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ABSTRACT 

 Human protein kinases belong to a large and diverse enzyme family that contains more 

than 500 members. Deregulation of protein kinases is associated with many disorders, and this is 

why protein kinases are attractive targets for drug discovery. Due to the high conservation of the 

ATP binding pocket among this family, designing specific and/or selective inhibitors against 

certain member(s) is challenging. Several studies have been conducted on protein kinases to 

validate them as suitable drug targets. Although there are numerous target-validated protein 

kinases, the efforts to develop small molecule inhibitors have so far led to only a limited number 

of therapeutic agents and drug candidates. 

In our studies, we tried to understand the basic structural features of protein kinases using 

available computational tools. There are wide structural variations between different states of the 

same protein kinase that affect the enzyme specificity and inhibition. Many protein kinases do 

not yet have an available X-ray crystal structure and have not yet been validated to be drug 

targets. For these reasons, we developed a new homology modeling approach to facilitate 

modeling non-crystallized protein kinases and protein kinase states. Our homology modeling 

approach was able to model proteins having long amino acid sequences and multiple protein 

domains with reliable model quality and a manageable amount of computational time. Then, we 

checked the applicability of different docking algorithms (the routinely used computational 

methodology in virtual screening) in protein kinase studies.  
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 After performing the basic study of kinase structure modeling, we focused our research 

on cyclin dependent kinase 2 (CDK2) and glycogen synthase kinase-3β (GSK-3β). We prepared 

a non-redundant database from 303 available CDK2 PDB structures. We removed all structural 

anomalies and proceeded to use the CDK2 database in studying CDK2 structure in its different 

states, upon ATP, ligand and cyclin binding. We clustered the database based on our findings, 

and the CDK2 clusters were used to generate protein ligand interaction fingerprints (PLIF). We 

generated a PLIF-based pharmacophore model which is highly selective for CDK2 ligands. A 

virtual screening workflow was developed making use of the PLIF-based pharmacophore model, 

ligand fitting into the CDK2 active site and selective CDK2 shape scoring. 

We studied the structural basis for selective inhibition of CDK2 and GSK-3β. We 

compared the amino acid sequence, the 3D features, the binding pockets, contact maps, structural 

geometry, and Sphoxel maps. From this study we found 1) the ligand structural features that are 

required for the selective inhibition of CDK2 and GSK-3β, and 2) the amino acid residues which 

are essential for ligand binding and selective inhibition. We used the findings of this study to 

design a virtual screening workflow to search for selective inhibitors for CDK2 and GSK-3β. 

Because protein–protein interactions are essential in the function of protein kinases, and 

in particular of CDK2, we used protein–protein docking knowledge and binding energy 

calculations to examine CDK2 and cyclin binding. We applied this study to the voltage 

dependent calcium channel 1 (VDAC1) binding to Bax. We were able to provide important data 

relevant to future experimental researchers such as on the possibility of Bax to cross biological 

membranes and the most relevant amino acid residues in VDAC1 that interact with Bax. 
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1.1. The human protein kinases 

Protein kinases constitute a large and diverse enzyme family. There are more than 518 

human protein kinases in Homo sapiens that are characterized by their conserved motifs [1-3]. 

Protein kinases represent the third most abundant protein family and constitute about 1.7% of the 

human genome. 478 members of the protein kinases form one group, namely typical kinases, and 

the remaining 40 are atypical [2]. Functionally, typical kinases regulate many cellular functions 

by adding phosphate groups to substrate proteins from ATP to serine, threonine, or tyrosine 

residues. Most kinases add phosphate groups to serine and threonine, a number add phosphate to 

tyrosine, and a number act on all three of the amino acids [4-6]. The typical kinases that 

phosphorylate serine or threonine residues comprise 388 individual kinases and those that 

phosphorylate tyrosine residues consist of 90 kinases [2, 7]. Atypical kinases have similar 

biochemical kinase activity without much sequence similarity to typical kinases. The results of 

substrate phosphorylation are a change of function such as different enzyme activity or 

intracellular location, or association with other proteins [7]. Kinases are essential participants in 

signal transduction and most cell processes, such as cell growth, differentiation, metabolism, 

gene transcription, and the cell cycle [8].  

