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ABSTRACT

Codes that are capable of generating any number of encoded symbols from a given

number of source symbols are called rateless codes. Luby transform (LT) codes are the first

practical realization of rateless codes while Raptor codes are constructed by serially con-

catenating LT codes with high-rate outer low-density parity-check (LDPC) codes. Although

these codes were originally developed for binary erasure channel (BEC), due to their rateless

feature, they are being investigated and designed for their use in noisy channels. It is known

that LT codes are the irregular non-systematic rateless counterpart of low-density generator-

matrix (LDGM) codes. Therefore, the first part of our work is focused on LDGM codes and

their serially concatenated scheme called serially concatenated LDGM (SCLDGM) codes.

Though single LDGM codes are asymptotically bad codes, the SCLDGM codes are known

to perform close to the Shannon limit. We first study the asymptotic behaviour of LDGM

codes using a discretized density evolution (DDE) method. We then show that the DDE

method can be used in two-steps to provide the detailed asymptotic performance analysis

of SCLDGM codes. We also provide the detailed error-floor analysis of both the LDGM

and SCLDGM codes. We also prove a necessary condition for the successful decoding of

such concatenated codes under sum-product (SP) decoding in binary input additive white

Gaussian noise (BIAWGN) channels. Based on this necessary condition, we then develop a

DDE-based optimization approach which can be used to optimize such concatenated codes

in general. We present both the asymptotic performance and simulation results of our op-

timized SCLDGM codes that perform within 0.26 dB to the Shannon limit in BIAWGN

channels.
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Secondly, we focus on the asymptotic analysis and optimization design of LT and Raptor

codes over BIAWGN channels. We provide the exact asymptotic performance of LT codes

using the DDE method. We apply the concept of the two-step DDE method to the Raptor

codes and obtain their exact asymptotic performance in BIAWGN channels. We show that

the existing Raptor codes using solely the same output degree distribution can perform

within 0.4 dB to the Shannon limit for various realized code-rates. We then develop a DDE-

based optimization technique to optimally design such physical layer Raptor codes. Our

optimized Raptor codes are shown to perform within 0.2 dB to the Shannon limit for most

of the realized code-rates. We also provide the asymptotic curves, decoding thresholds, and

simulation results showing that our optimized Raptor codes outperform the existing Raptor

codes in BIAWGN channels. Finally, we present the asymptotic analysis and optimization

design of systematic version of these codes namely systematic LT and systematic Raptor

codes as well.
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CHAPTER 1

INTRODUCTION

1.1 Background

Codes that are capable of generating any number of encoded symbols (bits) from given

number of source symbols are called rateless codes. Let k and n represent the number of

source and encoded symbols respectively. Rateless means code rates of any positive real

number between 0 and 1 can be realized on the fly, i.e., the code-rate can simply be changed

from k/n to k/(n + 1) by just generating one more encoded symbol on the fly which is

equivalent to adding one more column in the generator (G) matrix of the code. Fountain

codes [1, 2] such as Luby transform (LT) codes [3] and Raptor codes [4] are rateless codes.

These codes have near Shannon performance in binary erasure channel (BEC). Due to their

rateless property, these codes are being investigated and improved for their use in noisy

channels as well [5, 6, 7, 8, 9, 10, 11]. These codes were first investigated over noisy channels

in [5, 6], and it was reported that LT codes perform very poorly and suffer huge error-floor.

It was also mentioned that the Raptor codes which are constructed by serially concatenating

LT codes with a high-rate error-correcting precode such as low-density parity-check (LDPC)

codes [12] can actually enhance the overall bit error rate (BER) performance. Since then

these codes have attracted a lot of research interests for their use over noisy channels. Since

LT codes are the inner codes of Raptor codes, improving these inner codes plays a great role

in designing better Raptor codes.

1



1.2 Motivation and Objective

The decoding algorithm used by rateless codes over binary input additive white Gaus-

sian noise (BIAWGN) channel is sum-product algorithm (SPA)[12], which was originally

developed for LDPC codes. discretized density evolution (DDE) analysis [13, 14], which is

a computationally efficient discretized version of density evolution (DE) [15] that exactly

tracks the behaviour of SPA was developed for the asymptotic analysis and design of LDPC

codes [13, 14, 16]. With the help of this DDE method, optimized irregular LDPC codes

that perform extremely close to the Shannon limit are successfully developed [13, 14, 16].

The DDE method is also used to asymptotically analyse the generator-matrix based error

correcting codes called low-density generator-matrix (LDGM) codes [17] that also use SPA

as the decoding algorithm [18, 19]. Due to some differences in the decoding graph between

LDPC and LDGM codes, the DDE method developed for LDGM codes slightly differ from

those developed for LDPC codes. However, the central idea of evolution of message densi-

ties as the sum-product (SP) decoding progresses remains the same. Like LDGM codes, LT

codes are also sparse generator-matrix based codes. Moreover, LT codes are known to be

irregular non-systematic rateless counterpart of the LDGM codes. Like LDGM and LDPC

codes, LT codes also use SPA as their decoding algorithm when used over noisy channels

[6, 20]. Therefore, the successful implementation of DDE for LT codes is very important to

analyse the asymptotic behaviour of such codes. Furthermore, extending DDE method for

concatenated codes is of huge importance. It is known that the serially concatenated LDGM

(SCLDGM) codes have near Shannon performance. Furthermore, the Raptor codes which

are the serial concatenation of LT codes and high-rate LDPC codes are known to have better

performance than LT codes. Such serially concatenated codes have two-stages of encoding

and two-stages of decoding as shown in Figure 3.3. During the decoding of such codes, first

the decoding of inner code is conducted and then the decoding of outer code is conducted.

For both the SCLDGM and Raptor codes, both the inner and outer decoders use the SP

2



Figure 1.1. Concatenated Codes

decoding. Hence, in order to obtain the exact asymptotic performance of such concatenated

codes, we should be able to implement DDE in two-stages to exactly track the two-stage SP

decoding. The successful implementation of such two-step DDE method further allows us to

develop DDE-based optimization approach to design capacity approaching error-correcting

concatenated codes. Accomplishing these tasks can potentially lead us to design optimized

physical layer error-correcting rateless codes that are capacity approaching.

The overall objective of our work is to design capacity approaching rateless codes for

noisy channels. Since the Raptor codes are concatenated codes and have LDGM-based

LT codes as inner codes, we first thoroughly study and analyse the SCLDGM codes. We

develop two-step DDE method for the asymptotic analysis of SCLDGM codes and also

develop an optimization technique to optimally design such concatenated codes in general.

After that, we accomplish the following tasks regarding the physical layer Raptor codes:

(a) implementation of the two-step DDE for the Raptor codes to analyse their asymptotic

behaviour in BIAWGN channels, (b) development of a DDE-based optimization method to

design Raptor codes for BIAWGN channels that perform very close to the Shannon limit,

(c) analysis and design of systematic version of these physical layer rateless codes.

1.3 Contributions and Outline

Chapter 2 provides some details on LT and Raptor codes for BEC. It also discusses about

LDPC codes, their decoding algorithm called SPA, and the DDE method that is used to

exactly track the behaviour of SPA.
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Chapter 3 completely focuses on LDGM and SCLDGM codes. We give some background

on these codes. Since LDGM codes also use SP decoding, the DDE method is used to obtain

their asymptotic performance. The main contribution of this chapter is two-fold. First, we

show that since the SCLDGM codes are decoded in two-stages using SP decoding, their

exact asymptotic performance can be obtained by using the DDE method in two-stages as

well. We develop a two-step DDE method in which the DDE is first applied to the inner code

and then to the outer code to obtain the asymptotic performance of the SCLDGM codes.

We also provide the detailed error-floor analysis of both the LDGM and SCLDGM codes.

The second contribution is about the optimization design of such concatenated codes. We

theoretically prove a necessary condition for the successful decoding of such concatenated

codes. The necessary condition indicates that the inner decoder must at least produce a

certain BER called critical BER so that the outer decoder can produce an extremely small

BER required for the successful decoding. It means that handing decoding to the outer

decoder without inner decoder achieving the critical BER is just the waste of decoding.

We finally propose a critical-BER based DDE optimization approach to design capacity

approaching SCLDGM codes. We also present the asymptotic curves and simulation results

of our optimized SCLDGM codes.

Chapter 4 focuses on the analysis and design of physical layer Raptor codes. It discusses

about the implementation of DDE for the Raptor codes which have a rateless inner LT code.

We develop a two-step DDE method for such rateless codes and use it to provide the detailed

asymptotic analysis of the Raptor codes in BIAWGN channels. We also give the asymptotic

performance of LT codes when used alone. We show that Raptor codes of various realized

code-rates can use the same output degree distribution (ODD) and yet provide decoding

performance within 0.4 dB to the Shannon limit. We also show that the necessary condition

for the successful decoding of SCLDGM codes also holds true for the Raptor codes. We

then develop and use the critical-BER based optimization approach to design optimized

4



Raptor codes. We show that the optimized Raptor codes that perform within 0.2 dB to the

Shannon limit can be designed for various realized code-rates. We provide the asymptotic

curves, decoding thresholds, and simulation results showing that our optimized Raptor codes

outperform the existing Raptor codes. Finally, in this chapter, we extend our investigation

to the systematic version of these codes. We provide the detailed asymptotic performance

of systematic LT (SLT) and systematic Raptor (SR) codes. We also design the optimized

SR codes that largely outperform the existing SR codes.

Finally, chapter 5 concludes our work.
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CHAPTER 2

LT, RAPTOR AND LDPC CODES

In this chapter, we present an overview of LT and Raptor codes considering BEC. We

also provide some background on LDPC codes, their decoding algorithm used in BIAWGN

channels, and the discretized density evolution method used to analyse the asymptotic per-

formance of such codes.

2.1 LT Codes

LT codes, presented in [3], were developed by Michael Luby as random rateless codes for

erasure channels. These codes are called rateless codes due to the fact that any number of

encoded symbols can be generated from the given source symbols as needed and on the fly.

The original k source symbols can be recovered from any set of n > k encoded symbols with

high probability. The output degree distribution used for generating the encoded symbols

lies at the heart of LT codes. They have sparse generator matrices, i.e., the number of source

symbols contributing to an encoded symbol is relatively small compared to the total number

of source symbols. A simple graphical representation of LT codes is presented in Figure 2.1,

where s1, s2, · · · , sk represent the source symbols while c1, c2, · · · , cn represent the encoded

symbols. A source symbol is of arbitrary length, from one-bit binary symbol to l-bit symbol.

2.1.1 Encoding Process

For a given set of k source symbols, an encoded symbol is generated by bitwise XORing of

a randomly chosen subset of source symbols. The process of generating an encoded symbol

is as follows:
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Figure 2.1. Graphical Representation of an LT code

� An integer d between 1 and k called the degree of an encoded symbol is randomly

chosen for each encoded symbol based on an ODD.

� A set of d source symbols is chosen uniformly at random from the set of k source

symbols. These d source symbols are called the neighbors of the encoded symbol to

be generated.

� The d source symbols are bitwise XOR-ed to produce an encoded symbol of degree d.

By this process, an arbitrary number of encoded symbols can be generated. Each encoded

symbol is generated independently.

2.1.2 Decoding Process

Decoding algorithms such as belief propagation algorithm (BPA) or peeling solvers are

commonly used for the decoding of LT codes over BEC [3]. The decoding steps include

1. The decoder identifies all encoded symbols of degree one (those connected to a single

source symbol) in the bipartite graph representing LT codes such as Figure 2.1. If

there is at least one encoded symbol that has exactly one neighbor, then the neighbor
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is recovered immediately since it is a copy of the encoded symbol. If there exists no

degree one encoded symbols, then the decoding fails.

2. The encoded symbols of degree one and the associated edges are erased from the graph.

3. The value of the recovered source symbol is XORed with any remaining encoded

symbols that also have that source symbol as a neighbor. The corresponding edges

are erased from the graph thus decreasing the degree of such neighboring encoded

symbols by one. The encoded symbols whose degree is reduced to one during the

decoding process are called the reduced degree-one encoded symbols.

4. The decoder repeats steps 1− 3 using the new reduced graph.

If the decoder fails to recover all the k source symbols from the n received encoded

symbols, a decoding failure occurs. Failure can occur due to either of the following reasons:

1. There exist source symbols that are not connected to any encoded symbol in the

bipartite graph.

2. Absence of reduced degree-one encoded symbols at any stage of the decoding until the

successful completion of the decoding process.

Few key terms regarding the decoding of LT codes in BEC are as follows

� Recovered source symbol: Initially, all the source symbols are unknown at the

decoder. During the decoding process as described in Section 2.1.2, more and more

source symbols are decoded gradually. Therefore, any source symbol that is decoded

is called the recovered source symbol.

� Reduced degree-one encoded symbol: When a source symbol is recovered, it is

XORed with every encoded symbol it is connected to and its all the connected edges

in the decoding graph are erased. During this process, any encoded symbol whose

degree gets reduced to one is called reduced degree-one encoded symbol.
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� Ripple: A set of source symbols connected to reduced degree-one encoded symbols

is called the ripple. At the beginning of the decoding process, all the sources symbols

which are neighbors of degree-one encoded symbols are in the ripple.

