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ABSTRACT 

 

 The use of Graphical Processing Units (GPU’s) for scientific applications has been 

evolving and expanding for the decade. GPU’s provide an alternative to the CPU in the creation 

and execution of the numerical codes that are often relied upon in to perform simulations in 

computational electromagnetics. While originally designed purely to display graphics on the 

users monitor, GPU’s today are essentially powerful floating point co-processors that can be 

programmed not only to render complex graphics, but also perform the complex mathematical 

calculations often encountered in scientific computing. 

 Currently the GPU’s being produced often contain hundreds of separate cores able to 

access large amounts of high-speed dedicated memory. By utilizing the power offered by such a 

specialized processor, it is possible to drastically speed up the calculations required in 

computational electromagnetics. This increase in speed allows for the use of GPU based 

simulations in a variety of situations that the computational time has heretofore been a limiting 

factor in, such as in educational courses. 

 Many situations in teaching electromagnetics often rely upon simple examples of 

problems due to their complexity. The use of GPU based simulations will be shown to allow 

demonstrations of more advanced problems than previously allowed by adapting the methods for 

use on the GPU.  Modules will be developed for a wide variety of teaching situations utilizing 

the speed of the GPU to demonstrate various techniques and ideas previously unrealizable.



 

 
iii 

DEDICATION 

 

To my friends and family. None of this would be possible without their support. 

 

  



 

 
iv 

ACKNOWLEDGMENTS 

 

I would like personally acknowledge the efforts Dr. Atef Z. Elsherbeni and the late Dr. 

Charles E. Smith for their personal guidance and support throughout the years. It is with their 

example that I continue my career. 

 

  



 

 
v 

TABLE OF CONTENTS 

 

ABSTRACT ........................................................................................................................ ii 
 
DEDICATION ................................................................................................................... iii 
 
ACKNOWLEDGEMENTS ............................................................................................... iv 
 
LIST OF FIGURES ........................................................................................................... vi 
 
I. BACKGROUND INFORMATION ON GRAPHICAL PROCESSING UNITS ............1 
 
II. PROGRAMMING METHODOLOGY ........................................................................11 
 
III. MATRIX SOLVING ON THE GPU ...........................................................................19 
 
IV. ITERATIVE METHODS ON THE GPU....................................................................37 
 
V. TEACHING APPLICATIONS .....................................................................................60 
 
VI. CONCLUSIONS .........................................................................................................71 
 
BIBLIOGRAPHY ..............................................................................................................73 

APPENDICES ...................................................................................................................76 

VITA ................................................................................................................................126 

 

 

 

 

 



 

 
vi 

LIST OF FIGURES 

 

1. Flow Diagram of Intel Pentium Processor .......................................................................6 
 
2. Flow Diagram of NVIDIA G80 GPU ..............................................................................7 
 
3. Flow Diagram of AMD Radeon Cayman GPU ...............................................................9 
 
4. In Place Modification Error ...........................................................................................15 
 
5. Runtime Speeds for Single Precision Real Value LU Decomposition ..........................25 
 
6. Speedup Factors for Single Precision Real Value LU Decomposition ..........................25 
 
7. Speedup Factors for Double Precision Real Value LU Decomposition ........................27 
 
8. Runtimes for both CPU and GPU implementation of Complex Double-Precision LU 

Decomposition. ......................................................................................................29 
 
9. Runtime of various GPU based implementations of LU Solvers ..................................30 
 
10. Speedup factors of GPU based over CPU based implementations of Complex Double-

Precision LU Decomposition .................................................................................31 
 
11. Sample wire antenna configuration. ............................................................................32 
 
12. GPU and reference results for current .........................................................................34 
 
13. GPU and reference results for current phase ...............................................................35 
 
14. CPU and GPU solution times for various matrix sizes ................................................36 
 
15. 3D Domain Tiling ........................................................................................................39 
 
16. PML Boundaries in a sample computational domain ..................................................40 
 
17. Sample GPU FDTD Domain of Printed Dipole Antenna ............................................41 



 

 
vii 

 
18. CMPL Test Case 2 .......................................................................................................42 
 
19. Ez field component at various time steps for dielectric block of εr=10.2 ....................43 
 
20. field component at various time steps for PEC block ..................................................43 
 
21. Ez field component at observation point ......................................................................44 
 
22. Microstrip patch antenna validation case .....................................................................45 
 
23. Ez Plane Cuts at various time steps for microstrip validation case ..............................46 
 
24. Microstrip patch voltages and currents at the observation port for GPU and CPU codes.

................................................................................................................................46 
 
25. Microstrip patch return loss comparison between GPU, CPU, and reference data .....47 
 
26. Microstrip filter validation case ...................................................................................48 
 
27. Microstrip filter voltages and currents at the observation port for GPU and CPU  codes

................................................................................................................................49 
 
28. Microstrip filter transmission and return losses comparison .......................................49 
 
29. Sample GPU Memory Layout .....................................................................................51 
 
30. Computation time vs. domain size ...............................................................................52 
 
31. Data transfer times vs computation domain size for whole field components ............55 
 
32. Data transfer times vs computation domain size as a percentage of total computational 
          time for whole field components .............................................................................56 
 
33. Data transfer times vs computation domain size for partial field components ............57 
 
34. Data transfer times vs computation domain size as a percentage of total computational  
         time for partial field components ..............................................................................58 
 



 

 
viii 

35. Sample Matlab GUI Interface For Patch Antenna .......................................................61 
 
36. Advanced Matlab GUI Interface For Patch Antenna ...................................................63 
 
37. PSO final result from Matlab GUI ...............................................................................64 
 
38. PSO fitness data as the simulator explores the domain ...............................................65 
 
39. PSO return loss data at target frequency as the simulator explores the domain ..........66 
 
40. Sample Matlab GUI Interface For Microstrip Filters ..................................................67 
 
41. Matlab GUI Interface For Microstrip Filters Results ..................................................68 
 
42. Sample Matlab GUI Interface For Printed Dipole Antennas .......................................69 
 

 

 

 

 

 



 

 
1 

 

 

CHAPTER I 

BACKGROUND INFORMATION ON GRAPHICAL PROCESSING UNITS  

 

1.1 Introduction 

 

Since the widespread adoption of computers, research has relied upon the power of the 

central processing unit (CPU) to perform the wide variety of computational tasks needed. Over 

the years great progress has been made in harnessing the power of the CPU by the introduction 

of faster clock speeds, larger caches, faster memory, multiple processors, and even multiple 

cores in a single chip. This, however, has also been accompanied by the ever-expanding needs of 

computer users to do a wide variety of tasks from browsing the Internet to watching video and 

playing games. Due to these needs of the general computer the instruction set of the average 

commercial processor has expanded well past 300 separate instructions in addition to the core 

instructions of the processor. The CPU has been forced to be a Jack-Of-All-Trades for computing 

tasks, allowing it to do a wide variety of tasks but not specializing in any particular area. 

 

Conversely the graphical processing unit (GPU) is designed to be very narrow in nature 

in that they only need to perform a relatively few operations. The video card was designed with 

only one purpose originally, to process instructions and data necessary to provide graphics to the 

user. Over the past decade, advancements in the design of GPU's have been occurring at a much 
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greater pace than with CPU's due to the narrow nature in which it was intended to be used. The 

current generational rate for graphics processors has been on the order of 12 months, whereas 

with CPU's it has been 18 months. This has led to the development of very powerful processing 

units for computer graphics. The current generation GPU's are running at approximately 1300 

MHz with a 512 bit data bus and memory bandwidth approaching 160 GB/sec. While GPU clock 

speed seems slow compared to modern Pentium CPU's. 

 

1.2 The GPU as a Programmable Processor 

 

GPU's are essentially very specialized processors that incorporate many simultaneous 

instruction pipelines coupled with a memory bandwidth an order of magnitude faster than 

modern system memory as seen in Tables 1 and 2. In fact, the number of transistors in the latest 

GPU's are more than 3 times the amount used in a modern Quad-Core CPU. This leads to an 

ability to perform the specialized instructions the GPU was designed for an order of magnitude 

or faster than just using a CPU. While the majority of silicon in CPU's is dedicated to performing 

non-computational tasks like branch-prediction, out-of-order-execution, and cache operations, 

the majority of transistors on the GPU are dedicated to their computational tasks. It must be 

noted while the GPU was originally designed specifically for rendering graphics, not for 

performing computational electromagnetics, companies have been adding in features allowing 

these GPU’s much greater ability to perform general purpose scientific computing.  

 

The first uses of the GPU in general purpose computing occurred roughly around the year 



 

 
3 

2000 when the needs for 3D graphics began to grow into a commonplace occurrence. This led to 

the major manufactures of the video cards expanding the GPU past a simple floating point 

processor by adding multiple cores, specialized functions for vector operations, and high speed 

memory. Originally, in order to utilize these cards one had to be versed in either graphics 

programming or in the assembly language of the processor on the card. The earliest work was 

completely based of assembly language programming of the cards to perform the scientific 

computing routines desired. This was neither arbitrary nor advantageous to the average user.  

 

The steep learning curve required to program the cards led to several early languages 

such as Sh and Brook being introduced to facilitate the creation of programs that could be 

executed directly on the graphics cards themselves. These early languages used a combination of 

extensions to common programming languages such as C/C++ and libraries like OpenGL and 

DirectX to interface with the cards. While these languages allowed for programs to be more 

easily written, they suffered from the limitations of the graphics libraries. Often arrays could 

never be over 4096x4096 due to the fact the graphics libraries never assumed it would never 

need to display on a screen bigger than 4096x4096. These earlier languages did, however, spark 

a movement for more widespread adoption of GPU based computing.  

 

In 2007 NVIDIA launched their alternative to these languages named CUDA (Compute 

Unified Device Architecture), which combined a new programming interface to the graphics 

cards with the incorporation of new hardware inside the cards to allow them to perform better as 

computing processors. Every successive generation of their cards since the release of CUDA has 
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included improvements and additions such as an increase in the number of processing cores and 

support for double-precision numbers. Since these cards have been designed from the ground up 

as both video cards and general computational engines, CUDA has allowed for mainstream 

adoption of the video card as a general purpose computing device. 

 
Memory Controller Memory Type Memory Bandwidth 
Intel X58 (Core i7) PC3-16000 DDR3-SDRAM (triple channel) 48.0 GB/s 
Intel X58 (Core i7) PC3-12800 DDR3-SDRAM (triple channel) 38.4 GB/s 
Intel X58 (Core i7) PC3-8500   DDR3-SDRAM (dual channel) 17.0 GB/s 
Intel 975 (Core Duo) PC2-6400   DDR2-SDRAM (dual channel) 12.8 GB/s 
Intel 975 (Core Duo) PC2-5300   DDR2-SDRAM (dual channel) 10.6 GB/s 
Intel 975 (Core Duo) PC2-4200   DDR2-SDRAM (dual channel) 8.4 GB/s 

 
Table 1. Common Memory Bandwidths of CPU Systems 

 
 
 

  Number of Cores Memory Memory Bandwidth 
Consumer Class    
GeForce 280/285 240 @ 1.35-1.5 GHz 1 GB 141 GB/s 
GeForce 295 2 x 240 (Dual GPU) 

@ 1.24 GHz 
1.792 GB 
 (896 GB Per GPU) 

223.8 GB/s 

    
Business Class    
Quadro FX 4800 192  1.5 GB 76.8 GB/s 
Quadro FX 5800 240 4 GB 102 GB/s 
    
CUDA Tesla Class    
Tesla C1060 240 @ 1.3 GHz 4 GB 102 GB/s 
Tesla S1070 4 x 240 @ 1.3 GHz 16 GB 

 (4 GB Per GPU) 
408 GB/s 

 
Table 2. Common Memory Bandwidths of GPU Systems 

 

1.3 The Hardware of the GPU 

 

 First and foremost the GPU is designed to display graphics on a computer monitor. The 
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use of the GPU as a general computing device for scientific applications occurs chiefly due to the 

fact that the majority of calculations used in displaying pictures, graphics, and 3D rendering are 

analogous to the majority of mathematical operations required in scientific computing. Applying 

texture elements on a 3D object is the same as adding two arrays of data together. Drawing 3D 

objects only requires the processor to perform simple matrix calculations. This analogous nature 

of the GPU allows common routines can be adapted to run on the GPU if the hardware 

differences are understood. 

 

 Figures 1-3, show the hardware flow chart of an Intel Core Duo CPU, a NVIDIA G80 

series GPU, and an AMD Radeon 6900 series GPU. The major difference between the current 

design of CPU’s and GPU’s lie in how the dedicated hardware is designed to operate. An Intel 

Core Duo processor currently contains a little over 300 million transistors. Much of this 

hardware is dedicated to program scheduling and flow control. The processors are able to 

perform a wide variety of various instructions and much of the hardware is dedicated to these 

various tasks. Little of the transistor space is used to for actual arithmetic processing. The GPU 

design is almost diametrically opposite to that of the CPU. In the current NVIDIA G80 

processors there are over 1400 million transistors, mainly dedicated to actual arithmetic 

processing. Since there are only very few instructions possible on the GPU, much more space 

can be dedicated to systems to perform math instead of flow control or system functions. This is 

shown by the major differences in the flow diagrams of the CPU and GPU, mainly the number of 

ALU units (Shown as ALU blocks in the CPU and SP blocks in the GPU). 
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Figure 1. Flow Diagram of Intel Pentium Processor (© Intel) 

 

 

In the realm of graphics programming, there are two different types of data that are 

operated upon: geometry and texture maps. Geometry data will usually relate the three-

dimensional shapes (vertices) of various objects to the GPU. Texture maps, on the other hand, 

are two-dimensional arrays that relate surface characteristics of the object to the GPU. These 

surface characteristics may be color, reflectivity, roughness, etc. Geometry objects may be 

composed of several texture maps combined (i.e. the ball may be red, highly reflective, bumpy, 

etc).  In order to apply various texture maps to the geometries in many differing ways, the GPU 

must be able to perform a variety of arithmetic functions on the texture maps. For example it 
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may need to add, subtract, multiply, or divide across the texture maps, which is being done using 

vector math on these textures.  

 

Figure 2. Flow Diagram of NVIDIA G80 GPU (© NVIDIA) 

 

The math among texture maps occurs in a section of the GPU named the “fragment 

processor” otherwise known as the “pixel shader” or more currently the “stream processor”. In 

modern cards there are upwards of 240 of these processors or more in parallel depending on the 

video card.  Each one of these processors is fully programmable and has separate and dedicated 

connections into the main GPU cache and often grouped with a separate local cache as well. The 

purpose of the stream processor is to apply the mathematics across the texture maps to create a 

generalized vector processor. In the GPU there are many processors running in parallel, each 

processor runs the exact same program as the others with each operating on different points. 

Since there are many stream processors it is important for the cache to operate as efficiently as 
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possible otherwise a fetch stall will occur. A fetch stall happens when the cache does not contain 

the data necessary for the operation; the stream processor then stalls until the cache has been 

updated with the necessary information. Mathematical operations with sequential elements (such 

as simple vector addition) will perform the fastest as the methodology to retrieve the sequential 

elements of the program is fairly straightforward. Operations such as vector or matrix 

multiplication suffer some performance penalty as the necessary matrix elements for the 

operation are much more random in nature. This randomness causes the cache to operate at a 

slower rate and can cause a greater chance of program stalls. However, if the program is crafted 

carefully, these stalls can be mitigated and a better performance gains can be realized. 

 

For the majority of texture processes, the math only involves operations across the same 

element of the various matrices. In this light, the “stream processors” operate on data that is 

streamed into it. In other words, since every element in the texture maps are only used once and 

in the same order across all maps, the GPU can stream the entire array from memory instead of 

having to randomly access the individual elements. When data is accessed in this sequential 

manner, as opposed to randomly accessing elements, data can be processed at a maximal rate. As 

the number of random accesses that must be performed is increased, the larger a performance hit 

will occur. Current GPU memory speeds are an order of magnitudes faster than CPU memory 

speeds so the performance hit is minimal compared to the speedup that can be gained. 
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Figure 3. Flow Diagram of AMD Radeon Cayman GPU (© AMD) 

 

 

Since GPU’s are natively meant to process images for the screen, there are several 

caveats that need to be clear when attempting to program for them. The first being that all arrays 

stored inside the graphics card are two-dimensional, even if the interface allows them to be 

defined otherwise. Implementing code which the structure might be more than two-dimensional 
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will need to use one of the various methods available for storing and retrieving the desired data. 

The second caveat is what can be programmed inside the GPU. The GPU only has limited ability 

for flow-control decisions; this means that If-Then-Else statements are not easily implemented in 

hardware. CUDA allows for the use of flow control operators but overuse of these can drastically 

affect execution speeds of programs. The GPU will operate the fastest when the programs are 

equivalent to operators which are applied to all the data that is sent to it. Decisions on the content 

of the data should be left to the CPU. 

 

1.4 The GPU as a tool for teaching applications 

  

In order to create usable modules that can be easily integrated in teaching applications the 

basics of how GPU’s are programmed must first be discussed. Chapter two will explain how 

GPU’s are programmed and how normal programming integrates into the GPU system. The use 

of programs in classes to demonstrate ideas and applications can take many forms so the areas 

where its use would be most appropriate will need to be identified. Most simulation techniques 

are either matrix or iterative solutions. Since the GPU runs programs differently than the CPU, 

Chapters 3 and 4 will examine how different types of computational electromagnetic techniques 

would best be solved by the GPU. Chapter 5 will demonstrate several modules that have already 

been developed for the GPU that show differing ways GPU based solvers can be used in teaching 

situations. Finally Chapter 6 will present conclusions about already completed work and detail 

future work to be done. 
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CHAPTER II 

PROGRAMMING METHODOLOGY 

 

2.1 Introduction to programming the GPU with CUDA 

 

On the surface, most GPU based programs appear to be very similar to their standard 

CPU based counterparts. There are, however, two key concept differences between them; 

parallel processing and kernel construction. In essence the GPU acts as a massive parallel 

computing system within the actual computer. Accordingly data must be transferred to the GPU, 

the operations on the data must be performed, and finally the data transferred back to the CPU. 

In order to perform the operations needed on the data kernels must be written to program the 

GPU with the requested instructions.  

 

The first step in utilizing the GPU is to create arrays on the GPU to store the data being 

used. This is accomplished in CUDA in the same method a C/C++ using an function analgous to 

the malloc function. The GPU malloc simply reserves space in the video card memory so that it 

may be filled by then transferring data from the CPU memory into the GPU memory. The 

custom kernels can then be called to perform the necessary operations on the data. Once the 

kernels have finished, the data can be transferred back to the CPU for any post processing.  
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The operations of initializing the memory and transferring the data between the GPU and 

CPU are trivial in construction and will not be discussed further. The kernels, however, can be 

quite complex to create and call. Small changes in their construction can lead to major 

differences in their execution.  

 

 

2.2 Kernels 

 

 Kernels by their definition are the custom routines programmed on the GPU to perform 

the mathematics on a specific set of data streamed into the processors. In CUDA a kernel is 

defined by a specialized set of commands that appear to be similar to creating a normal function 

in C/C+. For example, listing 1 is a CUDA kernel that adds two one-dimensional vectors of data 

together. 

 

  __global__ void gpu_sum(float *a,float *b,float *c, int N)   
  {   
    int idx = blockIdx.x * blockDim.x + threadIdx.x;   
    if (idx<N) c[idx] = a[idx] + b[idx];   
  }    

 

Listing 1. Example CUDA Kernel Code 

 

This simple code is identified as a CUDA kernel by the “__global__” operator. It contains 

4 arguments to call it; the input vectors “a” and “b”, the output array “c”, and an integer “N” that 

specifies the length of the of the vectors. The first line of the kernel defines the current index 
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point of the array the processor is operating upon. By default the kernels are called with 

operators that tell the GPU the limits of the array being calculated and how the computational 

domain is divided up among the separate processors. The kernel is applied to all the processors 

in the GPU so each processor must know what point in the computational domain it is currently 

being asked to calculated. The second line checks to make sure the current index point is within 

the bounds of the problem then adds the current element of “a” and “b” together and saves it in 

“c”. The “if” statement is necessary since all processors are programmed to run the same code 

and might be assigned to work on a element that is out of bounds of the data. For instance if our 

vector length is only 200 elements and we have 240 processors trying to execute this code then 

40 of the processors will be assigned to operate on memory locations that are out of bounds. 

Listing 2 shows the C/C++ equivalent of the kernel.  

 

 for (int i=0; i<N; i++) { 
 c[i]=a[i] + b[i]; 
 }   

 

Listing 2. Example C/C++ Code 

 

While this kernel is an extremely simple example of how one can be constructed, it must 

be noted that on the CPU this addition is happening one element at a time, while on the GPU, the 

additions are split amongst many parallel processors. Operations such as this example are 

commonly known as extreme cases that can scale their almost linearly with the number of 

processors available (assuming memory access is not an issue).  
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Likewise there are cases where creating a kernel for a simple function becomes 

incredibly complex. The most common example is that of the “reduce-sum” function. This 

function simply tries to sum all the elements of an array together. Such functions are quite 

common in matrix solving routines in which every row or column of the matrix must be summed 

separately. Listing 3 shows the C/C++ version of a simple reduce-sum operation.  

 

for (int i=0; i<N; i++) { 
 sum=sum+a[i]; 
 }   

 

Listing 3. C/C++ Reduce-Sum Code 

 

If a kernel would be written to try to create the same function as the C/C++ code, several 

interesting questions must be asked. How many processors are available? How to split the work 

up evenly? How to store the intermediary results? In many ways it is not possible to generalize 

this simple function in a parallel manner. Many varied codes are available in CUDA that attempt 

to solve this problem and each requiring several pages of code. 

 

2.3 In Place Modifications 

 

 The term “In Place Modifications” refers to the event when the kernel is programmed to 

both read and write to the same memory location, such as in the operation “a[i]=a[i]+1”.  

While normally on CPU programming this is not an issue, in the situation of the GPU, with 

many separate processors all sharing global memory, situations where there are memory 
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conflicts may arise. Depending upon the complexity of the kernel operations and the type of 

GPU being used, the onboard memory controller may have trouble keeping up with read/write 

access to the same memory locations. Figure 4 shows the results for a sample kernel operating 

upon an array of 3000 elements by adding 1 to each element 1000 times over. In this figure it can 

be seen that while many elements of the array do result in 1000, many do not. In this specific 

case the memory controller could not keep up with the numerous requests for in place 

modifications and resulted in a number of dropped read/writes to memory. Such situations can be 

corrected in one of two ways, either by adding a small pause between successive calls or by 

“ping-ponging” between separate arrays. “Ping-ponging” refers to using two different arrays and 

switching between them, letting one be the “old” set of data to read from and one being the 

“new” set to write to.  

