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ABSTRACT 
 

 Malaria and visceral leishmaniasis are major killer parasitic diseases. These diseases 

though occur primarily in tropical countries; economic burden and overall health impacts of 

malaria and leishmaniasis are global. The emergence of drug-resistant and more-virulent strains 

of the pathogens has further amplified the problems.  New drug discovery approaches primarily 

rely on in vitro and in vivo models of the disease. The pathogens causing leishmaniasis and malaria 

are intracellular. Leishmania parasite grows as amastigotes in macrophages cells, and malaria 

parasite grows within the hepatocytes or erythrocytes. The intracellular forms of the pathogens are 

responsible for the pathophysiology of the diseases. New phenotypic cell-based models have been 

developed for leishmaniasis and malaria, those have been employed for in vitro/in vivo screening 

for new drug discovery.  

A parasite-rescue and transformation assay was developed for macrophage-internalized 

Leishmania donovani amastigotes. The assay has been applied for high-throughput screening of a 

library of plants’ fractions. Two fluorescent transgenic cell lines of L. donovani were developed 

with mCherry and Citrine reporter genes by stable transfection approach. The transgenic cell lines 

have shown stable and constitutive expression of the fluorescent reporter proteins. The in vitro 

screening methods were developed with the transgenic leishmania cells employing flow-

cytometric and fluorescent microscopy analyses.   

Analysis of parasitemia and intra-erythrocytic growth of the parasite are hallmarks of 
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malaria research.  A flow-cytometric assay, based on staining of the malaria parasites with LDS-

751, a fluorescent cell-permeant nucleic acid stain, was developed for parasitemia analysis. 

Staining of malaria-infected RBCs may be performed directly without additional processing. 

Selective staining of malaria-infected erythrocytes by LDS-751 was confirmed with fluorescent 

microscopy. The method has been applied for flow-cytometric analysis of parasitemia in mice 

blood infected with Plasmodium berghei and human blood infected with P. falciparum. The utility 

of this developed method was established for both in vitro and in vivo antimalarial drug screenings. 

Establishment of the new phenotypic assay will expedite the process of new drug discovery 

against the tropical parasitic diseases. These assays would also have utility for understanding 

biology, virulence, and pathogenesis of malaria and leishmania pathogens.  
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CHAPTER I 

CURRENT DRUG DISCOVERY MODELS FOR VISCERAL LEISHMANIASIS AND 

MALARIA 

 

1.1. INTRODUCTION 

Tropical diseases refer to the diseases, which are more prevalent in tropical regions of the 

world. These include mostly infectious diseases such as leishmaniasis, malaria, Chagas disease, 

African trypanosomiasis, schistosomiasis, onchocerciasis, filariasis, and dengue, that epidemic in 

the hot and humid environment of tropical areas  

Malaria, leishmaniasis, Chagas disease and African trypanosomiasis are caused due to the 

infections with protozoan parasitic pathogens.  These protozoan parasitic diseases are responsible 

for high mortality and morbidity, globally affecting more than 500 million people (WHO, 2016). 

Protozoan parasites namely, Plasmodium spp., Leishmania spp. and Trypanosoma spp., are more 

prevalent in tropical and subtropical countries, causing heavy loss of lives and reduced working 

abilities (Dupouy-Camet, 2004). Despite heavy burden to humanity due to the diseases caused by 

the parasitic protozoa, very few antiparasitic drugs have been developed in the last few years 

(Simon, 2016). The Recent involvement of some nonprofit and public-private partnership 

organizations for the development of strategies to treat and control malaria and other neglected 

diseases, namely leishmaniasis, sleeping sickness and Chagas’ disease, has generated the 

unprecedented interest of several laboratories and pharmaceutical companies in new, antiparasitic 

drug discovery programs (Tekwani and Walker, 2006). Neglected tropical diseases (NTDs), are a 
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group of 17 diseases including leishmaniasis, sleeping sickness and Chagas’ disease that are found 

primarily among the poorest people in 149 countries and territories. According to recent World 

Health Organization (WHO) estimates, more than 2 billion people are at risk of contracting an 

NTD, of whom more than 1 billion people are afflicted with one or more. Roughly 534,000 people 

are believed to be killed by an NTD annually. If we include the annual deaths because of malaria 

(438,000), that makes the total deaths 1 million because of NTD and malaria (WHO, 2016). 

Vaccines are still not available for malaria and other neglected diseases, namely leishmaniasis, 

sleeping sickness and Chagas’ disease. So cure of these diseases mainly depends on drug 

treatments.  

Visceral leishmaniasis (VL) and malaria are the primary focus of the work reported in this 

dissertation. There are only a few drugs available for the treatment of malaria and leishmaniasis. 

Most of them are toxic and going out of the market because of resistance development. Toxicity 

and emerging resistance against current antileishmanial and antimalarial drugs necessitate the 

discovery of new drugs and drug leads. Drug discovery approaches for both the diseases are based 

on the availability of in vitro and in vivo screening models that help in selections of novel 

pharmacophores from natural products and synthetic compounds libraries. As both leishmania and 

malaria parasite exist in the intracellular forms in the human host, it is significantly challenging to 

analyze the growth of the intracellular parasites (Fidock et al., 2004; Sereno et al., 2007). 

Maintaining in vitro cultures for intracellular forms of these parasites are complex. The host and 

parasite cells have to be maintained together, and growth of parasite inside the host cells may be 

analyzed by different techniques. Currently available technologies have severe limitations and are 

labor intensive. Simpler technologies, which yield reproducible results, are desperately needed. 

Current status of available in vitro and in vivo screening models for visceral leishmaniasis and 
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malaria is presented here. 

 

1.2. VISCERAL LEISHMANIASIS 

Leishmania donovani, a protozoan parasite, is the causative agent of visceral leishmaniasis 

(VL). VL is fatal if left untreated. It is highly endemic in the Indian subcontinent and East Africa. 

An estimated 200,000 to 400,000 new cases of VL occur worldwide each year. Over 90% of new 

cases occur in 6 countries: Bangladesh, Brazil, Ethiopia, India, South Sudan and Sudan (WHO 

Expert Committee on the Control of the Leishmaniases. Meeting (2010 : Geneva) and World 

Health Organization., 2010).  

 

1.2.1. TREATMENT OF VISCERAL LEISHMANIASES: LIMITATIONS AND 

PROBLEMS WITH CURRENT THERAPEUTIC OPTIONS  

The choice of drugs available to treat leishmaniasis is already limited, and even these suffer 

from limited efficacy and significantly high toxicities at therapeutic doses (Table 1.1).  A few of 

the first line treatment drugs, namely Sodium stibogluconate, have already lost their utility due to 

increasing multiple drug resistance (Croft et al., 2006b). Use of the pentavalent antimony 

compounds sodium stibogluconate (SSG), and meglumine antimonite has remained the mainstay 

of treatment of VL (Tiuman et al., 2011). However, in several areas where leishmaniasis has 

developed refractoriness against antimonials, the treatment option has been shifted mainly to the 

use of amphotericin B (Croft et al., 1991). Both antimonials and amphotericin B have to be 

administered parenterally, are highly toxic, and require a long duration of treatment (Croft et al., 

2006b). Lipid formulations of amphotericin B, however, have greatly reduced the toxicity of the 

drug, allowing administration of large doses and shortening the treatment period (Croft and 



 
4 

Olliaro, 2011). However, the high cost of treatment and the requirement for administration of the 

drug under supervised hospitalization have limited its use in endemic areas and for routine 

treatments (Croft and Olliaro, 2011). Recently, miltefosine, an alkyl phospholipid derivative, 

which was originally developed as an anticancer agent, has been approved as the first orally active 

drug for the treatment of visceral leishmaniasis in India. At a dose of approximately 2.5 mg/kg/day 

for 28 days, miltefosine is > 90% curative for visceral disease in India and cutaneous disease in 

Colombia (Dorlo et al., 2012). Miltefosine causes reversible gastrointestinal disturbances and renal 

toxicity. The teratogenic nature of this drug prevents its use in pregnant women and other young 

females not following contraceptive measures (Dorlo et al., 2012). The antileishmanial potential 

of paromomycin, an antibacterial/antiprotozoal aminoglycoside, was discovered as early as the 

1960’s. The drug remained neglected due to unavailability of suitable formulations and 

discontinuation of its production.  Injectable paromomycin was equally effective to amphotericin 

B for the treatment of visceral leishmaniasis in India in phase III clinical trials (Sundar et al., 2007). 

The antifungal azole compounds are promising antileishmanial agents. However, the results of the 

treatment of VL with antifungal azole drugs have been highly variable. Pentamidine isethionate, 

an aromatic diamidine was previously used as a second line treatment for leishmaniasis as a 

parenteral drug, but in later trials, pentamidine failed to produce a satisfactory cure (Croft and 

Olliaro, 2011). Use of pentamidine for treatment of visceral leishmaniasis has been discontinued, 

due to limited efficacy and other toxicity concerns with this drug (Tiuman et al., 2011). Thus the 

armamentarium of drugs for the treatment of VL is severely limited and underscores the need for 

discovery of new antileishmanial drugs with proven clinical efficacy and broader utility for oral 

treatment of VL. The major clinical drugs with their mode of action, their primary source, available 

toxicity and the important remarks are given in Table 1.1. The structures are given in Figure 1.1. 
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Table 1.1: The drugs presently used for treatment of visceral leishmaniasis. *Adapted from 

(Croft and Olliaro, 2011).  

 

Drug Name Mode of Action Primary  
Therapeut
ic Use 

Toxicity Remarks 

Sodium 
Stibogluconate 

Multiple 
Pathways 

Leishmania
sis 

Pancreatitis, 
Cardiac toxicity 

Drug resistance 

Amphotericin 
B 

Ergosterol 
pathway 

Antifungal Severe Kidney 
damage 

Severe Toxicity, 
Liposomal 
Formulations 

Pentamidine Multiple 
Pathways 

Pneumonia 
(PCP) 

Insulin- Dependent 
diabetes mellitus. 

Drug resistance 

Miltefosine Lipid 
metabolism, 
Apoptotic effect 

Anticancer Teratogenicity Drug resistance 
High Cost 

Paromomycin  Antibiotic  Drug resistance 

Azole Ergosterol 
pathway 

Antifungal Cardiac problems Suboptimal 
efficacy 
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Figure 1.1: The chemical structures of clinical available antileishmanial drugs. 
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1.2.2. ANTILEISHMANIAL DRUGS CURRENTLY UNDER CLINICAL 

DEVELOPMENT FOR VISCERAL LEISHMANIASIS. 

 

1.2.2.1. NITROIMIDAZOLES 

1.2.2.1.a.  FEXINIDAZOLE 

 Fexinidazole is believed to act as a prodrug that requires enzyme-mediated reduction by 

nitroreductases to generate cytotoxic species that cause DNA, lipid and protein damage (Raether 

and Hanel, 2003). As the genomes of leishmania parasites contain a homologous nitroreductase 

gene, a study to assess the leishmanicidal activity and preclinical profile of fexinidazole was done. 

In vivo sensitivity of L. donovani to the drug was excellent with five single daily doses of 200 mg/ 

kg in BALB/c mice suppressing infection by 98.4%.Lower doses of the drug were also effective 

in treating the murine model of infection, with the ED50 and ED90 estimated at 12 and 57 mg/ kg, 

respectively (Wyllie et al., 2012). Overexpression of the leishmanial homolog of this 

nitroreductase in L. donovani increased sensitivity to fexinidazole sulfone by 19-fold indicating 

that nitroreductase played a crucial role in activation of fexinidazole and its metabolites in L. 

donovani (Wyllie et al., 2012). Phase 1study of fexinidazole in healthy male volunteers has been 

completed (ClinicalTrial, 2012, 2014). A phase II proof of concept trial to determine the efficacy 

of fexinidazole at the daily dose of 1800 mg (3 tablets) once a day for four days continued by 

1200mg (2 tablets) once a day for six days in VL patients in Sudan is recruiting patients 

(ClinicalTrial, 2013).  

 

1.2.2.1.b.  Pretomanid (PA-824)  

 Pretomanid (PA-824) is a bicyclic nitroimidazole-like molecule. (S)-PA- 824 showed 
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antileishmanial activity against both developmental stages of the parasite, with EC50 of 0.9± 0.1 

and 4.9± 0.3μM against promastigotes and intracellular amastigotes, respectively (Patterson et al., 

2013). The efficacy of both (R)- and (S)-PA-824 was assessed in a mouse model of VL. Dosing 

with (R)-PA-824 (99.9% suppression) at this concentration proved to be superior to treatment with 

sodium stibogluconate (41.9% suppression) and miltefosine (68.7% suppression) (Patterson et al., 

2013). A phase 1 study was done in 58 healthy male volunteers using single oral doses (50, 250, 

500, 750, 1,000, 1,250, or 1,500 mg) or multiple doses of 200, 600 and 1,000 mg of (S)- PA-824 

each day for 7 days (Ginsberg et al., 2009). PA-824 was well tolerated following oral doses once 

daily for up to 7 days, and pharmacokinetic parameters were consistent with a once-a-day regimen. 

 

1.2.2.2. QUINOLINE DERIVATIVES 

1.2.2.2.a. 8-AMINOQUINOLINES 

 Sitamaquine (WR- 6026) is an 8-aminoquinoline analog discovered by the Walter Reed 

Army Institute of Research (WRAIR, USA) being developed as an oral treatment for VL. 

Sitamaquine was shown to be 708 times more active than meglumine antimoniate (Glucantime®) 

against L. donovani in hamsters (Kinnamon et al., 1978). The first phase 2 study was done in 

Kenya in 16 patients at a dose of 0.75-1.00mg/kg for 2-4 weeks with 50% cure rate for 28-day 

treatment with 1mg/kg (Sherwood et al., 1994). Final cure in Brazilian patients (primary efficacy 

outcome) was achieved in 92 of 106 (87%) overall and 25 of 31 (81%), 24 of 27 (89%), 23 of 23 

(100%), and 20 of 25 (80%) patients at doses of 1.5, 1.75, 2.0, or 2.5 mg/ kg/day sitamaquine, 

respectively (Jha et al., 2005). Recent data suggest that sitamaquine accumulate in Leishmania 

parasites (Lopez-Martin et al., 2008). However, its molecular targets remain unknown yet. The 

short elimination half-life of sitamaquine is preventing a rapid resistance emergence(Loiseau et 
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al., 2011). The selection of a sitamaquine-resistant clone of L. donovani in the laboratory and the 

phase II clinical trials pointing out some adverse effects such as methemoglobinemia and 

nephrotoxicity are considered for a further development decision (Jha et al., 2005). 

 

1.3. IN VITRO PHENOTYPIC MODELS FOR ANTILEISHMANIAL SCREENING  

Phenotypic parasite culture-based in vitro screening and in vivo preclinical evaluation are 

the hallmarks of new antileishmanial drug discovery (Gupta and Nishi, 2011; Reguera et al., 2014; 

Sereno et al., 2007). Different methods have been reported for phenotypic cell-based screening 

assays for leishmania. These assays differ regarding the type of parasite forms employed, the 

complexity of the experimental protocol and the methods used for evaluation of growth and 

proliferation of the parasite cells in culture. L. donovani cycles between phagolysosomes of 

mammalian macrophages and alimentary tract of sand flies (Herwaldt, 1999). During its life-cycle, 

the parasite exists in two forms. ‘Amastigotes’ found in the mammalian host and ‘Promastigotes,' 

which grow in the sandfly host, which is also the vector for transmission of leishmaniasis. 

Amastigotes are ovoid, non-motile, intracellular stages; promastigotes are elongated, motile, 

extracellular stages. Promastigotes are injected into the skin of the mammalian host by the bite of 

the infected female sandfly.  Promastigotes selectively invade macrophage cells and transform into 

the intracellular amastigotes. The parasite remains in amastigote form for the duration of the 

mammalian phase of the life cycle. Sandflies feed on an infected mammal host and ingest 

amastigotes during blood feeding. The amastigotes transform into promastigotes for the vector 

phase of the life cycle (Figure 1.2). The phenotypic screening assays employing promastigotes as 

well as amastigotes forms of the parasite have been described.            
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Figure 1.2:  Life cycle of Leishmania donovani parasite. (Leishmania donovani life cycle by 

Center for Disease Control and Prevention). 1- The sandflies inject the promastigotes during blood 

meals. 2- Promastigotes are phagocytized by macrophages cells. 3,4-Progmastigotes transform in 

these cells into the amastigotes., which multiply by simple division and proceed to infect other 

mononuclear phagocytic cells. 5,6- Sandflies become infected by ingesting infected cells during 

blood meals. 7,8- In sandflies, amastigotes transform into promastigotes, develop in the gut, and 

migrate to the proboscis. 

Figure adapted from https://www.cdc.gov/parasites/leishmaniasis/biology.html  

 

 

https://www.cdc.gov/parasites/leishmaniasis/biology.html
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1.3.1. PROMASTIGOTES-BASED PHENOTYPIC SCREENING ASSAYS  

 The leishmania promastigotes grown in simple media have been used as the test parasite 

to screen potential antileishmanial agents.  Simplicity and potential for automation of the 

promastigotes-based assay account for its wide popularity. The promastigotes are a culture in vitro 

in the medium at 21 to 27oC. The promastigotes are treated in vitro with the test drugs and 

compounds for 48 to 72 h. The growth of prokaryotes is analyzed by different cell viability 

indicators, e.g., AlamarBlue, MTT (Dutta et al., 2005; Kulshrestha et al., 2013; Manda et al., 

2014). The technique is simple and easily applicable for high-throughput screening (Gupta and 

Nishi, 2011). However, the metabolism and physiological conditions for culture and growth of 

promastigote differ from those of amastigote (host stage of the parasite). Because of these 

metabolic and physiological differences, screening data obtained from in vitro promastigote 

screening may not  reflect  activity against intracellular amastigotes (Sereno et al., 2007). 

Promastigotes grow at a lower temperature (21-27°C), while amastigotes in human host grow at 

37oC. Intracellular amastigotes grow within the macrophage phagolysosomes, the amastigotes face 

the acidic environment of phagolysosomal vacuoles, while promastigotes growth at neutral pH 

(Vermeersch et al., 2009). Due to these problems, use of promastigotes culture for in vitro 

antileishmanial screening has lesser value than the screening against intracellular amastigotes.  

 

1.3.2. AXENIC AMASTIGOTES-BASED PHENOTYPIC SCREENING ASSAYS  

Axenic amastigotes are the leishmania cells in amastigote forms adapted to grow in the 

medium in vitro  by providing the optimum temperature of  30oC and acidic 5.5 pH (Zakai et al., 

1999). The in vitro screening with axenic amastigotes culture has several advantages. The test is 

directed against the amastigotes (host stage of the parasite). The axenic  amastigotes are easy to 
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manipulate in in vitro culture.  The growth analysis (Rahman et al., 2011) is of axenic amastigote 

can be performed with simple cellular growth indicators. Axenic amastigotes-based screening is 

simple and inexpensive. Axenic amastigotes system for drug screening has been used earlier 

(Callahan et al., 1997; Doyle et al., 1991). Several investigators used different methods for 

evaluating activity of compound against axenic amastigotes such as viability of cell population 

with a 3-(4-5 dimethyl-thiazol–2–yl)–2, diphenyl tetrazolium bromide, thiazole blue (MTT) based 

method (Ganguly et al., 2006; Sereno and Lemesre, 1997), determining ornithine decarboxylase 

activity or using a fluorescent dye like propidium iodide (PI) and fluorescence-activated-cell-sorter 

(FACS)(Sereno et al., 2005; Vergnes et al., 2005). Several Leishmania parasites expressing 

reporter genes have been selected, and the capacity of some of them to be used in axenic amastigote 

drug screening protocol has been assessed. Axenic L. infant amastigotes with Luciferase 

expressing DNA transformed and showed its utility in high throughput screening for new 

antileishmanial drugs (Sereno et al., 2001). A rapid fluorescent assay using AlamarBlue for 

screening drugs on axenic amastigotes of L. donovani and L. tropica was done recently (Shimony 

and Jaffe, 2008). However, the assay is semi – predictive, it neither test for penetration of the 

compound into the host cell nor for activity in the peculiar environment of the macrophage 

phagolysosome(Gupta and Nishi, 2011). Axenic amastigotes may have different metabolic 

processes than intracellular amastigotes. As this parasite grows in medium with 5.5 pH, there are 

chances that compounds may get precipitated at acidic pH. These assays do not have same 

pathophysiological environmental as in human host.  So any compounds active here may not be 

active in human macrophage cells internalized amastigote form.  

 

1.3.3. INTRACELLULAR AMASTIGOTES-BASED PHENOTYPIC SCREENING 
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ASSAYS  

 Amastigotes growing inside the phagolysosomal vacuoles of macrophage cells represent 

the pathophysiology of leishmaniasis disease (Handman, 1999). These intracellular amastigotes 

are the real target for the antileishmanial drug candidate. For the discovery of new antileishmanial 

drug candidate, there is a need for screening compounds libraries against intracellular growth and 

proliferation of the amastigotes in the host cells. The intracellular amastigotes-macrophage 

phenotypic assays also have application for evaluation of infectivity of clinical and laboratory 

isolates of leishmania cells.  These assays offer significant challenges compared to the simple 

promastigotes/axenic amastigotes assays (a) regarding selection of appropriate host cells (b) 

individual variations in host cell populations (c) variable infectivity of pathogen-cells and 

susceptibility of the host-cells, (d) long-term maintenance of the host-parasite cell cultures and (e) 

quantitative/qualitative monitoring of intracellular growth of the parasites. Recent advancements 

in vitro cell culture methods, availability of a variety of primary and culture-derived host cells, 

high-throughput sensitive/quantitative cell-imaging technologies and development of transgenic 

parasite cells with stable constitutive expression of reporter genes have addressed these challenges.     

 

1.3.3.1. THE HOST CELLS 

Macrophages are the primary host target cells during the leishmaniasis disease condition 

in mammalian hosts. Assay for intracellular amastigotes requires host macrophages cells, which 

can be infected with the leishmania cells and development growth and proliferation of intracellular 

amastigotes (Handman, 1999). Primary macrophages cells can be obtained from various sources 

like peritoneal exudate cells (PEC), peripheral blood monocyte cells (PBMC), and bone marrow-

derived macrophages (BMM)(Alexander et al., 1999; Maia et al., 2007). Mice are injected with 
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3.0 ml of 3% thioglycollate medium intraperitoneally to obtain PECs. After three days of injecting 

thioglycollate medium, the peritoneal exudates cells were harvested with 5ml of ice-cold 

phosphate buffer saline (PBS). PBMC are obtained by Ficoll-Hypaque fractionation of the 

heparinized blood, washed with Hank’s balanced salt solution (HBSS-Sigma H6136) and re-

suspended in warm RPMI-1640 medium. BMM is harvested from both femur and tibia of the 

individual mouse by washing with RPMI (Maia et al., 2007). These differentiated primary 

macrophages collected from various sources such as mice and rats are non-dividing in nature, but 

these cell preparations may not have homogeneous cell populations (Croft et al., 2006a). There are 

several human macrophage cells lines are available namely, THP1 (human monocytic leukemia 

cell line) (Sodji et al., 2014), U937 (pro-monocytic, human myeloid leukemia cell line)(Abdullah 

et al., 1999) and HL-60 (acute promyelocytic leukemia cell line)(Chen et al., 2009). There are 

several mice macrophage cell lines are available namely, J774 (Alexander et al., 1999) and RAW 

264.7 cells (Kolodziej and Kiderlen, 2005). The cultured cells lines have a homogenous population 

of macrophages cells.  However, the assays, which use dividing host cells, must ensure that the 

confounding effects of drug activity on both parasite and host cells number are considered. Out of 

different monocyte cell lines, differentiated THP1 cells forms a non-dividing monolayer, like 

primary cells and have complete characteristics of macrophage cells and offer an attractive 

alternative to primary isolated macrophages (Croft et al., 2006a; Jain et al., 2012).  

 

1.3.3.2. THE PARASITE CELLS FOR INFECTION OF THE HOST CELLS 

  There are more than 30 species for the genus leishmania. However, for screening purpose 

L. donovani or L. infant used for visceral leishmaniasis and L. major, L. tropica, L. mexicana, L. 

brazilensis are used for cutaneous leishmaniasis (CL) drug screening (Gupta and Nishi, 2011).  
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Particularly for visceral leishmaniasis, L. infantum parasite has been used for promastigote 

screening as well as intracellular amastigote screening using macrophage cell line and other 

primary macrophages cells (Abamor, 2017; Maia et al., 2007). Several in vivo studies have been 

done using L. infantum in mice (Cajueiro et al., 2017), golden hamster host (de Almeida et al., 

2017; Rouault et al., 2017) and dogs (Albuquerque et al., 2017). Similarly, L. donovani parasite 

has been used for promastigote screening as well as intracellular amastigote screening using 

macrophage cell lines and other primary macrophages cells (Abdullah et al., 1999; Manda et al., 

2014). Several in vivo studies have been done using L. donovani in mice (Amit et al., 2017), golden 

hamster host (Rouault et al., 2017) and dogs (Jambulingam et al., 2017). 

 Metacyclic promastigotes (Figure 1.3) are the infective stage of the parasite. Parasite 

acquires the metacyclic stage at the stationary phase of in vitro culture. Metacyclic promastigotes 

are highly mobile, cylindrical and are highly infective to macrophages cells (Jain et al., 2012).  
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Figure 1.3: Procyclic and metacyclic forms of Leishmania donovani promastigotes. Image 

collected in phase contrast microscopy. (A) Procyclic promastigotes are short and ellipsoid with 

short flagellum and are only weakly motile (B) Metacyclic promastigotes are long cylindrical 

forms with a long flagellum, which are highly motile.  
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1.4. METHODS FOR INTRACELLULAR AMASTIGOTES GROWTH ANALYSIS 

 Intracellular amastigotes assays are complex assays that require both host cells 

(macrophages cells) and leishmania parasites cells. Several kinds of macrophages can be selected 

as host cells for screening purposes (Section 1.2.3.1.). Macrophages cells seeded in plates and 

incubated overnight at 37oC 5%CO2 incubator. Some monocytic cell lines (THP1cells) require 

Phorbol Myristate Acetate (PMA) treatment to differentiate them into full macrophages cells (Jain 

et al., 2016a; Jain et al., 2012). Once the macrophages cells adhere to the plate surface, metacyclic 

leishmania promastigotes parasites are allowed to infect these macrophages cells. Different 

macrophages cells have specific infectivity for different leishmania parasites. There is a need for 

rigorous standardization of ratio of macrophage to parasite ratio (multiplicity of infection) to get 

an optimum infectivity(Jain et al., 2012). The infected macrophages cells are treated with test 

compounds for 48 h to 96 h. After test compounds treatment the growth of intracellular amastigotes 

is measured with one of the following methods. 

 

1.4.1. MICROSCOPIC METHOD 

 This approach involves infection of the host macrophage cells with leishmania 

promastigotes or amastigotes. The infected macrophage cells are stained with nucleic acid stains 

(e.g., Giemsa, SYBR Green I). The infected macrophages are treated with the standard drugs and 

the test compounds. The anti-leishmanial activity of the test drugs/compounds is measured either 

by comparing the ratio of some amastigote nuclei to macrophages cell nuclei or by comparing 

percentages of infected cells (Figure 1.4). Classical microscopic evaluation based on manual 

direct cell and parasite counting is labor intensive. The absence of automation limits the utility of 

this assay. The classical microscopic methods have been modified to digital image-analysis 
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methods. In these methods, the images of nucleic acid stained infected macrophage cells are 

captured with a microscope and the counting of amastigote nuclei and macrophages cell nuclei 

done with the help of ImageJ software (Gupta and Nishi, 2011; Neal and Croft, 1984). 
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Figure 1.4:  Infection of macrophage cells with L. donovani and their analysis with fluorescent 

microscopy. A- Uninfected differentiated THP1 cell; B- L. donovani amastigote infected THP1 

cell; C-digital differential counting of amastigotes and THP1 cells with the help of ImageJ 

software; D to F- L. donovani amastigotes infected THP1 cells (big green nuclei with gray cell 

membrane). Images A to C are stained with SYBR Green I and image collected in Fluorescein 

isothiocyanate (FITC) filter of a fluorescent microscope. Image D is stained with SYBR Green I 

and image collected in differential interference contrast (DIC) with FITC filter of a fluorescent 

microscope. Image E (Imani et al., 2014) and F (https://www.cdc.gov/leishmaniasis/index.html) 

are stained with Giemsa and image collected in the light microscope. (mN- Macrophage nucleus; 

kDNA-Kinetoplast DNA; pN-Parasite nucleus).  
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1.4.2. IMAGE-BASED MICROSCOPIC HIGH CONTENT SCREENING 

Microscopic imaging-based technologies represent powerful tools for the primary and 

secondary screening of drug compounds, as these methodologies have high throughput screening 

capability and also offer important information related to the infectious pathogen and the target 

host cell and organ. Therefore, the imaging-based high content screening methodologies have great 

potential for elaborating a more biology-driven environment for compound discovery in vitro as 

well as in vivo studies. A high content analysis for wild-type of L. donovani has been developed 

using Draq5 nuclear staining. This method involves rigorous analysis using Image Mining (IM) 

software and computing the Voronoi diagram (Siqueira-Neto et al., 2012). Another high content 

method was developed for L. donovani using Hoechst staining using intravital microscopy imaging 

(IVM) technique through confocal microscopy (Forestier et al., 2015). 

 

1.4.3. FLOW CYTOMETRIC ASSAYS 

The fluorescent dyes and monoclonal antibodies have also been employed for analysis of 

the leishmania infected macrophages by flow cytometry. BCECF-Am (29,79bis-(2-carboxyethyl)-

5-(and-6)carboxyfluorescein, acetoxymethyl ester), SYTO 17, PKH2-GL (PKH2 Green 

Fluorescent General cell linker), propidium iodide, and acridine orange have tested for their 

capacity to monitor leishmania infection in a U-937 host cell model (Abdullah et al., 1999). This 

method could not be used to monitor infection for longer periods. The incubation of the infected 

macrophage cells with the test compounds/drugs ranges from two to four days, which makes this 

technique imperfect for the intracellular screening purposes (Sereno et al., 2007). Several 

Leishmania-specific monoclonal antibodies have been used with analysis of infected-macrophages 

by flow-cytometry. Specific monoclonal antibody against the leishmania lipophosphoglycan 
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(LPG) has been used for flow-cytometry based analysis (Di Giorgio et al., 2000; Guinet et al., 

2000). These antibody-based assays allowed the accurate assessment of the activity of standard 

and test compounds against intracellular amastigote. However, the antibody-based 

immunostaining methods are time-consuming and are not cost effective for large screening. The 

antibody-immunostaining-based methods may have limited use for large-scale high-throughput 

screening programs. This approach may not differentiate between live and dead intracellular 

amastigotes (Di Giorgio et al., 2000; Sereno et al., 2007). The compounds with cytostatic actions 

against leishmania amastigotes may not show activity in these assays.  