� Premature termination: If the ripple size ceases to zero before the completion of

the decoding process, then such situation is termed as premature termination. This

can also be understood as the situation where reduced degree-one encoded symbols are

absent. In such condition, using the decoding process as described in Section 2.1.2, no

remaining source symbols can be recovered even though they are connected to encoded

symbols.

2.1.3 Output Degree Distribution

The ODD of an LT code gives the probability of generating degree-d, d = 1, 2, · · · , k

encoded symbols. A specially designed ODD called robust soliton distribution (RSD) is

proposed in [3]. The RSD ensures that the average number of reduced degree-one encoded

symbols is large enough at each stage during the decoding process ensuring the successful

termination of decoding process with high probability.

The RSD is represented by µ(·). For constants c > 0 and δ ∈ (0, 1], the probability mass

function (PMF) µ(·) is given by

µ(i) =
ρ(i) + τ(i)

β
, for 1 ≤ i ≤ k, (2.1)

where

β =
k∑
i=1

(ρ(i) + τ(i)) . (2.2)

The PMFs ρ(i) and τ(i) are given by

ρ(i) =


1
k
, for i = 1,

1
i(i−1)

, for 2 ≤ i ≤ k,

(2.3)
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τ(i) =



S
ik
, for 1 ≤ i ≤ k

S
− 1,

S ln(S
δ

)

k
, for i = k

S
,

0, otherwise.

(2.4)

The parameter S represents the average number of degree-one encoded symbols and is

defined as

S = c ·
√
k · ln

(
k

δ

)
. (2.5)

It is suggested in [3] that the k source symbols can be recovered from any set of n encoded

symbols with probability of at least 1− δ, and n is given by

n = kβ

= k + c ·
√
k · ln2(k/δ).

(2.6)

As shown above, the RSD has two components: ρ(·) and τ(·). The support of ρ(i) is

extending over the entire range of degrees from 1 through k while τ(i) is restricted to i in

the range 1 through k/S. The distribution µ(i) has the spikes at two points: i = 2 and

i = k/S. The spike in τ(i) at i = k/S is to ensure that each source symbol is highly likely

to be connected to at least one encoded symbol. The plots for ρ(·), τ(·), and µ(·) are shown

in Figures 2.2, 2.3, and 2.4 respectively.

2.1.4 Overhead in LT codes

If n = k + h encoded symbols are required for successfully decoding k source symbols,

then h is called the overhead. The fractional overhead ε is defined as

ε =
n

k
− 1 =

h

k
. (2.7)
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Figure 2.2. ρ(·) component of RSD for k = 200, c = 0.05, δ = 0.5.

Figure 2.3. τ(·) component of RSD for k = 200, c = 0.05, δ = 0.5.

Figure 2.4. RSD µ(·) for k = 200, c = 0.05, δ = 0.5.

2.2 Raptor Codes

Raptor codes [4] are extensions of LT codes, and thus are rateless codes. It is constructed

by serially concatenating an LT code with a high-rate LDPC code. These codes were de-
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veloped with the objective of improving the encoding and decoding complexity. Raptor

codes require a small constant average number of symbol operations per encoded symbol

generated, and a similar small constant number of symbol operations per source symbol

recovered. Thus, these codes achieve a linear encoding and decoding complexity within a

constant factor.

2.2.1 Encoding and Decoding

Raptor codes are normally constructed using a high-rate code to precode the source

symbols. These pre-coded symbols are called intermediate symbols. Then, a suitable LT-

code with constant average output degree is applied to the intermediate symbols to produce

the encoded symbols. As shown in Figure 2.5, at first the source symbols represented as

s = [s1, s2, · · · , sk] are encoded using a high rate LDPC code to produce intermediate sym-

bols represented as m = [m1,m2, · · · ,mk′ ], k
′ > k, where (k′ − k) is a small fraction of k.

Since the LDPC precode used is mostly systematic in nature, the first k intermediate sym-

bols are the original source symbols, and the last (k′−k) intermediate symbols are called the

redundant symbols. These intermediate symbols are further encoded using an LT code to

produce as many LT encoded (output) symbols as required. Let o = [o1, o2, · · · , on], n > k

represent n such output symbols. There are (k′− k) constraints that define the relationship

between the source symbols and the redundant symbols among the intermediate symbols.

These constraints are viewed as symbols called constraint symbols. The value of each con-

straint symbol is zero, i.e., the constraint symbol constrains the sum of its neighboring

intermediate symbols to be equal to zero.

During the decoding of Raptor codes, once the LT decoder finishes its operation, a small

fraction of the intermediate symbols may still be unrecovered. If the precode is chosen

appropriately, then this set can be recovered using an erasure decoding algorithm for the

precode. For example, if the precode is capable of correcting up to a δ fraction of erasures

among the intermediate symbols, then the LT decoder only needs to recover a (1−δ) fraction
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Figure 2.5. Graphical representation of a Raptor code.

of the intermediate symbols from the received output symbols.

2.2.2 Output Degree Distribution

The ODD associated with LT codes is represented as Ω(x) =
∑k

i=1 Ωix
i, where Ωi is the

probability of generating a degree-i LT encoded symbol and
∑k

i=1 Ωi = 1. An optimization

technique is provided in [4] to obtain optimized degree distributions with an average output

degree ofO(log(1/ε)), thus making the encoding and the decoding cost constant. An example

of such distribution is

ΩT(x) = .007969x1 + .49357x2 + .1662x3 + .072646x4 + .082558x5+

.056058x8 + .037229x9 + .05559x19 + .025023x65 + .003135x66

(2.8)

The average output degree of (2.8) is 5.87, and is independent of k.

2.3 LDPC Codes

LDPC codes are a class of linear block codes that provide near capacity performance on

a large collection of data transmission and storage channels while simultaneously admitting

implementable decoders. LDPC codes were first proposed by Gallager in his 1960 doctoral
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dissertation [12]. The study of LDPC codes was resurrected almost after 35 years with the

work of MacKay, Luby, and others [21, 22].

2.3.1 Representation of LDPC Codes

The LDPC code is given by the null space of a (n − k) × n parity-check (H) matrix

that has a low density of 1s. The k and n represent the number of original source bits and

encoded bits respectively. Tanner in 1981 generalized the LDPC codes and introduced a

graphical representation of these codes, now called Tanner graphs [23]. The two types of

nodes in a Tanner graph are variable nodes (VNs) and check nodes (CNs). The Tanner

graph of a code is drawn according to the following rule: A CN Cj is connected to a VN Vi

whenever the element hji in H-matrix is a 1. So, there are n − k CNs, one for each check

equation, and n VNs, one for each encoded bit. An example of H-matrix for a (2, 4)-LDPC

code is given as (2.9). The corresponding Tanner graph is shown in Figure 2.6. For each

CN, the sum of the neighboring VNs is zero in GF(2), i.e., the value of each CN is always

zero.

H =



1 1 1 1 0 0 0 0 0 0

1 0 0 0 1 1 1 0 0 0

0 1 0 0 1 0 0 1 1 0

0 0 1 0 0 1 0 1 0 1

0 0 0 1 0 0 1 0 1 1


(2.9)

The number of edges connecting to a node is called the degree of the node. An LDPC

code is called regular if all its VNs have the same degree, and all the CNs have the same

degree. Otherwise, it is irregular LDPC code.

2.3.2 Degree Distributions

Degree distributions associated with CNs and VNs of LDPC codes govern the perfor-

mance of these codes. Let Ω(x) =
∑dr

i=1 Ωix
i be the degree distribution function associated
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Figure 2.6. Tanner graph for an example LDPC code.

with the CNs, where Ωi represents the fraction of degree i CNs, dr is the maximum CN de-

gree, and
∑dr

i=1 Ωi = 1. Let Λ(x) =
∑dl

i=1 Λixi be the degree distribution function associated

with the VNs, where Λi represents the fraction of degree i VNs, dl represent the maximum

VN degree, and
∑dl

i=1 Λi = 1.

The total number of edges in the decoding graph can be calculated as

Ne = (n− k)
dr∑
j=1

jΩj = n

dl∑
i=1

iΛi. (2.10)

Let ω(x) and λ(x) be the degree distributions associated with the CNs and VNs from

the edge perspective respectively. They are represented as [12]

ω(x) =
dr∑
i=1

ωix
i−1,

λ(x) =

dl∑
i=1

λix
i−1, (2.11)

where ωi is the probability that an uniformly chosen edge is connected to a CN of degree i.

Similarly, λi is the probability that an uniformly chosen edge is connected to a VN of degree
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i. ωi and λi are calculated as

ωi =
iΩi∑dr
j=1 jΩj

,

λi =
iΛi∑dl
j=1 jΛj

. (2.12)

Therefore, (2.12) can be rewritten as

ω(x) =
Ω′(x)

Ω′(1)
,

λ(x) =
Λ′(x)

Λ′(1)
, (2.13)

where Ω′(x) and Λ′(x) represent the derivative of Ω(x) and Λ(x) respectively.

2.3.3 Iterative Decoding Algorithm

In addition to introducing LDPC codes, Gallager also provided a decoding algorithm

that is typically near optimal. Since that time, other researchers have independently dis-

covered that algorithm and related algorithms. These algorithms perform iterative compu-

tations in graph-based models and comes under different names depending on the context.

These names include: the sum-product algorithm, the belief propagation algorithm, and the

message passing algorithm (MPA). The term “message passing” usually refers to all such

iterative algorithms, including the SPA, BPA, and its approximations. The concept of such

algorithm is as follows:

The a posteriori probability (APP) that a given bit in a transmitted codeword c =

[c1c2 · · · cn] equals 1, given the received word y = [y1y2 · · · yn], is computed initially. So, for

the decoding of bit ci, the APP is computed as

Pr(ci = 1|y). (2.14)
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The APP ratio (also called likelihood ratio (LR)) is calculated as

l(ci) ,
Pr(ci = 0|y)

Pr(ci = 1|y)
. (2.15)

The more numerically stable computation of the log-APP ratio, also called the log-likelihood

ratio (LLR) is calculated as

L(ci) , log

(
Pr(ci = 0|y)

Pr(ci = 1|y)

)
. (2.16)

Hereafter, the natural logarithm is assumed for LLRs.

The SPA for the computation of Pr(ci = 1|y), l(ci), or L(ci) is an iterative algorithm

which is based on the code’s Tanner graph. Specifically, it is imagined that the VNs represent

processors of one type, CNs represent processors of another type, and the edges represent

message paths. In one-half iteration, each variable node processes its input messages and

passes its resulting output messages up to neighboring CNs (two nodes are said to be neigh-

bors if they are connected by an edge). This is depicted in Figure 2.7 for the message m↑14

from VN V1 to CN C4 (the subscripted arrow indicates the direction of the message, keeping

in mind that the Tanner graph convention places CNs above VNs). The information passed

concerns Pr(c1 = b | input messages), b ∈ {0, 1}, the ratio of such probabilities, or the log-

arithm of the ratio of such probabilities. Note in the figure that the information passed to

CN C4 is all the information available to VN V1 from the channel and through its neighbors,

excluding CN C4, i.e., only extrinsic information is passed. Such extrinsic information m↑ij

is computed for each connected VN-CN pair Vi/Cj at each half-iteration.

In the other half iteration, each CN processes its input messages and passes its resulting

output messages down to its neighboring VNs. This is depicted in Figure 2.8 for the message

m↓14 from CN C1 down to VN V4. The information passed concerns Pr(check equation C1

is satisfied | input messages), b ∈ {0, 1}, the ratio of such probabilities, or the logarithm of
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Figure 2.7. Subgraph of a Tanner graph corresponding to an H matrix whose first column is
[1 1 1 1 0 · · · 0]. The arrows indicate message passing from node V1 to node C4.

Figure 2.8. Subgraph of a Tanner graph corresponding to an H matrix whose first row is
[1 1 1 1 0 · · · 0]. The arrows indicate message passing from node C1 to node V4.

the ratio of such probabilities. Note that only extrinsic information is passed to VN V4 as in

the previous case. Such extrinsic information m↓ji is computed for each connected CN-VN

pair Cj/Vi at each half-iteration.

After a prescribed maximum number of iterations or after some stopping criterion has

18



been met, the decoder computes the APP, the LR, or the LLR for each VN from which the

decision of each transmitted bit ci is made.

2.3.4 Decoding of LDPC codes

This section presents the decoding of LDPC codes over BIAWGN channel. The modula-

tion assumed is the binary phase shift keying (BPSK) modulation. The channel is modelled

as y = x + w, where y represents the received corrupted version of the transmitted code-

word, x represents the modulated codeword, and w represents a vector of zero-mean white

Gaussian noise samples with variance σ2 = N0/2, where N0 is the one-sided noise power

spectral density. The channel estimates are calculated as 2y/σ2, which are used to start the

decoding process.