 

 

Figure 4. In-Place Modification Error 
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2.4 Efficient Data Collection 

 

Most common iterative simulations are constructed to extract data from the simulation as 

it runs. For example in FDTD the data to be extracted usually are field components around 

structures to find voltages and currents as the simulation runs. In standard CPU based 

simulations this data extraction is simple as the program simply accesses the arrays being used in 

the simulation and copies the data elsewhere to be processed. In the GPU, however, it becomes a 

more complicated. The data needs to be extracted from the GPU and copied back to the CPU 

before it can be processed. Furthermore this data needs to be extracted before the next time step 

is run.  

 

The major obstacle in GPU simulations is the need for the code to be self-contained on 

the GPU for as much as possible in order to achieve the fastest possible speed. The slowest part 

of any GPU program is in the transferring of data back and for with CPU. Generally the only 

time data is transferred in a GPU program is at the beginning to set up the problem and at the end 

to send the results back. In order to transfer data back and forth between the CPU and GPU 

everything is stopped and sent, as there is bandwidth issues between the interface bus (PCI, 

AGP, PCI-Express) and memory bus speeds on the two systems, even small data transfers can 

take large amounts of time compared with the actual time needed to run a single time step of the 

GPU FDTD code. 

 

An example in FDTD might be simply extracting a single field point from the 
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computational domain at every time step. In this simple example, the code is called every time 

step and a single value is to be extracted from the simulation and saved for later on the CPU. 

While this is easily implemented, the effects of copying even a single piece of data every time 

step has a large time penalty. Every time a write or read function is called to transfer data from 

the CPU or GPU, the system must pause to set up the data transfer. The majority of time required 

in these transfers occurs in setting up the transfer itself, therefore the more times these functions 

are called, the longer the programs will take. 

 

To illustrate this point, a simple 1D FDTD code was written for the GPU. This code has a 

domain size of 3000 cells, a point source in the middle, a dielectric slab, and CPML absorbing 

boundaries. First the code was run with no data extraction and then run with copying the data 

back to the CPU at every time step. This test was run several times with 20000 time steps to get 

the average run times for each case. On average without any data being extracted the simulation 

time was 2.9 seconds. As opposed to the case where data was being copied to the CPU every 

time step where the average simulation time was 6.8 seconds.  In this case it can be seen that 

copying data back to the CPU at every time step led to the simulation run time more than 

doubling. This increase was for just copying a single point back to the CPU, time penalties will 

increase the more data needs to be copied back and forth. If there are multiple points to be copied 

from various textures the time penalties can become quite costly. 

 

As an alternative to copying the data back to the CPU at every time step it is possible to collect 

the data in the GPU itself and copy it back at a less often rate. This does increase the complexity 
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of the code, however it will increase the efficiency. In the simple 1D example code, a temporary 

array was created to collect the sample points until there are ready to be transferred. By only 

copying between the GPU and CPU once every 1000 time steps, the amount of overhead time 

required to copy can be limited. In the 1D FDTD code this ran multiple times with an average 

run time of 3.0 seconds. Since the copy function was only called 20 times compared with 20000 

the time penalty was mostly negated.  
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CHAPTER III 

MATRIX SOLVING ON THE GPU 

 

3.1 Introduction 

 

 Computational electromagnetic simulations generally fall into one of two classes; Matrix 

solutions and iterative solutions. Common simulation techniques such as Method of Moments 

(MOM), Finite Elements (FEM), and Finite-Difference Frequency-Domain (FDFD) all rely on 

solving matrix equations. Certain techniques require solving large systems of dense matrices 

with others require spare matrix solvers. Depending on the type of simulation being ran a wide 

variety of numerical methods are available for solving each matrix. 

 

3.2 Sparse Matrix Solvers 

 

 The first type of matrix solver to be examined is case of sparse matrix systems. These 

problems are identified by the fact that the majority of elements in the system are populated by 

zeros. In many cases less than 5% of the matrix is filled with non-zero elements. Because of the 

large number of zero elements many various techniques may be used on the GPU to both reduce 

the storage requirements of the matrix (as GPU memory is limited) and speed up the solution 

time. 
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 The most common techniques involved in solving spare matrix systems are conjugate 

gradient methods. Exploration of these types of problems for implementation fitness on the GPU 

has only recently begun. 

 

3.3 Dense Matrix Solvers 

 

 The second type of matrix solvers generally used in CEM simulations are dense matrix 

solvers. Dense matrices are commonly found in simulations such as Method of Moments and 

even simple problems can often lead to complex matrices whose size can order in the thousands. 

In order to accurately and quickly solve these simulations, especially cases where there are many 

of right hand sides to be calculated, an appropriate solution method must be chosen.  

 

 Implementation of solvers for these dense matrix problems on the GPU generally occurs 

in two basic areas; Matrix filling and matrix solving. Both of these processes show good 

applicability for integration on the GPU. There are a wide variety of various methods for solving 

any dense matrix systems, each with certain advantages and disadvantages such on complexity 

and convergence issues. One of the more common techniques is that of LU Decomposition, 

where a matrix is “decomposed” into an upper and lower triangular matrix. Implementation of a 

GPU based LU solver will be detailed in the next section.  

 

 In the realm of GPU implementations LU decomposition offers many advantages over 

other decomposition, inversion, and direct solution solvers. For a large number of right hand 
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sides, direct solution solvers become unwieldy to implement, as each right hand side requires its 

own solution. Inversion methods can allow for the solving at will after the matrix has been 

inverted but often require large computational runtimes and can suffer from instability as the 

order of the matrix becomes too large. Decomposition methods offer a good compromise 

between full inversion and direct solution. LU decomposition in particular lends itself well to 

implementation on the GPU.  

 

Using the CUDA interface, many of the computations required for LU decomposition can 

be offloaded to the GPU. While LU decomposition on the GPU has previously been 

demonstrated to outperform the CPU, the past work has been limited to only solving real 

matrices. For LU decomposition to be of use in computational electromagnetics, GPU 

implementation for complex matrices must be available. 

 

3.3.1 Complex Double-Precision LU Decomposition 

   
 The LU decomposition has been previously demonstrated on the GPU using CUDA and 

other programming techniques for single precision real matrices. Published result produced 

speed gains approaching an order of magnitude over common CPU’s. These solvers mixed a 

combination of CPU Basic Linear Algebra Subprograms (BLAS) calls, CUDA CUBLAS 

(NVIDIA’s GPU based BLAS libraries) calls, and CUDA kernel. The BLAS libraries contain 

highly tuned functions commonly used in many programs to perform basic linear algebra. The 

published LU solvers were facilitated by the complete and mature development of CUBLAS 

libraries for single precision real data types. These solvers showed a speed increase of 6 to 12 
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times (relative to various hardware). However, the restriction of single precision real data types 

limits its usefulness for CEM simulations. Many common CEM problems require the solver to 

be available for any combination of single precision, double precision, real, and complex data. 

 

The development of solvers that support data other than a real single precision on the 

CUDA/GPU platform presents several unique challenges to be addressed. These challenges 

occur from the status of the CUBLAS libraries. The CUBLAS libraries (previous to release 3.0) 

only supported complete BLAS routines in single precision real and only very limited support for 

single and double precision complex. In the utilized version 2.0 of CUBLAS, only 2 out of 13 

level 1 BLAS routines, 1 out of 16 level 2 BLAS routines, and 2 out of 6 level 3 BLAS routines 

were supported. The CUBLAS version 3.0, expands support for all BLAS routines in more data 

types.  

 

With the release of CUBLAS 3.0 it is now possible to perform the LU decomposition 

directly on the GPU without the aid of any CPU calls. However, this does not mean that the 

CUBLAS functions outperform their CPU based counterparts. Certain linear algebra functions 

still perform significantly faster (such as factorization) on the CPU compared to the GPU’s as 

utilized. The algorithm presented here was carefully profiled to determine when and which parts 

of the LU decomposition routine can be solved on the GPU with maximum efficiency. 

 

The real single precision solver presented here follows the published methodology of 

utilizing both the CPU and the GPU and the established algorithms for parallel computing 
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systems. The code has been programmed and tuned using these methods. In order to extend this 

solver for other data types, some of the CUBLAS calls have been replaced with custom 

developed kernels (GPU functions).  

 

In the solvers presented here, the “*trsm” function which is a standard BLAS routine 

used to solve a triangular matrix, has been offloaded to the CPU. The transpose functions have 

been developed in CUDA to support all types of data (complex and real in single and double 

precisions). With this added support for the various data types, the developed GPU code was 

tuned for various block sizes which determines how much data gets transferred, at a time, 

between the GPU and CPU. Offloading the “*trsm” function back to the CPU also presents 

problems in maintaining data consistency. The transfer of data between CUBLAS on GPU and 

Intel MKL BLAS on CPU is simple when working with single (float) or double precision real 

numbers. However, for complex data, MKL BLAS and CUBLAS have different data types and 

data structures to represent the numbers. In order to accomplish consistent data transfer, the 

MKL BLAS has been modified so that its data structure is compatible with CUBLAS data types. 

This modification allowed the free exchange of data between CUBLAS on the GPU and MKL 

BLAS on the CPU for complex numbers. 

  

The custom routines in CUDA for transposition and pivoting, were developed to support 

all combinations of data types. Depending on the data type needed, the additional data overhead 

requires smaller blocks of the matrix to be transferred at a single time (as a double precision 

complex matrix has 4 times the data as a single precision real matrix). The transpose routines 
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make use of local cache memory inside the GPU in order to make this process as efficient as 

possible.  

 

Table 3 details the various functions used for the developed CPU+GPU based LU 

decomposition and where they are performed.  The basic algorithm iterates through the various 

block columns of the matrix and performs the decomposition. Each block is first transposed and 

the L/U matrices are updated on the GPU. The block is transferred to the computer system and 

factorization takes place on the CPU. The block then streams through the GPU for pivoting and 

back to the CPU. The block is then inverted and the L matrix is solved. The update for the U 

matrix is performed on the GPU, then the data is transferred back and the final U solve is done 

on the CPU.  Applicable code is detailed in appedicies A,B, and C. 

 
Transpose Block GPU (CUDA Kernel) 
Matrix Multiply GPU (CUBLAS) 
Factorization CPU (MKL BLAS) 
Pivot GPU (CUDA Kernel) 
Triangular Matrix 
Solve CPU (MKL BLAS) 

 
Table 3: Functions required for LU decomposition 

 

While the construction of LU Decomposition solvers on the GPU has been well 

documented before, they have remained solely in the domain of single-precision real values. 

While many real world applications fit nicely into these limitations, most engineering problems 

require the use of complex values. The next step in creating a useable LU Decomposition routine 

was to extend published methodologies to support complex values in both single and double 

precision. 
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Figure 5. Runtime Speeds for Single Precision Real Value LU Decomposition 
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Figure 6. Speedup Factors for Single Precision Real Value LU Decomposition 
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In the real double precision cases, the CPU+GPU implementation achieved a speed gain 

of seven times over the CPU only based counterpart.  Interestingly, even though twice the 

amount of data is required to be moved for a double precision case and known inefficiencies of 

the GPU processing double precision data, the CPU+GPU case only increased runtime by 90%. 

This can be explained by examining the memory access patterns in processing double precision 

data. In algorithms such as LU decomposition, data access to the memory of the CPU and GPU 

are not optimal for the fastest transfer. The addition of double precision data in these cases 

actually increase the efficiency of memory access since larger blocks of linear memory is being 

read at a single time. The addition of double precision arithmetic for these cases did not account 

for any noticeable increase in processing time. This is due to the fact that in these cases the 

arithmetic is fairly simple. The calculations were completed before the next block of data has 

arrived from memory even with the overhead of double precision calculations. 

 

Depending upon the size of the matrix complex double-precision support must be 

available. While many of the subroutines used in LU decomposition can be run on the GPU 

faster than the CPU, some portions of the code are still more appropriate to run on the CPU. 

Maintaining data integrity between CPU and GPU complex double-precision data types must be 

preserved. The inclusion of double-precision calculations will also be examined from a memory 

standpoint in optimizing the local cache memory in the GPU for the fastest execution times. 

 

 Double precision complex development on the CUDA platform presents several unique 

challenges to be addressed. These challenges occur from the incomplete development of the 
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CUBLAS libraries (BLAS libraries being optimized functions used commonly in linear algebra 

and CUBLAS being a standard CUDA implementation of them). Currently the CUBLAS 

libraries only support complete BLAS routines in single precision real and only very limited 

support for single and double precision complex. In the current version of CUBLAS only 2 out 

of 13 level 1 BLAS routines, 1 out of 16 level 2 BLAS routines, and 2 out of 6 level 3 BLAS 

routines are supported (Levels referring to the complexity of the routines). In the development of 

a single precision code for LU decomposition, the CUBLAS libraries can be extensively used. 

For double precision code with support for complex numbers, the CUBLAS libraries must be 

supplemented with custom CUDA BLAS kernels and CPU based BLAS routines.  

 

 

Figure 7. Speedup Factors for Double Precision Real Value LU Decomposition 
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In order to compensate for the lack of several appropriate BLAS routines in CUBLAS, 

the “Zsrtsm” function has been offloaded to the CPU, while the transpose functions has been 

written in CUDA with support for double precision complex numbers. Offloading the “Zstrm” 

function back to the CPU also presents problems in maintaining data consistency. When working 

with single or double precision real numbers, transferring data between CUBLAS and Intel MKL 

BLAS (the CPU BLAS used here) is trivial as these routines operate with the same data types 

(float or double). The complex MKL BLAS and CUBLAS have different data types and data 

structures to represent the data. In order to accomplish consistent data transfer the MKL BLAS 

has been modified so that its data structure is compatible with CUBLAS data types. To use the 

MKL BLAS functions the CUBLAS data types must be forced recast into MKL BLAS. 

 

 The custom routines written in CUDA for transposition were written to support the 

complex double precision numbers. The added data overhead requires smaller blocks of the 

matrix to be transferred at a single time (as 1 element of a double precision complex matrix has 4 

times the data as a single precision real matrix). The transpose routines make use of local cache 

memory inside the GPU in order to make this process as fast as possible. At this point these 

routines have only begun to be optimized for speed, as the memory required for complex double 

precision as well as the memory layout makes this process difficult. 

 

 The addition of double-precision complex support for a GPU based LU decomposition 

solver has allowed a moderate speed gain of 2 to be achieved as seen in Figures 6 and 9. These 
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figures relate how the addition of double-precision complex numbers lowers the possible speed 

gains of the GPU. This low number (in comparison to single-precision speeds) is first due 

primarily to the immature double-precision hardware on the GPU itself. Future generations of 

GPU’s are expected to greatly increase the double-precision speed. 

 

 

Figure 8. Runtimes for both CPU and GPU implementation of Complex Double-Precision LU Decomposition 
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Figure 9. Runtime of various GPU based implementations of LU Solvers 
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Figure 10. Speedup factors of GPU based over CPU based implementations of Complex Double-Precision LU 

Decomposition 
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3.4 Complex Double-Precision Method-of-Moments Results 

   
To show the use of the GPU based solver, a well known sample problem was chosen. In 

this sample, the current along a wire antenna of length L (0.1m) and radius A (0.1mm) that is 

excited by a magnetic frill model will be calculated as shown in figure 1. This simulation will be 

calculated using sinusoidal basis functions and mid-point integration.  

 

 
Figure 11. Sample wire antenna configuration 

 

 

The sample problem was chosen in order to validate the simulations against existing codes 

and for its simplicity in integration into the GPU solver codes. Because of its nature it is simple 

to change the discretization of problem and examine the solution times as a function of the 

subsequent matrix size. 

 

The GPU code was run against the reference codes to ensure proper operation. Figures 12 

and 13 shows the current along the wire in both codes for a sample discretization of 1024 

segments. The results show very good agreement with only very minor differences in the 

magnitude of the current. These differences (less than 0.1%) can be attributed to minor 

differences in how the numbers were stored and calculated in the various programs and the use 

of the GPU in the simulation. The errors in the phase calculations were even smaller by several 

L 

+ - 
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degrees of magnitude which means the differences were most likely due to the differences in 

how the GPU and CPU handles rounding.  

 

Figure 14 shows the various solution times for different matrix sizes. These solution times 

were measure using the same program operating in either CPU only mode (using Intel MKL 

BLAS for the calculations) or in CPU+GPU mode (Using NVIDIA CUBLAS to operate on the 

majority of the simulation). These are the simulation only run times and do not include matrix 

fill times. The results shown are for several different configurations of systems and graphics 

cards as noted on the figures. From these results it can be seen that as the matrix size increases 

the GPU codes run approximately twice as fast as the CPU only codes run compared to a quad 

core 2.6 GHz Intel i7 machine and approximately 4 times faster compared to a 2.4 GHz Intel 

Core Duo. Since the GPU only has begun to support double precision calculations recently this 

slow down can be attributed to the relative immaturity of the GPU hardware in this aspect.   
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Figure 12. GPU and Reference results for current 
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Figure 13. GPU and Reference results for current phase 

 

 

 



 

 
36 

 

Figure 14. CPU and GPU solution times for various matrix sizes 
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CHAPTER IV 

ITERATIVE METHODS ON THE GPU 

   

4.1 Introduction 

 

 The second class of problems commonly occurring in computational elecromagnetics are 

iterative methods such as the Finite-Difference Time-Domain method (FDTD). FDTD attempts 

to solve Maxwell’s field equations in the time domain by applying their partial derivative form 

across a structural domain in a time-marching fashion. Iterative techniques such as FDTD are 

highly suited for GPU based applications, as they generally require applying a set of standard 

equations over the entire domain. Since there is no decision-making or branching involving, and 

the memory accesses are fairly sequential, iterative techniques often show the largest speed 

gains. 

 

4.2 Finite-Difference Time-Domain 

 

Finite-Difference Time-Domain (FDTD) solvers for electromagnetic simulations have 

been around for many years, however, it have been the recent advances in computer technology 

that has seen the technique gain wide use. As computers become more powerful and systems 

with larger memory are introduced, applications for FDTD increase as well. FDTD is 
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increasingly used to simulate larger and larger problems, which require more memory and faster 

processing in order to complete the simulation in reasonable amounts of time. Even with current 

generation computers the FDTD method is still limited in the speed for a simulation to be 

performed. Most of the research into the FDTD method has been on introducing new 

formulations for solving problems and more efficient absorbing boundary conditions. In the past 

years, researchers have begun to explore different ways to implement FDTD solvers in 

alternative methods in order to gain increases in speed. Basing FDTD on graphics processors has 

been shown to offer orders of magnitude speed increases in simple vector operations required in 

the method. 

 

4.3 Finite-Difference Time-Domain Domain Tiling and Absorbing Layers 

 

Integrating a fully functional FDTD simulator on the GPU presents several obstacles that 

need to be overcome in order to operate efficiently. The first of these problems is how to 

efficiently store and access what is essentially a three-dimensional domain inside a two-

dimensional storage space. Figure 15. details the most common method of translating into two-

dimensional space, tiling. Here it can be seen that the three-dimensional space has been “sliced” 

across the z-dimension and tiled into the two-dimensional array. In this system, accessing 

neighboring elements in “x” or “y” is preserved, while accessing neighboring elements in “z” 

require movement in “y” up or down the slices. This preserves much of the sequential memory 

accesses needed to gain the most speed possible.  This tiling, however, presents a few problems 

in programming other functions commonly needed in FDTD such as absorbing boundaries. In 
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most CPU based implementations, while not trivial, are fairly easily implemented. On the GPU 

their implementation can be much more complex. Because these absorbing boundaries and their 

constituent equations are usually applied only in certain areas of the computational domain, how 

to apply them properly while maintaining speed becomes a key issue. Two separate methods are 

commonly used in GPU programming of common boundary types such as CPML. The first 

being using if-then operators in the code to test if the equations are to be applied and the second 

to apply the equations over the entire domain. While the second method offers certain 

advantages to maintaining speed gains it does require storing both data and coefficients for the 

entire domain and negatively impacts memory usage. The second method also offers ease of 

implementation since the equations can be applied uniformly on the entire domain (with only the 

areas inside the boundaries having none-zero coefficients). 

Figure 15. 3D Domain Tiling 
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Since the domain is tiled it is useful to consider exactly where the absorbing boundaries 

are being applied. Figure 16. shows a sample domain and where a CPML absorbing boundary is 

present. It can be seen that while he “x” and z” boundaries are very well defined, the “y” 

boundaries are more scattered throughout the domain. It is from this fact that using if-then 

statements to determine where to apply the boundaries becomes quite complex to the GPU if that 

method is used. 

 

 

Figure 16. PML Boundaries in a sample computational domain 

 The second obstacle to be overcome is the need for efficient extraction of field 

components necessary in FDTD simulations. Normally these field components are used for 

calculating surface voltages and currents and require the extraction of many various points in the 

domain at every time step. Efficient extraction methods were covered previously in chapter 2. 
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 A FDTD code was implemented on a GPU (appendix D) to test the speed gains possible 

and to validate the results against existing codes. In this example as shown in Figure 17, a simple 

printed dipole antenna was constructed with the parameters shown. The voltage and current from 

the source were extracted and analyzed for comparison. 

 

 

Figure 17. Sample GPU FDTD Domain of Printed Dipole Antenna 

 

 This simulation was run using both CPU and GPU based FDTD simulators. On the CPU 

based program the simulation was completed in 23.2 minutes while on the GPU the simulation 

was completed in 55.2 second. These simulation times resulted in a speedup factor of 

approximately 25 times for the GPU implementation of FDTD. Comparison of the output data 

showed good agreement between the two implementations. 

 

Printed Copper Dipole 
on a thin substrate 

Center Fed 

Domain Information 
# of Cells in X – 634 
# of Cells in Y – 84 
# of Cells in Z – 38 

Total # of Cells - 2023728 

Copper 

Source 

Substrate 

Structure Information 
Arm Size – 7.1 cm x 1.5 cm 
Gap Size – 0.8 cm x 1.5 cm 

Er – 10.2   Thickness – 0.64 mm 
dx=0.25mm dy=0.3mm 

dz= 0.16mm 

3000 Time Steps 
10 Cell CPML 
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 A second test case was implemented to test the efficacy of the CMPL boundaries using 

this method. In this case as shown in Figure 18, a point source is used to excite the domain while 

an object that may be either PEC or dielectric is placed to cause complex reflections. Several 

observation points were used to study the magnitude of the reflections as shown in Figures 19-

21. 