 

1.4.4. TRANSGENIC LEISHMANIA CELLS WITH REPORTER GENES 

The externally inserted genes, which are expressed into the readily measurable phenotypic 

proteins that can be differentiated easily from the background of endogenous proteins are termed 

as reporter-genes. Introduction of such exogenous genes facilitate the measuring of the growth of 

the transgenic cells or microbes population and may be applied for the screening of antimicrobial 

agents. The transgenic cells carrying a reporter gene can be developed by either an episomal 

transfection of recombinant plasmids with the copy of reporter gene or after integration of reporter 

gene on a defined locus of the genome, generally the rDNA locus, of the target cells. There are 

several leishmania transgenic parasites were developed with different reporter genes including 

fluorescent protein reporter genes (green fluorescent protein (GFP), mCherry protein, Infra-red 

fluorescent) and catalytically enzymes reporter genes (β–galactosidase, β–lactamase, 

Luciferase)(Gupta and Nishi, 2011; Sereno et al., 2007). Fluorescent protein reporter genes have 

an advantage over catalytic reporter genes, as transgenic cells with fluorescent reporter gene do 

not require cofactors or substrates since the protein is intrinsically fluorescent. 



 
22 

 

1.4.4.1. GREEN FLUORESCENT PROTEIN (GFP) 

GFP is a fluorescent protein, which originates from the Aequorea victoria (jellyfish). GFP 

based assays offer simplicity, time-dependent growth monitoring with low cost compared to 

classical non-reporter gene assays and enhanced biosafety in vivo animal models. Transgenic 

Leishmania spp cells with GFP have been developed by both episomal transfection or by stable 

transfection and applied for drug screening studies (Dube et al., 2009; Singh et al., 2009). The 

transgenic GFP leishmania cells do not express GFP fluorescence protein, which may not be 

sufficient for measurement with a spectrofluorometric reader. The GFP transgenic leishmania cells 

may not be suitable for application for the assays with fluorescence measurements.   A multimeric 

form of GFP was engineered and expressed in Leishmania promastigotes to increase the intensity 

of the fluorescence in transgenic parasites (Chan et al., 2003).  Stably transfected leishmania 

parasite was developed in which the GFP reporter gene was integrated downstream of the 18 S 

rRNA gene promoters within the genome of the parasite (Singh et al., 2009). 

 

1.4.4.2. RED FLUORESCENT PROTEIN (RFP) 

The GFP produces significant fluorescence and is extremely stable, but the excitation 

wavelength of the light required for GFP is close to the ultraviolet range. Exposure of leishmania 

cells to this light may damage the cells and affect their viability. In contrast, Red-fluorescence 

labeled parasites have excitation maxima in the safe region. Transgenic L. major Red Fluorescent 

Protein 1 (RFP)-expressing strain found helpful in identification of the site of sandfly bites has 

been identified in vivo in a mouse model (Peters et al., 2008; Ribeiro-Gomes et al., 2012). 

Transgenic L. infantum cells with expression of  RFP have been employed to report the recruitment 



 
23 

of neutrophils and their role in non-ulcerative forms of leishmaniasis (Thalhofer et al., 2011). 

Recently, a transgenic leishmania parasite with an expression of mCherry (A modified form of 

RFP) has been developed and implemented for in vitro and in vivo screening (Calvo-Alvarez et 

al., 2012). A transgenic cell line of L. amazonensis was generated by chromosomal integration of 

the fluorescent DSRED2 molecule. A High Content Analysis assay was developed based on the 

use of homogeneous populations of primary mouse macrophages hosting transgenic fluorescent 

DSRED2 L. amazonensis amastigotes. This multi-parametric assay helped in monitors the 

parasitic load of fluorescent DSRED2 amastigotes-hosting macrophage cultures (Aulner et al., 

2013).  

 

1.4.4.3. INFRARED FLUORESCENT PROTEIN 

The fluorescence with an emission spectrum in the visible region has low tissue penetration 

(Shcherbo et al., 2007). A new fluorescent protein with the emission spectrum of near infrared 

region has been discovered from the bacteriophytochrome of Deinococcus radiodurans (Chernov 

et al., 2017; Shcherbakova et al., 2015). The infrared fluorescent proteins (iRFPs) have advantages 

over the fluorescent reporter proteins with better tissue penetration capacity of the light emitted 

from the iRFPs. The emission spectrum of this protein is in the near infrared region, and the emitted 

fluorescence is free of any background interference derived from organs or tissues (Shu et al., 

2009). The fluorescent iRFPs have been successfully applied to image the in vivo infection of the 

adenovirus serotype 5 in mouse liver (Calvo-Alvarez et al., 2015). More recently, a new infrared 

fluorescent protein (iRFP) from the photosynthetic bacterium Rhodopseudomonas palustris has 

been engineered with more penetration capacity (Ref). Recently, (Calvo-Alvarez et al., 2015) Have 

reported generation of two strains of L. infantum strains, which stably overexpress the IFP 1.4 and 
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iRFP reporter genes. The bio-photonic properties of the transgenic L. infantum cells were 

compared for promastigote and amastigote stages. The constructs for transfection were engineered 

with the regulatory sequences of genes (A2, AMASTIN, and HSP70 II), which are differentially 

expressed in the leishmania amastigotes, to improve the fluorescence emission of the selected 

reporter in intracellular amastigotes. The transgenic leishmania strain, which carries the iRFP gene 

under the control of the L. infantum HSP70 II downstream region (DSR), showed selective and 

high expression of  iRFP in leishmania amastigotes. Application of this strain for phenotypic 

screening using ex vivo splenocytes from infrared-infected BALB/c mice was also reported 

(Calvo-Alvarez et al., 2015).   

 

1.4.4.4. β-GALACTOSIDASE 

The β-galactosidase is an enzyme that hydrolyzes the colorless substrate o-nitrophenyl-β-

D-galactopyranoside (ONPG) to o-nitrophenol (ONP), which is yellow. Transgenic Leishmania 

promastigote expressing β-galactosidase were developed and utilized in drug screening procedures 

(Okuno et al., 2003). Β-Galactosidase presents the advantage of colorimetric detection. However, 

some common drawbacks including its large size (the monomer is 116 kDa), expensive substrate 

and the endogenous expression of β-galactosidase by some mammalian cell types including 

macrophages, hinder the use of these transgenic parasites for general drug screening purpose, 

particularly for intracellular amastigote screening and in vivo screening(Buckner and Wilson, 

2005; Campbell, 2004). 

 

1.4.4.5. β–LACTAMASE 

The β–lactamase is an enzyme that hydrolyzes the colorless substrate nitrocefin to a 
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chromogenic cephalosporin, a colored product. This product can be colorimetrically measured at 

490 nm. The β–lactamase is a smaller sized protein than β–galactosidase. Two transgenic 

leishmania parasites cells lines, L.  major and L. amazonensis, with the β-lactamase reporter gene, 

were developed (Campbell, 2004). The transgenic leishmania cells were developed through stable 

transfection, in which β-lactamase gene was integrated into ribosomal RNA (rRNA) region of the 

genome, thereby allowing for high-level of stable expression of the enzyme. The activity of some 

standard antileishmanial drugs was evaluated on the transgenic intracellular amastigotes, which 

demonstrate that this method could be used for phenotypic drug screening procedures (Zlokarnik 

et al., 1998).  

 

1.4.4.6. LUCIFERASE 

Luciferase is an enzyme found in fireflies that catalyze the conversion of luciferin to 

oxyluciferin, which produces luminescence. The luminescence is produced because the reaction 

product oxyluciferin remains in an electronically excited state. The reaction releases a photon of 

light as oxyluciferin goes back to the ground state. Various transgenic leishmania parasites (L. 

donovani, L. infantum, L. major) cell lines expressing luciferase have been developed (Ashutosh 

et al., 2005; Roy et al., 2000). The high sensitivity of the assay and the absence of background 

activity in the host cell are important advantages of the luciferase assays. Recently, a transgenic 

cell line of L. amazonensis expressing firefly luciferase has been used to monitor leishmania 

infection in real time, through imaging analysis. The advantage of this methodology relies on the 

capacity to perform experiments on live cells, making the analysis faster and more accurate since 

the viability of both the parasites within the host cells is monitored (Sereno et al., 2007). 
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1.4.4.7. TRANSGENIC LEISHMANIA CELL MODELS: ADVANTAGES AND 

DISADVANTAGES FOR PHENOTYPIC SCREENING 

The transgenic leishmania cells lines with stable and constitutive expression of reporter 

proteins have provided valuable tools for phenotypic screening and new antileishmania drug 

discovery.  These models have been extensively applied for large-scale high-throughput, and high- 

content screenings (Aulner et al., 2013; De Rycker et al., 2013) The intracellular transgenic 

parasite cells can be monitored by digital image analysis, by flow-cytometry or 

chemiluminescence reader, based on the nature of the reporter gene.      

The construction of transgenic leishmania models requires the application of drug-

resistance markers for selection of transgenic cells. The transgenic cells were grown with a contact 

pressure of the selection drug for maintenance of episomal expression of the reporter genes. If the 

reporter gene is expressed, episomally the relative expression of the reporter protein may depend 

on the number of copies of the transfected plasmid, rather than on the activity of the drug (Buckner 

and Wilson, 2005). In case of stable transfections and genetic integration, the use of selection-drug 

may not be necessary once the integration of reporter gene into the leishmania genome and stable 

expression of the reporter protein are confirmed.  The assays based on transgenic parasites with 

luciferase reporter gene required substrate and cell lysis buffer, which makes the assays expensive 

for large-scale screening (Calvo-Alvarez et al., 2015; Roy et al., 2000).  Growth analysis methods 

of intracellular amastigotes with their advantages and disadvantages are summarized in Table 1.2. 
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Table 1.2. Macrophage internalized leishmania amastigotes models for phenotypic screening: 

the approaches for evaluation of intracellular growth and proliferation of leishmania amastigotes   

Type of 
Assay 

Method Advantages Disadvantages 

Classical 
microscopic 

evaluation 

Nuclear staining of 
infected macrophage 
cells 

Gold Standard 

Reliable 

Labor intensive 
Time consuming 
Low Throughput 
Human Bias 

Advanced 
Digital-Image 
analysis based 
assays 

Analysis of digital 
images of the 
intracellular leishmania 
amastigotes 
[fluorescent probe 
staining/Immuno-
staining/Transgenic 
leishmania cells] 

Can be automated 
Multi-parametric 
High throughput 
Screening 
High-content 
analysis 

Costly instrumentation 
Limited facility 

Flow 
cytometric 
assays 

Antibodies-based 
analysis 

Specific, Less 
background signal 

Sensitivity  issues 

Transgenic 
leishmania- 
Reporter gene 
assays 

Transfections of reporter 
gene 

Live imaging 

Live growth 
analysis 

Require drug selection 
for episomal 
expression. 

Relative expression of 
the reporter gene may 
depend on the copy 
number of the 
transfected plasmid. 

Altered physiological 
properties of the 
parasite 
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1.5. IN VIVO ASSAYS FOR ANTILEISHMANIAL SCREENING 

Animals with the similar pathological responses as observed in humans after infection of 

leishmania parasite could be selected for in vivo anti-leishmanial studies. In visceral leishmania 

parasites reside in deep organs like spleen or liver. So in animal models for visceral leishmaniasis, 

parasites must be able to invade in macrophages cells, transform there to amastigotes and must be 

able to reside in deep organs like spleen and liver. There are several animal models available for 

visceral leishmaniasis to research various aspects including host-parasite interactions, 

pathogenesis, biochemical changes, prophylaxis, and maintenance of parasites and evaluation of 

antileishmanial activity of drug leads. These in vivo experiments include the intravenous parasite 

inoculation, compounds dosing, preparation of impression smears of weighed livers, staining of 

slides and analyzing the parasitemia and other host-parasite interactions  (Garg and Dube, 2006; 

Gupta and Nishi, 2011).  

Although none of the animal models accurately reproduce what happens in humans during 

visceral leishmaniasis, there are several animal models developed with their advantages and 

disadvantages. Several animals like BALB/c mice, Syrian golden hamster, dogs, and monkeys 

(squirrel, vervet, and Indian languor) were developed as an experimental host for VL. Besides 

evaluating drug activity, a suitable animal host for leishmania parasite is very important for other 

studies including host-parasite interactions, immunological changes, pathogenesis, biochemical 

changes, and prophylaxis. Animal models help to evaluate the antileishmanial activity with other 

significant information like bioavailability, absorption, distribution, metabolism, excretion, and 

maximum tolerated dose that help in determining the route, treatment dose, duration of dosing, 

therapeutic window and the toxicity of new leishmanicidal lead. Ideally, a drug should have an 

invasive route of administration (administered orally), should be effective in a small dose with a 
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shorter course of action (around a week) and should not have any toxicity, even at higher doses.   

 

1.5.1. RODENT MODELS 

Rodents are the preferred choice for primary in vivo experiments, and several rodent 

models were adopted for antileishmanial drug screening. Rodents are comparatively smaller in 

size. So they are cheaper, require less maintenance and area, require less quantity of testing 

compound and are easy to handle during experiments. Common rodent models for visceral 

leishmaniasis include BALB/c mice and Syrian golden hamsters (Oliveira, 2004). These rodent 

models of leishmaniasis have been extensively used to evaluate the pharmacological effects of 

anti-leishmanial efficacy, toxicity profiling, host-pathogen interaction and pathogenesis of the 

disease. These are available as inbred strains that in help in generation reproducible results with 

less variation. 

Mice are susceptible to different species of Leishmania parasite. Inbred strains of mice 

have been used widely for both L. donovani susceptible, resistant and intermediate strains (Barbosa 

Junior et al., 1987). The infection of Leishmania parasite in different mouse strain needs to be 

characterized to ensure that the test compounds are tested for their effect appropriately. Athymic 

(with Foxn1nu mutation) and SCID (with Prkdcscid mutation) mice provide a model for treatment 

of VL in immunosuppressed cases (Croft et al., 2006a).  

 

1.5.1.1. MICE MODEL 

The BALB/c mouse is a most common strain with reproducible levels of infection 

(Parasitemia) when the amastigote or metacyclic promastigote inoculum is administered 

intravenously.  Initially, all BALB/c mice divided into groups with five mice in each group and 
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infected intravenously with L. donovani parasite. The test compounds are prepared in different 

doses and dosed to mice orally, intraperitoneally, or intravenously at day 7 of post-infection for 

five consecutive days (day 7 to day 11). All infected mice are sacrificed at day 14 of post-infection. 

Spleen and liver were collected from all mice and weighed. During the whole experiment, mice of 

all group are observed for change in weight and behavior.  Impression smears are collected on 

slides from spleen and liver of each mice. Slides with smears are fixed with methanol and stained 

with Giemsa. The total number of leishmania amastigotes are counted in per 500 liver cells with 

the help of a microscope.  The parasitemia of each treated mice liver smears is compared with liver 

smears of untreated mice (Gupta and Nishi, 2011).  

 

1.5.1.2. RAT MODEL 

Mastomys albicandatus (the African white-tailed rat) also investigated for in vivo 

maintenance (Mikhail and Mansour, 1973)and long-term experiments with L. donovani and L. 

Brazilians. Sigmodon hispidus (The cotton rat) is also a good susceptible animal host for L. 

donovani (De Lima et al., 2002). The Leishmania infection sustained in this host for 3-4 months 

after the appearance of initial clinical symptoms. Mastomys natalensis (Natal multi-mammate Rat) 

was also used to develop the experimental model for visceral leishmaniasis using L. donovani as 

a parasite (Nolan and Farrell, 1987). The experimental procedures for rat animal models are similar 

to mice models. Here the rat is able to sustain the parasite for longer duration then mice and is a 

better model for long-term studies (Gupta and Nishi, 2011). 

 

1.5.1.3. HAMSTER MODEL 

Mesocricetus auratus (The Syrian golden hamster) established a good model for VL and 
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which provides a synchronous infection in the liver and spleen that can develop into a chronic non-

curable disease that is similar to human VL (Farrell, 1976; Gifawesen and Farrell, 1989). It 

reproduces the clinical and pathological features of human disease such as a progressive increase 

in visceral parasite burden, cachexia, massive splenomegaly, hyper-gammaglobulinemia, and 

ultimately death (Gifawesen and Farrell, 1989).  

Most VL studies involve intravenous, intracardiac or intraperitoneal inoculations of 

rodents (Melby et al., 1998) with 106 to 108 parasites; however, VL has also been induced via 

intradermal inoculation, a route considered much closer to natural infection (Osorio et al., 2012). 

More recently, a new hamster model of progressive leishmaniasis was developed by natural 

transmission of the parasites via bites by vector sand flies (Aslan et al., 2013). Parasitemia is 

reported in tissues by monitoring parasites in spleen, liver and bone marrow by limiting dilution 

cultures or by imprinting smears with splenic biopsy (Melby et al., 2001). 

Several methods have been developed using hamster as a model for VL. Classically, the 

pre-treatment parasitic burden was assessed by a splenic biopsy that helps to carry the similar 

parasitic load by the same experimental animal. This method comes with the disadvantages of its 

inability to assess the delayed action of drugs. Later this technique was modified for repeated 

spleen biopsies on the same animal at different intervals of day 7, 14, and 28, thus making it 

suitable for studying the long-acting and delayed action drug in the model(Gupta and Nishi, 2011). 

The advantage is that biopsy is possible to monitor pre- and post-treatment infection status and all 

antileishmanials are active against liver as well as spleen parasites. Golden hamster is the best 

experimental model to study VL, because it reproduces the clinical and pathogenesis of the disease, 

as seen in humans and dogs (Oliveira, 2004).  

Recently level of infection was accessed by real-time imaging of golden hamster model 
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with the help of virulent transgenic L. donovani that stably express a reporter luciferase and 

compared with the real-time RT-PCR to quantify both Leishmania and host transcripts(Rouault et 

al., 2017). 

 

1.5.1.4. REAL-TIME IMAGING OF A MURINE LEISHMANIASIS MODEL 

Episomally transfected Leishmania parasite with enhanced green fluorescent protein, and 

stably transfected infrared fluorescent Leishmania parasite strains are enabling in vivo real-time 

fluorescence imaging to analyze the time-dependent progression of Leishmania infection in 

parasitized tissues. Level of fluorescence correlated with the number of Leishmania parasites in 

the tissue and that demonstrated the real-time efficacy of a test compound or vaccine. There are 

several advantages of this approach over the classical microscopic based approach. Here the 

change in the level of infection could be analyzed in real time manner without scarifying the 

animal. These include improvements in sensitivity and the ability to acquire real-time data on 

progression and spread of the infection. 

 

1.5.2. DOG MODEL 

Wild canines and dogs are the main reservoirs of zoonotic visceral leishmaniasis caused 

by L. infantum in the Mediterranean area, Middle-East, Asian countries and Latin America. The 

role of dogs as the main reservoir of visceral leishmaniasis has led to an increased interest in 

developing dogs and canine as an animal model for VL(Alvar et al., 2004). Canine visceral 

leishmaniasis is a multi-systemic disease with variable clinical signs.   Dogs have been developed 

as an experimental model for Leishmania infections in the 1990s using L. donovani, L. infantum 

or L. chagasi. Dogs are important laboratories models because they reproduce the natural infection 
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similar to human infection(Ciaramella et al., 1997). German shepherd dogs are reported to give 

better results than beagles, but some workers claim highly successful infection rate with mixed 

breeds. The level of infection is accessed by spleen or liver biopsies (Baneth et al., 2008). 

 

1.5.3. NON-HUMAN PRIMATE (NHP) MODEL  

There are several observations in rodent models those are not relevant to human hosts due 

to several physiological and anatomical differences. However, non-human primates have 

similarities to humans in anatomy, immunology, and physiology. So they are valuable primate 

models for biomedical research. They are expensive laboratory animals that are difficult to obtain 

and to handle. Furthermore, the institutional animal committee also hinder the use of primates 

because of ethical reasons in biomedical research. So, only a few laboratories worldwide are 

working on primate model, especially for a neglected disease like visceral leishmaniasis. 

Availability of a non-human primate model for visceral leishmaniasis would facilitate the study of 

different aspects of this disease and would accelerate the development of vaccines and testing of 

new drug candidates. 

 Monkeys are normally used for the final preclinical studies for safety and efficacy of any 

new drug candidate or newly developed vaccines (Gupta and Nishi, 2011; Loria-Cervera and 

Andrade-Narvaez, 2014). Anti-leishmanial screening has been performed in owl and squirrel 

monkeys. Initially, the effort has been made to develop an infection in New and Old World 

monkeys and demonstrated that Aotus trivirgatus (owl monkeys) and Saimiri sciureus (squirrel 

monkey) developed an acute and fulminated, but short-lived, infection (Chapman and Hanson, 

1981; Chapman et al., 1983). Attempts were also made to establish VL in Presbytis entellus (Gray 

langur) showed that this species was highly susceptible to single intravenous inoculation of 
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hamster-spleen-derived L. donovani amastigotes, which invariably produced consistent and 

progressive acute fatal infection, leading to death between 110 to 150 days post-infection. The 

infected animals presented all the immunopathological clinic features as observed in human VL. 

The Indian languor has also been used for preclinical evaluation of potential antileishmanial drugs 

and vaccine (Gupta and Nishi, 2011; Loria-Cervera and Andrade-Narvaez, 2014). 

 

1.6. MALARIA 

Malaria is another deadly parasitic disease and major global health challenge. An estimated 

3.4 billion people continue to be at risk of malaria. According to a recent estimate by the World 

Health Organization (WHO), there had been 212 million cases of malaria globally in 2016, which 

caused 429 000 deaths (WHO, 2016). Malaria is caused by the protozoan parasites of  Plasmodium 

genus. P. falciparum is a fatal species of malaria. Another species, P. vivax has a broad geographic 

distribution as it can grow at low temperature in female Anopheles mosquito vector, can persist at 

higher altitudes and in colder climates (Beck-Johnson et al., 2013). Additionally, P. vivax forms a 

dormant liver stage called hypnozoites, increases its survival, acts as a potential inventory of 

infection, activates months after primary infection when the conditions are optimum and cause 

relapse (Judith Recht, 2014). The first synthetic drug chloroquine (CQ) was discovered in the 

1940s (Goldsmith, 1946). CQ helped in malaria treatment and eradicated throughout the world 

(Hoekenga, 1952). However, the therapeutic efficacy of CQ for malaria parasite was diminished 

due to the occurrence of CQ resistance (Da Silva and Lopes, 1964; Montgomery, 1964; 

Sandosham, 1963).  Due to the lack of potent alternative drug for treatment of CQ-resistant malaria 

parasite, the number of deaths increased to 2–3-fold in the 1980s (Trape, 2001).  Since then, several 

amino quinolones derivatives were developed, but the parasites developed the similar resistance 
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against most of the amino quinolones derivative. Several alternative drugs like sulfadoxine, 

pyrimethamine (SP) (Simpson et al., 1972) and artemisinin (Bruce-Chwatt, 1982) emerged later 

as the first-line of treatment for malaria. However, several cases of parasite resistance were 

reported for these new drugs also (Hurwitz et al., 1981; Meshnick, 1998). These conditions of 

emerging resistance alarm the further possibility of an increase in malaria fatalities (Table 1.3). 

There is an urgent need for better alternative treatment for malaria and necessitate the discovery 

of new drugs and drug leads.  
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Table 1.3. Available treatments for malaria. Adopted from (Antony and Parija, 2016) 

 

 

 

 

 

 

 

 

 

 

 

Chemical class Name of drug Mode of Action Primary  
Therapeutic Use 

Status of 
resistance 

4-
Aminoquinolines 

Chloroquine, 
Amodiaquine, 

Accumulation in 
digestive vacuole 
of parasite 

Treatment of Non 
severe 
falciparum 

Yes 

Amino alcohols Mefloquine, 
Halofantrine, 
Lumefantrine 

Accumulation in 
digestive vacuole 
of parasite 

Multidrug 
resistance 
falciparum 

Yes 

8-
Aminoquinolines 

Primaquine Not precisely 
known 

Infection of vivax 
and ovale. 
Prevent relapse. 
Gametocytocidal 
agent 

Yes 

Naphthoquinone Atovaquone Target 
cytochrome bc1 
complex 

 
Yes 

Artemisinin and 
derivative 

Artesunate 
Artemether 
Artemisinin 

 
Chloroquine 
resistance 
falciparum 

Yes 
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1.6.1. LIFE CYCLE OF MALARIA PARASITE 

When the female Anopheles mosquito bites a human host, it injects sporozoites into the 

bloodstream. These sporozoites travel through the bloodstream to the liver.  In all plasmodium 

species these sporozoites are rapidly taken up by the liver cells, and there they get converted to 

schizont and eventually to merozoites. Merozoites attack to healthy red blood cells where the 

asexual reproduction occurs. In red blood cells (RBCs), merozoites reproduce and eventually 

rupture the cells and produce more merozoites which in turn going to infect other RBCs leading 

to massive destruction of RBCs. A small percentage of merozoites differentiate into gametocytes, 

which are taken up by the mosquito during another subsequent blood feeding. In mosquito, these 

gametocytes convert to sporozoites (Figure 1.5). 
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Figure 1.5: The life cycle of the malaria parasite. When the female Anopheles mosquito bites a 

human host, it injects sporozoites into the bloodstream. These sporozoites travel in the bloodstream 

to the liver.  In all plasmodium species these sporozoites are rapidly taken up by the liver cells, 

and there they get converted to schizont and eventually to merozoites. Merozoites attack to healthy 

red blood cells where the asexual reproduction occurs. In RBCs, merozoites reproduce and 

eventually rupture the cells and producing more merozoites which in turn going to infect other 

RBCs leading to massive destruction of RBCs. A small percentage of merozoites differentiate into 

gametocytes, which are taken up by the mosquito during another subsequent blood feeding. In 

mosquito, these gametocytes convert to sporozoites. Figure collected from Medicine for Malaria 

Venture (MMV) (Delves et al., 2012). 
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There are many challenges in malaria control, particularly diagnosis and treatment of 

malaria. The majority of malaria cases worldwide rely on clinical diagnosis to define the type of 

treatment (Landier et al., 2016). Diagnosis of malaria is based on the confirmation of malaria 

parasites in RBCs of patients. New antimalarial drug discovery approaches rely on in vitro 

screening of compound libraries against malaria parasite culture and further activity assessment of 

lead compounds in vivo animal models. In vitro and in vivo antimalarial screening methods are 

based on malaria parasitemia analysis which is the ratio of infected RBCs to total RBCs. 

 

1.6.2. METHODS FOR INTRAERYTHROCYTIC MALARIA PARASITE GROWTH 

ANALYSIS 

 

1.6.2.1. MICROSCOPIC PARASITEMIA ANALYSIS 

The microscopic parasitemia method with the help of Giemsa stain was developed in 1904 

(Shute and Maryon, 1963). Since that time it remains as the official gold standard for malaria 

diagnosis (Makler et al., 1998). Although microscopy is the time consuming and laborious method, 

most of the clinical laboratories depend on microscopy for confirmation of malaria and species 

identification. Microscopy is the major method for malaria diagnosis in the clinical laboratories as 

well as malaria parasitemia analysis in antimalarial screenings (Makler et al., 1998). An infected 

mice blood smear slide stained with Geimsa is given in Figure 1.6. However, the microscopic 

analysis has some potentials problem in all clinical diagnosis as well as laboratory parasitemia 

analysis. Significant misdiagnosis of false positives (7–36%), false negatives (5–18%), and wrong 

identification (13–15%) have been reported in shortcomings in the diagnosis of malaria in the 

United Kingdom (Milne et al., 1994) and Thailand (Beadle et al., 1994; Fix et al., 1988).  A high 
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frequency of technical errors (e.g., wrong pH in staining solution or a poor quality film) was also 

reported. Therefore, microscopy is an imperfect ‘Gold Standard’ diagnostic methodology (Collier 

and Longmore, 1983; Makler et al., 1998). 
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Figure 1.6: Blood smear slides prepared from P. berghei infected swiss webster albino mice. The 

slide is fixed with methanol and stained with Giemsa. The image has been collected by Nikon 90i 

eclipse light microscope. RBCs identified here as pink cells. The parasite nuclei as well as white 

blood cells (WBCs) nuclei identified as purple colored. 
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1.6.2.2. RADIOACTIVE SUBSTRATE INCORPORATION ASSAY 

The malaria parasitemia analysis method based on incorporation of radioactive substrates, 

such as [3H] isoleucine, [3H] hypoxanthine, and [3H] ethanolamine to measure parasitic growth 

was developed as an alternative to laborious and time-consuming microscopic assays (Desjardins 

et al., 1979).  

These assays are widely used, accurate, and reliable, and this method could be used for 

high throughput screening purposes. However, these assays are very expensive, involve multiple 

processing steps and require special handling and waste disposal procedures. Thus, these 

radioactive assays are functional in only a few labs with radioactive research facilities and not in 

the field of diagnosis. These assays are also not convenient for detection of parasite stage-specific 

effects. Here incorporation of H3 purine from radioactive hypoxanthine could be possible in other 

blood cells like WBC and lymphocyte,  which leads to a higher background. Also,  hypoxanthine 

uptake does not measure parasitemia directly, as its incorporation is dependent on DNA synthesis 

which only occurs in the later stages of the parasite life cycle (Yayon et al., 1983). So radioactive 

incorporation is directly proportional to further growth of the malaria parasite. Also, the DNA 

synthesis, in turn, is dependent on the growth rate of the parasite strain being observed. 

