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ABSTRACT 

Malaria is a fatal yet preventable and treatable disease. It is commonly spread through the 

bite of an infected Anopheles mosquito. Malaria parasites belong to the Plasmodium genus and 

can be caused by the falciparum, malariae, ovale, vivax, and knowlesi species. Artemisinin is an 

endoperoxide lactone extracted from qinghaosu (Artemisia annua L. or sweet wormwood). It and 

its derivatives possess uncharacteristically rapid action against Plasmodium falciparum. 

Artemisinin is unique in its effectiveness in deadly cerebral malaria. The endoperoxide bridge is 

crucial for its antimalarial activity; however, how it aids in killing the parasite is unknown. 

While there are multiple suggested modes of action (MOA) for artemisinin, none to date 

have a well-characterized protein target except for PfATP6, proposed by Krishna, et al.  His 

work suggested that artemisinin binds to the homologous thapsigargin binding site of PfATP6. 

Herein, knowledge of the previously proposed mechanisms was utilized along with numerous 

computational techniques to determine a more detailed and plausible MOA for artemisinin 

against PfATP6. This led to the discovery of two new, putative PfATP6 binding sites for 

artemisinin. 

None of the previous work has explained the co-dependence of antimalarial efficacy on 

the concentration of Fe(II). In our work, we searched for putative sites containing a cysteine 

residue, Fe(II) and artemisinin in a conformation allowing for the well-accepted ring-opened C4 

primary artemisinin carbon radical to form a covalent bond with a cysteine thiol rather than 

undergoing an intramolecular self-emolative diradical ring closure.  Clearly there are geometric 
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constraints for a transition state that side-steps the latter reaction and instead allows for 

interception by a cysteine thiol.  We have suggested mechanistic possibilities for this capture by 

the artemisinin C4 radical and propose that PfATP6 is deactivated by blocking the Ca(II) channel 

by the modification of a cysteine at either C1031 or C92.  It is alternatively possible that these 

modifications lead to alterations in the function of the protein, rendering it dysfunctional. 

Structure-based virtual screening was then used to screen a commercial database of 

compounds to find novel inhibitors of PfATP6. Biological testing will be done to determine if 

targeting these new sites can produce potent antimalarials with less structural complexity than 

artemisinin itself. 
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CHAPTER 1 

 INTRODUCTION 
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1.1 MALARIA 

Malaria is one of the world’s most fatal diseases, although it is preventable and treatable.
1
 It

is the world’s third most deadly infectious disease, falling behind tuberculosis and pneumococcal 

respiratory infections. It is a mosquito-borne infectious disease that affects humans and other 

animals. The disease is commonly spread through the bite of an infected Anopheles mosquito.
2

As of 2013, 97 countries had ongoing malaria transmission. According to the World Health 

Organization (WHO), 3.4 billion people are at risk of malaria with 1.2 billion people being at 

high risk. In 2012 there was an estimated 207 million cases and an estimated 627,000 deaths 

from malaria with approximately 90 percent of the deaths occurring in sub-Saharan Africa. In the 

same year, malaria killed around 482,000 children under five years of age. This adds up to 1,300 

children per day or one child almost every minute.
3

Malaria parasites belong to the Plasmodium genus. Human malaria is caused by the 

Plasmodium falciparum, Plasmodium malariae, Plasmodium ovale, Plasmodium vivax, and 

Plasmodium knowlesi species.
5
 Infection by all species of Plasmodium begins with the bite of an

infected female Anopheles mosquito. After a silent infectious phase in the liver hepatocytes, 

exoerythrocytic merozoites pass into the bloodstream as merosomes that eventually rupture. This 

allows the parasite access to circulating erythrocytes. Merozoites rapidly invade erythrocytes, 

giving rise to poorly formed and rigid red blood cells as they grow and reproduce.
6
 Infection

leads to symptoms such as headache, fever, shivering, chills, vomiting, joint pain, and 

convulsions within 8 to 25 days.
7,8

 Plasmodium falciparum, also called malignant malaria, is the

most dangerous form of malaria with the highest rates of morbidity and mortality.
9
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Throughout history, there have been many therapeutics to manage and, in some cases, 

cure Plasmodium falciparum malaria. Quinine, shown in Figure 1.1, was the first Western 

treatment that was effective against Plasmodium falciparum malaria. Starting from the 17
th

century, it was the antimalarial of choice until the 1940s. Occurring naturally in the bark of the 

Cinchona tree, quinine is the only drug that has remained effective in the treatment of malaria. 

As of 2006, the World Health Organization (WHO) suspended quinine as the first-line treatment 

for malaria. It is now only used in the treatment of severe malaria or when artemisinins are not 

available.
 10,11,12,13

 The mechanism of action of quinine has not been fully resolved. It has been

hypothesized that it, along with other quinolone antimalarials, act in inhibiting hemozoin 

bicrystallization in the heme detoxification pathway. This facilitates the aggregation of cytotoxic 

heme, causing heme to accumulate in the parasite which leads to its death.
14

Chloroquine, shown in Figure 1.1, is a very effective drug for both the treatment and 

prevention of malaria. It was first used in the 1940s after World War II and was very good in 

curing all forms of malaria.
15 

Unfortunately, most strains of falciparum malaria are resistant to

chloroquine which may have come from the drug having been extensively used in mass drug 

administrations. Similarly to quinine, chloroquine acts by inhibiting hemozoin bicrystallization 

in the heme detoxification pathway. Other than acting as an antimalarial, chloroquine many other 

uses. It is used in the treatment of amoebic liver abscess, as an immune system suppressant, and 

is being investigated as a retroviral in human HIV-1/AIDS.
16,17,18

Mepacrine, shown in Figure 1.1 and also known as both quinacrine and Atabrine, was 

developed in the early 1930s and was used on a large scale during World War II. During this 

time, it was considered to be a very safe drug, but it is now considered to have too many 
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undesirable side effects and is no longer used.
15

 Its mechanism of action is uncertain, but it is

thought to act against the cell membrane.
19

 Mepacrine has many medical applications. Not only

is it an antimalarial, but it is also used to treat giardiasis, systemic lupus erythematosus, used as 

an intrapleural sclerosing agent, and is also used to treat tapeworm infections.
20

 It has also been

studied for use as a non-surgical sterilizing agent for women.
21

Mefloquine, shown in Figure 1.1, was first introduced in the 1970s, shortly after the end 

of the Vietnam War, and is structurally related to quinine. Not only is it used to treat malaria, but 

it also is used as a prophylactic antimalarial because of its long half-life.
15

 It is used to treat

chloroquine-resistant Plasmodium falciparum malaria and is a reasonable alternative for 

uncomplicated chloroquine-resistant Plasmodium vivax malaria. However, mefloquine is not 

useful against severe malaria.
22,23

 It is thought to act against malaria in the same way as quinine

and chloroquine. Mefloquine is associated with numerous neuropsychiatric side effects such as 

anxiety, hallucinations, depression, dizziness, tinnitus, and suicidal thoughts.
24

 It also is known

to cause abnormalities in heart rhythms.
23,25

Halofantrine, shown in Figure 1.1, was introduced in the 1980s, and it is not structurally 

related to quinine. It has a very short half-life, so it is not used as a prophylactic.
15

 To date, its

mechanism of action is unknown; however, a crystallographic study showed that this compound 

binds to hematin in vitro.
26

 Unlike other antimalarials, halofantrine is only used to treat malaria

and has no other uses. Similarly to mefloquine, halofantrine has many undesirable side effects. 

Several neuropsychiatric disturbances have been reported along with abdominal pain, diarrhea, 

vomiting, rash, headache, itching, and cardiac arrhythmias.
15,27
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Malarone is a drug combination of atovaquone and proguanil, which are shown in Figure 

1.1. The combination has been commercially available in the US since 2000. Malarone is used 

for both the treatment of malaria and the prevention of malaria; however, proguanil is an 

antifolate so caution should be exercised regarding its use as a prophylactic. The drug 

combination has undergone many clinical trials, and it was found that this combination is more 

than 95% effective against drug resistant falciparum malaria. Although some adverse effects 

have occurred, malarone is largely free from undesirable side effects. To date, this drug is very 

expensive.
15 

   Quinine      Chloroquine   Mepacrine 

  Mefloquine Halofantrine 
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Malarone (atovaquone/proguanil) 

Figure 1.1: Structures of antimalarials. 

1.2. ARTEMISININ 

Artemisinin is an endoperoxide antimalarial lactone that was derived from qinghao 

(Artemisia annua or sweet wormwood). This plant has been used medicinally for over 2,000 

years, and in the late 1500s, Li Shizhen recommended qinghao tea to treat malaria symptoms.
28

The earliest record of artemisinin being used medicinally dates back to around 200 B.C. in an 

unearthed manuscript entitled “Fifty-two Prescriptions”. Its antimalarial application was first 

described in “The Handbook of Prescriptions for Emergencies” in the fourth century.
29

 In 1967,

the Chinese army set up a plant screening research program, Project 523, to find a treatment for 

malaria to aid the malaria-stricken North Vietnamese army. Through the course of the research, 

artemisinin was discovered in the leaves of the Artemisia annua plant.
30, 31 

Figure 1.2: The chemical structure of artemisinin (1). 
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Artemisinin and its derivatives (artemether, artesunate, artemotil, dihydroartemisinin, 

etc.) possess the most rapid action of all drugs against Plasmodium falciparum malaria.
32

 Use of

the drug alone is highly discouraged by the World Health Organization (WHO) as this results in 

a high rate of parasite return. This could lead to a catastrophic resistance to artemisinin.
33

Instead, WHO recommends artemisinin combination therapies (ACTs) as the first line therapy 

against Plasmodium falciparum malaria. The artemisinin component kills the majority of the 

parasites quickly while the more slowly-eliminated portion clears the rest of the parasites.
34

Artemisinin has been found to be active against uncomplicated malaria, severe malaria, certain 

cancers, and helminth parasites.
35, 36, 37 

It is also seeing an increase in use against Plasmodium

vivax malaria.
38

1.3. SERCA/PfATP6 

Calcium pumps are calcium ATPases that transport calcium ions across a wide variety of 

cellular membranes by using the energy that is obtained from the hydrolysis of ATP. These 

pumps are members of the P-type family of ion pumps. The name, P-type, comes from the 

mechanism which involves the phosphorylation of a residue in the active site using the terminal 

phosphate in ATP. This results in conformational changes in both the ATP-binding domains and 

the calcium-binding transmembrane domain which is responsible for shuttling ions across the 

membrane.
39 

Calcium P-type ATPases are categorized into one of two different classes: plasma

membrane Ca
2+

 ATPases (PMCA) or sarcoplasmic/endoplasmic reticulum Ca
2+

 ATPases

(SERCA).
40 

Calcium is used to signal many cellular functions such as muscle contraction and 

synaptic transmission. The release of a large amount of free calcium can cause a fertilized egg to 
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drop, skeletal muscles to contract, and many other events. Also an elevated calcium level is taken 

to signify cell death and triggers the mechanisms of apoptosis. Cells use calcium pumps, or 

SERCA pumps, to accumulate calcium in the lumen of the endoplasmic reticulum and 

simultaneously regulate cytosolic calcium levels.
41 

For a cell to use calcium as a signaling

molecule, the cell must first create calcium gradients across its membrane. When a stimulus 

signal opens the calcium channels, calcium ions rush into the cytosol signaling muscle 

contraction.
42   

To construct differences in ion concentrations, calcium ions must be actively

pumped across the membrane. These pumps are needed to force the calcium back out of the 

cytoplasm returning the cell to its pre-signal state and allowing muscle relaxation. If the calcium 

is not forced out of the cytoplasm, the level remains high, and apoptosis commences.
39

The structure of SERCA consists of three main parts, which are the cytoplasmic 

headpiece, the stalk region, and the transmembrane domain. The cytoplasmic headpiece is 

composed of the nucleotide domain (N domain), the phosphorylation domain (P domain), the 

hinge region, and the actuator domain (A domain).
43

 The headpiece is connected to the

transmembrane domain which is comprised of ten alpha helices. While the ATPase is 

unphosphorylated, two of the helices form a cavity that is accessible from the cytosol and binds 

two calcium ions. ATP binds to a site in the N domain and phosphorylates an aspartate residue in 

the adjacent P domain. This causes a conformational change which brings the N and P domains 

closer together. This, in turn, results in a 90° rotation of the A domain, causing two of the 

transmembrane helices to rearrange. This rearrangement aids in the release of calcium into the 

lumen of the sarcoplasmic/endoplasmic reticulum.
39 
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Figure 1.3: Representation of SERCA-like proteins showing the P domain, the N domain, the A 

domain and the transmembrane domain.