 

 

Figure 18. CMPL Test Case 2 
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Figure 19. Ez field component at various time steps for dielectric block of εr=10.2 

 

 

 

 

 

 

Figure 20. Ez field component at various time steps for PEC block 
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Figure 21. Ez field component at observation point 

 

4.4 Finite-Difference Time-Domain Verification Cases 

 

 In order to verify the proper operation of the GPU FDTD code with boundary layers, 

several verification cases were simulated. These verification cases were taken from the well-

known paper “Application of the Three-Dimensional Finite-Difference Time-Domain Method to 

the Analysis of Planar Microstrip Circuits”. 

 

 The first case considered is that of a simple microstrip antenna as shown in Figure 22. 

This antenna is fed at the base of the microstrip feed line and the results are observed at a port 

located closer to the patch itself. Results showing excellent agreement are shown in Figures 23-

25. 
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Figure 22. Microstrip patch antenna validation case 
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Figure 23. Ez Plane Cuts at various time steps for microstrip validation case 
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Figure 24. Microstrip patch voltages and currents at the observation port for GPU and CPU codes 
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Figure 25. Microstrip patch return loss comparison between GPU, CPU, and reference data 

 

The second case considered is that of a simple microstrip filter as shown in Figure 26. 

This filter contains two ports to observe both the reflected and transmitted components of the 

source which is located at the edge of the filter below port 1. Results showing excellent 

agreement are shown in Figures 27 and 28. 
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Figure 26. Microstrip filter validation case 
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Figure 27. Microstrip filter voltages and currents at the observation port for GPU and CPU codes 

 

 

Figure 28. Microstrip filter transmission and return losses comparison 
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4.5 Finite-Difference Time-Domain Multiple GPU Improvements 

 

One common feature that all GPU’s share with CPU’s is that at the lowest level, all 

memory is considered linear. No matter what the method of allocating or accessing the memory, 

what occurs on the memory chip is the access of a linear memory address space.  In 3D FDTD 

simulations, accessing a cell with a particular (X,Y,Z) coordinate requires either the system or 

the programmer to translate between the position of the cell in the computational domain and its 

memory location. CUDA currently offers two distinct types of memory allocation for general 

device access. These two processes either allocate a straight block of memory defined by the 

number of elements requested or allocating it padded so that the memory aligns with the 

hardware requirements. In either case, no matter if the simulation domain is a 1, 2, or 3D array, a 

linear block of memory will be allocated.  

 

In the case where no padding is requested (cudaMalloc), it is up to the programmer to 

design how the translation between the linear address and the computational location in the 

domain is handled. Figure 29 shows a simple situation of a 2x2x2 (NX, NY, NZ=2) domain and 

how its individual elements are mapped into the linear memory space. This figure shows each of 

the 8 allocated locations in memory, their locations in the computational domain, and the 

translation between the two. The case where padded memory is used 

(cudaMallocPitch/cudaMalloc3D) differs only slightly from the non-padded situation. In padded 

memory, translation can be automatically provided by CUDA, but the memory required will 

increase since each “row” might be padded to meet the alignment requirements for coalescing 
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the data.  

 

Neither case presents a clear advantage programming the GPU for FDTD, insofar as they 

can be functionally equivalent inside the CUDA kernel. These two methods are detailed here so 

that performance differences between how the FDTD domain is laid out may be explained. All 

the data presented in this paper will follow this generalized memory layout in that neighboring 

elements in the X direction will be successive in memory, neighboring elements in the Y 

direction will be located in memory ±NX away in memory, while neighboring elements in the Z 

direction will be located ±(NX*NY) in memory. 

 

 

Figure 29. Sample GPU Memory Layout 
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Previous research has detailed how various ways of configuring the same simulation in 

memory has impacted the performance in a generic GPU simulation. As an example of this 

phenomenon, a simple simulation was created with two sides of the domain set for 100 cells and 

the third varied from 100 to 700 cells. Figure 30 shows the results of this simulation for all 3 

cases of either NX, NY, or NZ varied while the other two set at 100 cells. All of the data for this 

paper was generated on a 2.6 GHz Core i7 machine utilizing two NVIDIA Tesla C1060 GPU’s 

utilizing multiple threads to control the GPU’s. The results in this figure show the average time 

required for one update time step (update E then update H with PEC boundaries). The figure 

shows that the simulation time is most dependent upon the extent of both the X and Y directions, 

while the extent of the Z direction has the least effect on simulation time.   
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Figure 30. Computation time vs. domain size 
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These results follow logically if the memory layout is taken into account. FDTD by 

definition is more a memory intensive technique than a computationally intensive technique. 

Faster memory rates in any computational device will produce in kind increases in computational 

speed. Therefore, the most efficient way to optimize any FDTD routine is by making memory 

access as efficient as possible. This is most noticeable inside a GPU based simulation as the 

memory access speeds are highly dependent upon the pattern of memory access. The fastest 

memory transfer speeds are achieved when the memory being accessed is nearest to linear as 

possible. As the memory locations being accessed grow farther apart, the data transfer rates slow 

considerably. By expanding the extent in the X direction, memory calls to neighboring cells in 

the Y direction grow linearly more apart, while memory calls to neighboring cells in the Z 

direction grow geometrically more distant. When the Y extent is expanded, calls to neighboring 

cells in X are unaffected while calls to neighboring cells in Z grow linearly more distant. If the Z 

extent is expanded, there is no difference in the spacing between any memory calls for 

neighboring cells of any axis. This pattern can be observed in Figure 2 with the line representing 

an expanding Z extent having the smallest effect on simulation performance.  

 

The large differences in computational performance depending on the orientation of the 

computational domain increase in significance in multiple GPU simulations. In these simulations 

the total computational domain in divided up in various sections with each assigned to its own 

GPU. This follows normal parallelization routines as “ghost cells” are required for certain field 

components along the dividing boundaries. These “ghost cells” are included in the computation 

domain for each GPU, but are not updated as they technically belong to a different region. After 
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each full update step, the “ghost cells” must be updated from the other GPU’s and this requires 

downloading data from each GPU and exchanging this boundary information with other GPU’s 

and re-uploading the new “ghost cell” data. The easiest way in CUDA to implement this data is 

to download the field component containing the “ghost cells”, update them, then re-upload the 

entire field component back to the GPU. Figures 31 and 32 show the effects on performance 

when an entire single field component is downloaded, updated, and re-uploaded between time 

steps. This figure shows that in the simplest of cases where only a single field component needs 

to be updated, this procedure can account for up to 12% of the total computational time. This 

percentage will grow in more complex simulations as more field components will contain “ghost 

cells” needing updating. In more complex situations, this data transfer can account for almost 

50% of the total simulation time if whole field components are transferred. 

 

In comparison, Figures 33 and 34 show the performance penalties when instead of 

copying the entire field component, only the section of interest (a single slice along one of the 

axes) is copied. While CUDA does provide several methods for copying only a portion of an 

array stored on the GPU, these procedure can often be convoluted when applied to 3D arrays. 

For comparison, instead of using these methods a separate procedure was developed. This 

involved using a separate kernel to copy the area of interest in the desired field component to a 

temporary array in the GPU, then transferring just that data back to the CPU. This process is then 

reversed in uploading new “ghost cell” data back to the GPU. The addition of invoking these 

new kernels inside the update steps was negligible to the total runtime (< 0.1%). Figure 4 shows 

the effects of just copying a single required “ghost” cell data to the CPU and back to the GPU 
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and shows little variance on transfer sizes or orientation. By limiting the data transfers to just the 

required elements for the exchanging of data, the time required has been minimized. Even in 

more complex simulations where multiple field components are to be transferred, copying and 

updating only the cells required limits the performance penalties to under 3%. 
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Figure 31. Data transfer times vs computation domain size for whole field components 
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Figure 32. Data transfer times vs computation domain size as a percentage of total computational time for whole 

field components 
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Figure 33. Data transfer times vs computation domain size for partial field components 
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Figure 34. Data transfer times vs computation domain size as a percentage of total computational time for partial 

field components 

 

 

Differences in domain orientation on each GPU can have dramatic effects on simulation 

performance. When dividing up a computational domain for multiple GPU simulations, allowing 

the Z extent to be the largest can lead up to a 40% increase in per time-step performance over 

other orientations. Enabling the ghost cell transfers between the different GPU’s to be limited to 

just the areas of interest can minimize the effects of the transfer to almost negligible levels in a 

single computer system with multi GPU setup. While in more complicated simulations, the 
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transfer times will account for a larger portion of the total simulation time, the effects can be 

minimized if the domain is decomposed intelligently. Code for these tests may be found in 

appendices E and F. 

 

4.6 Conclusion 

 

 The GPU based FDTD simulator has shown it can accomplish many of the same 

simulations as their standard CPU based counterparts in a fraction of the time. This will allow it 

to be used to great effect in many situations where results can be calculated in a matter of 

seconds instead of several minutes. Such a short simulation time increases its utility in the 

context of time limited courses for demonstration purposed. 
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CHAPTER V 

TEACHING APPLICATIONS  

 

5.1 Introduction 

 
 GPU based computational electromagnetics has been shown to significantly increase the 

execution speed of many various techniques. Both iterative and matrix based simulations have 

been performed on the GPU with speeds gains ranging from 2 for a double-precision complex 

LU decomposition, up to over 20 times for a Finite-Difference Frequency-Domain simulation. 

With the varied techniques gaining speed and choosing the right examples, it is possible to 

construct GPU based simulations that can be executed in a matter of seconds instead of the 

minutes or hours before.  

 

 In order to be of any use in teaching situations these solvers must fit two distinct criteria; 

An easy to use interface, and be able to be executed in a reasonable amount of time in a 

classroom environment. With the basic framework having been detailed, the use of these GPU 

based solvers can be applied to a wide variety of problems such as antennas, filters, and other 

electromagnetic devices. The speed gains provided by the GPU based codes open the technique 

to widespread use in optimization and parameter exploration. 
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5.2 FDTD Teaching Programs 

 

  Previously to now, the running of a simulation using the FDTD method, for example, 

would take anywhere from a few minutes to many hours or more. As has been show in numerous 

papers, the execution time for these FDTD simulations can be decreased by up to 25-30 times 

compared to their CPU based counterparts. The use of the GPU in conjunction with a simple 

Matlab based graphical user interface can be used in teaching situations. These graphical user 

interfaces will allow the background GPU code to be connected with an easy to use interface that 

allows the user to set parameters on a simple simulation and perform the simulation. With the 

interface, it is possible to vary the constitute parameters of any simulation to show how these 

parameters effect the operation of the simulation. 

 

Figure 35. Sample Matlab GUI Interface For Patch Antenna 
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Figure 35 shows a sample interface created for a GPU based FDTD simulator of a 

microstrip patch antenna. In this example the user has control over 4 different parameters of this 

particular antenna. In this case it is a simple microstrip patch antenna. The user may adjust the 

parameters marked by “A”, “B”, “C”, or “D” to adjust the size of the antenna and the feed lines 

location and the results be displayed interactively on the bottom. Such a simulation on the CPU 

would normally take several minutes even for this simple problem, on the GPU however, the 

simulation time is only a few seconds (11 seconds on the GPU vs 3.5 minutes on the CPU).  

 

 Often, especially in cases such as this, while teaching a course covering just such 

an antenna the instructor will often have to resort to using broad approximations and teaching 

general rules for how such an antenna would work. Demonstrating how the constituent 

parameters effect the operation of the device would have been prohibitive if it took several 

minutes of runtime to calculate a new set of data. With the adoption of the GPU based solvers, 

since the run time has been reduced significantly, it is possible to demonstrate how each 

parameter can effect the overall operation of the device. Figure 36 shows a more advanced 

version of the same application that allows the user to not only simulate given a set of 

parameters, but also allows synthesis for a starting point of new simulations and optimization 

options as well. Results from these applications can be had in a matter of seconds rather than 

minutes with standard CPU based simulations.  

 

In this program a simple particle swarm optimization (PSO) code was implemented on 

the Matlab portion that drives the simulator to test various combinations of parameters trying to 
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meet the requested output performance. Since the simulation times have been reduced 

significantly over the CPU simulators, such optimizations can easily be shown even in classroom 

situations. In cases where simulations only take a matter of seconds, hundreds of executions can 

easily be performed in the course of a class period. 

 

 

Figure 36. Advanced Matlab GUI Interface For Patch Antenna 
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In the cases where an optimization might be run, the interface can take the parameters 

given for the type of optimization and target results and automatically run the simulations given 

these parameters. In a sample case of this microstrip patch antenna, the optimization system was 

given the target of -10dB return loss at 7.5 GHz with a swarm size of 10 particles and run over 

20 iterations. The GUI will then launch the appropriate simulations, slightly modifying the 

parameters of the antenna itself from run to run. In this case of 200 separate runs, the total 

simulation took under 30 minutes with the results shown in figures 37-39. 
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Figure 37. PSO final result from Matlab GUI 
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Figure 38. PSO fitness data as the simulator explores the domain 
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Figure 39. PSO return loss data at target frequency as the simulator explores the domain 
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Figure 40 shows a second program created for teaching the design of a microstrip filter. 

In this example the user may adjust any of a wide variety of parameters in the design of the filter 

not only controlling the shape of the filter but also the material parameters as well. The type of 

filter shown is commonly taught in design classes as its operation is very well known. Adding 

the ability the modify the design and have the results available in a very short time (8 seconds for 

the GPU vs 3 minutes for the CPU) allows the instructor to easily demonstrate how the various 

parts of the filter effect its operation. Results from this GUI can be seen in Figure 41. 

 

 

 Figure 40. Sample Matlab GUI Interface For Microstrip Filters 
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Figure 41. Matlab GUI Interface For Microstrip Filters Results 

 

 

A third example program is shown in Figure 42. This module allows for the simulation of 

a printed dipole antenna similar to that one shown in chapter 4. This type of antenna is very 

common in antenna courses as well due to its simple nature. The interface allows the user to 
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adjust various any of the size and material parameters of the antenna and includes an addition 

component of optimization.  

 

 

Figure 42. Sample Matlab GUI Interface For Printed Dipole Antennas 

 

Similarly there are many more opportunities where GPU based solvers can be used in 

classroom environments. Many various topics in electromagnetics often require students and 

instructors to use complex simulations to solve problems, from antenna analysis, to object 

scattering, and even circuit design at high frequencies. Often the instructor will demonstrate the 
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use of the simulator and assign the actual problems to be solved as homework due to the long 

execution times needed.  

 

 Allowing a wide variety of simulations to be performed in class would allow the 

instructor to better communicate and demonstrate how these devices being examined operate. 

Being able to interactively show the effects of how these devices operate will allow the students 

a greater understanding of the class material.   
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CHAPTER VI 

CONCLUSIONS 

 

 The use of GPU based computational electromagnetic simulations have shown in a wide 

variety of applications to significantly speedup computational time. In both cases of matrix 

solving and iterative methods, computational time can be drastically reduced. Depending upon 

the application matrix solving CEM applications can be speed up anywhere from two times for 

complex double-precision solves up to over ten times for real single-precision solves. In the case 

of iterative methods such as FDTD the speed gains are even more significant often resulting in 

speedups over twenty times faster than their CPU counterparts.  

 

 The reduced computational time available by utilizing GPU based simulations allows for 

their integration in a wide variety of teaching environment beyond their traditional roles in 

homework and numerical methods classes. While there does exist a few commercial products 

utilizing the computational power of the GPU for simulation purposes, these are often both 

expensive and narrowly focused for large commercial simulators. Utilizing these packages in 

classroom environments becomes unwieldy for simple uses such as demonstrating how small 

changes in common antennas and devices affect their performance.  

 

 Presented here are a few small packages that can be easily adapted and used in teaching 
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situations. With easily usable interfaces these modules as present can be simply run in the 

classroom to demonstration easily and quickly the operation of electromagnetic devices such as 

antennas and filters without the need for expensive and unwieldy simulators.  By creating several 

GPU simulators for most common simulation types, a wide variety of modules can be crafted to 

fit seamlessly in various electromagnetic courses to aid in the teaching and understanding of the 

students. 
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/******************************************************************** 

*  MatInv.cu 
*  Gaussian Matrix Inversion 
*  Matthew Inman  
*********************************************************************/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <cuda_runtime.h> 
#include <cutil.h> 
#include <math.h> 
 
#define BLOCKSIZE 16 
 
/************************************************************************/ 
/* CUDA Kernels                                                         */ 
/************************************************************************/ 
 
__global__ void GPUsetIdentity (float2* matrix, 
                                int width) 
{ 
    int tx = (blockIdx.x * blockDim.x + threadIdx.x);  
    int ty = (blockIdx.y * blockDim.y + threadIdx.y);  
     
// Set Imaginary Part to 0 
    matrix[ty  *width + tx].y = 0; 
 
// Set Real Part     
    if (tx==ty) 
  matrix[ty * width + tx].x = 1; 
    else 
  matrix[ty * width + tx].x = 0; 
} 
 
 
//-------------------------------------------------------------------------------- 
 
 
__global__ void pivotBlock_kernel (float2 *dInData, float2 *dInDataInv,float2 *dInData2, int 
loop, int size) 
{ 
    int tx = blockIdx.x * blockDim.x + threadIdx.x;  
    int ty = blockIdx.y * blockDim.y + threadIdx.y;  
  
 if (ty == loop) { 
     float a = dInData[ty * size + tx].x; 
     float b = dInData[ty * size + tx].y; 
     float c = dInData2[loop * size + loop].x; 
     float d = dInData2[loop * size + loop].y; 
     float a1 = dInDataInv[ty * size + tx].x; 
     float b1 = dInDataInv[ty * size + tx].y; 
      
      
     dInData[ty * size + tx].x = (a*c + b*d)/(c*c+d*d);       
     dInData[ty * size + tx].y = (b*c - a*d)/(c*c+d*d);      
      
     dInDataInv[ty * size + tx].x = (a1*c + b1*d)/(c*c+d*d);       
     dInDataInv[ty * size + tx].y = (b1*c - a1*d)/(c*c+d*d);       
      
 } 
} 
 
 
//-------------------------------------------------------------------------------- 
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__global__ void divBlock_kernel (float2 *dInData, float2 *dInDataInv,float2 *dInData2, int loop, 
int size) 
{ 
    int tx = blockIdx.x * blockDim.x + threadIdx.x;  
    int ty = blockIdx.y * blockDim.y + threadIdx.y;  
  
 if (ty != loop) { 
  float a = dInData[loop * size + tx].x; 
     float b = dInData[loop * size + tx].y; 
      
     float c = dInData2[ty * size + loop].x; 
     float d = dInData2[ty * size + loop].y; 
      
     float a1 = dInDataInv[loop * size + tx].x; 
     float b1 = dInDataInv[loop * size + tx].y; 
      
     float e = dInData2[ty * size + tx].x; 
     float f = dInData2[ty * size + tx].y; 
      
     float g = dInDataInv[ty * size + tx].x; 
     float h = dInDataInv[ty * size + tx].y; 
           
          
 
       dInData[ty * size + tx].x = e - (a*c - b*d);      
       dInData[ty * size + tx].y = f - (b*c + a*d);       
        
       dInDataInv[ty * size + tx].x = g - (a1*c - b1*d);  
       dInDataInv[ty * size + tx].y = h - (b1*c + a1*d);  
        
 } 
} 
 
//-------------------------------------------------------------------------------- 
 
 
__global__ void copy_kernel (float2 *dInData,float2 *dInData2, int size) 
{ 
    int tx = blockIdx.x * blockDim.x + threadIdx.x;  
    int ty = blockIdx.y * blockDim.y + threadIdx.y;  
  
 dInData[ty * size + tx].x = dInData2[ty * size + tx].x; 
 dInData[ty * size + tx].y = dInData2[ty * size + tx].y; 
} 
 
 
 
/************************************************************************/ 
/* Init CUDA                                                            */ 
/************************************************************************/ 
#if __DEVICE_EMULATION__ 
 
bool InitCUDA(void){return true;} 
 
#else 
bool InitCUDA(void) 
{ 
 int count = 0; 
 int i = 0; 
 
 cudaGetDeviceCount(&count); 
 if(count == 0) { 
  fprintf(stderr, "There is no device.\n"); 
  return false; 
 } 
 
 for(i = 0; i < count; i++) { 
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  cudaDeviceProp prop; 
  if(cudaGetDeviceProperties(&prop, i) == cudaSuccess) { 
   if(prop.major >= 1) { 
    break; 
   } 
  } 
 } 
 if(i == count) { 
  fprintf(stderr, "There is no device supporting CUDA.\n"); 
  return false; 
 } 
 cudaSetDevice(i); 
 
 printf("CUDA initialized.\n"); 
 return true; 
} 
 
#endif 
 
 
/************************************************************************/ 
/* Main Program                                                         */ 
/************************************************************************/ 
int main(int argc, char* argv[]) 
{ 
 
 if(!InitCUDA()) { 
  return 0; 
 } 
 
 
    int i, j,k; 
 
    // Matrix Size (NxN) 
    int size = 32; 
     
 
 
    // Initialize CPU/GPU Memory 
    float *dataInput = (float*) malloc (sizeof (float) * size * size * 2); 
    float *resultGPU = (float*) malloc (sizeof (float) * size * size * 2); 
    float2 *dDataIn; 
    float2 *dDataIn2; 
    float2 *dDataInv; 
 
    int size2InBytes = size * size * sizeof (float2); 
     
    float f,f2; 
    FILE* pFile; 
   
    //Allocating memory for the datamatrix and identity matrix (Einheitsmatrix) 
    if (cudaMalloc ((void **) &dDataIn, size2InBytes) != cudaSuccess) { 
  printf("cudaMalloc1 Failed for %d bytes", size2InBytes); 
  return 0; 
    } 
    if (cudaMalloc ((void **) &dDataIn2, size2InBytes) != cudaSuccess) { 
  printf("cudaMalloc2 Failed for %d bytes", size2InBytes); 
  return 0; 
    } 
    if (cudaMalloc ((void **) &dDataInv, size2InBytes) != cudaSuccess) { 
  printf("cudaMalloc3 Failed for %d bytes", size2InBytes); 
  return 0; 
    } 
     
 
 
// ---  Set Thread Sizes for GPU 
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 dim3 dimBlock(BLOCKSIZE, BLOCKSIZE); 
 dim3 dimGrid((size) / dimBlock.x, size / dimBlock.y); 
 
 
// --- Read Data File 
 
 
pFile = fopen ("input.txt","r"); 
    k=0; 
 for (i = 0; i < size; i++) 
    { 
       for (j = 0; j < size*2; j=j+2) 
       { 
    fscanf (pFile, " (%E,%E)\n", &f, &f2); 
    dataInput[k] =  (float) f; 
    dataInput[k+1] =  (float) f2; 
    k=k+2; 
       } 
    } 
 
 
fclose(pFile); 
 
