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ABSTRACT 

The Guarumen area of Venezuela is a tectonically active region that is approximately 1,640 mi2 

across the northern portions of the Barinas Basin and the foothills of the Mérida Andes. It is 

structurally influenced by the Caribbean plate to the north, the Nazca plate to the west, and the 

Maracaibo block against the Guyana Shield of the South American Plate. These result in an 

oblique boundary that gives rise to the fold-and-thrust belt of the Mérida Andes to the west, and 

the Caribbean Mountain system to the north, in concordance to the right-lateral shearing that is 

evidenced by the Boconó fault system. The goal of this research was to investigate the geological 

setting of northwestern Venezuela and further understand the geologic controls of the region, as 

it has become a region of interest for mineral, oil, and gas exploration. To achieve the goal, 

hyperspectral and multispectral data analysis were used to address land cover types by reducing 

hyperspectral and multispectral spectra to unique endmembers for use in classification. Then, 

provide an accurate land cover analysis using derived endmembers to characterize the outcomes 

concerning the influence of geological phenomena, and determine if microclimate analysis using 

satellite-based land surface temperature data can be effectively used to infer geologic structure or 

geomorphology, particularly soils and vegetation. Based on the hyperspectral data, an in-depth 

endmember analysis was conducted with image-derived spectra. These spectra were plotted in 

comparison with spectral libraries to identify the anomaly classification. It was determined that 

the natural vegetation make up of a specific region helped identify soil type. The Guarumen area 

was influenced by the sediment transport of the alluvial stream geomorphology of both the 

Merida Andes and the Caribbean Mountain System and both its respective geologies. The  
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microclimate analysis showed a land surface temperature comparison of two separate Landsat 

scenes. Both showed a similar mean temperature range due to Venezuela’s tropical climate, but 

differed in other classifications. Results from this research show that remote sensing applications 

with limited field data can provide accurate land cover analysis concerning geological 

phenomena, but further field analysis is needed for more detailed classification. 
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INTRODUCTION 

Airborne acquisition of hyperspectral imagery has been used in the field of geology and 

geospatial applications since the early 1980’s (Kruse et al., 2003). Hyperspectral applications 

offer substantial advantages over traditional remotely used sensors. This includes the increased 

spectral resolution that allows for more precise identification of specific vegetation indices, soil 

properties, minerals, and rock groups. Geological and vegetation applications archetypally use 

the bandwidth of 1–20 nm and, depending on its sensor, spectral windows from 64–400 different 

bands spanning from the visible-near infrared (VIR), and the short-wave infrared (SWIR) 

portions of the electromagnetic spectrum depending on the sensor (Harris et al., 2005). With this 

capability, hyperspectral image analysis can provide high-resolution spectra, along with spatial 

data. These spectra are used to determine necessary signatures from the spectral data provided by 

the specific sensor (Martinez et al., 2006). With the hyperspectral imagery and its more defined 

pixel data, hyperspectral applications may improve the discrimination of multiple components, 

particularly numerous vegetation types, even with low coverage (Jafari & Lewis, 2012).  

With countries facing political and civil unrest, conducting field-based geological 

research is limited due to unsafe conditions for the researchers. During civil unrest, remote 

sensing becomes an integral tool of the research conducted on a specific field area considered a 

high region of interest. In the case of this research, Venezuela has become politically dangerous, 

and an economic threat for any continuous research on the ground. Due to the cancellation of the 
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field campaign, a detailed geologic background is important. Since fieldwork cannot be 

conducted, this makes previous field studies an integral part of this research. 

  The goal of this research was to investigate the geological setting of northwestern 

Venezuela and further the understanding of the region because it has become a region of interest 

for mineral, oil, and gas exploration. To achieve my goal, I used remotely sensed imagery and 

spectral data processing tools to address the following objectives: 1) given limited field data and 

in a variety of land cover types, reduce the hyperspectral and multispectral spectra to unique 

endmembers for use in classification; 2) provide an accurate land cover analysis using derived 

endmembers and characterize the outcomes with respect to influence of geological phenomena; 

and 3) determine if microclimate analysis using satellite-based land surface temperature data can 

be effectively used to infer geologic structure or geomorphology, particularly soils and 

vegetation.   

When working with hyperspectral imagery, not all the bands used during the acquisition 

phase are useful in an analysis. Some hyperspectral bands contain excessive noise, while some 

select bands contain important responses of interest for specific research (Rasti, et al., 2018). A 

systematic approach to identifying these bands of interest is to take into account as many of the 

variables that may affect the region of interest, and for the user to understand that different 

materials respond at different bands (Martinez et al., 2006). Endmembers are specific 

hyperspectral signatures, or a specific response, i.e., reflectance, in those given wavelengths that 

are collected by the sensor that is seen as macroscopically pure (Bateson et al., 2000). These 

endmembers are extracted from the large amount of spectral data using a variety of different 

extraction techniques. These endmembers are then visualized to determine their vector based on 

their spectral composition. To conceptualize the endmember concept, the “spectrum 
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composition” model (Figure 1) (Martinez et al., 2006) demonstrates the endmember in the n-

dimensional vector. 

 

 

FIGURE 1. Spectrum Composition Model modified from Martinez et al., (2006). 

 

 The general workflow for extracting endmembers is in the form of 1) data preprocessing, 2) 

atmospheric correction of data to apparent reflectance, 3) determining data dimensionality to 

minimize noise of the reflectance data through linear transformation, 4) pixel purity index 

(Boardman et al., 1995), or N-FINDR (Winter, 1999) to locate the most spectrally pure pixels, 5) 

automated or manual extraction identification of endmember spectra, and 6) spatial mapping and 

specific endmember abundance estimations (Kruse et al., 2003). The main takeaway from this 

workflow is the minimization of data in both spectral and spatial dimensions to identify the 

fundamental spectra that can be used to analyze the hyperspectral data. Once the selection 

process is complete, the endmembers location and abundances can be mapped from the linearly 

transformed or the initial data (Kruse et al., 2003).  

 Hyperspectral and multispectral sensors differ in a variety of ways. Multispectral sensors 

collect data from three to six bands from the visible and near-IR region of the electromagnetic 
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spectrum. This is considered a crude spectral categorization of the emitted and reflected energy 

from the Earth, which is the primary limiting factor of multispectral sensors (Govender et al., 

2007). Even though multispectral sensors are still used as an integral tool for remote sensing 

applications in various fields, hyperspectral remote sensing sensors collect several, narrow 

spectral bands from the visible (380–700 nm), near-IR (700 nm–1 mm), and short-wave infrared 

(1–2.5 mm) portions of the electromagnetic spectrum. These hyperspectral sensors collect 200 or 

more spectral bands, which allows the construction of an almost continuous spectral reflectance 

signature. With these narrow bandwidths, hyperspectral data allow a thorough examination of the 

Earth surface and its features which would be lost with the coarse bandwidths of multispectral 

data (Govender et al., 2008). 
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GEOLOGIC BACKGROUND 

Regional Setting 

The study site is a region in northwestern Venezuela just south of the city of 

Barquisimeto (10° 03ʹ52 ̎N 69° 20ʹ1 ̎E) (Figure 2) known as the Guarumen area. The site is a 

tectonically active region that is approximately 427,000 hectares (1,640 mi2) across the northern 

portions of the Barinas Basin and the foothills of the Mérida Andes. It is structurally influenced 

by the Caribbean plate to the north, and the Nazca place to the west, as well as by the Maracaibo 

block against the Guyana Shield of the South American Plate. These result in an oblique 

boundary that gives rise to the fold-and-thrust belt of the Mérida Andes, in concordance to the 

right-lateral shearing that is evidenced by the Boconó fault system.  The majority of the study 

refers to the Llanos region, which is geomorphologically classified as a Quaternary alluvial plain 

that borders the southeastern foothills of the Mérida Andes.  
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FIGURE 2: Geologic map showing structural and hydrologic features.  
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FIGURE 3: Stratigraphic column of Guarumen Area. 