 

1.6.2.3. P. FALCIPARUM LACTATE DEHYDROGENASE (Pf LDH) 

There are some more methods developed for monitoring malaria growth based on the 

enzymatic activity of parasite’s lactate dehydrogenase (pLDH) (Beadle et al., 1994). The lactate 

dehydrogenase enzyme of several Plasmodium species can use 3-acetylpyridine NAD (APAD) as 

a coenzyme in the reaction leading to the formation of pyruvate from lactate (Sherman 1961; 

Kaushal et al. 1993) and the measurement of this parasite lactate dehydrogenase (pLDH) has been 
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presented as an easy and rapid method for the diagnosis of malaria in humans (Makler & Hinrichs 

1993; Makler et al. 1993). Here the malaria parasite interacts with Malstat reagent (0.21% v/v 

Triton -100, 222mM L-(+)-Lactic acid, 54.5mM Tris, 0.166mM 3-acetylpyridine adenine 

dinucleotide (APAD) The spectrophotometric assessment of LDH activity is facilitated by adding 

nitroblue tetrazolium (NBT), phenazine ethosulfate PES to the Malstat reagent. As APADH is 

formed, the NBT is reduced and forms a formazan product that is blue and can be detected visually 

and measured at 650 nm. This metabolic changes can be detected by a plate reader. So assays can 

be applied for high throughput screening. However, there is a low degree of concordance between 

LDH-based assay and standard microscopy-based determinations of parasitemia (Jelinek et al., 

1996; Knobloch and Henk, 1995).  

 

1.6.2.4.  P. FALCIPARUM HISTIDINE-RICH PROTEIN-II (Pf HRP-II) 

The enzyme-linked immunosorbent assay (ELISA)-based methods that use monoclonal 

antibodies to Plasmodium falciparum histidine-rich protein-II (pf HRP-II) have begun to be widely 

used in recent years due to their ease of use. PfHRP-II is found in the parasitophorous vacuole or 

the parasite cytoplasm, and the protein actively facilitates the polymerization of toxic heme, 

resulting from the degradation of host hemoglobin to form a non-toxic hemozoin (Sullivan et al., 

1996). PfHRP-II has multiple repeats of AHHAAD, with AHH and AHHAA and the presence of 

repetitive B-cell epitopes; this enables the detection of the protein by multiple antibodies, 

increasing the sensitivity of methods detecting the protein (Wellems & Howard, 1986; Panton et 

al.,1989). PfHRP2-based rapid diagnostic tests (RDTs) are the most widely used of the RDTs and 

have been utilized in low- and high-density malaria zones in both pregnant women and non-

pregnant individuals for the diagnosis of mild and paediatric severe malaria (Mueller et al., 2007; 
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Hopkins et al., 2007, 2008; Houze´ et al., 2009; Laurent et al., 2010; Abba et al., 2011; Hendriksen 

et al., 2011; Kattenberg et al., 2011, 2012b; Kyabayinze et al., 2011; Aguilar et al., 2012). 

This assay has sensitive and specificity. However, PfHRP-II based assay is expensive. The 

PfHRP-II based rapid diagnostic tests are not useful for the prediction of parasite responses to 

treatments because of the persistence of the PfHRP-II antigen in the peripheral blood circulation 

after parasite clearance (Tjitra et al., 2001; Houze´ et al., 2009). 

 

1.6.2.5. SYBR GREEN 1 ASSAY 

SYBR Green I is a nucleic acid stain and has been used to monitor the presence of DNA 

in biochemical matrices. As the RBCs do not have DNA and intraerythrocytic stage of parasite 

development is the primary target of antimalarial drugs, assays based on SYBR green I am helpful 

for high-throughput screening for new antimalarial therapies. In the assay, SYBR green with RBC 

lysis buffer is used to expose the parasite DNA and bind with SYBR green I to generate the 

fluorescence. Here, the fluorescence correlated with the growth of intraerythrocytic malaria 

parasites. These assays could be applied for automation to develop high throughput screening 

systems. However, there assay come with high fluorescent background signals. 

 

1.6.2.6. FLOW CYTOMETRIC ASSAYS 

Several new methods of malaria diagnosis and parasitemia analysis have been developed 

based on flow cytometry. These methods can be applied to automation and high throughput 

parasitemia analysis, but no technique can yet be used for routine clinical diagnosis or automated 

screening. Most of the flow cytometric methods have taken advantage of the absence of DNA in 

uninfected RBCs and presence of parasite DNA in malaria-infected RBCs. This intraerythrocytic 
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malaria parasite could be detected by flow cytometry by staining with nucleic acid-binding 

fluorescent dyes. Different fluorescent dyes, such as Hoechst 33258(van Vianen et al., 1990), 

SYTO-9(Izumiyama et al., 2009), SYTO-61(Fu et al., 2010), Ethidium bromide(Staalsoe et al., 

1999), Propidium iodide(Pattanapanyasat et al., 1997), Acridine orange(Hare, 1986),  4,6-

diamidino-2-phenylindole (Baniecki et al., 2007), YOYO-1 (Campo et al., 2011; Xie et al., 2007), 

SYBR Green I (Izumiyama et al., 2009) recently have been considered for the determination of 

parasitemia in vitro cultures of Plasmodium falciparum by FCM. Some dyes such as YOYO-1(Xie 

et al., 2007), SYTO-16 (Jimenez-Diaz et al., 2009) and SYBR Green I (Somsak et al., 2012)have 

been recently employed for the determination of parasitemia in in vivo blood samples from 

Plasmodium berghei infected mice. The parasitemia analysis directly from human or mice blood 

samples is particularly difficult because blood samples have a mixed population of erythrocytes, 

neutrophils, leukocytes, monocytes, and reticulocytes. Because of this mixed population, all 

fluorescence detection methods for parasitemia have high backgrounds. Mixed cell populations of 

blood samples could be separated in Forwarding Scatter (FSC)/Side Scatter (SSC) dot plot. 

However, still, it is not possible to separate reticulocyte and erythrocyte populations in FSC/SSC 

dot plot(Terstappen and Levin, 1992; Wiczling and Krzyzanski, 2008). Reticulocytes remain a big 

problem in malaria parasitemia analysis in blood samples that come with high background and 

sometimes give a false signal of parasitemia. Reticulocytes have RNA. Thus the effect of 

reticulocytes could be neutralized by treatment of blood samples with RNase. If the fluorescent 

nucleic acid dye is not cell permeant, then permeabilization is required. So most of the methods 

based on flow cytometric analysis of parasitemia in blood samples have steps of cells fixation, 

permeabilization, RNase treatments, nucleic acid dye staining and complex flow cytometric 

analysis (Jimenez-Diaz et al., 2009; Xie et al., 2007). Each step added the chances of error and 
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loss of samples, which in also increases the duration of parasitemia analysis and required a higher 

volume of blood sample. 

 

1.6.2.7. REPORTER GENE ASSAYS 

1.6.2.7.a. GREEN FLUORESCENCE PROTEIN 

Green fluorescent protein (GFP)-expressing P. berghei (NK65 stain and ANKA stain) have 

been produced and detected in the red blood cells, cultured liver cells, and midgut and salivary 

glands of the mosquito(Franke-Fayard et al., 2004; Frischknecht et al., 2004; Sanchez et al., 2004).  

Initially, P. berghei lines were constructed that expresses GFP under control of the regulatory 

sequences of the P. berghei dihydrofolate reductase-thymidylate synthase (pbdhfr-ts) gene (de 

Koning-Ward et al., 2000). However, these P. berghei lines have several disadvantages including 

the relatively low level of expression of GFP and the lack of expression in certain stages or the 

episomal nature of the introduced GFP (de Koning-Ward et al., 1998). The GFP gene is integrated 

into the genome in the c-ribosomal-RNA gene unit (c-rRNA), which is not essential for parasite 

development (van Spaendonk et al., 2001). This stably P. berghei GFP parasite showed similar 

growth characteristics as wild-type P. berghei and the use of this parasite is demonstrated as a 

reference line for visualization, investigation of parasite-host interactions and confirming 

phenotypes of mutant parasites in co-infection studies(Franke-Fayard et al., 2004; Sanchez et al., 

2004). Previous studies using GFP-expressing malaria parasites revealed how malaria parasites 

moved in the skin and invaded blood vessels during their migration to the liver(Amino et al., 2006; 

Jin et al., 2007). However, the fluorescence emitted by GFP was not strong enough to observe 

these parasites from outside of the animal. 
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1.6.2.7.b.  LUCIFERASE  

To overcome the drawback of GFP parasite, researchers have developed transgenic 

parasites that express luciferase; transgenic P. berghei expressing luciferase was initially 

developed(Franke-Fayard et al., 2006; Ploemen et al., 2009), followed by transgenic P. yoelii 

expressing luciferase(Miller et al., 2013; Mwakingwe et al., 2009). Not only the blood stage, but 

also the liver stage in the development of malaria parasites could be observed these transgenic 

malaria parasites, and the liver was confirmed as the first organ that malaria parasites reached, 

entered, and increased in in vivo imaging of animal models.  

Transgenic luciferase P. berghei parasite has been successfully used to study sequestration 

during blood-stage infection in mice. However, the transgenic luciferase P. yoelii is commonly 

used to study the efficacy of agents against liver stages, because its sporozoites infect the 

hepatocytes efficiently and develop large numbers of liver-stage parasites (Tarun et al., 2006). P. 

yoelii has also been used extensively for immunology and vaccine studies because it is thought to 

better mimic in experimental animals the immune response to human malaria (Khan and 

Vanderberg, 1991). After inoculation, P. yoelii sporozoites result in the release of a high number 

of merozoites into the blood. Because of that, the partial therapeutic effects of drugs could not 

accurately measure by analysis of the infected state (Mwakingwe et al., 2009). 

8-week-old mice were inoculated intravenously with 2 X 105 red blood cells infected with 

transgenic luciferase P. yoelii to infect the naive mice. Five mice are included in each infection 

group. Luciferase activity is measured using an intensified charged coupled device video camera 

of the In Vivo Imaging System (IVIS). WT- and luciferase P. yoelii infected animals were 

intravenously injected through the tail with 200µl of D-1uciferin sodium salt (100 mg/kg of body 

weight) dissolved in PBS. Luciferin is allowed to distribute systemically for 3 min. The infected 
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animals are anesthetized with the use of isofluorane. Anesthetized animals were placed in the 

camera chamber of IVIS 100 system, and a bioluminescence signal is acquired for 5 min. 

Bioluminescence measurements produced by the IVIS 100 system are expressed as a pseudocolor 

on a gray background, with red denoting the highest intensity and blue the lowest. A region of 

interest is outlined and analyzed by use of Living Image (with the help of Igor Pro (version 4.02A; 

WaveMetrics) software to quantify luminescence. Images of mice infected by mosquito bites are 

displayed with the minimal signal set at 4000 photons (Franke-Fayard et al., 2006; Ploemen et al., 

2009). 

 

1.7. IN VITRO MODELS FOR MALARIA  

In vitro antimalarial screens for compound activity, which constitute a key component of 

a critical path for an antimalarial drug discovery program, are based on the ability to culture P. 

falciparum in vitro in human erythrocytes. Typically, the parasite was grown erythrocytes with 2 

to 6% hematocrit in RPMI 1640 medium supplemented with 0.23% sodium bicarbonate, 0.006% 

Amikacin, 10% A+ human serum, A+ human erythrocytes (6% hematocrit), and 0.027% 

hypoxanthine in 25-mm2 culture flasks. Culture flasks are kept in an environment of 5% O2, 5% 

CO2, and 90% N2 and at 37°C. The medium is changed after every 48 h. For adaptation of the P. 

falciparum culture growing in the medium with human serum.The medium is changed every 48 h, 

and the parasite was subcultured with fresh RBCs after every 6 to 7 days (Singh et al., 2007).  

Multiple drug-resistant (W2, Indochina, stain) and drug-sensitive (D6, Sierra Leone, stain) 

of P. falciparum isolate from around the world have now been culture-adapted and can be obtained 

from the Malaria Research and Reference Reagent Resource Center. The appropriate dilutions of 

the drugs are prepared in DMSO or RPMI-1640 medium and added to the cultures of P. falciparum 
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(2% hematocrit, 2% parasitemia) set up in clear, flat-bottomed, 96-well plates. The plates are 

placed in the humidified incubator with  90% N2, 5% CO2 and 5% O2 gas mixture and 37oC. The 

cultures plates are incubated at 37°C for 48–120 h (Sahu et al., 2014). Parasitemia of the treated 

infected RBCs can be analyzed by several methods and then compared with untreated infected 

RBCs as a positive control and uninfected RBCs as a negative control. In vitro screening of malaria 

comes with several advantages. These screenings are  precise and efficient for big compounds 

libraries. Thousands of compounds can be screened rapidly in few months. It is easier to studies 

drug combinations effects like synergism or antagonism. In vitro screening come with a better 

assessment of the intrinsic activity of a drug. Intro screenings also with several limitations. Drugs 

acting through active metabolite cannot be studied in in vitro settings.  Pharmacokinetic effects 

cannot be studied in vitro studies. There is also a possibility that the toxic compounds also come 

out as false positives in in vitro screening. Active compounds in in intro screening lack the clinical 

correlation (Kalra, 2006). 

 

1.8. IN VIVO MODELS FOR MALARIA 

Animal models of malaria are important tools for antimalarial drug discovery (Fidock et 

al. 2004). Animal models are integrated systems in which the antimalarial efficacy of drugs is 

assessed in pathophysiological conditions of real disease. There are several factors contributed to 

the efficacy, e.g., absorption, distribution, metabolism and excretion, toxicity and antimalarial 

activity. Both pharmacokinetic and pharmacodynamics of antimalarial drugs may be different in 

animal models and humans because of dissimilarity in anatomy, physiology, and susceptibility to 

the different malaria parasite. However, many pharmacological interactions between drugs and 

parasites are independent of the host involved. So, animal models allow an investigation into the 



 
50 

in vivo pharmacological properties of drugs and their combinations. 

 

1.8.1. RODENT MODEL 

The mouse model is the most often used malaria drug discovery model because of its 

versatility, accessibility, and requirement of low amounts of compound. There are four 

Plasmodium species adapted to grow in mice that includes P.  berghei, P. yoelii, P. chabaudi and 

P. vinckei (Bhattacharjee et al., 2007; Chong et al., 2006; Cosledan et al., 2008; Jain et al., 2004; 

Jimenez-Diaz et al., 2014; Kelly et al., 2009). Out of these four, the P. berghei is the most widely 

used species in antimalarial drug discovery program. The progression of the disease in mice ranges 

between lethal infections to a self-limited disease that depends on the strain of Plasmodium species 

and also on the murine genetic background. The choice of Plasmodium species is based on their 

susceptibility to test the drug in rodent hosts(Jimenez-Diaz et al., 2014). The Plasmodium spp. of 

rodents have biological cycles of about 24 h, which is a major difference from the classical human 

pathogens(Sanni et al., 2002). However, the rodent-adapted parasites species can reproduce the 

full cycle of malaria in mammals (Scheller et al., 1994). Even though, the evaluation of new drugs 

leads is performed with parasites that show significant evolutionary divergence from P. falciparum 

and P. vivax in these models (Prugnolle et al., 2008). The choice of Plasmodium species also 

depends on the genetic similarity at the level of the molecular target. For example, P. yoelii was 

chosen to test 4-pyridones because of the high sequence homology with P. falciparum for the target 

cytochrome bc1, which is a key protein in the mitochondrial respiratory chain (Yeates et al., 2008). 

On the other hand, diamidines have been tested in the P. vinckei model because P. berghei is 

almost insensitive to these drugs (Angulo-Barturen et al., 2008). P.chabaudi and P. vinckei 

generate a high level of parasitemia and produce synchronous infections enabling studies on 
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parasite stage specificity. Also, P.chabaudi and P. vinckei are more sensitive than P. berghei to 

iron chelators and lipid biosynthesis inhibitors (Wengelnik et al., 2002). 

 

1.8.1.1. ANTIMALARIAL EFFICACY TEST 

Two different assays are typically employed to access the efficacy of any test drug. One is 

the Thompson test, and another is Peters’ suppressive 4-day test (Peters and Robinson, 1999). In 

the Thompson test, P. berghei pre-infected mice are treated with a drug for three days and the 

survival time of a group of treated mice is compared to a group of vehicle-treated controls. In the 

Peters’ 4-day test, the administration of test drug starts from day one, just after one to three hours 

after infection with P. berghei infected erythrocytes and the resulting parasitemia is measured on 

the fifth day that is 24 h after the last dose administration and compared to vehicle-treated controls. 

This is the most widely used preliminary test, in which the efficacy of a compound is assessed by 

comparison of blood parasitemia and mouse survival time in treated and untreated mice. On day 

0, mice are injected with the Plasmodium parasite-infected erythrocytes intravenously or 

intraperitoneally into an experimental group (five each). The group of vehicle-treated mice is 

compared with the test drug-treated group. For a positive control of reference antimalarial drug, a 

group of chloroquine also compared with the group of test drug treatment. The drugs are prepared 

at required concentration, as a solution or suspension and administered 2-4 h post infection by 

appropriate routes (Orally, intraperitoneally, and intravenously). On day 1 to 3, the experimental 

groups are treated again (with the same dose and same route) as on day 0. On day 4, 24 h after the 

last dose (i.e., 96 h post-infection), blood smears from all animals are prepared with Giemsa stain. 

Parasitemia is determined microscopically by counting four fields of approximately 100 

erythrocytes per field. For low parasitemia (<1%), up to 4000 erythrocytes have to be counted. 
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The difference between the mean value of the control group (taken as 100%) and those of the 

experimental groups is calculated and expressed as percent reduction or suppression. For slow 

acting drugs, additional smears should be taken on days 5 and 6, to determine parasitemia from 

which the activity is calculated accordingly. Untreated control mice typically die within two weeks 

after infection. For treated mice, the survival-time is recorded and the mean survival time for 

treated group compared with untreated and reference antimalarial drug-treated groups. If no 

parasitemia appears in mice until day 28 of post-infection, they are considered cured.  

 

1.8.1.2. ONSET/RECRUDESCENCE TEST 

In the ‘onset/recrudescence test,' mice are administered with single dose of the test 

compound on day 3 of postinfection, subcutaneously. Control mice receive the suspension vehicle 

alone. Blood smears are prepared at intervals of 12 h, 24h and then daily until day 33, Giemsa 

stained and assessed for parasitemia. Results are expressed regarding the rapidity of onset of 

action, time to onset of recrudescence, increase of parasitemia and duration of survival (in days). 

Compounds are also tested for prophylactic activity by administrating them before infection, 

followed by a daily examination of smears (Kalra, 2006). 

 

1.8.1.3. CAUSAL PROPHYLAXIS AND RESIDUAL ACTIVITY TEST (HILL’S TEST) 

In this model, mice are inoculated with P. yoelii (N67 strain) sporozoites from Anopheles 

stephensi mosquitos. Sporozoites are harvested from mosquitos at 8-11 days after the infected 

blood meal. Whole mosquitoes are grounded with Tyrode’s Ringer solution and centrifuged to 

remove the debris. Each mouse receives approximately 104-105 sporozoites intravenously in a total 

volume of 0.2ml. For a compound to be considered as prophylactic, it must pass through four 
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different phases.(Ager, 1984; Kalra, 2006) 

Phase 1 (Protective effect): This is the basic procedure that involves evaluation of causal 

prophylactic activity of the test drug in mice. Test drug is administered in infected mice 3h after 

the sporozoites inoculation. During the 14 day period, blood smears are taken until 2% parasitemia 

is achieved. If no parasitemia appeared until 14 days, the test drug is considered protective (Kalra, 

2006). 

Phase 2 (Residual activity): Test drug is then tested for residual activity against blood stage 

parasites by administrating a single dose of the test drug 48 h before inoculation of 104 trophozoites 

intravenously. If the time interval to reach 2% parasitemia is similar to that of the control group 

(untreated group), then it is considered that no residual activity has occurred (Kalra, 2006). 

Phase 3 (Reconfirmation of Residual activity): Test drug with the possibility of prolonged 

residual activity is tested by inoculation of sporozoites followed by the administration of drug after 

3 h. After an additional 48 h, 0.2 ml blood is removed from each mouse and injected 

intraperitoneally into a clean (new) mouse. Blood smears from recipient mice are examined for a 

14 day period or until parasite appears. If less than 50% of the recipient mice develop parasitemia, 

then test drugs considered with residual activity. A compound has no residual activity of 75% or 

more recipient mice develop an infection (Kalra, 2006). 

Phase 4: Mice are injected intravenously with 104 trophozoites 48 h after the compound 

administration to determine if the intra-erythrocytic plasmodium parasites are still viable. After an 

additional 3-4 h, 0.2ml of blood collected and injected to clean (new) recipient mice. Blood smears 

are taken and the time interval to reach 2% parasitemia is compared with control mice. If the time 

interval is similar, it reflects that no permanent damage has been done to the parasites and thus no 

residual activity is present (Kalra, 2006). 
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1.8.1.4. SPORONOICIDAL ACTIVITY TESTING 

Here, albino mice are inoculated with P. yoelii nigeriensis N 67 parasite (107 infected red 

blood cells)) on day 0. Female Anopheles stephensi mosquitoes are placed in containers (about 25 

mosquitos per container) and fed with 4% sucrose for the first five days after hatching. They are 

kept at a constant temperature of 24oC and 75% humidity. After five days, mosquitos are starved 

for 24 h. On third-day post infection in mice, mosquitoes which were starved for 24 h are allowed 

to feed on mice. Before mosquitoes are allowed to feed, the presence of mature gametocytes is 

confirmed on blood smear of mice. The mice are then anesthetized with a single dose of 60 mg/kg 

of sodium pentobarbitone i.p. and laid on top of mosquito containers, so that the mosquitos can 

feed on them through the membrane covering of mosquito container for about 30 min. On the 

seventh day after the blood feed, a sample of each batch of mosquitos is removed and dissected. 

Midguts are examined for plasmodium parasites oocysts. The mean count for each batch is 

calculated. It is dissolved in 4% sucrose and fed ad libitum to the insects following the blood meal 

to determine the inhibitory effects of a test drug on oocyst development. Usually, a batch of 10 

surviving mosquitos for each drug concentration and each control is sufficient to provide data from 

which the level of drug activity can be calculated from a comparison of mean oocyst counts in 

treated and control batches (Ager, 1984; Kalra, 2006). 

 

1.8.2. HUMANIZED MOUSE MALARIA MODEL 

Humanized mice are the mice that express human genes and comprise human tissues (Siu 

and Ploss, 2015). Humanized mice models often employ mutations and genetically deficient 

backgrounds which maintain the immunocompromised status of mice and further enable 
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engraftment with human cells and tissues (Kaushansky et al., 2014). These models are important 

tools to understand the biology, and development of malaria and may have potential in the 

development of antimalarials drugs and vaccines (Kaushansky et al., 2014; Siu and Ploss, 2015). 

The blood and liver stages of human malaria infection are compartmentalized in nature, and thus 

independent studies can be done for each stage. The blood and liver stage can be replicated in a 

human erythroid and liver chimeric mouse respectively. Also, a dual engraftment of erythroid/liver 

would allow replicate the complete Plasmodium life cycle in vivo (Siu and Ploss 2015). 

 

1.8.2.1. BLOOD STAGE MODEL 

As mentioned earlier, human erythroid chimeric mice are used to replicate Plasmodium 

asexual blood stage infection. In the present, there are two ways to generate human erythroid 

chimeric mice infection 1) to infuse human RBCs and 2) to transplant hematopoietic stem cell 

(Vaughan et al., 2012). The most effective and successful method to generate a human erythroid 

chimeric mouse is to engraft human RBCs in immuno-deficient mice (Siu and Ploss, 2015). The 

severe combined immunodeficiency (SCID) mice contain a point mutation in the Prkdc kinase 

(PrkdcSCID), which hampers with the development and functions of B and T lymphocytes. Thus, 

these SCID mice accept xenogenic grafts of human RBCs and are used to establish P. falciparum 

asexual blood-stage infection for up to 2 weeks (Tsuji et al., 1995). The non-obese diabetic (NOD) 

mice background is often used with SCID mice further facilitate the engraftment of human RBCs 

(Siu and Ploss, 2015; Vaughan et al., 2012). 

Another model that would support asexual blood infection of Plasmodium is through 

transplant of hematopoietic stem cells (HSCs) in the bone marrow of mice. Practically, this model 

has produced limited success. To produce human hematolymphoid mice, SCID mice are 



 
56 

transplanted with HSCs isolated from human fetal tissues, human peripheral blood, or human bone 

marrow (Rongvaux et al., 2013; Strowig et al., 2011). 

 

1.8.2.2. LIVER STAGE MODEL 

The human liver chimeric mice are generated by injecting human primary adult 

hepatocytes in Xeno recipient SCID mice. To further boost the growth of human hepatocyte, the 

liver injury is induced in the mice (Billerbeck et al., 2013; Siu and Ploss, 2015).  The SCID mice 

expressing urokinase-type plasminogen activator transgene (UPA) using the albumin promoter 

(Alb) (SCID Alb-UPA) are the well-distinguished human liver chimeric mice model. The cells 

which do not contain the toxic urokinase-type plasminogen activator transgene, for example, 

engrafted human hepatocytes get a selective advantage to grow. This humanized mouse model is 

successfully used to engraft human hepatocytes with almost 90% engraftment (Sandgren et al., 

1991). Importantly, this model is shown to maintain P. falciparum infection effectively (Sacci et 

al., 2006). 

 

1.8.3. NON-HUMAN PRIMATE (NHP) MODELS 

Aotus trivirgatus (Owl monkey) and the Saimiri sciureus (squirrel monkey) have served as 

experimental models for antimalarial drug research. Primate models are more advanced animal 

models than rodent models. NHP models have utility for re-confirmation of rodent efficacy results 

with a more clear prediction of drug effect in humans and evaluating the efficacy against malaria. 

These primate hosts are primarily used for screening of antimalarial drugs. A. trivirgatus is one of 

the WHO recommended a model for studies in malaria research, and these are the only models 

which can sustain malarial infection caused by human malaria parasites, P. falciparum and P. vivax 
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and rhesus malaria parasite P. cynomolgi. The progression of P. vivax infection in this primate 

model is similar to P. vivax infection in man. The same model could evaluate the prophylactic, 

schizonticidal, and hypnozoitocidal effect of test drug (Peters, 1987).   

The NHP in vivo experiments started with young, tuberculin-negative rhesus monkeys (3.5 

to 6 kg). The infected female anopheles mosquitos are ground in a 1:1 mixture of saline and normal 

monkey serum to initiate the infection in monkey. The debris is removed by light centrifugation. 

The sporozoites are counted, and each primate inoculated intravenously with approximately 

500,000 sporozoites in 2 ml of fluid. The suspension of drug in water is prepared and administered 

with the help of stomach tube once daily, starting the day before infection and up to day 8. Blood 

smears are prepared, and parasitemia analyzed daily until 46 weeks. At the end of 6 weeks, if the 

animals are still negative, they are rechallenged with another inoculum to check their susceptibility 

to infection (Kalra, 2006; Peters, 1987). 

All the animals become infected during 4-6 weeks of the period are treated with test 

compounds as soon as the parasitemia level reaches 0.1 to 0.5%.The infected animals receive seven 

daily oral doses of the drug and blood smear slides are prepared and analyzed daily during and 

after the treatment up to 30 days. If the animals found negative for malaria parasite, they examined 

twice weekly until they parasite relapse. If the parasites are not cleared by the drug during the 

primary treatment, the animals are given seven daily doses of 5mg/kg of chloroquine. If no relapse 

follows chloroquine administration, it indicates that the test drug has destroyed the hypnozoites. 

When no relapse occurs within 8-12 weeks, the animals are splenectomized. Failure to develop 

further parasitemia within four weeks of this procedure indicates that the animals are radically 

cured since, in 99% of those that are not splenectomized, the infection relapses within three weeks 

of splenectomy (Fidock et al., 2004; Kalra, 2006). 
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A particularly valuable model for the study of hypnozoites has been established with the 

simian parasite P. cynomolgi in Macaca mulatta (rhesus monkeys), enabling efficacy tests of drugs 

against the dormant liver stages(Deye et al., 2012; Dow et al., 2011).  

The rhesus macaque P. knowlesi infection model remains a preferred model used to study 

Plasmodium liver stages since it approximates the P. falciparum course of infection in young 

children and adults and parallels P. falciparum in having a longer liver stage duration of parasite 

development, in contrast to the rodent malaria parasites. The animal model for P. falciparum 

infection in the Aotus spp. monkey host is suboptimal because cycles of transmission through 

sporozoites are unreliably maintained and the availability of Aotus spp. monkeys are also 

low(Galinski et al., 2017; Hobbs et al., 2014; Pasini et al., 2016). 

This close relatedness between human and non-human primate hosts and between human 

and simian Plasmodium parasites makes non-human primates models of choice for human malaria 

for the biomedical research community. The main simian Plasmodium parasites infecting Old 

World primates include P. knowlesi,  P. coatneyi, P. fragile, P. cynomolgi, P. inui, P. fieldi, and 

P. simiovale, in South East Asia, as well as P. gonderi in Africa, while simian Plasmodium 

parasites infecting New World primates comprise P. brasilianum and P. simium in South America 

(Galinski, 2012). Simian Plasmodium parasites sharing similarities with human parasites were 

reported at the beginning of the 20th century (Coatney, 1971). Deciphering the evolutionary 

history of Plasmodium parasites and their primate hosts' restrictions is a matter of intensive 

research, to determine the origin of human Plasmodium parasites and when they emerged (Beignon 

et al., 2014). 

Infections with P. coatneyi, a simian malaria species that is closely related to P.  knowlesi 

(Singh and Daneshvar, 2013; Vargas-Serrato et al., 2003), mirror the biology and pathogenesis of 
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falciparum malaria, with severe forms of pathology including anemia. A procedure was established 

to measure the turnover of in vivo biotinylated RBCs in rhesus macaque (Macaca mulatta) to study 

mechanisms of the onset and recovery of anemia (Moreno et al., 2013). These macaques had been 

experimentally infected for the first time (i.e., when malaria naïve) with P. coatneyi infected RBCs 

and, then again, while partially immune, nine months after curative anti-malarial drug treatment 

(Fonseca et al., 2016). This model also permits the quantification of the production of newly 

generated RBCs and of the different processes leading to the removal of RBCs in the absence or 

presence of a P. coatneyi infection in malaria naïve or semi-immune rhesus macaque (Fonseca et 

al., 2016; Teja-Isavadharm et al., 2016). The model can be employed as a tool for predicting and 

exploring disease severity and evaluating host-directed interventions. This capability includes the 

study of other species of Plasmodium that cause malaria in primates, each with their unique blood-

stage biology and pathogenic characteristics (Fonseca et al., 2016). 