Years ago, a hypothesis was proposed that a SERCA from Plasmodium falciparum, 

PfATP6, may be an important target for artemisinin. This was based on biochemical assays 

performed on oocytes that heterologously express PfATP6 and on parasite cultures. This is also 

based on the fact that PfATP6 is the only SERCA-like protein in the parasite’s genome and that 

artemisinins are structurally similar to thapsigargin, a selective, non-competitive inhibitor of 

mammalian SERCA.
44  
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Figure 1.4: Structure of thapsigargin (2). 

Thapsigargin, like artemisinin, is a sesquiterpene lactone extracted from a plant, Thapsia 

garganica. It works by raising the intracellular cytosolic calcium concentration by blocking the 

ability of SERCA to pump calcium out of the cytoplasm and back into the sarcoplasmic 

reticulum. This shut down of the pump results in a rapid calcium leak from calcium stores.
45

 An

antagonistic relationship was observed in the actions of artemisinin and thapsigargin from 

isobologram analysis and competition studies, indicating a common target. PfATP6 shares an 

overall 40% identity with human SERCA1 but an over 90% identity in the transmembrane 

domain. Also, mutation studies on PfATP6 suggested that certain mutations regulate its 

sensitivity to artemisinin. For example, in SERCA1, the thapsigargin binding site is near Phe-

256, and SERCA1 is insensitive to artemisinin. When Leu-263 of PfATP6 was mutated to a 

glutamate residue, artemisinin sensitivity decreased, and conversely, when the homologous 

glutamate residue in SERCA1, Glu-255, was mutated to a leucine, SERCA1 became sensitive to 

artemisinin. These results suggest that PfATP6 is a target for artemisinin.
42, 46

1.4 STUDIES OF PfATP6 AND ITS INHIBITORS 

Although many research groups have been researching PfATP6, very few inhibitors of 

this protein have been reported. Batista, et. al. published the synthesis, cytotoxicity, and 
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antiplasmodial activity of ent-kaurane derivatives. When tested in a cell-based assay, these 

compounds exhibited IC50 values ranging from 5.4 to 10.4 µM and very good selectivity indices. 

Later, members of the same group took the three most active compounds, shown in Figure 1.6, 

and performed rigid and flexible docking studies and binding energy analyses. All three 

compounds showed good binding energies against PfATP6, shown in Table 1.1. These data 

suggest that PfATP6 is a potential target for diterpene epoxides derived from ent-kauranes, and 

further optimization of these lead compounds could provide a more potent and selective 

antimalarial.
47,48

3 4       5 

Figure 1.5: Structures of the three most active diterpene ent-kaurane derivatives. 

Table 1.1. Calculated binding energies (kcal/mol) of the three most active diterpene 

antiplasmodials. 

Compound Rigid Binding Energy Flexible Binding Energy 

3 -7.7 -6.6 

4 -7.8 -6.3 

5 -8.4 -6.8 
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Curcumin, a yellow spice found in the root of Curcuma longa, is a beta-diketone and has 

been used to cure diseases such as jaundice, indigestion, urinary tract diseases, rheumatoid 

arthritis, insect bites, and cancer. Curcumin was found to act synergistically with artemisinin 

against Plasmodium berghei and can also serve as a potent inhibitor against chloroquine-resistant 

Plasmodium falciparum.  However, its mechanism is not fully elucidated yet. To examine the 

possibility of curcumin analogs as ligands for PfATP6, 351 curcumin derivatives from the ZINC 

database were docked into a homology model of PfATP6 using two different docking programs. 

Docking results showed that more than 50 curcumin analogs can bind to PfATP6 with similar, or 

better, affinity than curcumin itself. One compound, ZINC05606394, was predicted to bind 

better than curcumin by both docking programs.
49

Figure 1.6: Structures of curcumin (6, left) and the curcumin analog, ZINC05606394. 

Table 1.2: Glide docking scores and FlexX docking scores of curcumin and its analogs.
49

Compound Glide score Compound FlexX score 

ZINC13781298 -7.890 ZINC49111530 -19.8003 

ZINC49881409 -7.878 ZINC05606394 -19.2761 

ZINC44281717 -7.796 ZINC28955244 -18.2869 

ZINC05606394 -7.775 ZINC35050563 -15.8370 

ZINC13781298 -7.755 ZINC00899824 -15.2578 

ZINC49124982 -7.669 ZINC28955244 -13.9284 

curcumin -6.753 curcumin -13.9685 
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Uhlemann, et. al. studied the possible mechanism of action of a fully synthetic peroxidic 

antimalarial, RBX11160 (OZ277). In this compound, the crucial peroxidic pharmacophore of the 

artemisinins is present within a 1,2,4-trioxane heterocycle. Since they have this feature in 

common, the group tested the idea that RBX11160 may also specifically inhibit PfATP6. Several 

experiments were performed including ATPase assays, Plasmodium falciparum hexose 

transporter (PfHT) glucose reuptake experiments, culturing of parasites and isobolograms, and 

immunofluorescence microscopy.
50 

Figure 1.7: Structure of RBX11160. (7) 

Figure 1.8: Apparent inhibitory constants for PfATP6 of RBX11160 and artemisinin. The 

apparent Ki values are 7,700 nM for RBX11160 (filled circles) (n = 3 for each value) and 79 nM 

for artemisinin (filled squares) (n = 5 for each value). (Figure duplicated with permission from 

Dr. Sanjeev Krishna of St. George’s University of London.)
50
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Figure 1.9: RBX11160 inhibition of transporter activities. (a) Inhibition of PfATP6 activity by 

RBX11160 (50 µM) compared with results for control preparations (n = 6 for both groups; P = 

0.0018). (b) Inhibition of mammalian SERCA by RBX11160 (100 µM; P = 0.13) and 

thapsigargin (10 µM; P = 0.0007) compared with results for control experiments. (c) Uptake of 

D-glucose in water-injected (diethyl pyrocarbonate [DEPC]) and PfHT-expressing oocytes is 

shown. There is no inhibition of PfHT activity by RBX11160 (50 µM, n ≥ 9 per column; P > 

0.5). DMSO, dimethyl sulfoxide. (Figure duplicated with permission from Dr. Sanjeev Krishna 

of St. George’s University of London.)
50 

Figure 1.10: Isobologram of RBX11160 and artesunate. Points lying above the line of additivity 

indicate antagonistic effects. The summed fractional inhibitory concentration index (FIC) for this 

assay [geometric mean (range)] is 2.4 (1.85 to 4.2). (Figure duplicated with permission from Dr. 

Sanjeev Krishna of St. George’s University of London.)
50
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RBX11160 inhibits PfATP6 with an IC50 of 7,700 nM, almost one hundred times less 

potently than artemisinin. However, all the data demonstrate that there are similarities and 

differences between RBX11160 and the semisynthetic antimalarials such as artemisinin and its 

derivatives.
50

Bousejra-El Garah, et. al. divided antimalarial compounds into two groups based on their 

chemical structures and their reactivities towards iron. The two groups were peroxide-containing 

drugs and quinolone-based drugs. The peroxide-containing compounds used were artemisinin 

derivatives, 1,2,4-trioxane, 1,2,4-trioxolane, and 1,2,4,5-tetraoxane derivatives. The quinolone-

based compounds used were chloroquine derivatives, quinine, and mefloquine. Trioxaquines, 

which are hybrid molecules with a dual mechanism of action, were also studied for comparison. 

The predicted binding affinities of these compounds with PfATP6 were evaluated using their 

binding free energies (Ebind kcal/mol) and inhibition constants (Ki, µM). The group concluded 

that the predicted binding affinities of these compounds for PfATP6 do not correlate with either 

their antimalarial activity or the reported inhibition of the protein.
51

Artemisinin derivatives 

    R=  R=

 (8) Artemisinin R=O    (10) Artemisone        (11) MP118 

 (9) DHA R=OH 
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R= 

    Artemisinin-acridine derivative (12)              Deoxyartemisinin (13) 

Figure 1.11: Artemisinin derivatives used in the study in reference #51. 

Trioxolanes and Tetraoxane 

 OZ277 (14) carba-OZ277 (15) 

RKA216 (16) 

Figure 1.12: Trioxolane derivatives used in the study in reference #51. 

Trioxaquines 

DU1301 (17)          DU1302 (18) 
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PA1103 (19) 

Figure 1.13: Trioxaquines used in the study in reference #51. 

Quinolines 

 Chloroquine (20)      21          22 

Quinine (23) Mefloquine (24) 

Figure 1.14: Quinoline-based compounds used in the study in reference #51. 

David-Bosne, et. al. performed an investigation that focused on purifying PfATP6 on a 

large scale and maintaining its enzymatic activity. They then tested classical SERCA1a 

inhibitors such as cyclopiazonic acid (CPA) to determine their ability to inhibit parasite growth. 

They wanted to test whether there is a correlation between the enzymatic inhibition of PfATP6 

and their antiplasmodial activity results. They then ran a test to measure inorganic phosphate 
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liberation to screen several compounds. The IC50 values for the inhibition of PfATP6 ATPase 

activity were determined for 1,680 compounds. Twenty of these compounds exhibited potent 

inhibitory effects with IC50 values less than 10 µM. Eight compounds were selected based on 

their ability to inhibit the growth of the FcB1 and 3D7 strains of Plasmodium falciparum. The 

group eventually concluded that there is no correlation between the inhibition of PfATP6 activity 

and the antiplasmodial activity of the compounds. They found that compounds can exhibit 

PfATP6 activity in vitro but possess limited antiplasmodial activity and vice versa.
52

25 26       27 

       28   29       30 

31   32 

Figure 1.15: Structures of the compounds that were identified to be potent inhibitors of PfATP6. 
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Table 1.3: Effect of SERCA classical inhibitors upon Plasmodium falciparum growth in vitro. 

IC50 PfATP6: values of the inhibition of the ATPase activity determined on the purified PfATP6. 

Indication of the IC50 values for each drug on two P. falciparum laboratory strains differently 

resistant to chloroquine (3D7 and FcB1). Values (µM) correspond to at least three biological 

replicates. ND= not determined.
52 

Compound IC50 PfATP6 IC50 FcB1 IC50 3D7 

Thapsigargin 150 6.1 ± 1.05 11.5 ± 5.7 

BHQ 65 17.2 ± 11.3 30.6 ± 13.5 

CPA 0.4 4.9 ± 0.9 8.8 ± 3.4 

Chloroquine ND 0.13 ± 0.02 0.012 ± 0.002 

Table 1.4: IC50 of the compounds identified to be potent inhibitors of PfATP6 and chosen to be 

tested on P. falciparum cultures. IC50 PfATP6: values of the inhibition of the ATPase activity 

determined on the purified PfATP6; IC50 FcB1/IC50 3D7: effect of the identified PfATP6 

inhibitors on two P. falciparum strains differently resistant to chloroquine (3D7 and FcB1). 