 

Tectonic Basin History 

Venezuela lies on the northern margin of South America facing the Caribbean Sea. The 

Caribbean Plate and South American Plate are the two major plates influencing the tectonics of 

this region. The South American plate, moving in a western direction, interacts with the Nazca 

Plate. The Nazca Plate is subducting underneath the western edge of the South American Plate 

which causes the collision of these two plates to be responsible for the uplift of the Andes 

mountains, along with transform and thrust faulting of the region (Deiros, 2000; and Pérez et al., 
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2001). The Caribbean Plate is translated eastward approximately 22 mm per year in comparison 

to the neighboring South American Plate (Deiros, 2000; and Pérez et. al., 2001), while the Nazca 

plate is moving eastward at approximately 60 mm/yr, and subducting underneath Columbia 

(Freymueller et al., 1993). Most of the tectonic movement within Venezuela occurs between the 

Caribbean and South American plate and falls along the Boconó, El Pilar, and San Sebastián 

fault zones (Audemard et al., 1996).  

 The Precambrian Guayana Shield of Venezuela is rimmed by multiple foreland basins 

that all deepen in the direction of the Mérida Andes and the interior and coastal ranges. All of 

these basins contain Cretaceous and younger sediments above local rifts with Paleozoic and 

Jurassic sedimentary rocks (James, 2000). The basement arch, the El Baúl Uplift, separates the 

Barinas-Apure basin from the Eastern Venezuela Basin in the East, as seen in Figure 3. Close to 

the Colombian border in the west, the subsurface Arauca Arch separates the Barinas-Apure Basin 

from the Llanos Basin. The Eastern Venezuela Basin is crossed by the Anaco Fault that divides 

into the Guárico Sub-basin that lies in the west, and the Maturín Sub-basin to the east. (James, 

2000).  
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FIGURE 4: Basement map of Venezuela (Ruiz & Adana, 2013) 

 

Barinas-Apure Basin 

The Barinas-Apure Basin is geographically located in the northwestern part of Venezuela 

that is southeast of the Mérida Andes. It is the third largest oil producing basin in Venezuela with 

an aerial extent of about 95,000 km2 and a maximum sediment depth of approximately 5,000 m 

(Jácome & Chacín, 2008).  To the west of the basin, the Mérida Andes, a NE-SW trending 

mountain chain, contains a large northeastern uplifted block approximately 420 km in length that 

reaches an elevation of about 5000 m (Gonzalez de Juan et al., 1980). This uplift is the result of 

Barinas-Apure Basin subsidence. However, the history of the subsidence in this basin in relation 

to tectonic evolution has never been quantitatively studied (Chacín et al., 2005). The Paleogene 

sedimentation in the Barinas Basin is missing lower Eocene and Paleocene strata. Rather, it 

begins with the upper and middle Eocene diagenesis of several formations grading from neritic 

shales to fluvial sandstones that establishes a single transgressive-regressive cycle (Pierce, 1960; 

Furrer, 1971; Osuna et al., 1995; Erikson et al., 2012; and Rincó et. al., 2016). Above the Barinas 
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Basins regional unconformity lie less than 500 m of Cretaceous marine sandstones, shales, and 

limestones (Erikson et al., 2012).  

 

Barinas Outwash Plain 

The Barinas Basin outwash plain is composed of material derived from igneous and 

metamorphic rocks. The Barinas alluvial fans are 15 kilometers in width from the foothills in the 

direction of the Los Llanos. These outwash plains are speculated to be correlated with the terrace 

deposits of Trujillo and Valera Formations, which are composed of outwash material that was 

deposited in a lake formed by the Motatán anticline (Liddle, 1946). The Barinas outwash plain is 

part of the larger network of the Venezuelan Los Llanos; this is the largest sedimentary basin of 

Quaternary origin in Venezuela (Vargas et al., 2002). 

 

Venezuelan Andes 

The Venezuelan Andes are a doubly vergent asymmetrical orogen that is bordered on the 

southeastern side of the range by the Barinas Basin. The Boconó strike-slip fault system 

obliquely transects this orogon (Erikson et al., 2012). The South American Andes have evolved 

throughout time in a multi-plated regime. The Venezuelan Andes show an uncovered core of 

Paleozoic granitic plutons, schists, and gneisses, while sides of the mountains are covered with 

Cenozoic and Mesozoic sedimentary rocks (Erikson et al., 2012).  Previous studies have not 

identified intrusive autochthonous or extrusive igneous stratigraphy younger than the mid-

Mesozoic (Erikson et al., 2012). The Mérida Andes, is in the Northeastern extension of the 

Eastern Cordillera of the Colombian Andes. This section of the range extends in a northeastern to 
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southwestern direction with its structural network following suit, as seen in Figure 5. This 

belongs to the main chain of the Andes that covers the Pacific coast of the continent. 

A major structural factor that interacts with the Mérida range is the Bócono fault. This 

major fault trends NE-SW and slightly oblique to the chain axis of the regional mountain 

network joining the Caribbean Mountain System of the northern part of Venezuela. This region 

is characterized by a large variety of geomorphological features including 1 to 5-km-wide 

valleys, scarps, ridges, and depressions (Audemard & Audemard, 2002). On its eastern side, the 

Bócono fault is characterized by right lateral offsets of a variety of Quaternary features, such as 

its ridges and alluvial deposits (Schubert, 1982). These eastern features continue to become the 

foothills of the Mérida Andes range, gradually fanning out into the Llanos (Audemard & 

Audemard, 2002).  

 

FIGURE 5: Structural Map of Merida Andes, Venezuela (Audemard & Audemard, 

2002). 
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Caribbean Mountain System 

On the northern coastal region of Venezuela, a northeastern extension of the Andes forms 

an elongated E–W trending belt known as the Caribbean Mountain System. This system Extends 

from the Sierra Nevada de Santa Marta and Guajira Peninsula in Columbia, and east to the island 

of Trinidad and Tobago. These ranges are separated on the west of the Venezuelan Andes by the 

Barquisimeto depression. The Caribbean Mountain System tectonically represented by the 

superposition of a series of several nappes. Geologically, this system ranges from early Paleozoic 

to mid-Cenozoic and consists of a mixture of all three rock types. The major tectonic events 

began in the Late Jurassic to the Early Cretaceous when the sealing of the oceanic location of 

lower Jurassic rocks transported north of the Guyana Shield. This compressive episode is related 

to the opening of the South Atlantic Ocean, which was accompanied by magmatic events. These 

events caused for a compressive phase during the Paleocene and Eocene, which resulted in the 

nappes being displaced and partially superimposed toward the south. The Barquisimeto 

depression relates the border between the thrusted nappes and the Andean Mountain range 

(Bellizzia & Dengo, 1990). 

 

Structural Geology 

The study area contains an exceptionally large number of alluvial plains. The plain is 

surrounded by mountain chains, including the Andes Mountains to the west and a smaller range 

of hills and mountains to the north, known as the El Baul Uplift (EBL). The structural features of 

these ranges predominantly are trending in a NE-SW orientation with some faults trending in a 

NW-SE orientation. Most of the NE-SW oriented faults are thrust faults that are thrusting to the 

NW due to horizontal compressional stresses (Davis et al., 2012).  
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Within the study area, there are a variety of different structural features. Some of the 

most dominant features are thrust faults and normal faults throughout the northern region. In the 

south are a variety of klippes, resulting from the regional thrust faulting. This continues south 

into the synclinal and anticlinal infused Piedmont and hill region that falls in elevation to the 

alluvial plain. There is a major thrust fault that is striking from NE-SW and is located in the 

alluvial plain that is separated from the rest of the structurally active region (Figure 4). The 

predominant structural pattern of the faulting area is NE-SW for the northern mountain range and 

NW-SE for the Merida mountain range. 