// --- Initialize Timers 
 unsigned int timer = 0; 
 CUT_SAFE_CALL( cutCreateTimer( &timer)); 
 CUT_SAFE_CALL( cutStartTimer( timer)); 
 
// ------------- Run The Kernel 
 
//Prepare the calculation of the identitymatrix 
 
    cudaMemset ((void *) dDataInv, 0, size2InBytes); 
 
//Transfer the matrix from host to device 
 
    cudaMemcpy ( dDataIn, dataInput, size2InBytes, cudaMemcpyHostToDevice); 
    cudaMemcpy ( dDataIn2, dataInput, size2InBytes, cudaMemcpyHostToDevice); 
 
 
//Calculate the Identitymatrix  
 
    GPUsetIdentity <<< dimGrid, dimBlock >>> (dDataInv, size); 
    cudaThreadSynchronize (); 
     
  
// Loop over size (N)     
   for (i=0; i<size; i++) { 
        pivotBlock_kernel <<< dimGrid, dimBlock >>> (dDataIn,dDataInv, dDataIn2, i, size); 
        cudaThreadSynchronize (); 
         
        copy_kernel <<< dimGrid, dimBlock >>> (dDataIn2,dDataIn, size); 
        cudaThreadSynchronize (); 
         
        divBlock_kernel <<< dimGrid, dimBlock >>> (dDataIn,dDataInv, dDataIn2, i, size); 
        cudaThreadSynchronize ();  
         
        copy_kernel <<< dimGrid, dimBlock >>> (dDataIn2,dDataIn, size); 
        cudaThreadSynchronize ();  
 
 
 if (i%10==0) 
   printf("Iteration %d \n", i); 
        
    }     
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// Copy Result Back to CPU 
  cudaMemcpy ((void *) resultGPU, (void *) dDataInv, size2InBytes, cudaMemcpyDeviceToHost);  
   
   
  
     
 
// ---------------------------- 
 CUDA_SAFE_CALL( cudaThreadSynchronize() ); 
 CUT_SAFE_CALL( cutStopTimer( timer)); 
 printf("Processing time: %f (ms)\n", cutGetTimerValue( timer)); 
 CUT_SAFE_CALL( cutDeleteTimer( timer)); 
 
 
// -- Free GPU Memory  
 cudaFree (dDataIn); 
 cudaFree (dDataIn2); 
 cudaFree (dDataInv); 
 
 
 
 
// -- Write Results Out To File  
pFile = fopen ("output.txt","wt"); 
k=0; 
    for (i = 0; i < size; i++) 
    { 
        for (j = 0; j < size*2; j=j+2) 
        { 
   fprintf (pFile, "%f %f\n", resultGPU[k], resultGPU[k+1]); 
   k=k+2; 
        } 
    } 
fclose(pFile); 
 
 
// -- Free CPU Memory  
 free(resultGPU); 
 free(dataInput); 
 
 
// Shutdown 
 CUT_EXIT(argc, argv); 
 
 return 0; 
} 
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//  

// CuBLAS Implementation for Double Precision Complex 
// Matthew J. Inman 
// Adapted From Single Precision Real Documentation by:  Vasily Volkov 
// 
 
#include "gpu_lapack_internal.h" 
 
 
// 
//  Symmetric rank k update 
//  See http://www.netlib.org/blas/ssyrk.f 
// 
extern "C" void gpu_ssyrkLN( int n, int k, double alpha2, const p2_t A, double beta2, p2_t C ) 
{  
 
 cuDoubleComplex alpha, beta; 
  
 alpha.x = alpha2; 
 alpha.y = 0; 
  
 beta.x  = beta2; 
 beta.y  = 0; 
  
 if( n <= 0 || k <= 0 ) 
  return; 
 
 cublasZsyrk( 'L', 'N', n, k, alpha, A.A, A.lda, beta, C.A, C.lda ); 
    Q( cublasGetError( ) ); 
}  
 
// 
//  Matrix-matrix multiplications 
//  See http://www.netlib.org/blas/sgemm.f 
// 
extern "C" void gpu_sgemmNN( int m, int n, int k, double alpha2, const p2_t A, const p2_t B, 
double beta2, p2_t C ) 
{  
 cuDoubleComplex alpha, beta; 
  
 alpha.x = alpha2; 
 alpha.y = 0; 
  
 beta.x  = beta2; 
 beta.y  = 0; 
 if( m <= 0 || n <= 0 || k <= 0 ) 
  return; 
    cublasZgemm( 'N', 'N', m, n, k, alpha, A.A, A.lda, B.A, B.lda, beta, C.A, C.lda ); 
    Q( cublasGetError( ) ); 
 
}  
 
extern "C" void gpu_sgemmNT( int m, int n, int k, double alpha2, const p2_t A, const p2_t B, 
double beta2, p2_t C ) 
{  
 cuDoubleComplex alpha, beta; 
  
 alpha.x = alpha2; 
 alpha.y = 0; 
  
 beta.x  = beta2; 
 beta.y  = 0; 
  
  
 if( m <= 0 || n <= 0 || k <= 0 ) 
  return; 
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    cublasZgemm( 'N', 'T', m, n, k, alpha, A.A, A.lda, B.A, B.lda, beta, C.A, C.lda ); 
    Q( cublasGetError( ) ); 
 
}   
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//  
// CuBLAS Implementation for Double Precision Complex 
// Transpose routines 
// Matthew J. Inman 
// Adapted From Single Precision Real Documentation by:  Vasily Volkov 
// 
 
#include "gpu_lapack_internal.h" 
 
#define BLOCK_SIZE 4 // hand-tuned parameter 
 
static __global__ void transpose_device( cuDoubleComplex *dst, int ldd, cuDoubleComplex *src, int 
lds ) 
{  
 src += blockIdx.x*16 + threadIdx.x + ( blockIdx.y*16 + threadIdx.y ) * lds; 
 dst += blockIdx.y*16 + threadIdx.x + ( blockIdx.x*16 + threadIdx.y ) * ldd; 
 
 __shared__ cuDoubleComplex a[16][17]; 
 
    // 
    //  load 32x32 block 
    // 
 for( int i = 0; i < 16; i += BLOCK_SIZE ) 
 { 
  a[i+threadIdx.y][threadIdx.x] = src[i*lds]; 
 } 
 __syncthreads(); 
 
    // 
    //  store transposed block 
    // 
 for( int i = 0; i < 16; i += BLOCK_SIZE )  
 { 
  dst[i*ldd].x = a[threadIdx.x][i+threadIdx.y].x; 
        dst[i*ldd].y = a[threadIdx.x][i+threadIdx.y].y; 
    } 
} 
 
static __global__ void transpose_inplace_device( cuDoubleComplex *matrix, int lda, int half, int 
parity ) 
{    
    bool bottom = blockIdx.x + parity > blockIdx.y; 
 int ibx = bottom ? (blockIdx.x + parity - 1) : (blockIdx.y + half - parity); 
 int iby = bottom ? blockIdx.y       : (blockIdx.x + half); 
  
 ibx *= 16; 
 iby *= 16; 
 int inx = threadIdx.x; 
 int iny = threadIdx.y; 
  
 __shared__ cuDoubleComplex a[16][17], b[16][17]; 
     
    // 
    //  load 32x32 block 
    // 
 cuDoubleComplex *A = matrix + ibx + inx + ( iby + iny ) * lda; 
 for( int i = 0; i < 16; i += BLOCK_SIZE ) { 
   a[i+threadIdx.y][threadIdx.x] = A[i*lda]; 
 } 
  
 if( ibx == iby ) 
 { 
        // 
        //  this is a diagonal block 
        // 
  __syncthreads(); 
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        // 
        //  store transposed block 
        // 
        for( int i = 0; i < 16; i += BLOCK_SIZE ) 
        { 
       A[i*lda] = a[threadIdx.x][i+threadIdx.y]; 
     } 
 } 
 else 
 { 
        // 
        //  load the opposite 32x32 block 
        // 
  cuDoubleComplex *B = matrix + iby + inx + ( ibx + iny ) * lda; 
     for( int i = 0; i < 16; i += BLOCK_SIZE ) { 
       b[i+threadIdx.y][threadIdx.x] = B[i*lda]; 
     } 
         
        __syncthreads(); 
         
        // 
        //  store transposed blocks in reverse order 
        // 
        for( int i = 0; i < 16; i += BLOCK_SIZE ) 
        { 
       A[i*lda] = b[threadIdx.x][i+threadIdx.y]; 
     } 
     for( int i = 0; i < 16; i += BLOCK_SIZE ) 
     { 
       B[i*lda] = a[threadIdx.x][i+threadIdx.y]; 
     } 
 } 
}  
 
extern "C" void gpu_transpose( int m, int n, p2_t dst, p2_t src ) 
{ 
    if( m <= 0 || n <= 0 ) 
        return; 
 
 dim3 threads( 16, BLOCK_SIZE, 1 ); 
 dim3 grid( (m+15)/16, (n+15)/16, 1 ); 
 transpose_device<<< grid, threads >>>( dst.A, dst.lda, src.A, src.lda ); 
    Q( cudaGetLastError( ) ); 
} 
  
extern "C" void gpu_transpose_inplace( int n, p2_t matrix ) 
{ 
    if( n <= 0 ) 
        return; 
 
 int in = (n+15) / 16; 
 dim3 threads( 16, BLOCK_SIZE ); 
 dim3 grid( in|1, in/2+(in&1) ); 
 transpose_inplace_device<<< grid, threads >>>( matrix.A, matrix.lda, grid.y, in&1 ); 
    Q( cudaGetLastError( ) ); 

} 
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/******************************************************************** 
*  FDTD.CU 
*  Core CUDA FDTD Program 
*  Matthew J. Inman and Atef Z. Elsherbeni 
*********************************************************************/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <cuda_runtime.h> 
#include <cutil_inline.h> 
 
/************************************************************************/ 
/* Init CUDA                                                            */ 
/************************************************************************/ 
#if __DEVICE_EMULATION__ 
 
bool InitCUDA(void){return true;} 
 
#else 
bool InitCUDA(void) 
{ 
 int count = 0; 
 int i = 0; 
 
 cudaGetDeviceCount(&count); 
 if(count == 0) { 
  fprintf(stderr, "There is no device.\n"); 
  return false; 
 } 
 
 for(i = 0; i < count; i++) { 
  cudaDeviceProp prop; 
  if(cudaGetDeviceProperties(&prop, i) == cudaSuccess) { 
   if(prop.major >= 1) { 
    break; 
   } 
  } 
 } 
 if(i == count) { 
  fprintf(stderr, "There is no device supporting CUDA.\n"); 
  return false; 
 } 
 cudaSetDevice(i); 
   
 printf("CUDA initialized on %d.\n",i); 
 return true; 
} 
 
#endif 
/************************************************************************/ 
/* Example                                                              */ 
/************************************************************************/ 
 
__global__ 
void update_E  (float* Ex, float* Ey, float* Ez, 
    float* Hx, float* Hy, float* Hz, 
    float* CExe, float* CEye, float* CEze,   
    float* CExhz, float* CEyhx, float* CEzhy, 
    float* CExhy, float* CEyhz, float* CEzhx, 
    float* CExs, float* CEys, float* CEzs,     
    float V,  
    unsigned int Blocks_Y, float invBlocks_Y, 
    int NX, int NY, int NZ, 
    float* Vout, int iteration, int ii, int jj, int kk) 
{ 
    unsigned int blockIdx_z = __float2uint_rd(blockIdx.y * invBlocks_Y); 
    unsigned int blockIdx_y = blockIdx.y - __umul24(blockIdx_z, Blocks_Y); 
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    unsigned int tx = __umul24(blockIdx.x, blockDim.x) + threadIdx.x; 
    unsigned int ty = __umul24(blockIdx_y, blockDim.y) + threadIdx.y; 
    unsigned int tz = __umul24(blockIdx_z, blockDim.z) + threadIdx.z; 
 
 if ((tx >= NX) || (ty >= NY) || (tz >= NZ)) 
  return; 
 
    // Locations of Indicies 
    long int it = tz * NX * NY + ty * NX + tx; 
    long int itxp1 = tz * NX * NY + ty * NX + tx+1; 
    long int itxm1 = tz * NX * NY + ty * NX + tx-1; 
    long int ityp1 = tz * NX * NY + (ty+1) * NX + tx; 
    long int itym1 = tz * NX * NY + (ty-1) * NX + tx; 
    long int itzp1 = (tz+1) * NX * NY + ty * NX + tx; 
    long int itzm1 = (tz-1) * NX * NY + ty * NX + tx; 
     
   
 if ((tx < NX-1) && (ty > 0) && (ty < NY-1) && (tz > 0) && (tz < NZ-1)) { 
  Ex[it] =  
     (CExe[it] * Ex[it] 
     + CExhz[it]*(Hz[it] - Hz[itym1]) 
     - CExhy[it]*(Hy[it] - Hy[itzm1])) * (1-CExs[it]) 
     + V*CExs[it];   
    } 
     
    if ((tx > 0) && (tx < NX-1) && (ty < NY-1) && (tz > 0) && (tz < NZ-1)) { 
  Ey[it] =  
     (CEye[it] * Ey[it] 
     + CEyhx[it]*(Hx[it] - Hx[itzm1]) 
     - CEyhz[it]*(Hz[it] - Hz[itxm1])) * (1-CEys[it]) 
     + V*CEys[it];   
 } 
  
 if ((tx > 0) && (tx < NX-1) && (ty > 0) && (ty < NY-1) && (tz < NZ-1)) { 
  Ez[it] =  
     (CEze[it] * Ez[it] 
     + CEzhy[it]*(Hy[it] - Hy[itxm1]) 
     - CEzhx[it]*(Hx[it] - Hx[itym1])) * (1-CEzs[it]) 
     + V*CEzs[it];   
    } 
     
    if ((tx == ii) && (ty == jj) && (tz == kk)) 
    { 
  Vout[iteration] = Ez[it]; 
    } 
    
} 
 
__global__ 
void update_H  (float* Ex, float* Ey, float* Ez, 
    float* Hx, float* Hy, float* Hz, 
    float* CHxh, float* CHyh, float* CHzh, 
    float* CHxey, float* CHyez, float* CHzex, 
    float* CHxez, float* CHyex, float* CHzey, 
    unsigned int Blocks_Y, float invBlocks_Y, 
    int NX, int NY, int NZ) 
{ 
    unsigned int blockIdx_z = __float2uint_rd(blockIdx.y * invBlocks_Y); 
    unsigned int blockIdx_y = blockIdx.y - __umul24(blockIdx_z, Blocks_Y); 
    unsigned int tx = __umul24(blockIdx.x, blockDim.x) + threadIdx.x; 
    unsigned int ty = __umul24(blockIdx_y, blockDim.y) + threadIdx.y; 
    unsigned int tz = __umul24(blockIdx_z, blockDim.z) + threadIdx.z; 
 
 if ((tx >= NX) || (ty >= NY) || (tz >= NZ)) 
  return; 
 
    // Locations of Indicies 
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    long int it = tz * NX * NY + ty * NX + tx; 
    long int itxp1 = tz * NX * NY + ty * NX + tx+1; 
    long int itxm1 = tz * NX * NY + ty * NX + tx-1; 
    long int ityp1 = tz * NX * NY + (ty+1) * NX + tx; 
    long int itym1 = tz * NX * NY + (ty-1) * NX + tx; 
    long int itzp1 = (tz+1) * NX * NY + ty * NX + tx; 
    long int itzm1 = (tz-1) * NX * NY + ty * NX + tx; 
     
   
// Ex[it]=V*Evx[it]; 
 
 if ((tx < NX-1) && (tx > 0) && (ty < NY-1) && (tz < NZ-1)) { 
  Hx[it]  = CHxh[it] * Hx[it] 
    + CHxey[it] * (Ey[itzp1] - Ey[it]) 
    - CHxez[it] * (Ez[ityp1] - Ez[it]);  
    } 
     
    if ((ty > 0) && (tx < NX-1) && (ty < NY-1) && (tz < NZ-1)) { 
  Hy[it]  = CHyh[it] * Hy[it] 
    + CHyez[it] * (Ez[itxp1] - Ez[it]) 
    - CHyex[it] * (Ex[itzp1] - Ex[it]);  
 } 
  
 if ((tx < NX-1) && (tz > 0) && (ty < NY-1) && (tz < NZ-1)) { 
  Hz[it]  = CHzh[it] * Hz[it] 
    + CHzex[it] * (Ex[ityp1] - Ex[it]) 
    - CHzey[it] * (Ey[itxp1] - Ey[it]);    
    } 
   
 
} 
 
/************************************************************************/ 
/* Main Program                                                         */ 
/************************************************************************/ 
int main(int argc, char* argv[]) 
{ 
 
  
/************************************************************************/ 
/* Define Vars                                                          */ 
/************************************************************************/ 
 
 float x1,x2,y1,y2,z1,z2,dx,dy,dz,mu0,eps0, c, dtfactor,  nc,tau,t0,dt,Ce,Ch, pi, dsmax, 
time; 
 int nx, ny, nz, ncells, nsteps; 
 int i,j,k; 
 long int it; 
 unsigned int flags; 
 cudaDeviceProp deviceProp; 
  
  
  
 float *V = NULL; 
 float *Vout = NULL; float *d_Vout = NULL; 
 // Fields 
 float *Ex = NULL;  float *Hx = NULL; float *d_Ex = NULL;  float *d_Hx = NULL;  
 float *Ey = NULL;  float *Hy = NULL; float *d_Ey = NULL;  float *d_Hy = NULL;  
 float *Ez = NULL;  float *Hz = NULL; float *d_Ez = NULL;  float *d_Hz = NULL;  
  
 float *CExe = NULL;   float *d_CExe = NULL; 
 float *CExhz = NULL;  float *d_CExhz = NULL; 
 float *CExhy = NULL;  float *d_CExhy = NULL; 
 float *CExs = NULL;   float *d_CExs = NULL; 
  
 float *CEye = NULL;   float *d_CEye = NULL; 
 float *CEyhz = NULL;  float *d_CEyhz = NULL; 
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 float *CEyhx = NULL;  float *d_CEyhx = NULL; 
 float *CEys = NULL;   float *d_CEys = NULL; 
  
 float *CEze = NULL;   float *d_CEze = NULL; 
 float *CEzhx = NULL;  float *d_CEzhx = NULL; 
 float *CEzhy = NULL;  float *d_CEzhy = NULL; 
 float *CEzs = NULL;   float *d_CEzs = NULL; 
 
 float *CHxh = NULL;   float *d_CHxh = NULL; 
 float *CHxey = NULL;  float *d_CHxey = NULL; 
 float *CHxez = NULL;  float *d_CHxez = NULL; 
 float *CHxm = NULL;   float *d_CHxm = NULL;  
  
 float *CHyh = NULL;   float *d_CHyh = NULL; 
 float *CHyex = NULL;  float *d_CHyex = NULL; 
 float *CHyez = NULL;  float *d_CHyez = NULL; 
 float *CHym = NULL;   float *d_CHym = NULL;  
  
 float *CHzh = NULL;   float *d_CHzh = NULL; 
 float *CHzex = NULL;  float *d_CHzex = NULL; 
 float *CHzey = NULL;  float *d_CHzey = NULL; 
 float *CHzm = NULL;   float *d_CHzm = NULL;  
  
 cudaError_t ret; 
  
/************************************************************************/ 
/* Initialize CUDA                                                      */ 
/************************************************************************/  
  
 if(!InitCUDA()) { 
  return 0; 
 } 
  
 cutilSafeCall(cudaGetDeviceProperties(&deviceProp, 0)); 
 
 #if CUDART_VERSION >= 2020 
   if(!deviceProp.canMapHostMemory) 
   { 
  fprintf(stderr, "Device %d cannot map host memory!\n", 0); 
  printf("PASSED"); 
  cutilExit(argc, argv); 
   } 
   cutilSafeCall(cudaSetDeviceFlags(cudaDeviceMapHost)); 
 #else 
   fprintf(stderr, "This CUDART version does not support <cudaDeviceProp.canMapHostMemory> 
field\n"); 
   printf("PASSED"); 
   cutilExit(argc, argv); 
 #endif 
  
/************************************************************************/ 
/* Initialize Constants                                                 */ 
/************************************************************************/  
  
 x1 = -10e-3; x2 = 10e-3; y1 = -10e-3; y2 = 10e-3; z1 = -10e-3; z2 = 10e-3; 
 dx = 0.4064e-3;   dy = 0.4233e-3;   dz = 0.265e-3; 
 pi = 3.14159265; 
  
 mu0 = 4*pi*1e-7; eps0 = 8.8419e-012; c = 1/sqrt(mu0*eps0); 
  
  
  
// nx = round((x2-x1)/dx)+1; ny = round((y2-y1)/dy)+1; nz = round((z2-z1)/dz)+1; 
 
for (nx=100;nx<201; nx=nx+100) { 
for (ny=100;ny<201; ny=ny+100) { 
for (nz=100;nz<201; nz=nz+100) { 
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 ncells = nx*ny*nz; 
  
 if (argc > 1) { 
  nsteps = atoi(argv[1]);      
 } else { 
  nsteps = 100; 
 } 
  
 //printf("Number of Cells: cells=%d x=%d y=%d z=%d n=%d\n", ncells, nx,ny ,nz, nsteps); 
  
 nc = 25;             
 dtfactor = 0.95; 
  
 
 //dsmax = max([dx,dy,dz]); 
 if ( (dx >= dy) && ( dx >= dz ) ) { 
  dsmax = dx; 
 } 
 if ( (dz >= dy) && ( dz >= dx ) ) { 
  dsmax = dz; 
 } 
 if ( (dy >= dx) && ( dy >= dz ) ) { 
  dsmax = dy; 
 } 
  
 tau = nc*dsmax/(2*c);         
 t0 = 3 * tau;  
 dt = 1/(c*sqrt((1/(dx*dx))+(1/(dy*dy))+(1/(dz*dz)))); 
 dt = dtfactor*dt;  
 Ce = dt/(2*eps0); Ch = dt/(2*mu0);   
  