Several species of New World Monkeys belonging to the genus Aotus and Saimiri are 

susceptible to infection by the five species mentioned above (Collins, 2002b). P. falciparum, P. 

vivax, and P. malariae require a process of adaptation in vivo to grow reproducibly in New World 

monkeys. Also, splenectomy is often necessary to obtain significant parasitemias and production 

of infective gametocytes (Collins, 2002a, b). Conversely, P. knowlesi, a natural parasite of 

monkeys, readily infects Aotus, Saimiri and Rhesus monkeys (Macaca mulatta). As a major 

advantage of nonhuman primates, all stages of the biological cycle of the human parasites can be 

reproduced for drug evaluation by choosing appropriate host-parasite pairs (Collins, 2002a; 

Stewart, 2003). Nonetheless, the use of monkey models is quite limited due to ethical concerns 

and experimental complexity because highly specialized facilities are required (Jimenez-Diaz et 

al., 2014). 
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Macaques are the natural host of P. cynomolgi, a malaria parasite that has a biological cycle 

similar to P. vivax and can infect humans (Coatney et al., 1961; Jimenez-Diaz et al., 2014). P. 

cynomolgi has a cycle of maturation in the blood of 48 h with reticulocytes being the preferred 

cells for malaria of infection. The blood-stage infection is self- limited but presents characteristic 

relapses (Kocken et al., 2009). P. cynomolgi is also noteworthy as it can also form hypnozoites 

upon liver infection. All these characteristics make P. cynomolgi an interesting surrogate model 

for P. vivax infection (Jimenez-Diaz et al., 2014). Different models for malaria drug discovery are 

summarized in Table 1.4. 
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Table 1.4: Models for malaria drug discovery. Table adapted from Jimenez-Diaz et al., 2014 

(Jimenez-Diaz et al., 2014). The intensity is defined in + sign. Single + is lowest and +++++ is 

the highest intensity.  

 

 

 

 

 

 In vitro Rodent Humanized 
mouse 

Non-human 
primates 

Plasmodium 
spp. 
 

P. 
falciparum 
(Chloroquine 
sensitive and 
resistance 
strains) 

P. berghei, P. 
yoelii, 
P. chabaudi, P. 
vinckei 
 

P. falciparum P. falciparum, P. 
vivax, P. 
malariae, P. 
ovale, and 
P. knowlesi, are 
infectious for both 
Old and new 
World Monkey. 
P. cynomolgi 
infectious in New 
World monkeys 

Parasite 
cycle stage 
for assay 
 

Blood stage 
only 

Full cycle 
Gametocyte 

Blood stage 
Liver stage 
Gametocyte 

Full cycle. 
P. cynomolgi for 
hypnozoite stage 

Parasite 
maintenance 
 

In vitro In vivo passage In vitro/in vivo 
passage 
 

In vitro/in vivo 
passage 

Host 
immunity 

Not applied Immuno-deficient 
Immuno-
competent 
 

Immuno-
deficient 

Immunocompetent 

Complexity + ++ +++ +++++ 
Facilities + ++ +++ +++++ 
Accessibility ++++ ++++ +++ Highly restricted 
Animal 
handling 

No animal 
handling 

+ ++++ ++ 

Cost + ++ +++ +++++ 
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1.9. CONCLUDING REMARKS 

 Visceral leishmaniasis is one of manifestation of leishmaniasis with very high mortality 

and morbidity. Several phenotypic cells-based in vitro models are available for antileishmanial 

screening. Intracellular amastigotes represent the pathophysiological scenario of leishmaniasis 

diseases. Screening against intracellular amastigotes is more logical for in vitro/ex vivo 

antileishmanial drug discovery than promastigotes or axenic amastigotes form of parasites. 

Screening assays for intracellular amastigotes are complex as they require both host and parasite 

cells. THP1 cells can be differentiated to form a monolayer of macrophage cells and are most 

appropriate host cells with non-dividing nature as of cells with homogeneous cell population. 

Similarly, several in vivo models are available for antileishmanial screening, based on rodents 

(mice, Hamster), dogs and non-human primate animals as the host for the leishmania parasite. 

Both in vitro and in vivo antileishmanial screenings assays rely on growth analysis the intracellular 

amastigotes. The currently available in vitro/ex vivo screening methods have significant limitations 

and shortcomings, which should be addressed by developing better phenotypic better models. In 

case of visceral leishmaniasis, the parasite penetrates into the visceral organs. Analysis of growth 

of leishmania parasite in internal visceral organs becomes challenging. Generation of stably 

transfected transgenic parasite cell lines with a strong and sustained expression of reporter proteins 

which can monitor in the deep visceral organs with minimal background interference. 

 Similarly, malaria is a fatal disease if left untreated and is a major cause of deaths globally. 

Several screening assays are available for in vitro antimalarial screening based on P. falciparum 

cultures maintained in human erythrocytes. Most of the currently employed assays are complex as 

the parasite grows inside the erythrocytes through multiple developmental stages. Several in vivo 

experimental animal models have been developed with rodent and non-human primates host 
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animals and different species of the malaria parasite.  Both in vitro and in vivo models rely on the 

intra-erythrocytic growth analysis of the malaria parasite. Most of the current lab and even clinical 

diagnostic centers for malaria around the world rely on microscopy for observing the malaria 

parasite in the blood sample. Several other parasitemia analysis methods have been developed, but 

most of these models have significant limitations. To accelerate the antimalarial drug discovery 

research, there is a significant need for the development of methods for parasitemia analysis, which 

are robust, cost-effective and can be applied for automated high-throughput screening.  

The research project have addresses the critical need for development and standardization 

of novel models and assays for phenotypic screening for visceral leishmaniasis and malaria. The 

project includes the development of high throughput screening assay against intracellular 

amastigotes of L. donovani which is the causative agent of visceral leishmaniasis. The utility of 

the developed assay was confirmed by applying the developed assay for high throughput screening 

for a big natural product fraction library. Furthermore, the two new transgenic L. donovani 

parasites, one with a citrine reporter gene and another with the mCherry reporter gene were 

developed by stable transfection method. The developed transgenic parasite was utilized as 

promastigote and intracellular screening models. The project also includes the development of a 

noble method for malaria parasite-infected red blood cells analysis based on LDS-751 nucleic acid 

staining.  The method was implemented here in in vitro and in vivo settings of antimalarial 

screening assays. These newly developed assay will contribute significantly to accelerating the 

current search for noble pharmacophores with antileishmanial and antimalarial activity. The new 

models will also have important applications in understanding biology, virulence, and 

pathogenesis of malaria and leishmania pathogens, host-parasite interactions and in vitro/in vivo 

screening for new drug discovery.   
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CHAPTER II 

DEVELOPMENT OF AN IN VITRO MACROPHAGE CELLS INTERNALIZED 

LEISHMANIA AMASTIGOTES ASSAY AND SCREENING OF A NATURAL 

PRODUCTS LIBRARY 

 

2.1. INTRODUCTION 

Leishmania donovani, the causative agents of visceral leishmaniasis (VL), are intracellular 

parasitic protozoa that cycle between phagolysosomes of mammalian macrophages and alimentary 

tract of sand flies (Chang and Fong, 1983). New antileishmanial drug discovery approaches 

primarily rely on the availability of suitable in vitro and in vivo screening models. In vitro 

promastigotes (Mikus and Steverding, 2000) and axenic amastigotes assays (Callahan et al., 1997) 

have been used for anti-leishmanial drug screening. However, the promastigotes-based assays may 

not be appropriate due to significant cellular, physiological, biochemical and molecular differences 

in comparison to intracellular amastigotes. Macrophage-internalized amastigotes are responsible 

for  pathophysiological conditions of leishmaniasis (Croft et al., 2006a). Therefore, the assays 

based on intracellular macrophage-amastigotes are more appropriate for in vitro screening. 

Screening based on intracellular amastigotes gives essential information on the capacity of the 

drugs to target intracellular microorganisms (Sereno et al., 2007). Macrophage-amastigotes 

models are complex, as they require host macrophages cells and parasite (Leishmania spp.) cells. 

Quantitative analysis of viability, growth, and proliferation of leishmania amastigotes within 
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macrophages cells is challenging.  Differentiated nondividing THP1 cells make an attractive 

alternative to primary macrophage cells and can be used for assaying the anti-leishmanial activity 

of different compounds against intracellular amastigotes (Croft et al., 2006a). Currently available 

macrophage-amastigote assays have several limitations.  Classical microscopic assays, based on 

the microscopic counting of amastigotes/cell are labor-intensive. Further, the absence of 

automation limits the utility of this assay. 

   To overcome above demerits and limitations of the available macrophage-amastigote 

assays, we have developed a parasite rescue and transformation (PRT) assay with differentiated 

THP1 cells infected in vitro with L. donovani for screening pure compounds and natural products 

extracts (Jain et al., 2012). The assay involves the following steps: (1) terminal differentiation of 

THP1 cells to non-dividing macrophages, (2) infection of macrophages with L. donovani 

metacyclic promastigotes, (3) treatment of infected cells with test drugs, (4) controlled lysis of the 

infected macrophages, (5) release/rescue of amastigotes and (6) transformation of live amastigotes 

to promastigotes (7) quantitative analysis of growth of promastigotes.   

The assay was optimized using detergent treatment for controlled lysis of Leishmania-

infected THP1 cells to achieve almost complete rescue of viable intracellular amastigotes with 

minimal effect on their ability to transform into promastigotes. Different 

macrophage:promastigotes ratios were tested to achieve maximum infection. Quantification of the 

infection was performed through the transformation of living, rescued Leishmania amastigotes to 

promastigotes and evaluation of their growth by an AlamarBlue fluorometric assay in 96-well 

microplates. This protocol has been optimized for 384 well plates, and its applicability as high 

throughput assay has been established by the screening a natural products fractions library.  

Further, the assay was modified for simultaneity evaluation of the test samples for THP1 
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cytotoxicity (Jain et al., 2016b).  

The use of natural products for treatment and cure of  diseases has its roots in pre-historic 

times (Newman and Cragg, 2012).  Despite significant advancement in synthetic medicinal 

chemistry, the natural products remain to be the unmatched source of drugs with novel 

pharmacophore structures (Cragg and Newman, 2013). Most of the currently available drugs have 

their genesis, directly or indirectly, from natural products. Amphotericin B used for the treatment 

of leishmaniasis originates from natural source Streptomyces nodosus, a filamentous bacterium. 

Several new assays were up-graded to 384 well format and applied for screening of a natural 

products fractions library generated by high throughput fractionation (Rocha et al., 2005; Sen and 

Chatterjee, 2011; Tu et al., 2010).  

A natural products library of 13584 plant fractions obtained from 958 plant extracts was 

developed. Fractions were generated using a high throughput preparative fractionation (HTPF) of 

plant-extracts, coupled with a collection of UPLC-MS-ELSD-PDA data for each fraction.  This 

UPLC-MS-ELSD-PDA data for each fraction will be helpful in identification of novel 

pharmacophores with potent leishmanicidal activity against intracellular amastigotes. This natural 

products library of plant fraction was utilized in high throughput screening against intracellular 

amastigotes with the help of parasite rescue and transformation assay.  

 

2.2. HYPOTHESIS 

The internalized leishmania amastigotes rescued by controlled lysis of the infected host 

macrophage cells transformed into cell-free promastigotes forms. The numbers and growth of 

transformed promastigotes correlate with the numbers of live amastigotes rescued from the 

leishmania infected macrophages cells. 
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2.3. OBJECTIVES 

Purpose of this study to develop an in vitro method for screening against macrophage 

internalized L. donovani amastigotes. THP1 cells, terminally differentiated into adherent 

macrophages, were employed as the host cells. The transformed THP1 cells were infected with L. 

donovani promastigotes. The infected THP1 cells were treated with the test compounds. The 

macrophage internalized amastigotes were rescued by controlled lysis. Live amastigotes were 

transformed to promastigotes. The growth of  promastigotes was analyzed by AlamarBlue assay. 

The library of natural products fractions were screened, and outcome of hits for any particular 

target was further evaluated. 

 

2.4. MATERIALS AND METHODS. 

 

2.4.1. L. DONOVANI PROMASTIGOTE CULTURE 

Promastigote culture L. donovani (S1 strain) in RPMI 1640 medium supplemented with 

10% fetal bovine serum (FBS) is maintained at the 26oC incubator.  

 

2.4.2. THP1 CELLS CULTURE 

THP1 cell culture in RPMI medium supplemented with 10% FBS was maintained at 37oC 

in 5% CO2 incubator. 

 



 
68 

2.4.3. DIFFERENTIATION OF THP1 CELLS 

A 3-days old culture of THP1 cells in the exponential phase was diluted with RPMI 

medium to 2.5 X 105 cells/mL. Phorbol 12-myristate 13-acetate (PMA) was added to the cell 

suspension to achieve a final concentration of 25 ng/mL (Jain et al., 2016a). The final concentration 

of PMA was standardized with different concentrations ranges from 10ng/mL to 100ng/mL. No 

toxicity was observed at any PMA concentrations in this range. PMA concentration of 25 ng/mL 

concentration was selected for differentiation of 100% THP1 cells. THP1 cells treated with PMA 

were seeded onto clear flat-bottom experimental plates (50,000 cells/well in 96 wells plate or 

12,500 cells/well for 384 wells plate) or chamber slides (50,000 cells/well in 16 well chamber 

slides). Plates/chamber slides were incubated in a 5% CO2 incubator at 37oC for at least 12 h for 

differentiation of the THP1 cells to adherent macrophages. After overnight incubation, the medium 

from each well was discarded, and adherent cells were gently washed at least twice with serum-

free RPMI1640 medium. 

 

2.4.4.  PARASITE RESCUE AND TRANSFORMATION (PRT) ASSAY 

2.4.4.1.   INFECTION OF DIFFERENTIATED THP1 CELLS WITH L. DONOVANI 

The plates/chamber slides with differentiated THP1 cells were washed with serum-free 

medium. The L. donovani promastigotes culture was harvested at the stationary phase (metacyclic 

infective stage) and diluted to a density of 5X106 cells/mL in RPMI1640 medium with 4% FBS. 

The 100 µL (96 well plate) of promastigotes were added over serum-free medium in plates. The 

final density of promastigote parasite remained 2.5X106, parasites/mL in plates (5X105 
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parasites/well). The THP1 cells were infected with promastigotes in the ratio of 1:10.   Plates with 

THP1 cells with promastigotes were incubated at 37oC with 5% CO2 for 24 h to allow the 

promastigote parasite to infect the THP1 cells and transform to amastigotes. Plates were washed 

after 24 h with serum-free medium to remove external (non-internalized) parasites. 

  

2.4.4.2. TREATMENT OF INFECTED THP1 CELLS WITH TEST DRUGS 

Standard antileishmanial drugs amphotericin B, pentamidine and miltefosine, were 

selected for testing against intracellular amastigotes by both PRT assay and compare with digital 

image analysis assay. Stock solutions of the drugs/test compounds were prepared in water or 

dimethyl sulfoxide (DMSO). Each drug/compound was tested at six different concentrations. The 

standard drugs and test compounds were serially diluted in a fresh 96-well plate with RPMI-1640 

medium with 4% FBS. The drugs/test compound concentrations were prepared in 2 times of the 

final concentrations. The serially diluted samples (100µl) were transferred to the experimental 

plate over 100µl serum-free medium. The plates were incubated at 37oC and 5% CO2 for 48 h. The 

plates were washed again with serum-free RPMI medium. The infected THP1 cells control without 

drugs were set up simultaneously in each plate/chamber slide. 

 

2.4.4.3. CONTROLLED LYSIS AMASTIGOTES-INFECTED MACROPHAGES 

The serum-free medium was removed from plates (Figure 2.1A) and infected THP1 cells were 

treated with 0.05% sodium dodecyl sulfate (SDS) in serum-free RPMI medium for 30 seconds 

(20µL/well). The plate was shaken for 30 sec duration (Figure 2.1B).  The 0.05% Sodium dodecyl 
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sulfate (SDS) in serum-free RPMI medium diluted with the RPMI medium with 10% FBS 

(180µl/well).  After treatment of all wells for controlled SDS lysis, the plates were transferred to 

an incubator at 26oC for 48 h. This allowed transformation of rescued live amastigotes to 

promastigotes.  

 

2.4.4.4. QUANTITATIVE ANALYSIS OF TRANSFORMED PROMASTIGOTES  

After a 48 h incubation at 26°C, the rescued live amastigotes were transformed into 

promastigotes (Figure 2.1D).  AlamarBlue (10 µL) was added to each well, and the plates were 

incubated at 26oC for overnight. The plates were read for standard fluorescence on a Fluostar 

Galaxy fluorimeter (BMG Lab Technologies) at 544 nm excitation, 590nm emission. The dose-

response curved was prepared with XLfit software, and IC50 (concentration of the test compound 

causing 50% inhibition of growth) IC90 (concentration of the test compound causing 90% 

inhibition of growth) were computed.    

 

2.4.5.  THE DIGITAL IMAGE ANALYSIS (DIA) ASSAY 

2.4.5.1. INFECTION OF THP1 CELLS WITH L. DONOVANI AND TREATMENTS WITH 

TEST DRUGS 

The chamber slides with differentiated THP1 Cells were washed with serum-free medium 

infected with the L. donovani promastigotes as described in section 2.4.4. Chamber slides with 

infected THP1 cells were treated with test samples or standard drugs (Amphotericin B and 
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Pentamidine) at different concentrations for 48 h.    

 

2.4.5.2. FLUORESCENT MICROSCOPE IMAGING AND IMAGE ANALYSIS  

The chamber slides were washed with serum-free RPMI medium. The plastic well inserts 

were peeled off from the glass slides. The slides with infected THP1 cells were fixed by immersing 

the slides in methanol for 30 sec,  dried under air flow and stained with 5 X SYBR Green I 

(prepared in water from the stock of 10,000X) for 15 minutes in a dark chamber at room 

temperature.  The slides were washed to remove the extra stain and dried for 30 min under airflow. 

A full glass coverslip was placed over the stained slide with the mounting medium. The images of 

the control, infected and treated THP1 cells were collected with a Nikon 90i eclipse fluorescent 

microscope in FITC and DIC filters. The macrophage nuclei and parasite nuclei were counted with 

the help of ImageJ software (Figure 2.3). The infectivity in particular sample images was 

calculated as  

 The dose-response curves were generated with XLfit software for computation of IC50 and IC90 

values.  

 

2.4.6.  STANDARDIZATION OF THP1 CELLS TO PARASITES RATIO 

The THP1 cells to parasites ratio to determine the sensitivity of the assay was Standardized. 

Low parasites numbers/infection may compromise with sensitivity and selectivity of the screening. 

To acquire an optimum infection in THP1 cells, the ratio of THP1 cells to infecting promastigote 

Infectivity= Number of amastigotes nuclei counted X 100                       
.                    Number of THP1 cells nuclei counted 
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parasite were standardized in 96 well plates and 16 well chamber slides. The plates/chamber slides 

with differentiated THP1 Cells were washed with serum-free medium and 100µl of medium 

remain left over the cells. These differentiated THP1 cells infected with L. donovani promastigotes 

in different ratios of THP1 cells to parasites (1:1.25, 1:2.5, 1:5 and 1:10). The L. donovani 

promastigotes culture was harvested at the stationary phase (metacyclic infective stage) and diluted 

to a density of 5X106 parasites/mL in RPMI1640 medium with 4% FBS. The promastigotes 

parasite were further serially diluted (1:1) from 5X106 parasites/mL. The 100µl of serially diluted 

promastigotes were added over serum-free medium in separate wells of plates or chamber slides. 

The number THP1 cells/ well remained constant (50,000cells/mL).  Plates/chamber slides with 

THP1 cells with promastigote were incubated at 37oC in 5% CO2 incubator for 24 h. 

Plates/chamber slides were washed after 24 h with serum-free medium to remove external 

(uninfected) parasites and added with RPMI medium with 2% FBS. The plates/chamber slides 

were incubated for 48 h. The plates were washed again with serum-free RPMI medium and treated 

accordingly for PRT assay, and chamber slides were fixed with methanol and stained with 5X 

SYBR green for 15 min for digital image analysis assay. 

 

2.4.7. STANDARDIZATION OF CONTROLLED CELL LYSIS 

Controlled lysis of the THP1 cells was to achieve maximum/complete THP1 cells lysis 

without significantly affecting the viability of the rescued amastigote parasites. Infected THP1 

cells were achieved by following the previous protocols (2.4.4.). Different detergents such as 

Tween 20, Tween 80, Triton X-100, NP-40 and SDS at different concentrations (0.5 and 0.05) and 

different durations of treatment (from 10sec to 60 sec) (Figure 2.2) were tested for control lysis 
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of L. donovani amastigotes infected THP1 cells. The effect of detergent was diluted immediately 

after the treatment time with RPMI medium with 10% FBS. 

 

2.4.8. PLANT MATERIALS 

Most of all samples were collected by botanists at Missouri Botanical Garden (MOBOT) 

in St. Louis, Missouri and some are collected by Elray Nixon. All the information NP ID, Sample 

Name, Sample Code, Genus, Species, Family, Source Common Name, Plant Part, Geographical 

Location, Collector,  Collector number, Collection Reference and MOBOT Link for every extract 

have been mentioned in the compound library. Bulk plant samples are dried and frozen in the field 

and freeze dried at the University of Mississippi before extracting. 

 

2.4.9. EXTRACTS PREPARATIONS 

Extracts were prepared in National Center for Natural Products Research at the University 

of Mississippi by Dr. Melisa Jacob and his team. Extraction of the sample by was done by Dionex 

ASE 300. Extraction was done in 100% methanol. Each sample was placed in a specific ASE cell 

and extracted at 1500psi, at 40oC for three times with 10-minute static time/Extraction. 100% 

volume get flushed out. Moreover, ASE cells purged for 120 Seconds. After extraction, all extract 

was dried and weighed and then dissolved in DMSO at a concentration of 20mg/mL. 

 

2.4.10. FRACTIONATION OF EXTRACTS 
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Fractionation of the plant extracts was done in Chemical Biology and Therapeutics, St. 

Jude Children Research Hospital, Memphis Tennessee, by Dr. Kip Guy and his team.  Natural 

products fractions library was generated using AHTS from various plant extracts (Tu et al., 2010; 

Tu and Yan, 2012). UPLC-MS-ELSD-PDA data were obtained with a Waters Acquity UPLCMS 

system (Waters Corp., Milford, MA, USA). An Acquity UPLC BEH C18 column (2.1 × 50 mm, 

1.7 μm) was used. The mobile phase consisted of H2O containing 0.1% HCOOH and CH3CN or 

MeOH. The total run time for each analysis was 3.0 min. Ionization and detection of natural 

products were carried out on a Waters SQ mass spectrometer using both the positive and negative 

ESI modes. The capillary voltage was set at 3.4 kV. The extractor voltage was 2 V. Nitrogen was 

used as the nebulizing gas, and the source temperature was set at 130 °C. The scan range was m/z 

130-1400. Data processing was performed automatically with OpenLynx by extracting all graphics 

information, such as retention times and UV and ELSD peak areas, and converted to text to allow 

transfer to a database for storage and analysis. Each 384-well plate could be analyzed in 20 h (Yang 

et al., 2014).  

 

2.4.11. HIGH-THROUGHPUT PRT AND THP1 CELLS CYTOTOXICITY ASSAYS 

The THP1 treated with PMA were seeded for differentiation in clear flat bottom 384 wells 

plates. Duplicate plates were set up, one each for leishmania and THP1 cytotoxicity assays. In one 

plate THP1 cells were infected with L. donovani promastigotes. After 24 h non-internalized 

promastigotes were washed off with serum-free RPMI1640 medium with the help of Aquamax 

4000 microplate washer and left with 25µL/well of serum-free medium in plates. The test samples 

(plant extracts fractions) were diluted in separate plates in RPMI medium with 4% FBS. The test 
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samples (25 µL each) were transferred to the experimental plates with infected THP1 cells for 

antileishmanial assay and uninfected THP1 cells for cytotoxicity assay. The plates were placed in 

a CO2 incubator at 37oC for 48 h. After 48 h the plates were washed  with serum-free RPMI 

medium with Aquamax 4000 microplate washer. Infected THP1 cells were subjected to controlled 

lysis with 0.05% SDS solution for 30 sec to rescue live amastigotes. The amastigotes were allowed 

48 h to transform into promastigotes. Growths of leishmania promastigotes and THP1 cells were 

quantified with AlamarBlue (see section 2.4.4.).   

 

2.4.12. HIGH-THROUGHPUT THP1 CELLS CYTOTOXICITY ASSAY 

384 plates with differentiated THP1 cells (follow the method of section 2.4.3.) were 

washed at least twice with serum-free RPMI1640 medium. The 25µl of RPMI medium with 4% 

FBS were added over 25µl of serum-free medium and incubated the plates back to 37oC with 5% 

CO2 for 24 h. Plates were washed serum-free medium. 25 µl of Plant fractions, diluted in daughter 

plates in RPMI medium with 4% FBS and transferred into experimental plates with THP1 cells. 

Cytotoxicity of Active fractions was performed at range from 10ug/mL to 0.0032ug/mL. The plate 

was incubated in a 5% CO2 incubator at 37oC for 48hr. After 48 of treatment, AlamarBlue was 

added to the plates, and the plates were incubated back in a 5% CO2 incubator at 37oC for overnight 

and read on a BMG Fluostar microplate reader (BMG Lab Technologies) at an excitation 

wavelength of 544 nm and an emission wavelength of 590 nm. Each compound was tested in 

duplicates at six concentrations, IC50 and IC90 values were computed from the dose-response 

curves developed by XLfit software.  
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2.5. RESULTS 

2.5.1. COMPARATIVE ANALYSIS OF DIGITAL IMAGE ASSAY AND PRT ASSAY 

A quantitative analysis was done for both Digital-Image-Analysis-Direct-Counting-Assay 

and PRT Assay for 24, 48, 72 and 96 h post standard antileishmanial drug treatment. In the direct 

counting method, level of infection of L. donovani infected macrophages (THP1 cells) was 

calculated by the amastigotes (determined by counting amastigotes nuclei)/100 transformed THP1 

cells (determined by counting THP1 cell nuclei) (Figure 2.6) is a more accurate measure to analyze 

the effect of different standard or test compounds than the percentage of infected THP1 cells, as 

reported in some previous papers (Sereno et al., 2007), because this number is directly related to 

overall effect of compounds either through a decrease in number of parasites in macrophage cells 

or total removal of parasite from the macrophage cells. Infection was calculated from digital 

images of infected THP1 cells treated with different standard drugs at different dilutions for 

various time intervals (Figure 2.6 and Table 2.1). The read-out for the Digital-Image-Analysis-

Direct-Counting-Assay was amastigotes infection/100 transformed THP1 cells, while the read-out 

for the Parasite- Rescue-Transformation-Assay was relative fluorescence units (RFU), which is 

directly proportional to the number of live Leishmania amastigotes rescued from the infected 

macrophages and transform into promastigotes. The AlamarBlue assay is routinely used for 

Leishmania promastigotes anti-leishmanial drug screening. 

 

2.5.2. CONTROLLED LYSIS OF INFECTED DIFFERENTIATED THP1 CELLS 

The assay was initially standardized and optimized for controlled lysis of Leishmania-
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infected THP1 cells. The objective was to optimize the conditions for detergent treatment, which 

yield almost complete lysis of THP1 cells with minimal effect on the viability of the rescued 

amastigotes. Treatment with NP-40 (Figure 2.2A) and Triton X-100 (Figure 2.2B) lysed the 

infected THP1 cells; however, it also influenced the viability and transformation of the rescued 

amastigotes. Treatment with Tween 20 (Figure 2.2C) and Tween 80 (Figure 2.2D) did not cause 

optimal lysis of THP1 cells resulting in an incomplete rescue of amastigotes as indicated by low 

numbers of transformed promastigotes. Treatment with 0.05% SDS for 30 sec (Figure 2.2E) 

yielded almost complete lysis of Leishmania-infected THP1 cells and did not affect viability and 

transformation of rescued amastigotes. Further optimization showed that treatment of cells with 

0.05% SDS for 20-30 sec yielded the highest rescue of viable Leishmania amastigotes (Figure 

2.2F). Because of the better yield of rescued parasite and maximum lysis of THP1 cell membrane, 

in subsequent experiments, treatment with 0.05% SDS for 30 sec was used. Figure 2.1 depicts a 

microscopic view of the complete control lysis protocol. Intact THP1 cells infected with 

Leishmania amastigotes can be seen in Figure 2.1A. Figure 2.1B shows lysis of the THP1 cells 

after detergent treatment. Figure 2.1C shows rescued Leishmania amastigotes, which have been 

partially transformed into promastigotes and Figure 2.1D shows the almost complete 

transformation of amastigotes into promastigotes and their subsequent proliferation. The growth 

of these transformed promastigotes can be quantitatively monitored with the addition of 

AlamarBlue and measurement of fluorescence on a microplate reader. Procedure for SDS 

treatment was same for single or multiple plates. In multiple plates, SDS treatment was 

implemented column by column with a multichannel pipette. Serum-free medium was removed 

from all eight wells of one column of the plate, and 20 μl of 0.05% SDS was added to 8 wells of 

the same column and diluted after 30 sec with RPMI-1640 with 10% FBS. During initial 
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standardization of the assay, the plates were checked under the microscope for non-internalized 

promastigotes. A minimum of five items of washing was necessary for removal of parasites before 

step 5 of treatment of infected macrophage cells with standard compounds and three items of 

washing were necessary before step 7 of SDS treatment. Thus, the cells were washed eight times, 

and no visible non-internalized promastigotes remained before control lysis of infected THP1 cells. 

 

2.5.3. DIGITAL IMAGE ANALYSIS AND DIRECT COUNTING 

The digital images of Leishmania-infected THP1 cells were captured on Nikon Eclipse 90i 

fluorescent microscope after staining with SYBR Green I. Both macrophage nuclei and 

intracellular Leishmania nuclei with characteristic kinetoplast DNA were observed under the 

fluorescent filters (Figure 2.3). Further, the images of infected THP1 cells were also captured 

under DIC. When both the images were merged, the outlines of THP1 cells with intracellular 

amastigotes were seen more clearly (Figure 2.3). The ImageJ software was used to analyze these 

images. ImageJ is public domain, Java-based, image-processing program developed at the 

National Institutes of Health (http://rsb.info.nih.gov/ij/download.html). ImageJ has been designed 

with an open architecture that provides extensibility via Java plugins and recordable macros. 