 

Vegetation 

 The Guarumen area is located in two major vegetation regions in Venezuela. The 

majority of the region that is identified as Quaternary alluvium is part of the Los Llanos region, 

while the eastern part that begins to climb in elevation is part of the Mérida Andes region. Both 

regions have vegetation that is descendants of tropical-subtropical species, but there are two 

distinct regions within the Guarumen area that define the vegetation. The Merida Andes contain 

a variety of semi-evergreen forests that are described as a higher elevated, richer soil, and more 

saturated type forest. Only a certain portion of these semi-evergreen trees in the upper region of 

the mountain remains leafless for a short period of time. This upper region has a heavier rainfall 

approximately 1400–2000 mm, with a prolonged wet season of 8–9 months. Further east, the 

Piedmont of the Caribbean Mountain System consists of a tropical deciduous forest. This is the 

driest region of the Llanos, with an annual rainfall of approximately 800–1000 mm per year with 

a wet season ranging around 5–6 months (Sarmiento & Monasterio, 1969). 
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Los Llanos 

 The vast majority of the Venezuelan Llanos are comprised of flat or undulating lowlands. 

The lowland boundary is limited to the northern Coastal Cordillera mountain system, and the 

southern Precambrian mountain system of the Guayana Shield (Aymard, 2006). Los Llanos 

extends across a large SW-NE syncline occurring from the Coastal Cordillera and Guayana 

Shield. Due to these orogenic processes that were caused by the Andean uplift, the majority of 

the Llanos sits in a large depression that was originally flooded by marine waters. The Llanos 

was filled since the Upper Tertiary and during the Quaternary with sedimentation that dominates 

the geology of the region today. During the mid to Late-Neogene period, the depression went 

through tectonic processes that caused moderate uplift, which initiated erosion in the area and 

caused sediment accumulation in the region (Aymard, 2006). Due to these tectonic processes 

during the Neogene and Quaternary, four main types of geomorphological landscapes determine 

the areas soils and vegetation can be identified: eolian plains, alluvial plains, hills, and denuded 

surfaces.  Some of the main features within the study area consist of water bodies, alluvial plains, 

alluvial fans and braids, lacustrine plains, piedmont, river valleys, foothill valleys, mountain 

valleys, high plateaus, hills, and mountains. 

 The Venezuelan Llanos contain a large variety of ecosystems with a large diversity of 

plant communities and different vegetation types. A complete list of the region's taxonomy of the 

vegetation types has not been fully written yet, but regional studies have been completed with 

different classification schemes. Some of the most important classifications were composed by 

Tamayo (1964), Ramia (1967), and Sarmiento (1984), but the classification of the area with the 

widest range of acceptance is the Beard (1953) classification (Aymard, 2006). Four major 
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regions are identified within the Llanos: the deciduous forest region, the semi-evergreen forest 

region at the Piedmont of the Andean Range, the swampy savannas in the floodplains of the 

Orinoco River, and the dry savanna region that is located in between the deciduous forest region 

and the Orinoco valley (Sarmiento & Monasterio, 1969). In terms of this research, the Llanos 

region located in the Guaramen area is primarily located in the semi-evergreen forest region, as 

seen in Figure 6 from Sarmiento & Monasterio (1969).  

 

FIGURE 6: Map of Los Llanos Region of Northwestern Venezuela (Sarmiento & Monasterio, 

1969) 
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METHODS 

Data Acquisition  

The data acquired for this research was provided by SpecTIR, a hyperspectral imagery company 

based out of Reno, Nevada. SpecTIR provided a series of hyperspectral imagery datasets of the 

Guaruman area. The hyperspectral imagery was acquired on January 19th, 2016 using a 

ProSpecTIR–VS2 airborne sensor with a flight altitude yielding 3-meter pixel data. This sensor 

was configured to collect from 390–2450 nm. This sensor consists of 360 bands with a 5 nm 

spectral resolution with a full-width half-maximum (FWHM) varying about 3.8 nm to 8.5 nm, 

with the full wavelength range of the sensor (Herweg et al., 2012). The data were 

atmospherically corrected from radiance to reflectance data with ATCOR 4 using version 6.2 

MODTRAN. Other datasets used were acquired from USGS Earth Explorer. These were 

primarily Landsat 5,7, and 8 datasets with one set of ASTER digital elevation models. All 

imagery was placed in a database for ease of access.  

 

Region of Interest Selection 

 Processing data of the whole study area would be ideal, but due to technological 

limitations and time constraints, the data were separated into multiple Regions of Interest (ROI) 

to process the data in a timely manner. Four ROI were selected based on their variety of location, 

geology, geomorphology, and structural characteristics. Each location was used to identify a 
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specific region of the larger study area and was used to make correlations with vegetation and 

soil anomalies. 

 ROI (Figure 7) was located in the southwestern region of the study area, bordering the 

foothills of the Merida Andes. It lies within five different geologic formations; these include Rio 

Guache, Rio Yuca, Guanapa Formations, and Quaternary alluvium formations. 

Geomorphologically, it has a variety of alluvial fans and fluvial braids, hills, and piedmont. 

There are no structural features in the ROI observed on the surface, but just south is a thrust fault 

thrusting upward in a northern direction. The ROI contains a mixture of sedimentary rocks 

ranging between calcareous shales, conglomerates, limestone, marl, sand, silts, and clays. 
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FIGURE 7: Regional Map of ROI 1. 

 

 ROI 2 was located in the north central region of the study area (Figure 8). This location is 

set within the Quaternary alluvium deposits and is located in a highly agricultural region, with a 

mixture of healthy vegetative agricultural plots, and some that are in the process of controlled 

burning. The northernmost part of the ROI is the Las Majaguas Reservoir; this is being used as a 

control for water with the endmember analysis. 
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FIGURE 8: Regional map of ROI Two. 

 ROI 3 is located in the northeastern part of the study area (Figure 9). This region was 

selected within a highly active structural environment with one unclassified fault running in a 

southeastern direction, and a syncline transecting the center. ROI 3 lies within the Quaternary 

alluvium, containing sand, gravel, and silt. The Murcaria Formation contains carbonaceous shale, 

and the Agua Blanca, Araure, and Cojedes Formations contain limestone and conglomerate.  
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FIGURE 9: Regional Map of ROI 3. 

 ROI 4 is located northwest of ROI 1 and sits in the Quaternary alluvium, and the Rio 

Yuca Formation (Figure 10). These formations consist of unconsolidated sands, sandstone, silts, 

gravels, and conglomerates.  In the southern part of the region, there is a major stream crossing 

in a northwest to southeastern direction. This stream deposits a high sediment load of mafics, 

marl, calcareous shales, and mudstones from the Rio Guache Formation.  
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FIGURE 10: Regional map of ROI 4. 

Image Processing 

The hyperspectral, multispectral, and DEM imagery used was processed with ENVI 5.3. 

The geospatial processing was conducted with ESRI 10.4.1. This included mapping and 

metadata of geology, geomorphology, elevation, and structural maps. The hyperspectral imagery 

was composed of 360 bands with ground sampling distance (GSD) at 3 meters in both the X and 

Y directions. The imagery was smoothed with a Savitsky-Golay convolution filter, and CO2 

mitigation applied. Again, with the large study area, and limited field campaign, the 

hyperspectral imagery was subset into four ROIs. These four ROIs were identified and selected 
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based on limited field data collected from previous literature, and differing geologic, 

geomorphologic, and structural locations throughout the research area. 