Values (µM) correspond to at least three biological replicates.
52

Compound IC50 PfATP6 IC50 FcB1 IC50 3D7 

25 3.0 ± 2.2 71 ± 25 108 ± 8 

26 1.1 ± 0.5 57 ± 15.8 53 ± 19 

27 3.1 ± 1.0 88 ± 33 91.5± 16 

28   1.2 ± 0.6     169 ± 17      241 ± 19 

29   1.0 ± 0.6 6.2 ± 1.7 4.9 ± 2.1 

30 1.0 ± 0.6 2.3 ± 1.2 3.1 ± 1.2 

31 8.5 ± 1.6 14.3 ± 3.6 14.8 ± 7.7 

32 7.0 ± 5.4 61 ± 26 62 ± 26 

The topic of artemisinin is not an unfamiliar one to our research group. Previously in our 

group, Sun, et. al., focused their attention on using the natural product sesquiterpene, 

thapsigargin, as a potential lead compound for drug discovery. Thapsigargin belongs to the 
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guaianolide class of sesquiterpenes, and as mentioned before, it is a highly potent and specific 

irreversible SERCA inhibitor. It also moderately inhibits PfATP6. While attempting to 

synthesize thapsigargin, a precursor, 33, was designed and named thaperoxide. This compound 

showed striking similarities to both artemisinin and thapsigargin. Derivatives of thaperoxide 

were synthesized to derive a structure-activity relationship (SAR). The activities of these 

derivatives were evaluated and compared to the activities of both artemisinin and thapsigargin.
53

     33           34     35 

     36 37     38 

   39    40       41 
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     42      43        44 

  45             46    47 

       48 49 50 

  51     52 

Figure 1.16: Structures of the guaianolide-endoperoxides that were synthesized and tested in 

reference #51. 
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Table 1.5: Antimalarial Activity against W2 Clones of P. falciparum 

Compound no. IC50 (µM) Compound no. IC50 (µM) 

33 0.29 ± 0.01 44 0.23 ± 0.09 

34 9.11 ± 0.21 45 0.57 ± 0.04 

35 NA 46 0.37 ± 0.00 

36 NA 47 0.61 ± 0.03 

37 NA 48 0.27 ± 0.02 

38 NA 49 NA 

39 4.60 ± 0.10 50 3.40 ± 0.87 

40 1.05 ± 0.00 51 0.024 ± 0.02 

41 1.04 ± 0.01 52 7.50 ± 0.04 

42 0.62 ± 0.02 artemisinin 0.005 ± 0.00 

43 0.013 ± 0.000 thapsigargin 9.92 ± 0.10 

NA = not active up to 10 µM 
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CHAPTER 2. PREVIOUSLY PROPOSED MECHANISMS 
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As previously mentioned, artemisinins contain an endoperoxide bridge that is absolutely 

crucial for their antimalarial activity. However, exactly how this endoperoxide bridge aids in 

killing the parasite is still a controversial subject. Theories have emerged over the years ranging 

from an artemisinin-heme interaction in the parasite that generates carbon-centered radicals to 

the inhibition of the sarcoplasmic/endoplasmic reticulum Ca
2+

 ATPase inside the parasite. All

will be discussed. 

2.1. HEME MECHANISM 

A portion of the life cycle of Plasmodium falciparum, as stated earlier, occurs in the 

erythrocyte, or red blood cell, of a human host. It is during this stage that hemoglobin is utilized 

by the parasite as a food source. The hemoglobin is then taken into the food vacuole and broken 

down by proteolytic enzymes called plasmepsins. The broken down hemoglobin is further 

degraded into amino acids by food vacuole cysteine proteases known as falcipains.
54,55  

The proposed heme mechanism is that hematin, which is ferric protoporphyrin IX or 

Fe(III)PPIX, upon reduction to heme, or Fe(II)PPIX, is the source of ferrous iron that is 

responsible for bioactivation of the endoperoxide bridge of artemisinin to cytotoxic radical 

species. Artemisinin-mediated oxidative stress is the proposed mechanism of action based on in 

vitro experiments with infected red blood cells or parasite membranes. Heme catalyzes the 

reductive decomposition of artemisinin, and artemisinin was shown to increase the 

methemoglobin concentration and to slightly reduce the glutathione and membrane fatty acid 

concentrations which result in a dose-dependent increase of cell lysis.
55

 The possible mechanism

is depicted in Scheme 2.1.  Further studies with Mn instead of Fe porphyrin led to isolable C4 

adducts to the porphyrin ring system shown in Figure 2.1.
56 
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Scheme 2.1: The possible mechanism for the artemisinin mediated lipid peroxidation of cell 

membranes. 

Lipid solubilized heme interacts with artemisinin followed by ferrous-mediated 

generation of oxygen and carbon radicals. These radicals are in the vicinity of target allylic 

hydrogens of unsaturated lipid bilayers. Hydrogen radical formation followed by oxygen capture 

results in the formation of lipid hydroperoxides. Fenton cleavage of the hydroperoxide forms 

reactive oxygen species such as hydroxyl radicals and superoxide which is thought to be the 

cause of damage to the food vacuole membrane. This damage leads to vacuolar rupture and 

parasite autodigestion. However, numerous workers in the field have proposed that parasite death 

is probably not caused by random cell damage from freely diffusing reactive oxygen species, but 

may involve specific radicals and targets.
55 
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Figure 2.1: Isolated reaction products of artemisinin with manganoporphyrin. 

2.2. CARBON RADICALS MECHANISM 

The free radical chemistry of artemisinin is very well defined and has been shown to 

involve an initial chemical decomposition induced by ferrous ions within the malaria parasite. 

This produces an oxygen radical initially but subsequently rearranges into one or both of two 

distinctive carbon-centered radicals. Scheme 2.2 shows the main radical pathways for 

artemisinin following endoperoxide-mediated bioactivation.
55 
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Scheme 2.2: Proposed mechanism of the in vitro reaction of artemisinin with FeII.

Since artemisinin (1) is an asymmetric endoperoxide, the peroxide oxygens can interact 

with ferrous ions in two ways: through O1 or through O2. Association through O1 produces an 

oxygen radical 2 that goes on to become a primary carbon radical 3. This radical is then thought 

to be scavenged by molecules such as heme or gluthione to create the corresponding adducts. 

Association through O2 provides an oxygen radical 5 that produces a secondary carbon radical 6 

via a 1,5-H shift. The final product is the stable hydroxydeoxoartemisinin 9. It has been proposed 

that alkylation by the radical intermediates of biomacromolecules results in the death of the 

malarial parasite.
55

  It has also been suggested that the non-isolable epoxide 8 was responsible

for protein alkylation, but total synthesis of 13-carba-artemisinin by Avery, et al led to a stable 
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epoxide that was without activity, yet its peroxy precursor was of similar potency to artemisinin 

(cf. Figure 2.2).
57

 

Figure 2.2: Activities of peroxidic and non-peroxidic derivatives of artemisinin. 

These studies clearly show that the epoxide proposed by Posner, compound 8 (Scheme 

2.2), is an unlikely intermediate that, even if it did form, would not be essential for activity. 

2.3. CYSTEINE MECHANISM 

Following the pioneering work of Meshnick and Posner, the cleavage theory could not be 

further developed because there was no logical link between the death of the parasite and the 

damage occurring to free heme since it is not essential to the life of the parasite. Wu et.al. 

reported that non-heme iron in the presence of cysteine can also cleave artemisinin efficiently, 
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and the transient carbon radical formed can covalently bind to the ligand at iron through a sulfur 

atom.
58

 

Under near physiological conditions, FeII plays a negligible role. However, free FeII ions 

may form complexes with amino acids and be greatly activated. For instance, in the presence of 

cysteine, artemisinin can be degraded quite rapidly. It was believed that the catabolism of 

hemoglobin causes a higher concentration of free amino acids in infected erythrocytes than in 

uninfected erythrocytes, and the malaria parasite has a high concentration of reduced glutathione 

which is the main sulfhydryl-containing reducing agent in physiological systems. This was the 

first piece of established evidence for intermolecular interactions involving artemisinin.
58

Scheme 2.3: Acetate elimination mediated by a thiol. 

 9          10        11 

Scheme 2.3 shows how the carbon radical formed from the FeII association with O1 

interacts with a thiol such as in cysteine and then eliminates an acetate. The formation of 11 

provides unequivocal evidence for the involvement of the highly reactive primary radical 9. They 

envisaged that 9 may intramolecularly attack the cysteine sulfur atom complexed to the FeIII ion 

and release an FeII ion. The product resulting from such an attack after degradation leads to 

structure 13 as shown in Scheme 2.4.
58 
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Scheme 2.4: Intramolecular attack of a cysteine sulfur to form a complex. 

     12 13 

The importance of the concatenation of artemisinin and cysteine observed here in this 

simple chemical model system lies in the precise mechanistic basis it offered at the molecular 

level for the radical-mediated alkylation of proteins. Such a basis had been missing in all 

documented investigations to date.
58  

Although mechanistically pleasing, the difficulty with this

mechanism is that a covalent adduct of cysteine to Fe(II) is required.  Under physiological 

conditions, formation of Fe(II)-SR compounds are implausible thermodynamically and even 

intuitively; if cysteine thiols or other biological thiols were susceptible to formation of covalent 

bonds, mammals would act as Fe(II) scavengers shutting down biochemical pathways, and the 

food we eat would be a deadly poison. A more complicated mechanism is therefore more likely 

to be involved that we will discuss shortly. 

2.4. COFACTOR MECHANISM 

Haynes et.al. conducted many experiments to point to the unlikelihood of carbon radicals 

or heme triggering the antimalarial activity of artemisinin and adopted a rather different 

approach to the consideration of the mechanism of action. The antimalarial methylene blue 

works by affecting the redox behavior of parasite flavin-dependent disulfide reductases such as 

glutathione reductase that control oxidative stress in the parasite. The synergism observed 
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between methylene blue and the artemisinin derivative artesunate suggests a complementary 

mode of action.
59

 

Scheme 2.5: The ascorbic acid and methylene blue transformation of artemisinin. 

From the proposed scheme, we see that Haynes found that artemisinins are transformed 

by leucomethylene blue which is generated from methylene blue and ascorbic acid in situ in 

aqueous buffer at physiological pH into single electron transfer (SET) or two electron reduction 

rearrangement products. A ketyl arose that was oxidized to the carbonyl. Since artemisinins 

generate reactive oxygen species and behave synergistically with methylene blue and 

doxorubicin, they concluded that artemisinins act as electron acceptors and are likely to interfere 

with redox-active cofactors such as flavoenzymes.
59 
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2.5. SERCA/PfATP6 MECHANISM 

As discussed under preceding hypotheses, studies have suggested that artemisinin acts by 

heme-dependent activation of the endoperoxide bridge occurring within the food vacuole. 

However, localization of artemisinin to parasite and not food vacuole membranes and the fact 

that artemisinin can effectively kill the ring stage of the parasite even though it lacks hemazoin 

argue against the food vacuole being a major site for drug action. Krishna et.al. discovered that 

artemisinin shows structural similarities to thapsigargin, a highly specific inhibitor of 

sarco/endoplasmic reticulum Ca
2+

-ATPase (SERCA). They proceeded to hypothesize that when

activated, artemisinin acts by specifically and selectively inhibiting PfATP6, the only SERCA-

type CA
2+

-ATPase sequence in Plasmodium falciparum.
44

PfATP6 was expressed in Xenopus laevis oocytes. It was found to be inhibited not only 

by artemisinin, but also by thapsigargin and another mammalian SERCA inhibitor, cyclopiazonic 

acid. They then assessed the inhibitory properties of chloroquine, quinine, and artemisinin on 

transporter proteins encoded by P. falciparum as well as their effects on SERCA1a. None of 

these structurally diverse compounds interferes non-specifically with the function of integral 

membrane proteins of P. falciparum. SERCA1a activity was also not affected by these 

compounds.
44

PfATP4 is the only other Ca
2+

-ATPase-like sequence identified in the P. falciparum

genome and defines a non-SERCA subclass of Ca
2+

-ATPase unique to apicomplexan organisms.

