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Abstract

Three alternative theories to General Relativity will be studied. The aim is to test

these theories by applying them to astronomical objects or the cosmological background.

The first one is unimodular relativity. The cosmological perturbation theory of this model

is studied and the predictions on temperature fluctuations of the CMB are found. The

second one is dRGT massive gravity. In this theory a charged black hole solution is found

and compared to those in GR, followed by constraints on the parameter space. The third

one is a general massive gravity theory which shares the same background equation with the

massless case except the evolution equation for the tensor perturbations. The signature of the

graviton mass on the CMB polarization spectrum will be studied. A moderate graviton mass

(comparable to the Hubble rate during recombination) leads to interesting modifications on

the B mode polarization power spectrum. A large graviton mass is found to suppress the

spectrum, therefore a tight constraint on the graviton mass can be found.
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Chapter 1

INTRODUCTION

Current astronomical observations show that the expansion rate of the universe is accel-

erating. This was first discovered in 1998 by the High-z Supernova Search Team and the

Supernova Cosmological Project [86, 88]. To explain this acceleration, General Relativity

(GR) introduces a cosmological constant Λ. This is equivalent to introducing a new matter

or energy with energy-momentum tensor proportional to the metric Tμν = −ρΛgμν , where
ρΛ = Λ

8πG
is the constant energy density. Then any energy of this form will gravitate in the

same way as regular matter, such as dark energy or the vacuum energy from Quantum Field

Theory (QFT). The value of Λ is not set from the GR structure. On one hand, observations

from the supernova search indicate that the acceleration of our universe is consistent with

a positive cosmological constant,

ρΛ = 8.611× 10−30g/cm3. (1.1)

This is from the recent data released by the Planck collaboration [1]. On the other hand,

the estimation from QFT is more than 120 orders of magnitude larger than this experi-

mental bound. Then the question is, why is the vacuum energy so small now? This is the

cosmological constant problem.

Many alternative gravity theories to GR [32], such as f(R) theories in which the scalar

Lagrangian R is generalized to a function f(R) [36], f(T ) theories, which works in the tetrad

framework and the torsion scalar T is generalized to a function f(T ) [64], Galileon gravity,

in which the field Lagrangian is restricted to satisfy the Galilean symmetry in the Minkowski

spacetime [31, 94], have claimed to be able to solve this problem. In these projects I will
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focus on three of these: unimodular relativity, dRGT massive gravity and general massive

gravity.

1.1 Unimodular relativity
Unimodular Relativity (UR) is an alternative theory of gravity first considered by Ein-

stein in 1919 [46] and put into action form by Anderson and Finkelstein in 1991 [50]. The

basic idea is that the determinant of the metric is a fixed density μ(x) and is to be deter-

mined by experiments. Then the field equation of motion will be the trace-free Einstein

field equation. Therefore any energy-momentum of the form Tμν = −ρΛgμν won’t gravitate.

This includes the cosmological constant and the vacuum energy. Although it seems that

there is one less equation than in GR, the full Einstein field equation can be recovered by

integration as long as the continuity equation is satisfied. The cosmological constant appears

as an integration constant, which is determined by initial conditions and is independent of

the vacuum energy. Thus UR avoids the cosmological constant problem. Lots of studies

have been done in both classical ways and quantum ways so far [18, 20, 63, 84, 96, 102].

It is worth to mention that the quantization of UR also resolves the problem of defining a

physically meaningful time with which to measure evolution of quantum states in quantum

cosmology in the absence of a spatial boundary [21, 96, 97]. Classically, since the Einstein

field equation can be recovered from the trace-free Einstein field equation [47], it is widely

accepted that UR is indistinguishable from GR. However, GR is diffeomorphism-invariant

while in UR the diffeomorphism gauge group is broken, and only the unimodular gauge

transformations, those which satisfy gμνδgμν = 0, are allowed. We expect that this may

make them different in the context of cosmological inhomogeneities. The aim of this project

is to test UR by studying the cosmological perturbations.

1.2 dRGT massive gravity
Massive gravity is another way to modify GR by giving the graviton a mass. It was first

initiated in 1939 by Fierz and Pauli (FP) and the corresponding Fierz-Pauli action they

used is given by [49]

L = LEH(h) +m2(hμνh
μν − h2), (1.2)
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where LEH(h) is the linearized Einstein Hilbert action, m is the mass of the graviton and

hμν is the perturbation of the metric, gμν = ημν + hμν with ημν is the Minkowski metric.

Because of the mass term added, the diffeomorphism invariance is broken in this action.

It describes a massive spin-2 graviton with 5 degrees of freedom, 2 tensor modes, 2 vector

modes and 1 scalar mode. It is the unique Lorentz invariant massive gravity theory at linear

order without ghosts [105].

However, it was found in the 1970s that this linearized theory can not be reduced to GR

in the limit of vanishing graviton mass; this is known as the van Dam-Veltman-Zakharov

(vDVZ) discontinuity [104, 110]. Consequently, some observables will show a discontinuity

in the massless limit. For example, the light bending is off by 25 percent from the GR

prediction. As a result, it seems that massive gravity can be easily ruled out by experiments

in our solar system. Later this was traced to the longitudinal mode of the graviton, which is

coupled with the trace of the energy momentum tensor even though the mass goes to zero

[39].

Later Vainshtein found that this troublesome mode can be screened by including non-

linear effects and GR can be recovered within the Vainshtein radius [103], rV = (GM
m4 )

1/5.

Within this radius, non-linearities dominate and predictions of linear theories can not be

trusted. The Vainshtein radius is usually very large and it goes to infinity as m approaches

0. So we can not rule out this theory that easily.

Although non-linear effects cure the discontinuity, the Hamiltonian constraint gets lost

and as a result, the theory has 6 degrees of freedom now instead of 5 as in the original

linear theory. This extra degree of freedom manifests itself as a scalar field with a wrong

sign kinetic term, which is the Boulware-Deser (BD) ghost [22], and this non-linear theory

is thus unstable [3].

In order to avoid the ghost instability and maintain the Vainshtein mechanism, a family

of non-linear ghost-free massive gravity theories was proposed by de Rham, Gabadadze

and Tolley (dRGT) in 2010. The cosmological and black hole solutions of this theory have

been studied very well so far [5, 6, 7, 13, 24, 29, 33, 55, 69, 71, 72, 79, 85, 91, 95, 106].

Although some of the black hole solutions are found to be unstable under perturbations or

3



discharge process [5, 8, 24, 79, 80], however these are model dependent and their background

solutions are exactly the same as GR. In my project, the charge black hole solution has higher

order corrections on the Reissner-Nordstrom black hole solution in GR except one particular

parameter choice. Since the scalar field, which causes the vDVZ discontinuity, is coupled to

the energy momentum, we are expecting that the electromagnetic field may have an effect

on the Vaishtein mechanism. The aim of this project is to find the constraints on dRGT

massive gravity by studying the charged black hole solutions.

1.3 Lorentz breaking massive gravity

Both the FP massive gravity and the dRGT massive gravity are Lorentz invariant in the

Minkowskian background. Although dRGT massive gravity can evade the vDVZ disconti-

nuity by the Vainshtein mechanism, it does not have a spatially flat FRW universe solution,

and the perturbations of open FRW universes are not stable. It was realized that Lorentz

breaking massive gravity theories may soften these problems [89]. Instead of requiring the

full Lorentz invariance, only rotational invariance is preserved. Depending on the parameter

choice, the minimum modification to GR would be that they share the same background

evolution equation with GR as well as the evolution of scalar and vector perturbations, the

only modification is the tensor mode whose dispersion relation takes the form ω2 = k2+m2
g.

Therefore the speed of gravitational waves, which is less than speed of light, depends on

the graviton mass. This will lead to different observations for supernovae, inspiralling com-

pact binaries and the cosmic microwave background from those in GR. Hence, constraints

on graviton mass can be found by observing the behavior of gravitational waves in these

systems [14, 15, 19, 24, 30, 51, 73, 78, 98, 99, 108, 109]. In this project we will study the

effect of graviton mass on CMB power spectra.
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Chapter 2

PROJECT I: COSMOLOGICAL PERTURBATIONS

OF UNIMODULAR RELATIVITY

2.1 The action form of unimodular relativity

We take the action proposed by Anderson and Finkelstein [50]

S =

∫
d4x

√−g
[

1

16πG
R +

1

16πG
χ
(
1− μ(x)√−g

)
+ Lm

]
, (2.1)

where G is the gravitational constant, R is the Ricci scalar of the physical metric gμν , Lm

is the Lagrangian for matter fields, χ is a Lagrangian multiplier and μ(x) is a fixed scalar

density.

The variation with respect to χ gives a constraint on the metric:

√−g = μ(x). (2.2)

The variation with respect to the metric gives the field equation

Rμν − R

2
gμν − χ

2
gμν = 8πGTμν , (2.3)

where Tμν is the energy-momentum tensor for matter, defined as Tμν ≡ − δ(
√−gLm)√−gδgμν , which is

the same as that in GR.

Taking the trace of (2.3) gives the Lagrange multiplier:

χ = −1

2

(
R + 8πGT

)
, (2.4)

5



where T ≡ T μ
μ is the trace of the energy momentum tensor. Substituting the above equation

into (2.3), we obtain the trace-free Einstein field equation

Ĝμν = 8πGT̂μν , (2.5)

with

Ĝμν := Rμν − R

4
gμν , T̂μν := Tμν − T

4
gμν . (2.6)

The covariant divergence of (2.5) is

∇μT
μν =

1

4
gμν∇μ(R +Mp

−2 T ) = −1

2
gμν∇μχ, (2.7)

where the Bianchi identity has been applied. Therefore, the energy-momentum conservation

equation,∇μT
μν = 0, is not an identity in unimodular relativity. However, this condition

is always satisfied by the virtue of the field equation for matter that we know now. Then

in unimodular relativity this condition has to be imposed as an assumption. If we follow

this assumption, then the undetermined multiplier χ can be identified with a cosmological

constant Λ. Therefore the Einstein field equation is recovered [47, 107]

Rμν − 1

2
gμνR− Λgμν = 8πGTμν . (2.8)

In the next two sections, we will first consider a universe filled with a single scalar field,

then do a similar analysis for a universe filled with hydrodynamical matter.

2.2 Cosmological perturbation with a scalar field
On one hand, inflation provides a mechanism for producing the primordial density per-

turbations and predicts a scale-invariant anisotropy of the Cosmic Microwave Background

(CMB), which agrees well with current observations. The simplest inflationary model is

driven by a single scalar field, and this is also the preferred model according to the Planck

collaboration data [1]. On the other hand, at very high energy, we expect that matter will

6



be described in terms of fields. Therefore in this chapter we will work out the cosmological

perturbations for a single scalar field ϕ, with Lagrangian given by

Lm =
1

2
∇μϕ∇μϕ− V (ϕ) , (2.9)

with V being the field potential. The corresponding equation of motion is the Klein-Gordon

equation:

∇μ∇μϕ+ V,ϕ = 0 , (2.10)

where V,ϕ denotes the derivative of the scalar field potential with respect to ϕ.

2.2.1 FRW Background

We choose the background metric to be the Friedmann-Robertson-Walker (FRW) metric,

ds2 = dt2 − a2(t)γijdx
idxj = a2(η)(dη2 − γijdx

idxj), (2.11)

where η is the conformal time dη = a−1dt, xi are the comoving spatial coordinates and

γij = δij[1+
1
4
k(x2+y2+z2)]−2 with k = 0, 1,−1 depending on whether the three-dimensional

space is flat, closed or open. In the following, we will just focus on the flat case since it is

easy to extend the analysis to the general case.

In this chapter instead of starting with the Einstein field equation, we will start with the

trace-free field equation (2.5). On the FRW background, there are two equations including

the scalar field equation,

H2 −H′ = 4πGϕ′2, (2.12)

ϕ′′ + 2Hϕ′ + a2V,ϕ = 0, (2.13)

where H = a′/a using conformal time. In contrast, GR has one more equation,

H′ + 2H2 = 8πGa2V (ϕ). (2.14)

7



However, it can be proved directly by integration that the first two equations imply the

third one. Therefore, on the FRW background the field equations in UR are equivalent to

those in GR.

2.2.2 Scalar perturbations

A general metric perturbation can be categorized into three types: scalar, vector and

tensor perturbations [76]. This refers to the way they transform under three-space coordi-

nate transformations on the constant time hypersurface. Vector perturbations decay in an

expanding universe whereas tensor perturbations lead to gravitational waves. Scalar pertur-

bations may lead to growing inhomogeneities and play important roles on the dynamics of

matter [16]. Therefore in this project we only consider the scalar metric perturbations [82],

ds2 = a2(η)
[
(1 + 2φ)dt2 − 2B;idx

idη − ((1− 2ψ)γij + 2E;ij)dx
idxj

]
, (2.15)

where the semicolon denotes the three-dimensional covariant derivative. The scalar metric

fluctuations are characterized by four functions φ, ψ, B, E which depend on both space and

time.