Custom acquisition, analysis, and processing plugins can be developed using ImageJ's built-in 

editor and a Java compiler. For differential counting of THP1 cells nuclei and parasite nuclei by 

ImageJ, the image was opened in ImageJ. Cell counter was found in Analyze option in a plugin of 

the Software. The image was initialized, and cell counter type 1 was selected for THP1 cell nuclei 

and cell counter type 2 was selected for parasite nuclei (Figure 2.3). Differential counting was 

done for at least 200 THP1 cells nuclei and the intracellular amastigotes present in these THP1 
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cells nuclei. A comparison of the PRT assay and image analysis method was made for evaluating 

the infectivity of THP1 cells with different macrophage:promastigotes ratios (Figure 2.4). Figure 

2.5 represents the differential infectivity in THP1 cells at different macrophage:promastigote 

ratios. Both the methods showed comparable results and the macrophage:promastigote ratio of 

1:10 yielded optimum and reproducible infectivity. 

Once the conditions for PRT assay and the digital image analysis were optimized, the utility 

of these assays was evaluated for anti-leishmanial drug screening. The Leishmania-infected THP1 

cells were treated with different concentrations of standard antileishmanial drugs namely 

Amphotericin B, Pentamidine and Miltefosine for different time intervals ranging from 24 to 96 

hr. The experiment for PRT assay was done in triplicate, and the experiment for direct cells 

counting method was done in duplicate. Figure 2.6 shows microscopic images of the control 

uninfected, control infected untreated and Leishmania-infected, treated THP1 cells. The dose-

response curves were prepared from the PRT assay (concentration of the drug vs. transformed 

parasites) and the image analysis assay (number of amastigotes/100 THP1 cells) (Figure 2.7-2.9). 

The IC50 of the drugs were computed by ExcelFit and are presented in Table 2.1. Digital-Image-

Analysis-Direct-Counting-Assay and PRT assay showed comparable results. Digital-Image-

Analysis-Direct-Counting-Assay was less optimal during the early time points of 24 and 48 h drug 

treatments. While the PRT assay showed results more consistent with the reported values at all the 

time points during the 24-96 h after drug treatments. This difference in results with Digital-Image-

Analysis-Direct-Counting-Assay and PRT assay may be due to the presence of non-viable 

amastigotes during early periods of drug treatment in Digital-Image-Analysis-Direct-Counting-

Assay. 
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2.5.4. HTS OF NATURAL PRODUCTS FRACTIONS LIBRARY 

Total 13584 plant extract fractions from 958 extracts were screened out in both L. donovani 

macrophage amastigote assay and cytotoxicity assay using differentiated THP1 cell lines at 

10µg/mL concentration. Out of these 13584 fractions, only 243 plant extract fractions shows more 

than 50 percent inhibition of intracellular L. donovani amastigotes. The active 243 plant extract 

fractions were further screened for dose-response analysis. The selective antileishmanial activity 

of 64 plant extract fractions was re-confirmed with IC50 values less than ten µg/mL (Supporting 

Table 2.1).  19 fractions with IC50s < 2µg/mL (Table 2.2), 20 with IC50s between 2 and 5µg/mL 

and 25 with IC50s between 5 and 10µg/mL (Figure 2.10). Only 13 plant fractions out of 13584 

fractions show cytotoxicity on differentiated THP1 cells with % inhibition more than 50 %.  Most 

active  plant extract fractions with antileishmanial activity less than 2µg/mL were Thuja 

occidentalis c9 (0.25 µg/mL),  Asclepias asperula c3 (0.33 µg/mL), Inga laurina c5 (0.86 µg/mL), 

Gymnocladus dioica c7 (1.69 µg/mL), Rhodea japonica c5 (1.08 µg/mL), Rhodea japonica c6 

(0.70 µg/mL), Rhodea japonica c7 (0.39 µg/mL), Rhodea japonica c8 (0.41 µg/mL), Nerium 

oleander c3 (0.25 µg/mL), Nerium oleander c4 (0.53 µg/mL), Nerium oleander c6 (0.03 µg/mL), 

Nerium oleander c7 (0.54 µg/mL), Marah macrocarpus c8 (1.66 µg/mL), Marah macrocarpus c9 

(1.07 µg/mL), Juniperus californica c5 (1.75 µg/mL), Juniperus deppeana c5 (1.85 µg/mL),  

Eclipta prostrata c5 (0.80 µg/mL), Oplopanax horridus c6 (1.98 µg/mL), Falcataria moluccana 

c7 (1.29 µg/mL) (table 2.2). 

 Some fractions were further analyzed and compared with the QC-MS data of inactive 

fractions of the same plants.  This most active fraction belongs to Thuja occidentalis, Asclepias 

asperula, Rhodea japonica and Nerium oleander plant extracts. QC-MS data of Nerium oleander 

active fractions suggest Oleandrin as an active chemical constituent. QC-MS data of Thuja 
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occidentalis active fractions suggest Deoxypodophylotoxin as an active chemical constituent.    

 

2.5.5. QC-MS DATA OF FRACTIONS OF N. OLEANDER PLANT EXTRACT 80089 

 For Nerium oleander plant extract 80089, a total of four active plant factions 80089-c4, 

80089-c5, 80089-c6, 80089-c7and 80089-c8 derived from AHTS fractionation of the ethanolic 

extract, shows antileishmanial activity against Leishmania donovani amastigote with IC50 values 

8.31 μg/mL, 5.84 μg/mL, 0.03 μg/mL, 0.54 μg/mL and 7.72μg/mL respectively (supporting table 

2.1). They were found to be devoid of cytotoxicity against differentiated THP1 cells. 80089 C6 is 

the most active fraction in all active fractions of Nerium oleander plant extract. Peaks were shown 

in fractions 80089-c6 at tR 1.17 to 1.19 min and tR 1.24 min in the ELSD chromatogram (Figure 

2.11). These peaks were not detected in other inactive plant fractions for other Nerium oleander 

plant extract (plant extract number 80089). Therefore, peaks in QC-MS spectra at tR 1.17, 1.19, 

and 1.24 will be helpful in the prediction of active constituents of the plant fraction 80089-c6. The 

complete QC-MS analysis for the most active fraction 80089-c6 at tR 1.17, 1.19, and 1.24 minute 

is given in figure 2.12. 

 

2.5.6. QC-MS DATA OF FRACTIONS OF T. OCCIDENTALIS PLANT EXTRACT 79863 

In Thuja occidentalis plant extract 79863, only one active plant fraction 79863-c9 derived 

from AHTS fractionation of the ethanolic extract shows antileishmanial activity against 

Leishmania donovani amastigote with IC50 values 0.25 μg/mL. The fraction was found to be 

devoid of cytotoxicity against differentiated THP1 cells. Peaks were shown in fraction 79863-c9 
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at tR 1.18 and 1.24 min in the ELSD chromatogram (Figure 2.13). This peak was not detected in 

other inactive plant fractions for other Nerium oleander plant extract (plant extract number 79863). 

Therefore, peaks in QC-MS spectra at tR 1.18 and 1.24 min will be helpful in the prediction of 

active constituents of the plant fraction 79863-c9. The complete QC-MS analysis for the most 

active fraction 79863-c9 at tR 1.18 and 1.24 minute is given in Figure 2.14. 

 

2.5.7. QC-MS DATA OF FRACTIONS OF A. ASPERULA PLANT EXTRACT 78826 

In Asclepias asperula plant extract 78826, only one active plant fraction 78826-c3 derived 

from AHTS fractionation of the ethanolic extract shows antileishmanial activity against L. 

donovani amastigote with IC50 values 0.33 μg/mL. The fraction was found to be devoid of 

cytotoxicity against differentiated THP1 cells. Peaks were shown in fraction 78826-c3 at tR 0.9 

and 1.0 minute in the ELSD chromatogram (Figure 2.15). This peak was not detected in other 

inactive plant fractions for other Asclepias asperula plant extract (plant extract number78826). 

Therefore, peaks in QC-MS spectra at tR 0.9 and 1.0 min will be helpful in the prediction of active 

constituents of the plant fraction 79863-c9. The complete QC-MS analysis for the most active 

fraction 78826-c3 at tR 0.9 and 1.0 minute is given in Figure 2.16. 

 

2.5.8. QC-MS DATA OF FRACTIONS OF R. JAPONICA PLANT EXTRACT 81020 

In 81020 Rhodea japonica plant extract 81020, a total of five fractions, 81020-c5, 81020-

c6, 81020-c7, 81020-c8, and 81020-c9 derived from AHTS fractionation of the ethanolic extract, 

shows antileishmanial activity against Leishmania donovani amastigote with IC50 values 1.08 
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μg/mL, 0.70 μg/mL, 0.39 μg/mL, 0.41 μg/mL and 2.58 μg/mL respectively (supporting table 

2.1).  Fractions were found to be devoid of cytotoxicity against differentiated THP1 cells. 81020-

c8 is one of the most active fractions in all active fractions of Rhodea japonica plant extract. Peaks 

were shown in fractions 81020-c8 at tR 2.10 and 2.21 minute in the ELSD chromatogram (Figure 

2.17). This peak was not detected in other inactive plant fractions for other Rhodea japonica plant 

extract (plant extract number 81020). Therefore, peaks in QC-MS spectra at tR 2.10 and 2.21 min 

will be helpful in the prediction of active constituents of the plant fraction 81020-c8. The complete 

QC-MS analysis for the most active fraction 81020-c8 at tR 2.10 and 2.21 minute is given in 

Figure 2.18. 

 

2.5.9. RE-FRATIONATION OF N. OLEANDER AND T. OCCIDENTALIS  

 Nerium oleander plant extract was fractionated, and Oleandrin was confirmed as one of 

the active constituent in the active fraction (Unpublished data). The activity of Oleandrine was 

confirmed with PRT assay and as well as digital-image-analysis assay (Figure 2.19).   Thuja 

occidentalis plant extract was fractionated, and Deoxypodophylotoxin was confirmed as one of 

the active constituent in the active fraction (Yang et al., 2014). 
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FIGURES AND TABLES 

 

 

Figure 2.1: A microscopic view of the PRT assay. A - Adherent THP1cells infected with 

Leishmania amastigotes; B - Adherent, infected THP1 cells after controlled lysis with SDS C - L. 

donovani promastigotes transformed from the rescued live amastigotes D - Growth, and 

proliferation of transformed L. donovani promastigotes. Figure from Jain et al., JoVE, 2012 (Jain 

et al., 2012). 
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Figure 2.2: Optimization of controlled lysis of THP1 cells to achieve maximum rescue of live L. 

donovani amastigotes and their transformation to promastigotes with different detergents. Two 

concentrations (0.05% and 0.1%) of detergents and two time periods (30 sec and 60 sec) for 

treatment were tested. RFU (Relative fluorescence units). Each bar represents the mean of 

duplicate observations. [A] NP-40 [B] Triton X-100 [C] Tween 80 [D] Tween 80 and [E] SDS 

treatment caused almost complete lysis of THP1 cells and did not affect the viability of the rescued 

amastigotes at 0.05%/30 sec. [F] Treatment with 0.05% SDS for 20-30 sec caused almost complete 

lysis of THP1 cells and rescued viable parasite amastigotes to transform into promastigotes. Figure 

from Jain et al., JoVE, 2012 (Jain et al., 2012). 
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Figure 2.3: The fluorescent digital image of a differentiated THP1 cell infected in vitro with L. 

donovani amastigotes. A- Uninfected differentiated THP1 cells. B- L. donovani amastigote 

infected differentiated THP1 cells. The characteristic kDNA can also be seen with each parasite 

nucleus. The macrophage nucleus (mN) (1) and the parasite nuclei (pN) (2) can be differentially 

marked. C- Differentially counted by of macrophage nuclei and parasite nuclei with the help of 

ImageJ analysis software for quantitative evaluation of the infection. The quantification was done 

as a number of amastigotes/100 THP1 cells. Figure from Jain et al., JoVE, 2012 (Jain et al., 2012). 
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Figure 2.4: Different THP1 cells to parasite ratio in PRT assay (4A) and Digital-Image-Analysis-

Direct-Counting-Assay (4B). The macrophage:promastigote ratio of 1:10 yielded optimal 

infection. Both showed comparable results. The PRT assay showed some background values. Each 

bar shows mean of duplicate values. Figure from Jain et al., JoVE, 2012 (Jain et al., 2012). 
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Figure 2.5: Comparative images of THP1 cells infected with different ratios of amastigotes. THP1 

cells were infected by leishmania promastigotes by different THP1: Parasites ratio from uninfected 

THP1 cells (1:0, A) to maximum infected (1:10, E). Each different image was taken at 40 X 

magnification with 2X2 area. Images have taken by FITC filter with DIC. Figure from Jain et al., 

JoVE, 2012 (Jain et al., 2012). 

  

A B C 

D E  

A-Uninfected THP1 cells (1:0) 

B-THP1: Parasite ratio (1:1.25) 

C-THP1: Parasite ratio (1:2.5) 

D-THP1: Parasite ratio (1:5) 

E-THP1: Parasite ratio (1:10) 
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Figure 2.6: Digital images (FITC + DIC) of THP1 cells infected with L. donovani amastigotes 

after treatment with standard antileishmanial drugs for different time periods. Results were 

quantified as a number of amastigotes/100 THP1 cells and used to compute the percent growth 

compared to untreated controls and determine the IC50 values. Figure from Jain et al., JoVE, 2012 

(Jain et al., 2012). 
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Figure 2.7: Comparison of Digital-Image-Analysis-Direct-Counting-Assay and PRT assay for 

anti-leishmanial drug screening (Amphotericin B). The infected macrophages were treated with 

different concentrations of standard anti-leishmanial drug for different periods. IC50 (μg/mL) 

values were computed from the dose-response curve by Excelfit. Figure from Jain et al., JoVE, 

2012 (Jain et al., 2012). 
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Figure 2.8: Comparison of Digital-Image-Analysis-Direct-Counting-Assay and PRT assay for 

anti-leishmanial drug screening (Pentamidine). The infected macrophages were treated with 

different concentrations of standard anti-leishmanial drug for different periods. IC50 (μg/mL) 

values were computed from the dose-response curves by Excelfit. Figure from Jain et al., JoVE, 

2012 (Jain et al., 2012). 
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Figure 2.9: Comparison of Digital-Image-Analysis-Direct-Counting-Assay and PRT assay for 

anti-leishmanial drug screening (Miltefosine). The infected macrophages were treated with 

different concentrations of standard anti-leishmanial drug for different time periods. IC50 (μg/mL) 

values were computed from the dose-response curves by Excelfit. Figure from Jain et al., JoVE, 

2012 (Jain et al., 2012). 
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Figure 2.10. Flow diagram for the screening of natural products fractions library. Total of 13580 

fractions was screened with PRT assay for intracellular amastigotes of L. donovani at a single 

concentration. 234 plant fractions have more than 50% inhibition for intracellular amastigotes. 234 

active fraction was again screened at 6 different concentrations for concentration-response curve 

analysis. The 64 plant fraction was confirmed with an IC50 value of <10µg/ml. Total 19 plant 

fractions have potent activity with IC50 value <2µg/ml. 
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Figure 2.11: ELSD data for fractions of Nerium oleander plant extract 80089.  % LEM inhibition- 

Inhibition of intracellular amastigotes growth in PRT assay. The ELSD data of all fractions of 

Nerium oleander plant extract 80089 are compared. The retention time of peaks in ELSD spectra 

of active fraction those are not present in inactive fractions was selected for further mass spectra 

analysis. The active fraction 80089-C6 have peaks with retention time 1.17 and 1.24 those are not 

present in other inactive fraction. 
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Figure 2.12: UPLC-MS-ELSD-PDA data for Nerium oleander plant extract fraction 80089-c6.   

Panel A have ELSD, PDA and ESI data of active fraction 80089-c6. Panel B and Panel C are the 

mass spectra at retention time 1.24 and 1.17 respectively. 

Panel B 

Panel C 

Panel A 
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Figure 2.13: ELSD data for fractions of Thuja occidentalis plant extract 79863.  % LEM inhibition 

- inhibition of intracellular amastigotes in PRT assay. The ELSD data of all fractions of Thuja 

occidentalis plant extract 79863 are compared. The retention time of peaks in ELSD spectra of 

active fraction those are not present in inactive fractions was selected for further mass spectra 

analysis. The active fraction 79863-C9 have peaks with retention time 1.18 and 1.24 those are not 

present in other inactive fraction. 
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Figure 2.14: UPLC-MS-ELSD-PDA data for Thuja occidentalis plant extract fraction 79863-c9.   

Panel A have ELSD, PDA and ESI (Positive and negative) data of active fraction 79863-c9. Panel 

B and Panel C are the mass spectra at retention time 1.24 and 1.18 respectively. 

Panel A 

Panel C 

Panel B 
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Figure 2.15: ELSD data for fractions of Asclepias asperula   plant extract 78826.  % LEM 

inhibition - Inhibition of intracellular amastigotes in PRT assay. The ELSD data of all fractions of 

Asclepias asperula plant extract 78826 are compared. The retention time of peaks in ELSD spectra 

of active fraction those are not present in inactive fractions was selected for further mass spectra 

analysis. The active fraction 78826-C3 have peaks with retention time 0.90 and 1.00 those are not 

present in other inactive fraction. 
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Figure 2.16: UPLC-MS-ELSD-PDA data for Asclepias asperula plant extract fraction 78826-c3.   

Panel A have ELSD, PDA and ESI (Positive and negative) data of active fraction 78826-c3. Panel 

B and Panel C are the mass spectra at retention time 0.089 and 1.00 respectively. 

Panel A 

Panel B 

Panel 
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Figure 2.17: ELSD data for fractions of Rhodea japonica plant extract 81020.  % LEM inhibition 

- inhibition of intracellular amastigotes in PRT assay. The ELSD data of all fractions of Rhodea 

japonica plant extract 81020 are compared. The retention time of peaks in ELSD spectra of active 

fraction those are not present in inactive fractions was selected for further mass spectra analysis. 

The active fraction 81020-C8 have peaks with retention time 2.216 and 2.095 those are not present 

in other inactive fraction. 
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Figure 2.18: UPLC-MS-ELSD-PDA data for Rhodea japonica plant extract fraction 81020-c8. 

Panel A have ELSD, PDA and ESI (Positive and negative) data of active fraction 81020-c8. Panel 

B and Panel C are the mass spectra at retention time 2.216 and 2.095 respectively.  

 

Panel A 

Panel B 

Panel C 
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Figure 2.19:  The antileishmanial activity of oleandrin by SYBR Green I nucleus DNA staining 

digital image analysis assay.  
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Table 2.1: Comparison of Digital-Image-Analysis-Direct-Counting-Assay and PRT assay for anti-

leishmanial drug screening. The infected macrophages were treated with different concentrations 

of standard anti-leishmanial drug for different periods. IC50 (μg/mL) values were computed from 

the dose-response curves by Excelfit (Figures 7-9). ahours post drug treatment; bIAC = Image 

Analysis and Direct-Counting assay; cPRT = Parasite Rescue and Transformation assay. Values 

given are IC50 (concentration of the drug causing 50% inhibition of parasite growth) as μg/mL 

and are the mean ± S.D. of at least three experiments. * Statistically different (<0.05) compared to 

IC50 values with IAC assay. Table from Jain et al., JoVE, 2012 (Jain et al., 2012). 

 

 
  

Test 
drug 

24 hra IC50  
µg/ml 

48 hra IC50  
µg/ml 

72 hra IC50  
µg/ml 

96 hra IC50  
µg/ml 

IAC 
assayb 

PRT 
assayc 

IAC 
assayb 

PRT 
assayc 

IAC 
assayb 

PRT 
assayc 

IAC 
assayb 

PRT 
assayc 

Amphot
ericin B 

0.24± 
0.03 

0.17± 
0.01* 

0.12± 
0.04 

0.20± 
0.07 

0.06± 
0.01 

0.06± 
0.01 

0.11± 
0.03 

0.10± 
0.03 

Pentami
dine 

>10 2.55± 
1.16* 

2.88± 
0.58 

1.43± 
0.91 

1.24± 
0.35 

1.52± 
0.16 

0.71± 
0.63 

0.98± 
0.33 

Miltefos
ine 

0.38± 
0.02 

0.19± 
0.08* 

0.24± 
0.06 

0.30± 
0.08 

0.36± 
0.02 

0.16± 
0.06 

0.21± 
0.15 

0.17± 
0.10 
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Table 2.2: Antileishmanial activity and THP1 toxicity of the most active plant extract fractions. 

NP=Natural Product number. Parent Extract= Original extract that was fractionated into several 

fractions. The ic50= inhibitory concentration at which 50 % parasite growth inhibited compared 

to the untreated positive control of parasite. IC90= inhibitory concentration at which 90 % parasite 

growth inhibited compared to the untreated positive control of parasite. 

Sample information THP1 cells 
internalized 
Amastigotes 

THP1 
Cytotoxicity 

NP 
number 

Parent 
extract 
number 

Sample Name Sample 
Code 

IC50 
µg/mL  

IC90 
µg/mL 

IC50 
µg/mL 

IC90 
µg/mL 

86064 79863 Thuja occidentalis c9 79863-c9 0.25 >10 >10 >10 
85901 78826 Asclepias asperula c3 78826-c3 0.33 0.69 >10 >10 
90057 81079 Inga laurina c5 81079-c5 0.86 4.00 >10 >10 
89396 81004 Gymnocladus dioica c7 81004-c7 1.69 3.29 >10 >10 
89480 81020 Rhodea japonica c5 81020-c5 1.08 2.56 >10 >10 
89481 81020 Rhodea japonica c6 81020-c6 0.70 3.37 >10 >10 
89482 81020 Rhodea japonica c7 81020-c7 0.39 1.13 >10 >10 
89483 81020 Rhodea japonica c8 81020-c8 0.41 0.53 >10 >10 
86328 80088 Nerium oleander c3 80088-c3 0.25 0.70 >10 >10 
86329 80088 Nerium oleander c4 80088-c4 0.53 3.04 >10 >10 
86344 80089 Nerium oleander c6 80089-c6 0.03 0.15 >10 >10 
86345 80089 Nerium oleander c7 80089-c7 0.54 2.69 >10 >10 
88490 80620 Marah macrocarpus c8 80620-c8 1.66 >10 >10 >10 
88491 80620 Marah macrocarpus c9 80620-c9 1.07 >10 >10 >10 
88571 80625 Juniperus californica c5 80625-c5 1.75 >10 >10 >10 
88928 80650 Juniperus deppeana c5 80650-c5 1.85 >10 >10 >10 
91657 79612 Eclipta prostrata c5 79612-c5 0.80 >10 9.34 >10 
93627 81341 Oplopanax horridus c6 81341-c6 1.98 >10 >10 >10 
97654 83352 Falcataria moluccana c7 83352-c7 1.29 4.75 >10 >10 
103651 

 
Amphotericin B AmB 0.10 0.11 >10 >10 

103650 
 

Pentamidine Pent 2.51 3.12 >10 >10 
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2.6. DISCUSSION 

There are several methods available for anti-leishmanial drug screening based on 

macrophage-amastigote models. Assays can be done with the peritoneal exudate cells (PEC) 

collected from mice, peripheral blood monocyte cells (PBMC) (Seifert et al., 2010), bone marrow-

derived macrophages (BMM), monocytic cell lines (J774 and RAW264.7) (Kolodziej and 

Kiderlen, 2005) and human  monocytic cells (THP1, U937, HL-60) (Maia et al., 2007). The 

assays, which use dividing host cells, must ensure that the confounding effects of drug activity on 

both parasite and host cells number are considered. The differentiated primary macrophages 

collected from various sources such as mice and rats are non-dividing in nature. These cell 

preparations may not have homogeneous cell populations. Monocytic cells-derived cell lines are 

homogenous in nature and are a better model for the macrophage-amastigote-based screening. 

Differentiated THP1 cells (human acute monocytic leukemia cell line) can form a non-dividing 

monolayer and offer an attractive alternative to primary isolated macrophages. 

To overcome the demerits and limitations of previous macrophage-amastigote-based 

screening assays (Gupta and Nishi, 2011), we have developed and optimized a parasite rescue 

and transformation (PRT) assay. This assay is based on the application of differentiated THP1 

cells as the host macrophages. The differentiated THP1 cells have good homogeneity and are 

non-dividing in nature, as the host cells. The PRT assay described here is comparable to the assay 

based on Digital-Image-Analysis-Direct-Counting of the intracellular amastigotes. Fluorescent 

and DIC microscopy, digital image analyses by ImageJ for differential counting of the 

macrophage nuclei and the parasite nuclei has been further refined. Capturing the images under 

fluorescent light filters and differential interference contrast (DIC) filters have improved the 

quality of digital images for more accurate counting of the intracellular amastigotes. The 
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fluorescent and DIC images can be merged to obtain the digital images with clear macrophage 

cell outlines and fluorescent intracellular nuclei. The macrophage nuclei and the parasite nuclei 

can be differentially recognized with ImageJ. Therefore, both Digital Image Analysis (DIA) 

Assay and PRT Assay have the potential for automation and application to large-scale  screening. 

Critical steps in the PRT Assay are: (a) repeated washings of THP1 cell cultures after exposure 

to Leishmania promastigotes, to ensure almost complete removal of the non-internalized 

promastigotes and (b) controlled lysis of the infected THP1 cells with SDS. Both the steps may 

also be controlled with automation and should not compromise with a throughput of the assay. 

The second step of washings, after exposure of the Leishmania-infected THP1 cells to the test 

drugs/compounds remove the remaining non-internalized parasites, if any. The PRT Assay offers 

significant advantages over existing microscopic, reporter gene and image analysis assays. The 

assay is simple, robust, and reproducible, can be automated for large-scale screening and 

therefore should have important application in screening of large compounds libraries for new 

anti-leishmanial drug discovery. Further, the assay can also be applied for evaluating infectivity 

of clinical, as well as, laboratory isolates of Leishmania in vitro (Hendrickx et al., 2015; Paape 

et al., 2014; Price et al., 2013). 

The PRT assay and cytotoxicity assay against differentiated THP1 cells were applied for 

screening of a library of 13584 natural products fractions. A total of 243 fractions were identified 

with 50% or higher inhibition vs. leishmania intracellular amastigotes. The active 240 fractions 

were screened further for dose-response analysis, and 64 fractions were confirmed with IC50 

<10µg/mL. Notably, the most active anti-leishmanial fractions originated from  Thuja occidentalis 

(IC50-0.25 µg/mL), Asclepias asperula (IC50-0.33 µg/mL), Rhodea japonica (IC50-0.41µg/mL) and 

Nerium oleander (IC50-0.03 µg/mL). The active fractions from Thuja occidentalis and Nerium 
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oleander were selected for further analysis. Oleandrin was confirmed as an active constituent from 

the active fraction of Nerium oleander (Unpublished). Similarly, Deoxypodophylotoxin was 

confirmed as an active constituent from the active fraction of Thuja occidentalis (Yang et al., 

2014). Oleandrin is an inhibitor of p-type ATPase (Jortani et al., 1996) and deoxypodophyllotoxin 

is a topoisomerase inhibitor (Wang et al., 1992).  

Further original plant of active extract fractions was investigated in the literature. Thuja 

occidentalis is an evergreen coniferous ornamental tree, which is native to the eastern Canada and 

the Northeastern United States. Several anticancer activities have been reported in Thuja 

occidentalis (Biswas et al., 2011; Mazzio et al., 2014; Sunila and Kuttan, 2006). Even a protective 

action of Thuja occidentalis has been reported against the damage induced by gamma radiations 

(Sunila and Kuttan, 2005). Clinical efficacy of Thuja occidentalis has been reported in the 

treatment of upper respiratory tract infections (Naser et al., 2005). Thuja occidentalis and its active 

compound, thujone have an anticancer effect and promising effects in the treatment of polycystic 

ovary syndrome (Biswas et al., 2011; Kupeli Akkol et al., 2015). Thuja occidentalis also shows 

antioxidant potential (Yogesh and Ali, 2014) and ability to counteract oxidative-induced damage 

has been reported in isoquercitrin from Thuja orientalis (Jung et al., 2010). Anti-inflammatory 

activity is also reported in Thuja orientalis. Asclepias asperula is reported as an ingredient in 

Hispanic folk medicine preparations (Kelley et al., 1988). Desglucouzarin, a cardenolide reported 

in Asclepias asperula has Na+, K+-ATPase inhibition activity (Abbott et al., 1998). Antimicrobial 

and cytotoxic activities are reported in Inga laurina plant (Furtado et al., 2014). Cytotoxic activity 

has been reported in rhodexin A, which is a cardiotonic agent in Rhodea japonica (Masuda et al., 

2003). Several cardenolides have been reported in Nerium oleander, which may be responsible for 

its toxicity and also pharmacological activity (Bai et al., 2010; Zhao et al., 2011). The anticancer 
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activities have been reported in isolated cardenolides particularly oleandrin from N. oleander 

which acts through inhibition of the plasma membrane-bound Na+K+-ATPase (Pan et al., 2015; 

Rashan et al., 2011). Bioactive pregnanes and triterpenes from Nerium oleander have shown the 

anti-inflammatory and cytotoxic activity (Bai et al., 2007; Fu et al., 2005; Zhao et al., 2006). 

Hepatoprotective and neuro protective activity have been reported in Nerium oleander (Dunn et 

al., 2011; Singhal and Gupta, 2012). Antifungal activity against plant fungal diseases has been 

reported in Nerium oleander (Hadizadeh et al., 2009). The anticancer activity has been reported in 

Juniperus communis (Van Slambrouck et al., 2007). Leishmanicidal activity has already been 

reported in saponins isolated from the leaves of Eclipta prostrate (Khanna et al., 2009). In vivo 

Antiplasmodial activity has been reported in palladium nanoparticles of Eclipta prostrata extract 

(Rajakumar et al., 2015). Eclipta prostrata has shown anti-angiogenic and antitumor activity also 

(Kim et al., 2015; Lirdprapamongkol et al., 2008; Liu et al., 2012). Extract of Eclipta prostrata 

has been used for its anti-venom potential (Melo et al., 1994; Pithayanukul et al., 2004). Eclipta 

prostrata also found effective in reducing serum lipid levels (Dhandapani, 2007; Zhao et al., 2015). 

antibacterial and antifungal activities also reported in Eclipta prostrata (Wiart et al., 2004). 

Echinocystic acid, Thiophenes, polyacetylenes and terpenes from Eclipta prostrate has shown 

anti-inflammatory properties (Ryu et al., 2013; Xi et al., 2014). Oplopanax horridus is an 

ethnobotanical plant used by the indigenous people native to the Pacific Northwest of North 

America (Calway et al., 2012). Potential anticancer activity has been reported in compounds 

(falcarindiol and oplopantriol A) isolated from Oplopanax horridus (Jin et al., 2014; Wang et al., 

2013; Zhang et al., 2014). Antimycobacterial effect has also been reported in Oplopanax horridus 

(Kobaisy et al., 1997; Qiu et al., 2013).  

