
University of Mississippi University of Mississippi

eGrove eGrove

Electronic Theses and Dissertations Graduate School

2016

Reducing Cache Contention On Gpus Reducing Cache Contention On Gpus

Kyoshin Choo
University of Mississippi

Follow this and additional works at: https://egrove.olemiss.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Choo, Kyoshin, "Reducing Cache Contention On Gpus" (2016). Electronic Theses and Dissertations. 454.
https://egrove.olemiss.edu/etd/454

This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more
information, please contact egrove@olemiss.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by eGrove (Univ. of Mississippi)

https://core.ac.uk/display/288064644?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://egrove.olemiss.edu/
https://egrove.olemiss.edu/etd
https://egrove.olemiss.edu/gradschool
https://egrove.olemiss.edu/etd?utm_source=egrove.olemiss.edu%2Fetd%2F454&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=egrove.olemiss.edu%2Fetd%2F454&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/etd/454?utm_source=egrove.olemiss.edu%2Fetd%2F454&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu

REDUCING CACHE CONTENTION ON GPUS

A Dissertation
presented in partial fulfillment of requirements

for the degree of Doctor of Philosophy
in the Department of Computer and Information Science

The University of Mississippi

by

Kyoshin Choo

August 2016

Copyright Kyoshin Choo 2016
ALL RIGHTS RESERVED

ABSTRACT

The usage of Graphics Processing Units (GPUs) as an application accelerator has become

increasingly popular because, compared to traditional CPUs, they are more cost-effective, their

highly parallel nature complements a CPU, and they are more energy efficient. With the popu-

larity of GPUs, many GPU-based compute-intensive applications (a.k.a., GPGPUs) present sig-

nificant performance improvement over traditional CPU-based implementations. Caches, which

significantly improve CPU performance, are introduced to GPUs to further enhance application

performance. However, the effect of caches is not significant for many cases in GPUs and even

detrimental for some cases. The massive parallelism of the GPU execution model and the resulting

memory accesses cause the GPU memory hierarchy to suffer from significant memory resource

contention among threads.

One cause of cache contention arises from column-strided memory access patterns that

GPU applications commonly generate in many data-intensive applications. When such access

patterns are mapped to hardware thread groups, they become memory-divergent instructions whose

memory requests are not GPU hardware friendly, resulting in serialized access and performance

degradation. Cache contention also arises from cache pollution caused by lines with low reuse.

For the cache to be effective, a cached line must be reused before its eviction. Unfortunately, the

streaming characteristic of GPGPU workloads and the massively parallel GPU execution model

increase the reuse distance, or equivalently reduce reuse frequency of data. In a GPU, the pollution

caused by a large reuse distance data is significant. Memory request stall is another contention

factor. A stalled Load/Store (LDST) unit does not execute memory requests from any ready warps

ii

in the issue stage. This stall prevents the potential hit chances for the ready warps.

This dissertation proposes three novel architectural modifications to reduce the contention:

1) contention-aware selective caching detects the memory-divergent instructions caused by the

column-strided access patterns, calculates the contending cache sets and locality information and

then selectively caches; 2) locality-aware selective caching dynamically calculates the reuse fre-

quency with efficient hardware and caches based on the reuse frequency; and 3) memory request

scheduling queues the memory requests from a warp issuing stage, frees the LDST unit stall and

schedules items from the queue to the LDST unit by multiple probing of the cache. Through sys-

tematic experiments and comprehensive comparisons with existing state-of-the-art techniques, this

dissertation demonstrates the effectiveness of our aforementioned techniques and the viability of

reducing cache contention through architectural support. Finally, this dissertation suggests other

promising opportunities for future research on GPU architecture.

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my wife, Jihyun, for fully and pleasantly support-

ing me with great patience and believing what I am passing through after I quit my job. I could

not have done any of this long journey without her. Second, I would like to thank my children for

their trust, understanding and always being with me to remind of what is most important. My final

personal thanks go to my parents and parents-in-laws for praying, always supporting me in every

aspect and encouraging me not to give up and to achieve my goal.

Professionally, I would like to thank my advisor Professor Byunghyun Jang for guiding me

with the right direction and pushing me to pursue high-quality research, giving me the freedom to

explore my own ideas and helping me develop them. His guidance over the last four years has been

invaluable and has lead to the goal. Special thanks to David Troendle for being a great colleague.

David’s depth of industrial knowledge and insightful thought has helped all the research I have

done. I also thank all of the HEROES (HEteROgEneous Systems research) lab members, Tuan

Ta, Esraa Abdelmageed, Chelsea Hu, Ajay Sharma, Andrew Henning, Md. Mainul Hassan, Oreva

Addoh, Mengshen Zhao, Leo Yi, Michael Ginn, Blake Adams, and Sampath Gowrishetty for their

help and invaluable discussion and comments. I would also like to thank Professor Jang’s former

colleagues, Dana Schaa and Rafael Ubal for giving insightful comments on the simulator.

I would also list to thank the committee members of my PhD qualifying exam and final

PhD dissertation defense: Professor Philip J. Rhodes, Professor Feng Wang and Professor Robert

J. Doerksen for their direction and suggested improvements to my dissertation. Last but not least,

I would like to thank all the faculty members of Computer and Information Science department

iv

at the University of Mississippi: Professor Dawn E. Wilkins, Professor H. Conrad Cunningham,

Professor Yixin Chen, Professor J. Adam Jones, Professor P. Tobin Maginnis, former Professor

Jianxia Xue, Ms. Kristin Davidson, and Ms. Cynthia B. Zickos for their academic contribution

and friendly support.

v

To my wife Jihyun and our children, Esther, Samuel and Gracie.

vi

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iv

LIST OF FIGURES . x

LIST OF TABLES . xii

LIST OF ABBREVIATIONS . xiii

INTRODUCTION . 1
1.1 Research Challenges . 3
1.2 Research Contribution . 4
1.3 Organization . 5

BACKGROUND . 6
2.1 Summary of Terminology Usage . 6
2.2 Programming GPUs . 7
2.3 Abstract of GPU Architecture . 9
2.4 Warp Scheduling . 11
2.5 Modern GPU Global Memory Accesses . 11

2.5.1 Memory Hierarchy . 11
2.5.2 Memory Access Handling . 13
2.5.3 Memory Access Characteristics . 16

CACHE CONTENTION . 19
3.1 Taxonomy of Memory Access Locality . 19
3.2 Taxonomy of Cache Contention . 24

3.2.1 Cache Miss Contention Classification . 25
3.2.2 Cache Resource Contention Classification 26

3.3 Cache Contention Factors . 28
3.3.1 Limited Cache Resource . 28
3.3.2 Column-Strided Accesses . 29
3.3.3 Cache Pollution . 30
3.3.4 Memory Request Stall . 31

vii

CONTENTION-AWARE SELECTIVE CACHING . 34
4.1 Introduction . 34
4.2 Intra-Warp Cache Contention . 35

4.2.1 Impact of Memory Access Patterns on Memory Access Coalescing 35
4.2.2 Coincident Intra-warp Contention Access Pattern 35

4.3 Selective Caching . 39
4.3.1 Memory Divergence Detection . 39
4.3.2 Cache Index Calculation . 41
4.3.3 Locality Degree Calculation . 41

4.4 Experiment Methodology . 43
4.4.1 Simulation Setup . 43
4.4.2 Benchmarks . 43

4.5 Experimental Results . 44
4.5.1 Performance Improvement . 44
4.5.2 Effect of Warp Scheduler . 47
4.5.3 Cache Associativity sensitivity . 48

4.6 Related Work . 48
4.6.1 Cache Bypassing . 48
4.6.2 Memory Address Randomization . 49

4.7 Summary . 50

LOCALITY-AWARE SELECTIVE CACHING . 52
5.1 Introduction . 52
5.2 Motivation . 53

5.2.1 Severe Cache Resource Contention . 53
5.2.2 Low Cache Line Reuse . 54

5.3 Locality-Aware Selective Caching . 55
5.3.1 Reuse Frequency Table Design and Operation 55
5.3.2 Threshold Consideration . 58
5.3.3 Algorithm Features . 59
5.3.4 Contention-Aware Selective Caching Option 60

5.4 Experiment Methodology . 60
5.4.1 Simulation Setup . 60
5.4.2 Benchmarks . 61

5.5 Experimental Results . 62
5.5.1 Performance Improvement . 62
5.5.2 Effect of Warp Scheduler . 64
5.5.3 Effect of Cache Associativity . 65

5.6 Related Work . 66
5.6.1 CPU Cache Bypassing . 66
5.6.2 GPU Cache Bypassing . 66

5.7 Summary . 68

viii

MEMORY REQUEST SCHEDULING . 69
6.1 Introduction . 69
6.2 Cache Contention . 70

6.2.1 Memory Request Stall due to Cache Resource Contention 70
6.3 Memory Request Scheduling . 72

6.3.1 Memory Request Queuing and Scheduling 72
6.3.2 Queue Depth . 73
6.3.3 Scheduling Policy . 73
6.3.4 Contention-Aware Selective Caching Option 74

6.4 Experiment Methodology . 74
6.4.1 Simulation Setup . 74
6.4.2 Benchmarks . 75

6.5 Experimental Results . 76
6.5.1 Design Evaluation . 76
6.5.2 Performance Improvement . 78
6.5.3 Effect of Warp Scheduler . 78
6.5.4 Effect of Cache Associativity . 79

6.6 Conclusion . 80

RELATED WORK . 81
7.1 Cache Bypassing . 81

7.1.1 CPU Cache Bypassing . 81
7.1.2 GPU Cache Bypassing . 82

7.2 Memory Address Randomization . 83
7.3 Warp Scheduling . 85
7.4 Warp Throttling . 86
7.5 Cache Replacement Policy . 87

CONCLUSION AND FUTURE WORK . 89
8.1 Conclusion . 89
8.2 Future Work . 90

8.2.1 Locality-Aware Scheduling . 90
8.2.2 Locality-Aware Cache Replacement Policy 91

PUBLICATION CONTRIBUTIONS . 92

BIBLIOGRAPHY . 93

VITA . 103

ix

LIST OF FIGURES

2.1 A GPU kernel execution flow example - A GPU kernel is launched in host CPU,
run on GPU, and then returned to the host CPU. An example CUDA code is shown
on the right side. 7

2.2 Baseline GPU architecture. 9
2.3 A typical memory hierarchy in the baseline GPU architecture. L1D, L1T, and L1C

stand for L1 data, L1 texture, and L1 constant caches, respectively. 12
2.4 A detailed memory hierarchy view. 13
2.5 Memory access handling procedure. 14
2.6 Coalescing examples of memory-convergent and memory-divergent instructions. . . 15
2.7 GPU memory access characteristics. 17
3.1 Memory access pattern for a thread and a warp. 22
3.2 Memory access pattern for a thread block. 23
3.3 Memory access pattern for an SM. 23
3.4 Classification of miss contentions at L1D cache in per kilocycle and in percentage. . 25
3.5 Resource contentions at L1D cache in per kilocycle and in percentage. 27
3.6 Classification of cache misses (intra-warp(IW), cross-warp(XW), and cross-block(XB)

miss) and comparison with different associativity (4-way and 32-way) caches. Left
bar is with 4-way associativity and right with 32-way. 29

3.7 Block reuse percentage in the L1D cache. Reuse0 represents no-reuse until eviction. 31
3.8 LDST unit is in a stall. A memory request from ready warps cannot progress be-

cause the previous request is in stall in the LDST unit. 32
3.9 The average number of ready warps when cache resource contention occurs. 32
4.1 (Revisited) Coalescing example for memory-convergent instruction and memory-

divergent instruction. 36
4.2 Example of contending set by column-strided accesses. 36
4.3 Example of BICG memory access pattern. 37
4.4 The task flow of the proposed selective caching algorithm in an LDST unit. 40
4.5 Different selective caching schemes with associativity size n when the memory

divergence is detected. 42
4.6 Overall improvement - IPC improvement and L1D cache access reduction. 46
4.7 IPC improvement for different schedulers. 47
4.8 IPC improvement for different associativities. 47
5.1 Stall time percentage over simulation cycle time. 54
5.2 The number of addresses and instructions for load. 56
5.3 Reuse frequency table entry and operation. 57
5.4 Reuse frequency table update and caching decision. 57

x

5.5 IPC improvement with different threshold values for caching decision. 59
5.6 Overall improvement: IPC improvement and L1D cache access reduction. 63
5.7 IPC improvement with different schedulers. 65
5.8 IPC improvement with different associativities. 65
6.1 LDST unit in stall and the scheduling queue. 70
6.2 The average number of ready warps when cache resource contention occurs. 71
6.3 A procedure for the memory request scheduler. 72
6.4 A detailed view of the memory request queue and scheduler. 73
6.5 IPC improvement with different implementations. 77
6.6 Overall IPC improvement. 79
6.7 IPC improvement with different schedulers. 79
6.8 IPC improvement with different associativities. 80

xi

LIST OF TABLES

2.1 GPU hardware and software terminology comparison between standards. 6
2.2 Baseline GPGPU-Sim configuration. 10
3.1 Cache capacity across modern multithreaded processors. 28
4.1 Baseline GPGPU-Sim configuration. 44
4.2 Benchmarks from PolyBench [31] and Rodinia [14]. 45
5.1 Baseline GPGPU-Sim configuration. 61
5.2 Benchmarks from PolyBench [31] and Rodinia [14]. 62
6.1 Baseline GPGPU-Sim configuration. 75
6.2 Benchmarks from PolyBench [31] and Rodinia [14]. 76

xii

LIST OF ABBREVIATIONS

GPU Graphics Processing Unit

GPGPU General Purpose Graphics Processing Unit

SIMT Single-Instruction, Multiple-Thread

SIMD Single-Instruction, Multiple-Data

MIMD Multiple-Instruction, Multiple-Data

APU Accelerated Processing Unit

AMD Advanced Micro Devices

IC Integrated Circuit

CPU Central Processing Unit

CMP Chip-MultiProcessor

PCI/PCIe Peripheral Component Interconnect / Peripheral Component Interconnect express

CUDA Compute Unified Device Architecture

OpenCL Open Computing-Language

API Application Programming Interface

DLP Data-Level Parallelism

TLP Thread-Level Parallelism

ILP Instruction-Level Parallelism

CU Compute Unit

SM Streaming Multiprocessor

PC Program Counter

LDST Load Store

xiii

MACU Memory Access Coalescing Unit

MSHR Miss Status Holding Register

L1D Level 1 Data

L1I Level 1 Instruction

L1T Level 1 Texture

L1C Level 1 Constant

L2 Level 2

LLC Last Level Cache

MC Memory Controller

FR-FCFS First-Ready First-Come-First-Serve

PKI Per Kilo (Thousand) Instructions

MPKI Misses Per Kilo (Thousand) Instructions

DRAM Dynamic Random Access Memory

GTO Greedy-Then-Oldest

LRR Loose Round Robin

CCWS Cache-Conscious Warp Scheduling

xiv

CHAPTER 1

INTRODUCTION

The success of General-Purpose computing on Graphics Processing Unit (GPGPU) tech-

nology has made high performance computing affordable and pervasive in platforms ranging from

workstations to hand-held devices. Its cost-effectiveness and power efficiency are unprecedented

in the history of parallel computing. Following their success in general-purpose computing, GPUs

have shown significant performance improvement in many compute-intensive scientific applica-

tions, such as geoscience [79], molecular dynamics [4], DNA sequence alignment [84], and large

graph processing [47], physical simulations in science [62], and so on. Furthermore, the advent

of the big data era has further stimulated the need to leverage the massive computation power

of GPUs in accelerating emerging data-intensive applications, such as data warehousing appli-

cations [7, 29, 30, 36, 83, 89] and big data processing frameworks [35, 15, 16, 34, 78]. The

GPU-based implementations can provide an order of magnitude performance improvement over

traditional CPU-based implementations [36, 83].

Since GPUs were originally introduced to efficiently handle computer graphics workloads

in specialized applications such as computer-generated imagery and video games, these traditional

GPU workloads involved a large amount of data streaming. To deliver high throughput, GPUs

rely on massive fine-grained multithreading to hide long latency operations such as global memory

accesses [22], which operates by issuing instructions from different threads when the threads being

executed are stalled. Given enough threads and enough memory bandwidth, the GPU’s data path

can be kept busy, increasing overall throughput at the expense of a single-thread latency.

1

GPU memory systems have grown to include a multi-level cache hierarchy with both hard-

ware and software controlled cache structures. For instance, Nvidia Fermi GPUs introduced a

relatively large (up to 48 KB per core) and configurable L1 cache and 768 KB L2 cache [64].

Likewise, AMD GCN GPUs also offer a 16 KB L1 cache per core and 768 KB L2 cache [2].

While a throughput processor’s cache hierarchy exploits application inherent locality and

increases the overall performance, the massively parallel execution model of GPUs suffers from

the resource contention. In particular, for applications whose performances are sensitive to caching

efficiency, such cache resource contention degrades the effectiveness of caches in exploiting local-

ity, thereby suffering from significant performance drop. Experiments show that caches are not

always beneficial to GPU applications [41]. From a suite of 12 Rodinia benchmark [14] applica-

tions running on a Nvidia Tesla C2070 GPU with its 16 KB L1 caches turned on and off, only

two of them show substantial performance improvements from caching, but two show non-trivial

performance degradation. The effect of cache is negligible in other 8 benchmarks [41].

One of the main reasons for the performance degradation is cache contention in the memory

hierarchy, especially in the L1 data (L1D) cache. The limited resources that serve the massively

parallel memory requests destroy the application’s inherent memory access locality and create se-

vere cache contention. Software-based optimization could mitigate this problem, but the effort

required to revise the existing code to use cache efficiently is non-trivial [24]. A couple of warp

schedulers are also proposed to reduce the contention by limiting the active warps in an SM. How-

ever, these approaches reduce the utilization of the GPUs [49, 72, 57].

This dissertation proposes architectural support to reduce the cache contention. In particu-

lar, this dissertation identifies the causes of the contention and resolves it by detecting the memory

access patterns that significantly destroys the memory access locality, calculating reuse frequency

of the memory accesses, and probing cache under memory request stall. This dissertation also

demonstrates the effectiveness of these proposed techniques by extensively comparing them with

2

closely related state-of-the-art techniques.

1.1 Research Challenges

One cause of the cache contention arises from column-strided memory access patterns that

GPU applications commonly generate in many data-intensive applications. Such access patterns

are compiled to warp instructions whose generated memory accesses are not well coalesced. We

call these instructions memory-divergent instructions. The resulting memory accesses are serially

processed in the LDST unit due to the resource contention, stress the L1D caches, and result in

serious performance degradation. Even though the impact of memory divergence can be alleviated

through various software techniques, architectural support for memory divergence mitigation is

still highly desirable because it eases the complexity in the programming and optimization of

GPU-accelerated data-intensive applications [72, 73].

Cache contention also arises from cache pollution caused by low reuse frequency data. For

the cache to be effective, a cached line must be reused before its eviction. But, the streaming

characteristic of GPGPU workloads and the massively parallel GPU execution model increases the

reuse distance, or equivalently reduces the reuse frequency of data. If the low reuse frequency data

is cached, it can evict the high reuse frequency data in the cache before it is reused. In a GPU, the

pollution caused by a low reuse frequency (i.e., large reuse distance) data is significant.

Memory request stall is another contention factor. A stalled LDST unit does not execute

memory requests from any ready warps in the previous issue stage. The warp in the LDST unit

retries until the cache resource becomes available. During this stall, the private L1D cache is also

in a stall, so no other warp requests can probe the cache. However, there may be data in an L1D

cache which may become a hit if other ready warps in the issue stage access the cache. The current

structure of the issue stage and L1D unit execution do not allow the provisional cache probing in

such a case. This stall prevents the potential hit chances for the ready warps.

3

1.2 Research Contribution

In this dissertation, we have thoroughly investigated three architectural challenges that can

severely impact the performance of GPUs and eventually degrade overall performance. For each

challenge, this dissertation proposes solutions to reduce the cache contention such as contention-

aware selective caching, locality-aware selective caching, and memory request scheduling. We

compare the proposed solutions with the closely related state-of-the-art techniques. In particular,

this dissertation has made the following contributions.

• Using the application inherent memory access locality classification along with limitation

of resources, we classify cache miss contention into 3 categories, intra-warp (IW), cross-

warp (XW), and cross-block (XB) contention according to the cause of the misses. We also

classify the cache resource contention into 3 categories, LineAlloc fail, MSHR fail, and

MissQueue fail.

• We identify and quantify the factors of the contention such as a column-strided pattern and

its resulting memory-divergent instruction, cache pollution by low reuse frequency data, and

memory request stall.

• We propose a mechanism to detect the column-strided pattern and its resulting memory-

divergent instruction which generates divergent memory accesses, calculate the contend-

ing cache sets and locality information, and caches selectively. We demonstrate that the

contention-aware selective caching can improve the performance more than 2.25x over base-

line and reduce memory accesses.

• We propose a mechanism with low hardware complexity to detect the locality of memory

requests based on per-PC reuse frequency and cache selectively. We demonstrate that it

improves the performance by 1.39x alone and 2.01x along with contention-aware selective

4

caching over baseline, prevents 73% of the no-reuse data from caching and improves reuse

frequency in the cache by 27x.

• We propose a memory request schedule queue that holds ready warps’ memory requests

and a scheduler to effectively schedule them to increase the chances of a hit in the cache

lines. We demonstrate that there are 12 ready warps on average when the LDST unit is in

a stall and this potential improves the overall performance by 1.95x and 2.06x along with

contention-aware selective caching over baseline.

1.3 Organization

The rest of this dissertation is organized as follows:

• Chapter 2 details the summary of terminology used in this dissertation, programming model

in GPUs, the baseline GPU architecture, and warps scheduling and memory access handling.

• Chapter 3 discusses the data locality, cache miss contention classification, cache resource

contention classification and the cache contention factors.

• Chapter 4 presents a contention-aware selective caching proposal to reduce intra-warp asso-

ciativity contention caused by memory-divergent instructions.

• Chapter 5 presents a locality-aware selective caching to measure the reuse frequency of the

instructions and prevent low reuse data from caching.

• Chapter 6 presents a memory request scheduling to better utilize the cache resource under

LDST unit stall.

• Chapter 7 discusses related works.

• Chapter 8 concludes the dissertation and discusses the directions for the future work.

5

CHAPTER 2

BACKGROUND

This chapter introduces background knowledge that serves as a foundation for the rest

of this dissertation. In particular, Section 2.1 summarizes the terminology usage in all chapters

throughout this dissertation. Section 2.2 describes the GPU programming flow and work-item

formation from the software point of view. Section 2.3 presents the abstract model of GPU archi-

tecture used in this dissertation. Section 2.4 and Section 2.5 explain how the warps are assigned to

the execution units and how global memory requests are handled in the GPU memory hierarchy.

More detailed background knowledge can be found in many other references [3, 66, 37, 52].

2.1 Summary of Terminology Usage

This Dissertation CUDA [66] OpenCL [52]

thread thread work-item
warp warp wavefront

thread block thread block work-group

SIMD lane CUDA core processing element
Streaming Multiprocessor (SM) SM Compute Unit (CU)

private memory local memory private memory
local memory shared memory local memory

global memory global memory global memory

Table 2.1. GPU hardware and software terminology comparison between standards.