The perturbation of the scalar field is given by ϕ = ϕ(t) + δϕ(t, xi). Here we assume an

isotropic background. The perturbed Einstein equation for unimodular relativity is derived

from the field equation 2.5 and takes the form

δĜμ
ν = 8πGδT̂ μ

ν . (2.16)

From the above equations and the perturbed metric, the non-vanishing perturbed equa-

tions of motion are given by the following,

ψ′′ +H(φ− ψ)′ +
1

3
∇2[φ+ 2ψ −H(B − E ′) + (B − E ′)′] = 8πGϕ′δϕ′, (2.17)

ψ′′ +H(φ− ψ)′ +∇2[φ+H(B − E ′) + (B − E ′)′]− 2D,ii = 8πGϕ′δϕ′, (2.18)

(ψ′ +Hφ);i = 4πGϕ′δϕ;i, (2.19)

D;ij = 0, (2.20)
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where D = φ−ψ+2H(B−E ′)+B′−E ′′ and ∇2 is the Laplacian operator on the constant

time hypersurface. The above perturbation equations correspond to the (00), (ii), (0i) and

(ij) (off diagonal) components, respectively. One can see that the potential of the scalar

field does not show up in the metric equations, as it does in GR, so it may seem that the

potential does not have any effect on the geometry. However, this is not true. From the

perturbed Klein-Gordon equation:

δϕ′′ + 2Hδϕ′ −∇2δϕ+ a2V,ϕϕδϕ− ϕ′(φ+ 3ψ)′

+ 2a2V,ϕφ− ϕ′∇2(B − E ′) = 0, (2.21)

we can see that the potential will influence the geometry through the scalar field equation.

With respect to GR, there is an extra constraint for UR due to the fixed determinant of

the metric, gμνδgμν = 0,

∇2E + φ− 3ψ = 0. (2.22)

As we will find later, this constraint is actually very strong on the perturbations.

2.2.3 Gauge freedom

Since we are only considering the scalar metric perturbations now, we will just focus on

those diffeomorphisms which preserve the scalar nature of the metric fluctuations. The most

general ones can be described by two functions ξ0 and ξ,

η → η̃ = η + ξ0(η, �x), xi → x̃i = xi + γijξ,j(η, �x) .

In GR, the gauge group is the diffeomorphism group, and ξ0 and ξ are independent func-

tions. However, in unimodular gravity, since only the unimodular gauge transformations are

allowed, the two parameters are related to each other 2.22,

∇2ξ + ξ0′ + 4Hξ0 = 0. (2.23)
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To fix a gauge, this condition has to be satisfied. This transformation induces a change in

the metric variables, the new perturbations being given by

φ̃ = φ− (a′/a)ξ0 − ξ0′, ψ̃ = ψ + (a′/a)ξ0,

B̃ = B + ξ0 − ξ′, Ẽ = E − ξ. (2.24)

Neither δĜμ
ν nor δT̂ μ

ν are gauge-invariant. It turns out that they transform in the same

manner. We will just list the transformation laws for one of them here,

δĜ0
0 → δĜ0

0 − ((0)Ĝ0
0)

′ξ0,

δĜ0
i → δĜ0

i −
(
(0)Ĝ0

0 −
1

3
(0)Ĝk

k

)
ξ0,i,

δĜi
j → δĜi

j − ((0)Ĝi
j)

′ξ0. (2.25)

However, we can always choose gauge-invariant variables. There are many ways to do this.

For the metric perturbations, the simplest choice would be to introduce

Φ = φ+ (1/a)[(B − E ′)a]′, Ψ = ψ − (a′/a)(B − E ′),

while for the gauge-invariant variables δĜ
(gi)α
β we will choose

δĜ
(gi)0
0 = δĜ0

0 + ((0)Ĝ0
0)

′(B − E ′)

δĜ
(gi)0
i = δĜ0

i + ((0)Ĝ0
0 −

1

3
(0)Ĝk

k)(B − E ′),i

δĜ
(gi)i
j = δĜi

j + ((0)Ĝi
j)

′(B − E ′). (2.26)

Analogously, for δT̂ μ
ν we can choose similar forms. These are obtained according to their

transformation forms under gauge. By using the above gauge-invariant variables, we obtain
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the gauge-invariant equations for cosmological perturbations,

Ψ′′ +H(Φ′ −Ψ′) +
1

3
∇2(Φ + 2Ψ) = 8πGϕ′δϕ(gi)′,

Ψ′′ +H(Φ′ −Ψ′) +∇2Φ− 2(Φ−Ψ),ii = 8πGϕ′δϕ(gi)′,

(HΦ +Ψ′),i = 4πGϕ′δϕ(gi)
,i ,

(Φ−Ψ),ij = 0, (2.27)

where δϕ(gi) = δϕ+ ϕ′(B −E ′). It follows from the off-diagonal element that Φ = Ψ. Then

the remaining equations are simplified as:

Φ′′ +∇2Φ = 8πGϕ′δϕ(gi)′,

HΦ + Φ′ = 4πGϕ′δϕ(gi),

∇2E − 2Φ− 4H(B − E ′)− (B′ − E ′′) = 0, (2.28)

where the third one is the constraint from the determinant. For the first two equations

above, there are no B and E terms involved, and they are essentially the same as two of the

equations from GR, which has 3 equations. Although it looks like GR has one more equation,

only two of them are actually independent. Consequently, the form of the gauge-invariant

perturbations is the same as that in GR. We can see this in more detail by the following.

Using the second equation above to express δϕ(gi) in terms of Φ′ and Φ, substituting it

into the first one, we obtain a second-order partial differential equation for Φ, which can be

written as

Φ′′ + 2
(
H− ϕ′′

ϕ′

)
Φ′ −∇2Φ + 2

(
H′ −Hϕ′′

ϕ′

)
Φ = 0. (2.29)

As in GR, we introduce a gauge-invariant quantity ζ defined by [9, 82]

ζ =
2

3

Φ̇
H
+ Φ

1 + ω
+ Φ, ω =

p

ρ
. (2.30)
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This quantity is conserved for wavelengths far outside the Hubble radius, for which ∇2Φ

can be neglected, since

3

2
ζ̇H(1 + ω) = Φ̈ +

(
H − 2

ϕ̈

ϕ̇

)
Φ̇ + 2(Ḣ −H

ϕ̈

ϕ̇
)Φ, (2.31)

where the right-hand side is the equation (2.29) in terms of physical time neglecting ∇2Φ.

ζ plays an important role in cosmological perturbations. It will be used to estimate the

density perturbation, with which the temperature fluctuation on CMB will be derived.

The equation of motion for the scalar field perturbation δϕ(gi) is derived from the 1st

order perturbation of the scalar field equation and is given by

δϕ(gi)′′ + 2Hδϕ(gi)′ −∇2δϕ(gi) + V,ϕϕa
2δϕ(gi) − 4ϕ′Φ′ + 2V,ϕa

2Φ = 0. (2.32)

In GR, two gauge choices are particularly favored. One is the synchronous gauge, in

which B = 0 and φ = 0. The other is the longitudinal gauge, in which B = 0 and E = 0.

Due to the extra constraint neither of them is allowed in unimodular relativity. However, we

can still apply either B = 0 or B = E ′. This won’t change the solution of the second-order

partial differential equation for Φ and only affects this relationship between B, E and Φ as

in the constraint. If we apply B = E ′, the constraint will be

∇2E = 2Φ.

If we only apply B = 0, we obtain

∇2E + 4HE ′ + E ′′ = 2Φ.

We can see from these equations that Φ is the source of the scalar E. We can also apply

E = 0, in which case the constraint reduces to

2Φ + 4HB +B′ = 0, (2.33)
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and from Φ = Ψ = ψ −HB = φ+HB +B′, one obtains

φ = 3ψ. (2.34)

For large wavelengths with constant equation of state, Φ is constant. We can rewrite (2.2.3)

as

(a4B)′ = −a4Φ. (2.35)

In the case of constant Φ and matter-dominated universe, the above equation can be solved

as

B(x, y, z, η) = −Φ

9
η +

C

η8
, (2.36)

where C is an integration constant. Since the second term decays quickly, we can approxi-

mate B(x, y, z, η) with only the first term, making it linear in time as the universe expands.

This may have a significant effect on the cosmic microwave background (CMB).

2.3 Cosmological perturbation with hydrodynamical matter

According to the inflation scenario, the universe experienced a period of exponential

expansion at early times. After that, the expansion was first dominated by radiation, and

a matter-dominated era followed. In this chapter we study the cosmological perturbations

with conventional hydrodynamical matter.

2.3.1 FRW background

In the following, we will consider a perfect fluid for which the energy-momentum tensor

can be written in terms of only three functions, the energy density ε, pressure P and fluid

four-velocity uα,

T α
β = (ε+ p)uαuβ − pδαβ . (2.37)

If we choose the background metric to be the FRW metric, there is only one equation of

motion in UR 2.5, given by

H2 −H′ = 4πG(ε+ p)a2. (2.38)
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The conservation of energy gives the second equation,

ε′ + 3H(ε+ p) = 0. (2.39)

If we multiply by 6H on both sides of (2.38) and combine with (2.39), we obtain

3
(H2

a2

)′
= 8πGε′, (2.40)

which can be integrated with an arbitrary integration constant. This constant can be fixed

using the current measurement of the acceleration of the universe. At this moment, we

will choose the value of this constant to be 0, since it is very small. Then we get a second

equation of motion

3H2 = 8πGa2ε. (2.41)

Again, the trace-free Einstein equation together with the energy conservation equation is

equivalent to the Einstein field equation. Therefore, on the FRW background, UG will make

the same prediction as GR.

2.3.2 Scalar perturbations

Considering only scalar metric perturbations as in the metric, the perturbed stress-energy

tensor has the form

δT μ
ν =

⎛
⎝ δε −(ε+ p)a−1ui

(ε+ p)aui −δpδij

⎞
⎠ ,

where δε and δp are the perturbed energy density and pressure, respectively.

As proved in the 1st section, the Einstein field equation can be recovered by the trace-free

Einstein field equation combined with the continuity equation. This has been verified by a

universe filled by a single scalar field, as well as a perfect fluid on the FRW background.

For the perturbation of perfect fluid, we will assume that the continuity equation still holds.

Therefore the field equation will be the same as that in GR with one extra constraint due
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to the unimodular condition. I will just cite the results from [82],

∇2Φ− 3HΦ′ − 3H2Φ = 4πGa2δε(gi),

(aΦ)′,i = 4πGa2(ε0 + p0)δu
(gi)i,

Φ′′ + 3HΦ′ + (2H′ +H2)Φ = 4πGa2δp(gi), (2.42)

where δε(gi) = δε+ ε′0(B −E ′), δp(gi) = δp+ p′0(B −E ′) and δu(gi)i = δui + a(B −E ′),i, and

other parameters have the same definition as those in section 2. The constraint due to UR

2.22 is given by

∇2E − 2Φ− 4H(B − E ′)− (B′ − E ′′) = 0. (2.43)

Therefore, the gauge-invariant quantity ζ will still be conserved at large wavelengths since

it is derived only from the field equations.

2.4 Cosmic Microwave Background Anisotropies
At the beginning of the matter-dominated era, the universe was full of ionized plasma

which was strongly coupled with radiation. The temperature was still very high. Thus the

mean free path of photons was very short until the time of recombination, at which the

protons and electrons combined to form neutral atoms. After that, photons moved freely as

the universe expanded. The currently observed CMB are these photons that have escaped

since recombination. Since we are looking further and further back in time, we can view the

observation of CMB photons as imaging a uniform “surface of last scattering” at a redshift

of 1100, which is highly homogeneous and isotropic with temperature 2.72548± 0.00057K.

The anisotropy has been observed at a level of δT
T

� 10−5. Current observation has reached

a sensitivity of 10−6 [1]. The observational upper bounds of these anisotropies in the CMB

provide strong constraints on the spectrum of metric perturbations.

There are three main contributions to the temperature anisotropies of the CMB. First,

any peculiar velocity of the observer or the atom emitting photons at recombination gives rise

to the Doppler temperature variations. Secondly, the density perturbation for the photons

between emission and observation induces temperature fluctuations. Thirdly, the density
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perturbation at the time of recombination induces temperature fluctuations too. The sim-

plest contribution to the temperature anisotropy from density fluctuations is a gravitational

redshift, known as Sachs-Wolfe effect [90]. The prediction of this effect from GR is given by

δT

T
=

1

3
Φem, (2.44)

where Φem is the scalar metric perturbation at the time of emission. The purpose of this

section is to derive the expression for temperature fluctuations in the framework of UR.

Similarly as in GR, we will apply the approximation of instantaneous recombination in

which radiation behaves as an imperfect fluid before recombination, and as an ensemble of

free photons immediately afterwards. Therefore, by matching the energy- momentum tensor

before and after recombination, we find the relationship between energy density fluctuations

and temperature anisotropy.