In conclusion, the in vitro screening of more than 13584 plant fractions, prepared from 958 
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plants extracts has been done against macrophage cells internalized L. donovani amastigotes. 

Macrophage cells internalized amastigote form of parasite represent the real pathophysiology of 

leishmaniasis disease.  Most of the active plant fractions have good antileishmanial activity with 

no cytotoxicity to THP1 cells. The active fractions of plants extracts namely, Thuja occidentalis, 

Asclepias asperula, Inga laurina, Rhodea japonica, Nerium oleander, Eclipta prostrata represent 

new antileishmanial leads. Most of the leadplant fractions have very limited phytochemical and 

pharmacological data available. Further, follow up studies with these plant fractions are likely to 

provide novel compounds as potential antileishmanial drug leads.  
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CHAPTER III 

DEVELOPMENT OF TRANSGENIC LEISHMANIA DONOVANI PARASITES WITH 

STABLE EXPRESSION OF CITRINE AND MCHERRY REPORTER PROTEINS AND 

THEIR UTILITY FOR IN VITRO ANTILEISHMANIAL DRUGS SCREENING.  

 

3.1. INTRODUCTION 

Phenotypic parasite culture-based in vitro screening and in vivo preclinical evaluation are 

the hallmark of new antileishmanial drug discovery (Gupta and Nishi, 2011; Reguera et al., 2014; 

Sereno et al., 2007). The reporter gene is a segment of DNA containing a gene sequence that has 

been isolated from one organism and is introduced into a different organism. This non-native 

segment of DNA has retained the ability to express the protein that has a readily measurable 

phenotype and is easily distinguishable over endogenous cellular background. Transgenic 

parasites expressing reporter proteins are valuable tools to perform robust high throughput 

screening (HTS) and to understand the underlying mechanisms of pathogenesis (Dube et al., 2009; 

Lang et al., 2009). The technologies based on genetically modified pathogens represent valuable 

complementary tools for in vitro screening as well as real-time in vivo imaging. As long as the 

transgenic parasite retains the virulence of the parent parasite, they can be used for studies of 

pathogenesis and therapy in several ways. Several attempts have been made to develop transgenic 

cell lines that express bioluminescent and/or fluorescent reporter proteins (Hutchens and Luker, 
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2007; Lang et al., 2009). Reporter transgenic parasite can be developed by episomal transfection 

or by stable transfection methods. The reporter gene retained in the transfected plasmid in the 

transgenic parasite. While, the reporter genes, which get integrated into the genome of the parasite, 

the stably transfected transgenic cells retain the genetic information of reporter gene for a longer 

duration. The transgenic parasite cell lines with fluorescent reporter genes offer several 

advantages. Fluorescent reporters do not require specific substrates to convert the reporter protein 

to a measurable phenotype.  The fluorescence emitted is stable over the time and reliable for studies 

involving longer durations. This approach is also useful when studying the tissue harvested from 

infected animals since parasites can be individually identified (Shaner et al., 2005).  

The first transgenic Leishmania species was developed with the green fluorescent protein 

(GFP) as a reporter protein (Ha et al., 1996) by episomal transfection. Several other researchers 

have developed GFP transgenic cell lines of  L. infantum (Kamau et al., 2001), L. donovani (Singh 

and Dube, 2004) and L. amazonensis (Chan et al., 2003) by episomal transfection and further 

addressed the application of HTS methods.  Significant research has been done for developing the 

HTS methods for amastigotes forms using transgenic GFP amastigotes of L. donovani (Dube et 

al., 2005), and L. Major (Kram et al., 2008).  Automation for large compounds library screening 

may be possible using reporter genes. The majority of transgenic parasite cell lines requires drug 

selection for maintaining the episomal expression of the reporter genes. This may not be ideal for 

a drug screening experiments (Sereno et al., 2007). In case of episomal reporters, the relative 

expression of the reporter gene may depend on the number of copies of the transfected plasmid, 

rather than on the activity of the drug (Buckner and Wilson, 2005). The assays based on transgenic 

parasites with luciferase reporter gene required substrate and cell lysis buffer, which make the 

assays expensive for large-scale screening (Calvo-Alvarez et al., 2015; Roy et al., 2000). BALB/c 
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mice and Syrian golden hamsters are commonly used experimental animal models for evaluating 

antileishmanial effects and host-parasite interactions (Gupta and Nishi, 2011). For visceral 

leishmaniasis, most of the in vivo studies have been done by classical microscopic methods. 

A stable transfection method in which the GFP gene was integrated downstream of the 18S 

ribosomal promoter region of Leishmania genome was developed (Misslitz et al., 2000). Different 

transgenic leishmania parasite (L.donovani, L.major, and L. infantum) have been developed by 

stable transfection method (Bolhassani et al., 2011; Singh et al., 2009).  However, the stable 

transfection of the enhanced GFP (EGFP) reporter has been found suitable for both in vitro and in 

vivo leishmania parasite related studies (Pulido et al., 2012). Although native GFP produces bright 

fluorescence and is extremely stable, the excitation maximum is close to the ultraviolet range, 

which can damage the live cells. 

Transgenic Leishmania mexicana expressing red fluorescence (RFP) has been used to 

determine the early stages of cutaneous leishmaniasis pathogenesis at the infection site (Millington 

et al., 2010). Transgenic L. major with RFP-1 has been used to identify the site of sand-fly bites 

in vivo in a mouse model. These studies reveal essential roles for both neutrophils and dendritic 

cells in early leishmania infections (Peters et al., 2008; Ribeiro-Gomes et al., 2012). Transgenic 

mCherry L. infantum chagasi a parasite of visceral leishmaniasis (VL) revealed the recruitment of 

neutrophils and role of dendritic cells in VL (De Trez et al., 2009; Lecoeur et al., 2010; Thalhofer 

et al., 2011). Transgenic L. donovani cells, stably expressing either EGFP or RFP, have been used 

to identify hybrid parasites produced during the early development of the sandfly (Sadlova et al., 

2011). Similarly, transgenic L. infantum parasite stably expressing either citrine or mCherry have 

been used to show the intraclonal genetic exchange in Trypanosomatids (Calvo-Alvarez et al., 

2014). A  L. major strain, which episomally expressed the DsRed protein, was used for quantifying 
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the infectious dosage transmitted by a sandfly bite (Kimblin et al., 2008).  

mCherry has improved photostability as well as suitability for intravital imaging (Graewe 

et al., 2009).  mCherry is a protein derived from the coral Discosoma striata RFP. It has a 

maximum emission peak at 610 nm with a 587 nm excitation wavelength. Despite the fact that it 

is 50% less bright than EGFP, it is more photostable and has higher tissue penetration [12].  

mCherry is a suitable choice for applications of single-molecule fluorescence or multicolor 

fluorescent imaging [34]. Transgenic mCherry L. major has been developed by stable transfection 

method and used for in vitro and in vivo screening for cutaneous leishmaniasis (Calvo-Alvarez et 

al., 2012). Recently transgenic mCherry L. donovani (stably transfected) based screening method 

was developed for promastigote forms of the parasite (Vacchina and Morales, 2014).  

    Intracellular amastigotes represent the real pathophysiology of leishmaniasis 

disease. Parasite resides in deep visceral organs particularly in liver and spleen in visceral 

leishmaniasis disease state. That warrants a need for the development of transgenic cells, which 

could be utilized for in vitro, ex-vivo well as in vivo intracellular amastigotes antileishmanial 

screening. Ideally, the fluorescent reporter gene model should be free of ultraviolet excitation 

range and should have good penetration. Considering these requirements, two different stably 

transfected transgenic L. donovani cell lines by integrating mCherry or citrine open reading frames 

(ORFs) into the 18S rRNA ssu locus of L. donovani parasite genome, which constitutively 

expresses Citrine or mCherry fluorophore-proteins. We selected Citrine, a green fluorescent 

protein derivative, derived from the jellyfish Aequorea victoria (Haas et al., 2012; Roura et al., 

2013) and mCherry, a red fluorescent protein derived from the tetrameric Discosoma (Campbell 

et al., 2002) as the reporter genes. There are several advantages of these reporter genes. The 

excitation spectra of these fluorophores are free of ultraviolet region. The proteins expressed from 
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mCherry and Citrine genes have high photostability, resistance to photobleaching and bright 

fluorescence. Both proteins constitutively expressed in the leishmanial cytoplasm mature rapidly, 

allowing fluorescence detection shortly after the gene is expressed. This is appropriate for real-

time analysis. Integration of mCherry and citrine ORFs was done using LEXSY plasmid. LEXSY 

has been constructed based on the protozoan host, which combines eukaryotic protein synthesis 

and modification with simplicity and ease of handling. This system promises protein synthesis 

with correct folding with a full range of post-translational modifications. This vector also gives 

high expression success rate (LeBowitz, 1994).  LEXSY is a constitutive type of LEXSY plasmid, 

which has 3’ and 5’ end ssu regions. These regions direct the linearized DNA with target gene and 

marker gene for homologous recombination at ssu locus of Leishmania parasite genome.  

 

3.2 HYPOTHESIS 

 The bright fluorescence of Citrine or mCherry fluorescent reporter proteins allows 

detection and quantification of stably transfected transgenic leishmania cells by different 

fluorescence-based techniques like fluorescence reading, fluorescent microscopy, and flow-

cytometry. 

   

3.3 OBJECTIVES 

 Stable transfection of mCherry and Citrine reporter genes was done using leishmania 

expression plasmid vector (LEXSY). A plasmid with mCherry reporter gene with blasticidin 

marker and another plasmid with Citrine reporter genes with hygromycin B marker were 

electroporated into wild-type of L. donovani cells. The strong fluorescent signal from mCherry 

and Citrine transgenic L. donovani parasite indicated the successful development of transgenic 
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parasites. Both mCherry and Citrine transgenic parasite could be analyzed by different 

fluorescence-based techniques. The fluorimetric measurements, fluorescent microscopy and flow 

cytometry were applied for growth analysis of promastigotes and macrophage-internalized 

transgenic L. donovani amastigotes. 

 

3.4. MATERIALS AND METHODS 

 

3.4.1. LEISHMANIA DONOVANI PROMASTIGOTE CULTURE  

The cell cultures of promastigote forms of wild type  L. donovani (WT-Ld) (S1 strain) were 

maintained  in M199 medium supplemented with 25 mM HEPES pH 7.2, 0.1 mM adenine, 

0.0005% (w/v) hemin, 2 mg/mL biopterin, 0.0001% (w/v) biotin, 10% (v/v) antibiotic cocktail (50 

U/mL penicillin, 50 mg/mL streptomycin) and 10% fetal bovine serum.  

 

3.4.2.   THP1 CELLS CULTURE AND DIFFERENTIATION   

 THP1 cells are being grown in RPMI medium supplemented with 10% fetal bovine serum. 

The culture is maintained at 37oC in 5% CO2 incubator. Subculture is being done on every 3-4 

days or cell growth of 0.8 million cells/mL. THP1 cells were differentiated using Phorbol 12-

myristate 13-acetate (PMA) as described previously. After differentiation, the medium with PMA 

from each well was discarded, and adherent cells were gently washed at least twice with serum-

free RPMI1640 medium (Jain et al., 2016b; Jain et al., 2012). 
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3.4.3.  LEXSY PLASMID WITH MCHERRY AND CITRINE GENE INSERTS 

 The plasmids were adapted from a previous study (Calvo-Alvarez et al., 2014). In short, 

two fluorescent proteins namely, mCherry (excitation 587 nm; emission 610 nm) and Citrine 

(Excitation 516 nm; emission 529 nm), were selected to develop two different transgenic L. 

donovani cell lines. For the CITRINE-HYGROMYCIN (CTN-HYG) construct, the 720-bp CTN 

coding region was amplified by PCR. The amplified DNA fragment was cut with BglII-NotI and 

inserted into the pLEXSY-hyg2 vector (Jena Bioscience GmbH, Germany) to yield pLEXSY-CTN-

HYG construct. For the mCherry-BLASTICIDIN (CHR-BSD) construct, the 711-bp CHR coding 

region was amplified by PCR. The resulting fragment was digested with BglII-NotI and inserted 

into the pLEXSY-hyg2 vector (Calvo-Alvarez et al., 2012). The HYG selection drug cassette was 

replaced by the BSD ORF, which confers resistance to the antibiotic blasticidin S (Goyard and 

Beverley, 2000) (Figure 3.1). 

 

3.4.4.  GENERATION OF MCHERRY AND CITRINE TRANSGENIC L. DONOVANI 

PARASITES 

 Plasmids pLEXSY-CTN-HYG and pLEXSY-CHR-HSP70-BSD with Citrine and mCherry 

gene respectively were transformed into XL10-Gold ultracompetent Escherichia coli cells. The 

mCherry and citrine gene inserts in the respective plasmids were confirmed by BglII and NotI 

double digestion and analysis by agarose gel electrophoresis. The isolated plasmids were digested 

with SwaI restriction enzyme to linearize the plasmid DNA with mCherry and citrine genes. 

Linearization of the plasmids was confirmed by agarose gel electrophoresis. The linearized DNA 

was electroporated into wild-type L. donovani promastigotes. 20 ml L. donovani promastigote 
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culture (~ 5X106 parasites/mL) was centrifuged at 3000 rpm for 10min at 4oC in two 15 ml tubes. 

The cell pellets were re-suspended in a total of 10 mL of pre-chilled cytomix. (~ 10X106 

parasites/mL). The cells were centrifuged again at 3000 rpm for 10min at 4oC in two 15 ml tubes. 

Cell pellets were finally re-suspended in 0.5 mL of ice-cold cytomix (~ 200X106 parasites/mL). 

The cell suspensions were chilled on ice for 10 min. BioRad gene pulser was set for electroporation 

of L. donovani with linearized DNA from mCherry and citrine constructs. The electroporation 

conditions used (450 μF, 900V) that require a capacitance extender module with the gene pulsar 

unit (For 4mm distance cuvette 2.25kV/cm). 0.5 ml of the cell suspension (1 x 108 parasites) was 

mixed with the DNA to be electroporated in the pre-chilled centrifuge tube by pipetting up and 

down and transferred to a pre-chilled (4°C) 4mm electroporation cuvette and electroporated at 

selected pulse settings. The cuvette was returned to the ice after electroporation. The cells 

electroporated with CHR-BSD and CTN-HYG reporters linked to their corresponding antibiotic-

resistance cassettes were obtained after the electroporation of L. donovani promastigotes with the 

large SwaI fragment from pLEXSY-CHR-BSD and pLEXSY-CTN-HYG vectors and plated on 

semisolid M199 medium. Transgenic L. donovani promastigotes derived from the integration of 

reporter genes into the leishmanial 18S rRNA locus were selected on semisolid medium containing 

200 µg/mL of hygromycin B or blasticidin S, respectively. The colonies appeared after 2-3 weeks 

on semisolid M199 medium with respective resistance antibiotic. The colonies were transferred to 

M199 liquid medium without selection drugs for 24 h and then transferred to M199 liquid medium 

with selection drugs. The transgenic parasites were grown in M199 medium with selection drug to 

10 generations. After 10 generations both transgenic parasites were transferred to M199 medium 

without selection drugs.  
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3.4.5.  THE CONFIRMATION OF GENE INTEGRATION AND EXPRESSION IN 

TRANSGENIC L. DONOVANI CELLS 

 The confirmation of the presence of reporter genes in L. donovani, as well as integration 

of these reporter genes in L. donovani genome, was done by primer Polymerase chain reaction 

(PCR) method. Forward mCherry primer (P1), reversed mCherry primer (P2), forward citrine 

primer (P4) reverse citrine primer (P5) and forward integration primer (P3) were selected 

according to previously published research (Calvo-Alvarez et al., 2014). The linearized DNA with 

5’ and 3’ ssu region get integration in ssu locus of L. donovani genome. So forward integration 

primer was selected from L. donovani genome ssu region and integration reverse primer was 

selected from the reporter gene either citrine or mCherry in linearized DNA 5’ and 3’ ssu integrated 

region (Figure 3.2). The genomic DNA was isolated by citrine transgenic, mCherry transgenic 

and wild-type L. donovani parasites and PCR was done using given primers. 

Confirmation of gene expression was done by a strong fluorescent signal from mCherry or 

Citrine by fluorescence microscopy. The microscopic images were collected under Nikon 90i 

Eclipse fluorescence microscope. Citrine transgenic L. donovani (Citrine-Ld) cells were analyzed 

under Differential Interference Contrast (DIC), and Fluorescein isothiocyanate (FITC) filter and 

mCherry transgenic L. donovani (mCherry-Ld) cells were analyzed under DIC and TEXAS-RED 

(TXR) filter in a fluorescent microscope. Both citrine and mCherry transgenic L. donovani 

promastigotes were also run underflow cytometric analysis. Thirty thousand promastigotes per 

sample were analyzed in a flow cytometer for all promastigote parasites types including both 

mCherry-Ld and citrine-Ld promastigotes and WT-Ld promastigotes. Citrine-Ld promastigotes 

were analyzed in FL-1 channel histogram plot, and transgenic mCherry-Ld promastigotes were 

analyzed in FL-3 channel histogram plot. BD FACS Calibur flow cytometer.  
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3.4.6. DIRECT FLUORESCENT ANALYSIS (DFA) BASED IN VITRO SCREENING 

FOR TRANSGENIC PROMASTIGOTES PARASITES 

  Both mCherry-Ld and citrine-Ld parasites were serially diluted in 1:1 ratio from 20 

million/mL to 0.625 million/mL in the M199 medium in 96 wells plates. Plates were read by the 

fluorimeter. For citrine-Ld parasites, plates were read at excitation 486 nm and emission 535nm. 

For mCherry-Ld parasites, plates were read at excitation 544 nm and emission 590nm.  Based on 

this DFA of transgenic parasites, an assay has been applied to assess the activity of control drugs 

amphotericin B and pentamidine for 96 h. Simultaneously, AlamarBlue assay was applied for WT-

Ld, mCherry-Ld and Citrine-Ld promastigotes parasites. Three-day-old cultures of mCherry-Ld 

citrine-Ld and WT-Ld promastigote parasites were diluted to 1 million parasites/mL. 196 µl of 

diluted culture was added to each well of the 96 well plate. 4 µl of diluted amphotericin B and 

pentamidine samples were added in plate culture. Assay for control drugs was done in triplicates. 

The plates were incubated in 26oC for 96 h. The plates with mCherry-Ld and citrine-Ld 

promastigotes parasites were analyzed directly by the fluorimeter.  The other plates with wild-type 

and both transgenic promastigote parasites with AlamarBlue assay were read on a fluorimeter All 

the IC50, and IC90 values were computed, and dose-response curves were developed by XLfit 

5.2.2 software. 

 

3.7.7.  INFECTIVITY OF TRANSGENIC L. DONOVANI CELLS IN DIFFERENTIATED 

THP1 CELLS 
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 Fifty thousand cells/well of THP1 cells were differentiated in chamber slides. For infecting 

differentiated THP1 cells, a 5-6 day old culture of mCherry-Ld and citrine-Ld stationary 

promastigote parasite were diluted to 2.5x106 parasite cells/mL. 200 µl of diluted cultures were 

dispensed on differentiated THP1 cells in separate chamber slide. All chamber slides were 

incubated at 37°C in a 5% CO2 incubator for 24 h to allow parasites to infect differentiated THP1 

cells. All chamber slides with THP1 cells infected with L. donovani promastigotes were washed 

with serum-free, RPMI-1640 medium to remove the external parasite. Chamber slides were 

incubated again at 37°C, 5% CO2 for 48 hr. After a 48 h incubation, chamber slides were washed 

three times with serum-free RPMI-1640 medium and washed once with warm (37oC) Dulbecco's 

phosphate-buffered saline (DPBS). Four percent formaldehyde (v/v) was prepared from 16% (v/v) 

formaldehyde (methanol free, Polysciences, Inc) by diluting 1 to 4 in warm 1X PBS to make a 4% 

formaldehyde solution. DPBS was aspirated, and 200 µl warm 4% formaldehyde was dispensed 

on differentiated THP1 cells. Cells were allowed to fix for 15 min at 37oC. Fixed differentiated 

THP1 cells were washed again with warm (37oC) DPBS. Digital images have been captured from 

slides in different filters (DIC + FITC filter for Citrine-Ld and DIC + Texas red filter mCherry-Ld 

parasites. The number of differentiated THP1 cells and number of amastigotes in all images was 

calculated with the help of ImageJ software and infectivity were calculated by the ratio of infected 

amastigote THP1 cells. 

 

3.4.8.  FLOW CYTOMETRIC ANALYSIS OF INTRACELLULAR L. DONOVANI 

AMASTIGOTES  

 Fifty thousand cells/well of THP1 cells were differentiated in 96 well plates. For infecting 
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differentiated THP1 cells, a five to six-day-old promastigote cultures of both transgenic (both 

citrine-Ld and mCherry-Ld) and wild-type L. donovani were diluted to 2.5x106 cells/mL. The 

diluted culture of mCherry-Ld, citrine-Ld and WT-Ld parasites was added over differentiated 

THP1 cells in separate 96 well plates. All 96 well plates were incubated at 37oC in 5% CO2 

incubator for 24 hr. External parasites were washed with incomplete RPMI medium, and infected 

THP1 cells were treated with control drugs for 96 hr. Plates were again washed to remove the 

external parasites. Infected differentiated THP1 cells were detached by treating them with 20µl of 

1X trypsin solution (0.25% trypsin (w/v)) for 5 min. Cells were gated from middle regions of 

SSC/FSC (Side scatter/forward scatter) plot for analysis to avoid the cell clumps and debris, and 

10,000 gated events were analyzed on relevant histogram plot for the fluorescent peak. Peak in 

FL1-H (Green fluorescence) histogram plot was observed for the citrine-Ld parasite. Peak in FL3-

H (Red fluorescence) histogram plot was observed for the mCherry-Ld parasite.  Assay for control 

drugs was done in triplicates.  

A parasite rescue and transformation (PRT) assay for macrophage cells internalized 

amastigote (Jain et al. 2012) with 96 h of treatment with control drugs (amphotericin B and 

pentamidine) were also performed using wild-type, transgenic citrine, and transgenic L. donovani 

parasites. Assay for control drugs was done in triplicates. A comparative analysis is given between 

PRT assay and FACS analysis in Table 3.3. 

 

3.4.9. MICROSCOPIC ANALYSIS OF INTRACELLULAR TRANSGENIC 

AMASTIGOTES 

 The microscopic method was followed as mentioned above in 3.2.6. Section. The assay 
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has been done in triplicate for control drugs amphotericin B and pentamidine. Effect of control 

drugs was observed for 96 h medium with drug dilutions was replaced daily. The assay has been 

applied for both mCherry-Ld and citrine-Ld parasites. After 96 h, chamber slides were fixed with 

4% formaldehyde. Digital images have been captured from slides in different filters (DIC + FITC 

filter for Citrine and DIC + Texas red filter mCherry Leishmania Parasite). (Jain et al., 2012). The 

infectivity was calculated from the ratio of total infected amastigote count to total THP1 cells 

count.  

 

3.4.10. IN VITRO MACROPHAGE AMASTIGOTE ASSAY 

 A recently developed promastigote rescue assay was applied for both mCherry and citrine 

L. donovani parasites and wild-type of L. donovani parasite (Jain et al., 2012). The plates with 

differentiated THP1 cells were washed with serum-free medium with the help of 384 well plate 

cell washing system (Molecular device AquaMax 4000). L. donovani promastigotes were 

harvested at the stationary phase (metacyclic infective stage) and suspended into RPMI1640 

medium with 2% FBS at the density of 2.5X106 cells/mL. After 24 h the non-adherent 

macrophages and external Leishmania promastigotes were washed off with the serum-free 

RPMI1640 medium. Control drugs amphotericin B and pentamidine (six different concentrations 

in triplicate) were diluted in separate plates and transferred to plates with infected THP1 cells. The 

plates were placed again in a CO2 incubator at 37oC for 96 hr. After 96 h, the plates were washed 

again with serum free RPMI medium. Infected differentiated THP1 cells subjected to control lysis 

by 0.05% (w/v) SDS solution in incomplete RPMI medium for 30 seconds. SDS solution was 

diluted with completed RPMI medium after control lysis. Control lysis confirm the lysis of THP1 
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cells membrane lysis without affecting the viability of amastigote. Plates with rescued amastigotes 

allowed to grow and transform to promastigotes for 48 h at 26oC incubator. After 48 h AlamarBlue 

was added to the plates and again incubated at 26oC for overnight.  Plates were read on a 

fluorimeter (BMG Lab Technologies) at an excitation wavelength of 544 nm and an emission 

wavelength of 590 nm. IC50 and IC90 values were computed from the dose-response curves. 

Dose-response curves were developed by XLfit 5.2.2 software.  

 

3.5. RESULTS 

 

3.5.1. STABLE TRANSFECTION OF L. DONOVANI CELLS WITH MCHERRY AND 

CITRINE REPORTER GENES 

 The LEXSY plasmids were constructed, one with a mCherry reporter gene in a 

combination of blasticidin marker gene and another with a citrine reporter gene in a combination 

of hygromycin marker gene (Figure 3.1). The mCherry and citrine gene inserts in pLEXSY 

plasmids were confirmed by BglII and NotI double restriction enzyme digestion. The mCherry 

and citrine genes inserts were confirmed by agarose gel electrophoresis with a band of 711bp for 

mCherry and band of 717bp for the citrine gene (Figure 3.1). Both plasmid constructs were 

linearized by SwaI digestion, and the linearization of plasmid construct (with 5’SSU and 3’SSU 

region) was confirmed by agarose gel electrophoresis by bands of ~5700bp for both CHR-BSD 

and CTN-HYG LEXSY plasmid (Figure 3.1). The linearized plasmid DNA (with 5’ssu and 3’ssu 

regions) were electroporated in WT-Ld promastigotes. The confirmation of gene integration was 

done by primer PCR method. A band of 1790pb was observed for primers P2, and P3 and a band 

of 711 pb was observed for primers P1 and P2 for genomic DNA isolated from mCherry-Ld 
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parasites. Similarly, a band of 1790pb was observed for primers P5, and P3 and a band of 717 bp 

was observed for primers P4 and P3 for genomic DNA isolated from citrine-Ld parasites (Table 

3.1). 

 

3.5.2. EXPRESSION OF REPORTER GENES 

 Expression of the mCherry gene in mCherry-Ld parasites and citrine gene in citrine-Ld 

parasites was confirmed by both fluorescent microscopy and flow cytometry. The mCherry-Ld 

parasite was detected under DIC + TEX RED filter, and the citrine-Ld parasite was detected under 

DIC + FITC filter of Nikon 90i Eclipse fluorescent microscope (Figure 3.3) (Supporting file 3.1). 

The WT-Ld parasites have not shown any fluorescence either in FITC filter or in TEXAS RED 

filter. However, the citrine-Ld parasites have shown strong fluorescence in FITC filter (represent 

by Green color). Similarly, mCherry-Ld parasites have shown strong fluorescence in the TEXAS-

RED filter (represented by red color). In flow cytometry, The mCherry-Ld parasites have shown 

two peaks in FL-3 (Red fluorescence) dot plot and histogram plot, one for auto fluorescence and 

another for the fluorescence signals from reporter protein from mCherry-Ld. Similarly, The 

citrine-Ld parasites have shown two peaks in FL-1 (green fluorescence) dot plot and histogram 

plot, one for auto fluorescence and another for the fluorescence signals from reporter protein from 

citrine-Ld. (Figure 3.4). 

 

3.5.3. TRANSGENIC PROMASTIGOTES BASED IN VITRO SCREENING  

 Because of high expression of the reporter gene, the growth of both mCherry-Ld and 

citrine-Ld parasites could be analyzed by the fluorimeter. Relative fluorescence unit (RFU) 

increased with the increase in parasite number for both mCherry-Ld and citrine-Ld promastigote 
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parasites. A scatter plot between a number of mCherry-Ld promastigote parasites and RFU value.  

A linear trend line was drawn which has a correlation coefficient (R square) value 0.9983 (Figure 

3.5A).  Similarly, a scatter plot between a number of citrine-Ld promastigote parasites and RFU 

value.  A linear trend line was drawn which has correlation coefficient (R square) value 0.9994 

(Figure 3.5B).  Here, >0.9900 of correlation coefficient proofs an excellent correlation in the 

manual counting of parasite and RFU value. Based on this fluorimetric growth analysis, a 

screening method was developed for in vitro promastigote screening using both transgenic 

mCherry-Ld and citrine-Ld parasites. The assay was validated using six different concentrations 

of control drugs amphotericin B and pentamidine in triplicates. A similar assay was done by 

AlamaBlue assay for both mCherry-Ld and citrine-Ld promastigote parasite and WT-Ld 

promastigote parasites. The IC50 values for amphotericin B against mCherry-Ld and citrine-Ld 

were 0.15 ± 0.02 µg/mL, 0.25 ± 0.06 µg/mL and 0.20 ± 0.06 µg/mL respectively in DFA method. 

The IC50 values for amphotericin B against WT-Ld, mCherry-Ld, and citrine-Ld were 0.16 ± 0.01 

µg/mL and 0.34 ± 0.03 µg/mL respectively in AlamarBlue based method (Table 3.2). Similarities 

in IC50 values of control drugs amphotericin B and pentamidine in both DFA and AlamarBlue 

based method prove the validity of fluorimetry based in vitro promastigote screening assay. 

 

3.5.4. INTRACELLULAR TRANSGENIC AMASTIGOTES BASED IN VITRO 

SCREENING 

3.5.4.1. MICROSCOPIC EVALUATION 

Infectivity of transgenic parasites was confirmed in differentiated THP1 cells. The images 

of differentiated THP1 cells infected with either mCherry-Ld amastigotes or by citrine-Ld 

amastigotes were collected by Nikon 90i Eclipse fluorescence microscope. The THP1 cells are 
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represented in DIC filter (Grey colored). The citrine-Ld intracellular amastigotes have shown 

strong fluorescence in FITC filter (represent by Yellow color) inside the THP1 cells. Similarly, 

mCherry-Ld parasites have shown strong fluorescence in the TEXAS-RED filter (represented by 

red color) inside the THP1 cells (Figure 6). Infectivity was calculated by the ratio of amastigote 

count to THP1 cells counts with the help of ImageJ software.  