Table 2.1 summarizes the terminology used in this dissertation. We present this summary

to avoid confusion between multiple equivalent technical terms from multiple competing GPGPU

6

CPU GPU

Launch Kernel

Resume Execution

Wait for GPU
Block(0,0) Block(0,1) Block(0,2)

Block(1,0) Block(1,1) Block(1,2)

Threads

Kernel Grid __global__ void kernel(...) {

int i = blockIdx.x *

blockDim.x +

threadIdx.x;

int j = blockIdx.y;

if (i<M && j<N) {

...

}

...

}

Figure 2.1. A GPU kernel execution flow example - A GPU kernel is launched in host CPU, run
on GPU, and then returned to the host CPU. An example CUDA code is shown on the right side.

programming frameworks and industry standards. Detailed definitions of the terms are presented

in the following sections. A more thorough explanation of GPU terminologies other than the

explanations introduced here can be found in various programming guides and framework specifi-

cations [51, 52, 66].

2.2 Programming GPUs

Programming environments and abstractions have been introduced to help software devel-

opers write GPU applications. Nvidia’s CUDA [66] and Khronos Group’s OpenCL [51, 52] are

popular frameworks. Despite the terminology differences summarized in Table 2.1, these frame-

works have very similar programming models, as introduced below.

Depending on the system configuration, a GPU can be connected via a PCI/PCIe bus or

reside on the same die with the CPU. Applications programmed in high-level programming lan-

guages, such as CUDA [66] and OpenCL [51, 52], begin execution on CPUs. The GPU portion

of the code is launched from the CPU code in the form of kernels. Depending on the system, data

to be used by a GPU are transferred through the PCI/PCIe bus through an internal interconnection

7

between the CPU and GPU, or through pointer exchange.

A CUDA or OpenCL program running on a host CPU contains one or more kernel func-

tions. These kernels are invoked by the host program, offloaded to a GPU device, and executed

there. The kernel code specifies operations to be performed by the GPU from the perspective of

a single GPU thread. At kernel launch, the host specifies the total number of threads executing

the kernel and their thread grouping. As shown in Figure 2.1, a kernel divides its work into a grid

of identically sized thread blocks. The size of a thread block is the number of threads (e.g., 256)

in that block. From the programmer’s perspective, every instruction in the kernel is concurrently

executed by all threads in the same thread block. However, there is a limited number of hardware

lanes (e.g., 32) that an SM can execute concurrently on real hardware. Consequently, threads are

executed in groups of hardware threads called warps. The number of threads in a warp is called

the size of the warp.

GPU threads have access to various memory spaces. A thread can access its own private

memory, which is not accessible by other threads. Threads in the same block can share data and

synchronize via local memory, and all threads in a kernel can access global memory. The local

and global memories support atomic operations. Global memory is cached in on-chip private L1

data (L1D) cache and shared L2 cache. Much of this dissertation focuses on reducing contention

on this L1D cache.

Finally, because every thread executes the same binary instructions as other threads in the

same kernel, it must use its thread ID and thread block ID variables to determine its own identity

and operate on its own data accordingly. Those IDs can be one- or multi-dimensional, and they

are represented by consecutive integer values in each dimension of the block starting with the first

dimension, as shown in Figure 2.1.

8

Texture Cache

Execution Units

Streaming

Multiprocessor

Streaming

Multiprocessor

Streaming

Multiprocessor
...

Interconnection Network

Memory

Partition

L2

MC

Memory

Partition

L2

MC

Memory

Partition

L2

MC

Memory

Partition

L2

MC

...

Off-Chip

DRAM

Channel

Off-Chip

DRAM

Channel

Off-Chip

DRAM

Channel

Off-Chip

DRAM

Channel

...

THREAD Block Scheduler Instruction Cache

Warp Scheduler Warp Scheduler

Register File

SIMD

SIMD

...

SFUs

LD/ST Units

Interconnection Network

L1 Data Cache

Constant CacheLocal Memory

Figure 2.2. Baseline GPU architecture.

2.3 Abstract of GPU Architecture

The modern GPU architecture is illustrated in Figure 2.2. A GPU consists of a thread block

scheduler, an array of Streaming Multiprocessors (SMs), an interconnection network between SMs

and memory modules, and global memory units. Off-chip DRAM memory (global memory) is

connected to the GPU through a memory bus. Each SM is a highly multi-threaded and pipelined

SIMD processor. SIMD lanes execute distinct threads, operate on a large register file, and progress

in lock-step with other threads in the SIMD thread group (warp).

The SM architecture is detailed in the right side of Figure 2.2. It consists of warp sched-

ulers, a register file, SIMD lanes, Load/Store(LDST) units, various on-chip memories including

L1D cache, local memory, texture cache, and constant cache. LDST units manage accesses to

various memory spaces. Depending on the data being requested, GPU memory requests are sent to

either L1D cache, local memory, texture cache or constant cache. Each memory partition consists

of L2 cache and a memory controller (MC) that controls off-chip memory modules. An intercon-

9

Number of SMs 15
SM configuration 1400Mhz, SIMD Width: 16

Warp size: 32 threads
Max threads per SM: 1536
Max Warps per SM: 48 Warps
Max Blocks per SM: 8 blocks

Warp schedulers per core 2
Warp scheduler Greedy-Then-Oldest (GTO), default [73, 72]

Loose Round-Robin (LRR)
Two-Level (TL)[63]

Cache/SM L1 Data: 16KB 128B-line/4-way (default)
L1 Data: 16KB 128B-line/2-way
L1 Data: 16KB 128B-line/8-way
Replacement Policy: Least Recently Used (LRU)
Shared memory: 48KB

L2 unified cache 768KB, 128B line, 16-way
Memory partitions 6
Instruction dispatch 2 instructions per cycle
throughput per scheduler
Memory Scheduler Out of Order (FR-FCFS)
DRAM memory timing tCL=12, tRP=12,

tRC=40, tRAS=28,
tRCD=12, tRRD=6

DRAM bus width 384 bits

Table 2.2. Baseline GPGPU-Sim configuration.

nection network handles data transfer between the SMs and L2 caches, and the memory controller

handles data transfer between L2 and off-chip memory modules.

We use GPGPU-Sim [5] for detailed architectural simulation of the GPU architecture. The

details of the architectural specification can be found in the GPGPU-Sim 3.x manual [82]. We

present the details of our simulation setup and configurations in Table 2.2.

10

2.4 Warp Scheduling

As shown in Figure 2.2, each SM contains multiple physical warp lanes (SIMD) and two

warp schedulers, independently managing warps with even and odd warp identifiers. In each cycle,

both warp schedulers pick one ready warp and issue its instruction into the SIMD pipeline back-

end [64, 65]. To determine the readiness of each decoded instruction, a ready bit is used to track

its dependency on other instructions. It is updated in the scoreboard by comparing its source

and destination registers with other in-flight instructions of the warp. Instructions are ready for

scheduling when their ready bits are set (i.e., data dependencies are cleared).

GPU scheduling logic consists of two stages: qualification and prioritization. In the qualifi-

cation stage, ready warps are selected based on the ready bit that is associated with each instruction.

In the prioritization stage, ready warps are prioritized for execution based on a chosen metric, such

as cycle-based round-robin [63, 44], warp age [73, 72], instruction age [12], or other statistics that

can maximize resource utilization or minimize stalls in memory hierarchy or in execution units.

For example, the Greedy-Then-Oldest (GTO) scheduler [73, 72] maintains the highest priority for

the currently prioritized warp until it is stalled. The scheduler then selects the oldest among ready

warps for scheduling. GTO is a commonly used scheduler because of its good performance in a

large variety of general purpose GPU benchmarks.

2.5 Modern GPU Global Memory Accesses

2.5.1 Memory Hierarchy

An SM contains physical memory units shared by all its concurrently executing threads.

Private memory mapped to registers is primarily used for threads to store their individual states

and contexts. Local memory mapped to programmer-managed scratch-pad memories [8] is used to

share data within a thread block. All cores share a large, off-chip DRAM to which global memory

maps. Modern GPUs also have a two-level cache hierarchy (L1D and L2) for global memory

11

...

Interconnection Network

L2

Off-Chip Global Memory

SM

Scra tchpad Mem.

(Local Memory)

Registers

(Private Memory)

L1D L1T&C

SM

Scra tchpad Mem.

(Local Memory)

Registers

(Private Memory)

L1D L1T&C

SM

Scra tchpad Mem.

(Local Memory)

Registers

(Private Memory)

L1D L1T&C

Figure 2.3. A typical memory hierarchy in the baseline GPU architecture. L1D, L1T, and L1C
stand for L1 data, L1 texture, and L1 constant caches, respectively.

accesses. Texture and constant caches (L1T and L1C) have existed since the early graphics-only

GPUs [33]. Figure 2.3 shows the described memory hierarchy in the baseline GPU architecture.

Current Nvidia GPUs have configurable L1D caches whose size can be 16, 32, or 48 KB.

The L1D cache in each core shares the same total 64 KB of memory cells with local memory,

giving users dynamically configurable choices regarding how much storage to devote to the L1D

cache versus the local memory. AMD GPU L1D caches have a fixed size of 16 KB. Current

Nvidia GPUs have non-configurable 768 KB - 1.5 MB L2 caches, while AMD GPUs have 768 KB

L2 caches. L1T and L1C are physically separate from L1D and L2, and they are only accessed

through special constant and texture instructions. GPU programmers are usually encouraged to

declare and use local memory variables as much as possible because the on-chip local memories

have a much shorter latency and much higher bandwidth than the off-chip global memory. Small,

but repeatedly used data are good candidates to be declared as local memory objects. However,

because local memories have a limited capacity and a GPU core cannot access another core’s local

memory, many programs cannot use local memories due to their data access patterns. In these

situations, the global memory with its supporting cache hierarchy should be the choice.

Threads from the same thread block must execute on the same SM in order to use the SM’s

scratch-pad memory as a local memory. However, when thread blocks are small, multiple thread

12

LD/ST
Texture Cache

Constant Cache
Local Memory

W
a
rp

S
c
h

e
d

u
le

r

R
e
g
is

te
r

F
il

e

Execution Units (ALU/SFU)

W
a
rp

S
c
h

e
d

u
le

r

..
.

W0

W46

W2

W1

W47

W2

A
c
ce

s
s

G
e
n
e
ra

ti
o

n

L1 Data Cache

M
A

C
U L1D

MSHR

M
em

 P
o
rt

..
.

Figure 2.4. A detailed memory hierarchy view.

blocks may execute on a single SM as long as core resources are sufficient. Specifically, four

hardware resources - the number of thread slots, the number of thread block slots, the number

of registers, and the local memory size - dictate the number of thread blocks that can execute

concurrently on a SM; we call this number a SM’s (thread) block concurrency. An interconnection

network connects SMs to the DRAM via a distributed set of L2 caches and memory modules. A

certain number of memory modules share one memory controller (MC) that sits in front of them

and schedules memory requests. This number varies from one system to the other. The DRAM

scheduler queue size in each memory module impacts the capacity to hold outstanding memory

requests.

2.5.2 Memory Access Handling

Figure 2.4 shows a typical thread processing and memory hierarchy on an SM. An instruc-

tion is fetched and decoded for a group of threads called a warp. The size of warp can vary across

devices, but is typically 32 or 64. All threads in a warp execute in an SIMD fashion with each

thread using its unique thread ID to map to its data. A user-defined thread block is composed of

multiple warps. At issue stage, a warp scheduler selects one of the ready warps for execution.

Figure 2.5 shows the detailed global memory access handling. A memory instruction is

issued on a per warp-basis with usually 32 threads in Nvidia Fermi, or 64 threads in AMD Southern

13

A warp instruction

32 memory

access requests

MACU

k actual

requests

L1D Cache Probing

HIT

Resource checking:

Line

MSHR

MissQueue

stall

Send request

available

iterate
Iterate k times

END

MISS

Figure 2.5. Memory access handling procedure.

Island architectures. Once a memory instruction for global memory is issued, it is sent to a Memory

Access Coalescing Unit (MACU) for memory request generation to the next lower layer of the

memory hierarchy. To minimize off-chip memory traffic, the MACU merges simultaneous per-

thread memory accesses to the same cache line. Depending on the stride of the memory addresses

among threads, the number of resulting memory requests varies. For example, when 4 threads in

a warp access 4 consecutive words, i.e., stride-1 access, in a cache line-aligned data block, the

MACU will generate only one memory access to L1D cache as shown in Figure 2.6a. Otherwise,

simultaneous multiple accesses are coalesced to a smaller number of memory accesses to L1D

cache to fetch all required data. In the worst case, the 4 memory accesses are not coalesced at all

and generate 4 distinct memory accesses to L1D cache as shown in Figure 2.6c. Therefore, a fully

memory-divergent instruction can generate as many accesses as the warp size. The working set

is defined as the amount of memory that a process requires in a given time interval [20]. When

14

(a) Fully convergent

add

(b) Partially divergent

ad

(c) Fully divergent

Figure 2.6. Coalescing examples of memory-convergent and memory-divergent instructions.

many memory-divergent instructions are issuing memory requests, the working set size becomes

large. If it exceeds the cache size, it causes cache contention. In the rest of this dissertation,

the memory instructions that generate only one memory access after MACU are called memory-

convergent instructions, and the others are called memory-divergent instructions. The resultant

memory accesses from an MACU are sequentially sent to L1D via a single 128-byte port [12].

When a load memory request hits in L1D, the requested data is written back to the register

file and dismissed. If it misses in L1D, the request checks if it can allocate enough resources to

process the request. When the request acquires resources, it is sent to the next lower memory

hierarchy to fetch data. Otherwise, it retries at next cycle to acquire the resources. The resources

to be checked by the request are a line in a cache set, a Miss Status Holding Register (MSHR) entry

and a miss queue entry. An allocate-on-miss policy cache allocates one cache line in the destination

set of cache if available. Otherwise, it fails allocation on the cache and retries at the next cycle until

the resource is ready. An allocate-on-fill policy cache skips this process and attempts allocation

on reception of the requested data from the lower memory hierarchy. The MSHR is used to track

in-flight memory requests and merge duplicate requests to the same cache line. Upon MSHR

allocation, a memory request is buffered into the memory port for network transfer. An MSHR

entry is released after its corresponding memory request is back and all accesses to that block are

15

serviced. Memory requests buffered in the memory port are drained by the on-chip network in

each cycle when lower memory hierarchy is not saturated.

Since L1D caches are not coherent across cores, every global memory store is treated as

a write-through transaction followed by invalidation on the copies in the L1D cache [2]. Store

instructions require no L1D cache resources and are directly buffered into the memory port to the

L1 cache. For this reason, only global memory loads, not stores, are taken into consideration in

this dissertation.

2.5.3 Memory Access Characteristics

Since GPUs have a different programming model and execution behavior from traditional

CPUs, their memory access also has unique characteristics different from traditional processors.

According to our evaluation and analysis of cache behavior and performance [19], GPU memory

access has the following characteristics.

Considerably low cache hit rate in L1D: As shown in Figure 2.7a, L1D cache hit rate on

GPUs is considerably lower than those on the CPUs (49% vs. 88% on average). This suggests the

reuse rate of the data in the cache is not high. This low cache hit rate in L1D results in increased

memory traffic to the lower levels of the memory hierarchy, L2 and off-chip global memory. It

leads to overall longer memory latency, and thus degrades the overall memory performance.

Compulsory misses dominate: The main cause of the low cache hit rate for L1D results

from the fact that compulsory misses dominate in an L1D cache. Compulsory miss is sometimes

referred as cold miss or first reference miss since this miss occurs when the data block is brought

to the cache for the first time. From Figure 2.7b, the compulsory miss rate over total misses are

about 65% on average. This behavior contradicts the conventional wisdom that compulsory misses

are negligibly small on traditional multi-core processors [74]. This difference shows that the data

in GPU is not reused much, that is, data reusability is very low. This is different from the CPU

16

BS DCT RG FW FWT MT SLA RED RS HIST BLS BO AVG
0

0.2

0.4

0.6

0.8

1

C
ac

he
 H

it
R

at
e CPU

GPU

(a) Cache hit rate on L1D cache.

BS DCT RG FW FWT MT SLA RED RS HIST BLS BO AVG
0

50

100

P
er

ce
nt

ag
e

(%
)

(b) Compulsory miss rate in L1D cache.

BS DCT RG FW FWT MT SLA RED RS HIST BLS BO AVG
0

8

16

24

32

C
oa

le
sc

in
g

D
eg

re
e

(c) Coalescing degree in Memory Access Coalescing Unit (MACU).

Figure 2.7. GPU memory access characteristics.

memory access patterns where temporal and spatial localities are used for caching. Tian et al. [80]

show that zero-reuse blocks in the L1 data cache are about 45% on average GPU applications.

Coalescing occurs massively: As described in Section 2.2, GPUs achieve high performance

through massively parallel thread execution. Such massive thread execution subsequently issues

many memory requests to its private L1D cache. Since typical memory accesses are known to

be regular with strided patterns in GPUs, massive coalescing occurs at the MACU. Figure 2.7c

shows the coalescing degree for each benchmark. The coalescing degree is defined as the ratio of

the number of memory requests generated by warp instructions to the total L1D cache requests.

Since the warp size is 32, maximum coalesce degree is 32. As can be seen in Figure 2.7c, on some

17

benchmarks such as bs, dct, and bo, the coalescing degree is very high, more than 16. On

average, approximately 7 memory requests are coalesced to the same cache line. In other words,

the memory traffic reduction by the MACU is 7 to 1.

18

CHAPTER 3

CACHE CONTENTION

This chapter introduces the taxonomy of memory access locality that GPU applications

inherently have. This chapter also introduces two other cache contention classifications, miss con-

tention and resource contention, followed by the factors that are involved in the cache contention.

As noted in Section 2.5.2, only global memory loads - not stores - are taken into consideration,

since global memory stores bypass the L1D cache and do not affect the cache contention described

in this dissertation.

3.1 Taxonomy of Memory Access Locality

A comprehensive understanding of GPU memory access characteristics, especially locality,

is essential to a better understanding of contention in the memory hierarchy of a GPU. We introduce

the four-category memory access locality including intra-thread locality, intra-warp locality, cross-

warp locality, and cross-block locality. The definition of each category follows.

• Intra-thread data locality (IT) applies to memory instructions being executed by one thread

in a warp. This category captures the temporal and spatial locality of a thread which has a

similar pattern to that of the CPU workload.

• Intra-warp data locality (IW) applies to memory instructions being executed by threads from

the same warp. Depending on the result of coalescing, the instructions are classified to

either memory-convergent (in which thread accesses are mapped to the same cache block)

or memory-divergent (in which thread accesses are mapped to more than 2 cache blocks).

19

When the instruction is memory-convergent, the spatial locality between threads is taken care

of by the coalescer (MACU), and therefore, the number of memory requests per instruction

becomes one, which is the same as the IT locality case. When the instructions are not

memory-convergent, each instruction generates multiple memory requests and the working

set size becomes larger.

• Cross-warp Intra-block data locality (XW) applies to memory instructions being executed

by threads from the same thread block, but from different warps in the thread block. If these

threads access data mapped to the same cache line, they have XW locality. Warp scheduler

and memory latency affect the locality.

• Cross-warp Cross-block data locality (XB) applies to memory instructions being executed

by threads from different thread blocks, but in the same SMs. If these threads access data

mapped to the same cache line, they have XB locality. The thread block scheduler, warp

scheduler and memory latency affect the locality. XB locality between thread blocks mapped

to different SMs is not considered since they do not show locality in an SM.

Since more threads are involved in the memory access locality for GPUs as described in the

taxonomy above, we need to review the definition of temporal and spatial locality. The traditional

definition of temporal locality and spatial locality are the followings [37].

Temporal locality: If a particular memory location is referenced at a particular time, then

it is likely that the same location will be referenced again in the near future. There is a temporal

proximity between the adjacent references to the same memory location. In this case, it is common

to make an effort to store a copy of the referenced data in special memory storage, which can be

accessed faster. Temporal locality is a special case of spatial locality, namely when the prospective

location is identical to the present location.

Spatial locality: If a particular memory location is referenced at a particular time, then

20

Listing 3.1. SYRK benchmark kernel
1__global__ void syrk_kernel(...)
2{
3/* C := alpha*A*A’ + beta*C , NxN matrix*/
4int j = blockIdx.x * blockDim.x + threadIdx.x;
5int i = blockIdx.y * blockDim.y + threadIdx.y;
6

7if ((i<N) && (j<N)) {
8c[i*N+j] = c[i*N+j] * beta;
91
10for(int k=0; k<N; k++) {
11c[i*N+j] = alpha * a[i*N+k] * a[j*N+k] + c[i*N+j];
122 3 4
13}
14}
15}

it is likely that nearby memory locations will be referenced in the near future. In this case, it is

common to attempt to guess the size and shape of the area around the current reference for which

it is worthwhile to prepare faster access.

To visualize the above category in detail, we choose a benchmark, syrk, in Polybench/

GPU [31]. The syrk benchmark has intra-warp (IW) locality as well as cross-warp intra-block

(XW) and cross-warp cross-block (XB) locality. The example kernel code in Listing 3.1 and

address distribution per category are given. For simplicity in this example, we assume N = 16,

warp size 4, thread block size 16. There are 16 thread blocks total, and the maximum warps in an

SM are 4 thread blocks.

The code listing above shows four load instructions, which are highlighted and labeled in

circled numbers in the listing. The load instruction execution sequence is {1, {2, 3, 4}N} where

{...}N represents repetition of the sequence in the curly bracket and the N value is 16 in this

case. Since N is 16, there are 49 load memory accesses per thread. The memory address pattern

for the thread 0 (T0) is shown in Figure 3.1a, intra-thread locality (IT). Since load instructions

1 and 4 read the same memory address regardless of the k value, these load instructions have

temporal locality in a thread memory access. On the other hand, since load instructions 2 and 3

21

Access Cycle
0 5 10 15 20 25 30 35 40 45 50

M
em

or
y

A
dd

re
ss

0

100

200

300
Memory Access Pattern for a thread (T0)

T0

Temporal locality

Spatial locality

(a) Memory access pattern for a thread (T0) - Intra-thread (IT) locality.

Access Cycle
0 5 10 15 20 25 30 35 40 45 50

M
em

or
y

A
dd

re
ss

0

100

200

300
Memory Access Pattern for a warp (W0)

T0
T1
T2
T3

Coalescing
Direction

(b) Memory access pattern for a warp (W0 with T0, T1, T2, T3) - Intra-warp (IW) locality. Memory
accesses within a rectangle can be coalesced.

Figure 3.1. Memory access pattern for a thread and a warp.

are accessing neighboring memory addresses, respectively, this shows spatial locality. Hence, the

memory pattern for the thread T0 shows both temporal and spatial locality.