Sum-Product Algorithm

The SPA is run over the decoding graph associated with the LDPC codes constructed

using the associated H-matrix. The messages are exchanged between VNs and CNs along

the connected edges. Let LCjVi
represent the LLR message that the CN Cj passes to its

neighboring VN Vi. Similarly, let LViCj
represent the LLR message that the VN Vi passes to

its neighboring CN Cj. Let LVi
represent the channel estimate associated with the VN Vi.

Hence, LVi
= 2yi/σ

2. Initially, each VN passes its channel estimate to all of its neighboring

CNs through the connecting edges. Then, the updates LCjVi
and LViCj

are exchanged at

each iteration which are calculated as

LCjVi = 2 tanh−1

 ∏
i′∈NCj−{i}

tanh

(
1

2
LVi′Cj

) , (2.17)

LViCj = LVi +
∑

j′∈NVi−{j}

LCj′Vi , (2.18)

where NCj denotes the set of VNs connected to the jth CN and NVi denotes the set of CNs

connected to the ith VN.
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We call (2.17) and (2.18) as product rule and sum rule respectively. This algorithm is

run over some predefined number of iterations or until certain stopping criteria is met. After

that, the final decision about each VN is made based on the following rule which we call as

decision rule.

LD = LVi +
∑

j′∈NVi−{j}

LCj′Vi . (2.19)

2.3.5 Density Evolution for LDPC Codes

A general tool to analyze LDPC codes that uses an iterative sum-product decoder is

called density evolution [15, 16]. It tracks the evolution of the probability density function

(PDF) of the messages being passed through the edges of the decoding graph, where the

messages are modelled as random variables. Using this method, one can find the minimum

signal to noise ratio (SNR) or the maximum noise parameter (σ2) beyond which the iterative

decoder fails to achieve an extremely small bit error probability. This value is called the

decoding threshold.

Discretized Density Evolution

Discretized density evolution [13, 14] is a computationally efficient discretized version

of the density evolution which considers discretized LLR messages. The DDE accurately

tracks the behaviour of the SP decoding. The method is explained here.

Let v be a LLR message through a randomly chosen edge from a degree dv VN to a CN.

Under SP decoding v is calculated as

v =
dv−1∑
i=0

ui, (2.20)

where ui, i = 1, · · · , dv − 1 are the incoming LLRs from the neighboring CNs of the VN

except the CN that gets the message v, and u0 is the observed LLR of the VN.

Let u be a LLR message from a degree dc CN to a VN. Then, the message update rule
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for the CN is calculated as

tanh
u

2
=

dc−1∏
j=1

tanh
vj
2
, (2.21)

where vj, j = 1, · · · , dc − 1 are the incoming LLRs from the neighboring VNs of the CN

except the VN that gets the message u.

To perform the DDE, the messages are discretized in the following way. Let Q(w) be

the quantized message of w, i.e.,

Q(w) =



⌊
w
∆

+ 1
2

⌋
∆, if w ≥ ∆

2⌈
w
∆
− 1

2

⌉
∆, if w ≥ −∆

2

0, otherwise;

(2.22)

where Q is the quantization operator, ∆ is the quantization interval, bxc is the largest integer

not greater than x, and dxe is the smallest integer not less than x.

Discretized SP decoding is defined as SP decoding with all input and output messages

quantized in this way. Under discretized SP decoding, (2.20) becomes v̄ =
∑dv−1

i=0 ūi, where

v̄ = Q(v) and ūi = Q(ui) for i = 0, · · · , dv − 1. The PMF of a quantized message w̄ is

denoted as pw̄[k] = Pr(w̄ = k∆) for k ∈ Z. Then, the PMF for the quantized message v̄ is

calculated as [14]

pv̄ =
dv−1⊗
i=0

pūi , (2.23)

where
⊗

is defined as the convolution operation while the superscript represents the number

of times the convolution is operated. Since the ūi are independent and identically distributed

(i.i.d) for 1 ≤ i ≤ dv, (2.23) is written as

pv̄ = pū0
⊗(

dv−1⊗
pū

)
, (2.24)

where pū = pūi , 1 ≤ i ≤ dv.
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Let a two-input operator R be defined as

R(a, b) = Q

(
2 tanh−1

(
tanh

a

2
tanh

b

2

))
, (2.25)

where a and b are quantized messages. Using this operator, the quantized message ū of

(2.21) is calculated as

ū = R(v̄1, R(v̄2, · · · , R(v̄dc−2, v̄dc−1)). (2.26)

The PMF of R(a, b) denoted as pc is calculated as

pc[k] =
∑

(i,j):k∆=R(i∆,j∆)

pa[i]pb[j]. (2.27)

For simplicity, (2.27) is written as pc = R(pa, pb).

Since for any CN, all the incoming messages from its neighboring VNs have the same

PMF, we can write pv̄ = pv̄i for any 1 ≤ i ≤ dc. Thus, we write the following

pū = R(pv̄, R(pv̄, · · · , R(pv̄, pv̄)))

= Rdc−1pv̄.

(2.28)

We know that the message densities get evolved as the iteration number increases. Let,

p
(l)
ū and p

(l)
v̄ be the PMFs corresponding to ū and v̄ respectively at the completion of the lth

iteration.

We define, for any PMF p,

fλ(p) =
dv∑
i=2

λi

(
pū0
⊗(

i−1⊗
p

))
,

fω(p) =
dc∑
j=2

ωj
(
Rj−1p

)
.

(2.29)

The fλ(p) and fω(p) are in fact the average PMFs of the message ū and v̄ respectively.

22



Then, the evolution of message densities p
(l)
v̄ and p

(l)
ū can be calculated iteratively using

following formulas

p
(l)
v̄ = fλ

(
fω

(
p

(l−1)
v̄

))
,

p
(l)
ū = fω

(
fλ

(
p

(l−1)
ū

))
,

(2.30)

where the initial PMFs p
(0)
v̄ and p

(0)
ū have all mass at zero.

These formulations are used in the design of capacity approaching LDPC codes. Given

a code-rate, designing LDPC codes means finding a degree distribution pair λ(x) and ω(x)

such that p
(l)
ū → 0 as l→∞ for the minimum SNR or the maximum σ.

Using this DDE method, an optimized half-rate irregular LDPC code has been designed

with a decoding threshold within 0.0045 dB to the Shannon limit [13, 14].
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CHAPTER 3

DESIGN OF SERIALLY CONCATENATED LDGM

CODES

In this chapter, we first provide some background on LDGM codes and its concatenated

schemes. We then completely focus on the asymptotic performance analysis, error-floor

analysis, and optimization design of SCLDGM codes using DDE method for BIAWGN

channels.

3.1 LDGM Codes

LDGM codes are systematic linear codes with low-density generator matrices. Because

of the sparseness of the generator matrix, the amount of processing required in the encoder

is comparable to that of turbo codes and much less than that of the standard LDPC codes

[17]. These codes also use SPA as the decoding algorithm. Hence, their decoding complexity

is as good as that of LDPC codes and much better than Turbo codes.

3.1.1 Encoding

Let a packet to be transmitted over a communication channel is of length k-bits. These

k-bits called source/information bits are encoded to produce a code-word of length n-bits

which after modulation are transmitted over a communication channel. The ratio k/n

is the code-rate of the code. Let s = [s1, s2, · · · , sk] be the original k-bits. Due to the

systematic nature of LDGM encoding, the encoded bits also called as output bits consist

of k original source bits and (n− k) parity bits. Therefore, the output bits are represented
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as o = [s1, s2, · · · , sk, p1, p2, · · · , pn−k]. The generator matrix used to generate such output

bits is represented as G = [I P], where I represents k × k identity matrix and P represents

(n − k) × k sparse matrix used to generate parity bits [p1, p2, · · · , pn−k]. The graphical

representation of a LDGM code is presented in Figure 3.1. A LDGM code is called a regular

(X, Y )-LDGM code if the number of edges connected to each source and parity bit are X

and Y respectively. Therefore, the code represented by the Figure 3.1 is a regular (3, 3)

LDGM code.

Figure 3.1. An example of a LDGM code.

3.1.2 Decoding of LDGM Codes over BIAWGN channel

A bi-partite graph as shown in Figure 3.2 is used to conduct SP decoding of LDGM codes

in BIAWGN channels. The VNs V1, V2, · · · , Vk represent the original source bits while the

CNs C1, C2, · · · , Cn−k represent the parity bits. We have considered the BPSK modulation.

The channel is modelled as yi = xi + wi, where xi represent the transmitted bit and wi

represent the zero mean Gaussian noise. The corresponding channel estimate is calculated

as 2yi/σ
2, where σ2 is the variance of the Gaussian noise. Let LVi and LCj represent the

channel estimates associated with the ith VN and the jth CN respectively.
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Figure 3.2. Bipartite graph used for the decoding of LDGM codes using SPA.

The product and sum rule used for the decoding of LDGM codes in BIAWGN channels

are as follows

LCjVi = 2 tanh−1

(tanh
LCj
2

) ∏
i′∈NCj−{i}

tanh

(
1

2
LVi′Cj

) , (3.1)

LViCj = LVi +
∑

j′∈NVi−{j}

LCj′Vi . (3.2)

where NCj denotes the set of VNs connected to the jth CN and NVi denotes the set of CNs

connected to the ith VN.

The decision rule used is

LD = LVi +
∑

j′∈NVi−{j}

LCj′Vi , (3.3)
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Figure 3.3. Concatenated Codes

Compared to the SPA of LDPC decoding, the sum and decision rule remain the same for

the LDGM decoding while the product rule has an extra term LCj representing the channel

estimate associated with the ith parity bit. The LLR messages are exchanged between VNs

and CNs through their connected edges using these update rules. The decision of each VN

is made based on the gathered LLRs summed using the decision rule.

3.2 Serially Concatenated LDGM codes

The concept of concatenated codes was first introduced by David Forney in his Ph.D.

dissertation in 1965 [24]. These codes employ two stages of encoding and decoding [24, 25]

as shown in Figure 3.3. During encoding, the original source bits are first encoded using

an outer code to produce intermediate bits which are further encoded using an inner code

to produce final output bits that are transmitted over a communication channel. During

decoding, first the decoding of the inner code and then the decoding of the outer code is

conducted. The serially concatenated LDGM codes that use the same two-stages of encoding

and decoding are proposed in [17]. Although single LDGM codes are asymptotically bad

[21, 17], the SCLDGM codes are shown to have impressive performance over noisy channels

[17, 26]. Another concatenated scheme called parallel concatenated LDGM (PCLDGM)

codes were proposed in [19]. Since SCLDGM codes are known to have better decoding

performance than the PCLDGM codes, we only consider SCLDGM codes in this work.
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3.2.1 Encoding

In the two stage encoding of SCLDGM codes, at first, k source bits are encoded using

a high rate outer LDGM code to produce k′ intermediate bits which are further encoded

using an inner LDGM code to produce n output bits. Hence, the code-rates of the outer and

inner codes are RO = k/k′ and RI = k′/n respectively, making the SCLDGM code of code-

rate R = RIRo = k/n. Let s = [s1, s2, · · · , sk] represent the original source bits. For the

SCLDGM code, encoding at each stage is systematic. Therefore, the intermediate and the fi-

nal output bits are m = [s1, s2, · · · , sk, po1, · · · pok′−k] and o = [s1, s2, · · · , sk, po1, · · · pok′−k, pi1, · · · pin−k′ ]

respectively , where po = [po1, · · · pok′−k] and pi = [pi1, · · · pin−k′ ] represent outer and inner par-

ity bits respectively. Let ni and no represent the number of inner and outer parity bits.

Thus, n = k + ni + no.

3.2.2 Decoding over BIAWGN channels

We consider transmission over the BIAWGN channel using BPSK modulation. For the

inner decoder, the decoding bipartite graph is constructed using inner parity bits as CNs

and intermediate bits as VNs [26]. Then the SP decoding as discussed in Section 3.1.2

is conducted over the decoding graph associated with the inner code. After running SP

decoding for some pre-defined number of iterations, the LLRs from the inner decoder are

gathered to calculate the final LLR of each VN using the decision rule. These values are

then used as the initial LLRs for the decoding of the outer code with the decoding graph

that is constructed using the outer parity bits as the CNs and the source bits as the VNs

[17, 26].

3.3 Asymptotic Analysis of SCLDGM Codes using DDE

In [17], simulation results are used to show that the SCLDGM codes perform close to

the Shannon limit, however, no asymptotic analysis are presented for BIAWGN channels.

Asymptotic analysis for the single and the parallel concatenation of regular LDGM codes are
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presented in [19]. In [18], error floor and DDE predictions of SCLDGM codes are presented.

It is more focused on the Gaussian approximation [14] of DE. Extrinsic information transfer

(EXIT) functions [27] are used in [26] to optimally design SCLDGM codes and also provided

decoding thresholds. However, none of these works presented the exact asymptotic curves

for SCLDGM codes using DDE.