The antimalarials tested also did not inhibit the activity of PfATP4. The Ca
2+

-ATPase activity of

PfATP6 was inhibited by artemisinin but not by chloroquine or quinine. Even at relatively high 

concentrations, artemisinin inhibits PfATP6 with high specificity. Endogenous Ca
2+

-ATPase
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activity is also resistant to the action of artemisinin, which demonstrates the unique specificity of 

artemisinin for PfATP6.
44

The interactions of artemisinin and thapsigargin with PfATP6 were compared by 

measuring their inhibitory constants. Thapsigargin irreversibly inhibited Ca
2+

-ATPase activity

with 1:1 stoichiometry, and the inhibitory profile of artemisinin was directly superimposable 

over that of thapsigargin, showing that they inhibit PfATP6 with the same potency and 

stoichiometry in vitro.
44

Since both thapsigargin and artemisinin specifically inhibit PfATP6, Krishna et.al. went 

on to predict that they would exhibit mutual antagonism in cultured parasites. They were 

administered simultaneously in varying concentrations. As predicted, thapsigargin antagonized 

the parasiticidal activity of artemisinin. The two drugs show significant antagonism indicating 

that artemisinin specifically inhibits PfATP6 in intact parasites. To confirm that PfATP6 is the 

target for artemisinins, they compared inhibitory constants of a range of artemisinin derivatives 

such as dihydroartemisinin, artesunate, artemether, artemotil, and arteflene against PfATP6 in 

oocytes with their ability to kill parasites in vitro. Almost perfect correlations existed between 

the inhibitory potencies and the IC50 values from cultured parasites. To confirm that ferrous ions 

are indeed necessary for artemisinin’s antimalarial activity, desoxyartemisinin, artemisinin 

without the endoperoxide bridge, was assayed and found to be inactive against PfATP6. 

Chelation of iron by desferrioxamine abrogates the antiparasitic activity of artemisinins. These 

studies support PfATP6 as a target of artemisinin, and it likely operates via an Fe
2+

-dependent

activation mechanism. This allowed, for the first time, rational biological target-guided drug 

design efforts to be carried out.
44 
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CHAPTER 3. DEVELOPMENT OF A HYBRID MECHANISM 

*Shuneize E. Slater, Jakub Kollar, Kuldeep K. Roy, Khaled M. Elokely, Sanjeev Krishna,

Robert J. Doerksen, Mitchell A. Avery, Unpublished.  
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3.1 INTRODUCTION 

After studying all of the previously proposed mechanisms of action, we began sifting 

through them to determine which was more feasible. However, we discovered that each 

mechanism was flawed for various reasons. The alkylation of heme was not acceptable as heme 

is not important to the survival of the parasite, and carbon radicals did not completely answer the 

question as random alkylation of biomolecules seemed far-fetched. The SERCA and cysteine 

hypotheses finally gave a specific target for artemisinin, but they give no further explanation of 

what happens after radical extraction. The two that caught our attention the most were the 

SERCA and the cysteine hypotheses, so we developed the PfATP6/ferrous ion/cysteine 

hypothesis, otherwise known as the Hybrid SERCA hypothesis. 

Our current hypothesis was not our first, however. Our first hypothesis suggested that a 

cysteine thiol moiety in the protein is able to recruit a ferrous ion as it is “passing by”. The 

ferrous ion then ligates the endoperoxide bridge of artemisinin. This would be possible in any of 

ten different locations. This hypothesis relieves us of finding a ferrous ion binding site and also 

of finding an artemisinin binding site as both are recruited when in the vicinity of the cysteine 

thiol. We abandoned that hypothesis as it would not be computationally efficient to examine 

every cysteine in the protein. We then hypothesized that a ferrous ion finds a binding site near a 

cysteine residue. The ion then ligates the endoperoxide bridge of artemisinin as it approaches. 

We looked, particularly, at the two calcium ions in the channel. Thinking that the calcium ions 

could exchange for the ferrous ions, we examined the pocket. We found that there are no 

cysteine residues near the calcium ion binding sites, and also the ferrous ions are not able to be 

coordinated by the same residues as the calcium ions. So this hypothesis, too, was discarded. 
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In our third hypothesis, we predicted that artemisinin would bind in its binding site 

somewhere near a cysteine residue. The endoperoxide bridge of artemisinin would then ligate the 

ferrous ion as it approaches. In this scenario, only artemisinin is required to have a binding site. 

In the final hypothesis, both artemisinin and the ferrous ion bind in their respective binding sites 

near a cysteine residue. Since the last two hypotheses seem more feasible, these are the two that 

we decided to investigate further. 

Figure 3.1: The optimal synchronous reaction that occurs between iron, artemisinin, and the 

cysteine residue of PfATP6. 

Figure 3.1 shows the importance of the orientation of the iron atom, the cysteine residue, 

and the peroxide bridge of artemisinin. The reaction that occurs between artemisinin and PfATP6 

is more than likely a synchronous reaction; however, it may occur in 2 steps. Either way, there 

are certain distances between the three components that need to be obtained. Once Fe
2+ 

cleaves

the peroxide bridge of artemisinin, a short-lived oxygen radical forms and quickly rearranges to a 

carbon radical. Carbon radicals are also extremely short-lived. Intramolecular destruction will 
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commence, and this leads to neutral products. Therefore, the geometry and the distances between 

the atoms are so significant. 

Figure 3.2: Mechanism of action of our third hypothesis. 

Figure 3.2 represents our third hypothesis. Artemisinin comes in and binds in its binding 

site near a cysteine residue. The ferrous ion is recruited and then ligates the endoperoxide bridge 

of artemisinin. Cleavage of the bridge effects an oxygen radical that rearranges to a carbon 

centered radical. This radical is in close proximity to the cysteine thiol moiety and is captured. A 

covalent sulfide bond is formed between the protein and artemisinin thus shutting down the 

calcium pump and leading to the death of the parasite. 
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Figure 3.3: Details of Putative Mechanism of our fourth hypothesis. 

Figure 3.3 represents our fourth hypothesis. The ferrous ion binds in its binding site near 

a cysteine residue. Artemisinin comes in and binds in its binding site nearby. The ferrous ion 

then ligates the endoperoxide bridge. Cleavage of the bridge effects an oxygen radical that 

rearranges to a carbon centered radical. This radical is in close proximity to the cysteine thiol 

moiety and is captured. A covalent sulfide bond is formed between the protein and artemisinin 
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thus shutting down the calcium pump and leading to the death of the parasite. We have 

exhausted many computational tools to test the likelihood of our hypotheses, and they will all be 

discussed thoroughly. 

3.2 STRUCTURE MODELING AND VALIDATION 

Protein structure modeling, or protein structure prediction, is the prediction of a protein’s 

folding and its secondary, tertiary, and quaternary structure from its primary structure or amino 

acid sequence. Structure modeling is one of the most important goals pursued by bioinformatics 

and is very important in drug design. Protein structure prediction is now more significant than 

ever. There is a huge amount of protein sequence data produced by modern large-scale DNA 

sequencing efforts such as the Human Genome Project. X-ray crystallography and NMR 

spectroscopy produce protein structures but are typically time-consuming and expensive and lag 

far behind the output of protein sequences.
60

The two major problems facing protein structure prediction are the calculation of protein 

free energy and finding the global energy minimum. Comparative protein modeling can partially 

bypass these issues. Although the number of proteins is vast, there is only a limited set of tertiary 

structural motifs to which most proteins belong. Comparative modeling uses previously solved 

protein structures as starting points, or templates.
61

Homology modeling, which is a type of comparative modeling, is based on the fact that a 

protein’s fold is more evolutionarily conserved than its amino acid sequence. This allows a target 

sequence to be modeled with reasonable accuracy from a very distantly related template; 

however, homology modeling is most accurate when the target and template have similar 

sequences.
61
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The 1,228 amino acid sequence of Plasmodium falciparum ATPase 6 (PfATP6) was 

obtained from the Plasmo Database (PlasmoDB) website and is as follows: 

MEEVIKNAHTYDVEDVLKFLDVNKDNGLKNEELDDRRLKYGLNELEVEKKKSIFELILN

QFDDLLVKILLLAAFISFVLTLLDMKHKKIEICDFIEPLVIVLILILNAAVGVWQECNAEKS

LEALKELQPTKAKVLRDGKWEIIDSKYLYVGDIIELSVGNKTPADARIIKIYSTSLKVEQS

MLTGESCSVDKYAEKMEDSYKNCEIQLKKNILFSSTAIVCGRCIAVVINIGMKTEIGHIQH

AVIESNSEDTQTPLQIKIDLFGQQLSKIIFVICVTVWIINFKHFSDPIHGSFLYGCLYYFKIS

VALAVAAIPEGLPAVITTCLALGTRRMVKKNAIVRKLQSVETLGCTTVICSDKTGTLTTN

QMTTTVFHLFRESDSLTEYQLCQKGDTYYFYESSNLTNDIYAGESSFFNKLKDEGNVEA

LTDDGEEGSIDEADPYSDYFSSDSKKMKNDLNNNNNNNNNSSRSGAKRNIPLKEMKSN

ENTIISRGSKILEDKINKYCYSEYDYNFYMCLVNCNEANIFCNDNSQIVKKFGDSTELALL

HFVHNFDILPTFSKNNKMPAEYEKNTTPVQSSNKKDKSPRGINKFFSSKNDNSHITSTLN

ENDKNLKNANHSNYTTAQATTNGYEAIGENTFEHGTSFENCFHSKLGNKINTTSTHNNN

NNNNNNSNSVPSECISSWRNECKQIKIIEFTRERKLMSVIVENKKKEIILYCKGAPENIIKN

CKYYLTKNDIRPLNETLKNEIHNKIQNMGKRALRTLSFAYKKLSSKDLNIKNTDDYYKL

EQDLIYLGGLGIIDPPRKYVGRAIRLCHMAGIRVFMITGDNINTARAIAKEINILNKNEGD

DEKDNYTNNKNTQICCYNGREFEDFSLEKQKHILKNTPRIVFCRTEPKHKKQIVKVLKDL

GETVAMTGDGVNDAPALKSADIGIAMGINGTEVAKEASDIVLADDNFNTIVEAIKEGRCI

YNNMKAFIRYLISSNIGEVASIFITALLGIPDSLAPVQLLWVNLVTDGLPATALGFNPPEH

DVMKCKPRHKNDNLINGLTLLRYIIIGTYVGIATVSIFVYWFLFYPDSDMHTLINFYQLSH

YNQCKAWNNFRVNKVYDMSEDHCSYFSAGKIKASTLSLSVLVLIEMFNALNALSEYNS

LFEIPPWRNMYLVLATIGSLLLHVLILYIPPLARIFGVVPLSAYDWFLVFLWSFPVIILDEII

KFYAKRKLKEEQRTKKIKID 
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The sequence was then aligned with a 2.4 Ångstrom resolution crystal structure of human 

calcium ATPase (PDBID: 2AGV) using ClustalW. The alignment was then visually inspected 

and manually altered to match the alignment obtained by Prime
62

, which is the protein structure

prediction module of Schrödinger. The final alignment was used as an input for the building of 

100 homology models of PfATP6 using Modeller version 9.12 software. After the 100 models 

were generated they underwent loop refinement, and their Ramachandran plots were analyzed to 

find the models with the least number of outliers. Six models (Model 3, Model 4, Model 10, 

Model 11, Model 13, and Model 44) were chosen to be saved as pdb files, uploaded into the 

Maestro
62

 workspace, which is the visual interface for all of Schrödinger’s applications, and

prepared and minimized using the Protein Preparation Wizard
62

 default procedure which is as

follows: the bond orders were assigned, hydrogens were added, zero-order bonds were created to 

metals, disulfide bridges were formed, waters beyond 5 Å from het groups were deleted, non-

coordinated water molecules and all het groups other than thapsigargin were deleted, and finally 

the protein was minimized. 
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Figure 3.4: Sequence alignment of PfATP6 and 2AGV. 
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Figure 3.5: After Modeller homology modeling and loop refinement, the complete structure of 

Model 3 emerged as is shown here in red. 

Figure 3.6: The Ramachandran plot for Model 3 shows that 93.7% of the residues are in the 

favored region, 4.8% of the residues are in the allowed region, and only 1.6% of the residues are 

in the outlier region. 
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Figure 3.7: After Modeller homology modeling and loop refinement, the complete structure of 

Model 4 emerged as is shown here in aquamarine. 

Figure 3.8: The Ramachandran plot for Model 4 shows that 94.1% of the residues are in the 

favored region, 4.6% of the residues are in the allowed region, and only 1.4% of the residues are 

in the outlier region. 
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Figure 3.9:  After Modeller homology modeling and loop refinement, the complete structure of 

Model 10 emerged as is shown here in magenta. 