The next scope is intra-warp locality (IW). Figure 3.1b shows the memory address pattern

for the 4 threads, T0, T1, T2, and T3, in the same warp. Since coalescing occurs at the intra-

warp level, as marked with red rectangles in the figure, coalescing occurs within the red rectangle,

in the vertical direction of address distribution in a cycle. As explained in Section 2.5.2, only

memory addresses within the cache block size are coalesced. Therefore, when the memory requests

are scattered enough not to be grouped into a cache line, i.e., N is larger, the memory-divergent

instruction generates up to warp-size memory requests. The temporal locality and spatial locality

observed in the IT locality graph still hold.

The next scope is cross-warp intra-block (XW) locality as in Figure 3.2. From this scope

and beyond, the warp scheduler plays a very important role. The address pattern without the warp

scheduler effect is shown in Figure 3.2a. The pairs, {W0, W2}, and {W1, W3} show very similar

22

Access Cycle
0 5 10 15 20 25 30 35 40 45 50

M
em

or
y

A
dd

re
ss

0

100

200

300

400
Memory Access Pattern for a thread block (TB0)

W0
W1
W2
W3

(a) Memory access pattern for a thread block (TB0) - ideal - Cross-warp Intra-block (XW) locality.

Access Cycle
0 10 20 30 40 50 60 70

M
em

or
y

A
dd

re
ss

0

100

200

300

400
Memory Access Pattern for a thread block (TB0)

W0
W1
W2
W3

(b) Memory access pattern for a thread block - skewed by warp scheduler effect - Cross-warp Intra-
block (XW) locality.

Figure 3.2. Memory access pattern for a thread block.

Access Cycle
0 5 10 15 20 25 30 35 40 45 50

M
em

or
y

A
dd

re
ss

0

100

200

300

400
Memory Access Pattern for all thread blocks

TB0
TB1
TB2
TB3

(a) Memory access pattern for an SM - ideal - Cross-warp Cross-block (XB) locality.

Access Cycle
0 10 20 30 40 50 60 70 80

M
em

or
y

A
dd

re
ss

0

100

200

300

400
Memory Access Pattern for all thread blocks

TB0
TB1
TB2
TB3

(b) Memory access pattern for an SM - skewed by warp scheduler effect - Cross-warp Cross-block
(XB) locality.

Figure 3.3. Memory access pattern for an SM.

23

memory access pattern and that pattern has very good spatial and temporal locality. When we

include the warp scheduler effect as shown in Figure 3.2b, the memory accesses are more scattered

in time. In this figure, by scheduling the locality pairs apart, for example {W0, W1} first and

{W2, W3} later, the locality shown in the code can be completely destroyed. As shown, the x-

axis of Figure 3.2b is also extended to 1.5x cycles longer. When it comes to the real warp scheduler

introduced in Section 2.4, the memory access pattern is much more complex. As the number of

memory requests grows, the chances of thrashing grow high since, in a short period of time, many

memory accesses are contending to acquire the cache resources.

The largest scope is cross-warp cross-block (XB) locality. Figure 3.3 shows this case. The

working set of memory access grows even larger than in the XW case. Figure 3.3a shows the

memory access pattern without the effect of the warp scheduler and the memory latency. This still

shows good inter-block locality between the blocks without scheduler effect, while the scheduler

effect affects the locality pattern significantly.

In summary, GPU applications have inherent memory access locality either at the thread

level, warp level, cross-warp level or cross-block level. Since threads are executed as a warp in

GPUs, the thread level locality is absorbed to the warp level by coalescing at the MACU unit.

However, when the memory accesses with locality are executed in a GPU, they are competing with

each other to acquire the limited resources such as warp schedulers, LDST units, caches, and other

resources in the GPU. When the number of memory accesses at a certain time interval (working set)

is large, the contention becomes severe. This contention creates a serious performance bottleneck.

3.2 Taxonomy of Cache Contention

Due to the resource limitations of the memory hierarchy, as introduced in Section 3.1, the

inherent memory access locality can be dramatically reduced and causing cache miss contention

and cache resource contention. According to the cause of the contentions, we classify them as

24

2d
co

nv

2m
m

3d
co

nv

3m
m

at
ax

bi
cg

ge
su

m
m

v

m
vt

sy
r2

k

sy
rk

ba
ck

pr
op bf

s

ho
ts

po
t

lu
d

nw

sr
ad

1

sr
ad

2

 m
ea

n

0

500

1000

P
er

 k
ilo

cy
cl

e

Intra-warp contention
Cross-warp contention
Cross-block contention

(a) Miss contention classification (per kilocycle).

2d
co

nv

2m
m

3d
co

nv

3m
m

at
ax

bi
cg

ge
su

m
m

v

m
vt

sy
r2

k

sy
rk

ba
ck

pr
op bf

s

ho
ts

po
t

lu
d

nw

sr
ad

1

sr
ad

2

 m
ea

n

0

50

100

P
er

ce
nt

ag
e

(%
)

(b) Miss contention classification (percentage).

Figure 3.4. Classification of miss contentions at L1D cache in per kilocycle and in percentage.

follows.

3.2.1 Cache Miss Contention Classification

When a cache miss occurs, the new memory request must evict a previously residing cache

line (victim cache line). Depending on the warp ID and block ID relationship between the in-

serting and evicting lines, the cache miss is classified into intra-warp, cross-warp, and cross-block

contention. We classify the GPU cache miss contention as follows:

• Intra-Warp contention (IW) refers to contention among memory requests from threads in the

same warp. The contention can occur among the memory requests from the same instruction

of the same warp or among the memory requests from different instructions of the same

warp. We define the former case as coincident IW contention because the contention is

25

between the requests occurring at the same time frame (during coalescing), and the latter

case as non-coincident IW contention.

• Cross-Warp Contention (XW) refers to contention among memory requests from threads in

different warps. Since many warps execute concurrently in an SM, the memory working set

size from those warps tends to be large. Hence, the cross-warp contention frequently causes

capacity misses. Data blocks are evicted frequently before any reuse occurs, especially when

the reuse distance is long. More importantly, memory requests with no reuse may evict cache

lines that have high reuse, resulting in cache pollution.

• Cross-Block Contention (XB) refers to contention among memory requests from threads in

different thread blocks. This is a subset of the XW contention where contention source is

from two different blocks.

Figure 3.4 shows the miss contention classification in L1D cache depending on the cause

of miss contention. From the figure, about 45% of the cache misses on average are from intra-warp

contention. Especially, for the benchmarks such as atax, bicg, gesummv, mvt, syr2k,

and syrk, intra-warp contention dominates the miss contention.

3.2.2 Cache Resource Contention Classification

When an incoming memory access request is serviced in the cache hierarchy after a miss,

it checks the cache to see if there are enough resources such as cache line, MSHR entry, and miss

queue entry to serve the request. When the cache does not have enough resources, the incoming

request is stalled and retries until it acquires the cache resources it needs. Depending on the type

of the resource acquisition fail, we classify the resource contention into three categories:

• Line Allocation Fail occurs when there is no cache line available for allocation. When a

request misses in a cache, the request tries to find an available line in the cache for allocation

26

2d
co

nv

2m
m

3d
co

nv

3m
m

at
ax

bi
cg

ge
su

m
m

v

m
vt

sy
r2

k

sy
rk

ba
ck

pr
op bf

s

ho
ts

po
t

lu
d

nw

sr
ad

1

sr
ad

2

 m
ea

n

0

500

1000

P
er

 k
ilo

cy
cl

e

LineAlloc Fail
MissQueue Fail
MSHR Fail

(a) Resource contention (per kilocycle).

2d
co

nv

2m
m

3d
co

nv

3m
m

at
ax

bi
cg

ge
su

m
m

v

m
vt

sy
r2

k

sy
rk

ba
ck

pr
op bf

s

ho
ts

po
t

lu
d

nw

sr
ad

1

sr
ad

2

 m
ea

n

0

50

100

P
er

ce
nt

ag
e

(%
)

(b) Resource contention (percentage).

Figure 3.5. Resource contentions at L1D cache in per kilocycle and in percentage.

under Allocation-on-Miss policy. When all the lines are reserved, line allocation fail occurs

and the request retries until a line is available.

• MSHR Fail occurs when the request can reserve a line in a set but there is no entry available

in the MSHR. The MSHR holds an active request sent to the lower level cache until the

request returns with data.

• Miss Queue Fail occurs when a line is available to be allocated and there is a MSHR entry

available, but the miss queue to the lower level is full. It also means that the lower level

cache is blocked.

The graph in Figure 3.5 shows the metrics for each type of resource reservation fails. Ap-

proximately 80% of the resource contention is LineAllocFail and the resource contention takes

27

Type Processor L1 cache
Threads Cache
/ Core / Thread

CPU
Intel Haswell 32 KB 2 16 KB
Intel Xeon-Phi 32 KB 4 8 KB
AMD Kaveri 64 KB 2 32 KB

Type Processor L1 cache
Threads Cache Cache
/ Core / Thread / Warp

GPU

Nvidia Fermi 48 KB 1536 32 B 1 KB
Nvidia Kepler 48 KB 2048 24 B 750 B
AMD SI 16 KB 2560 6.4 B 410 B

Table 3.1. Cache capacity across modern multithreaded processors.

about 500 cycles per kilocycles on average for the benchmarks we tested.

3.3 Cache Contention Factors

3.3.1 Limited Cache Resource

Modern GPUs have widely adopted hardware-managed cache hierarchies inspired by the

successful deployment in CPUs. However, traditional cache management strategies are mostly

designed for CPUs and sequential programs; replicating them directly on GPUs may not deliver

the expected performance as GPUs’ relatively smaller cache can be easily congested by thousands

of threads, causing serious contention and thrashing.

Table 3.1 lists the L1D cache capacity, thread volume, and per-thread and per-warp L1

cache size for several state-of-the-art multithreaded processors. For example, the Intel Haswell

CPU has 16 KB cache per thread per core available, but, the NVIDIA Fermi GPU has only 32 B

cache per thread available, which is significantly smaller than CPU cache. Even if we consider the

cache capacity per warp (i.e., execution unit in a GPU), it has only 1 KB per warp, which is still

far smaller than for the CPU cache. Generally, the per-thread or per-warp cache share for GPUs

is much smaller than for CPUs. This suggests the useful data fetched by one warp is very likely

28

2d
co

nv

2m
m

3d
co

nv

3m
m

at
ax

bi
cg

ge
su

m
m

v

m
vt

sy
r2

k

sy
rk

ba
ck

pr
op bf

s

ho
ts

po
t

lu
d

nw

sr
ad

1

sr
ad

2

 m
ea

n

0

50

100
P

er
ce

nt
ag

e
IW
XW
XB

Left 4
Right 32

Figure 3.6. Classification of cache misses (intra-warp(IW), cross-warp(XW), and cross-block(XB)
miss) and comparison with different associativity (4-way and 32-way) caches. Left bar is with
4-way associativity and right with 32-way.

to be evicted by other warps before actual reuse. Likewise, the useful data fetched by a thread can

also be evicted by other threads in the same warp. Such eviction and thrashing conditions destroy

locality and impair performance. Moreover, the excessive incoming memory requests can lead to

significant delay when threads are queuing for the limited resources in caches (e.g., a certain cache

set, MSHR entries, miss buffers, etc.). This is especially so during an accessing burst period (e.g.,

in the starting phase of a kernel) or set-contending coincident IW contention.

3.3.2 Column-Strided Accesses

The cache contention analysis in Section 3.2 shows that the intra-warp contention takes

about 45% of the overall cache miss contention and that 80% of the resource contention is line

allocation fail. The analysis infers that the intra-warp associativity contention has a big impact

on GPU performance. In order to illustrate the problem of intra-warp contention and quantify

their direct impacts on GPU performance, we used two L1D configurations that have the same

total capacity (16 KB) but different cache associativities (4 vs 32) to execute 17 benchmarks from

PolyBench [31] and Rodinia [14].

As shown in Figure 3.6, after increasing the associativity from 4 to 32, the intra-warp

misses in atax, bicg, gesummv, mvt, syr2k, syrk are reduced significantly. About

29

45% of the misses in gesummv are still intra-warp (IW) misses, because it has two fully memory

divergent loads that contend for the L1D cache. Even though a 32-way cache is impractical for

real GPU architectures, this experiment shows that eliminating associativity conflicts are critical

for high performance in benchmarks with memory-divergent instructions.

In benchmarks with multidimensional data arrays, the column-strided access pattern is

prone to create this high intra-warp contention on associativity. The most common example of

this pattern is A[tid∗STRIDE+offset], where tid is the unique thread ID and STRIDE is the

user-defined stride size. By using this pattern, each thread iterates a stride of data independently. In

a conventional cache indexing function, the target set is computed as set = (addr/blkSz)%nset ,

where addr is the target memory address, blkSz is the length of cache line and nset is the number

of cache sets. For example, in the Listing 3.1, when the address stride between two consecutive

threads is equal to a multiple of blkSz ∗ nset, all blocks needed by a single warp are mapped into

the same cache set. When the stride size (STRIDE) is 4096 bytes as in the kernel 1 below, the

32 consecutive intra-warp memory addresses, 0x00000, 0x01000, 0x02000, ..., 0x1F000, will be

mapped into the set 0 in our baseline L1D that has 4-way associativity, 32 cache sets, and 128B

cache lines.

Since cache associativity is often much smaller than warp size, 4 (associativity) versus 32

(warp size) in this example, associativity conflict occurs within each single memory-divergent load

instruction and then the memory pipeline is congested by the burst of intra-warp memory accesses.

3.3.3 Cache Pollution

While GPGPU applications may exhibit good data reuse, due to the small size of the cache

and heavy contention in L1D cache as well as many active memory requests, the distance between

those accesses that could exploit reuse effectively becomes farther apart, resulting in a miss. Fig-

ure 3.7 shows the distribution of reuse from the execution of each benchmark with 16 KB, 32-set,

30

2d
co

nv

2m
m

at
ax

bi
cg

ge
su

m
m

v

m
vt

sy
r2

k

sy
rk

ba
ck

pr
op bf

s

ho
ts

po
t

lu
d

nw

sr
ad

1

sr
ad

2

 m
ea

n

0

20

40

60

80

100

pe
rc

en
ta

ge
 (

%
)

Reuse 0
Reuse 1
Reuse 2
Reuse ≥ 3

Figure 3.7. Block reuse percentage in the L1D cache. Reuse0 represents no-reuse until eviction.

4-way, 128-byte block size cache. The value of reuse is defined as the number of accesses of a

line after insertion to the eviction. The initial load to the cache line sets the value to zero. Each

successive hit of the line increases the reuse value by one. Reuse0 represents that the line is never

reused after its insertion to the cache. As can be seen, the Reuse0 dominates the distribution with

about 85%. That is, many of the cache lines are polluted by the one time use data. If the one time

use data is detected before insertion and is not inserted, the efficiency of the cache will increase.

Also, if the lines are not polluting the cache, the reuse frequency of other lines would increase.

3.3.4 Memory Request Stall

When the LDST unit becomes saturated, the new request to the LDST unit will not be

accepted. When the LDST unit is in a stall by one of the cache resources, for example, a line,

an MSHR entry or a miss queue entry, the request fully owns the LDST unit and retries for the

resource. Whenever the contending resource becomes free, the retried request finally acquires the

resource and the LDST unit can accept the next ready warp. While the stalled request retries, the

LDST unit is blocked by the request and cannot be preempted by another request from other ready

warps. Usually, the retry time is large because the active requests occupy the resource during the

long memory latency to fetch data from the lower level of the cache or the global memory.

During this stall, other ready warps which may have the data they need in the cache cannot

31

W1W2W3

Ready Warps

W0
W3 data

L1D cache

R

R

R

R

LDST unit

stall

issue

Figure 3.8. LDST unit is in a stall. A memory request from ready warps cannot progress because
the previous request is in stall in the LDST unit.

2d
co

nv

2m
m

at
ax

bi
cg

ge
su

m
m

v

m
vt

sy
r2

k

sy
rk

ba
ck

pr
op

ho
ts

po
t

lu
d

nw

sr
ad

1

sr
ad

2

 m
ea

n

0

10

20

30

of

 r
ea

dy
 w

ar
ps

Figure 3.9. The average number of ready warps when cache resource contention occurs.

progress because the LDST unit is in a stall caused by the previous request. This situation is

illustrated in Figure 3.8. Assume W0 is stalled in the LDST unit and there are 3 ready warps in the

issue stage. While W0 is in a stall, the 3 ready warps in the issue stage cannot issue any request

to the LDST unit. Even though W3 data is in the cache at that moment, it cannot be accessed by

W3. While W0, W1, and W2 are being serviced in the LDST unit, the W3 data in the cache may

be evicted by the other requests from W0, W1, or W2. When W3 finally accesses the cache, the

previous W3 data in the cache has already been evicted and then the W3 request misses in the

L1D cache and would need to send a fetch request to the lower level to fetch the data. If W3 had

a chance to be scheduled to the stalled LDST unit, it would make a hit in the cache and save extra

cycles.

To estimate the potential opportunity for the hit under this circumstance, we measured the

number of ready warps when the memory request stall occurs. This number does not dictate the

32

number of hit increase, but it gives us an estimate. Figure 3.9 shows that 12 warps on average are

ready to be issued when the LDST unit is in a stall.

33

CHAPTER 4

CONTENTION-AWARE SELECTIVE CACHING

4.1 Introduction

Our analysis in Chapter 3 shows that if the memory accesses from a warp do not coalesce,

L1D cache gets populated fast. The worst case scenario is a column-strided access pattern that

maps many accesses to the same cache set. This creates severe resource contention, resulting in

stalls in the memory pipeline. Furthermore, the simultaneous memory accesses from several in-

flight warps cause contention as well. The widely used associativity of L1D cache is 4-way and

it can be significantly smaller compared to the number of per-thread divergent memory accesses.

There could be as many as 32 threads generating divergent memory accesses. This contention puts

severe stress on the L1 data cache.

To distribute these concentrated accesses across cache sets, memory address randomization

techniques for GPU have been proposed [75, 86]. They permute the cache index bits by logical

xoring to distribute the concentrated memory accesses over the entire cache uniformly. However,

dispersion over the entire cache does not work well since there are many in-flight warps and the

memory access pattern of the warps are similar. It does not effectively reduce the active working

set size.

To mitigate the contention generated by memory divergence, this chapter presents a proac-

tive contention detection mechanism and selective caching algorithm depending on the concentra-

tion per cache set measure and a Program Counter (PC)-based locality measure to maximize the

benefits of caching. In this chapter, we identify the problematic intra-warp associativity contention

34

in GPU and analyze the cause of the problem in depth. Then, we present a proactive contention

detection mechanism to use when contention-prone memory access pattern occurs. We also pro-

pose a selective caching algorithm based on the concentration per cache set measure and per-PC

based locality measure. Thorough analysis on the experimental result follows.

4.2 Intra-Warp Cache Contention

4.2.1 Impact of Memory Access Patterns on Memory Access Coalescing

Depending on the stride of the memory addresses among threads, the number of resulting

memory requests is determined by the MACU. For example, when 4 threads of a warp access 4

consecutive words (i.e., a stride of 1) in a cache line aligned data block, the MACU will gener-

ate only one memory request to L1D cache. We call this case a memory-convergent instruction

as shown in Figure 4.1a. Otherwise, simultaneous multiple requests are not fully coalesced and

generate several memory requests to L1D cache to fetch all demanded data. In the worst case, the

4 memory requests are not coalesced at all and generate 4 distinct memory requests to L1D cache.

We call this case a fully memory-divergent instruction as shown in Figure 4.1c. If the number of

the generated memory requests are in between, we call it a partially memory-divergent instruction

as shown in Figure 4.1b. We define the number of the resulting memory requests as the memory

divergence degree.

4.2.2 Coincident Intra-warp Contention Access Pattern

As described in Section 3.2.1, a large portion of the cache contention for the benchmarks

are from coincident intra-warp contention. Listing 4.1 shows the bicg benchmark kernel code and

a column-strided access pattern. The column-major strided access pattern is prone to create this

high coincident intra-warp contention on associativity. The most common example of this pattern

is A[tid∗stride+offset], where tid is the unique thread ID and stride is user-defined stride size.

35

(a) Fully convergent

add

(b) Partially divergent

ad

(c) Fully divergent

Figure 4.1. (Revisited) Coalescing example for memory-convergent instruction and memory-
divergent instruction.

Set 0

Set 1

Set 2

Set 31

...

blksize

n sets

32 reqs

tid0, 0x00100
tid1, 0x01100
tid2, 0x02100

...

tid31, 0x1F100

Figure 4.2. Example of contending set by column-strided accesses.

By using this pattern, each thread iterates a stride of data independently. In a conventional cache

indexing function, the target set index is computed as set = (addr/blkSz)%nset, where addr is

the target memory address, blkSz is the length of cache line and nset is the number of cache sets.

From Listing 4.1 and Figure 4.2, when the address stride between two consecutive threads is equal

to a multiple of blkSz ∗ nset, all blocks needed by a single warp are mapped into the same cache

set. When the stride size, stride, is 4096 words as in the kernel 1, the 32 consecutive intra-warp

memory addresses, 0x00100, 0x01100, 0x02100, ..., 0x1F100, will be mapped into the set 2 in our

baseline L1D that has 4-way associativity, 32 cache sets, and 128 B cache lines.

Since cache associativity is often smaller than warp size, 32 in this example, associativity

conflict occurs within each single memory-divergent load instruction and then the memory pipeline

36

Thread 1 ~ 4 Thread 13 ~ 16Thread 5 ~ 8 Thread 9 ~ 12

Thread 1 ~ 16

Saved Cycles

Scenario A: baseline

Scenario B: Bypassing

T0 T1

T4

T3 T5 T6T2

Cycle Time

T7

(a) Illustration of the cache congestion in L1D cache when column-strided pattern
occurs (Scenario A) and the bypassed L1D accesses (Scenario B). Each arrow
represents turnaround time of the request.

Set 0

Set k

Set 31

1 ~ 4

at T0 at T1 at T6

Cache

MSHR

1 ~ 4 13 ~ 16

at T7

(b) Cache contents and MSHR contents at T0, T1, and T7

Figure 4.3. Example of BICG memory access pattern.

37

Listing 4.1. BICG benchmark kernel 1 and kernel 2
1// Benchmark bicg’s two kernels
2// Thread blocks: 1-dimensional 256 threads
3// A[] is a 4096-by-4096 2D matrix stored
4// as a 1D array
5// Code segment is simplified for demo
6

7__global__ bicg_kernel_1 (...) {
8int tid = blkIdx.x * blkDim.x + tIdx.x;
9for (int i = 0; i < NX; i++) // NX = 4096
10s[tid] += A[i * NY + tid] * r[i];
11}
12

13__global__ bicg_kernel_2 (...) {
14int tid = blkIdx.x * blkDim.x + tIdx.x;
15for (int j = 0; j < NY; j++) // NY = 4096
16q[tid] += A[tid * NY + j] * p[j];
17}

is congested by the burst of intra-warp memory accesses. Figure 4.3a Scenario A illustrates the

case. When the fully divergent warp instruction is issued, it reaches the MACU. Since it is a fully

divergent instruction, it generates as many memory requests as the warp size. Since, as assumed,

this instruction has column-strided pattern, the generated cache set indexes are the same, namely

set k. Cycle T0 in Figure 4.3a indicates the beginning of the memory access. The generated

memory requests begin sending requests by probing the L1D cache. With the allocation-on-miss

policy, the first 4 accesses for threads 1 through 4 acquire cache lines in the set k between T0 and

T1, and send requests to the lower level cache after allocating MSHR entries. The MSHR entry

is filled at T1. Until the response for the request arrives, the lines are allocated and marked as

reserved, so that later attempts to acquire the line fails. Since 4 lines are already allocated by the

first 4 memory accesses, the remaining requests from 5 through 32 requests should wait until at

least one of the responses of the first 4 requests arrives from the lower level. At T2, the response for

the request of thread 1 arrives, fills the cache and modifies the state of the line to valid. However, as

soon as the response is cached, the waiting request evicts the line right away and reserves the line

for its request. The final request from the warp memory requests fills the cache line as illustrated

38

in Figure 4.3b at T7.