Both the inner and the outer codes of the SCLDGM codes use SP decoding. Knowing

that the SP decoding can be exactly tracked using DDE, we can apply DDE to both the inner

and outer codes. Therefore, in this section, we show how the DDE method can be applied

in two stages to complete the asymptotic analysis of the SCLDGM codes. We first apply

the DDE to the inner code and then to the outer code. We assume that the all-one BPSK

codeword is transmitted. Therefore, the received LLRs (channel estimates) over a BIAWGN

channel are known to be symmetric Gaussian distributed with mean 2/σ2 and variance 4/σ2,

i.e., N (2/σ2, 4/σ2), where the variance is twice the mean and this symmetric condition has

been proved to be preserved under SP decoding [15]. The channel condition Eb/No, noise

parameter σ, and overall code-rate R are related as Eb/No = 10 log10 (1/ (2Rσ2)).

3.3.1 DDE for Inner Code

Degree Distributions

For the inner LDGM code, the degree distributions of CNs and VNs from the node

perspective are given as Ω(x) =
∑k′

i=1 Ωix
i, where

∑k′

i=1 Ωi = 1 and Λ(x) =
∑ni

i=1 Λix
i,

where
∑ni

i=1 Λi = 1 respectively. Similarly, the degree distributions of CNs and VNs from

the edge perspective are given as ω(x) =
∑k′

i=1 ωix
i−1, where

∑k′

i=1 ωi = 1 and λ(x) =∑ni
i=1 λix

i−1, where
∑ni

i=1 λi = 1 respectively. The conversion between the node and edge

degree distributions are done using ωi = iΩi/
∑k′

j=1 jΩj, and λi = iΛi/
∑ni

j=1 jΛj respectively.

Implementation

Let v̄ be a quantized LLR message through a randomly chosen edge from a degree dv VN

to a CN and let ū be that from a degree dc CN to a VN. Under SP decoding, v̄ is calculated

29



as v̄ =
∑dv−1

i=0 ūi, where ūi, i = 1, · · · , dv − 1 are the incoming quantized LLRs from the

neighboring CNs of the VN except the CN that gets the message v̄, and ū0 is the observed

LLR of the VN. As in [13], the PMF of v̄ is calculated as pv̄ = pū0
⊗(⊗dv−1 pū

)
, where

⊗
is discrete convolution while the superscript represents the number of times the convolution

is operated, and pū is the PMF of ū. Similarly, for the discretized decision rule D̄ =
∑dv

i=0 ūi,

the associated PMF is pD̄ = pū0
⊗(⊗dv pū

)
.

As in [18], ū is calculated as ū = R(v̄0, R(v̄1, R(v̄2, · · · , R(v̄dc−2, v̄dc−1)))), where vj, j =

1, · · · , dc − 1 are the incoming LLRs from the neighboring VNs of the CN except the VN

that gets the message ū, and v̄o is the observed LLR of the CN. It is important to note

here that this v̄o is absent in the LDPC code. As in LDPC codes, the two-input op-

eration R is defined as R(a, b) = Q
(
2 tanh−1

(
tanh a

2
tanh b

2

))
, where a and b are quan-

tized messages, and Q is the quantization operator. Hence, the PMF pū is computed as

pū = R(pv̄0 , R(pv̄, R(pv̄, · · · , R(pv̄, pv̄)))) = R(pv̄0 , R
dc−1pv̄), where the PMF of R(a, b) de-

noted as pc is computed as pc[k] =
∑

(i,j):k∆=R(i∆,j∆) pa[i]pb[j], where ∆ is the quantization

step.

By defining fλ(p) =
∑dv

i=1 λi

(
pū0
⊗(⊗i−1 p

))
and fω(p) =

∑dc
j=1 ωj (R(pv̄0 , R

j−1p), the

evolving PMF of ū and v̄ at the lth iteration can then be calculated as p
(l)
v̄ = fλ

(
fω

(
p

(l−1)
v̄

))
and p

(l)
ū = fω

(
fλ

(
p

(l−1)
ū

))
respectively, where the initial PMFs p

(0)
v̄ and p

(0)
ū have all mass

at zero.

Probability of Decoding Error for Inner Code

For the inner code with all VNs having same degree, i.e., for a regular inner LDGM

code, the associated PMF of the decision rule at the lth iteration is p
(l)

D̄
= pū0

⊗(⊗dv pū

)
.

However, for irregular inner code with the maximum VN degree of dmax, we can calculate

p
(l)

D̄
as

p
(l)

D̄
=

dmax∑
i=1

Λi

(
pū0
⊗(

i⊗
p

(l)
ū

))
. (3.4)
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Let [−La, La] be the range of LLRs used. Thus, the quantization step is calculated as

∆ = 2La/2
nb , where nb is the number of quantization bits used. Then, the decoding error

probability of the inner decoder can be calculated at the completion of each iteration as

E
(l)
in =

∑
d̄

p
(l)

D̄

(
d̄
)

for d̄ ∈ [−La,−La + ∆, · · · , 0]. (3.5)

3.3.2 DDE for Outer Code

Let qū0 be the PMF of the initial LLRs for the outer decoder. We know that after the

completion of the inner decoding, the final LLRs of all the VNs of inner code are calculated

using the decision rule and are then fed into the outer decoder. This means p
(l)

D̄
serve as the

PMF of the input LLRs to the outer decoder. Since the condition that the variance of p
(l)

D̄
is

twice its mean is preserved under DE, p
(l)

D̄
is known to be N

(
M

(l)

D̄
, 2M

(l)

D̄

)
, where M

(l)

D̄
is the

associated mean. Knowing that p
(l)

D̄
is the PMF of the LLRs fed into outer decoder, we can

write qū0 = p
(l)

D̄
. For the outer code, let Ω(o)(x) and Λ(o)(x) be the degree distributions of

the CNs and VNs from the node perspective, and ω(o)(x) and λ(o)(x) be those from the edge

perspective respectively. Let q
(l)
ū be the PMF of the message through a randomly chosen

edge from a CN to a VN at the lth outer decoding iteration. For the outer code with all

VNs having same degree d
(o)
v , the associated PMF of the decision variable at the lth outer

iteration is q
(l)

D̄
= qū0

⊗(⊗d
(o)
v qū

)
. However, for irregular outer code with the maximum

VN degree of d
(o)
max, we can calculate q

(l)

D̄
as

q
(l)

D̄
=

d
(o)
max∑
i=1

Λ
(o)
i

(
qū0
⊗(

i⊗
q

(l)
ū

))
. (3.6)

Finally, we can calculate the overall decoding error probability of the SCLDGM code as

E(l) =
∑
d̄

q
(l)

D̄

(
d̄
)

for d̄ ∈ [−La,−La + ∆, · · · , 0]. (3.7)

Throughout this chapter, unless otherwise mentioned, the number of quantization bits
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used is 10, the range of LLRs used is [−50, 50], and the maximum number of iterations used

is 200 for all the asymptotic results presented.

3.3.3 Asymptotic Curves

We present here the exact asymptotic curves for the single LDGM codes as well as the

SCLDGM codes using the DDE method. The asymptotic performance of various half-rate

single LDGM codes is presented in Figure 3.4. The figure clearly depicts that the single

LDGM codes have bad performance in BIAWGN channels.

Figure 3.4. Asymptotic performance of LDGM codes. Code-rate=1/2.

Using the two-step DDE method presented in Section 3.3, we obtained the asymptotic

performance of for four SCLDGM codes namely code A, B, C, and D as depicted in Figure
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Figure 3.5. Asymptotic performance of SCLDGM codes. Inner code used is rate half (dv, dc)-
LDGM code and outer code used is 50/51 rate (4,200)-LDGM code. Overall code-rate (R) =
50/102.

3.5. The inner codes used for code A, B, C, and D are the regular (5, 5), (6, 6), (7, 7), and

(8, 8) half-rate LDGM codes respectively while the outer code used in each case is 50/51 rate

(4,200)-LDGM code. Hence, the overall code-rate is R = 25/51. The outer code-rate 50/51

is chosen since it was presented as one of the best choices in [26]. We see that by using a

high-rate LDGM code as an outer code, the performance of the concatenated scheme can be

drastically improved as depicted for various SCLDGM codes in Figure 3.5. The decoding

threshold and the gap to the Shannon limit of various SCLDGM codes are presented in

Table 3.1. We see that the Code C has the best decoding threshold of 0.68 dB which is

about 0.53 dB away from the Shannon limit.
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Table 3.1. Decoding threshold of various SCLDGM codes. Inner code is half-rate (dv, dc)
LDGM code and outer code is 50/51 rate (4, 200)-LDGM code. Overall code-rate (R) = 50/102.

Code Threshold (dB) Gap (dB)
Code A = (5,5)-LDGM + (4,200)-LDGM 1.44 1.29
Code B = (6,6)-LDGM + (4,200)-LDGM 0.82 0.67
Code C = (7,7)-LDGM + (4,200)-LDGM 0.68 0.53
Code D = (8,8)-LDGM + (4,200)-LDGM 0.99 0.84

3.4 Necessary Condition for Successful Decoding

Theorem 1: A SCLDGM code using SP decoding in a BIAWGN channel can asymp-

totically achieve an extremely small BER if it satisfies E
(l)
in ≤ Q

(
1/σ

(o)
th

)
, where E

(l)
in is the

BER produced by the inner decoder and σ
(o)
th is the decoding threshold of the code used as

outer code.

Proof: Throughout this proof, we consider DE method where non-discretized LLR

messages are considered. In the two-stage decoding as shown in Figure 3.3, we can consider

the encoder-channel-decoder chain of the inner code as a super-channel [24]. Under DE, it is

known that the input LLRs to the outer decoder has the PDF ofN
(
M

(l)
D , 2M

(l)
D

)
. Therefore,

the equivalent noise parameter, i.e., the noise standard deviation, associated with the super-

channel assuming the unit signal power, can be calculated as

√
2/M

(l)
D . Let σ

(o)
th be the

decoding threshold of the outer code at and below which the outer code can theoretically

achieve an extremely small BER. It is then obvious that for the successful decoding, the

outer decoder must satisfy the following condition

√
2

M
(l)
D

≤ σ
(0)
th . (3.8)

Using the Q-function, i.e., the upper tail function of the standard Gaussian distribution,

(3.8) can be rewritten as

Q

√M
(l)
D

2

 ≤ Q

(
1

σ
(o)
th

)
. (3.9)

Knowing that p
(l)
D = N

(
M

(l)
D , 2M

(l)
D

)
is the PDF of the decision variable at the lth itera-
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tion of the inner decoder and under the assumption of all-one BPSK codeword transmission,

the decoding error probability for the inner decoder can be calculated as

E
(l)
in =

∫ 0

−∞
p

(l)
D dD = 1−Q

0−M (l)
D√

2M
(l)
D

 = Q

√M
(l)
D

2

 . (3.10)

From (3.9) and (3.10), we get

E
(l)
in ≤ Q

(
1

σ
(o)
th

)
. (3.11)

In summary, (3.11) is the necessary condition that a SCLDGM code must satisfy in order

to be successfully decoded in a BIAWGN channel using the SP decoding. We henceforth

call Q
(

1/σ
(o)
th

)
the critical BER. It is worth pointing out that in a BIAWGN channel under

BPSK modulation, Q
(

1/σ
(o)
th

)
is actually the raw input BER (i.e., the BER with direct

threshold detection) of the outer code calculated at σ
(o)
th . Let this BER be represented by

Pbth . Then, (3.11) can be rewritten as E
(l)
in ≤ Pbth , which means that the raw input BER of

the outer code at σ
(o)
th is the critical BER. Clearly, handing the decoding to the outer decoder

before this critical BER is achieved by the inner decoder is just the waste of decoding.

This theorem asserts that the decoding threshold of the overall SCLDGM code will be

the minimum Eb/No (maximum σ) at which the inner decoder of the concatenated scheme

achieves the critical BER that is determined by the outer code.

It is very important to note here that Forney discussed in [24] that the only function of

the inner decoder is to bring the probability of decoding error to the range of 10−2 ∼ 10−4,

which once achieved, the outer decoder further drives the overall probability of decoding

error down to an extremely small desired value. More specifically, that range for BIAWGN

channel is predicted to be 10−2 ∼ 10−3 [24]. In this section, utilizing the two-step DDE, we

proved that Q

(
1

σ
(o)
th

)
is the exact value in that range that the inner decoder must at least
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produce for the successful decoding of the SCLDGM codes.

3.4.1 Finding the Critical BER

Figure 3.6 presents the asymptotic performance obtained using DDE for three regular

(dv, dc)-LDGM codes of code-rate 50/51. Their decoding thresholds are presented in Table

3.2. Therefore, if these high rate LDGM codes are to be used as the outer codes in a

SCLDGM code, the inner decoder must at least produce in each case the respective critical

BER as presented in Table 3.2 in order to secure an overall successful decoding. Figure

3.6 also shows that the (3, 150) code is inferior to the (4, 200) code in both error floor and

decoding threshold, while the (4, 200) code has better decoding threshold with a slightly

higher error floor than the (5, 250) code. We pick the (4, 200) code as the outer code to

further study the performance of SCLDGM codes.

Figure 3.6. Asymptotic performance of (dv, dc)- LDGM codes, code-rate = 50/51.
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Table 3.2. DDE threshold and critical BER.