 

Image Analysis 

The objective of the analysis was to investigate the geological setting of northwestern 

Venezuela and further the understanding of the region because it has become a region of interest 

for economic natural resources. Hyperspectral and multispectral data and spectral data 

processing tools were used to address unique derived endmembers for classification of land 

cover, and to analyze the classifications to characterize the outcomes with respect to the 

influence of geological phenomena. This was done to identify how these anomalies related to the 

regional geomorphology and structural geology and identify any form of correlation within the 

study area. The primary method used for this analysis was to conduct an endmember analysis 

with the hyperspectral data by using the Spectral Hourglass Workflow. This tool was provided 

through ENVI 5.2, with the capabilities to limit the number of bands to the primary bands that 

are purest in terms of its pixels. With the ability to spectrally analyze the image derived 

endmembers for specific spectral signatures, and compare them to spectral libraries, makes it 

possible to find anomalies in both vegetation and soil properties.  

The secondary method for this analysis consists of identifying the same anomalies 

mentioned before, but by mapping the regional emissivity and land surface temperature to 

identify abnormality, and correlate them to the previous method. 
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Image Derived Endmembers  

With a high spectral resolution of hyperspectral imagery, interpretation strategies are 

taken into consideration based on the data, and spectral unmixing is facilitated. Mixed pixels are 

common in hyperspectral data due to a poor spatial resolution of the imaging spectrometer, or 

intimate mixing effects. This mixture problem has both a macroscopic and microscopic dilemma 

in terms of mixtures on a large scale with grass, trees, and soil, in a 3x3 meter-pixel, or on a 

small scale with minerals intimately mixed in a 1-meter pixel (Mauro et al., 2014). A key 

dilemma with unmixing is deciding whether to use field derived spectra observations, or image-

derived from the dataset. The benefit of image-derived endmembers advances itself with 

automation and does not require the need for expensive field spectrometers or the need for field 

visits. Image-derived endmembers may, however, neglect to incorporate minor landscape 

components that never attain abundance levels that they dominate a single, pure, pixel (Dehaan 

& Taylor, 2003).   

 

Spectral Hourglass Workflow 

 The method used to conduct this bad band elimination is known as the “Spectral 

Hourglass Processing Workflow” (Figure 11). This workflow leads to finding and mapping 

spectral endmembers by allowing sub-pixel target detections, unambiguous spectral mixing, and 

material identification. Beginning from the top of Figure 11, this method normally begins with 

atmospherically correcting the imagery with FLAASH, but due to the preprocessed acquisition 

through ATCOR4 MODTRAN, this step was already completed. 
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FIGURE 11: Spectral Hourglass Workflow (Modified from Harris Geospatial, 2018). 

 

The next step of the hourglass was computing the minimum noise fraction (MNF). The 

MNF is used for reducing large multiband datasets into a smaller number of components that 

contain the majority of the spectral variance within the dataset (Harris et al., 2005). The formal 

definition, which was provided by Boardman and Kruse (1994) states that MNF transforms are 

used to determine the intrinsic dimensionality of the image data and to separate the noise in the 

data while reducing the computational requirements for further processing. The MNF transform 

is modified from Green et al. (1988), and was implemented in ENVI. It involves two sequences 

of principal component analysis (PCA).  The first rotation uses the noise covariance matrix 

principal components to deconstruct and rescale the noise in the data. This noise also known as 

noise whitening. The results of the first rotation transformed data that have no band-to-band 
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correlations, but do contain unit variance. The second rotation uses the derivatives of the 

principal components from the original image data after the noise-whitened process has taken 

place and rescaled by the noise standard deviation. These processes are determined by examining 

the final eigenvalues of the image file. For this research, a forward transform MNF was used to 

help determine which bands contained coherent images and to estimate the noise statistics from 

the data (Green et al., 1988). 

The next processes on the hourglass workflow were pixel purity index (PPI) and the n-

dimensional visualizer. The PPI is used to define the most spectrally-pure pixels in both 

hyperspectral and multispectral data. The PPI is computed by random vector selection through 

the n-dimensional data cloud, where each individual vector is constrained to pass through the 

center point (the mean value) of the n-dimensional cloud and are plotted on the visualizer. The n-

dimensional visualizer is a multi-dimensional scatter plot that labels the purest pixels on a 

random unit vector. It is used to identify, locate, and cluster the purest pixels and the extreme 

spectral endmembers in the n-dimensional space. This is done by defining the PPI threshold and 

locating the tail end of the pixels plotted on the random unit vector (Boardman et al., 1995). 

 The PPI threshold is defined by the user. Usually, the threshold is defined by using the 

same units as the pixel values, but when performing a MNF, as in this study, the threshold is 

defined by the noise standard deviation units. The lower the value of the threshold, the fewer 

pixels will be identified as pure. This tool helps to visualize the shape of the data cloud by 

plotting image data in spectral space (Harris Geospatial, 2018). The purest pixels are 

distinguished by recurrently projecting n-dimensional scatter plots onto a random unit vector. 

The purest pixels in every projection and the number of times the pixel is marked extreme are 
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recorded (Boardman et al., 1995) (Figure 12). These pure pixels are expected to represent 

spectrally homogenous samples of the mixing endmembers. 

 

FIGURE 12: n-dimensional pixel purity model (Modified from González et al., 2018). 

The ability to visualize the algorithmic procedure of the PPI is shown by the 

hyperspectral data F with n dimensions; the number of bands that are generated through the 

process, K; and a limited threshold value, tv, which identifies as final endmembers based on the 

number of times those pure pixels have been selected as extreme. At least tv amount of times in 

the PPI step of the hourglass workflow (González et al., 2010). The PPI algorithm can be seen as 

follows:  

(1) Band generation. Randomly generate sets of bands K as unit vectors. 

     {Band j}�𝐾𝐾𝑗𝑗� = 1   Equation 1 



27 
 

(2) Extreme estimations. Every Band j ={1,…., K}, with each pixel vector fi in its 

original dataset F is projected with each band using pixel products of |fi*Bandj| to 

identify sample vectors in its minimum and maximum projections (extreme). This is 

the extrema for each Bandj, termed as SExtrema(Bandj). Even though different bands 

create different extreme pixel sets, it is probable that some vectors may appear in 

more than one extreme pixel set. To justify this, it is defined that the indicator 

function of a set F, is denoted by ℓS (x), to denote the relationship of an element x to 

the particular set is as follows: 

    ℓS(x)=�1 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ 𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
0 𝑖𝑖𝑖𝑖 𝑥𝑥 ∉ 𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

  Equation 2 

If 𝑥𝑥 is identified as an extrema, then ℓS is populated with “1”, which is an indicator 

member of the subset. If 𝑥𝑥 is not identified as an extrema, then ℓS is populated with 

“0”, which indicates that it is not a member of the subset. 

(3) Calculation of PPI. With the indicator function above in use, the PPI score was 

calculated based on the pixel vector fi (The number of times a given pixel is selected 

as extreme) and use the following equation: 

𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃(𝒇𝒇𝒊𝒊) = ∑ 𝑙𝑙𝑠𝑠𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸�𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝒋𝒋�(𝐟𝐟𝒊𝒊)𝑲𝑲
𝒋𝒋=𝟏𝟏   Equation 3 

(4) Endmember Selection. In the selection process, the n-dimensional visualizer is used to 

locate pixel vectors with scores of 𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃(𝒇𝒇𝒊𝒊) that are above tv and label them in the 

ROI tool as spectral endmembers that are assigned a specific color attribute 

(González et al., 2010). 