4.3 Selective Caching

High cache contention on GPUs can change cache behavior by destroying locality and cre-

ating contention. Our analysis shows that the majority of cache contention is caused by coincident

intra-warp contention. Therefore, we propose a locality and contention aware selective caching

that avoids non-beneficial caching. Figure 4.4 shows the overall flow of selective caching pro-

posed in this chapter. It consists of three major components: memory divergence detection, cache

index calculation, and locality degree calculation.

4.3.1 Memory Divergence Detection

When a group of memory addresses requested yields a linear access pattern [40], all mem-

ory accesses from a warp are coalesced into one memory request by MACU. Otherwise, it gener-

ates more than one memory request to the lower level cache. As described in Section 4.2.2, when

the memory divergence is greater than the size of the cache associativity, the LDST unit starts to

stall to acquire the cache resource as in Figure 4.3a. Therefore, detecting this memory divergence

degree plays a key role in avoiding coincident intra-warp contention. We implement this memory

divergence detector using a counter in each LDST unit per SM. The counter value for the detec-

tor varies from 1 (when fully coalesced) to the SIMD width which is typically 32 (when fully

divergent). The memory divergence detection is marked as 2 in Figure 4.4.

Once the memory divergence degree is detected, the next step is to decide whether to cache

or bypass1. As described in Section 4.2.2, when the memory divergence is greater than the size of

the cache associativity, n, a stall can start and cause a serious bottleneck. We propose 3 decision

schemes when memory divergence is detected. Scheme a is to bypass all the requests (no caching

1Bypassing can be turned on and off by flipping a dedicated bit of memory instruction bit stream on most modern
GPUs.

39

Memory Access Instruction

Bypass

Divergent mem inst?

Cache

NO

YES

Cache Index Calculation

Count per SetIndex

> # assoc ?

YES

NO

Locality degree

< Entries in the cache?
YES NO

Bypass Cache

More set indices ?
YES

NO

END

1

2

3

4

5

More requests?
YES

NO

per set iteration

per req. iteration

Figure 4.4. The task flow of the proposed selective caching algorithm in an LDST unit.

at all, Figure 4.5a). Scheme b is to partially cache the first n requests and bypass all other requests

(Figure 4.5b). The last scheme, scheme c, is to partially cache the last n requests and bypass all

other requests (Figure 4.5c). The motivation of schemes b and c is that the instruction can preserve

intra-warp or cross-warp locality which may occur by the cached lines in subsequent instruction

execution. Scheme c shows the same cache entry of the baseline after executing the instruction as

shown in Scenario A of Figure 4.3a.

The example in Figure 4.3b Scenario B illustrates how bypassing the memory requests from

the memory-divergent instruction reduces the associativity congestion. Since memory requests

from each thread are being bypassed, there is no need to allocate a line in the cache set. Also, the

lines already in the cache do not need to be evicted, thus preserving the locality of the previously

40

allocated lines in the cache. As in Scenario B, when all requests are passed to lower level cache,

they do not congest the cache resource. At T4, all the responses are returned and the number of

cycles, marked as ‘Saved Cycles’, T6− T4, is reduced as a result of the selective caching.

4.3.2 Cache Index Calculation

When all the generated memory accesses map to the same cache set, the selective caching

schemes described in Section 4.3.1 do not cause cache congestion and the schemes a, b, c operate

effectively. However, when all the generated memory accesses do not fall into the same cache set,

but into a couple of different cache sets, we need to expand the schemes explained in Section 4.3.1

to apply to each of the sets.

We calculate the cache set index for each request and count the number of requests for each

set. When the number of requests for a set is greater than the associativity n, then we cache the last

n and bypass the others for the set as described in Scheme c in Section 4.3.1. We iterate this for

the calculated sets. The cache index calculation is marked as 3 and 4 in Figure 4.4. The portion

marked with ‘per set iteration’ is iterated per set.

Assume that there are 8 memory requests total. After cache index calculation, 5 requests

map to the cache set i and 3 requests map to the cache set k in a cache with the associativity of 2

in Figure 4.5d. Since set associativity is 2 in this example, the last 2 out of 5 memory requests for

the cache set i are cached and the remaining 3 requests are bypassed. Likewise, the last 2 out of 3

memory requests for the set k are cached and the remaining 1 request is bypassed. Since the cache

index mapping logic simply extracts the address bits in the memory request to calculate the cache

set index, the additional hardware is negligible.

4.3.3 Locality Degree Calculation

The selective cache scheme with the cache index calculation from Section 4.3.2 always

caches as many requests as the associativity size whenever memory-divergent instruction is de-

41

Bypass All

idx k

Memory

requests

Cache

(a) Bypassing all.

Bypass Others

Cache First n

idx k

(b) Partial caching first n.

Bypass Others

Cache Last n

idx k

(c) Partial caching last n.

Bypass Others

Cache Last n

Cache Last n

idx i

idx k

(d) Partial caching by cache index.

Figure 4.5. Different selective caching schemes with associativity size n when the memory diver-
gence is detected.

tected. When replacing the cache line with new requests, if the evicted line is more frequently or

actively used by the same warp or other warps, then it destroys the locality. When finding a victim

cache line to be evicted, if we use locality degree for each cache line, we can preserve the most

frequently used line.

The locality degree calculation is marked as 5 in Figure 4.4. The portion marked with

‘per req. iteration’ is iterated for every request. Locality degree can be calculated by counting

the re-references for each instruction. When the locality degree of the current memory request is

smaller than the locality degree of any of the existing lines in the destination cache set, then it

is better for the new line to bypass the cache. If any of the locality degree of the existing lines

is smaller than the locality degree of the current memory request, then the line is evicted and the

current memory request is cached. This strategy keeps frequently-used cache lines and preserves

discovered locality.

42

To implement this locality degree feature, we need to add two things to the baseline, new

fields in each cache line and a re-reference table. For the cache lines, a 7-bit PC and a 4 bit re-

reference counter are added. For the PC representation, 7 hashed bit is enough to distinguish among

PCs for distinct load instructions. Since the number of distinct load instructions in compute kernels

are known to be not many, 18 on average over all Polybench [31] and Rodinia [14] benchmarks,

7 hashed bit for the PC is enough. The re-reference table contains two fields 7-hashed-bit PC and

the average re-reference counter. Whenever a hit occurs in a cache, the counter is incremented by

one. Whenever a line is evicted, the PC and re-reference counter pair is added to the re-reference

table. When added to the table, the re-reference counter is added as a running sum.

When a request needs to be cached after memory divergence detection and cache index

calculation, the average re-reference counter of the new request indexed by its PC is compared

with the re-reference counter of the lines in the cache set. If the re-reference counter of the new

request is higher than any others in the cache set, then a victim line is selected and the new request

is cached into the victim line. Otherwise, it is bypassed.

4.4 Experiment Methodology

4.4.1 Simulation Setup

We configured and modified GPGPU-Sim v3.2 [82], a cycle-accurate GPU architecture

simulator to find contention in current GPU memory hierarchy, and implemented the proposed

algorithms. The NVIDIA GTX480 hardware configuration is used for the system description. The

baseline GPGPU-Sim configurations for this chapter are summarized in Table 4.1.

4.4.2 Benchmarks

To perform our evaluations, we chose benchmarks from the Rodinia [14] and PolyBench/

GPU [31]. We pruned our workload list by omitting the applications provided in the benchmark for

43

Number of SMs 15
SM configuration 1400 Mhz, SIMD Width: 16

Warp size: 32 threads
Max threads per SM: 1536
Max Warps per SM: 48 Warps
Max Blocks per SM: 8 blocks

Warp schedulers per core 2
Warp scheduler Greedy-Then-Oldest (GTO) [73] (default)

Loose Round-Robin (LRR)
Two-Level (TL)[63]

Cache/SM L1 Data: 16 KB 128B-line/4-way (default)
L1 Data: 16 KB 128B-line/2-way
L1 Data: 16 KB 128B-line/8-way
Rep. Policy: Least Recently Used (LRU)
Shared memory: 48 KB

L2 unified cache 768 KB, 128 B line, 16-way
Memory partitions 6
Instruction dispatch 2 instructions per cycle
throughput per scheduler
Memory Scheduler Out of Order (FR-FCFS)
DRAM memory timing tCL=12, tRP=12,

tRC=40, tRAS=28,
tRCD=12, tRRD=6

DRAM bus width 384 bits

Table 4.1. Baseline GPGPU-Sim configuration.

basic hardware profiling and graphics interoperability. We also omitted kernels that did not have

a grid size large enough to fill all the cores and whose grid size could not be increased without

significantly changing the application code. The benchmarks tested are listed in Table 4.2.

4.5 Experimental Results

4.5.1 Performance Improvement

Figure 4.6a shows the normalized IPC improvement of our proposed algorithm over the

baseline. The baseline graph is shown with a normalized IPC of 1. Assoc-32 has the same size

44

Name Suite Description

2MM PolyBench 2 Matrix Multiplication
ATAX PolyBench Matrix Transpose and Vector Mult.
BICG PolyBench BiCG SubKernel of BiCGStab Linear Sol.

GESUMMV PolyBench Scalar, Vector and Matrix Multiplication
MVT PolyBench Matrix Vector Product and Transpose

SYR2K PolyBench Symmetric rank-2k operations
SYRK PolyBench Symmetric rank-k operations

HotSpot Rodinia Hot spot physics simulation
LUD Rodinia LU Decomposition
NW Rodinia Needleman-Wunsch

SRAD1 Rodinia Speckle Reducing Anisotropic Diffusion
BTREE Rodinia B+tree

Table 4.2. Benchmarks from PolyBench [31] and Rodinia [14].

cache but 32-way associativity. BypassAll bypasses all the incoming load instructions. IndSel-

Caching represents the cache index calculation selective caching. LocSelCaching represents the

locality degree based selective caching. For performance comparison with other techniques to re-

duce intra-warp contention, we chose an alternative indexing scheme, IndXor, [86] and memory

request prioritization, MRPB [42].

The benchmarks that have severe coincident intra-warp contention such as atax, bicg,

gesummv, mvt, syr2k, syrk in Figure 3.4 show significant IPC improvement. For other

benchmarks that do not suffer much from intra-warp contention, the selective caching algorithm

does not provide much benefit. The average IPC improvement is calculated using the geometric

mean. Note that the simple bypassing algorithm, BypassAll, outperforms the baseline with the

given benchmark sets, confirming that GPGPU applications suffer from unnecessary caching. Our

proposed scheme, LocSelCaching, outperforms the baseline by 2.25x, and outperforms the IndXor

and MRPB by 9% and 12%, respectively.

Figure 4.6b shows the reduction of L1D cache accesses. BypassAll, as expected, reduces

45

2m
m

at
ax

bi
cg

ge
su

m
m

v

m
vt

sy
r2

k

sy
rk

ho
ts

po
t

lu
d

nw

sr
ad

1

bt
re

e

 g
m

ea
n

0

2

4

6

8
N

or
m

al
iz

ed
 IP

C

Baseline
Assoc-32
BypassAll
IndXor
MRPB
IndSelCaching
LocSelCaching

(a) IPC improvement.

2m
m

at
ax

bi
cg

ge
su

m
m

v

m
vt

sy
r2

k

sy
rk

ho
ts

po
t

lu
d

nw

sr
ad

1

bt
re

e

 g
m

ea
n

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
. L

1D
 C

ac
he

 A
cc

es
se

s

Baseline
Assoc-32
BypassAll
IndXor
MRPB
IndSelCaching
LocSelCaching

(b) L1D cache access reduction.

Figure 4.6. Overall improvement - IPC improvement and L1D cache access reduction.

the L1D cache accesses the most2. However, its performance is not better than other schemes

because simple bypassing does not take advantage of locality. IndXor does not reduce the L1D

cache access at all since it only changes the cache indexing scheme to reduce intra-warp contention.

MRPB and IndSelCaching reduce similar amounts of L1D cache traffic. LocSelCaching reduces

about 71% of the L1D cache accesses. The cache access reduction makes direct positive impact

on power consumption, average latency, and finally the overall performance.

2Since we do not exclude the write accesses, even the BypassAll case has L1D accesses. The L1D cache access
reduction graph contains write cache accesses to show the overall reduction rate.

46

2m
m

at
ax

bi
cg

ge
su

m
m

v

m
vt

sy
r2

k

sy
rk

ho
ts

po
t

lu
d

nw

sr
ad

1

bt
re

e

 g
m

ea
n

0

2

4

6

8

N
or

m
al

iz
ed

 IP
C GTO

TwoLevel
RR

Figure 4.7. IPC improvement for different schedulers.

2m
m

at
ax

bi
cg

ge
su

m
m

v

m
vt

sy
r2

k

sy
rk

ho
ts

po
t

lu
d

nw

sr
ad

1

bt
re

e

 g
m

ea
n

0

5

10

15

N
or

m
al

iz
ed

 IP
C Assoc-2

Assoc-4
Assoc-8

Figure 4.8. IPC improvement for different associativities.

4.5.2 Effect of Warp Scheduler

Our experiment described in Section 4.5.1 uses the Greedy-Then-Oldest (GTO) warp sched-

uler. Since our selective caching algorithm reduces the coincident intra-warp contention, other

schedulers should not affect the trend of overall performance improvement. Figure 4.7 shows the

result with different warp schedulers, such as TwoLevel [63] and basic RoundRobin warp scheduler.

Since GTO is designed to reduce cross-warp contention and TwoLevel is designed to improve core

utilization by considering branch diversity, GTO scheduler enhancement is the least while the RR

scheduler enhancement is the most. Overall, experiments demonstrate that the selective caching

scheme improves coincident intra-warp contention effectively with different schedulers.

47

4.5.3 Cache Associativity sensitivity

Figure 4.8 shows the result with different cache associativities: 2-, 4-, and 8-way. Coinci-

dent intra-warp contention tends to be much more severe with a smaller associativity cache since

the associativity to warp size ratio is even worse. According to the analysis shown in Figure 4.3a,

memory requests become more serialized and the stall becomes worse than for other associativity

cases. Therefore, the IPC improvement for associativity 2 is the most among the three different

associativity cases. Cache with associativity 8 still improves the performance by about 1.77x.

4.6 Related Work

4.6.1 Cache Bypassing

Jia et al. [41] evaluated GPU L1D cache locality in current GPUs. To justify the effect of

the cache in GPUs, they showed a simulation result with and without L1D cache. Then, the authors

classified cache contentions into three categories: within-warp, within-block, and program-wide.

Based on the category, they proposed compile-time methods, and their proposed compile-time

methods analyze GPU programs and determine if caching is beneficial or detrimental and apply it

to control the L1D cache to bypass or not.

Jia et al., in their MRPB paper [42] showed an improved algorithm to bypass L1D cache

accesses. When any of the resource unavailable events happen that may lead to a pipeline stall,

the memory requests from the L1D cache are bypassed until resources are available. They also

prioritize memory accesses what occurred from cross-warp contention to minimize cross-warp

contention. They discovered that the massive memory accesses from different warps worsen the

memory resource usage. Therefore, instead of sending the memory requests from the SMs to

L1D cache directly, they introduce a buffer to rearrange the input requests and prioritize per-warp

accesses and reduce stalls in a memory hierarchy. This technique reduces cross-warp contention;

however, without cooperation with the warp scheduler, the effect is not significant. Their bypassing

48

technique is triggered when it detects cache contention. While it reacts to the contention, our

algorithm proactively detects cache contention in advance by detecting memory divergence and

selectively caches depending on the locality information.

The most recent research by Li et al. [57] also exploits bypassing to reduce contention.

They extract locality information during compile time and throttle the warp scheduled to avoid

thrashing due to warp contentions. Their work focuses on reducing cross-warp contention.

While the existing works determine bypassing upon occurred contention or static compile

time information which may prove to be incorrect at runtime, our work focuses more on proac-

tively detecting and avoiding cache contention. Also, our work incorporates dynamically obtained

locality information to preserve locality.

4.6.2 Memory Address Randomization

Memory address randomization techniques for CPU caches are well studied. Pseudo-

random cache indexing methods have been extensively studied to reduce conflict misses. Topham

et al. [81] use XOR to build a conflict-avoiding cache; Seznec and Bodin [77, 11] combine XOR

indexing and circular shift in a skewed associative cache to form a perfect shuffle across all cache

banks. XOR is also widely used for memory indexing [54, 69, 70, 91]. Khairy et al. [49] use

XOR-based Pseudo Random Interleaving Cache (PRIC) which is used in [81, 70].

Another common approach is to use a secondary indexing method for alternative cache sets

when conflicts happen. This category of work includes skewed-associative cache [77], column-

associative cache [1], and v-way cache [67].

Some works have also noticed that certain bits in the address are more critical in reducing

cache miss rate. Givargis [27] uses off-line profiling to detect feature bits for embedded systems.

This scheme is only applicable for embedded systems where workloads are often known prior to

execution. Ros et al. [75] propose ASCIB, a three-phase algorithm, to track the changes in address

49

bits at runtime and dynamically discard the invariable bits for cache indexing. ASCIB needs to

flush certain cache sets whenever the cache indexing method changes, so it is best suited for a

direct-mapped cache. ASCIB also needs extra storage to track the changes in the address bits.

Wang et al. [86] applied an XOR-based index algorithm in their work. It finds the address range

that is more critical to reduce intra-warp cache contention.

The main purpose of the different cache indexing algorithms is to randomly distribute the

congested set over all cache sets to minimize the cache thrashing. However, GPGPU executes

massively parallelized workloads as much as possible, so requests from different warps can easily

overflow the cache set size. For example, NVIDIA Fermi architecture uses 16KB L1 data cache

which has 128 cache lines (32 sets with 4 lines per set). Just 4 warp’s set contending accesses

quickly fill up the cache. Indexing may distribute the cache access throughout the whole cache;

however, caching the massive amount of cache accesses which may not be used more than once is

polluting cache and evicts cache lines which have better locality.

4.7 Summary

This chapter presented that the massive parallel thread execution of GPUs causes significant

cache resource contention that is not sufficient to support massively parallel thread execution when

memory access patterns are not hardware friendly. By observing the contention classification for

miss and resource contention, we also identified that the coincident intra-warp contention is the

main culprit of the contention, and the stall caused by the contention severely impacts the overall

performance.

In this chapter, we proposed a locality and contention aware selective caching based on

memory access divergence to mitigate coincident intra-warp resource contention in the L1 data

(L1D) cache on GPUs. First, we detect memory divergence degree of the memory instruction to

determine whether selective caching is needed. Second, we use a cache index calculation to further

50

decide which cache sets are congesting. Finally, we calculate the locality degree to find a better

victim cache line.

Our proposed scheme improves the IPC performance by 2.25x over the baseline. It outper-

forms the two state-of-the-art mechanisms, IndXor and MRPB, by 9% and 12%, respectively. Our

algorithm also reduces 71% of the L1D cache access which results in reducing power consumption.

51

CHAPTER 5

LOCALITY-AWARE SELECTIVE CACHING

5.1 Introduction

Unlike CPUs, GPUs run thousands of concurrent threads, greatly reducing the per-thread

cache capacity. Moreover, typical GPGPU workloads process a large amount of data that do not

fit into any reasonably sized caches. Streaming-style data accesses on GPUs tend to evict to-be-

referenced blocks in a cache. Such pollution of cache hierarchy by streaming data degrades the

system performance.

A simple solution is to increase the cache size. However, this is not a cost effective ap-

proach since caches are expensive components. Therefore, a good GPU cache management tech-

nique which dynamically detects streaming patterns and selectively caches the memory requests

for frequently used data is very desired. A technique that dynamically determines which blocks are

likely or unlikely to be reused can avoid polluting the cache. This can make a non-trivial impact

on overall performance.

To reduce the contention caused by placing the streaming data into the cache, this chapter

presents a locality-aware selective caching mechanism. To track the locality of memory requests

dynamically, we propose a hardware efficient reuse frequency table which maintains the average

reuse frequency per instruction. Since GPUs typically execute a relatively small number of in-

structions per kernel (i.e., threads execute the same single sequence of instructions), the number

of memory instructions are usually quite small. Maintaining the reuse frequency table indexed by

a hashed Program Counter (PC) keeps the hardware inexpensive. By carefully investigating the

52

threshold for a caching decision, we minimize the implementation of the average reuse frequency

to a single bit. This chapter makes the following contributions:

• Through the identification of the cache resource contention in GPU cache hierarchy, line

allocation fail, MSHR fail and miss queue fail, we identifies that there is a large number of

no-reuse blocks polluting cache.

• We propose a hardware efficient locality tracking table, reuse frequency table, for dynam-

ically maintaining the average reuse frequency per instruction. We also define the table

update procedure.

• We propose a selective caching algorithm based on the dynamic reuse frequency table which

has a per-instruction locality measure to effectively identify streaming accesses and bypass.

5.2 Motivation

5.2.1 Severe Cache Resource Contention

To reduce memory traffic and latency, modern GPUs have widely adopted hardware-managed

cache hierarchies inspired by their successful deployment in CPUs. However, traditional cache

management strategies are mostly designed for CPUs and sequential programs; replicating them

directly on GPUs may not deliver expected performance as GPUs’ relatively smaller cache can be

easily congested by thousands of threads, causing serious contention and thrashing.

For example, the Intel Haswell CPU has 16 KB cache per thread per core available, but,

NVIDIA Fermi GPU has only 32B cache per thread available, which is significantly smaller. Even

if we consider the cache capacity per warp (i.e., a thread execution unit in GPU), it has only 1 KB

per warp, which is still far smaller than the CPU cache. Generally, the per-thread or per-warp cache

share for GPUs is much smaller than for CPUs. This suggests the useful data fetched by one warp

is very likely to be evicted by other warps before actual reuse. Likewise, the useful data fetched

53

2d
co

nv

2m
m

at
ax

bi
cg

ge
su

m
m

v

m
vt

sy
r2

k

sy
rk

ba
ck

pr
op bf

s

ho
ts

po
t

lu
d

nw

sr
ad

1

sr
ad

2

 m
ea

n

0

20

40

60

80

100

pe
rc

en
ta

ge
 (

%
)

Figure 5.1. Stall time percentage over simulation cycle time.

by a thread can also be evicted by other threads in the same warp. Such eviction and thrashing

conditions destroy discovered locality and impair performance. Moreover, the excessive incoming

memory requests can lead to significant delay when threads are queuing for the limited resources

in caches (e.g., a certain cache set, MSHR entries, miss buffers, etc).