Figure 3.10: The Ramachandran plot for Model 10 shows that 94.9% of the residues are in the 

favored region, 3.6% of the residues are in the allowed region, and only 1.6% of the residues are 

in the outlier region. 
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Figure 3.11:  After Modeller homology modeling and loop refinement, the complete structure of 

Model 11 emerged as is shown here in yellow. 

Figure 3.12: The Ramachandran plot for Model 11 shows that 94.2% of the residues are in the 

favored region, 4.3% of the residues are in the allowed region, and only 1.6% of the residues are 

in the outlier region. 
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Figure 3.13:  After Modeller homology modeling and loop refinement, the complete structure of 

Model 13 emerged as is shown here in peach. 

Figure 3.14: The Ramachandran plot for Model 13 shows that 94.5% of the residues are in the 

favored region, 3.9% of the residues are in the allowed region, and only 1.7% of the residues are 

in the outlier region. 
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Figure 3.15: After Modeller homology modeling and loop refinement, the complete structure of 

Model 44 emerged as is shown here in gray. 

Figure 3.16: The Ramachandran plot for Model 44 shows that 94.6% of the residues are in the 

favored region, 4.2% of the residues are in the allowed region, and only 1.3% of the residues are 

in the outlier region. 
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To determine the validity of the Modeller models, the six prepared and minimized models 

were used to generate receptor grids of the active sites using the default options available in 

Glide
62

, which is a docking program in the Schrödinger suite. The co-crystallized ligand,

thapsigargin, was used to indicate the active site. After the grids were generated, artemisinin, 

thapsigargin, and the thaperoxides were drawn in the Maestro workspace, then submitted to 

MacroModel
62

 for conformational searches. MacroModel is a module of the Schrödinger suite. It

combines force fields, solvation models, and an advanced conformational searching method to 

comprise an advanced and complete molecular modeling package. A total of 855 conformers 

were created and then docked both flexibly and rigidly into the active site of all of the models 

using Glide. After many tries including using positional constraints to bias the tricyclic core to 

the phenylalanine in the active site, no correlation could be detected between the biological 

activities and docking scores. We drew an assumption that using the extremely large ligand, 

thapsigargin, to indicate the active site was causing all the small molecules to fit into the active 

site posing an inability to properly rank the compounds. So the six models were again prepared 

and minimized, but this time all co-crystallized ligands were deleted. Receptor grids of the active 

sites were then generated by specifying residues Leu263, Phe264, Gln267, Ile977, Ile981, 

Asn1039, Leu1040, Ile1041, and Asn1042. Also realizing that the thaperoxide compounds had 

only undergone a cell-based assay and not a PfATP6 target-based assay, we decided to use the 

eight compounds assayed by David-Bosne et.al. that were proven to have PfATP6 inhibitory 

activity in a target-based assay as test compounds. These eight compounds were drawn and 

minimized in the Maestro workspace for visualization. The compounds were then submitted to 

MacroModel conformational search. 1,488 conformers were generated and then docked into the 
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active sites using Glide. However, no significant correlation could be found between the docking 

scores and the reported biological activities. 

Prime was also used to construct a homology model of PfATP6. In the homology model 

building panel, the PfATP6 sequence was pasted into the text box, and a BLAST homology 

search was initiated to find homologous proteins. PDBID 1SU4, having an overall 44% identity 

with the input sequence, was selected as the template. ClustalW was then used to align the two 

sequences. An energy-based building method was selected because it is more accurate than the 

knowledge-based method. The two bound calcium ions in the channel were chosen to be 

included in the model. Loop refinement was not performed. This procedure produced four 

models. To determine their validity, the Prime models were prepared and minimized in the same 

manner as the Modeller predicted models. Receptor grids were made of the active sites of the 

models by specifying Leu263, Phe264, Gln267, Ile977, Ile981, Asn1039, Leu1040, Ile1041, and 

Asn1042. The 1,488 conformers of the eight PfATP6 inhibitors were then docked into the grids 

using Glide docking. The fourth model was able to identify the four most active compounds and 

the least active compound and ranked them accordingly. So this was the model chosen for further 

studies and experimentation. 
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Figure 3.17:  The fourth and best model predicted by Prime shown in green, also showing the 

bound calcium ions in the channel. 

3.3 PROTEIN POCKET DETECTION 

Predicting functional sites in protein structures such as ligand binding sites or catalytic 

sites is very important. It largely relies on the identification and characterization of clefts and 

cavities in the protein structure, and it can guide the design of small molecules that could interact 

with a protein and modulate its activity and function. Many online services have been proposed 

for pocket detection. The fpocket protein pocket detection program was introduced a few years 
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ago and was found to be able to correctly identify more than 90% of known binding sites in both 

holo and apo proteins. It also ranks the sites found in the protein based on their “druggability”.
63

The validated PfATP6 model was uploaded, and fpocket was executed. After concluding, 51 

pockets were found in the protein. 

Figure 3.18: Model of PfATP6 showing the 51 pockets (in various colors and different sized 

spheres) found by fpocket. 
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3.4 BLIND DOCKING 

Blind docking is used when only the structure of the macromolecule or protein and the 

structure of the ligand are known. There is no prior knowledge of the binding site.  This 

application is named blind docking because the docking algorithm is not able to “see” the 

binding site but can still find it.
64

  

The most important requirement of a blind docking calculation is its ability to distinguish 

between the actual binding site and nonspecific and/or energetically unfavorable sites. AutoDock 

packages have been proven to be efficient and robust at finding binding pockets and binding 

orientations of ligands. This makes this program particularly attractive because one method can 

be used to search for the binding site and to accurately dock the ligands.
64

Since the AutoDock packages have been recognized for their ability not only to identify 

the binding site of ligands but also to dock the ligands well, we decided to use AutoDock Vina to 

identify all of the artemisinin binding sites in PfATP6. The structure of artemisinin was drawn 

and minimized in the Maestro workspace and then saved as a pdb file. The pdb file of the 

PfATP6 homology model was uploaded into AutoDock Vina. Hydrogens were added, and the 

protein was saved as a pdbqt file. A grid box of the protein was created to tell the program where 

to dock the ligand. Since this is blind docking, the entire protein structure was included in the 

grid box. The minimized structure of artemisinin was then uploaded to AutoDock Vina and 

saved as a pdbqt file. Torsions were not required as there are no rotatable bonds in artemisinin. A 

text file was used to identify the protein, ligand, grid box, grid spacing, and the exhaustiveness of 

the program. The command prompt was used to run the docking algorithm using a specified 

input text file. Nine results were obtained, but only 4 artemisinin binding sites were found. 
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Interestingly, these four sites were the sites ranked the most druggable by the fpocket pocket 

searching software. These sites were then extensively analyzed. 

Figure 3.19: These are the four pockets that AutoDock Vina found that are able to be 

artemisinin binding sites, shown as white, red, blue, and yellow spheres. 
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Two of the pockets have been explored previously, as the pocket indicated by the red 

spheres is the thapsigargin binding pocket, and the pocket indicated by the blue spheres is the 

cyclopiazonic acid (CPA), another mammalian SERCA inhibitor, binding pocket. However, two 

of the pockets, indicated by the white and yellow spheres, have not been examined before, so 

these were the pockets that we decided to explore further. Upon examination, it was discovered 

that both of these new sites have an accessible cysteine residue present, and we found that to be 

quite promising. 

3.5 ION PREDICTION AND MODELING 

Approximately one-third of all proteins bind at least one metal ion, and many different 

metal ion binding proteins are found in humans. The structure of a protein determines its 

function and interactions with other biomolecules. Metal ions function in stabilizing the protein, 

inducing conformational changes upon binding, and may even participate in catalysis. Hence, 

identifying metal ion binding sites is the key to understanding the functional mechanisms of 

metal ion binding proteins.
65

Metal ion binding proteins are identified and characterized experimentally by numerous 

processes such as nuclear magnetic resonance spectroscopy, gel electrophoresis, metal affinity 

column chromatography, electrophoretic mobility shift assay, absorbance spectroscopy, and 

mass spectroscopy. These techniques require complex steps, special equipment, and are 

unsuitable for unknown targets. Therefore, other means of detecting metal ion binding sites are 

in high demand, and computational methods can offer some assistance to meet this demand.
65

Generally, the part of the protein that interacts with substrates, ligands, or other proteins 

are well conserved and are in close spatial proximity to each other although they may be far apart 
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in the sequence. These residues usually make up approximately 10 to 30% of a protein sequence. 

Cysteine, histidine, glutamate, and aspartate are the residues that most commonly bind metal ions 

because the atoms in their polar or charged side chains are able to coordinate the ion.
65

The fragment transformation method combines sequence and structural information 

contained within spatially local fragments. Since the three-dimensional structure and residue type 

are often conserved, similar binding regions can be found by comparing the types of residues and 

their relative locations with those of computationally constructed metal ion binding residue 

templates. First, structures of known metal ion binding proteins were obtained from the Protein 

Data Bank. To be considered a metal ion binding protein, the protein must contain a polypeptide 

chain. If more than one polypeptide chain is present, then only chains that contain residues 

involved in metal ion binding were included. Also the length of the chain must be more than 50 

residues. Next, these proteins were used to generate a template database. The residues that were 

considered to be template residues must be at least partially within 3 Å of the metal ion center. 

Also, a site needed to contain more than two metal ion binding residues in order to be considered 

as a template.
65

Once the template has been completely constructed, the fragment transformation method 

aligns similar fragments that contain residues that are discontinuous in sequence but still 

spatially close. Each residue is treated as an individual unit, and the unit used to align the query 

protein and the templates is a triplet formed by the backbone N-Ca-C atoms of a given residue.
65



57 

Figure 3.20: Schematic of the fragment transformation method for the prediction of metal ion 

binding sites in proteins. (Figure duplicated with permission from Dr. Chih-Hao Lu at China 

Medical University.)
65

This method was able to outperform other methods and discovered that Ca
2+

preferentially binds backbone oxygens of aspartate, glutamate, asparagine, and glycine; Cu
2+

preferentially binds side chain oxygens and nitrogens of histidine;  Mg
2+

 preferentially binds the

side chain oxygens of aspartate and glutamate; Fe
3+

 preferentially binds the side chain oxygens,

nitrogens, and sulfurs of histidine, glutamate, aspartate, cysteine, and tyrosine; Mn
2+

preferentially binds side chain oxygens of aspartate, histidine, and glutamate; and Zn
2+

preferentially binds side chain oxygens and nitrogens of cysteine and histidine. The method was 
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also able to predict Ca
2+

 binding sites with 94.1% accuracy, Cu
2+

 binding sites with 94.9%

accuracy, Fe
3+

 binding sites with 94.9% accuracy, Mg
2+

 binding sites with 94.6% accuracy, Mn
2+

binding sites with 95% accuracy, and Zn
2+

 binding sites with 94.8% accuracy. This averages to

94.6% accuracy overall.
65

These are the results after our homology model of PfATP6 was submitted for metal ion 

binding prediction via the fragment transformation method: 

Table 3.1: Residues in PfATP6 that are able to bind Fe
2+

. The residues and their Fe
2+

 binding

scores are listed in the table. A residue with a score greater than 1.9 is predicted as being an Fe
2+

binding residue. 