After the endmembers were identified, the major work can be started identifying 

endmembers. This will ultimately lead to distribution mapping, the penultimate step in the 
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hourglass workflow. The spectral analyst tool was used to identify specific endmembers, 

classify, and compare them to specific spectral libraries. The analyst tool used does not identify 

the spectra; it only provides likely recommendations for spectra identification. The actual 

identification of the spectra is based on the user interpretation. The spectral analyst tool is best 

used to identify materials based on their spectra. The spectral libraries used were the provided 

library database defaulted by ENVI 5.2. 

Using the spectral analyst tool through ENVI, a weight needed to be input for both of the 

similarity methods. By default, the spectral feature fitting uses a weight of 1.0, which is the 

weight that was used during the process. The minimum and maximum values were set at a scale 

from 0.0 to 1.0 for both the Spectral Feature Fitting, and the Binary Encoding, but for the 

Spectral Angle Mapper, a Min-Max was set to 0 to 0.78540, which was the default setting. Each 

of these different method descriptions was read with different values. For example, the Spectral 

Angle Mapper values are read in radians, the Spectral Feature Fitting is read in RMS error units, 

and the Binary Encoding is read in the percentage of the bands. Each of these values were plotted 

in a spreadsheet with the recommended spectral identity, the value representing the precision of 

both spectra from the library, and the data (Harris Geospatial, 2018).  

 The final stage of the hourglass is the post classification stage. This includes: performing 

a spectral angle mapper (SAM) classification that uses the n-dimensional angle to match the 

pixels to the spectra (Kruse et al., 1993); Linear Spectral Unmixing (LSU), that shows the 

relative abundance of materials that are based on specific spectral characteristics and that the 

reflectance of each pixel is at a linear grouping of each endmember is present within the pixel 

(Dehaan & Taylor, 2003); Matched Filtering (MF), to locate abundances for user-defined 

endmembers by using a partial mixing (Boardman et al., 1995); Mixture Tuned Matched 
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Filtering (MTMF) to add an infeasibility image to the results; and Spectral Feature Fitting to 

compare reference spectra to the fit of image spectra using a least-squares technique (Harris 

Geospatial, 2018). 

Kappa Coefficient 

 The kappa statistic, or Cohen’s kappa, is a statistical analysis used widely in remote 

sensing applications to test interrater reliability. Interrater reliability is important because it 

signifies data collected in the study area is accounted as a correct representation of the variables 

measured. The data collectors (raters) assign the same score to its matching variable; this is 

called the interrater reliability score. Cohen suggested that the kappa scores be interpreted as 

follows (Table1) (McHugh, 2012). 

 

Value of Kappa Level of Agreement % of Data that are Reliable 
0-0–20 None 0–4% 

0.21–0.39 Minimal 4–15% 
0.40–0.59 Weak 15–35% 
0.60–0.79 Moderate 35–63% 
0.80–0.90 Strong 64–81% 

Above 0.90 Almost Perfect 82–100% 
 

TABLE 1: Interpretation of Cohen’s kappa 

The kappa assessment shows that a coefficient equal to 1 means a perfect agreement whereas a 

value that is close to 0 means that the agreement is no better than it would be expected by chance 

(Rwanga & Ndambuki, 2017). This statistic is calculated through hyperspectral imagery by 

creating a random point generator where a select number of random points are generated on a 

classification image. This is then plotted on a confusion matrix where it is compared against the 



30 
 

observed accuracy of the classification. This observed accuracy can be determined by the 

diagonal in the error matrix. This is computed by the following equation: 

𝐾𝐾 = Observed Accuracy−Chance Agreement
1−Chance Agreement

             Equation 4 

 

Microclimate Analysis 

 Regional climate change with interactions between vegetation, environment, and climate 

in the long-term, and a lack of, or excess of precipitation, groundwater, and surface water in the 

short-term, can create a window for anomalous vegetation development in spectral properties 

that can be observed through satellite and airborne imagery. Both emissivity and land surface 

temperature (LST) have been studied thoroughly as a powerful tool in land surface properties 

(Sun et al., 2012). LST is defined as the temperature interaction where the surface is touched 

with the hand or body temperature on the ground. This method has proven itself successful in 

terms of climate change, agricultural processes, and land cover. LST was originally generated 

using MODIS and ASTER data of the same date and time and matched to create a LST output. 

This was a successful attempt for calculating the LST, but recently an updated algorithm was 

created using Landsat 8, which computed a result with better accuracy (Rajeshwari, 2014). 

For my study, a microclimate relief map was computed from the LST of the study area to 

detect possible anomalies related to microclimate conditions based on two separate time frames 

of the same location. This process used Landsat 8 data computed on ENVI 5.3 using both the 

band math and radiometric calibration tools. The algorithm process consisted of five major 

processes to achieve LST as follows (Avdan &Jovanovska, 2016): 
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(1) . Radiometric Calibration. Once the bands are converted to reflection, the TIRS band 

data is converted from spectral radiance to brightness temperature (BT), which is 

calculated from the thermal constants (K1 and K2) from the metadata. The following 

equation is used in the band math tool through ENVI to achieve this process. 

𝐵𝐵𝐵𝐵 = 𝐾𝐾2
ln (𝐾𝐾1𝐿𝐿λ+1)

− 273.15   Equation 5 

To obtain these results in Celsius, the absolute zero constant (-273.15 ˚C) was used to 

convert the final values from Kelvin to Celsius.  

(2) Calculating NDVI. The visible and near-infrared bands were used to calculate 

normalized difference vegetation index (NDVI). Landsat 8 bands 4 and 5 were used 

in the equation below to calculate the vegetation index of the Landsat scene. The 

calculation of the NDVI is crucial to this algorithm process due to the later 

calculations of proportion of vegetation and emissivity. In this equation, the NIR 

represents the near-infrared (band 5) and R represents the red band (Band 4). 

                                 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = NIR (band 5)−R(band 4)
NIR (band 5)+𝑅𝑅 (band 4)

   Equation 6 

(3) Proportion of Vegetation. This was conducted by calculating the min/max range of 

the calculated NDVI from the previous equation.  

           Pv = �
�𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚�

(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚) �
2

                           Equation 7 

(4) Land Surface Emissivity. In order to calculate LST, land surface emissivity must be 

known. Due to the land surface emissivity being a proportionate factor of Planck’s Law 

to predict emitted radiance, the ground emissivity is calculated as follows: 
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                 𝑒𝑒 = 𝜀𝜀𝑣𝑣𝑣𝑣𝑃𝑃𝑣𝑣 +  𝜀𝜀𝑠𝑠𝑣𝑣(1 − 𝑃𝑃𝑣𝑣) + 𝐶𝐶𝑣𝑣               Equation 8 

Where εv and εs are the mean vegetation and soil emissivity values, and C represents 

the surface roughness.  

(5) Land Surface Temperature. The final phase of the algorithm is to calculate the LST in 

Celsius. This equation was calculated in the Band math tool as follows (Stathopoulou 

& Caralis, 2007): 

 

𝐿𝐿𝑆𝑆𝐵𝐵 = BT

�1+��𝑤𝑤𝑃𝑃�ln (𝐸𝐸)��
   Equation 9 

Where W is equal to the wavelength of the emitted radiance, P is equal to Planck’s 

constant multiplied by the velocity of light divided by Boltzmann’s constant (Weng et 

al., 2004). 

Upon Completion, the LST map was converted from grayscale to a multicolored image. 

This provided clearer visualization of the high and low LST of the Landsat image. The LST data 

were then plotted on a histogram to give a representation of how many pixels were collected in 

each temperature range. The cursor value tool was used to identify specific locations from the 

ROI to measure the surface temperature of a location and compared for quality. These surface 

temperatures were then classified within a color range to be projected in map view. I then 

spatially analyzed and interpreted the surface temperature data anomalies located in the 

microclimate map, then compared to the regional geological features within the region to find 

potential correlations.  
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RESULTS 

Endmembers and Spectral Data 

 Four ROI were selected throughout the study area to give a variety of geology, 

vegetation, geomorphology, and structural characteristics. Due to the study area being large, this 

multiple analysis was necessary due to processing capabilities. For each ROI, the endmembers 

were extracted and plotted as spectral reflectance in reference to one another (Figure 12). 