This resource contention represents the cause of resource acquisition fail to service a re-

quest. The graph in Figure 3.5 shows which cache resource is a contention source and how much

each resource contention occurs for each benchmark. The stall time over all simulation cycle time

due to this resource contention is illustrated in Figure 5.1. Average stall cycle for all the bench-

marks is about 55% of the total simulation cycle.

5.2.2 Low Cache Line Reuse

While GPGPU applications may exhibit good data reuse, due to the small size of the cache

and heavy contention in L1D cache as well as many active memory requests, the distance between

those accesses that could exploit reuse effectively become farther apart, resulting in a miss. As in

Figure 3.7, the Reuse0 dominates the distribution with about 85%. That is, many of the cache lines

are polluted by the one time use data. If such data is detected before insertion and is avoided from

insertion, the efficiency of the cache will increase.

54

5.3 Locality-Aware Selective Caching

Cache line pollution by no-reuse memory requests causes severe cache contention. Caching

lines likely to be reused and bypassing lines not likely to be reused is the key to locality-aware

selective caching.

Existing CPU cache bypass techniques use memory addresses for bypass decision. The

decision is based on hit rate of the memory access instructions [85], temporal locality [28], access

frequency of the cache blocks [46], reuse distance [39], references and access intervals [50]. How-

ever, due to the massive parallel thread execution of GPUs, using memory addresses for bypass de-

cision in GPUs is impractical. Figure 5.2a shows the number of distinct memory addresses present

in the GPU benchmarks investigated. Hundreds of thousands of memory blocks are accessed dur-

ing the execution of these kernels. On average, the number of distinct memory addresses is about

320,000.

Compared to this, the number of load instructions in GPU kernels is relatively small. Due

to the SIMD nature of the GPUs, the kernel code size is small and each thread shares the same

code while executing with different data. Figure 5.2a presents that the number of distinct load

instructions identified by their PC are small. The average number of distinct PCs is about 11 in the

benchmarks tested. Therefore, keeping track of average reuse frequency per instruction indexed

by PC appears to be a manageable solution for making the cache/bypass decision.

5.3.1 Reuse Frequency Table Design and Operation

We propose a reuse frequency table as in Figure 5.3 to store each load instruction’s PC

and reuse frequency. It has a hashed-PC field that stores the memory instruction’s PC. As can

be seen from Figure 5.2b, 64 entries would suffice to distinguish instructions. Because of the

characteristic of hashing, a kernel with more than 64 instructions can still be accommodated by

the table. The other field, ReuseFrequencyValue, holds the moving average of reuse frequency for

55

2d
co

nv

2m
m

at
ax

bi
cg

ge
su

m
m

v

m
vt

sy
r2

k

sy
rk

ba
ck

pr
op bf

s

ho
ts

po
t

lu
d

nw

sr
ad

1

sr
ad

2

 m
ea

n

0

200000

400000

600000

800000

1000000

of

 d
is

tin
ct

 a
dd

r

(a) The number of distinct memory addresses during the execution of kernels.

2d
co

nv

2m
m

at
ax

bi
cg

ge
su

m
m

v

m
vt

sy
r2

k

sy
rk

ba
ck

pr
op bf

s

ho
ts

po
t

lu
d

nw

sr
ad

1

sr
ad

2

 m
ea

n

0

10

20

30

of

 d
is

tin
ct

 P
C

s

(b) The number of distinct PCs of the load instructions.

Figure 5.2. The number of addresses and instructions for load.

caching decisions. We revisit this entry in Section 5.3.2 for optimization.

This table is maintained globally to be shared by all the SMs since thread blocks are ran-

domly distributed to each SM and their average memory access behavior is similar. Since this

table is only updated when an eviction occurs in a cache, the frequency of update is lower than

the frequency of cache accesses. Therefore, contention to update entries on this global structure is

manageable.

Figure 5.4 shows the algorithm procedure in detail. It consists of two phases: reuse fre-

quency table update and a cache/bypass decision as in Figure 5.4a and Figure 5.4b, respectively.

Reuse frequency table update (Figure 5.4a): when memory access is requested, it probes

cache for a hit or a miss (1). A miss requires a decision whether or not a line has to be evicted

from the cache set (2). When no eviction is needed (4), the request simply allocates a line

56

Set k

L1D Cache

{Hashed PC, ReuseFreqValue}

AvgReuseFreq

ReuseFreqTable

at eviction

...
...

Figure 5.3. Reuse frequency table entry and operation.

Memory request

ReuseFreqValue++

in the cache line

Probe cache
MISS

Evict ?

HIT

NO YES

End

ReuseFreqValue 1

in the cache line

Update ReuseFreqValue

@ ReuseFreqTable[PC]

1

2

3 4

5

(a) Reuse frequency table update procedure.

Memory request

Update ReuseFreqValue

in the cache line

ReuseFreqTable Hit &

Value <= Threshold

NO

HIT
YES

End

Bypass

Probe cache
MISS

1

2

3

4

ReuseFreqTable

update procedure
5

(b) Caching decision.

Figure 5.4. Reuse frequency table update and caching decision.

with the hashed-PC and the ReuseFreqValue of 1. If an eviction is needed (5), the victim line’s

ReuseFreqValue updates the entry in the reuse frequency table indexed by the victim line’s hashed-

PC. If the request is a hit (3), the ReuseFreqValue in the cache line is increased by one.

In summary, the request updates cache line 1) when a request hits a cache line (reuse

frequency increased by 1) and 2) when the request is a miss and no eviction occurs (reuse frequency

set to 1). The request updates reuse frequency table with the evicted line’s PC and ReuseFreqValue

only when an eviction occurs in a cache.

Caching decision (Figure 5.4b): When memory access is requested, it probes the reuse

57

frequency table to see whether it is a hit or a miss. When it is a hit and the ReuseFreqValue in the

entry is less than or equal to a threshold (1), it indicates the request is not likely to be referenced in

the future. This request is determined to be bypassed. However, if the request is bypassed, there is

no chance to update the reuse statistics for the PC. Then, the PC’s reuse frequency becomes stale,

and the LDST unit falsely bypasses memory requests of the PC. To avoid this situation, even when

the LDST unit decides to bypass the memory request, it probes the cache (2) and if it is a hit, it

updates the cache entry’s ReuseFreqValue (3). The request is bypassed after that (4). When the

memory request does not satisfy the bypass criterion, it follows the reuse frequency table update

procedure (5).

5.3.2 Threshold Consideration

When a line is evicted from the cache, the ReuseFreqValue of the evicted line updates

the AvgReuseFreq field in the reuse frequency table. The average value can be calculated either

as a true average or a moving average. A true average calculation needs to track the number of

evictions and the summation of all the reuse frequency values, while a moving average needs a

previous average and a forgetting factor α. This calculation needs either value accumulation or

floating point multiplication.

Figure 5.5 shows the IPC improvement over baseline with different thresholds. The result

indicates that all the simulated threshold values improve performance. Th1.0 shows the least im-

provement while Th1.5 shows the most improved performance. However, when the threshold is

greater than 1.0, which means some requests that have potential reuse are bypassed, some bench-

marks such as 2dconv, 2mm, and backprop suffer performance degradation. To avoid such a

degradation, we choose the threshold 1.0.

When a threshold value of 1.0 is used, we do not need to calculate an average of reuse

frequency, but, we simply need to record the ReuseFreqValue 0 or 1, where 0 indicates no-reuse

58

2d
co

nv

2m
m

at
ax

bi
cg

ge
su

m
m

v

m
vt

sy
r2

k

sy
rk

ba
ck

pr
op bf

s

ho
ts

po
t

lu
d

nw

sr
ad

1

sr
ad

2

 g
eo

m
ea

n

0

2

4

6

8

N
or

m
al

iz
ed

 IP
C BASELINE

Th1.0
Th1.1
Th1.2
Th1.5

Figure 5.5. IPC improvement with different threshold values for caching decision.

and 1 indicates reuse. We now simplify the ReuseFreqValue field implementation in a cache line

to 1 bit to hold the bypass-or-not information. Our reuse frequency table also can be simplified to

have 1 bit for AvgReuseFreq.

5.3.3 Algorithm Features

1 bit for cache/bypass decision: From the threshold simulation analysis in Section 5.3.2,

we minimize the implementation of ReuseFreqValue and AvgReuseFreq to 1 bit. The initial load

to a cache line sets the bit to 0, indicating no-reuse. Whenever reuse occurs, it flips the bit to

1, indicating reuse in the cache line. When the Reuse Frequency Table is updated upon cache

line eviction, the current value in the table will be ORed with the new value. This significantly

simplifies the design complexity and latency. We do not need to hold several bits for the reuse

frequency value in a cache line nor to calculate a running average for the table entry.

Conservative bypassing: The selective caching decision using the reuse frequency value

for our proposed scheme is conservative. When memory requests from the same instruction (PC)

have a different reuse characteristic, that is, some requests are no-reuse and the others are reuse,

then the reuse frequency in the reuse frequency table is set to reuse. Then, the memory requests

from the PC are determined not to be bypassed. Likewise, when multiple PCs are mapped to the

59

same hashed-PC entry, only when both of the PCs’ requests are no-reuse, the requests from those

PCs are bypassed. Otherwise, the requests are not bypassed. This guarantees no performance

degradation when the threshold value is 1.0.

Avoid stale ReuseFreqValue statistics: In Figure 5.4b, 3 updates the ReuseFreqValue in the

cache line even if the request is to be bypassed. Without the step 3 , the ReuseFreqValue would

become stale once a bypass decision is made for a PC. Step 3 keeps updating the ReuseFreqValue

whenever a hit occurs. This changes the status of the PC from no-reuse to reuse so that the request

with the PC is not bypassed the next time.

5.3.4 Contention-Aware Selective Caching Option

While locality-aware selective caching increases IPC performance by reducing cache pollu-

tion, there is still another cause for a large portion of the resource contention. The previously men-

tioned approach, Contention-aware Selective Caching in Chapter 4 addresses one source of a large

portion of the resource contention as coincident intra-warp contention which is mainly caused by

a column-strided pattern. The chapter identifies that the coincident intra-warp contention severely

blocks the overall cache resources. The selective caching detects the problematic memory diver-

gence, identifies the congested sets, and decides caching or not. Since this locality-aware selective

caching can be used along with contention-aware selective caching without interfering with each

other, a synergistic effect is expected.

5.4 Experiment Methodology

5.4.1 Simulation Setup

We configured and modified GPGPU-Sim v3.2 [82], a cycle-accurate GPU architecture

simulator, to find contention in the GPU memory hierarchy, and implemented the proposed algo-

rithms. The NVIDIA GTX480 hardware configuration is used for the system description. The

60

Number of SMs 15
SM configuration 1400 Mhz, SIMD Width: 16

Warp size: 32 threads
Max threads per SM: 1536
Max Warps per SM: 48 Warps
Max Blocks per SM: 8 blocks

Warp schedulers per core 2
Warp scheduler Greedy-Then-Oldest (GTO) [73] (default)

Loose Round-Robin (LRR)
Two-Level (TL)[63]

Cache/SM L1 Data: 16 KB 128B-line/4-way (default)
L1 Data: 16 KB 128B-line/2-way
L1 Data: 16 KB 128B-line/8-way
Rep. Policy: Least Recently Used (LRU)
Shared memory: 48 KB

L2 unified cache 768 KB, 128 B line, 16-way
Memory partitions 6
Instruction dispatch 2 instructions per cycle
throughput per scheduler
Memory Scheduler Out of Order (FR-FCFS)
DRAM memory timing tCL=12, tRP=12,

tRC=40, tRAS=28,
tRCD=12, tRRD=6

DRAM bus width 384 bits

Table 5.1. Baseline GPGPU-Sim configuration.

baseline GPGPU-Sim configurations for this chapter are summarized in Table 5.1.

5.4.2 Benchmarks

To perform our evaluations, we chose benchmarks from Rodinia [14] and PolyBench/

GPU [31]. We pruned our workload list by omitting the applications provided in the benchmark for

basic hardware profiling and graphics interoperability. We also omitted kernels that did not have

a grid size large enough to fill all the cores and whose grid size could not be increased without

significantly changing the application code. The benchmarks tested are listed in Table 5.2.

61

Name Suite Description

2DCONV PolyBench 2D Convolution
2MM PolyBench 2 Matrix Multiplication
ATAX PolyBench Matrix Transpose and Vector Mult.
BICG PolyBench BiCG SubKernel of BiCGStab Linear Sol.

GESUMMV PolyBench Scalar, Vector and Matrix Multiplication
MVT PolyBench Matrix Vector Product and Transpose

SYR2K PolyBench Symmetric rank-2k operations
SYRK PolyBench Symmetric rank-k operations

BACKPROP Rodinia Back propagation
BFS Rodinia Breadth-First Search

HOTSPOT Rodinia Hot spot physics simulation
LUD Rodinia LU Decomposition
NW Rodinia Needleman-Wunsch

SRAD1 Rodinia Speckle Reducing Anisotropic Diffusion
SRAD2 Rodinia SRAD 2D

Table 5.2. Benchmarks from PolyBench [31] and Rodinia [14].

5.5 Experimental Results

5.5.1 Performance Improvement

Figure 5.6a shows the normalized IPC improvement of our proposed algorithm over the

baseline. The baseline graph is shown with a normalized IPC of one. LASC1.0 and LASC1.5 are

the proposed schemes with different threshold values for comparison. LASC1.0+SelCaching rep-

resents the scheme with contention-aware selective caching. For performance comparison with

other state-of-the-art techniques using bypassing, we choose a memory request prioritization,

MRPB [42].

Note that there is no performance degradation with threshold value 1.0. When the threshold

value is greater than 1.0, benchmarks suffer from the performance degradation due to excessive by-

passing. LASC1.0 performance enhancement over baseline is about 1.39x. Our proposed scheme

with contention-aware selective caching described in Chapter 4, LASC1.0+SelCaching, outper-

62

2d
co

nv

2m
m

at
ax

bi
cg

ge
su

m
m

v

m
vt

sy
r2

k

sy
rk

ba
ck

pr
op bf

s

ho
ts

po
t

lu
d

nw

sr
ad

1

sr
ad

2

 g
eo

m
ea

n

0

2

4

6

8

N
or

m
al

iz
ed

 IP
C

BASELINE
LASC1.0
LASC1.5
32W
MRPB
LASC1.0+SelCaching

(a) IPC improvement.

2d
co

nv

2m
m

at
ax

bi
cg

ge
su

m
m

v

m
vt

sy
r2

k

sy
rk

ba
ck

pr
op bf

s

ho
ts

po
t

lu
d

nw

sr
ad

1

sr
ad

2

 m
ea

n

0

20

40

60

80

100

pe
rc

en
ta

ge
 (

%
)

(b) Reduction of no-reuse memory request in percentage.

2d
co

nv

2m
m

at
ax

bi
cg

ge
su

m
m

v

m
vt

sy
r2

k

sy
rk

ba
ck

pr
op bf

s

ho
ts

po
t

lu
d

nw

sr
ad

1

sr
ad

2

 g
eo

m
ea

n

0

2

4

6

8

N
or

m
. A

vg
 R

eu
se

75.4 95.7 31.3 27.4116.9 43.0 33.5

(c) Reuse Frequency enhancement.

Figure 5.6. Overall improvement: IPC improvement and L1D cache access reduction.

63

forms baseline by 2.01x and MRPB by 7%.

Figure 5.6b shows the reduction of no-reuse memory requests. For most of the benchmarks,

atax, bicg, gesummv, mvt, syr2k, syrk, bfs, hotspot, nw, and srad1, more

than 99% of the no-reuse memory requests are bypassed and do not pollute the cache. On aver-

age, 73% of the no-reuse memory requests are bypassed. The reason for less removal in some

benchmarks such as 2dconv, 2mm, backprop, lud, and srad2 is because the no-reuse

requests are mixed with reuse requests within the same PCs. As described in Section 5.3.3, since

our scheme is conservatively bypassing, those requests are not bypassed.

Figure 5.6c shows the enhanced reuse frequency when LASC1.0+SelCaching is used. With

the average reuse frequency for the baseline one, 27x more references are made in the cache on

average. Notably, for the bicg benchmark, the average reuse frequency is enhanced by 117x.

Since most of the no-reuse traffic has been bypassed, there are more chances for other requests to

be referenced.

5.5.2 Effect of Warp Scheduler

Our experiment used the Greedy-Then-Oldest (GTO) warp scheduler as a default warp

scheduler. Since our locality-aware selective caching algorithm improves performance based on

the reuse frequency, other schedulers should not affect the trend of overall performance improve-

ment. Figure 5.7 shows the results with different warp schedulers, such as the TwoLevel [63]

and RoundRobin warp scheduler. Since GTO is designed to reduce cross-warp contention and

TwoLevel is designed to improve core utilization by considering branch diversity, GTO scheduler

enhancement is the least while the RR scheduler enhancement is the most. Overall, the exper-

iments demonstrate that the locality-aware selective caching scheme improves the performance

effectively regardless of scheduler.

64

2d
co

nv

2m
m

at
ax

bi
cg

ge
su

m
m

v

m
vt

sy
r2

k

sy
rk

ba
ck

pr
op bf

s

ho
ts

po
t

lu
d

nw

sr
ad

1

sr
ad

2

 g
eo

m
ea

n

0

2

4

6

8

N
or

m
al

iz
ed

 IP
C BASELINE

GTO
RR
TwoLevel

Figure 5.7. IPC improvement with different schedulers.

2d
co

nv

2m
m

at
ax

bi
cg

ge
su

m
m

v

m
vt

sy
r2

k

sy
rk

ba
ck

pr
op bf

s

ho
ts

po
t

lu
d

nw

sr
ad

1

sr
ad

2

 g
eo

m
ea

n

0

5

10

15

N
or

m
al

iz
ed

 IP
C

BASELINE
Assoc-2
Assoc-4
Assoc-8

Figure 5.8. IPC improvement with different associativities.

5.5.3 Effect of Cache Associativity

Figure 5.8 shows the results with different cache associativities: 2-, 4-, and 8-way. Cache

contention tends to be much more severe with smaller associativity cache. Generally, memory

requests become more congested in smaller associativity and the stall becomes worse compared to

larger associativity cases. Therefore, the IPC improvement for associativity 2 is the most among

the three different associativity cases. Cache with associativity 8 still improves the performance

about 1.63x.

65

5.6 Related Work

5.6.1 CPU Cache Bypassing

Much of the existing research focuses on CPU cache management techniques [28, 38, 39,

46, 71, 85, 87]. We only show bypassing related techniques here. Among these, a selection of

papers have explored bypassing in CPU caches. Tyson et al. proposed bypassing based on the

hit rate of the memory access instructions [85], while Johnson et al. propose to use the access

frequency of the cache blocks to predict bypassing [71]. Kharbutli and Solihin propose using

counters of events such as number of references and access intervals to make bypass predictions

in the CPU last-level cache [50]. All of these techniques use memory address-related information

to make the prediction, costing significant storage overhead that would be impractical for GPU

caches. Program counter trace-based dead block prediction [53] leveraged the fact that sequences

of memory instruction PCs tend to lead to the same behavior for different memory blocks. This

dead block prediction scheme is useful for making bypass predictions in CPUs. We show that GPU

kernels are small with few distinct memory instructions. Using only the PC of the last memory

instruction to access a block is sufficient for a GPU bypassing prediction. Cache Bursts [59] is

another dead block prediction technique that exploits bursts of accesses hitting the MRU position

to improve predictor efficiency. For GPU workloads that use scratch-pad memories, the majority

of re-references have been filtered. Gaur et al. [25] proposed bypass and insertion algorithms for

exclusive LLCs to adaptively avoid unmodified dead blocks being written into the exclusive LLC.

5.6.2 GPU Cache Bypassing

Jia et al. [41] justified the effect of the cache in GPUs. They presented a simulation result

that L1D cache may degrade the overall system performance. Then, they proposed a static method

to analyze GPU programs and determine if caching is beneficial or detrimental at compile time

and to apply it to control the L1D cache to bypass or not. Jia et al. [42] later proposed a memory

66

request prioritization buffer (MRPB) to improve GPU performance. MRPB prioritized the mem-

ory requests in order to reduce the reuse distance within a warp. It also used cache bypassing to

mitigate intra-warp contention. When bypassing, it blindly bypassed memory requests whenever

they detect resource contention. Therefore, there are some benchmarks that suffer from perfor-

mance degradation. Compared to MRPB, our locality-aware selective caching does not degrade

performance since we measure the reuse frequency dynamically and conservatively decide caching

according to the reuse frequency.

Rogers et al. proposed cache-conscious wavefront scheduling (CCWS) to improve GPU

cache efficiency by avoiding data thrashing that causes cache pollution [72]. CCWS estimates

working set size of active warps and dynamically restricts the number of warps. This may adversely

affect the ability to hide high memory access latency of GPUs. Our selective caching bypasses the

no-reuse blocks without under-utilizing the SIMD pipeline to reduce cache thrashing.

Lee and Kim proposed a thread-level-parallelism-aware cache management policy to im-

prove performance of the shared last level cache (LLC) in heterogeneous multi-core architec-

ture [55]. They focus on shared LLCs that are dynamically partitioned between CPUs and GPUs.

Mekkat et al. proposed a similar idea for heterogeneous LLC management [60], to better partition

LLC for GPUs and CPUs in a heterogeneous system.

Li et al. [57] exploits bypassing to reduce contention. They extract locality information

during compile time and throttle the warp scheduler to avoid thrashing due to warp contentions.

Their work focuses on reducing cross-warp contention. Static analysis does not reflect the dynamic

behavior of the application.

Tian et al. [80] also exploits PC to predict bypassing. Their method maintains a table for

bypass prediction. They use confidence count to control bypassing. Every reuse decreases the con-

fidence count and every miss increases the confidence count. When the confidence count is greater

than a predetermined value for the PC of a memory request, then the request is bypassed. How-

67

ever, this scheme takes a training time until it actually bypasses a request since it uses a confidence

counter and the tables are maintained for each L1D cache. To compensate for misprediction, they

use a bypassBit in the L2 cache. However, when the bit is set and reset by multiple SMs’ requests,

its bypass decision is not accurate. Our scheme maintains a global reuse frequency table to reflect

the program’s overall behavior. Also, our scheme dynamically updates the bypass table, even by

bypassed requests, to avoid misprediction.

5.7 Summary

This chapter shows that the massive parallel thread execution of GPUs can result in mem-

ory access patterns that cause significant cache resource contention. By observing the resource

contention classification and reuse statistics, we also identify that the streaming requests are dom-

inant in the memory requests and they severely pollute the cache, resulting in severe degradation

on the overall performance.

We proposed a locality-aware selective caching algorithm based on per-PC memory reuse

frequency in the L1 data (L1D) cache on GPUs. When we choose 1.0 for the caching threshold,

the design becomes very simple to deploy. Our scheme uses a conservative bypassing approach,

ensuring that no performance degradation occurs.