/************************************************************************/ 
/* Allocate Host and Device Arrays                                      */ 
/************************************************************************/    
 flags = cudaHostAllocMapped; 
 ret = cudaMallocHost( (void**)&V,   nsteps*sizeof(float) ); 
 ret = cudaMallocHost( (void**)&Vout,   nsteps*sizeof(float) ); 
  
  
 ret = cudaHostAlloc( (void**)&Ex, nx*ny*nz*sizeof(float), flags  ); 
 ret = cudaHostAlloc( (void**)&Hx, nx*ny*nz*sizeof(float), flags  ); 
 
 
 ret = cudaMallocHost( (void**)&Ey, nx*ny*nz*sizeof(float) ); 
 ret = cudaMallocHost( (void**)&Ez, nx*ny*nz*sizeof(float) ); 
              
 ret = cudaMallocHost( (void**)&Hy, nx*ny*nz*sizeof(float) ); 
 ret = cudaMallocHost( (void**)&Hz, nx*ny*nz*sizeof(float) ); 
            
 ret = cudaMallocHost( (void**)&CExe, nx*ny*nz*sizeof(float) ); 
 ret = cudaMallocHost( (void**)&CExhz, nx*ny*nz*sizeof(float) ); 
 ret = cudaMallocHost( (void**)&CExhy, nx*ny*nz*sizeof(float) ); 
 ret = cudaMallocHost( (void**)&CExs, nx*ny*nz*sizeof(float) ); 
  
 ret = cudaMallocHost( (void**)&CEye, nx*ny*nz*sizeof(float) ); 
 ret = cudaMallocHost( (void**)&CEyhx, nx*ny*nz*sizeof(float) ); 
 ret = cudaMallocHost( (void**)&CEyhz, nx*ny*nz*sizeof(float) ); 
 ret = cudaMallocHost( (void**)&CEys, nx*ny*nz*sizeof(float) ); 
  
 ret = cudaMallocHost( (void**)&CEze, nx*ny*nz*sizeof(float) ); 
 ret = cudaMallocHost( (void**)&CEzhx, nx*ny*nz*sizeof(float) ); 
 ret = cudaMallocHost( (void**)&CEzhy, nx*ny*nz*sizeof(float) ); 
 ret = cudaMallocHost( (void**)&CEzs, nx*ny*nz*sizeof(float) ); 
  
 ret = cudaMallocHost( (void**)&CHxh, nx*ny*nz*sizeof(float) ); 
 ret = cudaMallocHost( (void**)&CHxey, nx*ny*nz*sizeof(float) ); 
 ret = cudaMallocHost( (void**)&CHxez, nx*ny*nz*sizeof(float) ); 
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 ret = cudaMallocHost( (void**)&CHxm, nx*ny*nz*sizeof(float) ); 
  
 ret = cudaMallocHost( (void**)&CHyh, nx*ny*nz*sizeof(float) ); 
 ret = cudaMallocHost( (void**)&CHyex, nx*ny*nz*sizeof(float) ); 
 ret = cudaMallocHost( (void**)&CHyez, nx*ny*nz*sizeof(float) ); 
 ret = cudaMallocHost( (void**)&CHym, nx*ny*nz*sizeof(float) ); 
  
 ret = cudaMallocHost( (void**)&CHzh, nx*ny*nz*sizeof(float) ); 
 ret = cudaMallocHost( (void**)&CHzex, nx*ny*nz*sizeof(float) ); 
 ret = cudaMallocHost( (void**)&CHzey, nx*ny*nz*sizeof(float) ); 
 ret = cudaMallocHost( (void**)&CHzm, nx*ny*nz*sizeof(float) ); 
  
  
  
  
 // Device Arrays 
 ret = cudaMalloc( (void**)&d_Vout,   nsteps*sizeof(float) ); 
  
  
 //ret = cudaMalloc( (void**)&d_Ex, nx*ny*nz*sizeof(float) ); 
 //ret = cudaMalloc( (void**)&d_Hx, nx*ny*nz*sizeof(float) ); 
 cudaHostGetDevicePointer((void **)&d_Ex, (void *)Ex, 0); 
 cudaHostGetDevicePointer((void **)&d_Hx, (void *)Hx, 0); 
  
  
 ret = cudaMalloc( (void**)&d_Ey, nx*ny*nz*sizeof(float) ); 
 ret = cudaMalloc( (void**)&d_Ez, nx*ny*nz*sizeof(float) ); 
              
 ret = cudaMalloc( (void**)&d_Hy, nx*ny*nz*sizeof(float) ); 
 ret = cudaMalloc( (void**)&d_Hz, nx*ny*nz*sizeof(float) ); 
            
 ret = cudaMalloc( (void**)&d_CExe, nx*ny*nz*sizeof(float) ); 
 ret = cudaMalloc( (void**)&d_CExhz, nx*ny*nz*sizeof(float) ); 
 ret = cudaMalloc( (void**)&d_CExhy, nx*ny*nz*sizeof(float) ); 
 ret = cudaMalloc( (void**)&d_CExs, nx*ny*nz*sizeof(float) ); 
  
 ret = cudaMalloc( (void**)&d_CEye, nx*ny*nz*sizeof(float) ); 
 ret = cudaMalloc( (void**)&d_CEyhx, nx*ny*nz*sizeof(float) ); 
 ret = cudaMalloc( (void**)&d_CEyhz, nx*ny*nz*sizeof(float) ); 
 ret = cudaMalloc( (void**)&d_CEys, nx*ny*nz*sizeof(float) ); 
  
 ret = cudaMalloc( (void**)&d_CEze, nx*ny*nz*sizeof(float) ); 
 ret = cudaMalloc( (void**)&d_CEzhx, nx*ny*nz*sizeof(float) ); 
 ret = cudaMalloc( (void**)&d_CEzhy, nx*ny*nz*sizeof(float) ); 
 ret = cudaMalloc( (void**)&d_CEzs, nx*ny*nz*sizeof(float) ); 
  
 ret = cudaMalloc( (void**)&d_CHxh, nx*ny*nz*sizeof(float) ); 
 ret = cudaMalloc( (void**)&d_CHxey, nx*ny*nz*sizeof(float) ); 
 ret = cudaMalloc( (void**)&d_CHxez, nx*ny*nz*sizeof(float) ); 
 ret = cudaMalloc( (void**)&d_CHxm, nx*ny*nz*sizeof(float) ); 
  
 ret = cudaMalloc( (void**)&d_CHyh, nx*ny*nz*sizeof(float) ); 
 ret = cudaMalloc( (void**)&d_CHyex, nx*ny*nz*sizeof(float) ); 
 ret = cudaMalloc( (void**)&d_CHyez, nx*ny*nz*sizeof(float) ); 
 ret = cudaMalloc( (void**)&d_CHym, nx*ny*nz*sizeof(float) ); 
  
 ret = cudaMalloc( (void**)&d_CHzh, nx*ny*nz*sizeof(float) ); 
 ret = cudaMalloc( (void**)&d_CHzex, nx*ny*nz*sizeof(float) ); 
 ret = cudaMalloc( (void**)&d_CHzey, nx*ny*nz*sizeof(float) ); 
 ret = cudaMalloc( (void**)&d_CHzm, nx*ny*nz*sizeof(float) ); 
  
/************************************************************************/ 
/* Initialize Arrays                                                    */ 
/************************************************************************/ 
  
 time=-dt; 
 for (i=0;i<nsteps;i++) { 
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  time=time+dt; 
  V[i] = exp(-(((time - t0)*(time - t0)))/(tau*tau)); 
 } 
  
 for (k=0;k<nz;k++) { 
  for (j=0;j<ny;j++) { 
   for (i=0;i<nx;i++) { 
    it = i+(nx*j)+(k*nx*ny); 
    Ex[it] = 0; 
    Ey[it] = 0; 
    Ez[it] = 0; 
     
    Hx[it] = 0; 
    Hy[it] = 0; 
    Hz[it] = 0; 
     
    CExe[it]= 1; 
    CExhz[it]=(2*Ce/dy); 
    CExhy[it]=(2*Ce/dz); 
    CExs[it]=0; 
 
     
    CEye[it]= 1; 
    CEyhx[it]=(2*Ce/dz); 
    CEyhz[it]=(2*Ce/dx); 
    CEys[it]=0; 
 
    CEze[it]= 1; 
    CEzhy[it]=(2*Ce/dx); 
    CEzhx[it]=(2*Ce/dy); 
    CEzs[it]=0; 
 
     
    CHxh[it]= 1; 
    CHxey[it]=(2*Ch/dz); 
    CHxez[it]=(2*Ch/dy); 
    CHxm[it]=(2*Ch); 
 
     
    CHyh[it]= 1; 
    CHyez[it]=(2*Ch/dx); 
    CHyex[it]=(2*Ch/dz); 
    CHym[it]=(2*Ch); 
 
     
    CHzh[it]= 1; 
    CHzex[it]=(2*Ch/dy); 
    CHzey[it]=(2*Ch/dx); 
    CHzm[it]=(2*Ch);   
   } 
  } 
 } 
 //Set Voltage Source Point 
 CEzs[(nx/2)+(nx*(ny/2))+(((nz/2)+1)*nx*ny)] = 1; 
 CEzs[(nx/2)+(nx*(ny/2))+(((nz/2))*nx*ny)] = 1; 
  
/************************************************************************/ 
/* Copy Arrays To GPU                                                   */ 
/************************************************************************/ 
 cudaMemcpy(d_Ex, Ex , nx*ny*nz*sizeof(float), cudaMemcpyHostToDevice); 
 cudaMemcpy(d_Ey, Ey, nx*ny*nz*sizeof(float), cudaMemcpyHostToDevice); 
 cudaMemcpy(d_Ez, Ez, nx*ny*nz*sizeof(float), cudaMemcpyHostToDevice); 
  
 cudaMemcpy(d_Hx, Hx, nx*ny*nz*sizeof(float), cudaMemcpyHostToDevice); 
 cudaMemcpy(d_Hy, Hy, nx*ny*nz*sizeof(float), cudaMemcpyHostToDevice); 
 cudaMemcpy(d_Hz, Hy, nx*ny*nz*sizeof(float), cudaMemcpyHostToDevice); 
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 cudaMemcpy(d_CExe, CExe, nx*ny*nz*sizeof(float), cudaMemcpyHostToDevice); 
 cudaMemcpy(d_CExhz, CExhz, nx*ny*nz*sizeof(float), cudaMemcpyHostToDevice); 
 cudaMemcpy(d_CExhy, CExhy, nx*ny*nz*sizeof(float), cudaMemcpyHostToDevice); 
 cudaMemcpy(d_CExs, CExs, nx*ny*nz*sizeof(float), cudaMemcpyHostToDevice); 
  
 cudaMemcpy(d_CEye, CEye, nx*ny*nz*sizeof(float), cudaMemcpyHostToDevice); 
 cudaMemcpy(d_CEyhz, CEyhz, nx*ny*nz*sizeof(float), cudaMemcpyHostToDevice); 
 cudaMemcpy(d_CEyhx, CEyhx, nx*ny*nz*sizeof(float), cudaMemcpyHostToDevice); 
 cudaMemcpy(d_CEys, CEys, nx*ny*nz*sizeof(float), cudaMemcpyHostToDevice); 
  
 cudaMemcpy(d_CEze, CEze, nx*ny*nz*sizeof(float), cudaMemcpyHostToDevice); 
 cudaMemcpy(d_CEzhx, CEzhx, nx*ny*nz*sizeof(float), cudaMemcpyHostToDevice); 
 cudaMemcpy(d_CEzhy, CEzhy, nx*ny*nz*sizeof(float), cudaMemcpyHostToDevice); 
 cudaMemcpy(d_CEzs, CEzs, nx*ny*nz*sizeof(float), cudaMemcpyHostToDevice); 
  
  
 cudaMemcpy(d_CHxh, CHxh, nx*ny*nz*sizeof(float), cudaMemcpyHostToDevice); 
 cudaMemcpy(d_CHxey, CHxey, nx*ny*nz*sizeof(float), cudaMemcpyHostToDevice); 
 cudaMemcpy(d_CHxez, CHxez, nx*ny*nz*sizeof(float), cudaMemcpyHostToDevice); 
 cudaMemcpy(d_CHxm, CHxm, nx*ny*nz*sizeof(float), cudaMemcpyHostToDevice); 
  
 cudaMemcpy(d_CHyh, CHyh, nx*ny*nz*sizeof(float), cudaMemcpyHostToDevice); 
 cudaMemcpy(d_CHyex, CHyex, nx*ny*nz*sizeof(float), cudaMemcpyHostToDevice); 
 cudaMemcpy(d_CHyez, CHyez, nx*ny*nz*sizeof(float), cudaMemcpyHostToDevice); 
 cudaMemcpy(d_CHym, CHym, nx*ny*nz*sizeof(float), cudaMemcpyHostToDevice); 
  
 cudaMemcpy(d_CHzh, CHzh, nx*ny*nz*sizeof(float), cudaMemcpyHostToDevice); 
 cudaMemcpy(d_CHzex, CHzex, nx*ny*nz*sizeof(float), cudaMemcpyHostToDevice); 
 cudaMemcpy(d_CHzey, CHzey, nx*ny*nz*sizeof(float), cudaMemcpyHostToDevice); 
 cudaMemcpy(d_CHzm, CHzm, nx*ny*nz*sizeof(float), cudaMemcpyHostToDevice); 
 
 
 
/************************************************************************/ 
/* Setup for Calling Kernel                                             */ 
/************************************************************************/ 
 
   // Thead Block Dimensions 
    int tBlock_x = 5; 
    int tBlock_y = 4; 
    int tBlock_z = 4; 
 
    // Used to build "3D Grid" 
    int blocksInX;  dim3 dimGrid; 
    int blocksInY;  dim3 dimBlock; 
    int blocksInZ; 
 
    FILE *debug_file; 
    // Each element in the volume (each voxel) gets 1 thread 
    blocksInX = (nx+tBlock_x-1)/tBlock_x; 
    blocksInY = (ny+tBlock_y-1)/tBlock_y; 
    blocksInZ = (nz+tBlock_z-1)/tBlock_z; 
 
    dimGrid  = dim3(blocksInX, blocksInY*blocksInZ); 
    dimBlock = dim3(tBlock_x, tBlock_y, tBlock_z); 
 
    unsigned int timer = 0; 
    unsigned int timer2 = 0; 
    cutCreateTimer( &timer); 
    cutCreateTimer( &timer2); 
    cutStartTimer( timer); 
 
 
    for (i=0;i<nsteps;i++) {  
        
       update_E<<<dimGrid, dimBlock>>>(d_Ex, d_Ey, d_Ez, 
          d_Hx, d_Hy, d_Hz, 
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          d_CExe, d_CEye, 
d_CEze, 
          d_CExhz, d_CEyhx, 
d_CEzhy, 
          d_CExhy, d_CEyhz, 
d_CEzhx, 
          d_CExs, d_CEys, 
d_CEzs, 
          V[i], blocksInY, 
1.0f/(float)blocksInY, nx, ny, nz, 
          d_Vout, i, 49, 49, 49 
); 
    CUT_CHECK_ERROR("Kernel E execution failed"); 
        
       cudaThreadSynchronize(); 
         
        update_H<<<dimGrid, dimBlock>>>(d_Ex, d_Ey, d_Ez, 
          d_Hx, d_Hy, d_Hz, 
          d_CHxh, d_CHyh, 
d_CHzh, 
          d_CHxey, d_CHyez, 
d_CHzex, 
          d_CHxez, d_CHyex, 
d_CHzey, 
          blocksInY, 
1.0f/(float)blocksInY, nx, ny, nz); 
  CUT_CHECK_ERROR("Kernel H execution failed"); 
  cudaThreadSynchronize(); 
     } 
 
    CUT_SAFE_CALL( cutStopTimer( timer)); 
     
    cutStartTimer( timer2); 
 for (i=0;i<nsteps;i++) { 
  //cudaMemcpy(Ex, d_Ex , nx*ny*nz*sizeof(float), cudaMemcpyDeviceToHost); 
  for (k=0;k<nz;k++) { 
   for (j=0;j<ny;j++) { 
    it = (nx-1)+(nx*j)+(k*nx*ny); 
    Ex[it]=Ex[it]+1; 
   } 
   } 
  //cudaMemcpy(d_Ex, Ex , nx*ny*nz*sizeof(float), cudaMemcpyHostToDevice); 
 } 
 CUT_SAFE_CALL( cutStopTimer( timer2)); 
     
   
    printf("%d %d %d %d %d %f %f\n", ncells, nx,ny ,nz, nsteps, cutGetTimerValue( 
timer)/(float)nsteps,cutGetTimerValue( timer2)/(float)nsteps); 
   
   
    CUT_SAFE_CALL( cutDeleteTimer( timer)); 
    CUT_SAFE_CALL( cutDeleteTimer( timer2)); 
/************************************************************************/ 
/* Copy Data Back                                                       */ 
/************************************************************************/ 
    cudaMemcpy( Vout, d_Vout, nsteps * sizeof(float), cudaMemcpyDeviceToHost ); 
// Debug 
 
/************************************************************************/ 
/* Export Data                                                          */ 
/************************************************************************/ 
      printf("Writing debug file...\n"); 
    debug_file = fopen("debug_out2.txt", "wt"); 
/* 
   
    for(i=0; i < nx* ny * nz; i++) 
    { 
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        fprintf(debug_file, "[%i]\t%f\t%f\t%f\n",i , Ex1[i], Ey1[i], Ez1[i]); 
    } 
    
     
    k=4; 
  for (j=0;j<ny;j++) { 
   for (i=0;i<nx;i++) { 
    fprintf(debug_file, "%e ", Ez1[i+(nx*j)+(k*nx*ny)]); 
   } 
   fprintf(debug_file,"\n"); 
  } 
   
   
 */ 
  
 for (i=0; i<nsteps; i++) { 
  fprintf(debug_file, "%e %e \n", V[i], Vout[i]); 
    } 
     
    fclose(debug_file); 
/************************************************************************/ 
/* Clean up                                                             */ 
/************************************************************************/ 
 
 cudaFreeHost(V); 
 cudaFreeHost(Vout); 
  
  
 cudaFreeHost(Ex); 
 cudaFreeHost(Ey); 
 cudaFreeHost(Ez); 
              
 cudaFreeHost(Hx); 
 cudaFreeHost(Hy); 
 cudaFreeHost(Hz); 
            
 cudaFreeHost(CExe); 
 cudaFreeHost(CExhz); 
 cudaFreeHost(CExhy); 
 cudaFreeHost(CExs); 
  
 cudaFreeHost(CEye); 
 cudaFreeHost(CEyhx); 
 cudaFreeHost(CEyhz); 
 cudaFreeHost(CEys); 
  
 cudaFreeHost(CEze); 
 cudaFreeHost(CEzhx); 
 cudaFreeHost(CEzhy); 
 cudaFreeHost(CEzs); 
  
 cudaFreeHost(CHxh); 
 cudaFreeHost(CHxey); 
 cudaFreeHost(CHxez); 
 cudaFreeHost(CHxm); 
  
 cudaFreeHost(CHyh); 
 cudaFreeHost(CHyex); 
 cudaFreeHost(CHyez); 
 cudaFreeHost(CHym); 
  
 cudaFreeHost(CHzh); 
 cudaFreeHost(CHzex); 
 cudaFreeHost(CHzey); 
 cudaFreeHost(CHzm); 
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 // Device Arrays 
 cudaFree(d_Vout); 
  
  
 cudaFree(d_Ex); 
 cudaFree(d_Ey); 
 cudaFree(d_Ez); 
              
 cudaFree(d_Hx); 
 cudaFree(d_Hy); 
 cudaFree(d_Hz); 
            
 cudaFree(d_CExe); 
 cudaFree(d_CExhz); 
 cudaFree(d_CExhy); 
 cudaFree(d_CExs); 
  
 cudaFree(d_CEye); 
 cudaFree(d_CEyhx); 
 cudaFree(d_CEyhz); 
 cudaFree(d_CEys); 
  
 cudaFree(d_CEze); 
 cudaFree(d_CEzhx); 
 cudaFree(d_CEzhy); 
 cudaFree(d_CEzs); 
  
 cudaFree(d_CHxh); 
 cudaFree(d_CHxey); 
 cudaFree(d_CHxez); 
 cudaFree(d_CHxm); 
  
 cudaFree(d_CHyh); 
 cudaFree(d_CHyex); 
 cudaFree(d_CHyez); 
 cudaFree(d_CHym); 
  
 cudaFree(d_CHzh); 
 cudaFree(d_CHzex); 
 cudaFree(d_CHzey); 
 cudaFree(d_CHzm);  
 } 
 } 
 } 
  
 CUT_EXIT(argc, argv); 
 
       
 
    return 0; 

} 
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// Full 3D FDTD w CPML Program 
// Executes FDTD in GPU 
// Matthew J. Inman 
  