(dv, dc) (Eb/No)th σ
(o)
th Q

(
1/σ

(o)
th

)
(3, 150) 5.61 0.374 3.778 ×10−3

(4, 200) 5.59 0.375 3.848 ×10−3

(5, 250) 5.66 0.372 3.608 ×10−3

3.4.2 Verification of the Necessary Condition

Figure 3.7. Asymptotic performance of various SCLDGM codes.

In Figure 3.7, we provide the asymptotic curves showing the decoding error probability

produced by both the inner and outer decoders of four different SCLDGM codes namely

code A, B, C, and D. The curves clearly depict that once the inner decoder produces a BER

below the critical BER, the outer decoder in each case drastically reduces the BER to the

level enough to declare successful decoding. For example, for code A, the BERs computed

after inner decoding from 0 to 1.4 dB are above the critical BER value of 3.848 × 10−3.

The BERs further computed after outer decoding in that range mostly remain the same
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and only show some sign of improvement near 1.4 dB. However, at 1.5 dB and beyond, the

BERs computed after inner decoding start falling below the critical BER, which after outer

decoding immediately fall below 10−9 level. We observe such facts holding true in the case

of each code, which validate the result presented in the theorem.

3.4.3 Convergence of the Inner Decoder

Figure 3.8. Decoding error probability of the inner decoder
(
E

(l)
in

)
vs. iteration number for a

SCLDGM code (Code C) at different Eb/No values. Eb/No used are 0.8 to 2.0 dB with a gap
of 0.1 dB ordered from right to left in the graph.

The bi-partite graph used for the decoding of the outer LDGM code is very small. In

addition, it is known that once the critical BER is achieved by the inner decoder, the number

of iterations required by the outer decoder to provide successful decoding is very small. Due
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to these reasons, the decoding complexity added by the outer decoder is not much. On

the other hand, due to the low code-rate of inner code, its bi-partite graph used for the

decoding is large. Therefore, the most of the decoding complexities of the SCLDGM codes

are associated with the number of iterations required by the inner LDGM codes to achieve

the critical BER. Practically, the faster the inner decoding converges below the critical BER,

the smaller is the decoding complexity. The asymptotic curves plotted in Figure 3.8 clearly

depict that the inner decoder of the SCLDGM codes converges very fast, i.e., the number

of iterations required by the inner decoder to provide BER well below the critical BER

is small. Hence, this faster convergence behaviour makes the SCLDGM codes practically

suitable codes capable of providing lower latency.

3.5 Error-Floor Analysis of LDGM and SCLDGM codes

Single LDGM codes are asymptotically bad and suffer from huge error floors. The

SCLDGM codes drastically improve the decoding performance and have decoding perfor-

mance close to the Shannon limit. However, they also exhibit error-floor behaviour, but

at very lower BER level as shown in Figure 3.7. In this section, we provide the reasons

behind such error floors and give the lower bound formulas for both the single LDGM and

SCLDGM codes. For the error-floor analysis purpose, we have considered both the inner

and outer LDGM codes as regular codes with VN degree dv and d
(o)
v respectively.

3.5.1 Lower Bounds for single LDGM Codes

The message u passing through a randomly chosen edge from a degree dc CN to a VN is

calculated using the product rule as given by (3.1), which can be rewritten as

u = 2 tanh−1
dc−1∏
j=0

tanh(vj/2), (3.12)
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where vo is the channel estimate of the CN and vj, j = 1, 2, · · · , dc − 1 are the incoming

LLRs from the neighboring VNs.

Under min-sum decoding, (3.12) is written as

u ≈

(
dc−1∏
j=0

sign(vj)

)
·min |vj|. (3.13)

From (3.13), we can write |u| ≈ min |vj|. It is important to note that during the iterative

decoding of LDGM codes, the messages vj, j = 1, · · · , dc − 1 can continuously evolve,

however, the message v0 remains the same throughout the decoding process. Due to this v0,

no matter how large the incoming LLRs are, the following condition holds true throughout

the decoding process

|u| ≤ |vo|+ ε, (3.14)

where ε is a small positive real number. We neglect ε for the rest of the analysis.

It is known that pv0 ∼ N (2/σ2, 4/σ2). Under Gaussian approximation of DE, the mes-

sage u is also assumed to be Gaussian distributed and consistent throughout the decoding

iterations, i.e., p
(l)
u ∼ N

(
M

(l)
u , 2M

(l)
u

)
, where M

(l)
u is the mean associated with u at the lth

iteration. In terms of mean value, (3.14) can be written as

M
(l)
|u| ≤M|vo| ⇒M (l)

u ≤Mvo (3.15)

We can calculate the decoding error probability of u as e
(l)
u = Q

(√
M

(l)
u /2

)
. Using

(3.15), we obtain the following inequality

e(l)
u ≥ Q

(√
Mv0

2

)
(3.16)

It is now obvious that even if l → ∞, the magnitude of the message that a CN passes

is always bounded by its initial channel estimate and hence its decoding error probability.
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Figure 3.9. Evolution of p
(l)
u towards right as l increases for a (7, 7)-LDGM code, Eb/No = 1dB.

Knowing from (3.15) that the best possible M
(l)
u during the DE is Mv0 , it is obvious that

the p
(l)
u can never evolve beyond N (2/σ2, 4/σ2). This fact is clearly depicted in Figure 3.9,

where p
(l)
u for 50 iterations are plotted along with pv0 . We see that p

(l)
u gradually evolves

towards right as iteration increases, however, never evolves beyond pv0 .

We know that the decision of each VN is made using the decision rule D =
∑dv

i=0 ui =

u0 +
∑dv

i=1 ui. From DE, we know that u1, u2, · · · , udv−1 are i.i.d Gaussian random variables

and pui = pu ∀i. Hence, the mean associated with the D at the lth iteration is M
(l)
D =

Mu0 + dvM
(l)
u . Since, Mu0 = Mv0 and M

(l)
u ≤Mv0 , we can write the following

M
(l)
D ≤ (dv + 1)Mu0 . (3.17)

Since p
(l)
D ∼ N

(
M

(l)
D , 2M

(l)
D

)
, it is clear from (3.17) that p

(l)
D can never evolve beyond

N (2(dv + 1)/σ2, 4(dv + 1)/σ2) which is clearly depicted in Figure 3.10, where p
(l)
D for 50
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Figure 3.10. Evolution of p
(l)
D towards right as l increases for a (7, 7)-LDGM code, Eb/No =

1dB.

iterations are plotted. As can be seen, initially the p
(l)
D gradually evolves towards right as

iteration increases, however, is bounded by N (2(dv + 1)/σ2, 4(dv + 1)/σ2).

The decoding error probability of D calculated at the lth iteration is known to be e
(l)
D =

Q

(√
M

(l)
D /2

)
. Using (3.17), we get the following inequality

e
(l)
D ≥ Q

(√
(dv + 1)Mu0

2

)

≥ Q

(√
(dv + 1)

σ2

)
.

(3.18)

Hence, the decoding error probability of D, i.e., the BER of the LDGM codes is lower

bounded by Q
(√

(dv + 1)/σ2
)

. In Figure 3.11, the exact asymptotic performance of various

regular half-rate LDGM codes obtained using the DDE is compared with their respective
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Figure 3.11. Asymptotic performance (solid lines) and lower bounds (dotted lines) of (dv, dc)-
regular half-rate LDGM codes.

lower-bounds calculated using Q
(√

(dv + 1)/σ2
)

. We observe that at higher Eb/No values,

the exact BER of LDGM codes is closely approximated by the lower bound formula, i.e.,

eD u Q
(√

(dv + 1)/σ2
)

while they significantly differ at lower Eb/No values.

3.5.2 Lower Bounds for SCLDGM Codes

Since the outer code of a SCLDGM code is also a LDGM code, the message that the

CNs of the outer decoder pass are also bounded by their respective initial estimates, and

hence also suffer from error floors as we already observed in Figure 3.7.

It is known from the DE analysis of the SCLDGM codes under two-step decoding that

the PDF of the input LLRs to the outer decoder is Gaussian with variance twice the mean.
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Let σsup be the noise parameter associated with the super-channel. Hence, the input LLRs

to the outer decoder has the PDF of N
(
2/σ2

sup, 4/σ
2
sup

)
. Hence, based on the analysis from

Section 3.5.1, we can write the following

E(l) ≥ Q

√(d
(o)
v + 1)

σ2
sup

 . (3.19)

For the inner LDGM code, we knew that M
(l)
D ≤ (dv + 1)Mu0 . In fact, this M

(l)
D is the

mean of the input LLRs to the outer decoder through the super-channel. Since M
(l)
D = 2/σ2

sup

and Mu0 = 2/σ2, we can write the following

2

σ2
sup

≤ (dv + 1)
2

σ2

σ2
sup ≥

σ2

(dv + 1)

(3.20)

Combining (3.19) and (3.20), we get

E(l) ≥ Q

√(d
(o)
v + 1)(dv + 1)

σ2

 . (3.21)

Hence, the decoding error probability of a SCLDGM code under two-step SP decoding

is always lower bounded by Q

(√(
(d

(o)
v + 1)(dv + 1)

)
/σ2

)
. The exact asymptotic perfor-

mance of various SCLDGM codes obtained using the two-step DDE are compared with their

respective lower bounds in Figure 3.11. We observe that at higher Eb/No values, the exact

asymptotic performance of the SCLDGM codes is well approximated by the lower bound

formula while they significantly differ at lower Eb/No values. More specifically, we see that

at any Eb/No value above the decoding threshold, we can just use the lower bound formula

to approximately calculate the BER of the code.
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Figure 3.12. Asymptotic performance (solid lines) and lower bounds (dotted lines) of various
SCLDGM codes.

3.6 Error Floor Eradication using High-Rate LDPC Code as an

Outer Code

Unlike in LDGM codes, the CNs of LDPC codes are always zero in GF(2), and the

message v0 is absent in the product rule. Hence, for LDPC codes, the message that its

CN passes is not bounded by the channel estimate which rather continuously evolves as the

decoding proceeds. Due to this fact, the error floors are absent in the asymptotic curves of

the 50/51-rate regular LDPC code obtained using the DDE method and is also depicted in

Figure 3.13. The decoding threshold of the 50/51-rate LDPC code and the corresponding

critical BER as presented in Table 3.3 are almost the same as those of 50/51-rate LDGM
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codes presented in Table 3.2. Hence, the overall performance of serial concatenation of inner

LDGM codes and outer LDPC codes should be as good as the SCLDGM codes and due to

the use of outer LDPC codes, the asymptotic curves of such concatenated codes should be

free from the error-floors. As expected, we observed no error-floors for such concatenated

schemes. Their asymptotic performance is depicted in Figure 3.14. The outer LDPC code

used is of code-rate 50/51 with dv = 4. Hence, the use of high-rate LDPC code as an outer

code instead of the high-rate LDGM code help completely eliminate the error floors without

sacrificing the decoding performance.

Figure 3.13. Asymptotic performance of (dv, dc)-regular LDPC codes, code-rate = 50/51.
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Table 3.3. Decoding threshold and critical BER for 50/51 rate regular (dv, dc) LDPC code.

(dv, dc) (Eb/No)th σ
(o)
th Q

(
1/σ

(o)
th

)
(3, 153) 5.610 0.374 3.778 ×10−3

(4, 204) 5.595 0.375 3.831 ×10−3

(5, 255) 5.665 0.372 3.592 ×10−3

Figure 3.14. Asymptotic performance of inner LDGM concatenated with high-rate outer
LDPC codes. Inner code used is rate half (dv, dc)-LDGM code and outer code used is 50/51
rate (4,204)-LDPC code.

3.7 Optimization Design

DDE-based optimization method was used to design capacity approaching irregular

LDPC codes in [14, 16]. The detailed two-step DDE implementation of the SCLDGM codes

presented in Section 3.3 and the necessary condition for the successful decoding play vital

role in the optimization design of the SCLDGM codes. For a given outer code, designing a
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good SCLDGM code means finding the degree distribution pair Λ(x) and Ω(x) of the inner

code such that the overall decoding error probability E(l) given by (3.7) tends to zero at the

lowest possible Eb/No. This arduous task, however, with the knowledge of the critical BER

becomes finding the pair Λ(x) and Ω(x) of the inner code such that E
(l)
in ≤ Q

(
1/σ

(o)
th

)
is

achieved at the lowest possible Eb/No. Hence, the constraints required for the optimization

are (a) Λ(1) = 1, (b) Ω(1) = 1, and (c) E
(l)
in ≤ Q

(
1/σ

(o)
th

)
. The first and second constraints

guarantee the valid degree distributions while the third constraint is the necessary condition

for the successful decoding.