Anomalies, or similarities were observed within specific regions of the study area to understand 

how the soil and vegetation affect the geology, geomorphology, and structural geology of the 

region. The endmembers for each ROI were identified through the “purest pixels” in the n-

dimensional space with wavelengths ranging from 0.01 to 2.45536 micrometers. Each of these 

endmembers appeared to be associated with a variety of soils, vegetation, water, and urban 

characteristics. These endmembers were derived through a multiple phase process to ensure the 

analysis of these endmembers were conducted as accurately as possible without the use of field 

data. The endmember analysis was an efficient classification method to extract the purest pixels 

of the hyperspectral imagery and locate any trends within the ROI to address the research 

objectives.  

 Each of the four ROI spectra revealed specific characteristics to the larger study area 

region. These characteristics varied based on their geological and geomorphological location and 

showed specific regional features that could be further investigated based on soil and vegetation 

anomalies.  
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FIGURE 13: Endmember spectra of four ROI locations. (Wavelengths in μm). 

Spectrally distinct endmembers were extracted by using the spectral analyst tool to its 

best ability, and if failed, the spectra were determined by examining the image distribution, 

spectra, and abundance of the ROI. The n-dimensional classes were roughly characterized as 

belonging to some form of soil, which includes mineralogy and petrologic properties, and 

vegetation, which differentiated on a macro scale from trees, and flat ground cover ranging from 

grassland to agriculture. Each of the ROI spectra was compared to one another to identify any 

anomaly that may be present within the region.   
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ROI 1 

 

FIGURE 14: SAM image classification of ROI 1 

ROI 1 (Figure 13), was a highly forested area with limited to no agriculture. The majority 

of the vegetation make up consisted of coniferous trees, while the remaining region consisted of 

healthy grass, urbanization, and dry grass with an exposed loamy soil. When measuring the 

agreement and accuracy of ROI 1 and its classification, the ROI received a Kappa Coefficient of 

0.52 (Table 1) and an overall accuracy assessment of 68.11%.  

Class Coniferous Grass Dry Grass Urban Total 
Coniferous 1923 0 0 0 1923 
Grass 6 2590 0 0 2596 
Dry Grass 0 0 5434 0 5434 
Urban 0 0 622 1 623 
Unclassified 42 18 0 165 225 
Total 1971 2608 6056 166 10801 

 

TABLE 2: Kappa Coefficient and accuracy assessment of ground truth pixels of ROI 1 

 The first endmember of this ROI, “Urban” (yellow) consisted of a small percentage of 

the area. Within the Kappa statistic, the value registered in the majority of dry grass. This was 

due to the albedo effect, and the high reflectance of particular areas of the dry grassy/loam 

locations registered as urban. This can be seen in the dry grass/loam location. 

 The next endmember identified was a coniferous tree network, represented as blue in 

(Figure 13). This endmember covered the majority of the ROI, and throughout the Piedmont and 
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hill regions of the Merida Andes as well. There was slight chlorophyll absorption at the 500–550 

nm, and a high reflection in the near infrared ranging from 800–1200 nm. The water absorption 

bands of this endmember responded around 1500–2400 nm.  

The dry grass/loam endmember was separated from the healthy grass based on its high 

albedo. This endmember was contained to a single region of the ROI where the lack of 

vegetation health and bare soil were exposed due to a lack of water, or land management. Based 

on this endmember located in the Quaternary alluvium plain, the soil of this exposed surface 

more than likely contained a mixture of sand and silt along with the dry vegetation within the 

pixels. The water absorption features of this endmember give a range of 1,400–2,300 nm and 

reduce drastically at 2,400 nm, showing a possible increase in soil moisture. 

The last endmember recorded with ROI 1 had the characteristics of healthy grass 

vegetation. This endmember’s spectra had a high chlorophyll absorption around 600 nm with a 

defined cell structure in the near infrared at approximately 800–1,200 nm, and a slightly better 

absorption feature at 1,800 nm. This endmember occurs both in an agricultural and natural state 

within the ROI. 

ROI 2 

ROI 2, (Figure 14), contained multiple variations of soil classifications with two different 

types of water bodies, and a deciduous tree network rooted within a highly agricultural area. The 

soil types varied in this region with a higher concentration of silts and sands that were exposed 

due to exposed agricultural activities, or a decrease of surface water due to reservoir damming. 

This location is shown to be the most agriculturally active out of the entire study area. The 

analysis of this ROI received a Kappa Coefficient of 0.64 and overall accuracy of 72% (Table 2).  
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FIGURE 15: SAM image classification of ROI 2 

 

TABLE 3: Kappa Coefficient and accuracy assessment of ground truth pixels of ROI 2. 

 

The first endmember was identified as turbid water due to the presence of suspended 

soils. This can be seen in the spectra 650–700 nm range where it has a higher response in 

reflectance compared to the water spectra from the reservoir. The spectra water from the 

reservoir showed relatively little absorption in the wavelengths less than 600 nm, this was shown 

by a higher transmittance in the blue and green portion of the spectrum. In this ROI, a deciduous 

tree network was identified based on spectral reflectance of the classified endmember as a visual 

interpretation of the imagery. These trees are closely associated with a type of broadleaf tree, 

based on regional studies. The deciduous endmember spectra contained a moderate chlorophyll 
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absorption at 550 nm with high reflectance in the near infrared from 650–1,300 nm range. The 

absorption bands of this spectra were low in reflectance due to high water absorption rates at the 

1,500–2,000 nm range. The agricultural endmember of ROI 2 was similar in spectral reflectance 

as the deciduous endmember, but, with minor differences in reflectance, the analysis was able to 

detect the differences between the two endmembers. The stressed agriculture was easily detected 

through the analysis phase due to the high reflectance rate in the spectra. By spatially deriving 

the image, it is shown that some of the dried, stressed region is due to possibly controlled 

burning, or a change in crop for next planting season. The majority of the exposed soils 

identified in the analysis were sandy and silty loams. These two endmembers can be 

distinguished based on the reflectance where sandy loam has a lower reflectance than silty loam.  

ROI 3 

ROI 3 (Figure 15) was located in a highly structural region with high soil exposure in the 

Northern part of the study area. This location is south of the Caribbean mountains in a deciduous 

tree network with a soil mixture identified as silty clays and silty loams. This ROI received a 

Kappa Coefficient of 0.97 and overall accuracy of 98.62% (Table 3).  

 

FIGURE 16: SAM image classification of ROI 3 
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Class Water Silty Clay Deciduous Grass Pale Brown 
Silt 

Water 75 0 0 0 0 
Silty Clay 0 50 0 0 0 
Deciduous 0 0 1881 0 0 
Grass 0 0 0 69 0 
Brown Silt 0 0 0 0 0 
Unclassified 2778 0 0 0 0 
Total 2853 50 1881 69 0 

 

TABLE 4: Kappa Coefficient and accuracy assessment of ground truth pixels of ROI 3 

 

 The first endmember classified in the ROI 3 spectra was silty loam. This is located 

throughout the ROI and covers most of the structural features, (e.g., klippes). During the spectral 

analysis, the silty loam also showed traces of carbonaceous shale, which is a prominent feature in 

the Mucaria Formation, located in ROI 3. Silty clay is located in the ROI; this was determined 

based on the difference of the reflectance in the spectra. The silty clay endmembers showed a 

more prominent absorption feature at the 1,600–2,200 nm range than the silty loam endmember 

spectra due to clays’ impermeable features, but the silty loam showed a higher reflectance 

overall since water was more easily absorbed.  