 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <math.h> 
 
 
kernel void process_field_H( float3 H[][], float3 E[][], float3 Kh[], float3 b[], float3 c[], 
float XE, float XH, 
   float dx, float dy, float dz, float ysize, iter float2 it<>, 
   float3 psiH1[][], float3 psiH2[][],  
   out float3 o_psiH1<>, out float3 o_psiH2<>, out float3 o_H<> ) { 
  
    float2 t0 = float2(0.0f, ysize); 
    float2 t1 = float2(0.0f, 1.0f);   
    float2 t2 = float2(1.0f, 0.0f);  
 
 
    float pxy, pxz, pyx, pyz, pzx, pzy; 
 
 pxy = (b[it.y].y * psiH1[it].x) + (c[it.y].y * (E[it+t1].z-E[it].z));  
 pxz = (b[it.y].z * psiH2[it].x) + (c[it.y].z * (E[it+t0].y-E[it].y)); 
 
 pyx = (b[it.x].x * psiH1[it].y) + (c[it.x].x * (E[it+t2].z-E[it].z)); 
 pyz = (b[it.y].z * psiH2[it].y) + (c[it.y].z * (E[it+t0].x-E[it].x)); 
 
 pzx = (b[it.x].x * psiH1[it].z) + (c[it.x].x * (E[it+t2].y-E[it].y)); 
 pzy = (b[it.y].y * psiH2[it].z) + (c[it.y].y * (E[it+t1].x-E[it].x)); 
 
 o_psiH1.x=pxy; 
 o_psiH2.x=pxz; 
 
 o_psiH1.y=pyx; 
 o_psiH2.y=pyz; 
 
 o_psiH1.z=pzx; 
 o_psiH2.z=pzy; 
 
 o_H.x  = (XH * H[it].x) + (Kh[it.y].z*(XE/dz) * (E[it+t0].y-E[it].y)) - 
(Kh[it.y].y*(XE/dy) * (E[it+t1].z-E[it].z))  - ((XE) * pxy) + ((XE) * pxz);  
 o_H.y  = (XH * H[it].y) + (Kh[it.x].x*(XE/dx) * (E[it+t2].z-E[it].z)) - 
(Kh[it.y].z*(XE/dz) * (E[it+t0].x-E[it].x))  + ((XE) * pyx) - ((XE) * pyz);  
 o_H.z  = (XH * H[it].z) + (Kh[it.y].y*(XE/dy) * (E[it+t1].x-E[it].x)) - 
(Kh[it.x].x*(XE/dx) * (E[it+t2].y-E[it].y))  - ((XE) * pzx) + ((XE) * pzy);  
}   
 
 
kernel void process_field_E( float3 E[][], float3 H[][], float3 Cee[][], float3 Ceh[][], float3 
Ces[][], float3 Ke[],  
    float3 b[], float3 c[], float dx, float dy, float dz, float ysize, 
float gauss, iter float2 it<>, 
    float3 psiE1[][], float3 psiE2[][], 
    out float3 o_psiE1<>, out float3 o_psiE2<>, out float3 o_E<> ) { 
 
 
    float2 t0 = float2(0.0f, -1.0f); 
    float2 t1 = float2(0.0f,-1*ysize); 
    float2 t3 = float2(-1.0f,0.0f); 
 
 
    float pxy, pxz, pyx, pyz, pzx, pzy; 
 
 pxy = (b[it.y].y * psiE1[it].x) + (c[it.y].y * (H[it].z-H[it+t0].z)); 
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 pxz = (b[it.y].z * psiE2[it].x) + (c[it.y].z * (H[it].y-H[it+t1].y)); 
  
 pyx = (b[it.x].x * psiE1[it].y) + (c[it.x].x * (H[it].z-H[it+t3].z)); 
 pyz = (b[it.y].z * psiE2[it].y) + (c[it.y].z * (H[it].x-H[it+t1].x)); 
 
 pzx = (b[it.x].x * psiE1[it].z) + (c[it.x].x * (H[it].y-H[it+t3].y)); 
 pzy = (b[it.y].y * psiE2[it].z) + (c[it.y].y * (H[it].x-H[it+t0].x)); 
 
 o_psiE1.x=pxy; 
 o_psiE2.x=pxz; 
 
 o_psiE1.y=pyx; 
 o_psiE2.y=pyz; 
 
 o_psiE1.z=pzx; 
 o_psiE2.z=pzy; 
  
  o_E.x  = (Cee[it].x * E[it].x) + (Ke[it.y].y*(Ceh[it].x/dy) * (H[it].z-H[it+t0].z)) - 
(Ke[it.y].z*(Ceh[it].x/dz) * (H[it].y-H[it+t1].y)) -  
   (Ces[it].x*gauss) + (Ceh[it].x * pxy) - (Ceh[it].x * pxz); 
 
 o_E.y  = (Cee[it].y * E[it].y) + (Ke[it.y].z*(Ceh[it].y/dz) * (H[it].x-H[it+t1].x)) - 
(Ke[it.x].x*(Ceh[it].y/dx) * (H[it].z-H[it+t3].z)) -  
   (Ces[it].y*gauss) - (Ceh[it].y * pyx) + (Ceh[it].y * pyz); 
 
 o_E.z  = (Cee[it].z * E[it].z) + (Ke[it.x].x*(Ceh[it].z/dx) * (H[it].y-H[it+t3].y)) - 
(Ke[it.y].y*(Ceh[it].z/dy) * (H[it].x-H[it+t0].x)) -  
   (Ces[it].z*gauss) + (Ceh[it].z * pzx) - (Ceh[it].z * pzy); 
 
} 
 
 
kernel void process_test( float3 H[][], iter float2 it<>, out float3 o_H<>) { 
 
// o_H.x=(H[it].x+(2*H[it].x)-(4.5*H[it].y)+(6.7*H[it].x)+(3.1*H[it].y)+(5.1*H[it].y)-
(10.2/H[it].x)+(123*H[it].z)+(H[it].x*22.123)+(H[it].x*H[it].z)+(3.1*H[it].y)+(5.1*H[it].y)-
(10.2/H[it].x)+(123*H[it].z)+(H[it].x*22.123)); 
// o_H.y=(H[it].y+(2*H[it].x)-(4.2*H[it].y)+(6.2*H[it].x)+(3.12*H[it].y)+(5.31*H[it].y)-
(10.52/H[it].x)+(152*H[it].z)+(H[it].x*22.1323)+(H[it].x*H[it].z)+(3.1*H[it].y)+(5.1*H[it].y)-
(10.2/H[it].x)+(123*H[it].z)+(H[it].x*22.123)); 
// o_H.z=(H[it].z+(2*H[it].x)-(4.8*H[it].y)+(6.1*H[it].x)+(3.16*H[it].y)+(5.61*H[it].y)-
(10.32/H[it].x)+(121*H[it].z)+(H[it].x*22.1233)+(H[it].x*H[it].z)+(3.1*H[it].y)+(5.1*H[it].y)-
(10.2/H[it].x)+(123*H[it].z)+(H[it].x*22.123)); 
 
 o_H.x=H[it].x+it.x; 
 o_H.y=H[it].y+it.y; 
 o_H.z=H[it].z+it.y;  
 
 
// o_H.x=H[it].x; 
// o_H.y=H[it].y; 
// o_H.z=H[it].z;  
}  
 
// Obs Points 
kernel void Copy( float3 input<>, out float3 output<> ) {  
  output.x = input.x;  
  output.y = input.y;  
  output.z = input.z;  
 } 
 
 
 
 
int main(int argc, char* argv[]) { 
  
    int i, j, k, N, l; 
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    int xsize, ysize, zsize,outsize, outsize2, iPML; 
    int px1, px2, py1, py2, pz1, pz2; 
 
    int mXxHpml, mYxHpml, mZxHpml; 
    int mXxLpml, mYxLpml, mZxLpml; 
 
    int mXyHpml, mYyHpml, mZyHpml; 
    int mXyLpml, mYyLpml, mZyLpml; 
 
    int mXzHpml, mYzHpml, mZzHpml; 
    int mXzLpml, mYzLpml, mZzLpml; 
 
    char op[2];  
    float op2, op3, op4, op5, op6, op7, op8, op9, op10; 
 
    int s0; 
 
 
    float eps0, mu0, c, pi, dx, dy, dz, dfactor, dt, M, tau, t0,fmax, ii; 
    float dx2, dy2, dz2, kappa, k1, k2 ,o1,o2,i1, i2; 
    float ce, XE, XH,m,sigmax, sigmay, sigmaz, amax,sig1,sig2,a1,a2, vObs, R; 
    float* aObs=NULL; 
  
    float* t=NULL; 
    float* gauss=NULL; 
 
    float* aH=NULL; 
    float* aE=NULL; 
 
    float* aCee=NULL; 
    float* aCeh=NULL; 
    float* aCes=NULL; 
 
    float* aKe=NULL; 
    float* aKh=NULL; 
 
    float* aBe=NULL; 
    float* aBh=NULL; 
 
    float* aCe=NULL; 
    float* aCh=NULL; 
   
    float* apsiHxy=NULL; 
    float* apsiHxz=NULL; 
    float* apsiHyx=NULL; 
    float* apsiHyz=NULL; 
    float* apsiHzx=NULL; 
    float* apsiHzy=NULL; 
 
    float* apsiExy=NULL; 
    float* apsiExz=NULL; 
    float* apsiEyx=NULL; 
    float* apsiEyz=NULL; 
    float* apsiEzx=NULL; 
    float* apsiEzy=NULL; 
 
    FILE * pFile; 
    FILE * pFile2; 
    FILE * pFile3; 
    FILE * pFile4; 
    FILE * pFile5; 
    FILE * pFile6; 
 
    
    pFile = fopen ("myfile1.txt","wt"); 
    pFile6 = fopen ("source.txt","wt");  
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    // Constants 
    pi=3.14159265; 
  
    // Broken Down because brook hates small numbers 
    eps0= 8.854; 
    eps0=eps0*1e-6; 
    eps0=eps0*1e-6; 
  
    mu0= 4*pi; 
    mu0= mu0*1e-4; 
    mu0= mu0*1e-3; 
  
    c=2.99792479e8; 
  
    fprintf (pFile,"pi=%f eps0=%e mu0=%e c=%f \n",pi,eps0,mu0,c); 
   // Patch Definition 
 
    s0=10; 
    vObs=0; 
   
 
    // Read Input file 1 
   pFile2 = fopen ("domain_parameters.txt","r"); 
 
   while (fscanf(pFile2, "%s %f", op, &op2) != EOF) { 
 if (strcmp(op,"ts")==0) { 
   N = (int) op2; 
 } 
 
 if (strcmp(op,"dx")==0) { 
   dx = op2; 
 } 
 
 if (strcmp(op,"dy")==0) { 
   dy = op2; 
 } 
 
 if (strcmp(op,"dz")==0) { 
   dz = op2; 
 } 
 
 if (strcmp(op,"nx")==0) { 
   xsize = (int) op2+20; 
 } 
 
 if (strcmp(op,"ny")==0) { 
   ysize = (int) op2+20; 
 } 
 
 if (strcmp(op,"nz")==0) { 
   zsize = (int) op2+20; 
 } 
 
   } 
 
  fclose(pFile2); 
/*------------------------- 
Old Stuff 
    N = atoi(argv[1]);  
    dx=.4233e-3; 
    dy=.4064e-3; 
    dz=.265e-3; 
     
    xsize = s0+s0+x1+x2+x3+x4+x5+1; // 95 
    ysize = s0+s0+y1+y2+y3+y4+y5+y6+y7+y8+y9+1; // 89 
    zsize = s0+s0+z1+z2+z3+1; // 32 
----------------------------*/ 
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   // Check for unsafe sizes 
 
    if ((ysize*zsize)%2==1) { ysize=ysize+1; } 
 
    outsize=ysize*zsize; 
 
  
    dx2=(c/dx)*(c/dx); 
    dy2=(c/dy)*(c/dy); 
    dz2=(c/dz)*(c/dz); 
  
    fprintf (pFile,"dx=%e dy=%e dx2=%e dy2=%e \n",dx,dy,dx2,dy2); 
  
 
  
 
    dfactor=.9;  
    dt=(1/(sqrt(dx2 + dy2 + dz2)))*dfactor; 
 
    M=25; 
     
     
    fmax=c/(M*dy); 
    tau=(M*dy)/(2*c); 
 t0=3*tau;  
    fprintf (pFile,"dt=%e tau=%e t0=%e fmax=%e \n",dt,tau,t0,fmax); 
  
     
 
     
    // PML Params 
 iPML= 10; 
 
 mXxHpml=iPML; 
 mYxHpml=ysize; 
 mZxHpml=zsize; 
 mXxLpml=iPML; 
 mYxLpml=ysize; 
 mZxLpml=zsize; 
 
 mXyHpml=xsize; 
 mYyHpml=iPML;  
 mZyHpml=zsize; 
 mXyLpml=xsize; 
 mYyLpml=iPML; 
 mZyLpml=zsize; 
 
 mXzHpml=xsize; 
 mYzHpml=ysize; 
 mZzHpml=iPML; 
 mXzLpml=xsize; 
 mYzLpml=ysize; 
 mZzLpml=iPML; 
 
 kappa=8; 
 
 m=4; 
 
 sigmax = (.8*m+1) / (150*pi*dx); 
 sigmay = (.8*m+1) / (150*pi*dy); 
 sigmaz = (.8*m+1) / (150*pi*dz); 
 
 amax = (fmax/2.1)*2*pi*eps0/10; 
 
 
    printf("GPU FDTD Code\n x=%d y=%d z=%d ns=%d d1=%d d2=%d\n sigmax=%e amax=%e \n", xsize, 
ysize, zsize, N, xsize, ysize*zsize, sigmax, amax); 
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    // Initialize de arrays muhahaha 
    gauss=    (float*)malloc(N*sizeof(float)); 
    aObs=     (float*)malloc(10*sizeof(float)); 
    t=        (float*)malloc(N*sizeof(float));  
    aH=       (float*)malloc(3*xsize*ysize*zsize*sizeof(float)); 
    aE=       (float*)malloc(3*xsize*ysize*zsize*sizeof(float)); 
    aCee=     (float*)malloc(3*xsize*ysize*zsize*sizeof(float)); 
    aCeh=     (float*)malloc(3*xsize*ysize*zsize*sizeof(float)); 
    aCes=     (float*)malloc(3*xsize*ysize*zsize*sizeof(float)); 
  
 
 // 1D CPML Arrays 
 aBe=    (float*)malloc(3*ysize*zsize*sizeof(float)); 
 aCe=    (float*)malloc(3*ysize*zsize*sizeof(float)); 
 
 aBh=    (float*)malloc(3*ysize*zsize*sizeof(float));  
 aCh=    (float*)malloc(3*ysize*zsize*sizeof(float));  
 
 // 3D CPML Arrays 
 apsiHxy=    (float*)malloc(xsize*ysize*zsize*sizeof(float)); 
 apsiHxz=    (float*)malloc(xsize*ysize*zsize*sizeof(float)); 
 apsiHyx=    (float*)malloc(xsize*ysize*zsize*sizeof(float)); 
 apsiHyz=    (float*)malloc(xsize*ysize*zsize*sizeof(float)); 
 apsiHzx=    (float*)malloc(xsize*ysize*zsize*sizeof(float)); 
 apsiHzy=    (float*)malloc(xsize*ysize*zsize*sizeof(float)); 
 
 apsiExy=    (float*)malloc(xsize*ysize*zsize*sizeof(float)); 
 apsiExz=    (float*)malloc(xsize*ysize*zsize*sizeof(float)); 
 apsiEyx=    (float*)malloc(xsize*ysize*zsize*sizeof(float)); 
 apsiEyz=    (float*)malloc(xsize*ysize*zsize*sizeof(float)); 
 apsiEzx=    (float*)malloc(xsize*ysize*zsize*sizeof(float)); 
 apsiEzy=    (float*)malloc(xsize*ysize*zsize*sizeof(float)); 
 
 
 aKe=    (float*)malloc(3*ysize*zsize*sizeof(float)); 
 aKh=    (float*)malloc(3*ysize*zsize*sizeof(float)); 
 
 // Source Terms 
 
    t[0]=dt; 
    gauss[0]=0; 
    for (i=1; i<N; i++) { 
  t[i]=t[i-1]+dt; 
  gauss[i]= exp(-( ((t[i]-t0)*(t[i]-t0))/(tau*tau)))/3; 
  fprintf (pFile6,"%e\n",gauss[i]); 
 } 
 fclose(pFile6);  
 // Coefficients 
    ce=dt/(2*eps0); 
    XE=(dt/mu0); 
    XH=1; 
 
 
 
//Initialize Variables  
for (l=0;l<3;l++) { 
 for (k=0; k<zsize; k++) { 
  for (j=0; j<ysize; j++) { 
   for (i=0; i<xsize; i++) { 
 
   aH[((xsize*ysize*k)+(xsize*j)+i)*3+l]=0; 
   aE[((xsize*ysize*k)+(xsize*j)+i)*3+l]=0; 
  
   aCee[((xsize*ysize*k)+(xsize*j)+i)*3+l]=1; 
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   aCeh[((xsize*ysize*k)+(xsize*j)+i)*3+l]=2*ce; 
   aCes[((xsize*ysize*k)+(xsize*j)+i)*3+l]=0; 
/// 3D Pml 
 
   apsiHxy[((xsize*ysize*k)+(xsize*j)+i)]=0; 
   apsiHxz[((xsize*ysize*k)+(xsize*j)+i)]=0; 
 
   apsiHyx[((xsize*ysize*k)+(xsize*j)+i)]=0; 
   apsiHyz[((xsize*ysize*k)+(xsize*j)+i)]=0; 
 
   apsiHzx[((xsize*ysize*k)+(xsize*j)+i)]=0; 
   apsiHzy[((xsize*ysize*k)+(xsize*j)+i)]=0; 
 
   apsiExy[((xsize*ysize*k)+(xsize*j)+i)]=0; 
   apsiExz[((xsize*ysize*k)+(xsize*j)+i)]=0; 
 
   apsiEyx[((xsize*ysize*k)+(xsize*j)+i)]=0; 
   apsiEyz[((xsize*ysize*k)+(xsize*j)+i)]=0; 
 
   apsiEzx[((xsize*ysize*k)+(xsize*j)+i)]=0; 
   apsiEzy[((xsize*ysize*k)+(xsize*j)+i)]=0; 
 
// 1D Pml 
   aBe[3*i]=0; 
   aCe[3*i]=0; 
   aBe[((ysize*k)+(j))*3+1]=0; 
   aCe[((ysize*k)+(j))*3+1]=0; 
   aBe[((ysize*k)+(j))*3+2]=0; 
   aCe[((ysize*k)+(j))*3+2]=0; 
 
   aBh[3*i]=0; 
   aCh[3*i]=0; 
   aBh[((ysize*k)+(j))*3+1]=0; 
   aCh[((ysize*k)+(j))*3+1]=0; 
   aBh[((ysize*k)+(j))*3+2]=0; 
   aCh[((ysize*k)+(j))*3+2]=0; 
 
   aKe[3*i]=1; 
   aKe[((ysize*k)+(j))*3+1]=1; 
   aKe[((ysize*k)+(j))*3+2]=1; 
   aKh[3*i]=1; 
   aKh[((ysize*k)+(j))*3+1]=1; 
   aKh[((ysize*k)+(j))*3+2]=1; 
   } 
  } 
 }  
} 
 
 
 
 
 
 
 
//------------------------------------------------------------------------------------------ 
// 
// Initialize Objects 
// For Patch 
// 
 
// Read Input Files 
// Read Input file 2 
   pFile2 = fopen ("object_parameters.txt","r"); 
 
   while (fscanf(pFile2, "%s %f %f %f %f %f %f %f %f %f", op, &op2, &op3, &op4, &op5, &op6, &op7, 
&op8, &op9, &op10) != EOF) { 
     if (strcmp(op,"//")==0) { 
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     } else if (strcmp(op,"pt")==0) { 
  
 // pt is port definition 
 // 1-3 start x, y, z 
 // 4-6 stop x, y, z  
 px1=(int) op2; 
 py1=(int) op3; 
 pz1=(int) op4; 
 px2=(int) op5; 
 py2=(int) op6; 
 pz2=(int) op7; 
 printf("Port - %d %d %d %d %d %d\n", px1, py1, pz1, px2, py2, pz2); 
 
     } else if (strcmp(op,"bx")==0) { 
 
        printf("Box - %f %f %f %f %f %f %f %f\n", op2, op3, op4, op5, op6, op7, op8, op9); 
 // bx is a box 
 // 8 Params 
 // 1-3 start x, y, z 
 // 4-6 stop x, y, z  
 // 7 epsilon 
 // 8 sigma 
        //    Cexh(i,j,k)=(2*ce)/(epsr(mt)+(ce*sigmae(mt))); 
        //    Cexe(i,j,k)=(epsr(mt)-(ce*sigmae(mt)))/(epsr(mt)+(ce*sigmae(mt))); 
 
 
 for (k=(s0+(int) op4); k<(s0+(int) op7); k++) { 
  for (j=(s0+(int) op3); j<(s0+(int) op6); j++) { 
   for (i=(s0+(int) op2); i<(s0+(int) op5); i++) { 
  aCeh[((xsize*ysize*k)+(xsize*j)+i)*3]        =(2*ce)/(op8+(ce*op9)); 
  aCeh[((xsize*ysize*(k+1))+(xsize*j)+i)*3]    =(2*ce)/(op8+(ce*op9)); 
  aCeh[((xsize*ysize*k)+(xsize*(j+1))+i)*3]    =(2*ce)/(op8+(ce*op9));  

aCeh[((xsize*ysize*(k+1))+(xsize*(j+1))+i)*3]=(2*ce)/(op8+(ce*op9)); 
  aCeh[((xsize*ysize*k)+(xsize*j)+i)*3+1]      =(2*ce)/(op8+(ce*op9)); 
  aCeh[((xsize*ysize*k)+(xsize*j)+i+1)*3+1]    =(2*ce)/(op8+(ce*op9)); 
  aCeh[((xsize*ysize*(k+1))+(xsize*j)+i)*3+1]  =(2*ce)/(op8+(ce*op9)); 
  aCeh[((xsize*ysize*(k+1))+(xsize*j)+i+1)*3+1]=(2*ce)/(op8+(ce*op9)); 
  aCeh[((xsize*ysize*k)+(xsize*j)+i)*3+2]      =(2*ce)/(op8+(ce*op9)); 
  aCeh[((xsize*ysize*k)+(xsize*j)+i+1)*3+2]    =(2*ce)/(op8+(ce*op9)); 
  aCeh[((xsize*ysize*k)+(xsize*(j+1))+i)*3+2]  =(2*ce)/(op8+(ce*op9)); 
  aCeh[((xsize*ysize*k)+(xsize*(j+1))+i+1)*3+2]=(2*ce)/(op8+(ce*op9)); 
 
 aCee[((xsize*ysize*k)+(xsize*j)+i)*3]        =(op8-(ce*op9))/(op8+(ce*op9)); 
 aCee[((xsize*ysize*(k+1))+(xsize*j)+i)*3]    =(op8-(ce*op9))/(op8+(ce*op9)); 
 aCee[((xsize*ysize*k)+(xsize*(j+1))+i)*3]    =(op8-(ce*op9))/(op8+(ce*op9)); 
 aCee[((xsize*ysize*(k+1))+(xsize*(j+1))+i)*3]=(op8-(ce*op9))/(op8+(ce*op9)); 
 
 aCee[((xsize*ysize*k)+(xsize*j)+i)*3+1]      =(op8-(ce*op9))/(op8+(ce*op9)); 
 aCee[((xsize*ysize*k)+(xsize*j)+i+1)*3+1]    =(op8-(ce*op9))/(op8+(ce*op9)); 
 aCee[((xsize*ysize*(k+1))+(xsize*j)+i)*3+1]  =(op8-(ce*op9))/(op8+(ce*op9)); 
 aCee[((xsize*ysize*(k+1))+(xsize*j)+i+1)*3+1]=(op8-(ce*op9))/(op8+(ce*op9)); 
 aCee[((xsize*ysize*k)+(xsize*j)+i)*3+2]      =(op8-(ce*op9))/(op8+(ce*op9)); 
 aCee[((xsize*ysize*k)+(xsize*j)+i+1)*3+2]    =(op8-(ce*op9))/(op8+(ce*op9)); 
 aCee[((xsize*ysize*k)+(xsize*(j+1))+i)*3+2]  =(op8-(ce*op9))/(op8+(ce*op9)); 
 aCee[((xsize*ysize*k)+(xsize*(j+1))+i+1)*3+2]=(op8-(ce*op9))/(op8+(ce*op9)); 
 