For the purpose of optimization, we have considered 50/51 rate (4, 200)-LDGM code as

the outer code. The code-rate 50/51 is chosen since it is known to be one of the best choices

for the outer codes in such concatenated schemes [26]. (4, 200)-LDGM code is used since it

is best regular LDGM code when the code-rate is 50/51 as shown in Table 3.2. Hence, for a

SCLDGM code with this outer code, the critical BER to be achieved by the inner decoder

as known from Table 3.2 is 3.848 × 10−3. The optimization process then becomes finding

the optimized Λ(x) and Ω(x) for the inner code such that 3.848 × 10−3 is achieved at the

lowest possible Eb/No. Actually, we focus on obtaining Λ(x) while its pair Ω(x) is calculated

as Ω(x) = Ωix
i + Ωi+1x

i+1 for some i ≥ 2, where the coefficients and the exponents can be

easily computed from the knowledge of Λ(x) and code-rates [14]. We do the minimization

of E
(l)
in starting at slightly higher Eb/No and search for degree distributions satisfying the

constraints. Once successful, we lower Eb/No and repeat the minimization subject to our

constraints. As an example, let us consider that the code-rate of the inner LDGM code we

want to optimize be one-half. Since Code C ((7, 7)-LDGM + (4, 200)-LDGM) is a SCLDGM

code with half-rate inner LDGM code and have the DDE threshold of 0.68 dB, the initial

Eb/No chosen for our optimization process is close to 0.68 dB, which after each success, is

lowered by 0.01 dB. Due to the monotonicity of the threshold [28], in practice, we speeded

up the search process by using the bisection search at a desired level of precision. The lowest
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Eb/No at which such search is successful is called the decoding threshold of the optimized

code. The corresponding optimized degree distributions for the half-rate inner code we

obtained using this process are given by (3.22). We found that the genetic algorithm based

global optimization method called differential evolution [29] that has been successfully used

to design optimized irregular LDPC codes in [16] and good erasure codes in [30] are equally

effective in designing optimized SCLDGM codes by incorporating our critical-BER based

DDE optimization approach.

Λ(x) = 0.35624x6 + 0.5963x7 + 0.047452x100,

Ω(x) = 0.49187x11 + 0.50813x12.

(3.22)

The asymptotic performance of our optimized SCLDGM code is depicted in Figure 3.15.

The lowest Eb/No at which we obtained an inner code that achieved the critical BER during

the optimization process was 0.41 dB. Consequently, we see from the asymptotic curves that

at 0.41 dB and beyond, the overall BER of the SCLDGM code is drastically dropped, making

0.41 dB the decoding threshold of the optimized SCLDGM code. This code is within 0.26 dB

to the Shannon limit, and clearly outperforms the best regular SCLDGM code (i.e, the code

C) in Figure 3.7 whose decoding threshold is 0.68 dB as presented in Table 3.1. Although

our optimization approach does not consider the extrinsic messages exchanged between the

inner and outer decoders at each iteration as in the EXIT-based optimization used in [26],

our results presented here are as good as those presented in [26] when 50/51 rate outer code

is considered. This further validates the strength of our proposed critical BER-based DDE

optimization approach. We also want to emphasize that nb = 10 and 200 iterations were

used for the DDE calculation during the optimization process. Considering more iterations

as in LDPC design and higher nb can further improve the decoding threshold.

The simulation result is presented in Figure 3.16. We have used 1000 message blocks

each with k=10000 information bits. The maximum number of iterations allowed for the
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Figure 3.15. Asymptotic performance of our optimized SCLDGM code.

inner and outer decoder is 100. We see that our optimized SCLDGM code outperforms the

best SCLDGM code (code C). This also verifies the asymptotic results presented. We would

point out that although SCLDGM codes are used here, the concept of the critical BER and

the optimization approach can also be exploited in analyzing and designing other serially

concatenated error correcting codes.
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Figure 3.16. BER performance comparison of our optimized SCLDGM vs. existing SCLDGM
code (code C), k=10000.
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CHAPTER 4

DESIGN OF PHYSICAL LAYER RAPTOR CODES

In this chapter, we provide the detailed asymptotic analysis of LT and Raptor codes.

For the Raptor codes, the two-step DDE method is used to provide the exact asymptotic

curve. We provide key insights regarding the SP decoding of LT codes in BIAWGN channels

and show their resemblance to the decoding process in BEC. Using critical BER-based

optimization approach, we design capacity approaching Raptor codes for BIAWGN channels.

We also provide the detailed asymptotic analysis and optimization design of systematic

version of these codes.

4.1 Encoding and Decoding of LT codes over BIAWGN Channels

4.1.1 Encoding

Let k be the number of bits in a packet. For the transmission over noisy channels, these

k bits are encoded to generate n output bits. The random encoding nature of LT codes

allows generating any number of output bits as desired or required. Hence, any code-rate

k/n can be realized as required. Let s = [s1, s2, · · · , sk] represent the source/information

bits in the packet and o = [o1, o2, · · · , on] be output bits to be transmitted.

4.1.2 Decoding

A bi-partite graph as shown in Figure 4.1 is used to conduct SP decoding of LT codes in

BIAWGN channels. The VNs V1, V2, · · · , Vk represent the original source bits while the CNs

C1, C2, · · · , Cn represent the output bits. Under BPSK modulation, the channel is modelled
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as yj = xj +wj, where xj is the modulated version of oj and wj is zero mean Gaussian noise.

The channel estimate associated with each CN is calculated as LCj = 2yj/σ
2, where σ2 is

the variance of the Gaussian noise. Since only output bits are transmitted, the VNs do not

have associated channel estimates. Hence, LVi = 0, i = 1, 2, · · · , k, which is not the case in

both LDGM and LDPC codes.

Figure 4.1. Bipartite graph used for LT decoding over BIAWGN Channel.

The product and sum rule used for LT decoding in BIAWGN channel are

LCjVi = 2 tanh−1

(tanh
LCj
2

) ∏
i′∈NCj−{i}

tanh

(
1

2
LVi′Cj

) , (4.1)

LViCj =
∑

j′∈NVi−{j}

LCj′Vi , (4.2)

where NCj denotes the set of VNs connected to the jth CN and NVi denotes the set of CNs

connected to the ith VN.

The decision rule used is

LD =
∑

j′∈NVi−{j}

LCj′Vi . (4.3)
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4.1.3 Full Nodes and Empty Nodes

We know that none of the VNs of LT decoding graph have their channel estimates while

all the CNs have their channel estimates. Based on the product rule of SP decoding, it is

obvious that for a CN Cj to transmit a non-zero LLR message to a VN Vi, the CN Cj must

have received non-zero LLRs from all other edges. This means that at the first iteration,

only degree-one CNs are able to pass non-zero LLRs to their neighboring VNs. At the second

and subsequent iterations, a degree dc CN can pass non-zero LLR message through an edge

e only if it has received non-zero LLRs from all other dc − 1 edges. From VNs perspective,

at the first iteration, only those VNs connected to degree-one CNs get non-zero LLRs while

rest of the VNs receive zero LLRs. As the iteration proceeds, more and more VNs start

getting non-zero LLRs. We denote the VNs that received non-zero LLRs from at least one

of their edges as full nodes. Otherwise, we denote them as empty nodes. It is obvious

that from the BEC’s perspective, full nodes are equivalent to recovered source symbols while

empty nodes are those source symbols which are yet to be recovered.

Referring to the graph in Figure 4.1, at the first iteration, the CN C3 passes a non-zero

message to the VN V1 while none of the other CNs can pass the non-zero message to any of

the VNs. Therefore, only V1 turns to full node and rest of the VNs remain empty. Then,

at the second iteration, VNs V3 and Vk turn to full nodes as they are at this point able to

get a non-zero message from check nodes C2 and C4 respectively. The VN V2 has to wait

until the third iteration to get non-zero messages from C1 and Cn. Hence, we see that a VN

Vi obtains a non-zero LLR message from its neighboring CN Cj only if all the remaining

neighbors of Cj have already become full nodes.

In this way, during the decoding process, a fraction of empty nodes turn into full nodes

until all the VNs connected in the decoding graph become full nodes.
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4.1.4 Incomplete Decoding

From BEC’s perspective, full nodes and empty nodes mean recovered and unrecovered

source symbols respectively. We know from LT decoding in BEC that when all the source

symbols are recovered, successful decoding occurs. However, there exists a scenario in which

source symbols can no more be recovered which is popularly known as premature termi-

nation and adversely affects the decoding performance. Whether we are considering BEC

or BIAWGN channel, the decoding graph associated with the code constructed using the

generator (G) matrix have the same structure. Therefore, any structural issues that impair

the performance of LT codes in BEC should obviously impair the performance of these codes

in noisy channels as well. Regarding LT decoding in BIAWGN channel, the equivalence of

premature termination is that at some point during the decoding process, we will not be

able to turn any of the remaining empty nodes into full nodes. In such case, even though

SP decoding keeps on running, the remaining empty nodes never get non-zero updates. We

call this scenario incomplete or premature decoding.

It is known from the SP decoding of LT codes that at the beginning all the VNs are

empty nodes. It means that all CNs have their all edges connected to only empty nodes. As

the SP decoding proceeds, each CN may have their edges connected to either empty nodes

or full nodes or both.

Based on the SP decoding of LT codes as described above, we can also redefine the

terms used in BEC’s case such as ripple and reduced degree-one encoded symbol from noisy

channel’s perspective. Any degree dc CN which has one edge connected to empty node and

other dc− 1 edges connected to full nodes as shown in Figure 4.2 is the noisy equivalence of

reduced degree-one encoded symbols. Let us call such CNs as single empty neighbor CNs.

Then, a set of empty nodes connected to such single empty neighbor CNs are in fact the

noisy equivalence of the ripple. Hence, in the next decoding iteration, all these empty nodes

in the ripple turn to full nodes. Therefore, as in BEC, this ripple should never cease to zero

as long as there are empty nodes connected to CNs. It implies that if no more CNs become
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Figure 4.2. A CN with one edge connected to empty node and other edges connected to full
nodes.

single empty neighbor CNs, then the ripple size ceases to zero, and no remaining empty

nodes can be turned into full nodes. This is the noisy equivalence of premature termination

and we call it premature/incomplete decoding.

4.1.5 Number of Full Nodes vs. Iteration Number

In this section, we present a method that can calculate the exact number of full nodes

generated at each decoding iteration for any given ODD. We utilize the concept of ‘And-Or’

tree analysis [31] in our calculation.

Let us represent empty and full nodes as label 0 and label 1 nodes. Hence, the rule of

turning empty nodes to full nodes is: Any VN Vi which is an empty node (label 0) turns

into a full node (label 1), if it has at least one neighboring CN Cj such that all neighboring

VNs of Cj except Vi are full nodes.

This rule is exactly the same as the graph substitution recovery rule presented in [31]

for erasure channels which states that “A left node v with label 0 is allowed to change its

label to a 1 if it has at least one right neighbor w such that all left neighbors of w except v
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have label 1”. The left and right node used in the rule refers to VNs and CNs.

Therefore, the formulation developed in [31] can be directly applied to our case. It is

proved in [31] that the probability that a VN Vi is empty can be calculated iteratively using

Yl = δ ·λ(1−ω(1−Yl−1)), where λ(x) and ω(x) represent the degree distributions associated

VNs and CNs respectively from the edge perspective, and δ is the probability that a VN

Vi is empty at the beginning. Since in our case, all the VNs are empty at the beginning,

we have δ = 1. The iterative calculation is started with Y0 = δ. As l increases, Yl should

decrease to 0. The condition will be true if λ(1− ω(1− z)) < z, ∀z ∈ (0, 1] [31].

Under this And-Or tree analysis, we see that Yl gives the exact fraction of VNs remaining

empty by the completion of the lth iteration. Hence, for any given ODD, (Yl−1 − Yl) gives

the exact fraction of new full nodes generated at the completion of the lth iteration.

Table 4.1. Percentages of new full nodes generated at each iteration.

Iteration ΩT(x) D(x)

1 1.5820 14.6390
2 3.0470 21.6810
3 5.7410 26.9670
4 10.3390 23.0990
5 17.0440 11.1764
6 23.6700 2.3815
7 23.6270 0.0552
8 12.7007 0.0001
9 2.2077 0
10 0.0407 0
11 0.0001 0

ΩT(x) = 0.008x1 + 0.4936x2 + 0.1662x3 + 0.0726x4 + 0.0826x5+

0.0561x8 + 0.0372x9 + 0.0556x19 + 0.0250x65 + 0.0031x66

(4.4)
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Figure 4.3. Yl vs. Iteration Number

D(x) = 0.0791x+ 0.4560x2 + 0.1916x3 + 0.0564x4 + 0.0449x5+

0.0252x8 + 0.0376x9 + 0.0825x19 + 0.0165x65 + 0.0102x66

(4.5)

Figure 4.3 shows both the simulation and theoretical results for two different degree

distributions. For both distributions, the theoretical curves are obtained using the Yl formula

while the simulation curves are obtained by averaging over simulation results of 100,000

message blocks of k = 1000 and code-rate of 1/2. We can see that the theoretical results

perfectly match with the simulation results.

Table 4.1 presents the percentages of the full nodes generated at each iteration for the
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two different ODDs ΩT(x) and D(x).

4.2 Encoding and Decoding of Raptor Codes over BIAWGN Chan-

nels

Raptor codes, being serially concatenated codes, involve two stages of encoding and de-

coding [4]. At first, source bits s = [s1, s2, · · · , sk] are encoded using a high-rate outer

LDPC code to produce k′ intermediate bits m = [m1,m2, · · · ,mk′ ], k
′ > k. These in-

termediate bits are further encoded using an inner LT code to produce final output bits

o = [o1, o2, · · · , on], n > k′. Hence, a Raptor code of any code-rate k/n can be realized

based on the number of output bits generated by the inner LT code.