 

ROI 4 

ROI 4 (Figure 16) is located at the western part of the study region covering the 

Piedmont, hills, and the braided streams of the Merida Andes. The ROI is geologically located in 

both the Rio Yuca Formation and the Quaternary alluvium outwash plains. These formations 

contain a mix of unconsolidated sands, silts, gravels, sandstones and conglomerates, and the 
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braided stream contains a mixture of illite and possible igneous rock transported from the Cerro 

Pelon Formation upstream. This ROI endmember classification received a Kappa Coefficient of 

0.47 and overall accuracy of 64.09% (Table 4). 

 

FIGURE 17: SAM image classification of ROI 4 

Class Silty Loam Sandy Lam Conifer Illite Gravelly 
Sandy Loam 

Silty Loam 75 0 0 0 0 
Sandy Loam 0 50 0 0 0 
Conifer 0 0 1881 0 0 
Illite 0 0 0 69 0 
Gravelly 
Sandy Loam 

0 0 0 0 0 

Unclassified 0 0 0 0 2778 
Total 75 50 1881 69 2778 

 

TABLE 5: Kappa Coefficient and accuracy assessment of ground truth pixels of ROI 4. 

 The first endmember, gravelly sandy loam, was identified on the eastern side of the ROI 

as an exposed surface within the Rio Yuca Formation. This endmember showed a shallow 

absorption feature at 500 nm due to a possible concentration of iron oxides. The next endmember 

identified relates to the braided stream flowing in a southeastern direction from the Merida 

Andes mountain. This endmember primarily matched with gray illite, or smectite bearing clays. 

These clays originate from the igneous bearing Cerro Pelon Formation that consists of both 
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mafic and felsic petrology. The presence of high water content, due to the endmembers’ 

geomorphological setting, is represented in the absorption range of the spectra where there is a 

high drop off in the 2,300–2,400 nm range. This ROI is located in a coniferous forest region, in 

relation to ROI 1, this forest shares a similar reflectance in the chlorophyll a absorption range 

about 650–690 nm, and a near identical cell structure in the near infrared, with moderate water 

absorption at 1,400–1,900 nm. The last two endmembers identified in ROI 4 were sandy loam 

and silty loam. These two endmembers were located at exposed surfaces throughout the region 

where the silty loam was located prominently in the agricultural location, while the sandy loam 

was located along dirt roads and naturally exposed surfaces. 

Reflectance Profile 

 A reflectance profile was constructed from a NDVI, (See Figure 17), to represent 

reflectance bands in comparison to vegetation health (Figure 18). The brighter the value, the 

healthier the vegetation in the NDVI image; the darker the value, the less healthy the vegetation 

will be in the image. The NDVI is showing a higher vegetation value in the Merida Andes 

mountain range, the irrigated reservoir agricultural network, and the Caribbean mountain system 

to the north. The Quaternary alluvium shows a lower signature of vegetation, while areas that 

have outwash from one of the two mountain ranges show a healthier NDVI.  This profile shows 

an overall trend of a high reflectance in the Merida Andes mountain range, a slight decrease in 

vegetation health at the contact between the Merida Andes and the Quaternary alluvium at the 

500 nm, a rise in vegetation health in agricultural locations supplied by reservoir irrigational 

support at the 1,200–1,600 nm range, and a subtle decrease in vegetation health in the northern 

Caribbean mountain system.  
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FIGURE 18: NDVI image of study area with A-A′ transect 

 

FIGURE 19: Reflectance profile from A-A’ of vegetation health 
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Microclimate Analysis 

 The algorithm was run for two identical Landsat 8 scenes from two different time frames. 

Each run of the algorithm with the two Landsat images was conducted uniformly for accuracy. 

The first scene was acquired on December 17, 2017 and the second scene was acquired on July 

28, 2018. These two scenes were chosen based on climate, cloud coverage, and rainfall. Both 

Landsat scenes had limited cloud cover so a more accurate analysis could take place. The two 

scenes were also taken seven months and eleven days apart from each other to show reference 

for the different climates over the year. Lastly, the scenes were taken based on rainfall. In 

Venezuela, July has the highest amount of rainfall, while December is one of the more moderate 

to low precipitation months in the year (Lyon, 2002).  

 The December LST map showed a uniform temperature range throughout a majority of 

the scene. The scene had a mean accumulation of LST at 26 ˚C, a minimum of 7 ˚C, and max of 

36 ˚C, with a standard deviation of 3.26 ˚C (Figure 21). Areas that were higher in elevation 

showed a lower LST over locations lower in elevation besides several temperature anomalies 

within the Quaternary alluvium showed a large decrease in temperature compared to its 

surrounding locations (Figure 20).  
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FIGURE 20: Land Surface Temperature map December 17, 2017 

 

FIGURE 21: Histogram of temperature gradient compared to pixel data. 
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 The July LST analysis showed a more spread out temperature range throughout the 

Landsat scene with a mean temperature of 28 ˚C, minimum temperature of 10 ˚C, maximum 

temperature of 70 ˚C, and a standard deviation of 3.26 ˚C. The LST map (Figure 22) represents a 

diverse distribution in temperature at both high and low elevations. The reservoir’s agricultural 

irrigation network shows a decrease in LST, while the surrounding locations in the Quaternary 

alluvium have a higher temperature reading.  

 

FIGURE 22: Land surface temperature map July 28, 2018. 
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FIGURE 23: Histogram of temperature gradient compared to pixel data. 
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DISCUSSION & CONCLUSIONS 

 

 The high spectral resolution of hyperspectral imagery exceeds the suitability for 

extracting information in multivariate environments compared to a multispectral approach. Even 

though multispectral imagery has its many benefits, hyperspectral analysis is the most detailed 

approach to remotely sensed analysis. The higher spectral resolution of hyperspectral imagery 

improves the discrimination ratio of different physical components such as vegetation, water, 

soil, urbanization, and geological features. This research integrated both hyperspectral and 

multispectral imagery to conduct an in-depth analysis of how soil and vegetation anomalies 

interact with geologic applications. The Guarumen area of northwestern Venezuela is a 

structurally active region with sixteen different geologic formations located in the region. Its 

structural influence comes from the Merida Andes mountain system to the west and the 

Caribbean mountain system to the north. These two mountain systems both transport sediments 

to the alluvial basin, containing major cities such as Acarigua, Ospino, and Agua Blanca, which 

is the country’s largest source of agricultural activity. Due to the high concentration of 

agricultural areas, it is difficult to identify the underlining geology and comprehend what is 

occurring without some form of in-depth analysis. The goal of this research was to use 

hyperspectral endmember analysis, normalized difference vegetation index reflectance profiling 

with Landsat imagery, and microclimate analysis with Landsat imagery. These methods were 

conducted to compose an in-depth quantitative analysis of the research area and identify how the 

soil and vegetation anomalies are interacting with the local geology, geomorphology, and 
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structural geology. By conducting this research, it is possible to further understand the 

capabilities of remote sensing applied to the geological sciences by utilizing hyperspectral and 

multispectral analyses without the accessibility of conducting a field study. 