2.4.1 Before recombination: Baryon-radiation plasma

Before recombination, baryons and radiation are strongly coupled and can be treated as

a single imperfect fluid. The energy-momentum tensor is given by [81]

T α
β = (ε+ p)uαuβ − p δαβ − η

(
Pα
γ uβ

;γ + P γ
β u

α
;γ − 2

3
Pα
β u

γ
;γ

)
, (2.45)

where η is the shear viscosity coefficient and Pα
β = δαβ − uαuβ is the spatial projection

operator. The energy-momentum tensor is conserved and the 0 component is given by using

the perturbed metric at the linear order,

δε′ + 3H(δε+ δp)− 3(ε+ p)ψ′ + a(ε+ p)ui,i −
2ηH∇2B

a
= 0. (2.46)

Note that φ does not appear and the shear viscosity appears if we keep B(x, y, z, t) in the

metric. For long wavelengths this term can be still neglected, while for short wavelengths it

can not be neglected. If we consider long wavelengths, when the baryons are nonrelativistic,

this energy conservation law is valid for both baryons and radiation separately. In this case
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for the perturbation in the radiation component we obtain

(δγ − 4ψ)′ +
4

3
aui,i = 0, (2.47)

where the fractional radiation density perturbation is defined as δγ := δεγ
εγ
. For the (0i)

components of the energy-momentum tensor

T i
0 = a(ε+ p)ui − ηHB,i

a
, (2.48)

where again the shear viscosity appears with B(x, y, z, t). Considering the divergence of this

term for long wavelength, we obtain

T i
0,i =

4

3
εγu0u

i
,i = (4ψ − δγ)

′εγ, (2.49)

where (2.47) has been used.

2.4.2 After recombination: Ensemble of free photons

During the time of recombination, as more and more hydrogen atoms are formed and

the temperature drops, photons cease interactions with matter and we consider them as

noninteracting identical particles described by kinetic equations. Therefore the distribution

function f , characterizing the number density in one-particle phase space, is defined by

dN = f(xi, pj, t)d
3xd3p, (2.50)

where the position of the particle is given by xi(η) and its 3-momentum is pj(η). For

noninteracting particles the distribution function obeys the collisionless Boltzmann equation

Df(xi(η), pi(η), η)

Dη
≡ ∂f

∂η
+

dxi

dη

∂f

∂xi
+

dpi
dη

∂f

∂pi
= 0, (2.51)

where dxi/dη and dpi/dη are the derivatives calculated along the geodesics.

For an observer with 4-velocity uα in an arbitrary coordinate system and a photon with 4-
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momentum pα, the frequency of this photon measured by the observer is given by ω = pαu
α.

If the radiation coming to an observer from different directions

li ≡ − pi
Σp2i

(2.52)

has Planckian spectrum, then the distribution function is

f = f(
ω

T
) ≡ 2

exp(ω/T (xα, li))− 1
, (2.53)

which depends not only on the direction li but also on the observer’s location xα and on the

moment of time η. In a nearly isotropic universe, the temperature can be written as

T (xα, li) = T0(η) + δT (xα, li), (2.54)

where δT � T0.

2.4.3 Boltzmann equation

By solving the Boltzmann equation for freely propagating radiation we can find the

relationship between the temperature fluctuation and metric perturbations. In GR this is

given by δT
T

= 1
3
Φ. We expect that Unimodular relativity would predict a modification on

this equation. In the folloing we work in the E = 0 gauge. Thus the metric perturbations

of scalar type involve only φ, ψ and B,

ds2 = a2(η)
[
(1 + 2φ)dt2 − 2B,idx

idη − (1− 2ψ)γijdx
idxj

]
. (2.55)

We start with the geodesic equations for radiation in arbitrary curved spacetime,

dxα

dλ
= pα,

dpα
dλ

=
1

2

∂gγδ
∂xα

pγpδ, (2.56)

where λ is an affine parameter along the geodesic. For photons we have pαpα = 0 since

they have zero mass. Using this relation, up to first order in the metric perturbations, one
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obtains

p0 =
(Σp2i )

1/2

a2
(1 + ψ − φ) =

p

a2
(1 + ψ − φ),

p0 = p (1 + ψ + φ)− B,i pi. (2.57)

Then from (2.56), we find that

dxi

dη
=
pi

p0
= li (1 + φ+ ψ) +

p0B,i

p
,

dpα
dη

=
1

2

∂gγδ
∂xα

pγpδ

p0
= p (ψ,i + φ,i) + pj B,ji, (2.58)

and the Boltzmann equation takes the form

∂f

∂η
+
[
li (1 + φ+ ψ) +

p0B,i

p

] ∂f
∂xi

+
[
p (ψ,i + φ,i) + pj B,ji

] ∂f
∂pi

= 0. (2.59)

f is a function of the single variable

y ≡ ω

T
=

p0
T
√
g00

� 1

T0a
[p(1 + ψ − δT

T0
)− B,ipi]. (2.60)

The Boltzmann equation to zeroth order in the perturbations reduces to

(T0a)
′ = 0, (2.61)

and to first order becomes

(
∂

∂η
+ li

∂

∂xi
)(φ+

δT

T0
+ ljB,j) =

∂

∂η
(φ+ ψ). (2.62)

The zeroth order equation tells us that the temperature is inversely proportional to the scale

factor in a homogeneous universe. The linear order determines the temperature fluctuation

of the microwave background. After recombination, the universe is matter-dominated. If

we write down the right-hand side with the gauge invariant variables, φ + ψ = 2Φ − B′,
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combined with (2.36), then the right-hand side vanishes, while the left-hand side is a total

time derivative. Consequently, we obtain

(φ+
δT

T0
+ ljB,j) = C (2.63)

along null geodesics, where C represents a constant. Compared to the traditional Sachs-

Wolfe effect, we note that B also contributes to the microwave background fluctuations.

2.4.4 Initial conditions

Consider again the geodesics of photons arriving from direction li seen by an observer at

the present time η0 located at xi0. Using equation (2.58), one obtains

xi(η) � xi0 + li(η − η0). (2.64)

Then the temperature fluctuation δT/T in the direction li on the sky today is given by

δT

T
(η0, x

i
0, l

i) =
δT

T
(ηr, x

i(ηr), l
i) + φ(ηr, x

i(ηr))

+liB,i(ηr, x
i(ηr))− liB,i(η0, x

i
0)− φ(η0, x

i
0), (2.65)

where ηr is the conformal time of recombination and xi(ηr) is given by (2.64). Since we

are interested in the li dependence of the temperature fluctuation, and the last term only

contributes to the monopole component, we will neglect it in the future. Therefore, the

angular dependence of (δT/T )0 is determined by 3 factors: (1) the initial temperature

fluctuations on the last scattering surface; (2) the value of the metric perturbation in the

(00) component; (3) the value of the metric perturbation in the (0i) component in the

direction of li.

For the first contribution, (δT/T )r, we can express it in terms of the metric perturbations

and the fluctuation of the photon energy density δγ ≡ δεγ/εγ on the last scattering surface.

To arrive at this result, we will use matching conditions for the hydrodynamic energy-

momentum tensor, which describes the radiation before decoupling, and the kinetic energy-
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momentum tensor, which characterizes the gas of free photons after decoupling,

T α
β =

1√−g
∫
f
pαpβ
p0

d3p. (2.66)

Substituting the perturbed metric into the above equation and assuming a Planckian distri-

bution, we get the (00) component of the kinetic energy-momentum tensor

T 0
0 � 1

a4(1 + φ− 3ψ)

∫
f(
ω

T
)p0d

3p

� T 4
0 (1 + 4

δT

T0
− 2liB,i)

∫
f(y)y3dyd2l, (2.67)

where y ≡ ω/T . The integration over y can be done straightforwardly and the result

combined with 4πT 4
0 represents the energy density of the photon gas after combination.

This expression should continuously match the (00) component of the hydrodynamic energy-

momentum tensor which characterizes radiation before combination: T 0
0 = εγ(1 + δγ). The

matching condition implies

δγ =

∫ (
4
δT

T
− 2liB,i

)d2l

4π
. (2.68)

Similarly, one can derive from (2.66) that the other components of the kinetic energy-

momentum tensor are:

T i
0 � εγ

∫
(4li

δT

T
− 2liljB,j − B,i)

d2l

4π
. (2.69)

Taking the divergence of this term and comparing it to the divergence of the hydrodynamical

energy-momentum tensor for radiation before recombination, which is given by (2.49), we

get the second matching condition

δ′γ =

∫
[2li∇iB,jl

j +∇iB,i − 4li∇i(
δT

T
)]
d2l

4π
, (2.70)

where we have neglected the radiation contribution to the gravitational potential and there-

fore set φ′(ηr) = 0.

To satisfy both (2.68) and (2.70), we find that the spatial Fourier component of the
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temperature fluctuations should be related to the energy density inhomogeneities in the

radiation and metric perturbations as

(
δT

T
)k(l, ηr)

=
1

4
δk +

1

4

3 i

k2
(kml

m)δ′k +
1

2
(lmkm)Bk(l, ηr), (2.71)

where δk is the Fourier component of δγ. Substitute the above equation in the Fourier

expansion of (2.65), we obtain the final expression for the temperature fluctuations in the

direction l ≡ (l1, l2, l3) as observed at location x0 ≡ (x1, x2, x3):

δT

T
(η0,x0, l) =

∫ [
(φ+

3

2
(lmkm)B +

δ

4
)k − 3 δ′k

4k2
∂

∂η0

]
ηr
eik·(x0+l(ηr−η0))

d3k

(2π)3/2

−liB,i(η0, x
i
0), (2.72)

where k ≡ |k|, k·l ≡ kml
m and k·x0 ≡ knx

n
0 . The first term in square brackets represents the

combined result from the initial inhomogeneities in the radiation energy density itself and the

Sachs-Wolfe effect, the second term is related to the velocities of the baryon-radiation plasma

at recombination. The last term shows the effect of present value of B in the perturbed

metric. As we can see that for large-scale perturbations, the effect can be neglected. The

main source of temperature fluctuations is determined by the energy density perturbation

of the radiation.

The density fluctuations of radiation are related to the gravitational potential ψ through

Eq.(2.47). We neglect the velocity term in (2.47), which is a good approximation in the

long-wavelength regime, and then integrate this equation to arrive at the following relation:

δγ − 4ψ = C , (2.73)

where C is an integration constant to be determined. Consider the universe during the

radiation domination epoch. The gravitational potential stays constant on super Hubble

scales and hence its value is inherited from the primordial era (such as the one generated
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during inflation or an early universe period in one of the alternatives to inflation1). If the

fluctuations are purely adiabatic, then the first term in the first equation of 2.42 can be

neglected, the second term can also be neglected during this era for supper Hubble scales,

therefore we arrive at

δ(gi)γ 	 −2Φ(τ � τeq) ≡ −2Φin , (2.74)

where the subscript “in” refers to some moment in the early universe before the time of last

scattering. We thus see that the radiation density fluctuation is given by the gravitational

potential. If we choose the gauge E = 0, then we can use the relation for the gauge variant

potential Φ = ψ − HB, together with δ
(gi)
γ = δγ − 4HB . Then, we can determine the

integration constant C with the result

C = −6Φin . (2.75)

Note that if the B term were already important in either the primordial era or the radiation-

dominated phase, the above coefficient would obtain an extra contribution, and correspond-

ingly the modification to the SW effect could be even more significant.

After the moment of matter-radiation equality, the cold matter becomes dominant and

the equation of state of matter changes. The leads to a change in the value of the gravita-

tional potential Φ on large scales by a factor of 9/10 (this comes from the conservation of

ζ, see (2.30)). Afterwards Φ remains constant and so we have,

Φ(τ 
 τeq) 	 9

10
Φin . (2.76)

By solving the unimodular constraint equation for B during the period of radiation domi-

nation, we find that, when the universe evolves to the recombination, Eq. (2.73) yields

δγ(τrec) = C + 4ψ(τrec)

	 −8

3
ψ(τrec) + 4H(τrec)B(τrec) . (2.77)

1See e.g. [23] for a recent review of some alternatives to inflation.
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Substituting the above expression into Eq.(2.72), and then applying the approximation

that δ′k 	 0 on large length scales during the radiation-dominated phase, we obtain the

following formula for the resulting temperature fluctuations

δT

T
(τ0,x0, l

i) 	 1

3
Φ(τrec,x0 − lτ0) + ΔUG , (2.78)

in terms of the gauge invariant variable Φ. The first term on the right-hand side of the

above expression corresponds to the result obtained in GR, which says that the amplitude

of temperature fluctuations is given by one third of the gravitational potential on the last

scattering surface from which the photons were produced. The second term is the correction

term which appears in unimodular gravity and which is a consequence of the non-vanishing

quantity B. It takes the form

ΔUG =

∫
d3k

(2π)3/2

[
− (

3

4
(k · l)Bk

]
τrec

× eik·(x0+l(τrec−τ0)) . (2.79)

We find that the effect of including the shift B on large scales is only dipole like terms.

The prediction from unimodular gravity on CMB is then indistinguishable on these scales

from that from GR based on current measurements. We have neglected the contribution

of radiation to the gravitational potential at recombination and the integrated SW effect,

which may lead to important observational signatures.

2.5 Conclusion

In this project, we have studied whether unimodular gravity can be distinguished from

GR at the level of cosmological inhomogeneities. We have developed the theory of cosmo-

logical perturbations for unimodular gravity, with particular emphasis on the gauge freedom

of metric perturbations of scalar type under the group of unimodular coordinate transfor-

mations. Our results show that the equation of motion for the gravitational potential is

unchanged compared with the result in GR. However, there exists another metric pertur-
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bation variable which cannot be set to zero in unimodular gravity, unlike the situation in

GR. This is a consequence of the reduced gauge symmetry. On the other hand, the new

constraint equation relates this variable to the gravitational potential such that it is not

an independent dynamical entity. This variable corresponds to the shift in the perturbed

metric, and its value grows in an expanding universe.