Residue 

Number Residue Type 

Fe Predicted 

Score Fe
2+

 Positive

9 HIS 3.12862 3.12862 

31 GLU 4.19643 4.19643 

34 ASP 4.19643 4.19643 

44 GLU 2.1846 2.1846 

55 GLU 3.79203 3.79203 

85 LYS 2.38 2.38 

86 HIS 5.57443 5.57443 

90 GLU 5.57443 5.57443 

93 ASP 2.80675 2.80675 

96 GLU 2.80675 2.80675 

115 GLU 3.79203 3.79203 

129 GLN 2.1846 2.1846 

199 GLU 3.12862 3.12862 

200 ASP 3.12862 3.12862 

204 ASN 2.26405 2.26405 

237 GLU 4.80251 4.80251 

240 HIS 4.80251 4.80251 

252 ASP 2.26257 2.26257 

254 GLN 2.26257 2.26257 

289 ASP 1.99473 1.99473 

348 THR 2.00946 2.00946 

351 CYS 2.00946 2.00946 

358 ASP 2.29645 2.29645 
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380 ASP 3.00557 3.00557 

383 THR 2.61077 2.61077 

386 GLN 1.97509 1.97509 

388 CYS 2.61077 2.61077 

389 GLN 3.00557 3.00557 

392 ASP 4.989 4.989 

395 TYR 4.989 4.989 

429 ASP 5.18091 5.18091 

479 GLU 5.18091 5.18091 

514 CYS 3.46772 3.46772 

518 CYS 3.83556 3.83556 

520 GLU 3.14781 3.14781 

687 GLN 3.14781 3.14781 

696 GLU 3.01132 3.01132 

697 ARG 3.01132 3.01132 

702 VAL 3.46772 3.46772 

714 TYR 3.12309 3.12309 

715 CYS 3.83556 3.83556 

729 TYR 4.989 4.989 

734 ASP 2.14142 2.14142 

739 ASN 4.989 4.989 

747 HIS 3.49934 3.49934 

751 GLN 3.49934 3.49934 

769 SER 3.12309 3.12309 

781 TYR 3.01132 3.01132 

782 TYR 3.12309 3.12309 

846 ASP 3.69845 3.69845 

847 GLU 3.69845 3.69845 

849 ASP 3.69845 3.69845 

852 THR 2.2741 2.2741 

873 GLU 5.30663 5.30663 

877 HIS 5.30663 5.30663 

881 ASN 2.2741 2.2741 

891 GLU 2.29645 2.29645 

997 ASP 1.99473 1.99473 

1003 GLN 3.82936 3.82936 

1025 GLU 2.59582 2.59582 

1026 HIS 3.15869 3.15869 

1034 ARG 2.23251 2.23251 

1035 HIS 4.04348 4.04348 

1038 ASP 4.04348 4.04348 
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1082 PHE 3.89074 3.89074 

1083 TYR 3.89074 3.89074 

1087 HIS 3.65093 3.65093 

1090 GLN 3.65093 3.65093 

1103 TYR 3.65093 3.65093 

1108 ASP 1.95727 1.95727 

1109 HIS 1.95727 1.95727 

1144 ASN 2.59582 2.59582 

1148 GLU 3.15869 3.15869 

1168 HIS 3.82936 3.82936 

1210 PHE 5.42567 5.42567 

1211 TYR 5.42567 5.42567 

We were not interested in every iron binding site in the protein, however. We were only 

interested in the residues that are in the two unexplored pockets that AutoDock Vina found to be 

artemisinin binding pockets and that were in close vicinity to the pocket’s cysteine residue. 

Those residues are Lys85, His86, Glu1025, His1026, His1035, and Asn1144. 

Figure 3.21: Fe
2+

 modeled into PfATP6 in the Cys-92 site using the fragment transformation

method. Fe
2+

 is shown as an orange sphere, Cys-92 and the Fe
2+

-binding residues, Lys-85 and

His-86, are also shown. 
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Figure 3.22: Fe
2+

 modeled into PfATP6 in the Cys-1031 site using the fragment transformation

method. Fe
2+

 is shown as an orange sphere, Cys-1031 and the Fe
2+

-binding residues, Glu-1025,

Asn-1144 and Glu-1148, are also shown. 

It can be clearly observed from Figures 3.21 and 3.22 that the modeled iron atom is very 

far away (>10 Å) from the all-important cysteine residue in the pocket in both cases. In these 

regions of the protein, the residues are located on loops which are highly flexible, so to get the 

cysteine residues closer to the iron atom, we performed a loop refinement. We used the Prime 

module of Schrödinger and selected the protein refinement option. We then chose the refine 

loops option. The loop containing residues 83-95 for the Cys92 site and the loops containing 

residues 1018-1042 and 1139-1154 were selected for the Cys1031 site. Ultra-extended serial 

loop sampling was selected and constraints were chosen. For the Cys92 site: the sulfur atom of 

Cys92 was constrained to 3 Å away from the iron atom with a force constant of 350 [all force 

constants are given in units of kcal / (mol Å
2
)]; the delta nitrogen of His86 was constrained to 3
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Å away from the iron atom with a force constant of 350; and the zeta nitrogen of Lys85 was 

constrained to 3 Å away from the iron atom with a force constant of 200. Default options were 

chosen for the rest. For the Cys1031 site: the sulfur atom of Cys1031 was constrained to 3 Å 

from the iron atom with a force constant of 100; the epsilon oxygen of Glu1025 was constrained 

to be 3 Å from the iron atom with a force constant of 100; the epsilon oxygen of Asn1144 was 

constrained to be 3 Å from the iron atom with a force constant of 250; and the delta oxygen of 

Glu1148 was constrained to be 3 Å from the iron atom with a force constant of 350. Default 

options were chosen for the rest. This procedure resulted in a better position of the cysteine 

residues. 

Figure 3.23: Cys-92 site results after loop refinement. 
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Figure 3.24: Cys-1031 site results after loop refinement. 

3.6 PRE-TRANSITION STATE CALCULATION 

Yikang Wu et. al. found that artemisinin is fully degraded by cysteine very rapidly in 

vivo. However, artemisinin is fully consumed instantly in the presence of one equivalent each of 

cysteine and FeSO4. This demonstrated the importance of the iron activation of cysteine.
58

 It was

important to find the optimum geometry, or pre-transition state, that should occur between the 

Fe
2+

, artemisinin, and the cysteine residue in order for our proposed reaction to occur. Ab initio

quantum mechanics calculations were then utilized to determine the pre-transition state of our 

complex for our reaction. 

Ab initio is a Latin term that means “from the beginning”. In science, a calculation is ab 

initio, or from first principles, if it is based on established and basic laws of nature without 

making any assumptions.
66

 To find our pre-transition state, the Jaguar
62

 8.4 ab initio and

simulations module of the Schrödinger suite was utilized. The density functional theory hybrid 
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functional B3LYP and the 6-31G basis set with polarized and diffuse functions that are 

parameterized for transition metals (6-31G™*+) was used. Before the quantum mechanics 

calculations could be commenced, however, we first needed a model system. To generate a 

model, artemisinin was docked into the two sites using the Glide module of the Schrödinger suite 

and a ferrous ion was placed nearby. During the docking procedure, artemisinin was allowed to 

vary its conformation, but the protein was kept rigid. Since the protein naturally undergoes 

certain conformational changes to accommodate the docked ligand, we altered the cysteine 

residues in the sites so that the sulfurs would be closer to the O1 oxygen of artemisinin’s 

peroxide bridge. Having the artemisinin accommodated in the geometry that we believe could be 

the starting point of our reaction but having produced some extra steric clashes from rotamer 

modifications, we performed side chain refinement of the rotamers using the default settings of 

the Prime module of the Schrödinger suite. Subsequently, we performed a constrained 

minimization of the whole complex while setting three constraints: the distance between the 

oxygen of the water molecule and iron, the distance between O1 of artemisinin and the iron 

atom, and the distance between the cysteine sulfurs and the iron atom were all set to 3±1 Å. 

Having all the parameters for our model systems, we removed the protein and continued the 

calculations on just the model system. Instead of using the entire cysteine residue, a methyl 

group replaced the beta carbon on the cysteines and hydrogen atoms were added to have 

methylthiol instead, and instead of simply a ferrous ion, we used ferrous chloride. The structure 

was then minimized using the quantum mechanical method DFT B3LYP with the 6-31G™*+ 

basis set in vacuo. The geometry of the pre-transition state can be seen in Figure 3.25. The end 

product of the proposed complex reaction was built by the modification of artemisinin and can 

be viewed in Figure 3.26. 
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Figure 3.25: Geometry of the pre-transition state calculated by Prime. Carbons are shown in 

green, oxygens in red, hydrogens in white, sulfur in yellow, iron in light blue, and chlorines in 

dark green. The distances between the atoms (in Å) are shown in magenta. 

Figure 3.26: End product of the proposed complex reaction. Carbons are shown in green, 

oxygens in red, hydrogens in white, sulfur in yellow, iron in light blue, and chlorines in dark 

green. The distances between the atoms (in Å) can be seen in magenta, and the angles (in °) are 

shown in green. 
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3.7 GLIDE DOCKING AND INDUCED FIT DOCKING 

Molecular docking is a method that is used to predict the preferred orientation of one 

molecule relative to another when bound to each other in a stable complex. It is frequently used 

to predict the binding orientation of small molecule drug candidates to their protein targets in 

order to predict their binding affinity and activity.
67

Figure 3.27: Schematic diagram illustrating the docking of a small molecule ligand (red) to 

a protein receptor (black) to produce a complex.

We used both Glide standard precision docking, which assumes a rigid protein, and 

Induced Fit Docking, which takes into account that many receptors alter their binding site to 

conform to the shape and binding mode of the ligand. Both were used to determine which 

program would produce the pre-transition state that was calculated previously. For the site 

containing Cys-92, Induced Fit Docking was able to produce the desired pre-transition state 

geometry better than Glide docking. The pre-transition state for the residues in the site 

containing Cys-1031 was somewhat more difficult to retrieve. Glide docking and Induced Fit 

Docking failed to give us an appropriate pose. We therefore used the best output that was 

retrieved from Induced Fit Docking and used an appropriate, low energy rotamer of Cys-1031. 

The requirements for our proposed active site were thus fulfilled. We then chose to perform a 
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protein-ligand complex refinement using Prime. The Refine Protein-Ligand Complex option was 

selected, and we chose to refine the atoms within 10 Å of the ligand using Monte Carlo 

minimization. Then we constrained the distances between iron and O1 of artemisinin and 

between C4 of artemisinin and the sulfur of Cys-1031 to be 2.5 Å, both with a force constant of 

350. This procedure resulted in the retrieval of the pre-transition state that we sought. 
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Figure 3.28: Different views of the docked pose of artemisinin in Cys-92 site. The coordinating 

residues, Lys-85 and His-86, are shown a close distance from the iron atom which, in turn, is in 

close proximity to the peroxide bridge of artemisinin. Cys-92 is also seen to be only a few Å 

away from C4 of artemisinin, which is the optimal location to intercept the carbon radical. 
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Figure 3.29: Different views of the docked pose of artemisinin in Cys-1031 site. The 

coordinating residues, Glu-1025, Asn-1144, and Glu-1148, are shown a close distance from the 

iron atom which, in turn, is in close proximity to the peroxide bridge of artemisinin. Cys-92 is 

also seen to be only a few Å away from C4 of artemisinin, which is the optimal location to 

intercept the carbon radical. 

After receiving favorable results thus far, we enlisted the assistance of Dr. Sanjeev 

Krishna to perform PfATP6 enzyme-specific assays. Our results were shared with him, and he 

agreed to perform an experimental mutagenesis of residues in our two sites, and then assay 

artemisinin against the mutants to determine if variations at these sites will alter the inhibitory 

activity of artemisinin. 

3.8 “MALARIA BOX” 

In 2011, the Medicines for Malaria Venture (MMV) formed the Malaria Box project. 

Extensive high-throughput screenings of millions of proprietary and publicly-available 

compounds have led to the discovery of thousands of compounds with confirmed antimalarial 

activity. Structures and descriptions of these compounds are publicly available. Researchers who 

are part of the MMV analyzed over four million compounds that they acquired from companies 
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such as GlaxoSmithKline and Novartis, and St. Jude Children’s Hospital. The program works by 

mailing interested researchers a complete box-set of malaria tools, free of charge. The kit 

contains over 400 antimalarial compounds in quantities large enough to run approximately 10 

assays. The only stipulation to receiving the box is that receivers must promise to release any and 

all research findings within two years.
68, 69

Dr. Sanjeev Krishna, a collaborator at St. George’s University of London, has received 

the malaria box compounds and assayed the compounds against PfATP6. Of the 400 compounds, 

4 were found to be PfATP6 inhibitors. However, the binding site and mechanism of action for 

these compounds are unknown. As a starting point, we decided to first find out where in PfATP6 

the compounds bind. Using the same procedure that we used to find alternative artemisinin 

binding sites, we proceeded to do blind docking studies for each of the compounds. 