 The endmember analysis was the primary method used for this research. The objective 

of this analysis was to identify endmembers in each of the four ROI and relate each to the 

respective region. Since the geological analysis scaled to the whole region of the study area, the 

endmembers classified within each ROI were an acceptable representation for the regions each 

represented. The most significant discovery from this analysis was how the fluvial 

geomorphology from the Merida Andes and the Caribbean mountain system affected the 

agricultural region in the Quaternary alluvium plain. Based on the spectra collected from the 

endmember analysis, ROI that identified in these geomorphologic regions showed an increase in 

vegetational health. This anomaly could be caused by the transport of micronutrients from 

sediment flows originated from either igneous or metamorphic formations in the mountainous 

regions surrounding the basin. This can be seen in the Merida Andes where several extrusive and 

intrusive igneous formations come in contact or originate with the stream patterns that are 

flowing into the basin. The Merida Andes sediment transport locations in the ROI were 

identified to be composed of gray illite/smectite bearing soils within the spectral readings, but 

traces of basalt were identified with the spectral analyst that led to speculation that basalt and/or 

granite could have been mixed in with this clayey transport. This can be supported by the 

presence of coniferous trees within the Merida Andes. In ROI 1 and 4, coniferous trees were 

spectrally referenced through the spectral analyst tool. Coniferous trees prefer to grow under 

acidic soil conditions (Martikainen & Boer, 1992). This helps support the spectral identification 
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of the sediment transport containing igneous bearing clay minerals due to the area's vegetation 

makeup and geologic history.  

 In the Caribbean mountain system region, the Mucaria, Agua Blanca, Araure, and 

Cojedes formations are the primary geologic components of the study area. These formations 

consist of Cretaceous carbonaceous shales, limestones, and conglomerates. At the southern 

portion of the formation, they begin to mix with the Quaternary alluvium basin that contains 

sands, gravels, and silts. This mixing of sediment is caused by a large deposit of an alluvial plain 

pushing sediments down elevation into the Quaternary basin. Identification of the composition of 

the soil was helped by the forest network that was located in the ROI. ROI 2 and 3 both consisted 

of a deciduous tree network that was identified through the endmember analysis. Both of the 

spectral reflectance bands shared close characteristics while varying in a slight difference in the 

700–1,300 nm with the grass and coniferous spectral responses in the other ROI. These three 

types of spectral responses were best differentiated from image derivation and physically 

identifying the vegetation from the imagery. Deciduous trees prefer to grow under alkaline soil 

conditions due to their base soil contents. This can be seen in the ROI 3 spectra where the soils 

were spectrally identified as silty loam and clay loam. These two soil endmembers were 

identified with the spectral analyst tool and were matched to the selected soil types based on the 

comparison of the spectral libraries contents.  

  A high concentration of structural activity can be seen in ROI 3 through the GIS data; 

it shows a series of thrust faulting in an east-west direction with a northern uplift that has a 

transecting southwest-northeast inferred fault that is not visible in true color imagery. Minimal 

structural activity could be seen throughout the hyperspectral imagery even with convolution 

filters applied. Specific areas that were higher in elevation above the Quaternary alluvium 
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showed some structural significance in the imagery, but not enough to correlate a definite 

answer. This is primarily due to the heavy concentration of agriculture covering the majority of 

the study area.  

 The reflectance profile was an attempt to characterize vegetation health in the form of a 

“topographic profile.” The results from this analysis came back favorable, with an interesting 

look at using a cross-sectional polyline to measure reflectance and correlate it with specific data. 

In this analysis, the reflectance was measuring vegetation health from A–Aʹ. The cross-section 

showed a trend that supplemented the endmember analysis. It showed that the Merida Andes had 

a higher vegetation index value compared to the Caribbean Mountain System, which could 

support the idea of soil properties of both regions and how they affect vegetation. The central 

region also showed a high value, but this was supplemented to the reservoir irrigation system 

supplying water to the regional agriculture.  

 Measuring LST of the two Landsat scenes posed interesting finds of both data sets. 

Both sets of data shared similar results in terms of temperature. The 2017 dataset had a mean 

temperature of 28 ˚C and the 2018 data with a mean of 26 ˚C. This close range in temperature is 

most likely due to the tropical climate that Venezuela faces year-round where temperature 

changes minimally fluctuate throughout the year. Even though the majority of the region remains 

a consistent temperature year-round, the higher elevations of the Merida Andes and the 

Caribbean Mountains show a decrease in temperature. From the data, it is believed that elevation 

plays a key role in controlling temperature throughout the region. Both LST maps show a 

gradual decrease in temperature the lower the elevation, minus the anomalies in the lower 

elevation region that is contrast to the regional temperature. It is believed that the key changes 

from the 2017 and 2018 LST data are the amount of rainfall and how it affects the surface 
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temperature of the region. July is shown to have the highest precipitation on average, while 

December is shown to have a more moderate to low precipitation percentage in Venezuela 

(Lyon, 2002). It is shown that heavier precipitation cycles decrease surface temperature 

throughout the region. This can also be seen in the two histograms of both dates where the 2018 

date has a greater range of temperatures due to chances of high precipitation rates.  

 One other factor that has an effect of the microclimate of the region is soil type. 

Different soil composition affects microclimates based on the amount of water retained or how 

quickly it evaporates. Soils that show a high concentration of clay retain more moisture 

compared to soils with a concentration of sands. This retention can affect humidity and 

temperature of a region (Ismangil et al., 2016). With this knowledge of soil properties, it is 

possible to identify soil classifications based on LST in a generalized classification scheme of 

water retention based on pore size, and thermal conductivity and heat capacity based on 

mineralogy.  

 Due to the region being highly agricultural, it was difficult to interpret soil or 

vegetation classifications. It was safely assumed that any region identified as agricultural could 

have been supplemented with groundwater pumping, controlled burning, foreign plant species, or 

distribution of foreign soil. This was taken into consideration during the image deriving process 

during the endmember analysis. This brought the challenge of identifying specific vegetation 

trends that could be identified as natural, along with exposed soil surfaces that could be 

identified as a “natural” occurrence. Most of these “natural” occurrences took place in higher 

elevation geomorphological regions such as the mountainous regions of both the Merida Andes 

and Caribbean Mountains, and a slight decline in elevation to the hills, alluvial valleys, and 
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piedmont regions. There were also exposed regions of unconsolidated sediments along rivers and 

streams in the area, especially ones that came down in elevation from both mountain systems.  

 Another limitation that occurred during the analysis was the cancellation of the field 

campaign. This was cancelled due to the political and economic turmoil that the country of 

Venezuela is facing. Too many safety issues arose weeks prior to the field campaign, and it was 

mutually decided to postpone the field campaign indefinitely. The rest of the analysis was to be 

conducted with remote sensing applications. With the limitation of field data in remote sensing 

applications, limitations are set on what can and cannot be done. Regions that have had minimal 

research conducted pose the problem of ground accuracy assessment due to the lack of physical 

evidence of specific plant species, and soil characterizations. Even with this limitation, this 

research gives insight on how limited field data, with a enough remotely sensed data, does make 

it possible to conduct an analysis remotely while still getting sufficient results to solve the 

original research objective.  

 To further answer the questions of the research objectives, a proper field campaign with 

ground truth data from a field spectrometer would help quantify the hyperspectral data by 

comparing the observed data versus the data collected by the sensor. This would help 

differentiate between geological and vegetation components through spectral mixture analysis. 

Another benefit would be to gather both soil and vegetation samples for in-situ field analysis, 

and analysis in a lab setting. This would further the precision of the classification and make it 

possible to classify to the level of plant species and mineralogical makeup of collected soil 

samples.  

 Nevertheless, the analysis completed did show that the endmembers, and LST, did 

correspond to real soil and vegetation components on the ground, and was able to provide a 
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quantitative “macro” scaled analysis of the Guarumen area by identifying large scale patterns in 

the data by correlating them to the geologic makeup of the area. This was possible given the 

limited field data by reducing the hyperspectral spectra to unique endmembers for classification, 

and conducting LST data to analyze the surface temperature to identify different microclimate 

properties affecting the area. It can be concluded that, though only limited ground truth 

information was available in the study area, it is possible to correlate geological phenomena 

through remote sensing applications. 
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