We have generalized the Sachs-Wolfe (SW) analysis of the relation between gravitational

potential and CMB anisotropies to the case of unimodular gravity. Our results show that the

extra metric variable leads both to a modification of the gravitational potential contribution

to the CMB anisotropies, and also to a change in the geodesics of light between recombina-

tion and the present time. Assuming adiabatic fluctuations, we have shown that on large

length scales the relationship between the amplitude of the predicted CMB anisotropies and

the amplitude of the gravitational potential differs from the result obtained in GR only by

a dipole-like term which is suppressed on large scales. This result was derived under the

conservative assumption of neglecting any contribution of the shift during the primordial

period before recombination. Since the observational bounds on the difference of the pre-

dictions from those obtained in GR are tight, it is worthwhile to revisit our conservative

assumptions.
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Chapter 3

PROJECT II: CHARGED BLACK HOLES IN DRGT

MASSIVE GRAVITY

3.1 dRGT massive gravity
In order to avoid the ghost instability and maintain the Vainshtein mechanism, a family

of non-linear ghost-free massive gravity theories was proposed by de Rham, Gabadadze and

Tolley (dRGT) in 2010. The corresponding action [38, 40] is given by

S =

∫
d4x

√−g 1

16πG

[
R +m2U(g, φa)

]
+ Smatter (3.1)

where R is the Ricci scalar, and U is a potential for the graviton which modifies the gravi-

tational sector. Specifically, U is given by

U(g, φa) = U2 + α3U3 + α4U4 , (3.2)

in which α3 and α4 are dimensionless parameters. Moreover, by introducing Kμ
ν = δμν −√

gμσηab∂σφa∂νφb and K2μ
ν = Kμ

αK
α
ν , U2, U3 and U4 are defined as

U2 ≡ [K]2 − [K2] , (3.3)

U3 ≡ [K]3 − 3[K][K2] + 2[K3] , (3.4)

U4 ≡ [K]4 − 6[K]2[K2] + 8[K][K3] + 3[K2]2 − 6[K4], (3.5)

where the square brackets denote the traces, namely [K] = Kμ
μ. The action is invariant

under coordinate transformations xμ → xμ + εμ provided πμ transforms as πμ → πμ + εμ.
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This action is proved to be ghost-free, at least in the decoupling limit [58, 41]. No higher

order terms can be added without introducing the BD ghost [59]. For later convenience, we

introduce two new parameters, α and β, as α3 =
α−1
3
, α4 =

β
2
+ 1−α

12
.

Varying the action with respect to gμν leads to the modified Einstein equation:

Gμν +m2Xμν = 8πGTμν , (3.6)

where Xμν arises from the graviton potential [13]

Xμν = Kμν −Kgμν − α

{
K2

μν −KKμν +
[K]2 − [K2]

2
gμν

}

+6β

{
K3

μν −KK2
μν +

1

2
Kμν

{
[K]2 − [K2]

}}

−βgμν
{
[K]3 − 3[K][K2] + 2[K3]

}
, (3.7)

and Tμν is the stress-energy momentum obtained from Smatter. In addition to the generalized

Einstein equation, the Bianchi identity leads to the constraint:

∇μXμν = 0 . (3.8)

3.2 Spherically symmetric solutions

In this project [26], we are interested in the black-hole solutions in the theory of dRGT

non-linear massive gravity which carry a static electric charge. We start with the most

general form of the static metric respecting spherical symmetry [? ],

ds2 = −N2(r)dt2 +
dr2

F 2(r)
+
r2dΩ2

2

H2(r)
, (3.9)

where dΩ2
2 = dθ2 + sin2 θdϕ2.
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3.3 Equations of motion

We consider a generic Maxwell field Fμν in curved spacetime, with standard Lagrangian.

The Maxwell equations are

∂μ(
√−gF μν) = −√−gJν , Fμν = ∂μAν − ∂νAμ, (3.10)

where Jν is the current density and Aμ is a vector potential. For a static electric charge Q

in the gravitational system, the components of the Maxwell field are:

Er = F0r = E(r) , Eθ = Eϕ = 0 , �B = 0 . (3.11)

With vanishing source term, the inhomogeneous Maxwell law gives ∂r(
√−gF 0r) = 0,

yielding the solution:

E(r) =
QNH2

4πr2F
, (3.12)

where Q is an integration constant which is typically interpreted as the electric charge, F

and H are the metric elements 3.9.

Using the generalized Einstein equation, we find 3 independent equations of motion with

1 constraint from the Bianchi identity. For the “tt” component of the generalized Einstein

equation:

GQ2H6

4πr2
= (1 +m2r2)H4 + 2m2r2(F − 3)H3 −H2[2r(FḞ − 3m2r2) + 3m2r2F + F 2]

+2rFH[F (rḦ + 3Ḣ) + rḞ Ḣ]− 5r2F 2Ḣ2 +m2r2(H − 1)H2[2H(1− α + 3β)

−6β + F (1− α + 6β − 3H(1− α + 2β))] . (3.13)
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The “rr” component of the generalized Einstein equation takes the form:

GQ2NH6

4πr2
= (1 +m2r2)NH4 + 2m2r2(1− 3N)H3 +H2[N(6m2r2 − F 2)

−r(2F 2Ṅ + 3m2r2)] + 2rF 2HḢ(rṄ +N)− r2F 2NḢ2 +m2r2(H − 1)H2[1

−α + 6β(1−N)−H(3(1− α)− 2N(1− α + 3β) + 6β)] . (3.14)

Further, the θθ and φψ components of generalized Einstein equation are essentially the same

and is given by

GQ2NH6

4πr3
= m2rH3[(3− F )N − 1] + 2rF 2NḢ2 − FH[rNḞ Ḣ + F (rNḦ + rṄḢ + 2NḢ)]

+H2[rF Ḟ Ṅ +NFḞ + F 2(rN̈ + Ṅ) +m2rF (3N − 1)− 6m2rN + 3m2r]

+m2rH2{(1− α)[4N − 3 +H(2− 3N) + F (2− 3N +H(2N − 1))]

+2(F − 1)(H − 1)(N − 1)(2− 2α + 3β)} . (3.15)

In the following we will expand the metric factors around a Minkowski background as

[72] N(r) = 1 + n(r), F (r) = 1 + f(r), H(r) = 1 + h(r), and then investigate the linear

perturbations. However, we need to be aware of the fact that the factors n and f can be

treated as linear perturbations as in General Relativity, while h could, in principle, take

large values since this factor corresponds to the strong interactive nature of the scalar mode

of graviton. Therefore, we need to keep higher orders in h and truncate the equations of

motion to leading order in n and f .

Before expanding the background equations perturbatively, we rescale the radial coor-

dinate by introducing a new metric variable ρ ≡ r
H
, and correspondingly introduce a new

metric factor 1 + f̃ = 1+f
1+h+ρh′ , where the prime denotes a derivative with respect to ρ. As a

consequence, the linearized metric can be expressed as

ds2 = −[1 + 2n(ρ)]dt2 + [1− 2f̃(ρ)]dρ2 + ρ2dΩ2, (3.16)

which is asymptotic to the Minkowski background when n and f̃ become negligible.
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3.4 Solution

3.4.1 Case I: α = β = 0

First, we consider the case with α = β = 0. It turns out that all higher order terms of h

vanish automatically. We obtain from the linearized equations 3.13 and 3.14

n(ρ) 	 −4GMe−mρ

3ρ
+
GQ2

8πρ2
+
GmQ2

16πρ

[
emρEi(−mρ)− e−mρEi(mρ)

]
, (3.17)

f̃(ρ) 	 −2GMe−mρ(1 +mρ)

3ρ
+
GQ2

8πρ2
+
GmQ2

32πρ
× [(1−mρ)emρEi(−mρ)

− (1 +mρ)e−mρEi(mρ)
]
, (3.18)

where “Ei” is the exponential integral function defined by Ei(x) ≡ ∫ x

−∞ et d ln t.

The first post-Newtonian parameter γ is defined as the ratio of f̃ and n: γ ≡ f̃
n
, in

the weak field limit. In the case of General Relativity γ = 1. For the above solution

without electric charge (Q = 0), we obtain γ 	 (1 +mρ)/2, and thus in the massless limit

it reduces to γ = 1/2, which is in stark disagreement with the value in General Relativity.

This behavior exactly manifests the vDVZ discontinuity. As a consequence, the standard

General Relativity result can not be recovered in the spherical system governed by massive

gravity with such a parameter choice, and therefore this case is already observationally ruled

out.

3.4.2 Case II: α �= 0 and β = 0

In this case, analytically, we consider two regimes. First in the limit of ρ� ρV , we find

that

n 	 GQ2

8πρ2
− GM

ρ
+
m2ρ2Q
2α1/2

ln(mρ) , (3.19)

f̃ 	 GQ2

4πρ2
− GM

ρ
− m2ρ2Q

α1/2
+

GMρ

2α1/2ρ2Q
, (3.20)
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where we have introduced a new parameter for a critical length scale ρQ ≡
(

GQ2

4πm2

)1/4

. When

the radial coordinate ρ evolves to the regime which is close to ρQ but still smaller than ρV ,

the main contribution of the L.H.S of the equation for h comes from the mass term M . In

this case, we only keep the leading order in h, obtaining

n 	 GQ2

8πρ2
− GM

ρ
+

GMρ

2α2/3ρ2V
, (3.21)

f̃ 	 GQ2

8πρ2
− GM

ρ
+

GM

2α1/3ρV
+

GMρ

2α2/3ρ2V
. (3.22)

We also numerically evolve the perturbation equation.
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Figure 3.1. Plot of the evolutions of the ratios n′/n′
GR and f̃/f̃GR as functions of the radial coordinate

ρ in a charged spherical system described by nonlinear massive gravity. The model parameters are taken
as: α = 1 and β = 0. In the numerical calculation, we take m = 10−20 and M = 106. The corresponding
Compton wavelength ρm = 1020 and the Vainshtein radius ρV = 2.15 × 1015 are denoted on the top of the
figure. The values of weak and strong electric charges are provided in the plot. All dimensional parameters
are in Planck units. The “f” in the lower panel represents for the metric factor f̃ in the main text.
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Figure 3.2. Plot of the evolutions of the post-Newtonian parameter γ as functions of the radial coordinate
ρ in a charged spherical system described by nonlinear massive gravity. In the numerical calculation, the
parameters are chosen to be the same as those provided in Fig. 3.1

3.4.3 Case III: β �= 0

The case where both α,β parameters are non vanishing can be divided in two subcases:

β < 0 and β > 0.

β < 0

As shown in this figure h � 1 in the range rS < ρ < ρQ. Thus, in the semi-analytical

calculation, we keep the leading order terms of the equations of motion for the metric factors,

and then we obtain

n′ 	 − m2

2β1/3
(
ρQ

4

ρ
− ρV

3)1/3, (3.23)

f̃ 	 −GQ
2

8πρ2
+
αm2

2β2/3
(
ρQ

4

ρ
− ρV

3)2/3

− m2

2β1/3
(ρQ

4 − ρρV
3)1/3ρ2/3. (3.24)

From the above semi-analytic results we find that the corrections to f̃ and n are so dra-

matic that the usual Schwarzschild-like gravitational potential (in the form 1/ρ) is exactly
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Figure 3.3. Plot of the evolution of the metric factor h as a function of the radial coordinate ρ in a charged
spherical system described by nonlinear massive gravity. The parameters of the massive gravity model are
taken as: α = 1 and β = −1/2. Moreover, m and M are the same as those provided in Fig 3.1.

canceled. This result agrees with the conclusion of [72] in which a neutral spherical system

was considered.

β > 0

Apart from the previous solution in which h is large-valued below the Vainshtein radius,

there exists a second solution in which the metric factor h always takes a small value outside

the Schwarzschild radius.

For this case, in a strongly charged spherical system the absolute value |h| can become

larger than 1 inside the Schwarzschild radius. As we move away from the Schwarzschild

radius h evolves to a constant, which coincides with the value when the charge is weak.

After crossing the Vainshtein radius h approaches 0 rapidly. By comparing f̃ and n′ with

the results of General Relativity, we can clearly see the Vainshtein mechanism from Fig. 3.4.

β = α2/6: An exact analytic solution

We insert the relation β = α2/6 into the nonlinear equation of motion of f and we find

that there exists a special solution for h, namely h = 1
α
, which implies a constant metric

factor H = (1+α)/α. Working with the r coordinate directly, by performing the coordinate
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Figure 3.4. Plot of the evolutions of the ratios n′/n′
GR, f̃/f̃GR, and the quotient γ ≡ f̃ ′

n′ as functions of
the radial coordinate ρ in a charged spherical system described by nonlinear massive gravity. The parameters
of the massive gravity model are taken as: α = 1, β = 3. Other parameters are the same as those used in
Fig. 3.3. The ‘f ’ in the plot represents the metric factor f̃ in the main text.

rescaling t→ α
1+α

t, r → 1+α
α
r, and introducing two coefficients r̃S ≡ α3rM

(1+α)3
, rΛ ≡

√
3α
m

, which

are related to the Schwarzschild radius and the de Sitter radius, respectively, we get the

exact form of the RN-dS-like solution as

ds2 = −A(r)dt2 + dr2

A(r)
+ r2dΩ2 , (3.25)

with A(r) = 1 +
r2Q
r2

− r̃S
r
− r2

r2Λ
. The above solution can recover the standard RN result

in General Relativity, and r̃S coincides to the usual Schwarzschild radius rS when we take

m = 0. Furthermore, our result is in agreement with the one obtained in [85]; however we

did not introduce an additional cosmological constant in order to see whether and how a

pure massive gravity model can yield a dS background by itself.