Figure 3.30: The structures and codes for the four malaria box compounds. 
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Figure 3.31: AutoDock Vina results showing the pockets able to bind the four malaria box 

compounds. 

Using AutoDock Vina, we found approximately six pockets that are capable of binding 

the malaria box compounds. Opportunely, two of the malaria box binding pockets are our two 

unexplored artemisinin binding sites. The residues in these pockets were listed and sent to Dr. 

Krishna. Mutagenesis studies will commence on these residues and the compounds will be 

assayed again to find out if any of the mutations caused a decrease in the antimalarial activity of 

any of the compounds. 
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3.9 IN SILICO MUTAGENESIS 

Mutagenesis is the term given to the procedure used to change the genetic information of 

an organism. This can happen spontaneously in nature, from exposure to mutagens, or 

experimentally.
70

 Site-directed mutagenesis is a technique that is used to make specific and

intentional changes to genes and it can be used to explore the biological activity of proteins.
71

 It

is a potent research tool used to study protein function, identify enzyme active sites, and design 

novel proteins in drug discovery.
72

There are numerous approaches to perform site-directed mutagenesis. While these 

experimental methods are more reliable, they are more difficult than computational studies. 

Computational studies can add efficiency and speed to experimental methods by pre-filtering 

with in silico predictions of non-synonymous single nucleotide polymorphisms (nsSNP). 

Although it may never be accurate enough to completely replace wet-lab experiments, 

computational methods may help in selecting and prioritizing a small number of likely 

candidates from available data. Studies have shown a range of computational approaches that are 

capable of producing estimates of the functional effects of polymorphisms.
73

In order to truly know if our two new sites are actual artemisinin binding sites, certain 

residues in the pockets will need to be mutated. The mutant protein will then be treated with 

artemisinin to determine if the mutations had any effect on the activity of artemisinin. To aid in 

our experimental mutagenesis, a program named SNAP (screening for non-acceptable 

polymorphisms) was utilized to find if the mutation of certain residues in our protein would 

affect its function. SNAP is a neural network-based method for the prediction of the functional 

effects of nsSNPs. Sequence information is the only needed input. In a cross-validation test on 
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over 80,000 mutants, SNAP was able to identify 80% of the non-neutral (functionally-distinct) 

substitutions with 77% accuracy and 76% of the neutral substitutions with 80% accuracy. This 

was a marked improvement over existing methods. More importantly, SNAP introduced a well-

calibrated measure for the reliability of each prediction.
73

Experimental mutagenesis studies have previously been performed on PfATP6. This 

study demonstrated that if Leu263 is mutated to E263, the protein’s function changes and 

artemisinin’s activity on the protein decreases.
44

 We wanted to find out if SNAP would classify

this mutation as non-neutral. The sequence for PfATP6 was uploaded into the SNAP software 

and the L263E mutation was selected. The software was able to accurately classify this mutation 

as non-neutral with 58% predicted accuracy as shown in Figure 3.32. Another documented 

mutation, S769N, was reported as having no effect on PfATP6
74

, so this mutation was selected in

the SNAP software. SNAP found this mutation to be neutral with 92% predicted accuracy as 

seen in Figure 3.33. Based on these results, SNAP software may be a reliable source for 

predicting the effect of mutations in our protein. 

#Query sequence:  snapfasta 

 Including only predictions with: 

 RI >= 0  

 Expected Accuracy >= 50% 

   nsSNP    Prediction    Reliability Index    Expected Accuracy 

    -----         ------------      -------------------          ------------------- 

  L263E    Non-neutral    0      58% 

Figure 3.32. SNAP prediction for the L263E mutation. 

#Query sequence:  snapfasta 

Including only predictions with: 

 RI >= 0 

   Expected Accuracy >= 50% 

    nsSNP    Prediction    Reliability Index    Expected Accuracy 

      -----        ------------      -------------------         ------------------- 

    S769N     Neutral  6  92% 

Figure 3.33: SNAP prediction for the S769N mutation. 
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As a starting point, we decided to use the cysteine residues in the pockets. We chose to 

mutate them to similar residues and see if the SNAP program would classify the mutation as 

being neutral or non-neutral. The mutations we chose were Cys-Asp, Cys-Asn, Cys-Ala, Cys-

Val, and Cys-Ser. 

Table 3.2: SNAP predictions for numerous mutations in PfATP6. 

Original Residue Mutated Residue Result 

Cys92 Asp92 Non-neutral 

Cys92 Asn92 Non-neutral 

Cys92 Ala92 Non-neutral 

Cys92 Val92 Non-neutral 

Cys92 Ser92 Non-neutral 

Cys1031 Asp1031 Neutral 

Cys1031 Asn1031 Neutral 

Cys1031 Ala1031 Neutral 

Cys1031 Val1031 Neutral 

Cys1031 Ser1031 Neutral 

From Table 3.2, it is predicted that any of these mutations occurring at Cys92 will cause 

a non-neutral change. This means that mutating Cys92 will change either the shape or the 

function of PfATP6. It is also worth noting that any of these mutations occurring at the Cys1031 

position was predicted to be a neutral mutation meaning it will not cause a change in the shape or 

function of the protein. These results were given to our collaborator who will perform the 

experimental mutagenesis. The results of the experimental mutagenesis will not only prove or 

disprove our hypothesis, but it will either offer more evidence for the accuracy of SNAP or 

condemn its practicality. 



76 

To determine if our docking algorithm could also detect how the mutation of certain 

residues could alter the docking poses and scores and to test for any correlation between them, 

we mutated Cys92 and Cys1031 to the residues that we submitted to the SNAP program. The 

mutant proteins were then prepared and minimized, and receptor grids were generated for each. 

Artemisinin was then docked into each receptor to retrieve the best docking score for each 

mutant-artemisinin complex. Table 3.3 shows the differences in the docking scores of 

artemisinin against the mutant proteins in comparison to the native protein. 

Table 3.3: Docking scores of artemisinin against mutant PfATP6 proteins. 

Residue Docking score 

Cys92 -4.045 

Asp92 -4.016 

Asn92 -3.215 

Ala92 -3.811 

Val92 -3.580 

Ser92 -3.670 

Cys1031 -4.380 

Asp1031 -4.780 

Asn1031 -4.740 

Ala1031 -4.802 

Val1031 -4.575 

Ser1031 -4.786 

According to the docking scores, all of the mutations at the Cys92 residue resulted in 

artemisinin binding poses with worse docking scores (more positive) as compared to the native 
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protein, and all of the mutations at the Cys1031 residue resulted in artemisinin binding poses 

with better docking scores (more negative) as compared to the native protein. So the SNAP 

program and the manual in silico mutagenesis/docking of artemisinin show an opposite trend in 

the two sites. Only the experimental mutagenesis will show which one was more accurate.
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CHAPTER 4. STRUCTURE-BASED VIRTUAL SCREENING 

*Shuneize E. Slater, Khaled M. Elokely, Kuldeep K. Roy, Manal A. Nael, Robert J.

Doerksen, Mitchell A. Avery, Unpublished. 
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4.1 INTRODUCTION 

High throughput screening (HTS) involves the biological testing of large numbers of 

small molecules for a specific pharmaceutical effect. It is a major route toward discovering novel 

compounds. Advances in computational methods have allowed virtual screening to speed up 

modern drug discovery programs. Virtual screening, or in silico screening, is the selection of 

compounds by evaluating their desirability in a computational model. Since its debut over a 

decade ago, there has been a clear upward trend in publications on this particular subject area. 

The progress that has been made in this field has fostered its high acceptance in use, and it can be 

easily integrated in the drug discovery and development process. Virtual screening can be 

divided into two main categories: similarity- or ligand-based virtual screening (LBVS) and 

target- or structure-based virtual screening (SBVS).
75 

Ligand-based virtual screening relies on the assumption that structurally similar 

molecules will exhibit similar binding properties towards a target protein. It generally provides 

significant enrichment over the random selection of compounds and has been successfully 

applied for the identification of bioactive lead compounds for a wide range of drug targets. There 

is a diverse set of LBVS techniques such as small molecule alignment, 1D, 2D, and 3D 

descriptor-based screening, shape-based searching, pharmacophore-based searching, recursive 

partitioning, and graph-based similarity assessment.
76 

Structure-based virtual screening is used if structural information is available for a target. 

Quick SBVS algorithms are used to place the molecules inside the active site or a specified 

pocket of the biological target (docking), after which they are then ranked according to their 

calculated binding affinity estimations (scoring). There are currently a vast number of different 
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docking and scoring methodologies employed in the pharmaceutical industry. Most docking 

algorithms can be classified into four methods: force field-based, evolutionary, fragment-based 

incremental, and shape complementary-based methods. These provide approximations of the 

expected conformation and orientation of the ligands in the binding site. Protein flexibility and 

the importance of water molecules have also been incorporated into most docking schemes. 

Although a large amount of research has been undertaken in the generation of better docking 

algorithms and scoring functions, the discrimination of true binders from the decoys remains a 

challenge.
77

4.2 PROCEDURE 

To determine whether targeting our two new pockets will result in the discovery of novel 

PfATP6 inhibitors, we performed virtual screening into the pockets. All purchasable compounds 

were downloaded from the ZINC database. This was approximately 20 million compounds. 

Filter 2.1.1, a drug filter, was used to eliminate the compounds that do not follow Lipinski’s rule 

of five and structures with metabolically vulnerable groups. This resulted in approximately 11 

million compounds remaining. We then used OMEGA 2.4, a program from OpenEye Scientific 

that is able rapidly and effectively to generate conformers of large databases, to generate a 

maximum of 300 conformers per ligand within an energy window of 10 kcal/mol. These 

conformers were docked into the two sites using OpenEye Scientific software. The one thousand 

best scoring compounds were selected. Canvas from Schrödinger, which uses fingerprinting and 

substructure matching to screen millions of compounds in seconds, was used to select 

approximately fifty of the most diverse compounds from the set. 
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    ZINC00506860  ZINC00192016 

ZINC04337585          ZINC80290460 

  ZINC80212637  ZINC77506749 

ZINC76658501 ZINC72623135 
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      ZINC72435140 ZINC67867915 

 ZINC67786201   ZINC67688838 

ZINC65375585        ZINC64025512 

ZINC63846532     ZINC63388047 
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         ZINC58218624   ZINC51331099 

  ZINC02659645      ZINC03002706 

  ZINC04127198 ZINC05604299 

   ZINC08683581   ZINC08780032 
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   ZINC08928022       ZINC13831596 

  ZINC15018344       ZINC16981849 

        ZINC19331111     ZINC25500407 

ZINC31169813        ZINC39001420 
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         ZINC42384326 ZINC72388585 

ZINC67757786      ZINC57160091 

ZINC59349840 

ZINC46947075 ZINC39605861 



86 

ZINC39446033      ZINC04742288 

ZINC08133013 ZINC09124247 

ZINC15733800      ZINC19821533 

ZINC20391478 

Figure 4.1: The 46 most diverse compounds from the virtual screening. The 18 remaining after 

visual inspection and determination of commercial availability are shown in red. 

The 46 diverse compounds were then visually inspected for ionization issues and 

problematic functional groups. Other than the docking scores and poses, selection was also based 
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on a combination of the number of good interactions, the general match of hydrophobic or 

hydrophilic space, logP, and the potential for metabolism.  This resulted in twenty-five 

compounds remaining. Of these 25, seven were not commercially available at the time. A quote 

was requested and a price list was obtained from Ambinter. These eighteen compounds, or a 

subset thereof, will be purchased and tested for both their antimalarial activity and their PfATP6 

inhibitory activity. 

Table 4.1: The clogP values and docking scores for the eighteen compounds chosen for 

antimalarial assay and PfATP6 inhibition. 