During the decoding of Raptor codes, as explained in [6], we first complete the SP

decoding for the inner LT code followed by the SP decoding of the outer LDPC code. The

decoding graph for the inner LT code is constructed by representing intermediate bits as

VNs and output bits as CNs. The received channel estimates are LCj = 2yj/σ
2. The product

and sum rules as given by 4.1 and 4.2 are used to iteratively perform the SP decoding over

a predefined number of iterations. Then, the decision rule as given by 4.3 is used to sum all

the incoming LLRs for each VN. These gathered LLRs are used as the channel estimates for

the outer decoder. The outer decoding graph is constructed using the (H)-matrix associated

with the outer LDPC code, where again VNs represent the intermediate bits while each CN

is 0 in GF(2). The SP decoding of LDPC codes as discussed in Chapter 2 is then run over

the corresponding decoding graph.

4.3 Asymptotic Analysis of Raptor Codes using DDE

Since both the inner and outer decoders of the Raptor codes use SPA, just like SCLDGM

codes, we implement the DDE in two steps. We first apply it to the inner LT code, and then

to the outer LDPC code to complete the asymptotic analysis of the Raptor codes. Let RI
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and RO be the code-rates of the inner and outer codes respectively making a Raptor code of

realized code-rate R = RIRO. We assume that the all-one BPSK codeword is transmitted.

The channel condition Eb/No, noise parameter σ, and overall code-rate R are related as

Eb/No = 10 log10 (1/ (2Rσ2)). The channel estimates are known to be N (2/σ2, 4/σ2) [14].

4.3.1 DDE for inner code

Let Ω(x) =
∑k′

i=1 Ωix
i, where

∑k′

i=1 Ωi = 1 be the ODD for the inner LT codes, where Ωi

represents the probability of generating a degree i output bit. Regarding the decoding graph

of the inner LT code, Ω(x) is in fact the node degree distribution associated with the CNs.

Let Λ(x) =
∑n

i=0 Λix
i, where

∑n
i=0 Λi = 1 be the node degree distribution associated with

the VNs. Due to random LT encoding, Λ(x) is known to be binomial [6] and its coefficients

are calculated as

Λi =

(
n

i

)( a
k′

)i (
1− a

k′

)n−i
, (4.6)

where a = Ω′(1) is the average degree of the LT encoded symbols and Ω′(x) is the derivative

of Ω(x).

Let ω(x) =
∑k′

i=1 ωix
i−1 and λ(x) =

∑n
i=1 λix

i−1 be the edge degree distributions associ-

ated with the CNs and VNs of the inner LT code respectively. ωi and λi are calculated as

ωi = iΩi/
∑k′

j=1 jΩj, and λi = iΛi/
∑n

j=1 jΛj respectively.

As seen in (4.6), Λ(x) of inner LT code is dependent on block-length n = k′/RI , and it

is known that DDE inherently assumes infinite block-length [14]. However, for a given Ω(x)

and code-rate RI , the curve of Λ(x) remains almost the same irrespective of the block-length

and has a mean of Ω′(1)/RI as can be seen in Figure 4.4. Hence, regarding Λ(x) for DDE

implementation purpose, we can use a relatively larger block-length and consider only those

first d Λi components such that
∑d

i=0 Λi ≈ 1.

Let v̄ be a quantized LLR message through a randomly chosen edge from a degree dv VN

to a CN and let ū be that from a degree dc CN to a VN. Under SP decoding, v̄ is calculated

60



Figure 4.4. Λ(x) of LT codes

as v̄ =
∑dv−1

i=0 ūi, where ūi, i = 1, · · · , dv − 1 are the incoming quantized LLRs from the

neighboring CNs of the VN except the CN that gets the message v̄, and ū0 is the observed

LLR of the VN. As in [13], the PMF of v̄ is calculated as pv̄ = pū0
⊗(⊗dv−1 pū

)
, where⊗

is discrete convolution, the superscript represents the number of times convolution is

operated, and pū is the PMF of ū. Similarly, for the discretized decision rule D̄ =
∑dv

i=0 ūi,

the associated PMF is pD̄ = pū0
⊗(⊗dv pū

)
.

Since pv̄ = pv̄i for any 1 ≤ i ≤ dc, the PMF pū is calculated as pū = R(pv̄0 , R(pv̄, R(pv̄, · · · , R(pv̄, pv̄)))) =

R(pv̄0 , R
dc−1pv̄), where the PMF ofR(a, b) denoted as pc is calculated as pc[k] =

∑
(i,j):k∆=R(i∆,j∆) pa[i]pb[j],

where ∆ is the quantization step.

The PMFs pū0 and pv̄0 need to be known initially. For inner LT codes, observed LLR for

each VN is zero. Therefore, we can write, pū0 =
∑+∞

j=−∞ δ[j], where δ[j] represents the dirac
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delta function. It is important to note that this pū0 in the case of LDGM and LDPC codes is

known to be Gaussian with mean 2/σ2 and variance 4/σ2 [14]. Furthermore, unlike LPDC

codes, all the CNs of LT decoding graph actually have their observed LLRs calculated as

L(cj) = 2yj/σ
2, j = 1, 2, · · · , n. Hence, for each CN, the PMF of the observed LLR can be

calculated as pv̄0 = PMF of L(cj) = N (2/σ2, 4/σ2).

By defining fλ(p) = λ1pū0+
∑dv

i=2 λi

(
pū0
⊗(⊗i−1 p

))
and fω(p) = ω1pv̄0+

∑dc
j=2 ωj (R(pv̄0 , R

j−1p)),

the evolving PMF of ū and v̄ at each iteration can then be computed as p
(l)
v̄ = fλ

(
fω

(
p

(l−1)
v̄

))
and p

(l)
ū = fω

(
fλ

(
p

(l−1)
ū

))
respectively, where the initial PMFs p

(0)
v̄ and p

(0)
ū have all mass

at zero.

Probability of Decoding Error for inner code

For the inner code with all VNs having same degree, the associated PMF of the decision

rule is pD̄ = pū0
⊗(⊗dv pū

)
. However, for irregular inner code, we can calculate pD̄ at the

lth iteration as

p
(l)

D̄
=

dv∑
i=0

Λi

(
pū0
⊗(

i⊗
p

(l)
ū

))
. (4.7)

It is important to note that during LT encoding process, some of the intermediate sym-

bols are left unchosen with Λ0 probability. These unchosen symbols impact the decoding

performance. Hence, Λ0 should be included in (4.7). Let [−La, La] be the range of LLRs

used. Thus, quantization step is ∆ = 2La/2
nb . Then, the decoding error probability of the

inner decoder can be calculated at each iteration as

E
(l)
in =

∑
d̄

p
(l)

D̄

(
d̄
)

for d̄ ∈ [−La,−La + ∆, · · · , 0]. (4.8)

4.3.2 DDE for Outer Code

Let qū0 be the PMF of the initial LLRs for the outer decoder. Then, we can write

qū0 = p
(l)

D̄
. Let Ω(o)(x) and Λ(o)(x) be the node degree distributions, and ω(o)(x) and λ(o)(x)

be the edge degree distributions, respectively for the outer code. Let q
(l)
ū be the PMF of
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the message through a randomly chosen edge from a CN to a VN at the lth outer decoding

iteration. Let d
(o)
max be the maximum VN degree of the outer code. Then, the PMF of

the decision variable associated with the outer LDPC code at the lth iteration is q
(l)

D̄
=∑d

(o)
max

i=1 Λ
(o)
i

(
qū0
⊗(⊗i q

(l)
ū

))
. Finally, the overall decoding error probability of the Raptor

codes at each outer iteration is calculated as

E(l) =
∑
d̄

q
(l)

D̄

(
d̄
)

for d̄ ∈ [−La,−La + ∆, · · · , 0]. (4.9)

4.3.3 Asymptotic Curves

Figure 4.5. Asymptotic performance of LT codes. The output degree distribution used is
ΩT(x).
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Figure 4.6. Asymptotic performance of Raptor codes. The output degree distribution used
is ΩT(x).

The asymptotic performance of LT codes obtained using the DDE method is presented

in Figure 4.5 for various realized code-rates. If we do not consider the outer code, i.e.,

considering RO = 1, the two-step DDE method discussed in Section 4.3 actually becomes

the DDE method for LT codes only. Using this method, we can completely analyse the

performance of LT codes in BIAWGN channels. We see that these codes have error floors

and are asymptotically bad.

Using the two-step DDE method discussed in Section 4.3, we have obtained the asymp-

totic performance of Raptor codes for various realized code-rates as shown in Figure 4.6.

We observed no error floors for the Raptor codes at any realized code-rates presented. We
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see that the use of high-rate outer LDPC codes not only helps eliminate the error floors but

also makes the Raptor codes capacity approaching codes. The ODD used for each realized

code-rates is the same ΩT(x). It is very interesting that the same ODD provides impressive

decoding performance for many different realized code-rates. Throughout this chapter, un-

less otherwise mentioned, the number of quantization bits used is 10, the range of LLRs used

is [−25, 25], and the maximum number of iterations (NT ) used is 200 for all the asymptotic

results presented.

4.3.4 Necessary Condition for Successful Decoding

Considering non-discretized messages, i.e., under density evolution, (4.8) can be rewritten

as E
(l)
in =

∫ 0

−∞ p
(l)
D dD. Let M

(l)
D be the mean associated with p

(l)
D . Under the symmetry

condition as proved in [15], we have p
(l)
D ∼ N

(
M

(l)
D , 2M

(l)
D

)
. Hence, we can write E

(l)
in as

E
(l)
in =

∫ 0

−∞
p

(l)
D dD = 1−Q

0−M (l)
D√

2M
(l)
D

 = Q

√M
(l)
D

2

 . (4.10)

In the two-stage decoding, we can consider the encoder-channel-decoder chain of the

inner code as a super-channel [24] as shown in Figure 3.3. The LLR values obtained from

the inner decoder serve as the channel estimates for the outer decoder and have the PDF of

N
(
M

(l)
D , 2M

(l)
D

)
. Therefore, the equivalent noise parameter, i.e., the noise standard devia-

tion, associated with the super-channel assuming the unit signal power, can be calculated as√
2/M

(l)
D . Hence, the necessary condition for the successful decoding of the outer decoder

becomes

√
2/M

(l)
D ≤ σ

(0)
th , where σ

(o)
th is the decoding threshold of the high-rate LDPC code

used as the outer code. Using the Q-function, i.e., the upper tail function of the standard

Gaussian distribution, this necessary condition can be rewritten as

Q

√M
(l)
D

2

 ≤ Q

(
1

σ
(o)
th

)
. (4.11)
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From (4.10) and (4.11), we get

E
(l)
in ≤ Q

(
1

σ
(o)
th

)
. (4.12)

In summary, (4.12) gives the necessary condition that a Raptor code must satisfy in

order to be successfully decoded in a BIAWGN channel using the SPA. We call Q
(

1/σ
(o)
th

)
the critical BER. Once the inner decoder achieves the critical BER, the outer decoder drives

the overall BER down to an infinitesimally small value. In the Raptor codes, the outer code

used is a high-rate LDPC code. The decoding threshold of 50/51-rate regular (dv, dc)-LDPC

code calculated using the DDE method and the corresponding critical BER is presented in

Table 3.3.

4.3.5 Verification of the Necessary Condition

The asymptotic performance in Figure 4.7 clearly depicts that until the inner decoder

achieves the critical BER, the outer decoder cannot enhance the overall performance. How-

ever, when the inner decoder achieves the critical BER, the outer decoder drives the overall

BER to an infinitesimally small value. The error floors of the inner LT code are completely

eradicated with the use of outer LDPC code. It is very important to note that the Raptor

codes of various realized code-rates using the same ODD ΩT(x) are performing within 0.4

dB to the respective Shannon limits as reported in Table 4.2. The ΩT(x) used, as given by

(4.4), is from [4] and has Ω′T (1) = 5.87.

Table 4.2. DDE thresholds for Raptor codes. The output degree distribution used is ΩT(x).

Code-rate Shannon limit (dB) Threshold (dB) Gap (dB)
5/7 1.37 1.70 0.33
5/8 0.82 1.12 0.30
5/9 0.47 0.76 0.29
1/2 0.19 0.51 0.32
2/5 -0.24 0.11 0.35
1/3 -0.50 -0.12 0.38
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Figure 4.7. Asymptotic performance of Raptor codes. The output degree distribution used
is ΩT(x). The dotted lines are the BERs obtained after inner decoding and the solid lines are
those after outer decoding.