3.5 Conclusion

In conclusion, by investigating the spherically symmetric charged system in the context

of dRGT non-linear massive gravity we can analyse the parameter space of this model. We
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find that depending on the different dynamics of our solutions, the solution parameter space

can be roughly categorized into three parts:

• The first class corresponds to α = β = 0 and thus the graviton’s potential takes a fixed

form. The solution in this subclass is well described at the perturbative level, but the

vDVZ discontinuity cannot be avoided. However, the post-Newtonian parameter in

this class fails to agree with General Relativity and thus the corresponding parameter

choice is observationally ruled out.

• In the second subclass, we keep β = 0 but we allow α to be an arbitrary constant. The

corresponding solution shows that General Relativity can be recovered between the

outer horizon of the black hole and the Vainshtein radius by virtue of the Vainshtein

mechanism. This scenario is similar to the case of the neutral black hole in massive

gravity. However, the existence of an electric charge could increase the value of the

metric factor h within a newly defined radius ρQ and thus the detailed evolutions of

time-like and space-like metric components behave differently from those of a neutral

black hole. Namely, the metric factor n obtains a logarithmic correction when the

radius is close to the outer horizon.

• The third subclass of parameter choice is the most general in the parameter space,

which requires both α and β to be non-vanishing. In this case the solutions behave

dramatically differently depending on the positivity of β. When β < 0 the strongly

coupled scalar graviton greatly decreases the strength of gravity at small length scales,

and thus the usual Schwarzschild-like gravitational potential totally disappears which

severely challenges all astronomical observations. However, if β is positive General

Relativity can be recovered again through the Vainshtein mechanism. This behavior

is similar to the solution in the second subclass with β = 0. Therefore, the solution

in this case, together with the solution in the second subclass, might provide a certain

parameter space for nonlinear massive gravity to conform with current solar system

observations.

35



• Finally, there exists a particular parameter choice in the last subclass which suggests

β = α2/6. Under this condition the background equations of motion can be solved

exactly and yield a solution which is identical to the RN-dS form in which only the

dS radius rΛ contains the model parameter α. The exact solution with such a special

parameter choice can recover the standard result in General Relativity in the limit of

either a vanishing graviton mass or an extremely large value of the parameter α.
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Chapter 4

PROJECT III: CONSTRAINTS ON THE GRAVITON

MASS FROM THE COSMIC MICROWAVE

BACKGROUND RADIATION

4.1 Introduction

Among current massive gravity theories [3, 37, 59], there is one class which is phenomeno-

logically closely related to GR [11, 27, 28, 37, 43, 44, 45, 56, 60, 101]. They share the same

background equations of motion with GR, as well as the evolution for scalar and vector

fluctuations. Only tensor fluctuations are modified with the graviton mass, which is time

dependent in general [56]. In other words, the dispersion relation for gravitational waves is

given by ω2 = k2 +mg
2. For the sake of simplicity, we will only focus on these theories in

this project. Based on this modification to GR, by checking Kepler’s third law for planets

in the solar system, the constraint on the graviton mass is found to be mg � 2.2× 10−22 eV

[4, 25]. By comparing electromagnetic wave observations and gravitational wave observations

from future space-based detectors Laser Interferometer Space Antenna (LISA), the bound

on graviton mass could be mg � 10−26eV [35, 68]. By studying gravitational waves from

inspiralling compact binaries, in which a varying speed for different wavelengths leads to a

shorter time difference between emission time and arrival time compared to the massless case

in which the speed of gravitational waves is constant, the ground-based Laser Interferometer

Gravitational-Wave Observatory (LIGO) and space-based LISA would bound the graviton

mass to be mg � 1×10−22 eV and mg � 1×10−26 eV respectively [14, 15, 51, 73, 98, 99, 108].

More stringent bounds can be found from galactic and cluster dynamics asmg � 1×10−29 eV
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[19] and weak lensing as mg � 6.9×10−32 eV [30]. By studying the stability of Schwarzschild

and Kerr black holes under linear tensor perturbations, a bound on the graviton mass is

found to be mg � 5× 10−23eV [24].

Another way to constrain the value of the graviton mass is to study the B-mode polar-

ization pattern on the CMB [10, 34, 54, 65, 67, 93]. Scalar perturbations only contribute to

E modes. Both tensor and vector perturbations could generate the B modes. However, the

vector perturbations were damped quickly by the expansion of the universe [66]. Therefore,

the B modes polarization plays an important role in searching for gravitational waves and

any detection of them will place significant constraints on cosmological models and also on

the mass of the graviton [17, 42]. There are also secondary sources of B modes such as

gravitational lensing [57, 112], and galactic synchrotron emission [52]. In this project we

will only focus on the signature of massive primordial gravitational waves on the B mode

polarization in contrast to the massless case. In the following sections we will first give a

brief review of the CMB polarization and then proceed to the tensor contribution. In the

last part we will show the polarization pattern for massive gravitons in comparison with the

massless case.

4.2 Microwave Background polarization

4.2.1 Stokes parameters

Polarized light is conventionally described by Stokes parameters proposed by G.G. Stokes

in 1852. They are quadratic in the field strength and can be determined through intensity

measurements together with a linear polarizer and a quarter-wave plate or equivalents in

the lab. One important property is that they are additive for incoherent superpositions of

waves. Consider a nearly monochromatic plane electromagnetic wave with mean frequency

ω propagating in the z direction. Its electric field vector in space can be decomposed as

Ex = ax(t) cos[ωt− θx(t)], Ey = ay(t) cos[ωt− θy(t)]. (4.1)

38



The Stokes parameters are defined as [62]

I ≡ 〈
a2x
〉
+
〈
a2y
〉
,

Q ≡ 〈
a2x
〉− 〈

a2y
〉
,

U ≡ 〈
2axay cos(θx − θy)

〉
,

V ≡ 〈
2axay sin(θx − θy)

〉
, (4.2)

where the angle brackets represent time average. The parameter I measures the intensity

of the wave and is proportional to the temperature. The other three parameters define the

polarization state of the wave. Unpolarized light is described by Q = U = V = 0. For

linear polarization the phase angles satisfy θx = θy. The parameter V describes circular

polarization and it can be ignored in cosmology since it can not be generated through

Thomson scattering [70].

Since CMB radiation come to us from all directions and it is like coming from a spherical

surface, which is the last scattering surface, it is convenient to use spherical coordinates. In

the following we will use the unit vector n̂ to denote the direction of light coming to the

observer, and the other two orthogonal vectors are êθ and êφ. The intensity parameter I is

invariant under a rotation in the plane perpendicular to n̂, while Q and U depend on the

orientation of the êθ and êφ axes. Under a rotation on the plane by an angle ψ, Q and U

transform as

Q′(n̂) = Q cos 2ψ + U sin 2ψ,

U ′(n̂) = −Q sin 2ψ + U cos 2ψ, (4.3)

where ê′θ = cosφ êθ + sinφ êφ and ê′φ = − sinφ êθ + cosφ êφ. It is convenient to construct

two quantities which have a definite value of spin and transform under the above rotation,

(Q± iU)′(n̂) = e∓2iψ(Q± iU). (4.4)

According to the definition of spin-weighted functions [100, 111], the temperature, which is
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related to the intensity by I = σT 4, has spin 0, while the two complex quantities constructed

above have spin-weights 2 and -2 respectively. Spin s spherical harmonics form a complete

and orthonormal basis. Hence, we can decompose the above quantities into these spin-

weighted spherical harmonics,

T (n̂) =
∑
lm

aT,lmYlm(n̂),

(Q+ iU)(n̂) =
∑
lm

a2,lm 2Ylm(n̂),

(Q− iU)(n̂) =
∑
lm

a−2,lm −2Ylm(n̂). (4.5)

To calculate Q and U , there exists one coordinate system in which Q and U can be easily

calculated where the wave vector k is parallel to ẑ. The superposition of different modes

makes the calculation complicated, due to the transformation behavior of Q and U under

rotation. Therefore it is convenient to work with coordinate invariant quantities like the

temperature. One benefit of spin-weighted harmonics is that there exist spin raising and

lowering operators ð and ð̄ which can act on the spin s quantities to get a spin 0 one,

which is invariant under coordinate transformations. A brief review about spin s spherical

harmonics is given in Appendix 3. By acting twice with a spin lowering and raising operator

on Q+ iU and Q− iU , respectively, one obtains

ð̄
2(Q+ iU)′(n̂) =

∑
lm

[(l + 2)!

(l − 2)!

]1/2
a2,lm Ylm(n̂),

ð
2(Q− iU)′(n̂) =

∑
lm

[(l + 2)!

(l − 2)!

]1/2
a−2,lm Ylm(n̂). (4.6)

The above two quantities are rotationally invariant just like temperature, therefore together
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with equations 4.5, we can write the expansion coefficients of the spherical harmonics as

aT,lm =

∫
dΩY ∗

lm(n̂)T (n̂),

a2,lm =

∫
dΩ 2Y

∗
lm(n̂)(Q+ iU)(n̂)

=
[(l + 2)!

(l − 2)!

]−1/2
∫
dΩ Y ∗

lm(n̂) ð̄
2(Q+ iU)(n̂),

a−2,lm =

∫
dΩ −2Y

∗
lm(n̂)(Q− iU)(n̂)

=
[(l + 2)!

(l − 2)!

]−1/2
∫
dΩ Y ∗

lm(n̂) ð
2(Q− iU)(n̂). (4.7)

The E modes and B modes are two independent linear combinations of a2,lm and a−2,lm,

aE,lm = −(a2,lm + a−2,lm)/2

aB,lm = i(a2,lm − a−2,lm)/2 (4.8)

It is more convenient to work with them in cosmology. They have different parity transfor-

mation properties. Under n̂ → −n̂, E modes remain the same while B modes change sign in

analogy with electric and magnetic fields. It is also useful to introduce two scalar quantities

Ẽ(n̂) and B̃(n̂) [111]

Ẽ(n̂) ≡ −1

2

[
ð̄
2(Q+ iU) + ð

2(Q− iU)
]

≡
∑
lm

[(l + 2)!

(l − 2)!

]1/2
aE,lm Ylm(n̂),

B̃(n̂) ≡ i

2

[
ð̄
2(Q+ iU)− ð

2(Q− iU)
]

≡
∑
lm

[(l + 2)!

(l − 2)!

]1/2
aB,lm Ylm(n̂). (4.9)

They are rotationally invariant and are useful for calculations in real space as we will see in

the following.

A sky map of the CMB temperature and polarization fluctuations can be fully character-

ized in terms of an infinite sequence of correlation functions. If the spectrum of fluctuations
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is Gaussian, as predicted by inflation and as current data suggests, then only the even order

correlation functions are nonzero and all of them can be expressed through the two-point

correlation function. In this project we will just focus on the two point correlation function,

CTT (θ) ≡ 〈
δT (n1)δT (n2)

〉
CEE(θ) ≡ 〈

E(n1)E(n2)
〉

CBB(θ) ≡ 〈
B(n1)B(n2)

〉
CET (θ) ≡ 〈

E(n1) δT (n2)
〉
, (4.10)

where the arrow brackets denote averaging over all directions n1 and n2 satisfying the

condition n1 · n2 = cos(θ). The cross correlation between B and E or B and T vanishes

because B has opposite parity of T and E. We can write functions of θ as expansions of the

legendre polynomials, which is complete and orthogonal,

C(θ) =
1

4π

∞∑
i=2

(2l + 1)Cl Pl(cos(θ)). (4.11)

The power spectra in the Fourier space, or the multipole moments, CTT
l , CEE

l , CBB
l and

CTE
l can then be found from the above expansion. Equivalently they can also be calculated

according to equations 4.5, 4.9,

CTT
l =

1

2l + 1

∑
m

〈
a∗T,lmaT,lm

〉

CEE
l =

1

2l + 1

∑
m

〈
a∗E,lmaE,lm

〉

CBB
l =

1

2l + 1

∑
m

〈
a∗B,lmaB,lm

〉

CTE
l =

1

2l + 1

∑
m

〈
a∗T,lmaE,lm

〉
, (4.12)

where the brackets refer to a cosmic mean, average of the results obtained by observers in

all space for a given l. Since our universe is homogeneous and isotropic on large scales, the
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average over all directions as in equation 4.10 on the sky from one observation point (as us

the earth) should be close to the cosmic mean.

4.2.2 Thomson scattering

The radiation of CMB is expected to be polarized because of Compton scattering [61,

70, 101]. Before recombination, due to the intense random motion of photons and baryons,

any polarization would disappear instantly as it was created. After recombination, photons

propagate freely along geodesics and any polarization produced at recombination will remain

fixed. Therefore if we can observe the polarization on CMB today, it will contain information

about the last scattering surface, complementary to the temperature anisotropies. In this

section we will focus on how the polarization is generated in CMB from Thomson scattering.