 
   } 
  } 
 } 
  
      } else if (strcmp(op,"sh")==0) { 
 
 printf("Sheet - %f %f %f %f %f %f %f %f\n", op2, op3, op4, op5, op6, op7, op8, op9); 
 // sh is a *-plane sheet 
 // If 2 x's, y's, or z's dont match this does nothing 
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 // 8 Params 
 // 1-3 start x, y, z 
 // 4-6 stop x, y, z  
 // 7 epsilon 
 // 8 sigma 
        //    Cexh(i,j,k)=(2*ce)/(epsr(mt)+(ce*sigmae(mt))); 
        //    Cexe(i,j,k)=(epsr(mt)-(ce*sigmae(mt)))/(epsr(mt)+(ce*sigmae(mt))); 
 
 if ((int) op2 == (int) op5) { 
  // X-plane sheet 
  i=s0+(int) op2; 
  for (j=(s0+(int) op3); j<(s0+(int) op6); j++) { 
   for (k=(s0+(int) op4); k<(s0+(int) op7); k++) { 
  aCeh[((xsize*ysize*k)+(xsize*j)+i)*3+1]      =(2*ce)/(op8+(ce*op9)); 
  aCeh[((xsize*ysize*(k+1))+(xsize*j)+i)*3+1]  =(2*ce)/(op8+(ce*op9)); 
 
  aCeh[((xsize*ysize*k)+(xsize*j)+i)*3+2]      =(2*ce)/(op8+(ce*op9)); 
  aCeh[((xsize*ysize*k)+(xsize*(j+1))+i)*3+2]  =(2*ce)/(op8+(ce*op9)); 
 
 aCee[((xsize*ysize*k)+(xsize*j)+i)*3+1]      =(op8-(ce*op9))/(op8+(ce*op9)); 
 aCee[((xsize*ysize*(k+1))+(xsize*j)+i)*3+1]  =(op8-(ce*op9))/(op8+(ce*op9)); 
 aCee[((xsize*ysize*k)+(xsize*j)+i)*3+2]      =(op8-(ce*op9))/(op8+(ce*op9)); 
 aCee[((xsize*ysize*k)+(xsize*(j+1))+i)*3+2]  =(op8-(ce*op9))/(op8+(ce*op9)); 
 
   } 
  } 
 } 
 
 if ((int) op3 == (int) op6) { 
  // Y-plane sheet 
  j=s0+(int) op3; 
  for (k=(s0+(int) op4); k<(s0+(int) op7); k++) { 
   for (i=(s0+(int) op2); i<(s0+(int) op5); i++) { 
  aCeh[((xsize*ysize*k)+(xsize*j)+i)*3]      =(2*ce)/(op8+(ce*op9)); 
  aCeh[((xsize*ysize*(k+1))+(xsize*j)+i)*3]  =(2*ce)/(op8+(ce*op9)); 
 
  aCeh[((xsize*ysize*k)+(xsize*j)+i)*3+2]    =(2*ce)/(op8+(ce*op9)); 
  aCeh[((xsize*ysize*k)+(xsize*j)+i+1)*3+2]  =(2*ce)/(op8+(ce*op9)); 
 
  aCee[((xsize*ysize*k)+(xsize*j)+i)*3]      =(op8-(ce*op9))/(op8+(ce*op9)); 
  aCee[((xsize*ysize*(k+1))+(xsize*j)+i)*3]  =(op8-(ce*op9))/(op8+(ce*op9)); 
 
  aCee[((xsize*ysize*k)+(xsize*j)+i)*3+2]    =(op8-(ce*op9))/(op8+(ce*op9)); 
  aCee[((xsize*ysize*k)+(xsize*j)+i+1)*3+2]  =(op8-(ce*op9))/(op8+(ce*op9)); 
 
   } 
  } 
 } 
  
 if ((int) op4 == (int) op7) { 
  // Z-plane sheet 
  k=s0+(int) op4; 
  for (j=(s0+(int) op3); j<(s0+(int) op6); j++) { 
   for (i=(s0+(int) op2); i<(s0+(int) op5); i++) { 
  aCeh[((xsize*ysize*k)+(xsize*j)+i)*3]      =(2*ce)/(op8+(ce*op9)); 
  aCeh[((xsize*ysize*k)+(xsize*(j+1))+i)*3]  =(2*ce)/(op8+(ce*op9)); 
 
  aCeh[((xsize*ysize*k)+(xsize*j)+i)*3+1]    =(2*ce)/(op8+(ce*op9)); 
  aCeh[((xsize*ysize*k)+(xsize*j)+i+1)*3+1]  =(2*ce)/(op8+(ce*op9)); 
 
  aCee[((xsize*ysize*k)+(xsize*j)+i)*3]      =(op8-(ce*op9))/(op8+(ce*op9)); 
  aCee[((xsize*ysize*k)+(xsize*(j+1))+i)*3]  =(op8-(ce*op9))/(op8+(ce*op9)); 
 
  aCee[((xsize*ysize*k)+(xsize*j)+i)*3+1]    =(op8-(ce*op9))/(op8+(ce*op9)); 
  aCee[((xsize*ysize*k)+(xsize*j)+i+1)*3+1]  =(op8-(ce*op9))/(op8+(ce*op9)); 
 
   } 
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  } 
 
 } 
 
     } else if (strcmp(op,"sr")==0) { 
 
 printf("Source - %f %f %f %f %f %f %f %f\n", op2, op3, op4, op5, op6, op7, op8, op9, 
op10); 
 // sr is a *-plane source 
 // If 2 x's, y's, or z's dont match this does nothing 
 // Z directed right now 
 // 8 Params 
 // 1-3 start x, y, z 
 // 4-6 stop x, y, z  
 // 7 Resistance 
 // 8 Voltage 
        // 9 Epsilon 
 
 if ((int) op2 == (int) op5) { 
  // X-plane sheet 
 
   R = op8 * (op6 - op3 + 1); 
  R = R / (op7 - op4); 
 
  i=s0+(int) op2; 
  for (j=(s0+(int) op3); j<(s0+(int) op6+1); j++) { 
   for (k=(s0+(int) op4); k<(s0+(int) op7); k++) { 
   
 aCes[((xsize*ysize*k)+(xsize*j)+i)*3+2]=op9*(2*dt/(R*dx*dy))/((2*op10*eps0)+((dt*dz)/(R*d
x*dy))); 
  

aCee[((xsize*ysize*k)+(xsize*j)+i)*3+2]=((2*op10*eps0) - ((dz*dt)/(dx*dy*R))) 
/((2*op10*eps0) + ((dz*dt)/(dx*dy*R))); 
  

aCeh[((xsize*ysize*k)+(xsize*j)+i)*3+2]=(2*dt) / ( (2*op10*eps0) + ((dt*dz) / 
(dx*dy*R))); 
   } 
  } 
 } 
 
 if ((int) op3 == (int) op6) { 
  // Y-plane sheet 
   R = op8 * (op6 - op3 + 1); 
  R = R / (op7 - op4); 
 
  j=s0+(int) op3; 
  for (i=(s0+(int) op2); i<(s0+(int) op5+1); i++) { 
   for (k=(s0+(int) op4); k<(s0+(int) op7); k++) { 
   
 aCes[((xsize*ysize*k)+(xsize*j)+i)*3+2]=op9*(2*dt/(R*dx*dy))/((2*op10*eps0)+((dt*dz)/(R*d
x*dy))); 
    aCee[((xsize*ysize*k)+(xsize*j)+i)*3+2]=((2*op10*eps0) - 
((dz*dt)/(dx*dy*R))) /((2*op10*eps0) + ((dz*dt)/(dx*dy*R))); 
    aCeh[((xsize*ysize*k)+(xsize*j)+i)*3+2]=(2*dt) / ( (2*op10*eps0) + 
((dt*dz) / (dx*dy*R))); 
   } 
  } 
 }  
 if ((int) op4 == (int) op7) { 
  // Z-plane sheet 
  // Not Implemented 
 } 
 
     } 
 
 
   } 
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   fclose(pFile2); 
 
 
 
 
 
 
 
 
 
 
 
 
 
// PEC Walls  Test (Use 100x45x45) 
 
 for (k=0; k<zsize-1; k++) { 
  for (j=0; j<ysize-1; j++) { 
   i=0; 
   aCeh[((xsize*ysize*k)+(xsize*j)+i)*3]    =(2*ce)/(1+(ce*1e30)); 
   aCeh[((xsize*ysize*(k+1))+(xsize*j)+i)*3]  =(2*ce)/(1+(ce*1e30)); 
   aCeh[((xsize*ysize*k)+(xsize*(j+1))+i)*3]  =(2*ce)/(1+(ce*1e30)); 
   aCeh[((xsize*ysize*(k+1))+(xsize*(j+1))+i)*3]=(2*ce)/(1+(ce*1e30)); 
 
   aCeh[((xsize*ysize*k)+(xsize*j)+i)*3+1]    =(2*ce)/(1+(ce*1e30)); 
   aCeh[((xsize*ysize*k)+(xsize*j)+i+1)*3+1]  =(2*ce)/(1+(ce*1e30)); 
   aCeh[((xsize*ysize*(k+1))+(xsize*j)+i)*3+1]  =(2*ce)/(1+(ce*1e30)); 
   aCeh[((xsize*ysize*(k+1))+(xsize*j)+i+1)*3+1]=(2*ce)/(1+(ce*1e30)); 
 
   aCeh[((xsize*ysize*k)+(xsize*j)+i)*3+2]    =(2*ce)/(1+(ce*1e30)); 
   aCeh[((xsize*ysize*k)+(xsize*j)+i+1)*3+2]  =(2*ce)/(1+(ce*1e30)); 
   aCeh[((xsize*ysize*k)+(xsize*(j+1))+i)*3+2]  =(2*ce)/(1+(ce*1e30)); 
   aCeh[((xsize*ysize*k)+(xsize*(j+1))+i+1)*3+2]=(2*ce)/(1+(ce*1e30)); 
 
  aCee[((xsize*ysize*k)+(xsize*j)+i)*3]    =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*(k+1))+(xsize*j)+i)*3]  =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*k)+(xsize*(j+1))+i)*3]  =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*(k+1))+(xsize*(j+1))+i)*3]=(1-(ce*1e30))/(1+(ce*1e30)); 
 
  aCee[((xsize*ysize*k)+(xsize*j)+i)*3+1]    =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*k)+(xsize*j)+i+1)*3+1]  =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*(k+1))+(xsize*j)+i)*3+1]  =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*(k+1))+(xsize*j)+i+1)*3+1]=(1-(ce*1e30))/(1+(ce*1e30)); 
 
  aCee[((xsize*ysize*k)+(xsize*j)+i)*3+2]    =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*k)+(xsize*j)+i+1)*3+2]  =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*k)+(xsize*(j+1))+i)*3+2]  =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*k)+(xsize*(j+1))+i+1)*3+2]=(1-(ce*1e30))/(1+(ce*1e30)); 
 
 
  i=xsize-2; 
   aCeh[((xsize*ysize*k)+(xsize*j)+i)*3]    =(2*ce)/(1+(ce*1e30)); 
   aCeh[((xsize*ysize*(k+1))+(xsize*j)+i)*3]  =(2*ce)/(1+(ce*1e30)); 
   aCeh[((xsize*ysize*k)+(xsize*(j+1))+i)*3]  =(2*ce)/(1+(ce*1e30)); 
   aCeh[((xsize*ysize*(k+1))+(xsize*(j+1))+i)*3]=(2*ce)/(1+(ce*1e30)); 
 
   aCeh[((xsize*ysize*k)+(xsize*j)+i)*3+1]    =(2*ce)/(1+(ce*1e30)); 
   aCeh[((xsize*ysize*k)+(xsize*j)+i+1)*3+1]  =(2*ce)/(1+(ce*1e30)); 
   aCeh[((xsize*ysize*(k+1))+(xsize*j)+i)*3+1]  =(2*ce)/(1+(ce*1e30)); 
   aCeh[((xsize*ysize*(k+1))+(xsize*j)+i+1)*3+1]=(2*ce)/(1+(ce*1e30)); 
 
   aCeh[((xsize*ysize*k)+(xsize*j)+i)*3+2]    =(2*ce)/(1+(ce*1e30)); 
   aCeh[((xsize*ysize*k)+(xsize*j)+i+1)*3+2]  =(2*ce)/(1+(ce*1e30)); 
   aCeh[((xsize*ysize*k)+(xsize*(j+1))+i)*3+2]  =(2*ce)/(1+(ce*1e30)); 
   aCeh[((xsize*ysize*k)+(xsize*(j+1))+i+1)*3+2]=(2*ce)/(1+(ce*1e30)); 
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 aCee[((xsize*ysize*k)+(xsize*j)+i)*3]    =(1-(ce*1e30))/(1+(ce*1e30)); 
 aCee[((xsize*ysize*(k+1))+(xsize*j)+i)*3]  =(1-(ce*1e30))/(1+(ce*1e30)); 
 aCee[((xsize*ysize*k)+(xsize*(j+1))+i)*3]  =(1-(ce*1e30))/(1+(ce*1e30)); 
 aCee[((xsize*ysize*(k+1))+(xsize*(j+1))+i)*3]=(1-(ce*1e30))/(1+(ce*1e30)); 

 
aCee[((xsize*ysize*k)+(xsize*j)+i)*3+1]    =(1-(ce*1e30))/(1+(ce*1e30)); 

 aCee[((xsize*ysize*k)+(xsize*j)+i+1)*3+1]  =(1-(ce*1e30))/(1+(ce*1e30)); 
 aCee[((xsize*ysize*(k+1))+(xsize*j)+i)*3+1]  =(1-(ce*1e30))/(1+(ce*1e30)); 
 aCee[((xsize*ysize*(k+1))+(xsize*j)+i+1)*3+1]=(1-(ce*1e30))/(1+(ce*1e30)); 
 
 aCee[((xsize*ysize*k)+(xsize*j)+i)*3+2]    =(1-(ce*1e30))/(1+(ce*1e30)); 
 aCee[((xsize*ysize*k)+(xsize*j)+i+1)*3+2]  =(1-(ce*1e30))/(1+(ce*1e30)); 
 aCee[((xsize*ysize*k)+(xsize*(j+1))+i)*3+2]  =(1-(ce*1e30))/(1+(ce*1e30)); 
 aCee[((xsize*ysize*k)+(xsize*(j+1))+i+1)*3+2]=(1-(ce*1e30))/(1+(ce*1e30)); 
  } 
 }  
 
 for (i=0; i<xsize-1; i++) { 
  for (k=0; k<zsize-1; k++) { 
   j=0; 
  aCeh[((xsize*ysize*k)+(xsize*j)+i)*3]    =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*(k+1))+(xsize*j)+i)*3]  =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*k)+(xsize*(j+1))+i)*3]  =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*(k+1))+(xsize*(j+1))+i)*3]=(2*ce)/(1+(ce*1e30)); 
 
  aCeh[((xsize*ysize*k)+(xsize*j)+i)*3+1]    =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*k)+(xsize*j)+i+1)*3+1]  =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*(k+1))+(xsize*j)+i)*3+1]  =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*(k+1))+(xsize*j)+i+1)*3+1]=(2*ce)/(1+(ce*1e30)); 
 
  aCeh[((xsize*ysize*k)+(xsize*j)+i)*3+2]    =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*k)+(xsize*j)+i+1)*3+2]  =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*k)+(xsize*(j+1))+i)*3+2]  =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*k)+(xsize*(j+1))+i+1)*3+2]=(2*ce)/(1+(ce*1e30)); 
 
  aCee[((xsize*ysize*k)+(xsize*j)+i)*3]    =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*(k+1))+(xsize*j)+i)*3]  =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*k)+(xsize*(j+1))+i)*3]  =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*(k+1))+(xsize*(j+1))+i)*3]=(1-(ce*1e30))/(1+(ce*1e30)); 
 
  aCee[((xsize*ysize*k)+(xsize*j)+i)*3+1]    =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*k)+(xsize*j)+i+1)*3+1]  =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*(k+1))+(xsize*j)+i)*3+1]  =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*(k+1))+(xsize*j)+i+1)*3+1]=(1-(ce*1e30))/(1+(ce*1e30)); 
 
  aCee[((xsize*ysize*k)+(xsize*j)+i)*3+2]    =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*k)+(xsize*j)+i+1)*3+2]  =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*k)+(xsize*(j+1))+i)*3+2]  =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*k)+(xsize*(j+1))+i+1)*3+2]=(1-(ce*1e30))/(1+(ce*1e30)); 
 
  j=ysize-2; 
 
  aCeh[((xsize*ysize*k)+(xsize*j)+i)*3]    =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*(k+1))+(xsize*j)+i)*3]  =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*k)+(xsize*(j+1))+i)*3]  =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*(k+1))+(xsize*(j+1))+i)*3]=(2*ce)/(1+(ce*1e30)); 
  
  aCeh[((xsize*ysize*k)+(xsize*j)+i)*3+1]    =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*k)+(xsize*j)+i+1)*3+1]  =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*(k+1))+(xsize*j)+i)*3+1]  =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*(k+1))+(xsize*j)+i+1)*3+1]=(2*ce)/(1+(ce*1e30)); 
 
  aCeh[((xsize*ysize*k)+(xsize*j)+i)*3+2]    =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*k)+(xsize*j)+i+1)*3+2]  =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*k)+(xsize*(j+1))+i)*3+2]  =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*k)+(xsize*(j+1))+i+1)*3+2]=(2*ce)/(1+(ce*1e30)); 
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  aCee[((xsize*ysize*k)+(xsize*j)+i)*3]    =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*(k+1))+(xsize*j)+i)*3]  =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*k)+(xsize*(j+1))+i)*3]  =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*(k+1))+(xsize*(j+1))+i)*3]=(1-(ce*1e30))/(1+(ce*1e30)); 
 
  aCee[((xsize*ysize*k)+(xsize*j)+i)*3+1]    =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*k)+(xsize*j)+i+1)*3+1]  =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*(k+1))+(xsize*j)+i)*3+1]  =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*(k+1))+(xsize*j)+i+1)*3+1]=(1-(ce*1e30))/(1+(ce*1e30)); 
 
  aCee[((xsize*ysize*k)+(xsize*j)+i)*3+2]    =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*k)+(xsize*j)+i+1)*3+2]  =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*k)+(xsize*(j+1))+i)*3+2]  =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*k)+(xsize*(j+1))+i+1)*3+2]=(1-(ce*1e30))/(1+(ce*1e30)); 
  } 
 } 
 
 for (i=0; i<xsize-1; i++) { 
  for (j=0; j<ysize-1; j++) { 
   k=0; 
  aCeh[((xsize*ysize*k)+(xsize*j)+i)*3]    =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*(k+1))+(xsize*j)+i)*3]  =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*k)+(xsize*(j+1))+i)*3]  =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*(k+1))+(xsize*(j+1))+i)*3]=(2*ce)/(1+(ce*1e30)); 
 
  aCeh[((xsize*ysize*k)+(xsize*j)+i)*3+1]    =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*k)+(xsize*j)+i+1)*3+1]  =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*(k+1))+(xsize*j)+i)*3+1]  =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*(k+1))+(xsize*j)+i+1)*3+1]=(2*ce)/(1+(ce*1e30)); 
 
  aCeh[((xsize*ysize*k)+(xsize*j)+i)*3+2]    =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*k)+(xsize*j)+i+1)*3+2]  =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*k)+(xsize*(j+1))+i)*3+2]  =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*k)+(xsize*(j+1))+i+1)*3+2]=(2*ce)/(1+(ce*1e30)); 
 
  aCee[((xsize*ysize*k)+(xsize*j)+i)*3]    =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*(k+1))+(xsize*j)+i)*3]  =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*k)+(xsize*(j+1))+i)*3]  =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*(k+1))+(xsize*(j+1))+i)*3]=(1-(ce*1e30))/(1+(ce*1e30)); 
 
  aCee[((xsize*ysize*k)+(xsize*j)+i)*3+1]    =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*k)+(xsize*j)+i+1)*3+1]  =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*(k+1))+(xsize*j)+i)*3+1]  =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*(k+1))+(xsize*j)+i+1)*3+1]=(1-(ce*1e30))/(1+(ce*1e30)); 
 
  aCee[((xsize*ysize*k)+(xsize*j)+i)*3+2]    =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*k)+(xsize*j)+i+1)*3+2]  =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*k)+(xsize*(j+1))+i)*3+2]  =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*k)+(xsize*(j+1))+i+1)*3+2]=(1-(ce*1e30))/(1+(ce*1e30)); 
 
  k=zsize-2; 
  
  aCeh[((xsize*ysize*k)+(xsize*j)+i)*3]    =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*(k+1))+(xsize*j)+i)*3]  =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*k)+(xsize*(j+1))+i)*3]  =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*(k+1))+(xsize*(j+1))+i)*3]=(2*ce)/(1+(ce*1e30)); 
 
  aCeh[((xsize*ysize*k)+(xsize*j)+i)*3+1]    =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*k)+(xsize*j)+i+1)*3+1]  =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*(k+1))+(xsize*j)+i)*3+1]  =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*(k+1))+(xsize*j)+i+1)*3+1]=(2*ce)/(1+(ce*1e30)); 
 
  aCeh[((xsize*ysize*k)+(xsize*j)+i)*3+2]    =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*k)+(xsize*j)+i+1)*3+2]  =(2*ce)/(1+(ce*1e30)); 
  aCeh[((xsize*ysize*k)+(xsize*(j+1))+i)*3+2]  =(2*ce)/(1+(ce*1e30)); 
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  aCeh[((xsize*ysize*k)+(xsize*(j+1))+i+1)*3+2]=(2*ce)/(1+(ce*1e30)); 
 
 
  aCee[((xsize*ysize*k)+(xsize*j)+i)*3]    =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*(k+1))+(xsize*j)+i)*3]  =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*k)+(xsize*(j+1))+i)*3]  =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*(k+1))+(xsize*(j+1))+i)*3]=(1-(ce*1e30))/(1+(ce*1e30)); 
 
  aCee[((xsize*ysize*k)+(xsize*j)+i)*3+1]    =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*k)+(xsize*j)+i+1)*3+1]  =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*(k+1))+(xsize*j)+i)*3+1]  =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*(k+1))+(xsize*j)+i+1)*3+1]=(1-(ce*1e30))/(1+(ce*1e30)); 
 
  aCee[((xsize*ysize*k)+(xsize*j)+i)*3+2]    =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*k)+(xsize*j)+i+1)*3+2]  =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*k)+(xsize*(j+1))+i)*3+2]  =(1-(ce*1e30))/(1+(ce*1e30)); 
  aCee[((xsize*ysize*k)+(xsize*(j+1))+i+1)*3+2]=(1-(ce*1e30))/(1+(ce*1e30)); 
 
  } 
 }  
 
 
 
 
 