4.4 Critical BER-based Optimization Design

The main objective of optimization design is to obtain an optimized ODD such that E(l)

of (4.9) tends to zero at the lowest possible Eb/No. Since achieving an extremely small BER

by a Raptor code is equivalent to achieving the critical BER by the inner code as proved in

Section 4.3.4, the optimization objective boils down to obtaining an optimized ODD such

that Ein ≤ Q
(

1/σ
(o)
th

)
is achieved by the inner decoder at the lowest possible Eb/No. This

lowest Eb/No becomes the decoding threshold of the Raptor code.
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4.4.1 Optimization Process

We first fix the outer code as 50/51-rate regular (4,204)-LDPC code. Hence, the critical

BER is known to be 3.831×10−3 from Table 3.3. We then optimize the inner code, i.e., search

optimized ODD for the inner LT code. The constraints to be satisfied are: (a) Ω(1) = 1, (b)

0 ≤ Ωi ≤ 1, i = 1, 2, · · · k, (c) E
(l)
in ≤ Q

(
1/σ

(o)
th

)
, and (d) ω(1 − λ(1 − z)) > z, ∀z ∈ [0, 1).

Λ(x) is known to be binomial as given by (4.6). The constraints (a) and (b) guarantee a

valid degree distribution. The constraint (c) is the necessary condition for the successful

decoding of the Raptor codes. The design constraint (d) discussed and developed in [31, 32]

is used for designing such rateless codes. This constraint ensures the successful completion

of SP decoding process.

The optimization process is better understood by considering a particular realized code-

rate. Let us consider a half rate Raptor code. We know from Table 4.2 that the half-rate

Raptor code using ΩT(x) has a decoding threshold of 0.51 dB while the Shannon limit is 0.19

dB. Therefore, regarding the optimization, the range we need to consider is [0.19, 0.51) dB.

At equally spaced points in that range, we minimize E
(l)
in of (4.8) subject to our constraints.

We then consider the lowest Eb/No in that range at which our constraints are satisfied as the

decoding threshold and the corresponding distribution as the optimized ODD. Due to the

monotonicity of the threshold [28], in practice, we speeded up the search process by using

the bisection search at a desired level of precision. The same process can be used to obtain

optimized ODD for the codes of any realized code-rates.

4.4.2 Results

The optimized ODD and decoding thresholds obtained using our approach for the Raptor

codes of various realized code-rates are presented in Table 4.3. Note that optimized ODDs

are obtained by considering the R-rate Raptor code with 50/51 rate (4, 204)-LDPC code as

outer code and RI-rate inner LT code. Figure 4.8 and Table 4.3 clearly depict that the gap

to the Shannon limit in each case is further reduced. Furthermore, the simulation results
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Table 4.3. Optimized output degree distributions, and their corresponding decoding thresh-
olds and gap to the Shannon limit.

Code-rate 5/7 5/8 5/9 1/2 2/5 1/3

Ω1 0.00959 0.00962 0.00955 0.00967 0.00942 0.00896
Ω2 0.47527 0.46539 0.45963 0.45025 0.44283 0.44293
Ω3 0.19096 0.19711 0.18665 0.20937 0.18359 0.13185
Ω4 0.04689 0.04662 0.07334 0.02332 0.08961 0.21253
Ω5 0.12159 0.11969 0.10349 0.14735 0.09978 0.00602
Ω10 0.02441 0.05638 0.04876 - 0.04890 0.14513
Ω11 0.08605 0.05655 0.07067 0.11249 0.07609 -
Ω30 - 0.00902 - - - -
Ω40 0.04523 0.03961 0.04667 0.04755 0.04978 0.05257
Ω50 - - 0.00122 - - -

Ω′(1) 5.328 5.358 5.493 5.508 5.621 5.725

Threshold 1.65 dB 1.05 dB 0.66 dB 0.38 dB -0.06 dB -0.33 dB

Gap 0.28 dB 0.23 dB 0.19 dB 0.19 dB 0.18 dB 0.17 dB

Figure 4.8. Asymptotic performance of our optimized Raptor codes vs. traditional Raptor
codes using ΩT(x).
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Figure 4.9. BER performance of our optimized Raptor codes vs. traditional Raptor codes
using ΩT(x). k=10000.

presented in Figure 4.9 show that our optimized Raptor codes clearly outperform those

using ΩT(x). These results verify the effectiveness of our critical BER-based optimization

approach in obtaining optimized ODD. We also want to emphasize that for the optimization

design part, we have considered NT = 200. Considering higher NT as in LDPC design can

provide even better decoding thresholds.

4.5 Systematic LT and Systematic Raptor Codes

The systematic versions of LT and Raptor codes have also received attention since they

are efficient in practical applications and also provide lower encoding and decoding com-

plexities. Different ways of constructing systematic LT and systematic Raptor codes for

70



BEC are proposed in [33, 34]. However, for noisy channels, SLT codes are constructed in a

straightforward manner, i.e., the encoded output bits consist of both the original source bits

and LT encoded bits. This was first proposed in [35] and used RSD as the output degree

distribution. A modified version of RSD named as truncated RSD is proposed in [36] for

SLT codes with better performance. When a SLT code and a high-rate LDPC code are

serially concatenated, the resulting code is called the SR code.

4.5.1 Encoding and Decoding of SLT Codes

The only difference between the LT encoding and SLT encoding is that the output bits

generated by the SLT encoding also includes the original source bits. The LT encoding

process used to generate the LT encoded bits are exactly the same in both the cases. Hence,

the output bits are represented as o = [s e] = [s1, s2, · · · , sk, e1, e2, · · · , em], where e =

[e1, e2, · · · , em] are the LT encoded bits generated. Again, due to the random LT encoding

process involved, any number of LT encoded bits can be generated as required. Thus, any

required code-rate k/(k +m) can be realized by controlling m.

Figure 4.10. Bipartite graph used for the decoding of SLT codes using SPA.

For the decoding, the SP decoding is run over the decoding graph as shown in Figure 4.10,
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where the CNs C1, C2, · · · , Cn−k represent the LT encoded bits while the VNs V1, V2, · · · , Vk

represent the original source bits. This decoding graph is the irregular version of LDGM’s

decoding graph. Moreover, SLT codes are the irregular rateless counterpart of LDGM codes.

Therefore, the product rule, the sum rule, and the decision rule used for the decoding of

SLT codes are exactly the same as those of the LDGM codes presented in Chapter 3.

4.5.2 Encoding and Decoding of SR Codes

Since SR codes are the serial concatenation of SLT codes and a high-rate LDPC code,

the encoding process involves two-stages as shown in Figure 4.11. The k source bits are

initially encoded using a high-rate LDPC precode to generate k′ intermediate bits. Let

m = [m1,m2, · · · ,mk′ ] represent k′ LDPC encoded intermediate bits. Since the LDPC

precode being used is also systematic, the first k intermediate bits are in fact the original

source bits. These intermediate bits are further encoded using LT encoding to generate LT

encoded bits. During the transmission, all the intermediate bits are transmitted followed by

the LT encoded bits.

Figure 4.11. Graphical representation of systematic Raptor Codes.

Since SR codes are serially concatenated codes, we use the same two-stage decoding as

in SCLDGM codes. We first run the SP decoding over the decoding graph associated with

the inner SLT codes. The inner decoding graph used is constructed by using LT encoded
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bits as CNs and intermediate bits as VNs. After inner decoding, the SP decoding of outer

LDPC code is conducted. The outer decoding graph is constructed based on the associated

(H)-matrix of the used LDPC code, where again the intermediate bits represent the VNs

while the CNs are determined by the check equations obtained from the H-matrix.

4.6 Asymptotic Analysis of SLT and SR Codes

Both the systematic and non-systematic Raptor codes use the same outer LDPC code.

The only difference is that the SR codes have inner SLT codes due to which the intermediate

bits are also transmitted over a communication channel. Hence, the channel estimates

associated with the intermediate bits that form the VNs are available during the decoding

which are known to be Gaussian distributed with 2/σ2 mean and 4/σ2 variance, i.e., pū0 ∼

N (2/σ2, 4/σ2). However, for non-systematic version, these channel estimates are absent and

hence, pū0 =
∑+∞

j=−∞ δ[j] was used. Due to the systematic nature, the inner decoding graph

of SR code has k/R − k′ CNs which for the non-systematic case is k/R. Hence, by easily

incorporating these two modifications in the two-step DDE method discussed in Section 4.3,

we can obtain the asymptotic curves for SR codes easily.

The exact asymptotic curves for SLT codes of various realized code-rates are presented

in Figure 4.12 while that of SR codes are presented in Figure 4.13 respectively. The ODD

used is ΩT(x) from [4] as given by (4.4). The precode used is a regular LDPC code of code-

rate 50/51 with degree 4 VNs. The asymptotic results show that the SR codes have huge

performance improvements over the SLT codes for all the realized code-rates considered. We

have observed no error floors for the SR codes. The decoding thresholds of the SR codes

using ΩT(x) for the realized code-rates of 2/3, 2/4, 2/5, and 2/6 are found to be 4.42 dB,

3.10 dB, 2.07 dB, and 1.42 dB respectively.
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Figure 4.12. Asymptotic performance of systematic LT codes over BIAWGN channels. The
output degree distribution used is ΩT(x).

4.7 Optimization Design of SR Codes

Since the outer code we have used for the SR codes is the same 50/51 rate LDPC code as

in non-systematic Raptor codes, the necessary condition for the successful decoding remains

the same. It means that the critical BER that the inner decoder of the SR codes must

at least produce is as presented in Table 3.3. Hence, we use the same critical-BER based

optimization approach used for Raptor codes as described in Section 4.4 and use it to obtain

optimized ODD for SR codes by considering the two-step DDE of the SR codes.
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Figure 4.13. Asymptotic performance of systematic Raptor codes over BIAWGN channels.
The output degree distribution used is ΩT(x).

4.7.1 Optimized Output Degree Distribution

The optimized output degree distributions we have obtained for the SR codes of various

realized code-rates are presented in Table 4.3. The decoding threshold, the gap to the

Shannon limit, and the improvement of our optimized ODD over ΩT(x) for various realized

code-rates are also presented. We see that our optimized SR codes largely outperform the

traditional SR codes. It is also observed that as the code-rate decreases, the gap to the

Shannon limit further improves.
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Table 4.4. Optimized output degree distributions and their corresponding decoding threshold,
gap to the Shannon limit, and improvement over ΩT(x).

Code-rate (R) 2/3 2/4 2/5 2/6

Ω1 0.00635 0.00477 0.00381 0.01527
Ω2 0.35367 0.26101 0.22579 0.14492
Ω3 0.01867 0.09240 - -
Ω4 0.20177 - - -
Ω5 - - - 0.59406
Ω6 - - 0.48017 0.14058
Ω7 - - 0.20647 -
Ω8 - 0.06913 - -
Ω9 - 0.51223 - -
Ω20 0.38134 - - -
Ω30 0.03820 - - 0.07743
Ω40 - - 0.05607 -
Ω50 - - 0.02769 0.02775
Ω60 - 0.06046 - -

Threshold 2.39 dB 0.88 dB 0.20 dB -0.15 dB

Gap 1.33 dB 0.69 dB 0.44 dB 0.35 dB

Improvement 2.03 dB 2.22 dB 1.87 dB 1.57 dB

4.7.2 Simulation Results

The simulation results of our optimized SR codes of realized code-rates 1/2 and 1/3 are

compared with those of traditional SR codes for different values of k in Figure 4.14 and

Figure 4.15 respectively. Our optimized SR codes used the optimized ODDs presented in

Table 4.4, while traditional SR codes used the ΩT(x). The maximum number of iterations

allowed for the inner and outer codes during the SP decoding are 200 and 50 respectively.

We see from the graphs that our optimized SR codes largely outperform the traditional SR

codes across a wide range of Eb/No values in both the cases. The improvements are observed

for all the values of k considered. These simulation results further validate our asymptotic

results.
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Figure 4.14. BER performance of optimized SR codes vs. traditional SR codes. Code-rate =
1/2.

Figure 4.15. BER performance of optimized SR codes vs. traditional SR codes. Code-rate =
1/3.
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CHAPTER 5

CONCLUSION

5.1 Conclusion

We accomplished the following tasks:

� For serially concatenated error correcting codes in which the SP decoding of the inner

code is followed by the SP decoding of the outer code, we showed how the DDE method

can be applied in two-steps to analyse their asymptotic behaviour.

� We developed and used the two-step DDE method to provide the exact asymptotic

performance of SCLDGM codes, Raptor codes, and systematic Raptor codes.

� We presented the detailed error-floor analysis of both the LDGM and the SCLDGM

codes.

� We proved a necessary condition for the successful decoding of such concatenated codes

using two-step density evolution. While doing so, we showed that the inner decoder

must at least produce a certain BER called the critical BER so that the outer decoder

can provide an extremely small overall BER. Hence, handing decoding to the outer

decoder without inner decoder achieving the critical BER is just the waste of decoding.

This necessary condition was verified for both the SCLDGM and Raptor codes.

� We proposed a critical BER-based optimization technique to design capacity approach-

ing SCLDGM codes.
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� We used the critical BER-based optimization approach to design Raptor codes for

BIAWGN channels that perform within 0.2 dB to the Shannon limit for most of the

realized codes-rates. We showed through asymptotic curves and simulation results the

superiority of our optimized Raptor codes over the traditional Raptor codes.

� We also designed optimized systematic Raptor codes that hugely outperformed the

traditional systematic Raptor codes in BIAWGN channels.
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