Light traveling in the z direction has electric and magnetic fields oscillating in the x− y

plane. If the intensity on the two transverse directions is equal, then the light is unpolarized,

otherwise it would be polarized. Thomson scattering can generate polarization since it allows

transverse radiation to go through and stops any radiation parallel to the outgoing direction

as shown in the figure 4.1, in which the unpolarized light coming from the x axis is scattered

off the electron to the z axis and the outgoing light is polarized along the y axis. If the

Figure 4.1. Unpolarized light coming from the x axis toward the origin is scattered by an electron at the
center into the +z direction.
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Figure 4.2. Two unpolarized light rays coming from the x axis and y axis with the same intensity toward
the origin are both scattered by an electron at the center into the +z direction.

incident radiation is isotropic, then polarization can not be generated. As shown in figure

4.2, if there is unpolarized light coming from both the x and y axis with the same intensity,

the outgoing light along the z axis will have equal intensity along x and y direction, hence

unpolarized.

Instead of isotropic incoming radiation, quadrupole anisotropic distribution induces po-

larization after Thomson scattering, as shown in figure 4.3.

In fact to produce polarized radiation, the incoming radiation must have a nonzero

quadrupole [70]. As shown in Figure 4.4, unpolarized incoming light with intensity I ′ along

direction n̂′ is scattered into direction n̂, which is described by Stokes parameters I, Q, U

and V . Two axes perpendicular to the incoming photon are ε̂′1 and ε̂
′
2 with the latter one in

the scattering surface. Polarization vectors for the outgoing light are ε̂1 and ε̂2 with the latter

one in the scattering surface. The Thomson scattering cross section for incident radiation

with linear polarization vector ε′ being scattered into a wave with linear polarization vector

ε is given by
dσ

dΩ
=

3σT
8π

|ε′ · ε|, (4.13)

where σT is the total Thomson scattering cross section. To take the dot products, it is useful
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Figure 4.3. Incoming radiation produces polarization. The intensity of light coming from the x axis is
stronger than that from the y axis.

to consider n̂ = ẑ, ε̂1 = x̂ and ε̂2 = ŷ. Then express n̂′ and ε̂′ in terms of their Cartesian

coordinates. We have

n̂′ = (sin θ′ cosφ′, sin θ′ sinφ′, cos θ)

ε̂′1 = (cos θ′ cosφ′, cos θ′ sinφ′,− sin θ′)

ε̂′2 = (− sinφ′, cosφ′, 0). (4.14)

By integrating all incoming radiation intensities, we obtain

I(ẑ) =
3σT
16π

∫
dΩ (1 + cos θ

′2) I ′(θ′, φ′)

Q(ẑ) =
3σT
16π

∫
dΩ sin θ

′2 cos(2φ′) I ′(θ′, φ′)

U(ẑ) =
3σT
16π

∫
dΩ sin θ

′2 sin(2φ′) I ′(θ′, φ′), (4.15)

where θ′ and φ′ are the spherical coordinates for the incoming radiation n̂′ in contrast with

the spherical coordinates θ and φ for the outgoing radiation n̂ with respect to observers (us)
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Figure 4.4. Thomson scattering: incident light with intensity I ′ is scattered by the electron at the origin
into the light with intensity I. The angle between the incident ray and the outgoing ray is θ. ε′ are the
incoming polarization vectors, while ε are the outgoing polarization vectors.

at the center. For Q and U , the combination of angles in the integrand is proportional to the

sum of the spherical harmonics Y2,2+Y2,−2 and Y2,2−Y2,−2 respectively. We can also see that

the outgoing polarization state depends only on the intensity distribution of the unpolarized

incident radiation. Since the spherical harmonics are orthogonal, the integral will only pick

up l = 2, m = ±2 components of the incident intensity. Nonzero polarization can be created

only if the incident radiation has a quadrupole component. This is in agreement with figure

4.2.

4.3 The Boltzmann equation for tensor perturbations

To get the current power spectra of the CMB from equation 4.12 using the equation

4.7, we need to study the propagation of photons following geodesics from the last scattering

surface in the perturbed FRW spacetime. As the calculation is based on linear perturbation

theory, in which case different modes evolve independently in the Fourier space and we are

interested in the signature of the graviton mass on the spectra, we will only study the tensor

perturbations of the metric. We will solve part of the Boltzmann equation with Thomson
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collision term in a flat universe with metric

g00 = 1, g0i = 0

gij = −a(t)2[δij + hij(x, t)
]
, (4.16)

where the tensor metric is transverse-traceless hii = 0, ∂jhij = 0 in which case only pure

tensor modes are considered. The inverse metric to first order is given by

g00 = 1, goi = 0

gij = − 1

a(t)2
[
δij − hij(x, t)

]
. (4.17)

Photons are described by space-time coordinates xμ and four-momentum pμ. Their geodesic

equations can be written as

d2xμ

dλ2
+ Γμ

αβ

dxα

dxβ
= 0

dxμ

dλ
= pμ

gαβ
dxα

dλ

dxβ

dλ
= 0, (4.18)

where λ is an affine parameter along the geodesics. Then we obtain that

pi

p0
=
dxi

dt

pi =
1

a
pp̂i(1− 1

2
p̂mp̂nhmn), (4.19)

where p = (−pipi)
1/2 and p̂ is the unit vector. Combined with the geodesic equation we

find that
dp

dt
= −p[ ȧ

a
+

1

2
p̂ip̂j ∂hij

∂t

]
. (4.20)
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The Boltzmann equation for any phase-space distribution function f is [70]

df

dt
=
∂f

∂t
+
∂f

∂xi
pi

p0
+
∂f

∂p

dp

dt
+
∂f

∂p̂i

dp̂i

dt
= C(x, pμ), (4.21)

where the collision term C(x, pμ) is given by quantum electrodynamics. Since we are con-

sidering linear perturbation theory, we expand the distribution function as

f(x, p, p̂, t) = f 0(p, t) + f 1(x, p, p̂, t). (4.22)

At the zeroth order, the collision term can be neglected and the solution gives f 0(p, t) =

f 0(pa) which proves that wavelengths are redshifted with cosmological expansion. The first

order equation after Fourier transformation over the spatial dependence is given by

∂

∂t
f 1(k, p, p̂) +

i

a
(k · p̂)f 1(k, p, p̂)− ȧ

a
p
∂

∂p
f 1(k, p, p̂)− 1

2

∂f 0(p)

∂p
p p̂ip̂j ∂

∂t
hij(k) = C(k, p, p̂).

(4.23)

Complete temperature and polarization equations are derived by applying the density matrix

according to the Boltzmann equation. The relationship between the Stokes parameter and

the density matrix is given in Appendix 2. In the coordinate frame where k ‖ ẑ, the Stokes

parameters depend on the angle between the photon direction and wavevector, μ = n̂ · k̂.
We will denote the fractional temperature anisotropy δT with ΔT (τ, k, μ) and polarizations

with Q = ΔQ(τ, k, μ) and U = ΔU(τ, k, μ), respectively. Their evolution equations are given

by [77]

ΔT (τ, n̂,k) =
[
(1− μ2)e2iφξL(k) + (1− μ2)e−2iφξR(k)

]
Δ̃T (τ, μ, k)

(ΔQ + iΔU)(τ, n̂,k) =
[
(1− μ2)e2iφξL(k) + (1 + μ2)e−2iφξR(k)

]
Δ̃P (τ, μ, k)

(ΔQ − iΔU)(τ, n̂,k) =
[
(1 + μ2)e2iφξL(k) + (1− μ2)e−2iφξR(k)

]
Δ̃P (τ, μ, k), (4.24)
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where Δ̃T and Δ̃P are variables introduced by Polnarev [87] satisfying

Δ̃′
T + ikμΔ̃T = −h′ − κ′ (Δ̃T −Ψ)

Δ̃′
P + ikμΔ̃P = −κ′ (Δ̃T +Ψ)

Ψ ≡ 1

10
Δ̃T0 +

1

7
Δ̃T2 +

3

70
Δ̃T4 − 3

5
Δ̃P0 +

6

7
Δ̃T4 − 3

70
Δ̃T4, (4.25)

where primes ′ indicate derivatives taken with respect to the conformal time τ and h is the

gravitational wave amplitude defined by

hij(x, τ) = a2
∑

m=L,R

∫
d3keik·xξm(k)emij (k)hk(τ). (4.26)

For convenience we work with right- and left- handed circularly polarized modes with po-

larization tensor eLij and e
R
ij. The ξs are independent random variables used to characterize

the statistics of the gravity waves so that

〈
ξL∗(k1)ξ

L(k2)
〉
=

〈
ξR∗(k1)ξ

R(k2)
〉
=
Ph(k)

2
δ(k1 − k2)〈

ξL∗(k1)ξ
R(k2)

〉
= 0, (4.27)

where Ph(k) is the primordial power spectrum of the gravity waves. They are related to the

original + and × polarizations by

ξL =
1√
2
(ξ+ + iξ×)

ξR =
1√
2
(ξ+ − iξ×). (4.28)

In the coordinates in which k ‖z, the polarization tensors are given by

e11(k̂, L/R) = −e22(k̂, L/R) = 1√
2
, e12(k̂, L/R) = e21(k̂, L/R) =

±i√
2
. (4.29)

In massive gravity, the evolution of the gravitational wave amplitude is derived from the
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generalized Einstein field equation [44, 43]

hk(τ)
′′
+ 2H hk(τ)

′ + (k2 +m2
ga

2)hk(τ) = 0

ḧk(t) + 3H ḣk(t) + (
k2

a2
+m2

g)h = 0, (4.30)

where the first equation is given with respect to the conformal time, whereas the second is

given with respect to physical time, H(τ) = a′
a
and H(t) = ȧ

a
. In conventional cosmological

perturbation theory, where mg = 0, the solution of the above equations for a radiation-

dominated universe with a ∝ τ , hence a′′ = 0, is given by

hk(τ) =
1

τ
(C1 sin(kτ) + C2 cos(kτ)). (4.31)

For wavelength larger than the Hubble scale, kτ � 1, the gravitational wave amplitude is

constant, while the short wavelength decays in inverse proportion to the scale factor. This

is a general result valid for any equation of state. As a result, in the power spectra pattern

there is a plateau for low l which corresponds to the large scale structure and drop off for

l > 100 which corresponds to the horizon scale at recombination.

In the massive gravity case, the above equation implies that in the long wavelength limit,

the amplitude of gravitational wave will oscillate with a frequency equal to mg when the

expansion rate H drops below the graviton mass. In the short wavelength limit k
arec

> mg,

the evolution of gravitational wave is not affected by the graviton mass and leads to the

same spectra as in the massless case. On the other hand if the graviton mass is very large,

mg 
 H(τrec), the power spectra would be suppressed. We will focus on the numerical

results in the following section.

4.4 Numerical results
Consider first a graviton mass below the Hubble rate during recombination, mg �

H(τrec). Short wavelength modes, k
τrec)


 mg, will not be affected and have the same

spectra as the massless case. Long wavelength modes, k
a(τrec)

≤ mg, which correspond to

large scale structures will be modified as mg can not be neglected. In terms of multipole
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number l, short wavelength modes correspond to large l whereas long wavelength modes

contribute to the low l part. We can quantify this relation using the angular size of the

perturbation from recombination as observed today, Δθ:

l ≈ π

Δθ
= π(

λ

a(τrec)rrec
)−1

= π(
λ

a(τ0 − rrec) rrec
)−1

≈ π(
λ

a(τ0) rrec
)−1

≈ k(τ0 − τrec), (4.32)

where we have used the fact that the conformal time τrec = τ0−rrec and rrec is the comoving

radial distance of the perturbation during recombination in a flat FRW universe. Then the

transition to the massless regime corresponds to

l 
 l0 = mga(τrec)(τ0 − τrec)

=
mg

H0

(1 + zrec)
−1

∫ 1

(1+zrec)−1

dx

ΩΛx4 + Ωmx+ Ωr

≈ 3.3(1 + zrec)
−1mg

H0

, (4.33)

where we have used Planck 2013 results [2] for cosmological parameters and zrec = 1088.

We find that for graviton mass as low as 300H0, in which case l0 ≈ 1, the power spectra

with massive graviton is then the same as the massless case. Hence we can not distinguish

a graviton mass below this value from CMB polarization.

In this project we use the online available Code for Anisotropies in the Microwave Back-

ground (CAMB) [27, 48, 74, 75] to calculate all power spectra with the evolution equation

for tensor perturbation modified according to equation 4.30. Numerical techniques CAMB

uses involve second order derivatives of the source function, in which the gravitational wave

amplitude is oscillating with frequency mg for low l, therefore the numerical results from

CAMB are not reliable for low l. The position of lc, to the left of which the numerical

results are not reliable, depends on the mass of gravitons and on the type of spectrum. To
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Figure 4.5. Plot of the total CTT,l, CEE,l and CBB,l multipole coefficients for the massless case and a
moderate graviton mass. Dashed lines are for the massles case whereas solid lines are for massive gravitons.
The masses are given by mg = μ× 3000H0, where μ is given in the legend. They are for a scalar amplitude
Δ2

R = 2.2154 × 10−9, a tensor to scalar ratio, r = 0.1 and a tensor spectral index nt = 0. All other
remaining cosmological parameters for the background, we use Planck 2013 results [2]. The vertical dashed
red line indicates the position of l to the left of which the numerical calculations for massive graviton are
not reliable.

evade this numerical problem, another approach is introduced in [42] for low l range, which

has second order derivatives on Bessel functions instead of having second order derivatives

on the rapid oscillating source function as is used in CAMB. They differs from CAMB by

integration by parts. By comparing these two approaches, the position of lc can be found

for each graviton mass and each power spectrum. According to [42], for l > 50 CAMB

results are reliable for all spectra. For B modes auto correlation, this value could be smaller.