Our proposed scheme improves the IPC performance by 1.39x over the baseline. To-

gether with contention-aware selective caching, it improves the overall performance by 2.01x.

Our scheme outperforms the state-of-the-art bypassing mechanism, MRPB, by 7%. Our algorithm

also reduces 73% of the no-reuse memory requests helping to avoid polluting the L1D cache and

enhances the average reuse frequency by 27x.

68

CHAPTER 6

MEMORY REQUEST SCHEDULING

6.1 Introduction

Column-strided memory access patterns are a source of cache contention commonly found

in data-intensive applications. The access pattern is compiled to warp instructions and generates

memory access patterns that are not well coalesced, causing resource contention. The resulting

memory accesses are serially processed in the LDST unit, stress the L1 data (L1D) caches, and

result in serious performance degradation.

Cache contention also arises from cache pollution caused by low reuse frequency data. For

the cache to be effective, a cached line must be reused before its eviction. But, the streaming

characteristic of GPGPU workloads and the massively parallel GPU execution model increase the

effective reuse distance, or equivalently reduce reuse frequency of data. In GPUs, the pollution

caused by a low reuse frequency (i.e., large reuse distance) data is significant.

Due to the contention, the LDST unit becomes saturated and stalled. A stalled LDST unit

does not execute memory requests from any ready warps in the previous issue stage. The warp

in the LDST unit retries until the cache resource becomes available. During this stall, the private

L1D cache is also in a stall, so no other warp requests can probe the cache. However, there may

be data in an L1D cache which may hit if other ready warps in the issue stage could access the

cache. In such cases, the current structure of the issue stage and L1D unit execution do not allow

the provisional cache probing. This stall prevents the potential hit chances for the ready warps.

This chapter proposes a memory request schedule queue that holds ready warps’ memory

69

W1W2W3

Ready Warps

W0
W3 data

L1D cache

R

R

R

R

LDST unit

stall

issue

(a) LDST unit is in a stall. A memory request from ready
warps cannot progress because the previous request is in stall
in the LDST unit.

...

W1

W2

W3

W0

W3 data

L1D cache

R

R

R

R

LDST unit

issue

scheduling

W4W5

(b) LDST unit with scheduling queue.

Figure 6.1. LDST unit in stall and the scheduling queue.

requests and a scheduler that effectively schedules them in a manner that increases the chances of a

hit. In this chapter, we identify the problematic GPU LDST unit stalls and analyze the potential hit

in depth. Then, we detail the various design factors of a queue mechanism and scheduling policy.

A thorough analysis of the experimental results follows.

6.2 Cache Contention

6.2.1 Memory Request Stall due to Cache Resource Contention

When the LDST unit becomes saturated, a new request to the LDST unit will not be ac-

cepted. When the LDST unit is stalled by one of the cache resources, for example, a line, an

MSHR entry or a miss queue entry, the request fully owns the LDST unit and retries for the re-

source. Whenever the contending resource becomes free, the retried request finally acquires the

70

2d
co

nv

2m
m

at
ax

bi
cg

ge
su

m
m

v

m
vt

sy
r2

k

sy
rk

ba
ck

pr
op

ho
ts

po
t

lu
d

nw

sr
ad

1

sr
ad

2

 m
ea

n

0

10

20

30

of

 r
ea

dy
 w

ar
ps

Figure 6.2. The average number of ready warps when cache resource contention occurs.

resource and the LDST unit can accept the next ready warp. While the stalled request retries, the

LDST unit is blocked by the request and cannot be preempted by another request from other ready

warps. Usually, the retry time is large because the active requests occupy the resource during the

long memory latency to fetch data from the lower level of the cache or the global memory.

During this stall, other ready warps which may have the data they need in the cache cannot

progress because the LDST unit is stalled by the previous request. This situation is illustrated in

the Figure 6.1a. Assume the W0 is stalled in the LDST unit and there are 3 ready warps in the

issue stage. While W0 is stalled, the 3 ready warps in the issue stage cannot issue any request to

the LDST unit. Even when the W3 data is in the cache at that moment, it cannot be hit by W3.

While W0, W1, and W2 are being serviced in the LDST unit, the W3 data in the cache may be

evicted by the other requests from W0, W1, or W2. If that happens what would have been a W3

hit now misses in the L1D cache and must send a fetch request to the lower level to recall the data.

If W3 had a chance to be scheduled to the stalled LDST unit, it would hit and save the extra cycles

to fetch the data from the lower level.

To estimate the potential opportunity for a hit under these circumstances, we measured

the number of ready warps when a memory request stall occurs. This number does not directly

represent the increase in the number of hits, but it gives us a potential estimate. From Figure 6.2,

about 12 warps on average are ready to be issued when the LDST unit is in a stall.

71

Pick a request from the queue

according to the scheduler

Process it

Probe cache
MISS

Cache resource

available ?

HIT

NO

YES

End of cycle
Iterate k times

Figure 6.3. A procedure for the memory request scheduler.

6.3 Memory Request Scheduling

6.3.1 Memory Request Queuing and Scheduling

To enable potential hits under LDST unit stall, we introduce a memory request queue for

rescheduling the memory request upon stall.

Queuing: When the issue unit issues a warp instruction, instead of monitoring the status

of the LDST unit, the memory requests from the instruction are pushed into the appropriate slot

depending on the warp ID. When the queue is full for the slot, then the warp backs up and retries

at the next cycle since the LDST unit has memory requests to schedule from the same warp.

Scheduling: In the LDST unit, one request from the queue is picked by a scheduler and it

probes the for a hit. If it hit, the instruction is executed in the LDST unit. When it is a miss and

the resource is available to process the instruction, then the instruction is executed in the LDST

unit. However, when the resource is not available, the next available warp instruction is picked by

a scheduler and repeats the process depending on an iteration factor, k. This iteration factor, k, is

implemented as multiple cache probe units to be probed concurrently.

Our design allows the memory request queue to hold up to n number of requests generated

by a warp instruction per slot. The queue size is the same as the maximum number of warps per

72

scheduling

...

W1

W2

W3

W0

...

W47

...

Queue depth: n items

Cache

probe unit

Cache

probe unit

Cache

probe unit

k cache probe

units

W3 data

L1D cache

Memory request queue

Q
ue

u
e

si
ze

:
4
8

sl
o
ts

Figure 6.4. A detailed view of the memory request queue and scheduler.

SM, which is 48 in our simulation setup. This scheme is illustrated in the Figure 6.1b and the flow

is in Figure 6.3.

6.3.2 Queue Depth

When the issue unit issues a warp instruction, the generated memory requests are pushed

into the memory request queue. Since one warp instruction can generate up to the SIMD lane size

of memory access requests, the depth of the queue for a warp must be at least 32 slots to fully

queue the generated memory request. If the depth is smaller than 32, the LDST unit is still in a

stall. The queue depth is illustrated in Figure 6.4.

6.3.3 Scheduling Policy

After memory requests are enqueued to an appropriate queue slot, a scheduling policy

imposes a service priority between these requests. One straightforward scheduling policy is to

apply a fixed-order policy (FIXED), i.e., an item from queue i can be scheduled only if queues 1

to i− 1 have been emptied. Another policy is a round-robin policy (RR) which selects items from

queues in turn, i.e., one item per non-empty queue. Another policy is a grouped round-robin policy

(GRR) which allows multiple items from consecutive slots (one item per slot) in the queue to probe

cache at the same time. The factor, k, depends on the hardware support. For example, with 4-port

73

cache support, four probes can be done at the same time.

The multiple cache probe units are illustrated in Figure 6.4. k items are chosen in a round-

robin fashion to probe cache for potential hits. When multiple hits occur in a group, the earlier slot

in a group is serviced in that cycle, and the next ks are probed in the next cycle. The multiple units

require multiple L1D cache ports, but increasing the number of probe units reduces contention and

increases the probability of a hit.

6.3.4 Contention-Aware Selective Caching Option

While memory request scheduling increases the hit rate when the LDST unit stall due to the

resource contention, there are other resource contention causes. Chapter 4 addresses resource con-

tention arising from coincident intra-warp contention, which is mainly caused by column-strided

pattern. The chapter shows that the coincident intra-warp contention severely blocks the overall

cache resources. It proposes selective caching which detects the problematic memory divergence,

identifies the congested sets, and decides to cache or not using per-PC reuse count information.

Since the proposed memory request scheduling can be used along with selective caching without

interfering with each other, selective caching can increase cache hits.

6.4 Experiment Methodology

6.4.1 Simulation Setup

We configured and modified GPGPU-Sim v3.2 [82], a cycle-accurate GPU architecture

simulator to find miss contention and resource contention in current GPU memory hierarchy, and

implemented the proposed algorithms. The NVIDIA GTX480 hardware configuration is used for

the system description. The baseline GPGPU-Sim configurations for this study are summarized in

Table 6.1.

74

Number of SMs 15
SM configuration 1400 Mhz, SIMD Width: 16

Warp size: 32 threads
Max threads per SM: 1536
Max Warps per SM: 48 Warps
Max Blocks per SM: 8 blocks

Warp schedulers per core 2
Warp scheduler Greedy-Then-Oldest (GTO) [73] (default)

Loose Round-Robin (LRR)
Two-Level (TL)[63]

Cache/SM L1 Data: 16 KB 128B-line/4-way (default)
L1 Data: 16 KB 128B-line/2-way
L1 Data: 16 KB 128B-line/8-way
Rep. Policy: Least Recently Used (LRU)
Shared memory: 48 KB

L2 unified cache 768 KB, 128 B line, 16-way
Memory partitions 6
Instruction dispatch 2 instructions per cycle
throughput per scheduler
Memory Scheduler Out of Order (FR-FCFS)
DRAM memory timing tCL=12, tRP=12,

tRC=40, tRAS=28,
tRCD=12, tRRD=6

DRAM bus width 384 bits

Table 6.1. Baseline GPGPU-Sim configuration.

6.4.2 Benchmarks

To perform our evaluations, we chose benchmarks from Rodinia [14] and PolyBench/

GPU [31]. We pruned our workload list by omitting the applications provided in the benchmark for

basic hardware profiling and graphics interoperability. We also omitted kernels that did not have

a grid size large enough to fill all the cores and whose grid size could not be increased without

significantly changing the application code. The benchmarks tested are listed in Table 6.2.

75

Name Suite Description

2DCONV PolyBench 2D Convolution
2MM PolyBench 2 Matrix Multiplication
ATAX PolyBench Matrix Transpose and Vector Mult.
BICG PolyBench BiCG SubKernel of BiCGStab Linear Sol.

GESUMMV PolyBench Scalar, Vector and Matrix Multiplication
MVT PolyBench Matrix Vector Product and Transpose

SYR2K PolyBench Symmetric rank-2k operations
SYRK PolyBench Symmetric rank-k operations

BACKPROP Rodinia Back propagation
HOTSPOT Rodinia Hot spot physics simulation

LUD Rodinia LU Decomposition
NW Rodinia Needleman-Wunsch

SRAD1 Rodinia Speckle Reducing Anisotropic Diffusion
SRAD2 Rodinia SRAD 2D

Table 6.2. Benchmarks from PolyBench [31] and Rodinia [14].

6.5 Experimental Results

6.5.1 Design Evaluation

Figure 6.5 shows the normalized IPC improvement using different design implementations.

Queue Depth: Figure 6.5a shows the result using different queue depths such as 1, 32 and

64. When the queue depth is 1, the warp scheduler cannot issue all the generated memory access

requests for the warp when more than 1 memory request is generated. Therefore, the scheduler

still stalls on that instruction. When the queue depth is 32 or larger, the queue can hold all gen-

erated memory access requests and the warp scheduler is free to issue the next warp instruction.

Figure 6.5a shows that the queue sizes 32 and 64 give similar results since the queue size 32 is

large enough to free the warp scheduler.

Multiple Cache Probe Units: Multiple cache probe units add extra hardware complexity,

but saves execution cycles by improving the probability of a hit. The results with different factors

such as 2, 3, and 4 are shown in Figure 6.5b. As expected, more probe units give better perfor-

76

2d
co

nv

2m
m

at
ax

bi
cg

ge
su

m
m

v

m
vt

sy
r2

k

sy
rk

ba
ck

pr
op

ho
ts

po
t

lu
d

nw

sr
ad

1

sr
ad

2

 g
m

ea
n

0

1

2

3

4

5

6

N
or

m
al

iz
ed

 IP
C

Baseline
SIZE_1
SIZE_32
SIZE_64

(a) IPC improvement with different queue depths.

2d
co

nv

2m
m

at
ax

bi
cg

ge
su

m
m

v

m
vt

sy
r2

k

sy
rk

ba
ck

pr
op

ho
ts

po
t

lu
d

nw

sr
ad

1

sr
ad

2

 g
m

ea
n

0

1

2

3

4

5

6

N
or

m
al

iz
ed

 IP
C

Baseline
2 units
3 units
4 units

(b) IPC improvement with different cache probe unit counts.

2d
co

nv

2m
m

at
ax

bi
cg

ge
su

m
m

v

m
vt

sy
r2

k

sy
rk

ba
ck

pr
op

ho
ts

po
t

lu
d

nw

sr
ad

1

sr
ad

2

 g
m

ea
n

0

1

2

3

4

5

6

N
or

m
al

iz
ed

 IP
C

Baseline
RoundRobin
Fixed
GroupedRR

(c) IPC improvement with different queue schedulers.

Figure 6.5. IPC improvement with different implementations.

77

mance. The factor of 4 is chosen as our design choice.

Memory Request Scheduling Policy: We experimented with multiple scheduling policies.

Figure 6.5c shows the three different schedulers studied: Fixed, RoundRobin, and GroupedRR.

Fixed scheduler schedules an item from queue i only if queues 1 to i − 1 have been emptied.

RoundRobin scheduler selects an item from the queue in turn, one item per non-empty queue.

GroupedRR picks items from queue i to i − k − 1 with the factor k. With the factor of four, four

cache probe units are implied. As expected, GroupedRR outperforms other schedulers with the

help of multiple probing units.

6.5.2 Performance Improvement

From the design evaluation in Section 6.5.1, we choose the queue depth of 32, 4 cache probe

units, and the GroupedRR scheduling policy. Figure 6.6 shows the normalized IPC improvement

of our proposed algorithm over the baseline. The baseline graph is shown with a normalized IPC

of 1. MemSched represents the proposed memory request scheduling. MemSched+SelCaching

represents the combined scheme with the proposed memory request scheduling and the selective

caching as in Section 6.3.4. For performance comparison with another technique, we choose mem-

ory request prioritization, MRPB [42].

MemSched performance enhancement over baseline is about 1.95x. MemSched without

any bypassing scheme has similar performance to the state-of-the-art bypassing scheme MRPB.

The proposed scheme with the contention-aware selective caching described in Chapter 4, Mem-

Sched+SelCaching, outperforms baseline by 2.06x and the MRPB by 7%.

6.5.3 Effect of Warp Scheduler

Our experiment uses the Greedy-Then-Oldest (GTO) warp scheduler as a default warp

scheduler. Since our memory request scheduling algorithm improves performance by finding po-

tential hits during a LDST unit stall, other warp schedulers should not affect the trend of overall

78

2d
co

nv

2m
m

at
ax

bi
cg

ge
su

m
m

v

m
vt

sy
r2

k

sy
rk

ba
ck

pr
op

ho
ts

po
t

lu
d

nw

sr
ad

1

sr
ad

2

 g
m

ea
n

0

1

2

3

4

5

6

7

N
or

m
al

iz
ed

 IP
C

Baseline
MemSched
MRPB
MemSched+SelCaching

Figure 6.6. Overall IPC improvement.

2d
co

nv

2m
m

at
ax

bi
cg

ge
su

m
m

v

m
vt

sy
r2

k

sy
rk

ba
ck

pr
op

ho
ts

po
t

lu
d

nw

sr
ad

1

sr
ad

2

 g
m

ea
n

0

2

4

6

8

N
or

m
al

iz
ed

 IP
C

Baseline
RoundRobin
TwoLevel
GTO

Figure 6.7. IPC improvement with different schedulers.

performance improvement. Figure 6.7 shows the results with different warp schedulers, such as

the TwoLevel [63] and RoundRobin warp scheduler. Overall, experiments demonstrate that the

memory request scheduling scheme improves the performance effectively regardless of scheduler.

6.5.4 Effect of Cache Associativity

Figure 6.8 shows the result with different cache associativities: 2-, 4-, and 8-way. Cache

contention tends to be much more severe with a smaller associativity cache. Generally, memory

requests in smaller associativity become more congested and the stall becomes worse than in other

79

2d
co

nv

2m
m

at
ax

bi
cg

ge
su

m
m

v

m
vt

sy
r2

k

sy
rk

ba
ck

pr
op

ho
ts

po
t

lu
d

nw

sr
ad

1

sr
ad

2

 g
m

ea
n

0

2

4

6

8

10

N
or

m
al

iz
ed

 IP
C

Baseline
Assoc-2
Assoc-4
Assoc-8

Figure 6.8. IPC improvement with different associativities.

larger associativity cases. Therefore, the IPC improvement for associativity 2 is the most among

the three different associativity cases. Cache with associativity 8 still improves the performance

by about 1.51x.

6.6 Conclusion

In this chapter, we identified that when the LDST unit is stalled, no other ready warps can

probe the cache even if there are potential hits to be found if they could proceed and probe the

cache. In order to address this issue, we proposed a memory request scheduling which queues the

memory requests from the warp instructions, schedules items in the queue to probe potential hits

during LDST unit stall and processes the hit request to efficiently use the cache. The proposed

scheme improves the IPC performance by 2.06x over the baseline. It also outperforms the state-

of-the-art algorithm, MRPB, by 7%.

80

CHAPTER 7

RELATED WORK

We introduced chapter-specific related works in earlier chapters. This chapter integrates

those with related works to other topics in order to serve as the single central place for all related

works to this dissertation.

7.1 Cache Bypassing

7.1.1 CPU Cache Bypassing

Much of the existing research focuses on CPU cache management techniques [28, 38, 39,

46, 71, 85, 87]. Among these, a selection of papers have explored bypassing in CPU caches.

Tyson et al. [85] proposed bypassing based on the hit rate of memory access instructions, while

Johnson et al. [46] proposed using the access frequency of the cache blocks to predict bypassing.

Kharbutli and Solihin [50] proposed using counters of events such as number of references and

access intervals to make bypass predictions in the CPU last-level cache. All of these techniques use

memory address-related information to make the prediction, costing significant storage overhead

that would be impractical for GPU caches.

Program counter trace-based dead block prediction [53] leveraged the fact that sequences

of memory instruction PCs tend to lead to the same behavior for different memory blocks. This

dead block prediction scheme is useful for making bypass predictions in CPUs. We show that GPU

kernels are small, containing only a few distinct memory instructions. Using only the PC to access

a block is sufficient for a GPU bypassing prediction.

81

Cache Bursts [59] is another dead block prediction technique that exploits bursts of ac-

cesses hitting the MRU position to improve predictor efficiency. For GPU workloads that use

scratch-pad memories, the majority of re-references have been filtered. Gaur et al. [25] proposed

bypass and insertion algorithms for exclusive LLCs to adaptively avoid unmodified dead blocks

from being written into the exclusive LLC.

7.1.2 GPU Cache Bypassing

Jia et al. [41] justified the effect of the cache in GPUs. They presented a simulation result

that L1D cache may degrade the overall system performance. Then, they proposed a static method

to analyze GPU programs and determine if caching is beneficial or detrimental at compile time

by calculating access stride pattern and applying it to control whether to bypass the L1D cache.

Jia et al. [42] later proposed a memory request prioritization buffer (MRPB) to improve GPU

performance. MRPB prioritized the memory requests in order to reduce the reuse distance within

a warp. It also used cache bypassing to mitigate intra-warp contention. When bypassing, it blindly

bypassed memory requests whenever it detects resource contention. Therefore, there are some

benchmarks which suffer from performance degradation. Compared to MRPB, our locality-aware

selective caching does not degrade performance since we measure the reuse frequency dynamically

and conservatively decide caching according to the reuse frequency.

Rogers et al. proposed cache-conscious wavefront scheduling (CCWS) to improve GPU

cache efficiency by avoiding data thrashing that causes cache pollution [72]. CCWS estimates

working set size of active warps and dynamically restricts the number of warps. This may adversely

affect the ability to hide high memory access latency of GPUs. Our locality-aware selective caching

bypasses the no-reuse blocks without under-utilizing the SIMD pipeline to reduce cache thrashing.

Lee and Kim proposed a thread-level-parallelism-aware cache management policy to im-

prove performance of the shared last level cache (LLC) in heterogeneous multi-core architec-

82

ture [55]. They focus on shared LLCs that are dynamically partitioned between CPUs and GPUs.

Mekkat et al. proposed a similar idea for heterogeneous LLC management [60], to better partition

LLC for GPUs and CPUs in a heterogeneous system.

Li et al. [57] exploit bypassing to reduce contention. They extract locality information

during compile time and throttle the warp scheduler to avoid thrashing due to warp contention.

Their work focuses on reducing cross-warp contention. Static analysis does not reflect the dynamic

behavior of the application.

Tian et al. [80] also exploit the PC to predict bypassing. This method maintains a table

for bypass prediction. They use a confidence count to control bypassing. Every reuse decreases

the confidence count and every miss increases the confidence count. When the confidence count

is greater than the predetermined value for the PC of a memory request, then the request is by-

passed. However, this scheme takes a training time until it actually bypasses a request since it

uses a confidence counter and the tables are maintained for each L1D cache. To compensate for

misprediction, they use a bypassBit in the L2 cache. However, when the bit is set and reset by

multiple SM’s requests, its bypass decision is not accurate. Our locality-aware selective bypassing

maintains a global reuse frequency table to reflect the overall behavior of the program. Also, our

scheme dynamically updates the bypass table even by a bypassed request to avoid misprediction.

While the existing works determine bypassing based upon occurred contention or static

compile time information, which may lead to be incorrect at runtime, our contention-aware selec-

tive caching focuses more on proactively detecting and avoiding cache contention. Also, our work

incorporates dynamically obtained locality information to preserve locality.

7.2 Memory Address Randomization

Memory address randomization techniques for CPU caches are well studied. Pseudo-

random cache indexing methods have been extensively studied to reduce conflict misses. Topham

83

et al. [81] use XOR to build a conflict-avoiding cache; Seznec and Bodin [77, 11] combine XOR

indexing and circular shift in a skewed associative cache to form a perfect shuffle across all cache

banks. XOR is also widely used for memory indexing [54, 69, 70, 91]. Khairy et al. [49] use

XOR-based Pseudo Random Interleaving Cache (PRIC) which is used in [81, 70].

Another common approach is to use a secondary indexing method for alternative cache sets

when conflicts happen. This category of work includes skewed-associative cache [77], column-

associative cache [1], and v-way cache [67].

Some works have also noticed that certain bits in the address are more critical in reducing

cache miss rate. Givargis [27] uses off-line profiling to detect feature bits for embedded systems.

