of
new product lines, unionization, intracompany purchases, economies of scale
effects, private label arrangements, and the possibility of obsolete wrappers or
similar disruptive factors influencing descriptor variables.
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