Since this problem only exists when the graviton mass is massive, in numerical plots we

show results for l ranging from 2 to 2500. We use a vertical red dashed line to indicate the

position of lc, to the left of which plots with massive graviton are not reliable. Plots for the

B mode polarization are better than E modes and they reliable for l > 30.

In all plots we have used the scalar amplitude Δ2
R = 2.21545 × 10−9 and set the tensor
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Figure 4.6. Plot of the CBB,l multipole coefficients for masses below the Hubble rate during recombination.
All parameters except the graviton mass are the same as Figure 4.5. The vertical dashed red line indicates
the position of lc to the left of which the numerical calculations for massive graviton are not reliable.

to scalar ratio, r, to 0.1 as implied by Planck [2]. First we show the temperature auto

correlation, E mode auto correlation and B modes auto correlation for both the massless

case and a nonzero moderate massive graviton in one Figure 4.5, which are from both scalar

and tensor perturbations. The upper curve (dashed black for massless graviton and solid blue

for massive graviton) is the most familiar temperature anisotropy spectrum, with amplitudes

5 orders of magnitude smaller than the CMB temperature of 2.7K. The polarization signals

(EE and BB) are smaller by an additional 1 � 2 orders of magnitude because they are

produced by the quadruple component of the temperature fluctuations at recombination.

They reach a maximum around l ≈ 100, corresponding to the horizon scale at recombination,

and drop off for l < 100, corresponding to the superhorizon scales. B modes decreases on

subhorizon scales, l > 100, due to the decrease of gravitational amplitude on small scales as

can be seen from equation 4.30. Dashed lines correspond to the massless case and solid lines

represent the modification by a moderate graviton mass which is a little above the Hubble
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Figure 4.7. Plot of the CBB,l multipole coefficients for masses around the Hubble rate during recombination.
The masses are given by mg = μ×3000H0, where μ is given in the legend. All parameters except the graviton
mass are the same as Figure 4.5. The vertical dashed red line indicates the position of lc to the left of which
the numerical calculations for massive graviton are not reliable.

rate during recombination, mg = 3× 104H0. The effect on temperature and E modes power

spectra is not obvious as their main contributions are from scalar perturbations which remain

the same with a massive graviton in our consideration. The B modes spectrum is enhanced

with this graviton mass compared to the massless case. Therefore from now on we will only

focus on B modes.

For masses below the Hubble rate during recombination H(τrec) ≈ 2× 104H0 or μ < 7,

the effect of a graviton mass is rather mild and is present for very low l [42, 92]. In our

numerical calculation for l > 50 in Figure 4.6, no effect is observed. This is in agreement

with our earlier qualitative analysis.

For masses approaching the Hubble rate during recombination or a little higher, the

signature of a graviton mass on the B polarization is obvious. As shown in figure 4.7, the

power spectra are enhanced by a graviton mass compared to the massless case. In the plot,
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Figure 4.8. Plot of the CBB,l multipole coefficients for masses above the Hubble rate during recombination.
The masses are given by mg = μ×3000H0, where μ is given in the legend. All parameters except the graviton
mass are the same as Figure 4.5. The vertical dashed red line indicates the position of lc to the left of which
the numerical calculations for massive graviton are not reliable.

the black line represents the massless case and the colored lines represent different graviton

masses. The greater the graviton mass, the higher the power spectra, and they approach to

a plateau in agreement with [42]. The height of the plateau will continue to increase until

the graviton mass goes up to μ = 30, then it starts to decrease as can be seen in Figures

4.8. This is a bit different from [42], in which it happens at μ = 25. This is because we used

Planck 2013 results [2] for the cosmological parameters of the background, whereas [42] used

WMAP values [12].

For μ larger than 30, we find that the height of the plateau goes down and up followed

by two minimum at μ = 56 and 100, which are suppressed compared to the massless case,

and two peaks at μ = 78 and μ = 120, which are lower than that when μ = 30. This

is shown in figure 4.9. Two upper solid lines represent the two maximum for the plateau,

while the two lower dashed lines correspond to two minimum of the plateau. For l > 100 the
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Figure 4.9. Plot of the CBB,l multipole coefficients for masses above the Hubble rate during recombination.
The masses are given by mg = μ×3000H0, where μ is given in the legend. All parameters except the graviton
mass are the same as Figure 4.5. The vertical dashed red line indicates the position of lc to the left of which
the numerical calculations for massive graviton are not reliable.

plateau decreases with increasing graviton mass. For μ > 140, the polarization pattern is

suppressed compared to the massless case due to the rapid oscillation of tensor perturbations

during recombination as we see in equation 4.30. For graviton mass μ = 200 as shown in

Figure 4.10, the power spectrum is one order less than the massless case. Higher masses are

suppressed more, as shown by the blue line which corresponds to μ = 1000.

We also plotted the temperature spectrum in figure 4.11, E modes in figure 4.13 and the

cross correlation between them in figure 4.14 from tensor perturbations only for graviton

mass μ = 10 in comparison with the B mode polarization in figure 4.12. We find that

the temperature anisotropy is suppressed for a moderate graviton mass compared to the

massless case as shown in figure 4.11. This is different from polarization auto correlation,

as both E modes and B modes are enhanced for this graviton mass as shown in figures 4.13

and 4.12.
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Figure 4.10. Plot of the CBB,l multipole coefficients for masses above the Hubble rate during recombination.
The masses are given by mg = μ×3000H0, where μ is given in the legend. All parameters except the graviton
mass are the same as Figure 4.5. The vertical dashed red line indicates the position of lc to the left of which
the numerical calculations for massive graviton are not reliable.

Due to the suppressed temperature, the cross correlation between temperature and E

modes is also suppressed for this particular graviton mass as shown in figure 4.14.

We did not analyze more results about temperature and E modes, since their main

contributions are from scalar perturbations, which are independent on the graviton mass. B

modes are more interesting since scalar modes do not generate them and vector modes decay

during cosmic expansion. This makes the study of B mode polarization quite important in

the study of gravitational waves.

4.5 Summary
In this project, we studied the effect of a graviton mass on B modes polarization. We find

that a moderate graviton mass, about the order of the Hubble rate during recombination

H(τrec) = 2× 104H0, would enhance the power spectra and leads to a characteristic plateau

for l < 100. The height of the plateau increases until μ reaches 30, then it starts to decrease.
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Figure 4.11. Plot of the T spectra for the massive case μ = 10 (red line) and for the massless case
(black line). All parameters except the graviton mass are the same as Figure 4.5. The vertical dashed red
line indicates the position of lc to the left of which the numerical calculations for massive graviton are not
reliable.

It reaches a minimum at μ = 56 and goes up again with increasing graviton mass. There

are two secondary maxima at μ = 78 and μ = 120, lower than that at μ = 30, and two

minima at μ = 56 and μ = 100, which are suppressed compared to the massless case. A large

graviton mass would make long wavelength modes oscillate with the same frequency given

by the graviton mass and hence suppresses the polarization considerably. By comparing to

the massless case, we find that B modes polarization could provide a tight constraint on

graviton mass mg � 10−30eV. In the general case when the graviton mass is time varying

[56], this constraint is put on graviton mass during recombination. This is because the

polarization was generated by tensor perturbations during recombination and then carried

by decoupled photons traveling to us freely since then. We find that a graviton mass in

the range 10−30eV � mg � 10−27eV would lead to interesting modifications on the CMB

power spectra especially the B modes polarization. Results are in agreement with [42].
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Figure 4.12. Plot of the T spectra for the massive case μ = 10 (red line) and for the massless case
(black line). All parameters except the graviton mass are the same as Figure 4.5. The vertical dashed red
line indicates the position of lc to the left of which the numerical calculations for massive graviton are not
reliable.

Since current polarization measurements are getting unprecedented high level of sensitivity,

detection of B modes polarization is expected in the near future. A detection of power

spectra with this signature will be strong proof for the existence of graviton mass.
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Figure 4.13. Plot of the E spectra for the massive case μ = 10 (red line) and for the massless case
(black line). All parameters except the graviton mass are the same as Figure 4.5. The vertical dashed red
line indicates the position of lc to the left of which the numerical calculations for massive graviton are not
reliable.

60



2 10 100 1000

-4

-2

0

2

4

l

 = 0
 = 10

l(l
+1
)C

TE
,l/2

[
K

2 ]

Tensor
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A.1 Natural units

In Chapter 4 we adopt natural units, in which c = 1, � = 1 and kB = 1. We use Mpc as

a unit of length, time and inverse energy. Here are some fundamental constants of nature

Planck′s constant � = 1.0546× 10−27 cm2g s−1

Speed of light c = 2.9979× 1010 cm s−1

Thomson cross section σT = 8πα2/3m2
e = 6.6524× 10−25 cm2

Electron mass me = 0.5110MeV

Proton mass mp = 938.272MeV

Neutron mass mn = 939.566MeV

Planck mass mpl = G1/2 = 1.221× 1019 GeV (34)

Here are some unit conversions

1 s = 9.7157× 10−15 Mpc

1 yr = 3.1558× 107 s

1Mpc = 3.0856× 1022 m

= (6.4× 10−30 eV)−1

1AU = 1.4960× 1011 m

1GeV = 1.6022× 10−3 erg

= 1.7827× 10−24 g

= (1.9733× 10−14 cm)−1

= (6.5821× 10−25 s)−1 (35)
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The Hubble constant is given by

H0 = 67.8 km/sec/Mpc

= (4.42× 103 Mpc)−1

= 1.45× 10−33 eV (36)

A.2 The Boltzmann equation

To understand the time evolution of stokes parameters, we also introduce their quantum

mechanical definition in terms of the density matrix

ρ =
1

2

⎛
⎜⎝ I +Q U − iV

U + iV I −Q

⎞
⎟⎠ .

The Boltzmann equation is given by

d

d t
ρij(x,k) =

ε4ne(x)

16πm2
ek

∫ ∞

0

d p p

∫
dΩ

4π

[
δ(k − p) + (k− p) · v(x)∂δ(k − p)

∂p

]

×{−2(
p

k
+
k

p
)ρij(bfx, k) + 4p̂ · ε̂i(k)p̂ · ε̂1(k)ρ1j(x,k)

+4p̂ · ε̂i(k)p̂ · ε̂2(k)ρ2j(x,k)

+(
p

k
+
k

p
− 2)δij(ρ11(x,p) + ρ22(x,p))

+(
p

k
+
k

p
)(εi(k) · ε1(p)εj(k) · ε2(p)− εi(k) · ε2(p)εj(k) · ε1(p)(ρ12(x,p)− ρ21(x,p))

+2(εi(k) · ε1(p)εj(k) · ε2(p) + εi(k) · ε2(p)εj(k) · ε1(p))(ρ12(x,p) + ρ21(x,p))

+4εi(k) · ε1(p)εj(k) · ε1(p)ρ11(x,p) + 4εi(k) · ε2(p)εj(k) · ε2(p)ρ22(x,p)} (37)

where p is the 3-d momentum vector incoming photons from all direction before collision

with electrons, k is the the 3-d momentum vector of the outgoing photons after collision

moving toward observers, εi are polarization vectors with i running through 1 to 2.
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In spherical coordinates, the basis for the photon direction and polarization vectors is

taken to be

k̂x = sin θ cosφ, k̂y = sin θ sinφ, k̂z = cos θ

ε̂1x(k) = cos θ cosφ, ε̂1y(k) = cos θ sinφ, ε̂1z(k) = − sin θ

ε̂2x = − sinφ, ε̂2y = cosφ, ε̂2z(k) = 0. (38)

A.3 Spin weighted functions

For any given direction on the sphere specified by angles (θ, φ), we can define three

orthogonal vectors, one radial n̂ and the other two tangential to the sphere labeled as ê1

and ê2.

A function defined on the sphere is said to have spin s if under a right handed rotation

on the plane normal to n̂ by angle ψ, it transforms as sf
′(θ, φ) = e−isψ

s f(θ, φ). There exist

spin-s spherical harmonics sYlm(θ, φ) [53, 83, 111]

sYlm(n̂) = eimφ
[(l +m)!(l −m)!

(l + s)!(l − s)!