 
// ----------------------------------------------------------------------------------------------
- 
// PML Init 
 
// Initialize 1D Arrays 
if (1==1) { 
// X Arrays 
for (i=2; i<12; i++) { 
 ii=(float) i; 
 ii=12-ii; 
   
 sig1=pow(((ii-0.5)/iPML),m)*sigmax; 
 sig2=(mu0/eps0)*pow(((ii)/iPML),m)*sigmax; 
 
 a1=pow(((iPML-(ii-1+.5))/iPML),m)*amax; 
 a2=(mu0/eps0)*pow(((iPML-(ii-1))/iPML),m)*amax; 
    
 k1=1+(kappa-1)*pow(((ii-0.5)/iPML),m); 
 k2=1+(kappa-1)*pow(((ii)/iPML),m); 
 
 aKe[(i+1)*3]=1/k1; 
 aKh[i*3]=1/k2;  
 
 aKe[(xsize-i-1)*3]=1/k1; 
 aKh[(xsize-i-1)*3]=1/k2;  
 
 aBe[(i+1)*3]=exp((-dt/eps0)*((sig1/k1)+a1)); 
 aCe[(i+1)*3]=((sig1/dx)/((sig1*k1)+(a1*k1*k1)))*(exp((-dt/eps0)*((sig1/k1)+a1))-1); 
 
 
 aBe[(xsize-i-1)*3]=exp((-dt/eps0)*((sig1/k1)+a1)); 
 aCe[(xsize-i-1)*3]=((sig1/dx)/((sig1*k1)+(a1*k1*k1)))*(exp((-dt/eps0)*((sig1/k1)+a1))-1); 
 
 aBh[i*3]=exp((-dt/mu0)*((sig2/k2)+a2)); 
 aCh[i*3]=((sig2/dx)/((sig2*k2)+(a2*k2*k2)))*(exp((-dt/mu0)*((sig2/k2)+a2))-1);  
 
 aBh[(xsize-i-1)*3]=exp((-dt/mu0)*((sig2/k2)+a2)); 
 aCh[(xsize-i-1)*3]=((sig2/dx)/((sig2*k2)+(a2*k2*k2)))*(exp((-dt/mu0)*((sig2/k2)+a2))-1); 
 
 
} 
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// Y Arrays 
if (1==1) { 
for (k=0; k<zsize; k++) { 
 for (j=2; j<12; j++) { 
  ii=(float) j; 
  ii=12-ii; 
    
  sig1=pow(((ii-0.5)/iPML),m)*sigmay; 
  sig2=(mu0/eps0)*pow(((ii)/iPML),m)*sigmay; 
 
  a1=pow(((iPML-(ii-1+.5))/iPML),m)*amax; 
  a2=(mu0/eps0)*pow(((iPML-(ii-1))/iPML),m)*amax; 
    
  k1=1+(kappa-1)*pow(((ii-0.5)/iPML),m); 
  k2=1+(kappa-1)*pow(((ii)/iPML),m); 
 
  
  aKe[((k*ysize)+j+1)*3+1]=1/k1; 
  aKh[((k*ysize)+j)*3+1]=1/k2;  
 
  aKe[((k*ysize)+(ysize-j)-1)*3+1]=1/k1; 
  aKh[((k*ysize)+(ysize-j)-1)*3+1]=1/k2;  
 
  aBe[((k*ysize)+j+1)*3+1]=exp((-dt/eps0)*((sig1/k1)+a1)); 
  aCe[((k*ysize)+j+1)*3+1]=((sig1/dy)/((sig1*k1)+(a1*k1*k1)))*(exp((-
dt/eps0)*((sig1/k1)+a1))-1); 
 
  aBe[((k*ysize)+(ysize-j)-1)*3+1]=exp((-dt/eps0)*((sig1/k1)+a1)); 
  aCe[((k*ysize)+(ysize-j)-1)*3+1]=((sig1/dy)/((sig1*k1)+(a1*k1*k1)))*(exp((-
dt/eps0)*((sig1/k1)+a1))-1); 
 
  aBh[((k*ysize)+j)*3+1]=exp((-dt/mu0)*((sig2/k2)+a2)); 
  aCh[((k*ysize)+j)*3+1]=((sig2/dy)/((sig2*k2)+(a2*k2*k2)))*(exp((-
dt/mu0)*((sig2/k2)+a2))-1); 
 
  aBh[((k*ysize)+(ysize-j)-1)*3+1]=exp((-dt/mu0)*((sig2/k2)+a2)); 
  aCh[((k*ysize)+(ysize-j)-1)*3+1]=((sig2/dy)/((sig2*k2)+(a2*k2*k2)))*(exp((-
dt/mu0)*((sig2/k2)+a2))-1);   
 } 
} 
} 
 
// Z Arrays 
if (1==1) { 
for (k=2; k<12; k++) { 
 for (j=0; j<ysize; j++) { 
 
  ii=(float) k; 
  ii=12-ii; 
    
  sig1=pow(((ii-0.5)/iPML),m)*sigmaz; 
  sig2=(mu0/eps0)*pow(((ii)/iPML),m)*sigmaz; 
 
  a1=pow(((iPML-(ii-1+.5))/iPML),m)*amax; 
  a2=(mu0/eps0)*pow(((iPML-(ii-1))/iPML),m)*amax; 
    
  k1=1+(kappa-1)*pow(((ii-0.5)/iPML),m); 
  k2=1+(kappa-1)*pow(((ii)/iPML),m); 
  
  aKe[(((k+1)*ysize)+j)*3+2]=1/k1; 
  aKh[(((k)*ysize)+j)*3+2]=1/k2;  
 
  aKe[(((zsize-k-1)*ysize)+j)*3+2]=1/k1; 
  aKh[(((zsize-k-1)*ysize)+j)*3+2]=1/k2;  
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  aBe[(((k+1)*ysize)+j)*3+2]=exp((-dt/eps0)*((sig1/k1)+a1)); 
  aCe[(((k+1)*ysize)+j)*3+2]=((sig1/dz)/((sig1*k1)+(a1*k1*k1)))*(exp((-
dt/eps0)*((sig1/k1)+a1))-1); 
 
  aBe[(((zsize-k-1)*ysize)+j)*3+2]=exp((-dt/eps0)*((sig1/k1)+a1)); 
  aCe[(((zsize-k-1)*ysize)+j)*3+2]=((sig1/dz)/((sig1*k1)+(a1*k1*k1)))*(exp((-
dt/eps0)*((sig1/k1)+a1))-1); 
 
  aBh[(((k)*ysize)+j)*3+2]=exp((-dt/mu0)*((sig2/k2)+a2)); 
  aCh[(((k)*ysize)+j)*3+2]=((sig2/dz)/((sig2*k2)+(a2*k2*k2)))*(exp((-
dt/mu0)*((sig2/k2)+a2))-1);   
 
  aBh[(((zsize-k-1)*ysize)+j)*3+2]=exp((-dt/mu0)*((sig2/k2)+a2)); 
  aCh[(((zsize-k-1)*ysize)+j)*3+2]=((sig2/dz)/((sig2*k2)+(a2*k2*k2)))*(exp((-
dt/mu0)*((sig2/k2)+a2))-1);   
 } 
} 
} 
 
} 
// End PML Init  
// ----------------------------------------------------------------------------------------------
- 
 
 
  pFile3 = fopen ("port.txt","wt"); 
////// 
/// GPU Start 
////// 
outsize2= ((zsize-2)*ysize); 
i1=(float) (xsize-1); 
i2=(float) (xsize-2); 
o1=(float) ysize; 
o2=(float)  (outsize-ysize); 
 {   
 
 // iter float2 it<outsize2, i2> = iter( float2((float) 1, o1), float2( i1 , o2) ); 
  iter float2 it<outsize, xsize> = iter( float2(0, 0), float2( (float) xsize , 
(float)  outsize) ); 
 
  float3 Obs<1,1>; 
  float3 E<outsize, xsize>; 
  float3 H<outsize, xsize>; 
  float3 o_E<outsize, xsize>; 
  float3 o_H<outsize, xsize>; 
  float3 Cee<outsize, xsize>; 
  float3 Ceh<outsize, xsize>; 
  float3 Ces<outsize, xsize>; 
 
  //PML Streams 
 
  float3 psiH1<outsize, xsize>, psiH2<outsize, xsize>; 
 
  float3 o_psiH1<outsize, xsize>, o_psiH2<outsize, xsize>; 
 
  float3 psiE1<outsize, xsize>, psiE2<outsize, xsize>; 
 
  float3 o_psiE1<outsize, xsize>, o_psiE2<outsize, xsize>; 
 
  float3 Be<outsize>, Ce<outsize>; 
 
  float3 Bh<outsize>, Ch<outsize>; 
 
  float3 Ke<outsize>, Kh<outsize>;  
 
  //Input Arrays 
  streamRead(E, aE); 
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  streamRead(H, aH); 
  
  streamRead(o_E, aE); 
  streamRead(o_H, aH); 
 
  streamRead(Cee, aCee); 
  streamRead(Ceh, aCeh); 
  streamRead(Ces, aCes); 
 
  streamRead(psiH1, aE); 
  streamRead(psiH2, aE); 
 
  streamRead(o_psiH1, aE); 
  streamRead(o_psiH2, aE); 
 
 
  streamRead(psiE1, aE); 
  streamRead(psiE2, aE); 
 
  streamRead(o_psiE1, aE); 
  streamRead(o_psiE2, aE); 
 
 
 
  streamRead(Bh, aBh); 
  streamRead(Ch, aCh); 
 
  streamRead(Be, aBe); 
  streamRead(Ce, aCe); 
 
  streamRead(Ke, aKe); 
  streamRead(Kh, aKh); 
 
 
  //Do the requested number of iterations 
  for(i=0; i<N; i++){ 
   //We can't use the input and output buffers without hosing things 
    //so we'll need to "ping-pong" between them 
   if ((i+1)%100==0) { 
   printf("%d Time Steps Complete\n", i); 
  } 
 
    if(i%2==0) { 
 
   process_field_H(H, E, Kh, Bh, Ch, XE, XH, dx, dy, dz,(float) ysize, it,  
     psiH1, psiH2, o_psiH1, o_psiH2, o_H); 
   
   process_field_E(E, o_H, Cee, Ceh, Ces, Ke, Be, Ce, dx, dy, dz,(float) 
ysize, gauss[i], it, 
     psiE1, psiE2, o_psiE1, o_psiE2, o_E); 
 
 
  } else { 
 
   process_field_H(o_H, o_E, Kh, Bh, Ch, XE, XH, dx, dy, dz,(float) ysize, 
it, 
     o_psiH1, o_psiH2, psiH1, psiH2, H); 
     
   process_field_E(o_E, H, Cee, Ceh, Ces, Ke, Be, Ce, dx, dy, dz,(float) 
ysize, gauss[i], it, 
     o_psiE1, o_psiE2, psiE1, psiE2, E); 
   
  
  } 
 
 
//// 
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// --- Export Port Values 
//// 
  if (1==1) {  
    vObs=0; 
    l=s0+px1; 
    for (j=(s0+py1); j<(s0+py2+1); j++) { 
     for (k=(s0+pz1); k<(s0+pz2); k++) { 
     
 Copy(E.domain(int2(l,j+(ysize*k)),int2(l,j+(ysize*k))),Obs); 
      streamWrite(Obs,aObs); 
      vObs=vObs-dz*aObs[2]; 
     } 
    } 
    fprintf (pFile3,"%e, ",(1/((float)py2-(float)py1+1))*vObs); 
 
    //Top 
    vObs=0; 
    k=(s0+pz2); 
    for (j=(s0+py1); j<(s0+py2+1); j++) { 
    
 Copy(H.domain(int2(l,j+(ysize*k)),int2(l,j+(ysize*k))),Obs); 
     streamWrite(Obs,aObs); 
     vObs=vObs+dy*aObs[1]; 
      
    } 
 
    //Bottom 
    k=(s0+pz2-1); 
    for (j=(s0+py1); j<(s0+py2+1); j++) { 
    
 Copy(H.domain(int2(l,j+(ysize*k)),int2(l,j+(ysize*k))),Obs); 
     streamWrite(Obs,aObs); 
     vObs=vObs-dy*aObs[1]; 
      
    } 
 
    //Right 
    k=(s0+pz2); 
    j=s0+py2; 
 
    
 Copy(H.domain(int2(l,j+(ysize*k)),int2(l,j+(ysize*k))),Obs); 
     streamWrite(Obs,aObs); 
     vObs=vObs-dz*aObs[2]; 
 
    //Left 
    j=s0+py1-1; 
 
    
 Copy(H.domain(int2(l,j+(ysize*k)),int2(l,j+(ysize*k))),Obs); 
     streamWrite(Obs,aObs); 
     vObs=vObs+dz*aObs[2]; 
 
    fprintf (pFile3," %e \n ",vObs); 
 
   } 
 
 
  
 
//// 
// ---  End Export Port Values 
//// 
 
  } 
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//// 
// ---  Write Streams Back Out and Close Port Observation File 
//// 
   
 
 
   streamWrite(E, aE); 
   streamWrite(H, aH); 
 
  fclose (pFile3); 
 
 
 
 
//// 
// --- Export Final Fields 
//// 
 if (1 == 1) {     
  pFile = fopen ("Ezdata.txt","wt"); 
  pFile2 = fopen ("Hxdata.txt","wt"); 
  pFile3 = fopen ("Hydata.txt","wt"); 
  pFile4 = fopen ("Hzdata.txt","wt"); 
  pFile5 = fopen ("Exdata.txt","wt"); 
  pFile6 = fopen ("Eydata.txt","wt"); 
  k=s0+pz2;    
 
///  for (k=0; k<zsize; k++) { 
   for (j=0; j<ysize; j++) { 
    for (i=0; i<xsize; i++) { 
    fprintf (pFile,"%e ",aE[((xsize*ysize*k)+(xsize*j)+i)*3+2]); 
                  fprintf (pFile2,"%e ",aH[((xsize*ysize*k)+(xsize*j)+i)*3]); 
                 fprintf (pFile3,"%e ",aH[((xsize*ysize*k)+(xsize*j)+i)*3+1]); 
    fprintf (pFile4,"%e ",aH[((xsize*ysize*k)+(xsize*j)+i)*3+2]); 
                  fprintf (pFile5,"%e ",aE[((xsize*ysize*k)+(xsize*j)+i)*3]); 
                 fprintf (pFile6,"%e ",aE[((xsize*ysize*k)+(xsize*j)+i)*3+1]);  
   } 
 
 
   fprintf (pFile,"\n"); 
   fprintf (pFile2,"\n"); 
   fprintf (pFile3,"\n"); 
   fprintf (pFile4,"\n"); 
   fprintf (pFile5,"\n"); 
   fprintf (pFile6,"\n"); 
 
  } 
  
  fclose (pFile); 
  fclose (pFile5); 
  fclose (pFile6); 
  fclose (pFile2); 
  fclose (pFile4); 
  fclose (pFile3); 
 } 
 
//// 
// --- End Export Fields 
//// 
 
  
} 
 printf("Run Complete\n"); 
 return 0; 
} 

APPENDIX F 
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__global__ 
static void update_E  (float* Ex, float* Ey, float* Ez, 
    float* Hx, float* Hy, float* Hz, 
    float* CExe, float* CEye, float* CEze,   
    float* CExhz, float* CEyhx, float* CEzhy, 
    float* CExhy, float* CEyhz, float* CEzhx, 
    float* CExs, float* CEys, float* CEzs,     
    float V,  
    unsigned int Blocks_Y, float invBlocks_Y, 
    int NX, int NY, int NZ, 
    float* Vout, int iteration, int ii, int jj, int kk) 
{ 
    unsigned int blockIdx_z = __float2uint_rd(blockIdx.y * invBlocks_Y); 
    unsigned int blockIdx_y = blockIdx.y - __umul24(blockIdx_z, Blocks_Y); 
    unsigned int tx = __umul24(blockIdx.x, blockDim.x) + threadIdx.x; 
    unsigned int ty = __umul24(blockIdx_y, blockDim.y) + threadIdx.y; 
    unsigned int tz = __umul24(blockIdx_z, blockDim.z) + threadIdx.z; 
 
 if ((tx >= NX) || (ty >= NY) || (tz >= NZ)) 
  return; 
 
    // Locations of Indicies 
    long int it = tz * NX * NY + ty * NX + tx; 
    long int itxp1 = tz * NX * NY + ty * NX + tx+1; 
    long int itxm1 = tz * NX * NY + ty * NX + tx-1; 
    long int ityp1 = tz * NX * NY + (ty+1) * NX + tx; 
    long int itym1 = tz * NX * NY + (ty-1) * NX + tx; 
    long int itzp1 = (tz+1) * NX * NY + ty * NX + tx; 
    long int itzm1 = (tz-1) * NX * NY + ty * NX + tx; 
     
 if ((tx > 10) && (tx < 40) &&(ty > 10) && (ty < 38) &&(tz > 10) && (tz < 66)) { 
  
 if ((tx < NX-1) && (ty > 0) && (ty < NY-1) && (tz > 0) && (tz < NZ-1)) { 
  Ex[it] =  
     (CExe[it] * Ex[it] 
     + CExhz[it]*(Hz[it] - Hz[itym1]) 
     - CExhy[it]*(Hy[it] - Hy[itzm1])) * (1-CExs[it]) 
     + V*CExs[it];   
    } 
     
    if ((tx > 0) && (tx < NX-1) && (ty < NY-1) && (tz > 0) && (tz < NZ-1)) { 
  Ey[it] =  
     (CEye[it] * Ey[it] 
     + CEyhx[it]*(Hx[it] - Hx[itzm1]) 
     - CEyhz[it]*(Hz[it] - Hz[itxm1])) * (1-CEys[it]) 
     + V*CEys[it];   
 } 
  
 if ((tx > 0) && (tx < NX-1) && (ty > 0) && (ty < NY-1) && (tz < NZ-1)) { 
  Ez[it] =  
     (CEze[it] * Ez[it] 
     + CEzhy[it]*(Hy[it] - Hy[itxm1]) 
     - CEzhx[it]*(Hx[it] - Hx[itym1])) * (1-CEzs[it]) 
     + V*CEzs[it];   
    } 
    } 
     
  /*  if ((tx == ii) && (ty == jj) && (tz == kk)) 
    { 
  Vout[iteration] = Ez[it]; 
    } 
   */ 
} 
 
__global__ 
static void update_H  (float* Ex, float* Ey, float* Ez, 
    float* Hx, float* Hy, float* Hz, 
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    float* CHxh, float* CHyh, float* CHzh, 
    float* CHxey, float* CHyez, float* CHzex, 
    float* CHxez, float* CHyex, float* CHzey, 
    unsigned int Blocks_Y, float invBlocks_Y, 
    int NX, int NY, int NZ) 
{ 
    unsigned int blockIdx_z = __float2uint_rd(blockIdx.y * invBlocks_Y); 
    unsigned int blockIdx_y = blockIdx.y - __umul24(blockIdx_z, Blocks_Y); 
    unsigned int tx = __umul24(blockIdx.x, blockDim.x) + threadIdx.x; 
    unsigned int ty = __umul24(blockIdx_y, blockDim.y) + threadIdx.y; 
    unsigned int tz = __umul24(blockIdx_z, blockDim.z) + threadIdx.z; 
 
 if ((tx >= NX) || (ty >= NY) || (tz >= NZ)) 
  return; 
 
    // Locations of Indicies 
    long int it = tz * NX * NY + ty * NX + tx; 
    long int itxp1 = tz * NX * NY + ty * NX + tx+1; 
    long int itxm1 = tz * NX * NY + ty * NX + tx-1; 
    long int ityp1 = tz * NX * NY + (ty+1) * NX + tx; 
    long int itym1 = tz * NX * NY + (ty-1) * NX + tx; 
    long int itzp1 = (tz+1) * NX * NY + ty * NX + tx; 
    long int itzm1 = (tz-1) * NX * NY + ty * NX + tx; 
     
   
// Ex[it]=V*Evx[it]; 
if ((tx > 10) && (tx < 40) &&(ty > 10) && (ty < 38) &&(tz > 10) && (tz < 66)) { 
 
 if ((tx < NX-1) && (tx > 0) && (ty < NY-1) && (tz < NZ-1)) { 
  Hx[it]  = CHxh[it] * Hx[it] 
    + CHxey[it] * (Ey[itzp1] - Ey[it]) 
    - CHxez[it] * (Ez[ityp1] - Ez[it]);  
    } 
     
    if ((ty > 0) && (tx < NX-1) && (ty < NY-1) && (tz < NZ-1)) { 
  Hy[it]  = CHyh[it] * Hy[it] 
    + CHyez[it] * (Ez[itxp1] - Ez[it]) 
    - CHyex[it] * (Ex[itzp1] - Ex[it]);  
 } 
  
 if ((tx < NX-1) && (tz > 0) && (ty < NY-1) && (tz < NZ-1)) { 
  Hz[it]  = CHzh[it] * Hz[it] 
    + CHzex[it] * (Ex[ityp1] - Ex[it]) 
    - CHzey[it] * (Ey[itxp1] - Ey[it]);    
    } 
   
   } 
} 
 
extern "C"  
void launch_EHSTEP( float *d_Ex, float *d_Ey, float *d_Ez,  
     float *d_Hx, float *d_Hy, float *d_Hz, 
     float *d_CExe, float *d_CEye, float *d_CEze, 
     float *d_CExhz, float *d_CEyhx, float *d_CEzhy, 
     float *d_CExhy, float *d_CEyhz, float *d_CEzhx, 
     float *d_CExs, float *d_CEys, float *d_CEzs, 
     float V, int blocksInY, int nx, int ny, int nz)  
{ 
 update_E<<<dimGrid, dimBlock>>>(d_Ex, d_Ey, d_Ez, 
      d_Hx, d_Hy, d_Hz, 
      d_CExe, d_CEye, d_CEze, 
      d_CExhz, d_CEyhx, d_CEzhy, 
      d_CExhy, d_CEyhz, d_CEzhx, 
      d_CExs, d_CEys, d_CEzs, 
      V,  
     blocksInY, 1.0f/(float)blocksInY, nx, ny, nz); 
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       cudaThreadSynchronize(); 
         
        update_H<<<dimGrid, dimBlock>>>(d_Ex, d_Ey, d_Ez, 
     d_Hx, d_Hy, d_Hz, 
     d_CHxh, d_CHyh, d_CHzh, 
     d_CHxey, d_CHyez, d_CHzex, 
     d_CHxez, d_CHyex, d_CHzey, 
     blocksInY, 1.0f/(float)blocksInY, nx, ny, nz); 
 cudaThreadSynchronize(); 
} 
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