This scheme is only applicable for embedded systems where workloads are often known prior to

execution. Ros et al. [75] propose ASCIB, a three-phase algorithm, to track the changes in address

bits at runtime and dynamically discard the invariable bits for cache indexing. ASCIB needs to

flush certain cache sets whenever the cache indexing method changes, so it is best suited for a

direct-mapped cache. ASCIB also needs extra storage to track the changes in the address bits.

Wang et al. [86] applied XOR-based index algorithm in their work. It finds that the address range

that is more critical to reduce intra-warp cache contention.

The main purpose of the different cache indexing algorithms is to randomly distribute the

congested set over all cache sets to minimize the cache thrashing. However, GPGPU executes

massively parallelized workloads as much as possible, and requests from different warp can easily

overflow the cache sets size. For example, the NVIDIA Fermi architecture uses 16KB L1 data

cache which has 128 cache lines (32 sets with 4 lines per set). Just 4 warp’s set contending accesses

quickly fill up the cache. Indexing may distribute the cache access throughout the whole cache,

however, caching the massive amount of cache accesses which may not be used more than once is

polluting cache and evicts cache lines which have better locality feature.

84

7.3 Warp Scheduling

Warp scheduling plays a critical role in sustaining GPU performance and various schedul-

ing algorithms have been proposed based on different heuristics.

Some warp scheduling algorithms use a concurrent throttling technique to reduce con-

tention in an L1D cache. Static Warp Limiting (SWL) [72] statically limits the number of warps

that can be actively scheduled and needs to be tuned on a per-benchmark basis. Cache Conscious

Warp Scheduling (CCWS) [72] relies on a dedicated victim cache and a 6-bit Warp ID field in

the tag of an cache block to detect intra-warp locality and other storage to track per-warp local-

ity changes. The warp that has the largest locality loss is exclusively prioritized. MASCAR [76]

exclusively prioritizes memory instructions from one “owner” warp when the memory subsystem

is saturated; otherwise, memory instructions of all warps are prioritized over any computation

instruction. MASCAR uses a re-execution queue to replay L1D accesses that are stalled due to

MSHR unavailability or network congestion. Saturation here means that the MSHR has only 1

entry or the queue inside memory part has only 1 slot. On top of CCWS, Divergence Aware Warp

Scheduling (DAWS) [73] actively schedules warps whose aggregate memory footprint does not ex-

ceed L1D capacity. The prediction of memory footprint requires compiler support to mark loops in

the PTX ISA and other structures. Khairy et al. [49] proposed DWT-CS, which use core sampling

to throttle concurrency. When L1D Miss Per Kilo Instruction (MPKI) is above a given threshold,

DWT-CS samples all SMs with a different number of active warps and applies the best-performing

active warp count on all SMs.

Some other warp scheduling algorithms are designed to improve GPU resource utilization.

Fung et al. [24, 23] investigated the impact of warp scheduling on techniques aiming at branch

divergence reduction, i.e., dynamic warp formation and thread block compaction. Jog et al. [45]

proposed an orchestrated warp scheduling to increase the timeliness of GPU L1D prefetching.

Narasiman et al. [63] proposed a two-level round robin scheduler to prevent memory instructions

85

from being issued consecutively. By doing so, memory latency can be better overlapped by compu-

tations. Gebhart et al. [26] introduced another two-level warp scheduler to manage a hierarchical

register file design. On top of the two-level warp scheduling, Yu et al. [90] proposed a Stall-

Aware Warp Scheduling (SAWS) to adjust the fetch group size when pipeline stalls are detected.

SAWS mainly focuses on pipeline stalls. Kayiran et al. [48] proposed a dynamic Cooperative

Thread Array (CTA) scheduling mechanism to enable the optimal number of CTAs according to

application characteristics. It typically reduces concurrent CTAs for data-intensive applications

to reduce LD/ST stalls. Lee et al. [56] proposed two alternative CTA scheduling schemes. Lazy

CTA scheduling (LCS) utilizes a 3-phase mechanism to determine the optimal number of CTAs

per core, while Block CTA scheduling (BCS) launches consecutive CTAs onto the same cores to

exploit inter-CTA data locality. Jog et al. [44] proposed the OWL scheduler, which combines four

component scheduling policies to improve L1D locality and the utilization of off-chip memory

bandwidth.

The aforementioned warp scheduling techniques do not focus on the problem of LDST

stalls and preserving L1D locality especially for cross-warp locality.

7.4 Warp Throttling

Bakhoda et al. [6] present data for several GPU configurations, each with a different max-

imum number of CTAs that can be concurrently assigned to a core. They observe that some

workloads performed better when less CTAs are scheduled concurrently. The data they present

is for a GPU without an L1 data cache, running a round-robin warp scheduling algorithm. They

conclude that this increase in performance occurs because scheduling less concurrent CTAs on the

GPU reduces contention for the interconnection network and DRAM memory system.

Guz et al. [32] use an analytical model to quantify the “performance valley” that exists

when the number of threads sharing a cache is increased. They show that increasing the thread

86

count increases performance until the aggregate working set no longer fits in cache. Increasing

threads beyond this point degrades performance until enough threads are present to hide the sys-

tems memory latency.

Cheng et al. [18] introduce a thread throttling mechanism to reduce memory latency in mul-

tithreaded CPU systems. They propose an analytical model and memory task throttling mechanism

to limit thread interference in the memory stage. Their model relies on a stream programming lan-

guage which decomposes applications into separate tasks for computation and memory and their

technique schedules tasks at this granularity.

Ebrahimi et al. [21] examine the effect of disjointed resource allocation between the vari-

ous components of a chip-multiprocessor system, in particular in the cache hierarchy and memory

controller. They observed that uncoordinated fairness-based decisions made by disconnected com-

ponents could result in a loss of both performance and fairness. Their proposed technique seeks

to increase performance and improve fairness in the memory system by throttling the memory ac-

cesses generated by CMP cores. This throttling is accomplished by capping the number of MSHR

entries that can be used and constraining the rate at which requests in the MSHR are issued to the

L2.

These warp throttling techniques do not identify the memory access characteristics of GPU

but try to resolve contention by dynamically throttling the number of thread blocks or warps. Our

work identifies the memory access characteristic and analyses when caching is beneficial and when

not and resolves the contention by reducing the cause of contention.

7.5 Cache Replacement Policy

There is a body of work attempting to increase cache hit rate by improving the replacement

or insertion policy [9, 13, 38, 43, 61, 68, 88]. All these attempt to exploit different heuristics

of program behavior to predict a blocks re-reference interval and mirror the Belady-optimal [10]

87

policy as closely as possible.

Li et al. [58] propose Priority Based Cache Replacement (PCAL) policy to tightly couple

the thread scheduling mechanism with the cache replacement policy such that GPU cache pollu-

tion is minimized while off-chip memory throughput is enhanced. They prioritize the subset of

high-priority threads while simultaneously allowing lower priority threads to execute without con-

tending for the cache. By tuning thread-level parallelism while both optimizing cache efficiency as

well as other shared resource usage, PCAL improves overall performance. Chen et al. [17] propose

G-Cache to alleviate cache thrashing. To detect thrashing, the tag array of L2 cache is enhanced

with extra bits (victim bits) to provide L1 cache by some information about the hot lines that have

been evicted before. An adaptive cache replacement policy is used by an L1 cache to protect these

hot lines. However, the previous works do not incorporate locality information between warps or

thread blocks.

88

CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1 Conclusion

Leveraging the massive computation power of GPUs to accelerate data-intensive applica-

tions is a recent trend that embraces the arrival of the big data era. While a throughput processor’s

cache hierarchy exploits application-inherent locality and can increase the overall performance,

the massively parallel execution model of GPUs suffers from cache contention. For applications

that are performance-sensitive to caching efficiency, such contention degrades the effectiveness of

caches in exploiting locality, thereby suffering from significant performance drop.

This dissertation has categorized the contention into two different categories depending

on the source of contention and has examined the memory access request bottlenecks that cause

serious cache contention such as memory-divergent instruction caused by column-strided access

pattern, cache pollution by no-reuse data blocks, and memory request stall. This dissertation em-

bodies a collection of research efforts to reduce the performance impacts of these bottlenecks from

their sources, including contention-aware selective caching, locality-based selective caching, and

memory request scheduling. Based on the comprehensive experimental results and systematic

comparisons with state-of-the-art techniques, this dissertation has made the following three key

contributions:

Contention-aware Selective Caching is proposed to detect the column-strided pattern and

its resulting memory-divergent instruction which generates divergent memory accesses, calculates

the contending cache sets and locality information, and caches selectively. We demonstrate that

89

contention-aware selective caching can improve the system more than 2.25x over baseline and

reduce memory accesses.

Locality-aware Selective Caching is proposed to detect the locality of memory requests

based on per-PC reuse frequency and cache selectively. We demonstrate that the low hardware

complexity technique outperforms baseline by 1.39x alone and 2.01x together with contention-

aware selective caching, prevents 73% of the no-reuse data from caching and improves reuse fre-

quency in the cache by 27x.

Memory Request Scheduling is proposed to address the memory request stalls at LDST

unit. It consists of a memory request schedule queue that holds ready warps’ memory requests and

a scheduler to effectively schedule them to increase the chances of a hit in the cache lines. We

demonstrate that there are 12 ready warps on average when the LDST unit is in a stall and this po-

tential improves the overall performance by 1.95x over baseline and 2.06x along with contention-

aware selective caching over baseline.

8.2 Future Work

This dissertation has also opened up opportunities for future architectural research on op-

timizing the performance of GPU memory subsystem. Particularly, the following two topics are

immediate future works.

8.2.1 Locality-Aware Scheduling

From the memory access locality analysis in Section 3.1, the warp scheduler can signif-

icantly change the memory access pattern, and thus playing an important role in system perfor-

mance. Depending on the selection of the scheduler, the overall system performance improvement

can be around 20% on average [56]. For some benchmarks, the overall performance is about 3

times better. The technique used in locality-aware selective caching as in Section 5, can be ex-

90

ploited to schedule the warps to preserve the locality, minimize the eviction from the cache, and

also minimize the memory resource contention in the LDST unit. Through the reuse frequency

analysis, a dynamic working set can also be calculated to aid the scheduler.

8.2.2 Locality-Aware Cache Replacement Policy

When a cache is full, the new request needs to find an entry to be replaced. The Least

Recently Used (LRU) is a commonly used replacement policy. This policy finds a victim by

discarding the least recently used item in the cache. This algorithm requires keeping track of what

was used and when, which is expensive if one wants to make sure the algorithm always discards

the least recently used item. General implementations of this technique require keeping “age bits”

for cache-lines and track the “Least Recently Used” cache-line based on the age-bits. Due to the

complexity, many implementations of LRU are based on pseudo-LRU.

A GPU thread traffic pattern described in Figure 3.1a may fit with the pseudo-LRU cache

replacement policy because of the small working set size, but when warps and thread blocks are

involved, pseudo-LRU may no longer efficiently reflect the locality of the GPU memory accesses.

However, if the no-reuse blocks are filtered by the locality-based selective caching scheme, the

resulting memory access pattern along with LRU policy with reduced insertion and promotion

policy, that is, adjusted block insertion and block promotion, can be effectively cached in the L1D.

Therefore, cache replacement policy using the locality information developed in Section 5 may

improve overall system performance.

91

PUBLICATION CONTRIBUTIONS

This dissertation has contributed to the following publications. From the thorough analysis

of the characteristics of GPU with William Panlener and Dr. Byunghyun Jang, we published a

paper titled Understanding and Optimizing GPU Cache Memory Performance for Compute Work-

loads in IEEE 13th International Symposium on Parallel and Distributed Computing (ISPDC) in

2014.

Through cache contention analysis in Chapter 3, we identified the major causes of cache

contention. From the first factor of cache contention, column-strided memory traffic patterns

and the resulting memory-divergent instruction as introduced in Chapter 4, we submitted a pa-

per, Contention-Aware Selective Caching to Mitigate Intra-Warp Contention on GPUs to IISWC

2016. From the second factor, cache pollution caused by caching no reuse data in Chapter 5, we

submitted a paper, Locality-Aware Selective Caching on GPUs to SBAC-PAD 2016. From the

third factor, memory request stall by the non-preemptive LDST unit in Chapter 6, we are preparing

a paper titled Memory Request Scheduling to Promote Potential Cache Hit on GPUs. I would like

to thank my co-authors of the paper, David Troendle, Esraa Abdelmageed, and Dr. Byunghyun

Jang for their continuous support, discussion on the idea development, editing and revising.

92

BIBLIOGRAPHY

93

BIBLIOGRAPHY

[1] Agarwal, A., and S. D. Pudar (1993), Column-associative Caches: A Technique for Reducing
the Miss Rate of Direct-mapped Caches, SIGARCH Comput. Archit. News, 21(2), 179–190,
doi:10.1145/173682.165153.

[2] AMD, Inc. (2012), AMD Graphics Cores Next (GCN) Architecture, https://www.amd.com/
Documents/GCN Architecture whitepaper.pdf.

[3] AMD, Inc. (2015), The OpenCL Programming Guide, http://amd-dev.wpengine.netdna-
cdn.com/wordpress/media/2013/12/AMD OpenCL Programming User Guide2.pdf.

[4] Anderson, J. A., C. D. Lorenz, and A. Travesset (2008), General purpose molecular dynam-
ics simulations fully implemented on graphics processing units, Journal of Computational
Physics, 227(10), 5342 – 5359, doi:http://dx.doi.org/10.1016/j.jcp.2008.01.047.

[5] Bakhoda, A., G. Yuan, W. Fung, H. Wong, and T. Aamodt (2009), Analyzing CUDA work-
loads using a detailed GPU simulator, in Performance Analysis of Systems and Software,
2009. ISPASS 2009. IEEE International Symposium on, pp. 163–174, doi:10.1109/ISPASS.
2009.4919648.

[6] Bakhoda, A., G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt (2009), Analyzing cuda
workloads using a detailed gpu simulator, in Performance Analysis of Systems and Software,
2009. ISPASS 2009. IEEE International Symposium on, pp. 163–174, doi:10.1109/ISPASS.
2009.4919648.

[7] Bakkum, P., and K. Skadron (2010), Accelerating sql database operations on a gpu with
cuda, in Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics
Processing Units, GPGPU-3, pp. 94–103, ACM, New York, NY, USA, doi:10.1145/1735688.
1735706.

[8] Banakar, R., S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel (2002), Scratchpad
memory: a design alternative for cache on-chip memory in embedded systems, in Hardware/-
Software Codesign, 2002. CODES 2002. Proceedings of the Tenth International Symposium
on, pp. 73–78, doi:10.1109/CODES.2002.1003604.

[9] Bansal, S., and D. S. Modha (2004), Car: Clock with adaptive replacement, in Proceedings
of the 3rd USENIX Conference on File and Storage Technologies, FAST ’04, pp. 187–200,
USENIX Association, Berkeley, CA, USA.

[10] Belady, L. A. (1966), A study of replacement algorithms for a virtual-storage computer, IBM
Systems Journal, 5(2), 78–101, doi:10.1147/sj.52.0078.

94

https://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
https://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_OpenCL_Programming_User_Guide2.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_OpenCL_Programming_User_Guide2.pdf

[11] Bodin, F., and A. Seznec (1997), Skewed associativity improves program performance and
enhances predictability, Computers, IEEE Transactions on, 46(5), 530–544, doi:10.1109/12.
589219.

[12] Brunie, N., S. Collange, and G. Diamos (2012), Simultaneous Branch and Warp Interweaving
for Sustained GPU Performance, SIGARCH Comput. Archit. News, 40(3), 49–60, doi:10.
1145/2366231.2337166.

[13] Chaudhuri, M. (2009), Pseudo-lifo: The foundation of a new family of replacement policies
for last-level caches, in 2009 42nd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pp. 401–412, doi:10.1145/1669112.1669164.

[14] Che, S., M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and K. Skadron (2009),
Rodinia: A benchmark suite for heterogeneous computing, in Workload Characterization,
2009. IISWC 2009. IEEE International Symposium on, pp. 44–54, doi:10.1109/IISWC.2009.
5306797.

[15] Chen, L., and G. Agrawal (2012), Optimizing mapreduce for gpus with effective shared
memory usage, in Proceedings of the 21st International Symposium on High-Performance
Parallel and Distributed Computing, HPDC ’12, pp. 199–210, ACM, New York, NY, USA,
doi:10.1145/2287076.2287109.

[16] Chen, L., X. Huo, and G. Agrawal (2012), Accelerating mapreduce on a coupled cpu-gpu ar-
chitecture, in Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, SC ’12, pp. 25:1–25:11, IEEE Computer Society Press,
Los Alamitos, CA, USA.

[17] Chen, X., S. Wu, L.-W. Chang, W.-S. Huang, C. Pearson, Z. Wang, and W.-M. W. Hwu
(2014), Adaptive Cache Bypass and Insertion for Many-core Accelerators, in Proceedings of
International Workshop on Manycore Embedded Systems, MES ’14, pp. 1:1–1:8, ACM, New
York, NY, USA, doi:10.1145/2613908.2613909.

[18] Cheng, H.-Y., C.-H. Lin, J. Li, and C.-L. Yang (2010), Memory latency reduction via thread
throttling, in Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO ’43, pp. 53–64, IEEE Computer Society, Washington, DC, USA,
doi:10.1109/MICRO.2010.39.

[19] Choo, K., W. Panlener, and B. Jang (2014), Understanding and Optimizing GPU Cache Mem-
ory Performance for Compute Workloads, in Parallel and Distributed Computing (ISPDC),
2014 IEEE 13th International Symposium on, pp. 189–196, doi:10.1109/ISPDC.2014.29.

[20] Denning, P. J. (1980), Working sets past and present, IEEE Trans. Softw. Eng., 6(1), 64–84,
doi:10.1109/TSE.1980.230464.

[21] Ebrahimi, E., C. J. Lee, O. Mutlu, and Y. N. Patt (2010), Fairness via source throttling:
A configurable and high-performance fairness substrate for multi-core memory systems, in
Proceedings of the Fifteenth Edition of ASPLOS on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XV, pp. 335–346, ACM, New York, NY, USA,
doi:10.1145/1736020.1736058.

95

[22] Fatahalian, K., and M. Houston (2008), A closer look at gpus, Commun. ACM, 51(10), 50–57,
doi:10.1145/1400181.1400197.

[23] Fung, W., and T. Aamodt (2011), Thread block compaction for efficient SIMT control flow,
in High Performance Computer Architecture (HPCA), 2011 IEEE 17th International Sympo-
sium on, pp. 25–36, doi:10.1109/HPCA.2011.5749714.

[24] Fung, W., I. Sham, G. Yuan, and T. Aamodt (2007), Dynamic Warp Formation and Schedul-
ing for Efficient GPU Control Flow, in Microarchitecture, 2007. MICRO 2007. 40th Annual
IEEE/ACM International Symposium on, pp. 407–420, doi:10.1109/MICRO.2007.30.

[25] Gaur, J., M. Chaudhuri, and S. Subramoney (2011), Bypass and insertion algorithms for
exclusive last-level caches, in Computer Architecture (ISCA), 2011 38th Annual International
Symposium on, pp. 81–92.

[26] Gebhart, M., D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally, E. Lindholm, and
K. Skadron (2011), Energy-efficient Mechanisms for Managing Thread Context in Through-
put Processors, SIGARCH Comput. Archit. News, 39(3), 235–246, doi:10.1145/2024723.
2000093.

[27] Givargis, T. (2003), Improved indexing for cache miss reduction in embedded systems, in
Design Automation Conference, 2003. Proceedings, pp. 875–880, doi:10.1109/DAC.2003.
1219143.

[28] González, A., C. Aliagas, and M. Valero (1995), A Data Cache with Multiple Caching
Strategies Tuned to Different Types of Locality, in Proceedings of the 9th International
Conference on Supercomputing, ICS ’95, pp. 338–347, ACM, New York, NY, USA, doi:
10.1145/224538.224622.

[29] Govindaraju, N., J. Gray, R. Kumar, and D. Manocha (2006), Gputerasort: High performance
graphics co-processor sorting for large database management, in Proceedings of the 2006
ACM SIGMOD International Conference on Management of Data, SIGMOD ’06, pp. 325–
336, ACM, New York, NY, USA, doi:10.1145/1142473.1142511.

[30] Govindaraju, N. K., B. Lloyd, W. Wang, M. Lin, and D. Manocha (2004), Fast computation
of database operations using graphics processors, in Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’04, pp. 215–226, ACM, New
York, NY, USA, doi:10.1145/1007568.1007594.

[31] Grauer-Gray, S., L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos (2012), Auto-tuning a
high-level language targeted to GPU codes, in Innovative Parallel Computing (InPar), 2012,
pp. 1–10, doi:10.1109/InPar.2012.6339595.

[32] Guz, Z., E. Bolotin, I. Keidar, A. Kolodny, A. Mendelson, and U. C. Weiser (2009), Many-
core vs. many-thread machines: Stay away from the valley, IEEE Computer Architecture
Letters, 8(1), 25–28, doi:10.1109/L-CA.2009.4.

96

[33] Hakura, Z. S., and A. Gupta (1997), The Design and Analysis of a Cache Architec-
ture for Texture Mapping, in Proceedings of the 24th Annual International Symposium
on Computer Architecture, ISCA ’97, pp. 108–120, ACM, New York, NY, USA, doi:
10.1145/264107.264152.

[34] Han, S., K. Jang, K. Park, and S. Moon (2010), Packetshader: A gpu-accelerated software
router, SIGCOMM Comput. Commun. Rev., 40(4), 195–206, doi:10.1145/1851275.1851207.

[35] He, B., W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang (2008), Mars: A mapreduce
framework on graphics processors, in Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques, PACT ’08, pp. 260–269, ACM, New
York, NY, USA, doi:10.1145/1454115.1454152.

[36] He, B., M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and P. V. Sander (2009),
Relational query coprocessing on graphics processors, ACM Trans. Database Syst., 34(4),
21:1–21:39, doi:10.1145/1620585.1620588.

[37] Hennessy, J. L., and D. A. Patterson (2011), Computer Architecture, Fifth Edition: A Quan-
titative Approach, 5th ed., Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[38] Jaleel, A., K. B. Theobald, S. C. Steely, Jr., and J. Emer (2010), High Performance Cache Re-
placement Using Re-reference Interval Prediction (RRIP), SIGARCH Comput. Archit. News,
38(3), 60–71, doi:10.1145/1816038.1815971.

[39] Jalminger, J., and P. Stenstrom (2003), A novel approach to cache block reuse predictions,
in Parallel Processing, 2003. Proceedings. 2003 International Conference on, pp. 294–302,
doi:10.1109/ICPP.2003.1240592.

[40] Jang, B., D. Schaa, P. Mistry, and D. Kaeli (2011), Exploiting Memory Access Patterns to
Improve Memory Performance in Data-Parallel Architectures, IEEE Transactions on Parallel
and Distributed Systems, 22(1), 105–118, doi:10.1109/TPDS.2010.107.

[41] Jia, W., K. A. Shaw, and M. Martonosi (2012), Characterizing and Improving the Use of
Demand-fetched Caches in GPUs, in Proceedings of the 26th ACM International Conference
on Supercomputing, ICS ’12, pp. 15–24, ACM, New York, NY, USA, doi:10.1145/2304576.
2304582.