2l + 1

4π

]1/2
sin2l(θ/2)

×
∑
r

(
l − s

r

)(
l + s

r + s−m

)
(−1)l−r−s+m cot2r+s−m(θ/2), (39)

which are complete and orthogonal,

∫ 2π

0

dφ

∫ 1

−1
sY

∗
l′m′(θ, φ)sYlm(θ, φ) = δll′δmm′

∑
lm

sY
∗
lm(θ, φ) sYlm(θ

′, φ′) = δ(φ− φ′)δ(cos θ − cos θ′). (40)

There exist spin raising and lowering operators, ð and ð̄, such that they can raise or lower

the spin weight of a function, (ð sf)
′ = e−i(s+1)ψðsf , (ð̄sf)

′ = e−i(s−1)ψð̄sf . Their forms are
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given by

ðsf(θ, φ) = − sins(θ)
[ ∂
∂θ

+ i csc(θ)
∂

∂φ

]
sin−s(θ)sf(θ, φ)

ð̄sf(θ, φ) = − sin−s(θ)
[ ∂
∂θ

− i csc(θ)
∂

∂φ

]
sins(θ)sf(θ, φ). (41)

Acting twice the spin raising (lowering) operator on spin −2 (2) functions ±2f(μ, φ) with

μ = cos θ, we obtain spin 0 functions which are rotation invariant,

ð
2−2f(μ, φ) =

(− ∂μ− m

1− μ2

)2[
(1− μ2)−2f(μ, φ)

]

ð̄
2
2f(μ, φ) =

(− ∂μ+
m

1− μ2

)2[
(1− μ2)2f(μ, φ)

]
. (42)
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Gravity in the Stúckelberg language. Phys. Lett., B711:190–195, 2012.

[42] Sergei Dubovsky, Raphael Flauger, Alexei Starobinsky, and Igor Tkachev. Signatures
of a Graviton Mass in the Cosmic Microwave Background. Phys. Rev., D81:023523,
2010.

[43] S.L. Dubovsky. Phases of massive gravity. JHEP, 0410:076, 2004.

[44] S.L. Dubovsky, P.G. Tinyakov, and I.I. Tkachev. Cosmological attractors in massive
gravity. Phys. Rev., D72:084011, 2005.

70



[45] S.L. Dubovsky, P.G. Tinyakov, and I.I. Tkachev. Massive graviton as a testable cold
dark matter candidate. Phys. Rev. Lett., 94:181102, 2005.

[46] A. Einstein. The Principle of Relativity. Siz. Preuss. Acad. Scis., page 433, 1919.

[47] G. Ellis, H. van Elst, J. Murugan, and J. Uzan. On the Trace-Free Einstein Equations
as a Viable Alternative to General Relativity. Class. Quantum. Grav., 28:225007,
2011.

[48] G. F. R Ellis, D. R Matravers, and R Treclokas. Anisotropic solutions of the Einstein-
Boltzmann equations: I. General formalism. Annals of Physics, 150:455–486, 1983.

[49] M. Fierz and W. Pauli. On relativistic wave equations for particles of arbitrary spin
in an electromagnetic field. Proc. Roy. Soc. Lond., A173:211–232, 1939.

[50] D. Finkelstein, A. Galiautdinov, and J. Baugh. Unimodular relativity and cosmological
constant. J. Math. Phys., 42:340–346, 2001.

[51] Lee Samuel Finn and Patrick J. Sutton. Bounding the mass of the graviton using
binary pulsar observations. Phys. Rev., D65:044022, 2002.

[52] Raphael Flauger, J. Colin Hill, and David N. Spergel. Toward an Understanding of
Foreground Emission in the BICEP2 Region. JCAP, 1408:039, 2014.

[53] J. N. Goldberg, A. J. Macfarlane, E. T. Newman, F. Rohrlich, and E. C. G. Sudarshan.
Spin-s Spherical Harmonics and ð. J. Math. Phys. (American Institute of Physics),
8:2155 2161, 1967.

[54] Alfred S. Goldhaber and Michael Martin Nieto. Mass of the graviton. Phys. Rev.,
D9:1119, 1974.

[55] Andrei Gruzinov and Mehrdad Mirbabayi. Stars and Black Holes in Massive Gravity.
Phys. Rev., D84:124019, 2011.

[56] A. Emir Gumrukcuoglu, Sachiko Kuroyanagi, Chunshan Lin, Shinji Mukohyama, and
Norihiro Tanahashi. Gravitational wave signal from massive gravity. Class. Quantum.
Grav., 29:235026, 2012.

[57] D. Hanson et al. Detection of B-mode Polarization in the Cosmic Microwave Back-
ground with Data from the South Pole Telescope. Phys. Rev. Lett., 111(14):141301,
2013.

[58] S.F. Hassan and Rachel A. Rosen. On Non-Linear Actions for Massive Gravity. JHEP,
1107:009, 2011.

[59] Kurt Hinterbichler. Theoretical Aspects of Massive Gravity. Rev. Mod. Phys., 84:671–
710, 2012.

71



[60] Wayne Hu and Scott Dodelson. Cosmic microwave background anisotropies. Ann.
Rev. Astron. Astrophys., 40:171–216, 2002.

[61] Wayne Hu and Martin J. White. A CMB polarization primer. New Astron., 2:323,
1997.

[62] John David Jackson. Classical Electrodynamics , 1998.

[63] P. Jain, A. Jaiswal, P. Karmakar, G. Kashyap, and N. Singh. Cosmological implications
of unimodular gravity. JCAP, 1211:003, 2012.

[64] Soumya Jana. Cosmology in a reduced Born-Infeld–f(T ) theory of gravity. Phys.
Rev., D90:124007, 2014.

[65] Marc Kamionkowski, Arthur Kosowsky, and Albert Stebbins. A Probe of primordial
gravity waves and vorticity. Phys. Rev. Lett., 78:2058–2061, 1997.

[66] Marc Kamionkowski, Arthur Kosowsky, and Albert Stebbins. Statistics of cosmic
microwave background polarization. Phys. Rev., D55:7368–7388, 1997.

[67] Brian G. Keating, Alexander G. Polnarev, Nathan J. Miller, and Deepak Baskaran.
The Polarization of the Cosmic Microwave Background Due to Primordial Gravita-
tional Waves. Int. J. Mod. Phys., A21:2459–2479, 2006.

[68] Bence Kocsis, Zoltan Haiman, and Kristen Menou. Pre-Merger Localization of
Gravitational-Wave Standard Sirens With LISA: Triggered Search for an Electromag-
netic Counterpart. Astrophys. J., 684:870–888, 2008.

[69] Hideo Kodama and Ivan Arraut. Stability of the Schwarzschildde Sitter black hole in
the dRGT massive gravity theory. PTEP, 2014(2):023E02, 2014.

[70] Arthur Kosowsky. Cosmic microwave background polarization. Annals Phys., 246:49–
85, 1996.

[71] Kazuya Koyama, Gustavo Niz, and Gianmassimo Tasinato. Analytic solutions in non-
linear massive gravity. Phys. Rev. Lett., 107:131101, 2011.

[72] Kazuya Koyama, Gustavo Niz, and Gianmassimo Tasinato. Strong interactions and
exact solutions in non-linear massive gravity. Phys. Rev., D84:064033, 2011.

[73] Shane L. Larson and William A. Hiscock. Using binary stars to bound the mass of
the graviton. Phys. Rev., D61:104008, 2000.

[74] Antony Lewis and Sarah Bridle. Cosmological parameters from CMB and other data:
A Monte Carlo approach. Phys. Rev., D66:103511, 2002.

[75] Antony Lewis and Anthony Challinor. The code is available at http://camb.info.

72



[76] E. Lifshitz. On the Gravitational stability of the expanding universe. J. Phys. (USSR),
10:116, 1946.

[77] Chung-Pei Ma and Edmund Bertschinger. Cosmological perturbation theory in the
synchronous and conformal Newtonian gauges. Astrophys. J., 455:7–25, 1995.

[78] Michele Maggiore. Gravitational wave experiments and early universe cosmology.
Phys. Rept., 331:283–367, 2000.

[79] Mehrdad Mirbabayi and Andrei Gruzinov. Black hole discharge in massive electro-
dynamics and black hole disappearance in massive gravity. Phys. Rev., D88:064008,
2013.

[80] Taeyoon Moon and Yun Soo Myung. Gregory-Laflamme instability of the BTZ black
hole in new massive gravity. Phys. Rev., D88(12):124014, 2013.

[81] V. Mukhanov. Physical foundations of cosmology, 2005.

[82] V. Mukhanov, H.A. Feldman, and R. Brandenberger. Theory of cosmological per-
turbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations.
Part 3. Extensions. Phys. Rept., 215:203–333, 1992.

[83] E. T. Newman and R. Penrose. Note on the Bondi-Metzner-Sachs Group. J. Math.
Phys. (American Institute of Physics), 7:863 870, 1966.

[84] Y. Jack Ng and H. van Dam. Unimodular Theory of Gravity and the Cosmological
Constant. J. Math. Phys., 32:1337–1340, 1991.

[85] Th.M. Nieuwenhuizen. Exact Schwarzschild-de Sitter black holes in a family of massive
gravity models. Phys. Rev., D84:024038, 2011.

[86] S. Perlmutter et al. Measurements of Omega and Lambda from 42 high redshift
supernovae. Astrophys. J., 517:565–586, 1999.

[87] A.G. Polnarev. Polarization and anisotropy induced in the microwave background by
cosmological gravitational waves. Astron. Zh, 62:1041–1052, 1984.

[88] A. Riess and A. Filippenko. Observational Evidence from Supernovae for an Acceler-
ating Universe and a Cosmological Constant. Astrophys. J., 116:1009–1038, 1998.

[89] V.A. Rubakov and P.G. Tinyakov. Infrared-modified gravities and massive gravitons.
Phys. Usp., 51:759–792, 2008.

[90] R. Sachs and A. Wolfe. Perturbations of a Cosmological Model and Angular Variations
of the Microwave Background. Astrophys. J., 147:73, 1967.

[91] Fulvio Sbisa, Gustavo Niz, Kazuya Koyama, and Gianmassimo Tasinato. Character-
ising Vainshtein Solutions in Massive Gravity. Phys. Rev., D86:024033, 2012.

73



[92] Uros Seljak and Matias Zaldarriaga. A Line of sight integration approach to cosmic
microwave background anisotropies. Astrophys. J., 469:437–444, 1996.

[93] Uros Seljak and Matias Zaldarriaga. Signature of gravity waves in polarization of the
microwave background. Phys. Rev. Lett., 78:2054–2057, 1997.

[94] Fabio P Silva and Kazuya Koyama. Self-Accelerating Universe in Galileon Cosmology.
Phys. Rev., D80:121301, 2009.

[95] Stefan Sjors and Edvard Mortsell. Spherically Symmetric Solutions in Massive Gravity
and Constraints from Galaxies. JHEP, 1302:080, 2013.

[96] L. Smolin. The Quantization of unimodular gravity and the cosmological constant
problems. Phys. Rev., D80:084003, 2009.

[97] Rafael D. Sorkin. Space-time and causal sets. 1990.

[98] Adamantios Stavridis and Clifford M. Will. Bounding the mass of the graviton with
gravitational waves: Effect of spin precessions in massive black hole binaries. Phys.
Rev., D80:044002, 2009.

[99] Patrick J. Sutton and Lee Samuel Finn. Bounding the graviton mass with binary
pulsar observations. Class. Quant. Grav., 19:1355–1360, 2002.

[100] K. S. Thorne. Multipole Expansions of Gravitational Radiation. Rev. Mod. Phys.,
52:299–339, 1980.

[101] K. S. Throne. Relativistic radiative transfer:moment formalism. Mon. Not. R. astr.
Soc., 194:439–473, 1981.

[102] W. G. Unruh. A Unimodular Theory of Canonical Quantum Gravity. Phys. Rev.,
D40:1048, 1989.

[103] A.I. Vainshtein. To the problem of nonvanishing gravitation mass. Phys. Lett.,
B39:393–394, 1972.

[104] H. van Dam and M.J.G. Veltman. Massive and massless Yang-Mills and gravitational
fields. Nucl. Phys., B22:397–411, 1970.

[105] P. Van Nieuwenhuizen. On ghost-free tensor lagrangians and linearized gravitation.
Nucl. Phys., B60:478–492, 1973.

[106] Mikhail S. Volkov. Hairy black holes in theories with massive gravitons. Lect. Notes
Phys., 892:161–180, 2015.

[107] S. Weinberg. The Cosmological constant problems. Talk given at Conference: C00-
02-23, Proceedings.

74



[108] Clifford M. Will. Bounding the mass of the graviton using gravitational wave obser-
vations of inspiralling compact binaries. Phys. Rev., D57:2061–2068, 1998.

[109] Clifford M. Will. The Confrontation between General Relativity and Experiment.
Living Rev. Rel., 17:4, 2014.

[110] V.I. Zakharov. Linearized gravitation theory and the graviton mass. JETP Lett.,
12:312, 1970.

[111] Matias Zaldarriaga and Uros Seljak. An all sky analysis of polarization in the mi-
crowave background. Phys. Rev., D55:1830–1840, 1997.

[112] Matias Zaldarriaga and Uros Seljak. Gravitational lensing effect on cosmic microwave
background polarization. Phys. Rev., D58:023003, 1998.

75



Vita

I went to Shandong University in China in the year of 2002. My major was optics

engineering. I got my bachelor’s degree of engineering in 2006. I came to the University of

Mississippi in the United states to study theoretical physics in 2007. I received my master’s

degree of science in 2012 and Doctor’s degree of philosophy in 2014.

76


	Cosmological And Astrophysical Tests Of Modified Gravity
	Recommended Citation

	Last revision.pdf