Based on above transgenic intracellular microscopic analysis, a microscopic assay for 

intracellular amastigote was developed for both mCherry-Ld and citrine-Ld amastigotes as 

parasites. Both transgenic intracellular amastigotes were treated with the standard antileishmanial 

drugs amphotericin B and pentamidine from 2µg/mL to 0.016µg/mL concentration. The images 

of both mCherry-Ld and citrine-Ld intracellular amastigotes treated with different concentration 

of standard antileishmanial drugs were collected by Nikon 90i Eclipse fluorescent microscope 

(Figure 3.8). The infectivity was calculated for each treated samples and compared with 

uninfected THP1 cells (Negative control) and untreated infected THP1 cells (Positive control). 

Infectivity of untreated infected THP1 cells was considered as 100%, and the infectivity of other 

treated samples was compared to calculate the IC50 values using the XLfit software. The IC 50 

values of amphotericin B against mCherry-Ld amastigotes and citrine-Ld amastigotes were 0.08± 

0.05µg/mL and 0.06± 0.012 µg/mL respectively (Table 3.3). The IC 50 values of pentamidine 

against mCherry-Ld amastigotes and citrine-Ld amastigotes were 0.45± 0.12 µg/mL and 0.34± 

0.15 µg/mL respectively (Table 3.3). 

 

3.5.4.2.   FLOW CYTOMETRIC EVALUATION 

Macrophage internalized amastigote growth can be analyzed with the help of flow 

cytometry (Figure 3.7).  The differentiated THP1 cells infected with mCherry-Ld amastigotes 
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come with shift the peak toward the right side in FL3 channel histogram plot in flow cytometry 

compared to the peak for uninfected differentiated THP1 cells (Figure 3.7 A). Similarly, the 

differentiated THP1 cells infected with citrine-Ld amastigotes come with shift the peak toward the 

right side in FL1 channel histogram plot in flow cytometry compared to the peak for uninfected 

differentiated THP1 cells (Figure 3.7 B). The mean fluorescence of the pick area M1 was utilized 

to compare the infectivity of the parasites. Based on this flow cytometric analysis, a macrophage-

internalized amastigote screening method was developed. The differentiated THP1 cells infected 

with either mCherry or citrine transgenic L. donovani parasites were treated with control drug 

amphotericin B and pentamidine in 6 different concentrations from 10µg/mL to 0.0032µg/mL. 

The IC 50 values of amphotericin B against mCherry-Ld amastigotes and citrine-Ld amastigotes 

were 0.08± 0.05µg/mL and The IC 50 values of amphotericin B against mCherry-Ld amastigotes 

and citrine-Ld amastigotes were 0.08± 0.05µg/mL and 0.06± 0.012 µg/mL respectively (Table 

3.3). The IC 50 values of pentamidine against mCherry-Ld amastigotes and citrine-Ld amastigotes 

were 0.13 ± 0.015 µg/mL and 0.12 ± 0.02 µg/mL respectively (Table 3.3). The IC 50 values of 

pentamidine against mCherry-Ld amastigotes and citrine-Ld amastigotes were 1.3 ± 0.05 µg/mL 

and 1.1 ± 0.02 µg/mL respectively (Table 3.3). 

 

3.5.4.3.   EVALUATION BY PARASITE RESCUED AND TRANSFORMATION ASSAY 

The control drugs amphotericin B and pentamidine activity was also analyzed against WT-

Ld, mCherry-Ld and citrine-Ld intracellular amastigotes by PRT assay (Jain et al., 2012). The IC 

50 values of amphotericin B were 0.039 ± 0.028µg/mL, 0.044 ± 0.027µg/mL and 0.061 ± 

0.025µg/mL against WT-Ld, mCherry-Ld and citrine-Ld intracellular amastigotes respectively. 

The IC 50 values of pentamidine were 0.389 ± 0.012 µg/mL, 0.360 ± 0.010 µg/mL and 0.332 ± 
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0.008 µg/mL against WT-Ld, mCherry-Ld and citrine-Ld intracellular amastigotes respectively.   

The activities of control drugs by fluorescent microscopy and flow cytometry for both 

mCherry and citrine internalized amastigotes, and PRT assay for wild-type of internalized 

amastigotes of L. donovani was evaluated and compared in Table 3.3. The comparative IC50 

values of control drugs Amphotericin B and Pentamidine validated the screening assay for 

transgenic internalized amastigotes. 
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FIGURES AND TABLES 

 

 

 

 

 

 

Figure 3.1: (A) LEXSY plasmid with a mCherry reporter gene and blasticidin (BSD) resistance 

marker gene. (B) LEXSY plasmid with a citrine reporter gene and hygromycin (hyg) resistance 

marker gene. (C) Confirmation of mCherry and Citrine gene in plasmids isolated from XL10 gold 

ultra-competent E.coli cells. The plasmids were digested with bgl II and Not I double restriction 

enzyme digestion. (D) Linearization of 5’ssu to 3’ssu fragment of the plasmid by Swa I restriction 

enzyme digestion.  
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Table 3.1: Primer sequence used for PCR method to confirm the reporter genes and their 

integration in L. donovani genome. 

 
Primer Purpose Sequence 
P1 mCherry 

Forward 
CCGCTCGAGGAAGATCTCCACCATGGTGAGCAAGGGCG 

P2 mCherry 
Reverse 

ATAAGAATGCGGCCGCTTACTTGTACAGCTCGTCCATGC 

P3 Citrine 
Forward 

CCGCTCGAGGAAGATCTCCACCATGGTGAGCAAGGGCGAGG 

P4 Citrine 
Reverse 

ATAAGAATGCGGCCGCTTACTTGTACAGCTCGTCCATG 

P5 Integration 
Forward 

CTTGTTTCAAGGACTTAGCCATG 
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Figure 3.2: (A) Schematic view of the integration of the DNA fragment with the 5’ssu end and 

3’ssu end with a mCherry reporter gene and a BSD resistance marker gene (previously linearized 

with SwaI LEXSY-MCHERRY plasmid) into the 18S rRNA locus of wild-type L. donovani genome. 

The confirmation of mCherry gene in leishmania genomic DNA was done by PCR using mCherry 

forward (P1) and mCherry Reverse (P2) primers (711bp band). The confirmation of integration of 

linear DNA with 5’ssu end and 3’ssu end was done by PCR using integration forward (P3, primers 

of Leishmania genomic region) and mCherry reverse (P2) primers (Band of 1785bp). (B) 

Schematic view of the integration of the DNA fragment with the 5’ssu end and 3’ssu end with a 

citrine reporter gene and hyg resistance marker gene (previously linearized with SwaI LEXSY-

CITRINE plasmid) into the 18S rRNA locus of wild-type L. donovani genome. The confirmation 

of citrine gene in leishmania genomic DNA was done by PCR using citrine forward (P4) and 

citrine Reverse (P5) primers (717 bp band). The confirmation of integration of linear DNA with 

5’ssu end and 3’ssu end was done by PCR using integration forward (P3) and citrine reverse (P5) 

primers (Band of 1794 bp).  
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Figure 3.3: (A) Image of WT-Ld promastigote parasites. The image has been taken in 

DIC+FITC+TXR filters. (B) Image of Citrine-Ld promastigote parasites. The image has been 

taken in DIC+FITC filters. (C) Image of mCherry-Ld promastigote parasites. The image has been 

taken in DIC+TXR filters. All images collected by Nikon 90i Eclipse fluorescent microscope. 
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Figure 3.4: (A) FL3 Histogram plot with no fluorescent signal peak in flow cytometry for WT-Ld 

promastigote parasites. (B) FL1 Histogram plot with no fluorescent signal peak in flow cytometry 

for WT-Ld promastigote parasites. (C) FL3 Histogram plot with a prominent fluorescent signal 

peak in flow cytometry for mCherry-Ld promastigote parasites. (D) FL1 Histogram plot with a 

prominent fluorescent signal peak in flow cytometry for citrine-Ld promastigote parasites. 
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Figure 3.5: (A) Scatter plot between a number of mCherry-Ld promastigote parasites and Relative 

fluorescent unit (RFU).  A linear trend line was drawn which has a correlation coefficient (R 

square) value 0.9983. (B) Scatter plot between a number of citrine-Ld promastigote parasites and 

Relative fluorescent unit (RFU).  A linear trend line was drawn which has a correlation coefficient 

(R square) value 0.9994. 
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Figure 3.6: (A) Differentiated THP1 cells infected with citrine-Ld amastigotes. The image has 

been taken in DIC+FITC filter. (B) Differentiated THP1 cells infected with mCherry-Ld 

amastigotes. Image has been taken in DIC+TXR filter. A single image here is a montage of 4X4 

area. The images have been taken at 400X magnification.  
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Figure 3.7: (A) FL1 Histogram plot with no fluorescent signal peak in M1 area flow cytometry 

for uninfected differentiated THP1 cells (B) FL3 Histogram plot with no fluorescent signal peak 

in M1 area flow cytometry for uninfected differentiated THP1 cells (C) FL1 Histogram plot with 

prominent fluorescent signal peak in M1 area flow cytometry for differentiated THP1 cells infected 

with citrine-Ld amastigotes. (D) FL3 Histogram plot with a prominent fluorescent signal peak in 

M1 area flow cytometry for differentiated THP1 cells infected with mCherry-Ld amastigotes. 
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Figure 3.8: (A) Images of transgenic L. donovani infected differentiated THP1 cells treated with 

different concentrations of control drugs Amphotericin B and Pentamidine and compared with 

infected THP1 cells without treatment (Positive control) and uninfected THP1 cells (Negative 

control). In panel (A) differentiated THP1 cells infected with mCherry-Ld parasites and in panel 

(B) differentiated THP1 cells infected with citrine-Ld parasites. Images were collected in 

DIC+TXR filter for mCherry transgenic leishmania infected Cells and images were collected in 

DIC+FITC filter for citrine transgenic leishmania infected Cells. 
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Table 3.2: Promastigote assay for WT-Ld, citrine-Ld, and mCherry-Ld. Direct Florescence 

analysis based activity assessment for Amphotericin B and pentamidine was done on both citrine-

Ld and mCherry-Ld promastigote parasites which was based on expression of citrine and mCherry 

fluorophore protein. Activity assessment of Amphotericin B and pentamidine was also done by 

alamarBlue assay for WT-Ld, and both citrine-Ld and mCherry-Ld promastigote parasites. 

 
 

Direct Florescence analysis AlamarBlue assay 
Compoun
ds 

Citrine-Ld mCherry-Ld Wild-Type  
Ld 

Citrine-Ld mCherry-Ld 
 

IC 50 µg/mL IC 50
 
µg/mL IC 50 µg/mL IC 50

 
µg/mL IC 50 µg/mL 

Amphote
recin B 

0.34 ± 0.03 0.16 ± 0.01 0.15 ± 0.02 0.20 ± 0.06 0.25 ± 0.06 

Pentamid
ine 

1.73 ± 0.11 1.63 ± 0.05 1.30 ± 0.27 1.76 ± 0.05 1.73 ± 0.09 
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Table 3.3: L. donovani intracellular amastigote assay using WT-Ld, citrine-Ld, and mCherry-Ld. 

Activity assessment for Amphotericin B and pentamidine was done on both citrine-Ld, and 

mCherry-Ld amastigote parasites infected in differentiated THP1 cells was done by flow 

cytometry and fluorescent microscopy. Activity assessment of Amphotericin B and pentamidine 

was also done by PRT assay for WT-Ld, and both citrine-Ld and mCherry-Ld amastigote parasites 

infected in differentiated THP1 cells. 

 

 

 

 

 

 

 

 

 

 

 

 

Compou
nds 

PRT assay FACS analysis assay microscopic 
analysis assay 

WT- Ld Citrine-
Ld 

mCherry- 
Ld 

Citrine-Ld mCherry- 
Ld 

Citrine- 
Ld 

mCherry
- Ld 

IC 50 
µg/mL 

IC 50 
µg/mL 

IC 50 
µg/mL 

IC 50 
µg/mL 

IC 50 
µg/mL 

IC 50 
µg/mL 

IC 50 
µg/mL 

Amphote
ricin B 

0.04 ± 
0.03 

0.06 ± 
0.02 

0.04 ± 
0.03 

0.12 ± 
0.02 

0.13 ± 
0.01 

0.06 ± 
0.01 

0.08 ± 
0.05 

Pentami
dine 

0.39 ± 
0.01 

0.33 ± 
0.01 

0.36 ± 
0.01 

1.10 ± 
0.02 

1.30 ± 
0.05 

0.34 ± 
0.15 

0.45 ± 
0.12 



 
140 

3.6. DISCUSSION  

In this study transgenic, L. donovani parasites were developed with mCherry and citrine 

fluorophore gene by stable transfection approaches. The leishmania cells developed through stable 

transfection method do not require the selection drug to maintain the expression level (Roy et al., 

2000). Stable integration of reporter genes into the ribosomal locus represents a valuable tool for 

assessing phenotypes related to parasite intracellular infectivity in ex-vivo or  in vivo models when 

a long period of growth without selection is required (Misslitz et al., 2000). The reporter gene is 

integrated into the parasite genome, so the relative output of expression of reporter gene does not 

depend on the number of copy of transfected plasmid (Misslitz et al., 2000). This increases the 

advantages for application of these transgenic cell lines for complex macrophage amastigote 

infection model. Citrine, a yellow fluorescent protein ( a derivative of green fluorescent protein), 

and mCherry, a red fluorescent protein, are suitable due to better photo-stability, sensitivity, 

resistant to photo-bleaching and bright fluorescence of these reporter proteins.  These fluorescent 

Proteins can be constitutively expressed in the leishmanial cytoplasm and mature rapidly. These 

properties are appropriate for the real-time analysis of the reporter proteins. Stable transfection of 

both mCherry and Citrine reporter genes was done using leishmania expression system (LEXSY) 

plasmid vector. LEXSY plasmid is based on the protozoan host that combined the eukaryotic 

protein synthesis with correct folding and Full range of post-translational modifications. LEXSY 

plasmid has a high expression-success rate with higher yield. The transgenic cells developed by 

LEXSY based stable transfection does not require selection drug in medium to maintain the 

expression level. The Linear DNA with reporter and marker gene integrated into to leishmanial 

genome at 18S ssu locus by recombination.  Here, LEXSY plasmid with mCherry reporter gene 

with blasticidin marker and another LEXSY plasmid with Citrine reporter genes with hygromycin 
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B marker will be electroporated separately into wild-type of L. donovani cells. The reporter gene 

and its integration were confirmed by PCR. The expression of the reporter gene was confirmed by 

the strong fluorescent signal from both mCherry and Citrine transgenic L. donovani parasites. Both 

mCherry and Citrine transgenic parasite can be analyzed by different fluorescence-based 

techniques. A fluorimetry, fluorescent microscopy, and flow cytometry were applied for growth 

analysis of promastigotes and macrophage-internalized transgenic L. donovani amastigotes. 

Screening methods were developed for both transgenic mCherry and citrine L. donovani 

promastigotes, and internalized amastigotes using these fluorescence-based techniques and 

screening methods were validated by the activity of control drugs Amphotericin B and 

Pentamidine and compared the activity of these drugs in previously available older screening 

methods.  

 In conclusion, two transgenic cell lines of L. donovani have been developed with mCherry 

and Citrine fluorophore genes by stable transfection approach using LEXSY plasmid vector. Both 

the transgenic cell lines have a stable and constitutive expression of fluorescentent reporter 

proteins. Further, the screening methods have been developed with promastigotes, and THP1 cells 

internalized amastigote forms of the transgenic parasites cell lines employing flowcytometric 

analysis and fluorescent microscopy. Furthermore, these transgenic parasites have the potential for 

other applications that include understanding the parasite biology, host-parasite interactions and 

in vitro/in vivo screening for new drug discovery. 
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CHAPTER IV 

FLUORESCENCE-BASED ASSAYS FOR MONITORING INTRA-ERYTHROCYTIC 

MALARIA PARASITES USING LDS-751, A NUCLEIC ACID STAIN 

 

4.1. INTRODUCTION 

There are many challenges in malaria control, particularly diagnosis and treatment of 

malaria. The current conditions of emerging resistance against available antimalarials alarm the 

further possibility of an increase in malaria fatalities. There is an urgent need of better alternative 

treatment for malaria and necessitate the discovery of new drugs and drug leads. The majority of 

malaria cases worldwide rely on clinical diagnosis to define the type of treatment (Landier et al., 

2016). Diagnosis of malaria is primarily based on the confirmation of malaria parasites in RBCs 

of patients. New antimalarial drug discovery approaches primarily rely on in vitro screening of 

compound libraries against malaria parasite culture and further activity assessment of lead 

compounds in preclinical in vivo animal models. In vitro and in vivo antimalarial screening 

methods were initially based on analysis of  parasitemia, which is the ratio of the malaria parasite-

infected RBCs to total RBCs. The method for analysis of parasitemia based on microscopic 

examination of Giemsa stained blood smears was developed in 1904 (Shute and Maryon, 1963). 

Since that time it has remained as the official gold standard for malaria diagnosis (Makler et al., 

1998). Most of the laboratories in the field still depend on microscopy for confirmation of malaria 

in blood and also identification of the parasite species. Microscopy is the major method for malaria 
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diagnosis in the clinical laboratories as well as malaria parasitemia analysis in antimalarial 

screenings (Makler et al., 1998). However,  microscopic analysis has potentials problem with 

clinical diagnosis as well as laboratory parasitemia analysis. Significant misdiagnoses namely,  

false positives (7–36%), false negatives (5–18%), and wrong identification of species  (13–15%) 

have been reported in the microscopic  diagnosis of malaria in the United Kingdom (Milne et al., 

1994) and Thailand (Beadle et al., 1994; Fix et al., 1988).  A high frequency of technical errors 

(e.g., wrong pH of the staining solution or a poor quality the smears) has also been reported. 

Therefore, microscopy is an imperfect ‘Gold Standard’ method for diagnosis as well as parasitemia 

analysis in antimalarial drug screenings (Collier and Longmore, 1983; Makler et al., 1998). 

The parasitemia analysis method based on incorporation of radioactive hypoxanthine was 

developed as an alternative to laborious and time-consuming microscopic assays (Desjardins et 

al., 1979). Although this method could be used for high-throughput screenings, there are several 

challenges in this assay. The assay requires specific needs for a radioactive lab. Incorporation of 

radioactive hypoxanthine by other proliferative cells in blood may cause high background. The 

hypoxanthine uptake assay does not measure parasitemia directly, as its incorporation is dependent 

on DNA synthesis which only occurs in the later stages of the parasite life cycle (Yayon et al., 

1983). This assay measures the further growth of the malaria parasite. 

Additional methods have been developed for monitoring malaria growth based on the 

enzymatic activity of parasites lactate dehydrogenase (pLDH) (Knobloch and Henk, 1995) or 

ELISA assay for malarial histidine-rich protein 2 (HRP2) (Beadle et al., 1994). The pLDH assay 

is based on selective utilization of 3-acetyl pyridine NAD (APAD) as co-factor by the malaria 

LDH. The colorimetric methods have been developed based on the pLDH assay(Makler and 

Hinrichs, 1993). These assays may be performed in microplates and can be used for high-
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throughput screening. However, there is a low degree of concordance between LDH based assay 

and standard microscopy based determinations of parasitemia (Jelinek et al., 1996; Knobloch and 

Henk, 1995). The parasite's histidine-rich protein 2 (HRP2)-based ELISA assay has a good 

correlation with the hypoxanthine uptake (Desakorn et al., 1997). However, these assays are not 

cost-effective, especially for large-scale screening.  

The methods based on flow cytometric analysis (FCA) of the malaria parasite have been 

developed for diagnosis and the parasitemia analysis. These methods can be applied to automation 

and high throughput parasitemia analysis (Woodrow et al., 2015). However, application of FCA 

methods  for routine clinical diagnosis of malaria has not been reported for automated screening 

(Grimberg, 2011). The FCA methods take  advantage of the absence of DNA in uninfected RBCs 

and presence of parasite DNA in malaria-infected RBCs. The intraerythrocytic malaria parasite 

could be detected by flow cytometry by staining with an appropriate DNA-binding fluorescent 

dye. Different fluorescent dyes namely, Hoechst 33258 (van Vianen et al., 1990), SYTO-9 

(Izumiyama et al., 2009), SYTO-61 (Fu et al., 2010), ethidium bromide (Staalsoe et al., 1999), 

propidium iodide (Pattanapanyasat et al., 1997), acridine orange (Hare, 1986),  4,6-diamidino-2-

phenylindole (Baniecki et al., 2007), YOYO-1 (Campo et al., 2011; Xie et al., 2007) and SYBR 

Green I (Izumiyama et al., 2009)  have been used for analysis of  parasitemia in in vitro cultures 

of Plasmodium falciparum by FCA. YOYO-1 (Xie et al., 2007), SYTO-16 (Jimenez-Diaz et al., 

2009) and SYBR Green I (Somsak et al., 2012) have also been employed for the determination of 

parasitemia in in vivo blood samples from the Plasmodium berghei infected mice. The parasitemia 

analysis directly from the human or mice blood sample is particularly difficult because blood 

samples have a mixed population of erythrocytes, neutrophils, lymphocytes, monocytes, and 

reticulocytes. The currently used FCA methods for parasitemia analysis show high background 
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values due to the mixed cell populations in the blood. The blood cell populations may be analyzed 

by gating in the FSC/SSC dot plots in FCA. However, separation of reticulocyte and erythrocyte 

populations in FSC/SSC dot plot is challenging (Terstappen and Levin, 1992; Wiczling and 

Krzyzanski, 2008). Therefore, the varing population of circulating reticulocytes pose may result 

in high background and false signals  for parasitemia analysis by FCA. This problem occurs due 

to significant levels of RNA in the reticulocytes. The fluorescent probes YOYO-1, SYTO-16 and 

SYBR Green I  bind with RNA, even though less prominently compared to binding to DNA. This 

problem may be solved by treatment of blood cells samples with RNase. In case of a nonpermeant 

fluorescent nucleic acid dye, an additional processing for  permeabilization the cells are required. 

Current FCA methods require cells fixation, permeabilization, RNase treatments, nucleic acid dye 

staining and complex flow cytometric analysis (Jimenez-Diaz et al., 2009; Xie et al., 2007).  

Laser dye styryl–751 (LDS-751) (Fig 4.1) is a cell-permeant nucleic acid stain that has 

been used to discriminate intact nucleated cells from nonnucleated and damaged nucleated cells, 

as well as to identify distinct cell types in mixed populations of neutrophils, leukocytes and 

monocytes by flow cytometry (Nicholson et al., 2007). LDS-751 in combination with other nucleic 

acid stains has been used for accurate enumeration of  erythrocytes, reticulocytes, platelets, 

neutrophils, eosinophils, monocytes, lymphocytes, nucleated erythrocytes, and immature 

nucleated cells by flow cytometry (Terstappen and Levin, 1992). LDS-751 binds to RNA 

(excitation/emission maxima approx 590/607 nm) and to DNA (excitation/emission maxima 

approx 543/approx 712 nm) with an approx 20-fold increase in fluorescence on binding to double-

stranded DNA (Terstappen and Loken, 1988). Due to its differential excitation/emission spectra, 

LDS-751 permit its use to discriminate DNA and RNA in cells. This advantage of LDS-751 allows 

differentiation of reticulocyte populations from nucleated cells as well infected erythrocytes 
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(Wiczling and Krzyzanski, 2008). The LDS-751 is a cell-permeable stain, which produces 

differential fluorescence signals on binding with RNA (ex/em 590/607 nm) and DNA (ex/em 

543/712 nm). Due to the differential excitation/emission spectra, LDS-751 permits its use to 

discriminate DNA and RNA in cells. LDS-751 can be utilized in the flow cytometric analysis of 

the malaria-infected blood samples. The LDS-751 based parasitemia analysis will be-be quick and 

simple because the staining of erythrocytes with LDS-751 may not require fixation, 

permeabilization, and RNase pre-treatment to remove background due to reticulocytes.   

  

4.2. HYPOTHESIS 

 Staining of malaria-infected blood cells with LDS-751 (a cell-permeant nucleic acid stain) 

allows differential detection of malaria parasite-infected and uninfected erythrocytes, which may 

be implemented for malaria parasitemia analysis in in vitro and in vivo settings without misleading 

reticulocytes background signals.  

 

4.3. APPROACH 

 We have developed the FCA and fluorescent microscopy methods with LDS-751, a 

fluorescent cell-permeant DNA binding probe,   for  determination of parasitemia in the blood 

from malaria-infected mice and in vitro P. falciparum culture. The FCA method was implemented 

for in vivo antimalarial screening assays. The classical Giemsa-staining based microscopic method 

was standardized with digital images analysis of parasitemia with ImageJ software.  

 

4.4. MATERIALS AND METHODS 

4.4.1. ANIMAL HOST AND P. BERGHEI PARASITE 
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Most the in vivo work has been done under the protocol for in vivo antimalarial evaluation. 

This protocol was approved by the University of Mississippi Institutional Animal Care and Use 

Committee (IACUC). Male mice (Swiss Webster strain) with 18-20g body weight were obtained 

from ENVIGO.inc. All animals were quarantined for at least seven days before infection. Mice were 

divided into different groups with five mice in each group and were housed in top filter cages with 

food and water supplied ad libitum. P. berghei parasite was maintained in malaria mice model. To 

initiate the malaria infection in new mice, 0.5ml of highly parasitized blood (>20% parasitemia) of 

infected mouse stored in liquid nitrogen was thawed and injected intraperitoneally. Blood with high 

parasitemia level (18-20%) was collected from an infected donor mouse at 14th post-infection day by 

cardiac puncture method in Acid citrate dextrose (ACD) buffer. A new group of mice was 

intraperitoneally inoculated with 4 × 107 parasitized RBCs from infected blood. All group of infected 

mice was regularly observed for change in weight, change in appearance and change in behavior. 

 

4.4.2. MICROSCOPIC CONFIRMATION OF LDS-751 FLUORESCENCE  

The blood samples were collected on the slides from uninfected mice and highly infected mice 

by tail snipping method. Thin smears were prepared from collected blood samples. The slides were 

fixed with the help of methanol for 30 sec and dried for 30 min. The fixed slides were stained with 

LDS-751 at 2µg/mL concentration in DPBS for 20 min. Slides were washed and dried and observed 

under Nikon 90i Eclipse fluorescent microscope at 1000X magnification with the help of emergen 

oil. The images were collected in TEXAS-RED (TXR) and Differential interference contrast (DIC) 

filter. The TXR filter was used to collect the fluorescence of LDS-751 and DIC to collect the sample 

surface image. Differential interference contrast microscopy is similar to phase contrast microscopy 

but without the bright diffraction halo in images. 
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4.4.3. DIGITAL IMAGES ANALYSIS METHOD (DIAM) IN P. BERGHEI BLOOD 

SAMPLES  

This is microscopic parasitemia analysis method based on the counting of infected RBCs and 

total RBCs in thin smears of blood samples on glass slides. The blood samples were collected on the 

slides from infected mice by tail snipping method. Thin smears were prepared from collected blood 

samples. Slides were fixed with the help of methanol for 30 sec and dried for 30 min. All dried slides 

were stained with 1X Giemsa stain for 45 min. Slides were washed and dried.  All blood smears 

images were collected by Nikon i90 light microscope at 1000X magnification with the help of 

emergency oil. In digital images based parasitemia analysis, the images were analyzed with ImageJ 

software. Parasitemia is the ratio of malaria-infected RBCs to total RBCs. Images were opened in 

ImageJ software. Infected RBCs were counted by manual cells counter in image J software. The total 

RBC were counted by automated counting protocol in ImageJ software. The ImageJ software protocol 

for manual and automatic counting is given in figure 4.8.  

 

4.4.4. FCA of PARASITEMIA IN P. BERGHEI INFECTED MOUSE BLOOD SAMPLES 

  Most the in vivo work has been done under the protocol for in vivo antimalarial evaluation. 

The whole blood was collected from a 14-day post infection mice and uninfected normal mice in 

ACD buffer. The blood samples were washed with Dulbecco's phosphate-buffered saline (DPBS). 

RBCs counting of both kinds of the sample was done by Bio-Rad TC 10 Automated cell counter. The 

uninfected samples RBCs counting was adjusted to equal to infected samples RBCs counting. The 

infected blood sample was serially diluted in 1:1 ratio by uninfected blood samples with same RBCs 
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counting. The slides were prepared for undiluted an infected blood samples for microscopic 

parasitemia analysis. 5µl of serially diluted samples were stained for 20 min with LDS-751 1.0 µg/mL 

in DPBS that was diluted from its stock solution of 1mg/mL in DMSO. All samples were centrifuged 

and resuspended in DPBS. All the blood samples were run in a flow cytometer in FSC/SSC dot plot. 

RBCs population was gated in FSC/SSC dot plot. 100,000 gated population was analyzed on 

SSC/FL4 dot plot and as well as FL4 channel histogram plot. Parasitemia is the ratio of malaria-

infected RBCs to total RBCs. So parasitemia was calculated based on the percent gated population in 

the upper right region of SSC/FL4 dot plot or by a percent gated population change in the second 

peak in FL4 channel histogram. Thin smears were also prepared from uninfected, and P. berghei 

infected mice blood sample samples. Slides were fixed and stained with Giemsa. The images were 

collected by Nikon 90i eclipse light microscope at 600X magnification. 

 

4.4.5. MODIFIED PETER’S TEST BASED ANTIMALARIAL ASSAY 

Most the in vivo work has been done under the University of Mississippi IACUC approved the 

protocol for in vivo antimalarial evaluation. The four days’ Peter’s test has been modified for this 

study. Mice were divided into different groups with five mice in each group. Blood with high 

parasitemia level (18-20%) was collected from infected donor mice at 14th post-infection day by 

cardiac puncture method in ACD buffer. The slide was prepared, and parasitemia level was calculated 

by Giemsa staining method. The high parasitemia blood was diluted in PBS to 8X107 parasitized 

RBCs per ml. All the mice in all groups were inoculated with 4 × 107 parasitized RBCs (0.5ml) 

intraperitoneally at day 0. One group of 5 infected mice were treated with vehicle control. Separate 

groups of mice were treated with Chloroquine and amodiaquine at three different doses (33mg/kg, 

11mg/kg, and 3.7mg/kg). For each dose, one group of 5 mice are treated once daily from day 0 to 2 
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post infection. Blood samples from mice of control and treated groups were collected on slides 

(~10µl) as well as tubes (~2µl) with 500 µl of ACD buffer by tail snipping method on day 5, 7, 10, 

14, 21, and 28 post-infection. Timeline for infection, dosing and blood sample collections are given 

in Figure 4.2. All mice were observed for the change in appearance, behavior, and weight of the mice. 

Mice those lost equal or more than 25% of their weight were euthanized by CO2 gas euthanization 

method.  