[42] Jia, W., K. Shaw, and M. Martonosi (2014), MRPB: Memory request prioritization for mas-
sively parallel processors, in High Performance Computer Architecture (HPCA), 2014 IEEE
20th International Symposium on, pp. 272–283, doi:10.1109/HPCA.2014.6835938.

[43] Jiang, S., and X. Zhang (2002), Lirs: An efficient low inter-reference recency set replacement
policy to improve buffer cache performance, SIGMETRICS Perform. Eval. Rev., 30(1), 31–
42, doi:10.1145/511399.511340.

[44] Jog, A., O. Kayiran, N. Chidambaram Nachiappan, A. K. Mishra, M. T. Kandemir, O. Mutlu,
R. Iyer, and C. R. Das (2013), OWL: Cooperative Thread Array Aware Scheduling Tech-
niques for Improving GPGPU Performance, SIGPLAN Not., 48(4), 395–406, doi:10.1145/
2499368.2451158.

97

[45] Jog, A., O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R. Das (2013),
Orchestrated Scheduling and Prefetching for GPGPUs, in Proceedings of the 40th Annual
International Symposium on Computer Architecture, ISCA ’13, pp. 332–343, ACM, New
York, NY, USA, doi:10.1145/2485922.2485951.

[46] Johnson, T. L., D. A. Connors, M. C. Merten, and W. M. W. Hwu (1999), Run-time cache
bypassing, IEEE Transactions on Computers, 48(12), 1338–1354, doi:10.1109/12.817393.

[47] Katz, G. J., and J. T. Kider, Jr (2008), All-pairs Shortest-paths for Large Graphs on the
GPU, in Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS Symposium on Graph-
ics Hardware, GH ’08, pp. 47–55, Eurographics Association, Aire-la-Ville, Switzerland,
Switzerland.

[48] Kayiran, O., A. Jog, M. T. Kandemir, and C. R. Das (2013), Neither More nor Less: Op-
timizing Thread-level Parallelism for GPGPUs, in Proceedings of the 22Nd International
Conference on Parallel Architectures and Compilation Techniques, PACT ’13, pp. 157–166,
IEEE Press, Piscataway, NJ, USA.

[49] Khairy, M., M. Zahran, and A. G. Wassal (2015), Efficient Utilization of GPGPU Cache
Hierarchy, in Proceedings of the 8th Workshop on General Purpose Processing Using GPUs,
GPGPU-8, pp. 36–47, ACM, New York, NY, USA, doi:10.1145/2716282.2716291.

[50] Kharbutli, M., and Y. Solihin (2008), Counter-Based Cache Replacement and Bypassing Al-
gorithms, IEEE Transactions on Computers, 57(4), 433–447, doi:10.1109/TC.2007.70816.

[51] Khronos OpenCL Working Group (2012), The OpenCL Specification, https://www.khronos.
org/registry/cl/specs/opencl-1.2.pdf.

[52] Khronos OpenCL Working Group (2016), The OpenCL Specification, https://www.khronos.
org/registry/cl/specs/opencl-2.2.pdf.

[53] Lai, A.-C., C. Fide, and B. Falsafi (2001), Dead-block Prediction &Amp; Dead-block Cor-
relating Prefetchers, in Proceedings of the 28th Annual International Symposium on Com-
puter Architecture, ISCA ’01, pp. 144–154, ACM, New York, NY, USA, doi:10.1145/379240.
379259.

[54] Lawrie, D. H., and C. Vora (1982), The Prime Memory System for Array Access, Computers,
IEEE Transactions on, C-31(5), 435–442, doi:10.1109/TC.1982.1676020.

[55] Lee, J., and H. Kim (2012), TAP: A TLP-aware cache management policy for a CPU-GPU
heterogeneous architecture, in IEEE International Symposium on High-Performance Comp
Architecture, pp. 1–12, doi:10.1109/HPCA.2012.6168947.

[56] Lee, M., S. Song, J. Moon, J. Kim, W. Seo, Y. Cho, and S. Ryu (2014), Improving GPGPU
resource utilization through alternative thread block scheduling, in High Performance Com-
puter Architecture (HPCA), 2014 IEEE 20th International Symposium on, pp. 260–271, doi:
10.1109/HPCA.2014.6835937.

98

https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.2.pdf

[57] Li, A., G.-J. van den Braak, A. Kumar, and H. Corporaal (2015), Adaptive and transparent
cache bypassing for GPUs, in Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, p. 17, ACM.

[58] Li, D., M. Rhu, D. Johnson, M. O’Connor, M. Erez, D. Burger, D. Fussell, and S. Red-
der (2015), Priority-based cache allocation in throughput processors, in High Performance
Computer Architecture (HPCA), 2015 IEEE 21st International Symposium on, pp. 89–100,
doi:10.1109/HPCA.2015.7056024.

[59] Liu, H., M. Ferdman, J. Huh, and D. Burger (2008), Cache Bursts: A New Approach for
Eliminating Dead Blocks and Increasing Cache Efficiency, in Proceedings of the 41st Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 41, pp. 222–233, IEEE
Computer Society, Washington, DC, USA, doi:10.1109/MICRO.2008.4771793.

[60] Mekkat, V., A. Holey, P.-C. Yew, and A. Zhai (2013), Managing Shared Last-level Cache in
a Heterogeneous Multicore Processor, in Proceedings of the 22Nd International Conference
on Parallel Architectures and Compilation Techniques, PACT ’13, pp. 225–234, IEEE Press,
Piscataway, NJ, USA.

[61] Meng, J., and K. Skadron (2009), Avoiding cache thrashing due to private data placement in
last-level cache for manycore scaling, in Proceedings of the 2009 IEEE International Con-
ference on Computer Design, ICCD’09, pp. 282–288, IEEE Press, Piscataway, NJ, USA.

[62] Mosegaard, J., and T. S. Sørensen (2005), Real-time deformation of detailed geometry based
on mappings to a less detailed physical simulation on the gpu, in Proceedings of the 11th
Eurographics Conference on Virtual Environments, EGVE’05, pp. 105–111, Eurographics
Association, Aire-la-Ville, Switzerland, Switzerland, doi:10.2312/EGVE/IPT EGVE2005/
105-111.

[63] Narasiman, V., M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu, and Y. N. Patt (2011),
Improving GPU Performance via Large Warps and Two-level Warp Scheduling, in Proceed-
ings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-
44, pp. 308–317, ACM, New York, NY, USA, doi:10.1145/2155620.2155656.

[64] NVIDIA Corporation (2009), NVIDIA Fermi white paper, http://www.nvidia.com/content/
pdf/fermi white papers/nvidia fermi compute architecture whitepaper.pdf.

[65] NVIDIA Corporation (2012), NVIDIA Kepler GK110 white paper, https://www.nvidia.com/
content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf.

[66] NVIDIA Corporation (2015), CUDA C Programming Guide, https://docs.nvidia.com/cuda/
cuda-c-programming-guide/.

[67] Qureshi, M., D. Thompson, and Y. Patt (2005), The V-Way cache: demand-based associa-
tivity via global replacement, in Computer Architecture, 2005. ISCA ’05. Proceedings. 32nd
International Symposium on, pp. 544–555, doi:10.1109/ISCA.2005.52.

99

http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf
https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/

[68] Qureshi, M. K., A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer (2007), Adaptive insertion
policies for high performance caching, in Proceedings of the 34th Annual International Sym-
posium on Computer Architecture, ISCA ’07, pp. 381–391, ACM, New York, NY, USA,
doi:10.1145/1250662.1250709.

[69] Raghavan, R., and J. P. Hayes (1990), On Randomly Interleaved Memories, in Proceedings of
the 1990 ACM/IEEE Conference on Supercomputing, Supercomputing ’90, pp. 49–58, IEEE
Computer Society Press, Los Alamitos, CA, USA.

[70] Rau, B. R. (1991), Pseudo-randomly Interleaved Memory, in Proceedings of the 18th Annual
International Symposium on Computer Architecture, ISCA ’91, pp. 74–83, ACM, New York,
NY, USA, doi:10.1145/115952.115961.

[71] Rivers, J. A., E. S. Tam, G. S. Tyson, E. S. Davidson, and M. Farrens (1998), Utilizing
Reuse Information in Data Cache Management, in Proceedings of the 12th International
Conference on Supercomputing, ICS ’98, pp. 449–456, ACM, New York, NY, USA, doi:
10.1145/277830.277941.

[72] Rogers, T. G., M. O’Connor, and T. M. Aamodt (2012), Cache-Conscious Wavefront
Scheduling, in Proceedings of the 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-45, pp. 72–83, IEEE Computer Society, Washington, DC, USA,
doi:10.1109/MICRO.2012.16.

[73] Rogers, T. G., M. O’Connor, and T. M. Aamodt (2013), Divergence-aware Warp Scheduling,
in Proceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitec-
ture, MICRO-46, pp. 99–110, ACM, New York, NY, USA, doi:10.1145/2540708.2540718.

[74] Roh, L., and W. Najjar (1995), Design of storage hierarchy in multithreaded architectures, in
Microarchitecture, 1995., Proceedings of the 28th Annual International Symposium on, pp.
271–278, doi:10.1109/MICRO.1995.476836.

[75] Ros, A., P. Xekalakis, M. Cintra, M. E. Acacio, and J. M. Garcı́a (2012), ASCIB: Adaptive
Selection of Cache Indexing Bits for Removing Conflict Misses, in Proceedings of the 2012
ACM/IEEE International Symposium on Low Power Electronics and Design, ISLPED ’12,
pp. 51–56, ACM, New York, NY, USA, doi:10.1145/2333660.2333674.

[76] Sethia, A., D. Jamshidi, and S. Mahlke (2015), Mascar: Speeding up GPU warps by reduc-
ing memory pitstops, in High Performance Computer Architecture (HPCA), 2015 IEEE 21st
International Symposium on, pp. 174–185, doi:10.1109/HPCA.2015.7056031.

[77] Seznec, A. (1993), A Case for Two-way Skewed-associative Caches, in Proceedings of the
20th Annual International Symposium on Computer Architecture, ISCA ’93, pp. 169–178,
ACM, New York, NY, USA, doi:10.1145/165123.165152.

[78] Stuart, J. A., and J. D. Owens (2011), Multi-gpu mapreduce on gpu clusters, in Proceedings of
the 2011 IEEE International Parallel & Distributed Processing Symposium, IPDPS ’11, pp.
1068–1079, IEEE Computer Society, Washington, DC, USA, doi:10.1109/IPDPS.2011.102.

100

[79] Ta, T., K. Choo, E. Tan, B. Jang, and E. Choi (2015), Accelerating DynEarthSol3D on tightly
coupled CPUGPU heterogeneous processors, Computers & Geosciences, 79, 27 – 37, doi:
http://dx.doi.org/10.1016/j.cageo.2015.03.003.

[80] Tian, Y., S. Puthoor, J. L. Greathouse, B. M. Beckmann, and D. A. Jiménez (2015), Adaptive
GPU cache bypassing, in Proceedings of the 8th Workshop on General Purpose Processing
using GPUs, pp. 25–35, ACM.

[81] Topham, N., A. González, and J. González (1997), The Design and Performance of a Conflict-
avoiding Cache, in Proceedings of the 30th Annual ACM/IEEE International Symposium on
Microarchitecture, MICRO 30, pp. 71–80, IEEE Computer Society, Washington, DC, USA.

[82] Tor M. Admodt and Wilson W.L. Fung (2014), GPGPUSim 3.x Manual, http://gpgpu-
sim.org/manual/index.php/GPGPU-Sim 3.x Manual.

[83] Trancoso, P., D. Othonos, and A. Artemiou (2009), Data parallel acceleration of decision sup-
port queries using cell/be and gpus, in Proceedings of the 6th ACM Conference on Computing
Frontiers, CF ’09, pp. 117–126, ACM, New York, NY, USA, doi:10.1145/1531743.1531763.

[84] Trapnell, C., and M. C. Schatz (2009), Optimizing Data Intensive GPGPU Computations for
DNA Sequence Alignment, Parallel Comput., 35(8-9), 429–440, doi:10.1016/j.parco.2009.
05.002.

[85] Tyson, G., M. Farrens, J. Matthews, and A. R. Pleszkun (1995), A Modified Approach to
Data Cache Management, in Proceedings of the 28th Annual International Symposium on
Microarchitecture, MICRO 28, pp. 93–103, IEEE Computer Society Press, Los Alamitos,
CA, USA.

[86] Wang, B., Z. Liu, X. Wang, and W. Yu (2015), Eliminating Intra-warp Conflict Misses in
GPU, in Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhi-
bition, DATE ’15, pp. 689–694, EDA Consortium, San Jose, CA, USA.

[87] Wierzbicki, A., N. Leibowitz, M. Ripeanu, and R. Wozniak (2004), Cache Replacement Poli-
cies Revisited: The Case of P2P Traffic.

[88] Wu, C.-J., A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely, Jr., and J. Emer (2011),
Ship: Signature-based hit predictor for high performance caching, in Proceedings of the 44th
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-44, pp. 430–
441, ACM, New York, NY, USA, doi:10.1145/2155620.2155671.

[89] Wu, H., G. Diamos, S. Cadambi, and S. Yalamanchili (2012), Kernel weaver: Automatically
fusing database primitives for efficient gpu computation, in 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 107–118, doi:10.1109/MICRO.2012.19.

[90] Yu, Y., W. Xiao, X. He, H. Guo, Y. Wang, and X. Chen (2015), A Stall-Aware Warp Schedul-
ing for Dynamically Optimizing Thread-level Parallelism in GPGPUs, in Proceedings of the
29th ACM on International Conference on Supercomputing, ICS ’15, pp. 15–24, ACM, New
York, NY, USA, doi:10.1145/2751205.2751234.

101

http://gpgpu-sim.org/manual/index.php/GPGPU-Sim_3.x_Manual
http://gpgpu-sim.org/manual/index.php/GPGPU-Sim_3.x_Manual

[91] Zhang, Z., Z. Zhu, and X. Zhang (2000), A Permutation-based Page Interleaving Scheme to
Reduce Row-buffer Conflicts and Exploit Data Locality, in Proceedings of the 33rd Annual
ACM/IEEE International Symposium on Microarchitecture, MICRO 33, pp. 32–41, ACM,
New York, NY, USA, doi:10.1145/360128.360134.

102

VITA

Education

2016: Ph.D. in Computer Science University of Mississippi, University, MS
2001: M.S. in Electrical Engineering Systems University of Michigan, Ann Arbor, MI
2000: B.S. in EE and CS Handong Global University, Pohang, Korea

Professional Experience

May-Aug 2015: Software engineering intern. Google Inc., Mountain View, CA
May-Aug 2014: Research intern. Samsung Research America, San Jose, CA
2014-2015: Graduate instructor. University of Mississippi, University, MS
2012-2016: Graduate research assistant. University of Mississippi, University, MS
2002-2012: Senior engineer / manager. Samsung Electronics, Suwon, Korea
2000-2001: Graduate research assistant. University of Michigan, Ann Arbor, MI

Publication List

Papers

1. K. Choo, W. Panlener, and B. Jang,
Understanding and optimizing GPU cache memory performance for compute workloads,
Parallel and Distributed Computing (ISPDC), 2014 IEEE 13th International Symposium on,
pages 189-196, IEEE, 2014.

2. T. Ta, K. Choo, E. Tan, B. Jang, and E. Choi,
Accelerating DynEarthSol3D on tightly coupled CPUGPU heterogeneous processors, Com-
puters & Geosciences, vol. 79, pp. 27-37, Jun. 2015.

3. K. Choo, D. Troendle, E. Abdelmageed, and B. Jang,
Contention-Aware Selective Caching to Mitigate Intra-Warp Contention on GPUs, submitted
to IISWC 2016 (from Chapter 4).

4. K. Choo, D. Troendle, E. Abdelmageed, and B. Jang,
Locality-Aware Selective Caching on GPUs, submitted to SBAC-PAD 2016 (from Chap-
ter 5).

5. K. Choo, D. Troendle, E. Abdelmageed, and B. Jang,
Memory request scheduling to promote potential cache hit on GPU, to be submitted (from
Chapter 6).

103

6. D. Troendle, K. Choo, and B. Jang,
Recency Rank Tracking (RRT): A Scalable, Configurable, Low Latency Cache Replace-ment
Policy, to be submitted.

Patents

1. E. Park, J.H. Lee, and K. Choo
Digital transmission system for transmitting additional data and method thereof. US8,891,674,
2014.

2. S. Park, H.J. Jeong, S.J. Park, J.H. Lee, K. Kim, Y.S. Kwon, J.H. Jeong, G. Ryu, K. Choo,
and K.R. Ji
Digital broadcasting transmitter, digital broadcasting receiver, and methods for configuring
and processing a stream for same. US 8,891,465, 2014.

3. G. Ryu, Y.S. Kwon, J.H. Lee, C.S. Park, J. Kim, K. Choo, K.R. Ji, S. Park, and J.H. Kim
Digital broadcast transmitter, digital broadcast receiver, and methods for configuring and
processing streams thereof. US 8,811,304, 2014.

4. J.H. Jeong, H.J. Lee, S.H. Myung, Y.S. Kwon, K.R. Ji, J.H. Lee, C.S. Park, G. Ryu, J. Kim,
and K. Choo
Digital broadcasting transmitter, digital broadcasting receiver, and method for composing
and processing streams thereof. US 8,804,805, 2014.

5. K. Choo and J.H. Lee
OFDM transmitting and receiving systems and methods. US 8,804,477, 2014.

6. Y.S. Kwon, G. Ryu, J.H. Lee, C.S. Park, J. Kim, K. Choo, K.R. Ji, S. Park, J.H. Kim
Digital broadcast transmitter, digital broadcast receiver, and methods for configuring and
processing streams thereof. US 8,798,138, 2014.

7. Y.S. Kwon, G. Ryu, J.H. Lee, C.S. Park, J. Kim, K. Choo, K.R. Ji, S. Park, and J.H. Kim
Digital broadcast transmitter, digital broadcast receiver, and methods for configuring and
processing digital transport streams thereof. US 8,787,220, 2014.

8. G. Ryu, S. Park, J.H. Kim, and K. Choo
Method and apparatus for transmitting broadcast, method and apparatus for receiving broad-
cast. US 8,717,961, 2014.

9. J.H. Lee, K. Choo, K. Ha, H.J. Jeong
Service relay device, service receiver for receiving the relayed service signal, and methods
thereof. US 8,140,008, 2012.

10. E. Park, J. Kim, S.H. Yoon, K. Choo, K. Seok
Trellis encoder and trellis encoding device having the same. US 8,001,451, 2011.

104

Honors and Awards

• Graduate Student Achievement Award, Spring 2016, University of Mississippi

• President of ΥΠE (UPE), CS Honor Society, Fall 2015 - Spring 2016, University of Missis-
sippi Chapter

• Doctoral Dissertation Fellowship Award, Spring 2016, University of Mississippi

• Computer Science SAP Scholarship Award, Spring 2016, University of Mississippi

• UPE Scholarship Award, Fall 2015, ΥΠE (UPE)

• Academic Excellence Award (2nd place in class of 2000), 2000, Handong Global University

• 4-year full Scholarship, 1996 - 2000, Handong Global University

105

	Reducing Cache Contention On Gpus
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	1.1 Research Challenges
	1.2 Research Contribution
	1.3 Organization

	BACKGROUND
	2.1 Summary of Terminology Usage
	2.2 Programming GPUs
	2.3 Abstract of GPU Architecture
	2.4 Warp Scheduling
	2.5 Modern GPU Global Memory Accesses
	2.5.1 Memory Hierarchy
	2.5.2 Memory Access Handling
	2.5.3 Memory Access Characteristics

	CACHE CONTENTION
	3.1 Taxonomy of Memory Access Locality
	3.2 Taxonomy of Cache Contention
	3.2.1 Cache Miss Contention Classification
	3.2.2 Cache Resource Contention Classification

	3.3 Cache Contention Factors
	3.3.1 Limited Cache Resource
	3.3.2 Column-Strided Accesses
	3.3.3 Cache Pollution
	3.3.4 Memory Request Stall

	CONTENTION-AWARE SELECTIVE CACHING
	4.1 Introduction
	4.2 Intra-Warp Cache Contention
	4.2.1 Impact of Memory Access Patterns on Memory Access Coalescing
	4.2.2 Coincident Intra-warp Contention Access Pattern

	4.3 Selective Caching
	4.3.1 Memory Divergence Detection
	4.3.2 Cache Index Calculation
	4.3.3 Locality Degree Calculation

	4.4 Experiment Methodology
	4.4.1 Simulation Setup
	4.4.2 Benchmarks

	4.5 Experimental Results
	4.5.1 Performance Improvement
	4.5.2 Effect of Warp Scheduler
	4.5.3 Cache Associativity sensitivity

	4.6 Related Work
	4.6.1 Cache Bypassing
	4.6.2 Memory Address Randomization

	4.7 Summary

	LOCALITY-AWARE SELECTIVE CACHING
	5.1 Introduction
	5.2 Motivation
	5.2.1 Severe Cache Resource Contention
	5.2.2 Low Cache Line Reuse

	5.3 Locality-Aware Selective Caching
	5.3.1 Reuse Frequency Table Design and Operation
	5.3.2 Threshold Consideration
	5.3.3 Algorithm Features
	5.3.4 Contention-Aware Selective Caching Option

	5.4 Experiment Methodology
	5.4.1 Simulation Setup
	5.4.2 Benchmarks

	5.5 Experimental Results
	5.5.1 Performance Improvement
	5.5.2 Effect of Warp Scheduler
	5.5.3 Effect of Cache Associativity

	5.6 Related Work
	5.6.1 CPU Cache Bypassing
	5.6.2 GPU Cache Bypassing

	5.7 Summary

	MEMORY REQUEST SCHEDULING
	6.1 Introduction
	6.2 Cache Contention
	6.2.1 Memory Request Stall due to Cache Resource Contention

	6.3 Memory Request Scheduling
	6.3.1 Memory Request Queuing and Scheduling
	6.3.2 Queue Depth
	6.3.3 Scheduling Policy
	6.3.4 Contention-Aware Selective Caching Option

	6.4 Experiment Methodology
	6.4.1 Simulation Setup
	6.4.2 Benchmarks

	6.5 Experimental Results
	6.5.1 Design Evaluation
	6.5.2 Performance Improvement
	6.5.3 Effect of Warp Scheduler
	6.5.4 Effect of Cache Associativity

	6.6 Conclusion

	RELATED WORK
	7.1 Cache Bypassing
	7.1.1 CPU Cache Bypassing
	7.1.2 GPU Cache Bypassing

	7.2 Memory Address Randomization
	7.3 Warp Scheduling
	7.4 Warp Throttling
	7.5 Cache Replacement Policy

	CONCLUSION AND FUTURE WORK
	8.1 Conclusion
	8.2 Future Work
	8.2.1 Locality-Aware Scheduling
	8.2.2 Locality-Aware Cache Replacement Policy

	PUBLICATION CONTRIBUTIONS
	BIBLIOGRAPHY
	VITA