COMPOUND clogP DOCKING SCORE 

ZINC00506860 0.935 -11.922 

ZINC00192016 -2.1446 -11.462 

ZINC67867915 2.7312 -11.547 

ZINC67786201 2.4537 -11.971 

ZINC58218624 1.4802 -12.099 

ZINC02659645 2.482 -11.408 

ZINC03002706 -0.297 -11.534 

ZINC04127198 -1.8566 -12.008 

ZINC08780032 1.726 -11.495 

ZINC13831596 -2.4224 -11.563 

ZINC15018344 1.3826 -11.582 

ZINC16981849 1.247 -11.401 

ZINC19331111 1.4276 -11.405 

ZINC31169813 -0.8467 -11.500 

ZINC67757786 3.0399 -12.789 

ZINC57160091 -2.670 -13.757 

ZINC09124247 3.1904 -11.71 

ZINC15733800 2.2095 -11.404 
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Figure 4.2: Docking poses of the 2 best-scoring virtual screening hits in each site, shown with 

green carbons, and the residues that interact with them, shown with gray carbons. Top left, 

ZINC57160091; top right, ZINC67786201; middle, ZINC67757786; bottom, ZINC04127198. 
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CHAPTER 5. DEVELOPING A STRUCTURE-ACTIVITY RELATIONSHIP FOR THE 

TWO NEW ARTEMISININ BINDING SITES 

*Shuneize E. Slater, Mohamed Jihan, Robert J. Doerksen, Mitchell A. Avery, Unpublished.
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5.1 INTRODUCTION 

Structure-activity relationship, or SAR, is the study of the correlation between the 

structure of a drug and its biological activity. SARs are essential for the design of therapeutics 

with the highest potency but the least adverse effects.
78

 Developing a SAR helps in determining

the chemical groups at a specified position in the drug structure that are responsible for 

producing a biological effect in the target organism. Medicinal chemists use SARs to modify 

drug structures and test the modifications for their biological activities.
79

5.2 PROCEDURE 

Currently in our research group, sixteen derivatives of artemisinin were designed. These 

were used to develop a SAR against the two new sites that we discovered in PfATP6. To begin, 

the sixteen compounds were drawn in ChemDraw and saved as individual .sdf files. The files 

were then uploaded to the Maestro interface of the Schrödinger suite and minimized to obtain 

their 3-D conformations. The 3-D structures were then prepared using the LigPrep module of 

Schrödinger which prepares the ligands by converting them based on their tautomeric and 

protonation states at certain pH ranges. Next the compounds were docked into both sites using 

both Glide docking and Induced Fit Docking to retrieve their docking scores and poses. 

1 2    3 
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    4  5   6 

7       8 

9         10 
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          11         12 

13          14 

  15   16 

Figure 5.1: Structures of the 16 artemisinin derivatives used in this study. 
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Table 5.1: Docking scores of artemisinin derivatives in Cys92 site. 

Compound Docking Score 

1 -4.567 

2 -3.837 

3 -4.593 

4 -4.370 

5 -3.088 

6 -3.626 

7 -4.379 

8 -3.534 

9 -4.130 

10 -4.273 

11 -4.050 

12 -3.466 

13 -3.381 

14 -3.568 

15 -3.633 

16 -3.753 

artemisinin -4.045 

Table 5.1 shows the docking scores of artemisinin and the sixteen artemisinin derivatives 

used in this study against the site containing Cys92. Seven of these derivatives, 1, 3, 4, 7, 9, 10, 

and 11 are predicted to be better binders to PfATP6 at this site than artemisinin itself. 
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Table 5.2: Docking scores of artemisinin derivatives in Cys1031 site. 

Compound Docking Score 

1 -6.456 

2 -6.197 

3 -5.140 

4 -4.666 

5 -4.805 

6 -5.237 

7 -4.541 

8 -4.689 

9 -4.393 

10 -5.331 

11 -5.211 

12 -4.801 

13 -4.743 

14 -3.061 

15 -4.543 

16 -4.298 

artemisinin -4.380 

Table 5.2 shows the docking scores of artemisinin and the sixteen artemisinin derivatives 

used in this study against the site containing Cys1031. Amazingly, all of the derivatives scored 

better than artemisinin in this site except for compounds 14 and 16. All sixteen of these 

compounds are currently being synthesized and will be assayed for their antimalarial activities 

and PfATP6 inhibitory activities. Once the assays are completed, we will be able to determine if 

there is indeed a correlation between the structures and their biological activities. 
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Figure 5.2: The top ranked compounds in the site containing Cys92. Top left, 1; top right, 3; 

middle left, 4; middle right, 7; bottom left, 9; bottom right, 10. 
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Figure 5.2: The top ranked compounds in the site containing Cys92. Top left, 1; top right, 2; 

middle left, 3; middle right, 6; bottom left, 10; bottom right, 11. 
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CHAPTER 6. PfATP6 AND PfTCTP 

*Shuneize E. Slater, Chinni Yalamanchili, Amar Chittiboyina, Mitchell A. Avery,

Unpublished. 
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6.1 INTRODUCTION 

It is well known that artemisinin derivatives are very potent antimalarials. Specific 

malaria proteins become labeled when intact Plasmodium falciparum-infected blood cells are 

exposed to radiolabeled artemisinin. One of the proteins, a translationally controlled tumor 

protein (TCTP), was eluted from 2-dimensional gels, partially sequenced, then cloned and 

expressed in E. coli.
80

 TCTP was first described in the 1980s and was preciously named fortilin,

Q23, p23, and p21.
81

PfATP6 is found in the membrane of the parasite’s food vacuole. Here, there is an 

abundance of heme and iron from digested hemoglobin. To determine if PfTCTP is located in the 

food vacuoles as well, isolated food vacuoles and hemozoin were examined by 

immunofluorescence. The results suggest that PfTCTP is either located in the food vacuole 

stroma or the membrane. To find its exact location, immunoelectron microscopy with 

immunogold labeling was used. Gold particles were found in the cytoplasm, the food vacuolar 

membrane and in other parasite-derived membranes. It is also known that PfATP6 is able to bind 

calcium ions. To discover if PfTCTP is also able to bind calcium ions, a 
45

Ca overlay assay was

used. Calcium binding proteins tend to migrate more rapidly in SDS gels in the presence of 

calcium. The results of the assay indicated that PfTCTP does in fact bind calcium ions.
81 

All of the previous information suggested that PfTCTP is a target molecule for 

artemisinin; however, the site of interaction had not been elucidated. It was believed that the 

single cysteine residue of the protein was responsible for drug binding. However, once the 

crystal structure of PfTCTP was determined, the structure revealed that the cysteine residue is 

buried deep inside the protein and is inaccessible. So, in silico blind docking was performed to 
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find potential binding sites in the protein. Out of thirteen sites found, two were selected for 

further analysis based on their correlation with experimental evidence.
81

6.2 PROCEDURE 

After finding this information, we decided to compare the two potential artemisinin 

binding sites in PfTCTP to our two potential artemisinin binding sites in PfATP6. The idea is 

that if artemisinin is able to bind to both proteins, then there should be some similarities between 

the binding sites. Since crystals of the artemisinin-PfTCTP complex could not be obtained, we 

downloaded the crystal structure of PfTCTP (PDB ID: 3P3K) from the Protein DataBank and 

prepared and minimized it using the Protein Preparation Wizard of the Schrödinger suite. Glide 

was then used to generate receptor grids for the two sites by specifying the binding site residues. 

For position 1, the binding site residues were Ile95, Met99, Glu100, Ala103, Phe117, Lys118, 

Ala121, Gln122, and Ile125. For position 2, the specified residues were Phe28, Glu29, His127, 

Asn131, Asp134, Phe135, Ser152, Tyr153, Tyr154, and Gly156. After the receptor grids were 

generated, we docked artemisinin into the two sites in order to attempt to reproduce the exact 

binding poses that were reported. Once the best matching poses were retrieved, we superimposed 

the two complexes of PfTCTP with our two complexes of PfATP6 by aligning the artemisinin 

structures in the sites. By doing so, this allowed us to compare the residues in both proteins that 

are interacting with certain features in artemisinin and to study whether these residues share any 

similarities. 
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Figure 6.1: Structure of PfTCTP. The location of artemisinin binding position 1 is shown in blue 

and of artemisinin binding position 2 is shown in red. 

Figure 6.2: Artemisinin docked into position 1 of PfTCTP. 
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Figure 6.3: Artemisinin docked into position 2 of PfTCTP. 

Once the superimposition of the sites is complete and the similarities between the sites 

have been documented, we will take approximately 50 compounds that were synthesized and 

assayed in house and dock them into both sites of the proteins to determine whether in silico 

studies can aid in explaining the activity trend of the compounds. 



102 

CHAPTER 7. CONCLUSIONS AND FUTURE PLANS 



103 

In conclusion, malaria has been a major problem in our world for centuries. It is 

an extremely fatal, yet preventable and treatable disease. Over the years, numerous efforts have 

been made in the discovery of both natural and synthetic therapeutics to treat malaria. Quinoline 

derivatives such as quinine and chloroquine have offered relief for years, but resistance towards 

these drugs has emerged. To thwart malaria, many ventures went underway to find novel 

therapeutics. One such venture isolated the compound artemisinin from Artemisia annua. This 

compound was found to be a very potent antimalarial. Although artemisinin has been used for 

decades to treat malaria, exactly how is exerts its antimalarial effects is still a mystery. Many 

research groups have offered hypotheses as to its exact mechanism of action, but no consensus 

has been reached. One group offered the protein Plasmodium falciparum ATPase 6 as the 

possible target for artemisinin. They predicted that artemisinin acts in the same manner as the 

compound thapsigargin towards the mammalian ATPase. However, we found a few concerns 

with that mechanism of action and ventured out to find a more plausible mechanism of action for 

artemisinin against PfATP6. Many computational methods, such as pocket searching, blind 

docking, ion prediction and modeling, and in silico mutagenesis, have been exhausted in the 

search to verify our hypothesis. Our results are proving to be quite favorable. We also searched 

for PfATP6 binding sites for four “malaria box” compounds that were first found to possess 

antimalarial activity and then PfATP6 inhibitory activity. To verify both our hypothesis of the 

two new PfATP6 binding sites for artemisinin and the four “malaria box” compounds, an 

experimental mutagenesis study will be performed by collaboration with Krishna and colleagues 

at St. George’s University of London. This will determine whether our two sites truly are 

artemisinin binding sites and will verify the “malaria box” binding sites as well. 
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To further determine if targeting our new sites could result in the discovery of novel 

antimalarials, virtual screening was executed utilizing docking into the pockets. A library of 

approximately 20 million compounds was downloaded and after a few steps, nineteen remained. 

These compounds will be purchased, and both an antimalarial assay and a PfATP6 enzyme-

based assay will be performed on these compounds to determine their activities. 

In the very near future, the synthesis of the artemisinin derivatives will be completed and 

they will be tested for both their antimalarial activity and their PfATP6 inhibitory activity. This 

will aid in the development of a structure-activity relationship for PfATP6 inhibitors. The work 

on PfTCTP will also be completed. 

Finally, with the occurrence of so many reasonable mechanisms of action, many 

of them being difficult to refute, we think it is likely that artemisinin and its derivative peroxides 

act by a combination of various mechanisms.  If true, it will be extremely difficult to construct a 

predictive single pharmacophore model for this class of drugs.  Future researchers will face these 

difficulties.  As a final note, how do we explain the activities of so many diverse peroxides 

against P. falciparum?  How do we reconcile bioactive 13-Carbaartemisinin with these 

mechanisms, and finally, how do we explain the potent antimalarial activity of 4,5-

secoartemisinin 1 (Scheme 7.1)
82

, prepared by total synthesis by the Avery research group many

years ago?  For example, as shown in Scheme 7.1, formation of a C-4 radical seems impossible 

upon exposure to Fe(II). Instead, we see the loss of acetone from 2 to give 3, a carboxyl radical, 

which is known to lose CO2 to form a carbon radical such as 4.  One can conceive of 4 

undergoing ring opening to form an enolate radical 5, which is more stable than the carbon 

radical 4.  Which, if any, of these intermediates can be reconciled with the MOA forwarded in 
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this proposal for PfATP6?  Is the Haynes MOA more compatible with this ring-scissioned 

version of artemisinin? Also, can 4 or 5 achieve an orientation within the proposed sites 

containing C1031 or C92 to bind with their cysteine thiols?  These are the sorts of questions that 

are to be struggled with in the future and support a multi-mechanistic view of the MOA for 

artemisinin.  

Scheme 7.1: Fe(II)-mediated ring opening. 
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