 

4.4.6. DIA AND FCA BASED PARASITEMIA ANALYSIS IN BLOOD SAMPLES IN 

ANTIMALARIAL ASSAY 

Slides were prepared from all blood samples. Slides were fixed with methanol for 30 sec and 

stained with Giemsa 1X for 45 min. Slides were washed and dried. For digital analysis of parasitemia, 

all blood smears images were collected by Nikon i90 eclipse light microscope at 600X magnification 

with Emerson oil, and parasitemia was calculated with the help of ImageJ software as mentioned 

earlier. For Flow cytometric analysis of parasitemia, all blood samples were collected in 500 µl of 

ACD buffer. All samples were centrifuged at 2000rpm, and blood sample pellets were re-suspended 

in 500µl of DPBS. All the samples were stained with LDS-751 stain in 1.0 µg/mL concentration for 

20 min at room temperature. After staining, all samples were again centrifuged and resuspended in 

DPBS and run on flow-cytometer. All the samples were run in FSC/SSC dot plot. RBCs population 

was gated in FSC/SSC dot plot. 100,000 gated population was analyzed on SSC/FL4 dot plot and 

FL4 channel histogram. Here parasitemia was calculated based on percent gated population in the 

upper-right region in SSC/FL4 quadrangle dot plot or by percent gated population under the second 

peak in FL4 channel histogram. Parasitemia and mean survival time of mice in untreated control and 

treated groups are determined.  
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4.4.7. RETICULOCYTES RICH BLOOD SAMPLES PARASITEMIA ANALYSIS 

A high number of reticulocyte appeared in the blood of Chloroquine (33.3mg/kg) Treated mice 

at 28 days of post-infection. Blood samples were collected on the slide as well as a tube with ACD 

solution.  Slides were prepared and stained with Giemsa, and the images were collected by NIKON 

90i Eclipse microscope. The Giemsa-stained images of blood smears with high reticulocytes are given 

in Figure 4.10. The blood samples collected in the tube in ACD buffer were stained with LDS-751 

and run in a flow cytometer for parasitemia analysis (similar to section 4.2.4.). 

 

4.4.8. P. FALCIPARUM CULTURE MAINTAINANCE 

  The continuous culture of a chloroquine-susceptible P. falciparum strain (D6, Sierra Leone) 

was routinely maintained in the 25cm2 flask. The parasite was grown in RPMI 1640 medium 

supplemented with 0.23% sodium bicarbonate, 0.006% Amikacin, 10% A+ human serum and A+ 

human erythrocytes (6% hematocrit). Culture flasks were incubated in a 37oC incubator with 5% O2, 

5% CO2, and 90% N2. A fresh subculture waw initiated with an initial parasitemia of ~1% and 6% 

hematocrit. The medium was changed every 48 h, and the parasite was subcultured with fresh RBCs 

after every 6 to 7 days. Slides were prepared before every subculture. Slides were fixed and stained 

by a quick stain to evaluate the parasitemia level. 

 

4.4.9. PARASITEMIA ANALYSIS IN P. FALCIPARUM INFECTED CULTURES BY LDS-

751 
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  For microscopic parasitemia analysis, thin smear slides were prepared from infected RBCs of 

P. falciparum culture. The slides were fixed with the help of methanol for 30 sec and dried for 30 

min. The fixed slides were stained with LDS-751 at 2µg/mL concentration in DPBS for 20 min. Slides 

were washed and dried and observed under Nikon 90i Eclipse microscope in TXR and DIC filter 

(similar to section 4.2.2.). For flow cytometric analysis, 10µl of infected RBCs diluted to 500µl with 

PBS and stained with LDS-751 at 1.0 µg/mL concentration. The stained sample run through Flow 

cytometer (similar to section 4.2.4.). Thin smears were also prepared from uninfected and P. 

falciparum-infected human RBCs samples. Slides were fixed and stained with Giemsa. The images 

were collected by Nikon 90i eclipse light microscope at 600X magnification. 

 

4.4.10. DIA AND FCA BASED PARASITEMIA IN P. FALCIPARUM INFECTED RBCs 

An assay was set up with standard antimalarial drugs chloroquine (CQ) and artemisinin (ART). 

Stock solutions of the drugs or compounds were prepared in water (CQ) or DMSO (ART) and diluted 

further with serum-free RPMI to achieve appropriate concentrations. The parasite cultures (mainly 

with ring stage) were diluted with fresh human erythrocytes to achieve 2% hematocrit and 2% 

parasitemia. The assays were performed in clear flat-bottom 96-well plates. Each well-received 190μl 

of the parasite culture and 10μl of the test compound. Each compound was tested at 6 different 

concentrations (238-1 ng/mL). The plates were placed in an incubator with a gas mixture containing 

90% N2, 5% O2, and 5% at 37 °C for 72 h. 10µl of RBCs were collected from each well including 

all well of treated infected RBCs, untreated infected RBCs and uninfected RBCs. These samples were 

stained with LDS-751 (see section 4.2.4.) and run in a flow cytometer. 3µl of RBCs were collected 

from each well including all well of treated infected RBCs, untreated infected RBCs and uninfected 

RBCs on slides. I thin smears were prepared and fixed with methanol. These fixed slides were stained 
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with Giemsa (Blue colored nucleic acid stain). Images of Giemsa stained RBCs were collected by 

Nikon 90i eclipse light microscope in 600X magnification.  

 

4.5. RESULTS 

4.5.1. MICROSCOPIC CONFIRMATION OF LDS-751 FLUORESCENCE 

  The blood samples were collected, and thin smear slides were prepared from infected and 

uninfected mice.  The LDS-751 have excitation wavelength 543nm and an emission wavelength of 

712nm. So, the LDS-751 stained slides of P. berghei infected blood samples were observed under the 

fluorescent microscope under TXR and DIC filters. The TXR filter was used to collect the 

fluorescence of LDS-751 (Red colored in Figure 4.3) and DIC to collect the sample surface image 

(Grey colored in figure 4.3). Both TXR and DIC images were merged. Fluorescence of LDS-751 

could be seen inside RBCs. Images of different stages of P. berghei parasite in peripheral blood 

sample slide could be seen in red color inside the RBCs (Figure 4.3.  

 

4.5.2. FCA OF PARASITEMIA IN P. BERGHEI BLOOD SAMPLES 

  The LDS-751 stained P. berghei infected blood samples, and uninfected blood samples were 

run in a flow cytometer.  RBCs population was gated in FSC/SSC dot plot, and 100,000 gated 

population was analyzed further in SSC/FL4 dot plot as well as FL4 channel histogram plot. The 

SSC/FL4 dot plot was converted in the quadrangle. Panel (A) of Figure 4.4 represents the flow 

cytometric analysis of uninfected blood samples. The Most of the gated population located in the 

upper-left area of the quadrangle of SSC/FL4 plot and only one peak observed for uninfected RBCs 

population in FL4 channel histogram.  Panel (B) of Figure 4.4 represents the flow cytometric analysis 
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for P. berghei infected blood samples. When the gated population was analyzed in quadrangle dot 

plot, the population appeared partly in both upper-left and upper-right region of the quadrangle. The 

uninfected RBCs appeared in the upper-left region of the quadrangle and the P. berghei infected 

RBCs appeared in in the upper-right area of the quadrangle in SSC/FL4 dot plot. Similarly, there were 

two peaks appear in FL4 channel histogram plot. The first peak appeared for the uninfected RBCs 

population while the other peak appeared for infected RBCs population. The percent Gated population 

in the upper-right region of quadrangle dot plot show the level of parasitemia. The percent gated 

population under peak area under M1 region in FL4 histogram plot also represent the level of 

parasitemia. Parasitemia analysis of P berghei infected serially diluted blood samples was done by 

LDS-751 flow cytometric analysis method. Parasitemia was calculated for the highly infected blood 

sample without dilution by microscopy. Two separate area in thin smear slide were counted separately 

for infected and uninfected RBCs (Figure 4.5). The average parasitemia (ratio of P.berghei infected 

RBCs to total RBCs) was found 30.02 percent by microscopy. So expected parasitemia for with 

microscopic analysis was 30.02, 15.01, 7.51, 3.75, 1.88, 0.94, 0.47, 0.23, and 0.12 in up to 9 serially 

dilutions of the sample including the first sample. The parasitemia was analyzed for these samples 

were 30.55, 15.85, 8.28, 4.22, 2.26, 1.19, 0.67, 0.28, 0.18 and 0.12 (Table 4.1) The accuracy of the 

flow cytometric parasitemia analysis was calculated by comparing with microscopic parasitemia 

analysis. A correlation graph was prepared between flow cytometric parasitemia and microscopic 

parasitemia. The correlation coefficient (R2) of the linear regression line was 0.9995 proof the validity 

of the flow cytometric method of parasitemia analysis (Figure 4.6). The microscopic comparative 

images of uninfected and P. berghei infected mice blood samples is given in Figure 4.5. 

 

4.5.3. DIA AND FCA BASED PARASITEMIA ANALYSIS IN MICE BLOOD SAMPLES  
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The microscopic digital images based parasitemia analysis was developed using ImageJ 

software. Figure 4.7 represents the P. berghei infected blood smear image, manual counting of 

parasite-infected RBCs and automatic counting of total RBCs.  A whole Rodent in vivo antimalarial 

assay was done using P. berghei parasite in 3 different doses of chloroquine and amodiaquine in 

separate groups of mice. The blood samples were collected by tail snipping method simultaneously 

on glass slides (~10µl) and in tubes (~2µl) ACD buffer. The parasitemia in slides was calculated using 

a digital images analysis method (DIAM) using ImageJ software. The average parasitemia in blood 

samples collected from different groups of mice for different dose treatment at different days (day 5, 

7, 10, 14, 21 and 28) is given in Figure 4.9.A. The parasitemia was calculated using LDS-751 based 

FCA. The average parasitemia in blood samples collected from different groups of mice for different 

dose at different days (day 5, 7, 10, 14, 21 and 28) is given in Figure 4.9.B. The correlation scatters 

plot was prepared to compare the flow cytometric parasitemia and microscopic parasitemia for all 

different treatment groups of mice. The parasitemia by FCA and microscopic method for samples of 

all days for particular treatment groups were analyzed on the scattered plot. There were total seven 

treatment groups namely, Vehicle control group, Chloroquine 33.3 mg/kg treatment group, 

Chloroquine 11.1 mg/kg treatment group, Chloroquine 3.7 mg/kg treatment group, Amodiaquine 33.3 

mg/kg treatment group, Amodiaquine 11.1 mg/kg treatment group and Amodiaquine 3.7 mg/kg 

treatment group. The correlation scattered plot for six groups is given in Figure 4.10. There were 

maximum 30 parasitemia samples were compared. Some group may have lesser samples because few 

mice were died before day 28 due to high parasitemia. The correlation plot for amodiaquine 33.3 

mg/kg treatment group is not provided in Figure 4.10 as no parasitemia appeared in any mice of this 

treatment group.  The average correlation coefficient (R-square) of all scattered plots is 0.9230. That 

show good correlation in both flow cytometric and microscopic method of parasitemia analysis.  
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4.5.4. RETICULOCYTES RICH BLOOD SAMPLES PARASITEMIA ANALYSIS 

Giemsa-stained images of blood smears with high reticulocytes are given in Figure 4.11. The 

high reticulocyte population could be misdiagnosed as false positive in microscopy for malaria 

parasitemia analysis. The microscopic image looks like high parasitemia, but most of the blues cells 

are reticulocytes. The parasitemia was analyzed by both DIAM and LDS-751 based FCAM. SSC/FL4 

quadrangle dot plot of gated RBCs population of same blood sample do not have a high percent of 

gated populations in upper right regions which represent the parasitemia level in blood samples. So 

the real parasitemia is less than 1 and flows cytometric assay counted accurately here. So Even though 

blood sample may have high reticulocytes but the LDS-751 can differentiate the infected RBCs from 

reticulocyte in flow cytometric analysis. 

 

4.5.5. MICROSCOPIC CONFIRMATION OF LDS-751 FLUORESCENCE IN P. 

FALCIPARUM INFECTED RBCS 

  The human infected RBCs samples were collected from in vitro P. falciparum culture. The 

thin smear slides were prepared for infected as well as uninfected human RBCs.  The slides were 

fixed with methanol. The fixed slides were stained with LDS-751. The slides were observed under 

the fluorescent microscope under TXR and DIC filters. The TXR filter was used to collect the 

fluorescence of LDS-751 (Red colored) and DIC to collect the sample surface image (Gray colored). 

Both TXR and DIC images were merged. Fluorescence of LDS-751 could be seen inside RBCs. 

Images of different stages of P. falciparum parasite in peripheral blood sample slide could be seen in 

red color inside the RBCs (Figure 4.12).  
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4.5.6. FLOW CYTOMETRIC ANALYSIS OF LDS-751 STAINED P. FALCIPARUM 

INFECTED RBCS 

  The human uninfected and infected RBCs samples stained with LDS-751 were run through a 

flow cytometer. RBC population was gated in FSC/SSC plot, and 100,000 gated RBCs population 

was analyzed in SSC/FL-4 quadrangle dot plot. Panel (A) of Figure 4.13 represents the flow 

cytometric analysis of uninfected blood samples. The Most of the gated population located in the 

upper-left area of the quadrangle of SSC/FL4 plot.  Panel (B) of Figure 4.13 represents the flow 

cytometric analysis for P. falciparum-infected blood samples. When the gated population was 

analyzed in quadrangle dot plot, the population appeared partly in both upper-left and upper-right 

region of the quadrangle. The uninfected RBCs appeared in the upper-left region of the quadrangle 

and the P. falciparum-infected RBCs appeared in in the upper-right area of the quadrangle in 

SSC/FL4 dot plot. The percent Gated population in the upper-right region of quadrangle dot plot show 

the level of parasitemia. The microscopic comparative images of uninfected and P. berghei infected 

mice blood samples is given in Figure 4.14.  The uninfected RBCs presented in pink colored cells 

and infection P. falciparum presented blue/purple dot inside pink RBCs. 

 

4.5.7. LDS-751 STAINING BASED IN VITRO P. FALCIPARUM ANTIMALARIAL ASSAY 

  The in vitro antimalarial assay was set up using standard antimalarial drugs chloroquine and 

artemisinin at six different concentrations in triplicate against P. falciparum. Treated infected RBCs 

samples were stained with LDS-751 and analyzed by flow cytometer. Blood smears also prepared 

from the same treated infected RBCs samples and analyzed by microscopy after Giemsa staining. The 
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parasitemia by both flow cytometry and microscopy of treated infected RBCs was compared with 

untreated infected RBCs to calculate the IC50 values. IC 50s for chloroquine were 1.71µg/mL and 

1.67µg/mL by microscopic and flow cytometric assay respectively (Table 4.2). IC 50s for 

chloroquine were 10.08µg/mL and 9.90µg/mL by microscopic and flow cytometric assay respectively 

(Table 4.2). The similarity in IC50 values proof the utility of the LDS-751 based flow cytometric 

assay. 
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FIGURES AND TABLES 

 

 

 

 

 

 

Figure 4.1: Chemical Structures of Laser dye styryl–751 (LDS-751). 
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Figure 4.2. Modified Peter’s test timeline of infection, test sample dosing and blood sampling in 

each group of mice. Yellow is marked as the day post infection (from 0 to 28), Infection (4X107 P. 

berghei infected RBCs inoculated intraperitoneally) was given on day 0. The doses of the test 

samples were given orally once daily on day 0, day1, and day 2. Blood samples were collected on 

day 5, 7, 10, 14, 21 and 28 for parasitemia analysis. 
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Figure 4.3: P. berghei infected RBCs. Images were collected under TXR and DIC filter. LDS-751 

fluorescence (Red) enables the detection of different stages of P. berghei parasite inside the RBCs 

(Gray). A and B= Schizont (multiple parasites), C= Trophozoite and multiple infection in an RBC, 

D= White blood cell, E =Ring stage, F=uninfected RBCs. 
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Figure 4.4: Flow cytometric analysis of P. berghei infected mice blood samples. A. uninfected 

mice blood samples run in FSC/SSC plot. B. P. berghei infected mice blood samples run in 

FSC/SSC plot. Gated RBCs population analyzed on an SSC/FL4 quadrangle dot plot and FL4 

channel histogram plot. The percent gated population in the upper-right SSC/FL4 quadrangle and 

the percent population under M1 region in FL4 histogram plot show the parasitemia in the running 

sample. 
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Figure 4.5: Microscopic analysis of P. berghei infected mice blood samples. A. Smear of 

uninfected mice blood sample. B.  Smear of P. berghei infected mice blood sample. 
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Figure 4.6: Comparison of parasitemia analysis my microscopy and LDS-751-based flow 

cytometry. The high parasitemia mice blood was serially diluted with uninfected mice blood in 1:1 

ratio. A linear trend line was drawn in the scattered plot. (Correlation coefficient R2 is 0.9995).  
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Figure 4.7: Parasitemia analysis by ImageJ software. The infected RBCs were counted by the 

manual cell counting tool, and the total RBCs were counted by automated total cell counting tool 

of ImageJ software. A. ImageJ software interface. B. Digital image of infected RBCs. C. Manual 

counting on image B. D. Manual cell counting module of ImageJ software. E Outline of total 

RBCs. F. Result of automated counting module in ImageJ software 
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Figure 4.8: ImageJ software step by step protocol for infected and uninfected RBC Counting. 
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Figure 4.9: The parasitemia analysis in samples collected from different treatment group of P. 

berghei infected mice on day 5, 7, 10, 14, 21 and 28 of post-infection. A. Parasitemia analysis by 

ImageJ software-based digital image analysis method. B. Parasitemia analysis by LDS-751-based 

flow cytometric analysis method. 
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Figure 4.10: Scattered plot for parasitemia on day 5,7, 10, 14, 21 and 28 samples from all five 

mice for a particular treatment group. A maximum number of samples are 30. Some treatment 

groups have lesser samples because of earlier death due to parasitemia. The average correlation 

coefficient (R2) is 0.9230 that proof a good correlation between flow cytometric and microscopic 

data in real in vivo antimalarial assay. AMQ 33.3 mg/kg treatment group is not presented here 

as no parasitemia appears in all five mice till day 28. CQ = Chloroquine. AMQ = Amodiaquine. 
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Figure 4.11: A- Blood smears of mice blood sample with high reticulocyte population which could 

be considered as false positive in microscopy for malaria parasitemia analysis. B- Dot plot of gated 

RBCs population of same blood sample does not have a high percent of gated populations in upper 

right regions which represent the parasitemia level in blood samples. 
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Figure 4.12: P. falciparum-infected RBCs. Images were collected in TEXAS-RED and DIC filter. 

LDS-751 fluorescence (Red) enables the detection of different stages of P. falciparum parasite 

inside the RBCs (Gray). A- Ring stage (multiple parasites), B- missing C-schizont, D- Ring to 

trophozoite stage E – Trophozoite, F-uninfected RBCs. 
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Figure 4.13: Flow cytometric analysis of P. falciparum-infected mice blood samples. The Panel 

A. uninfected human RBCs samples run in FSC/SSC plot. The Panel B. P. falciparum-infected 

human RBCs samples run in FSC/SSC dot plot. Gated RBCs population analyzed on SSC/FL4 

quadrangle FL4 channel histogram plot. The percent gated population in the upper-right area in 

SSC/FL4 quadrangle plot shows the parasitemia. 
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Figure 4.14: Microscopic analysis of P. falciparum-infected human RBCs samples. The Image 

A and B are stained with Giemsa nucleic acid stain. The Image A is uninfected human RBCs 

samples. The Panel B. is P. falciparum-infected human RBCs sample.  
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Table 4.1. Comparison of Parasitemia by flow cytometric method (FCA) and microscopic method 

for blood samples from P. berghei infected mice. Accuracy was calculated by comparing average 

parasitemia by flow cytometric analysis with microscopic analysis. The mean accuracy is above 

100% Proof the accuracy of Flow cytometric assay. 

 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 
 
 
 
 

Parasitemia by 
FCA 

Parasitemia by 
Microscopy 

FCA vs Microscopy 
Accuracy 

30.55 ± 0.32 30.02 ± 1.70 101.84 
15.85 ± 0.25 15.01 ± 0.85 105.66 
8.28 ± 0.22 7.51 ± 0.42 110.36 
4.22 ± 0.08 3.75 ± 0.21 112.54 
2.26 ± 0.07 1.88 ± 0.11 120.75 
1.19 ± 0.10 0.94 ± 0.05 126.46 
0.67 ± 0.03 0.47 ± 0.03 143.24 
0.28 ± 0.06 0.23 ± 0.01 117.66 
0.18 ± 0.07 0.12 ± 0.01 151.59 
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Table 4.2. In vitro activity comparison of control antimalarial drugs chloroquine and Artemisinin 

against P. Falciparum D6 strain. Microscopic parasitemia analysis is based on Giemsa staining. 

Flow cytometric analysis is based on LDS-751 staining. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Compound Name Microscopic data Flow cytometry data 
IC 50 Average STD IC 50 Average STD 

Chloroquine 1.71 ± 0.94 1.67 ± 0.67 
Artemisinin 10.08 ± 2.93 9.90 ± 2.93 
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4.6.  DISCUSSION 

There are two flow cytometric based parasitemia analysis methods developed in the past 

those have utility in both in vivo antimalarial screening and clinical diagnosis. Flow cytometric 

method was developed in 2007 using YOYO-1 stain for parasitemia analysis (Xie et al., 2007). 

Similar other flow cytometric methods developed using SYTO-16 (Cell-permeant stain) (Jimenez-

Diaz et al., 2009). Both methods have very complex analysis in which blood samples with different 

cells population like erythrocytes, reticulocytes, white blood cells, and lymphocytes. The YOYO-

1 based parasitemia analysis method requires large volume of the blood sample (10µl in 1% 

heparinized buffer). The blood samples pass through several steps in YOYO-1 based parasitemia 

analysis method. The blood cells are fixed with glutaraldehyde.  And treated with 0.25% Triton X 

for permeabilization. The fixed and permeabilized blood samples are treated with RNase 

(1mg/mL) for two hours to minimize the background effect of the reticulocytes (RNA-containing 

cells). The RNase treated samples are stained with YOYO-1 (0.5 µg/mL). The analysis was also 

very complex in YOYO-1 based assay using FL2/FL-1 compensation. The flow cytometric assay 

for parasitemia analysis based on SYTO-16 also follow similar protocol except for 

permeabilization, since SYTO-16 is a cell-permeable stain. The complex processing causes loss 

of samples, increase the duration for the parasitemia analysis, high cost of analysis and increased 

labor (Jimenez-Diaz et al., 2009; Xie et al., 2007).  

We have developed a new FCA method based on the LDS-751 stain that has utility in both 

in vivo and in vitro antimalarial screening. This novel method addresses the important challenges 

as pointed above. LDS-751 is a cell-permeable stain and does not require cell fixation and 

permeabilization for binding with the DNA of intra-erythrocytic malaria parasites. LDS-751 binds 

with RNA (excitation/emission maxima approx. 590/607 nm) and DNA (excitation/emission 
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maxima approx. 543/ 712 nm) with an approx 20-fold increase in fluorescence on binding with 

double-stranded DNA. Due to its differential excitation/emission spectra, LDS-751 differentiates 

between reticulocyte (RNA-containing cells) and malaria-infected erythrocytes populations. The 

RNase treatment is not required in LDS-751 based parasitemia analysis. The complete protocol 

requires single-step staining with LDS-751. Previously, the YOYO-1 methods did the flow 

cytometric analysis by a flow cytometer in FL2 and FL1 dot plot for whole blood population. 

However, here we gated the RBCs population only in FSC/SSC dot plot.100,000 RBCs were 

analyzed in SSC/FL4 dot plot or FL4 channel histogram plot. The LDS-751 FCA method requires 

simple flow cytometric analysis, in which parasitemia are directly calculated from percent gated 

population in the upper-right area of the quadrangle of SSC/FL4 dot plot or percent gated 

population under M1 region of FL4 channel histogram plot (Figure 4.3). The LDS-751 based FCA 

method is the simple, fast, and requires a low volume of the blood (≤2µl) with good sensitivity 

(till 0.2 percent of parasitemia, Table 4.1). The correlation coefficient (R-square) for linear line in 

scattered plot between flow cytometric parasitemia and microscopic parasitemia is 0.9995. That 

shows a good correlation between the two new assays. To further prove the utility of this method, 

it was applied for in vivo assay using different doses of standard antimalarial drugs chloroquine 

and amodiaquine. Chloroquine and amodiaquine are primary antimalarial drugs used solely in 

clinics for complete treatment of malaria. So these drugs are the most suitable control antimalarial 

drugs for in vivo antimalarial screening with wide therapeutic window. The average correlation 

coefficient for different blood samples from mice of the different treatment group was 0.9230 that 

further validate the flow cytometric parasitemia analysis method. A digital images analysis assay 

was also developed with the help of ImageJ software. This assay could be useful in a clinical 

setting that will help in reducing human biases and error in parasitemia calculation. The similarity 
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in parasitemia level calculated in both digital image analysis and flow cytometric analysis method 

proove the validity and utility of the assay. This LDS-751 based flow cytometric parasitemia 

analysis method has the potential for diagnosis of malaria in clinical isolates. 
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CHAPTER 5 

FUTURE STUDIES 

 

Presently, The PRT assay was successfully developed, and the assay was successfully 

applied to high throughput screening. There are several other applications are possible based on 

PRT assay.  

The concept of control lysis of PRT assay could be applied for collecting the amastigotes 

and evaluating infectivity of clinical as well as, laboratory isolates. Molecular level of studied in 

amastigote is possible in axenic amastigotes, but these amastigotes are artificially created by 

providing optimal physiological condition like pH 5.5 and temperature 37oC. These axenic 

amastigotes have several molecular level differences from amastigote growing inside the phago-

lysosomal vacuoles in macrophages cells. To collect these intracellular amastigotes, a control lysis 

can be applied to rescue the amastigote from macrophages cells and separate the amastigotes by 

centrifugation. The PRT assay can use to evaluate the infectivity of clinical isolates. Here, the 

differentiated THP1 cells were infected with of promastigote parasites in different ratio cells to 

parasites. Infectivity was calculated with PRT assay and microscopic assay (Figure 2.6). 

Similarly, the PRT assay can be applied for evaluating the level of infection in clinical samples 

collected from VL patients.  

A leishmania promastigote culture has mixed populations of promastigotes with high 

virulence, low virulence, and no virulence. So the overall population comes with reduced 
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infectivity in macrophages cells. The parasite with high virulence power can infect the 

macrophages and transform to amastigote. In PRT assay, macrophage cells infected with 

amastigotes are subjected to control lysis to rescue amastigote. Infected amastigotes have high 

virulence power. So the promastigotes transformed from rescued amastigote have high virulence 

power. Thus promastigote parasites with low infectivity can be run in PRT assay, and the rescued 

parasite comes with better infectivity. Thus PRT assay can be useful in increasing infectivity of 

leishmania parasite. 

In the screening of natural product fractions library, the Oleandrin was confirmed as an 

active constituent from the active fraction of Nerium oleander. Similarly, Deoxypodophylotoxin 

was confirmed as an active constituent from the active fraction of Thuja occidentalis. Oleandrin is 

an inhibitor of P-type ATPase and deoxypodophyllotoxin is a topoisomerase inhibitor. Oleandrin 

is a cardiac glycoside and is known for its cardiac toxicity. So oleandrin as such cannot be further 

study in in vivo antileishmanial screening. However, a library of similar compounds can be further 

screen against intracellular amastigotes, and structure-activity analysis (SAR) can be done to 

search compounds with less cardiac effect and better antileishmanial efficacy. The compounds 

with less cardiac effect and potent antileishmanial effect on intracellular amastigote in vitro 

screening could be further evaluated in in vivo rodent models for leishmaniasis. Similarly, 

Deoxypodophylotoxin induced G2/M Cell Cycle Arrest and known for its severe gastrointestinal 

side effects and bone marrow depression. However similar compounds with less side effect and 

potent antileishmanial effect on intracellular amastigote in vitro screening could be further 

evaluated in in vivo rodent models for leishmaniasis. 

The developed mcherry-Ld and citrine-Ld parasite have been successfully implemented in 

the in vitro screening methods promastigotes and intracellular amastigotes. Both developed 
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parasites have bright fluorescence which enables to real-time monitoring of the parasite in complex 

in vivo settings. Leishmania parasites reside in visceral organs (e.g., liver, spleen) during a disease 

state. Every time animal has to secrecy to access the parasite load in liver or spleen at any time 

point for wild-type of leishmania parasite. So large number of animals has to sacrifice for a small 

in vivo study. In vivo studies with non-human primate are more problematic due to less availability 

of such type of animals. Even several IACUC does not allow such type of studies those involve 

the sacrifice of a large number of animals. Here, these transgenic parasites can be helpful in in vivo 

studies. Parasite load can be monitor directly with the help of in vivo imaging systems. Previously 

one attempt was made to develop in vivo screening method for VL using transgenic infrared 

fluorescent L. infantum parasite (Calvo-Alvarez et al., 2015). Still, the animals have to shave to 

reduce the background signal due to the fur. The developed mcherry-Ld and citrine-Ld with bright 

fluorescence can be implemented for in vivo rodent based antileishmanial screening method. 

Furthermore, these transgenic parasites have the potential for other applications that include 

understanding the parasite biology and host-parasite interactions with the help of real-time cell 

fluorescent imager systems. 

In this research project,  a new FCA method based on the LDS-751 stain that has utility in 

both in vivo and in vitro antimalarial screening has been developed. This novel method addresses 

the important challenges as pointed above. The methods based on flow cytometric analysis (FCA) 

of the malaria parasite have been developed for diagnosis and the parasitemia analysis. These 

methods can be applied to automation and high throughput parasitemia analysis (Woodrow et al., 

2015). However, application of FCA methods for routine clinical diagnosis of malaria has not been 

reported for automated screening (Grimberg, 2011). Recently, a miniaturized flow cytometer has 

been developed by Millipore company for the diagnosis of malaria. The work has been presented 
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in American Society of Tropical Medicine and Hygiene (ASTMH) in November 2016, at Atlant, 

GA, USA (Chromy, 2016). This miniaturized flow worked based on malaria antigen detection 

with the help of monoclonal antibody which may not be cost effective especially for the poor 

population of tropical areas. LDS-751 based FCA method can be further extended to the diagnosis 

of clinical samples, and a miniaturized flow cytometer can be developed that can be implanted for 

diagnostic purpose in malaria clinics in the tropical area.  
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