The eukaryotic protein kinases (ePKs) superfamily contains all typical protein kinases 

which share the conserved kinase (also known as catalytic) domain; other protein kinases belong 

to the atypical protein kinases (aPKs). Based on the sequence of the ePK domains, ePKs are 

categorized into 7 major groups (AGC, CAMK, CMGC, CK1, STE, TKL, TK kinases) [9]. The 

AGC group contains cytoplasmic serine/threonine kinases and is named after the protein kinase 

A, G, and C families (PKA, PKC, PKG). The CAMK group is named after calcium and 
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calmodulin-regulated kinases. CMGC is named after a set of families (CDK, MAPK, GSK-3 and 

CL). CK1 was originally known as Casein Kinase 1 but is now renamed as Cell Kinase 1. STE 

kinases are homologues of the yeast STE7, STE11 and STE20 genes. TKL is tyrosine kinase like 

and TK is tyrosine kinase. These groups are classified into families and subfamilies (Figure 1.1). 

                        

Figure 1.1. Phylogeny tree of the eukaryotic protein kinases (ePK), showing the 7 major groups 

(AGC, CAMK, CMGC, CK1, STE, TKL, TK kinases). 

 

Protein kinases are extensively regulated by various cellular mechanisms, including: 1) 

inhibitory or activating phosphorylation, 2) binding to either inhibitory or activating protein 
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partners, 3) selective compartmental and cellular localization to limit access to substrates and 

protein partners, 4) degradation by cellular enzymes, and 5) gene transcription [10]. There are 

many causes that may lead to protein kinase deregulation, such as mutation through 

chromosomal rearrangement or single/multiple nucleotide modifications that lead to 

constitutively active forms, and lack of negative or positive regulators [11, 12]. Deregulation and 

abnormalities of protein kinase activity are associated with many disorders, such as cancer, 

metabolic and neurodegenerative diseases. This is why protein kinases are currently one of the 

most frequently targeted families of proteins in drug discovery [11, 13, 14]. Extensive study of 

protein kinase structures led to understanding of kinase activity and subsequently to the 

development of selective and specific targeted kinase modulators [2, 15-17].  

One of the distinct characteristics of the protein kinase family is the conformational 

flexibility of their structures [18-21]. Protein kinases adopt different structures in active and 

inactive states [22-24] (Figure 1.2). The active protein kinase state is adopted as a result of 

specific cellular signaling events, such as association with a protein kinase regulator and/or 

phosphorylation of the kinase domain.  
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Figure 1.2. Active and inactive states of protein kinases. A) Protein kinase A (1ATP) [25] adopts 

an active state showing the two conserved hydrogen bonds between DFG-glycine amide and 

DFG-aspartate carboxylate, and DFG-phenylalanine and DFG+2 residue. B) CDK2 (1HCK) [26] 

adopts an inactive state, in which the DFG-glycine amide is rotated and both hydrogen bonds are 

lost. C) Aligned 1ATP (balls and sticks) and 1HCK (sticks) show the rotation of the glycine 

amide and aspartate carboxylate (highlighted red and purple, respectively). 
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There are several protein kinase inhibitors approved by US FDA for various indications 

(Figure 1.3), including Afatinib [27], Axitinib [28], Crizotinib [29], Bosutinib [30], Cabozantinib 

[31], Dabrafenib [32], Dasatinib [33], Erlotinib [34], Everolimus [35], Sirolimus [36], Gefitinib 

[37], Imatinib [38], Lapatinib [39], Nilotinib [40], Pazopanib [41], Regorafenib [42], Ruxolitinib 

[43], Sorafenib [44], Sunitinib [45], Tofacitinib [46], Vandetanib [47], Trametinib [48], 

Vemurafenib [49], and Temsirolimus [50]. The following structures are the US FDA approved 

kinase inhibitors and are represented by their structure, name, known targets and indications. 

 

                 

Afatinib (EGFR, NSCLC*)    Axitinib (VEGFR1/2/3, RCC*)  

 

    

Bosutinib (BCR-Abl, Src, Lyn, and Hck, 

CML*) 

Crizotinib (ALK, c-Met (HGFR), and Ros, 

ALK-positive NSCLC*)  
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           Dabrafenib (B-RAF, Melanoma) 

 

 

           

 

Erlotinib (EGFR, NSCLC* and pancreatic 

cancer) 

 

Cabozantinib (RET, Met, VEGFR1/2/3, 

Kit, TrkB, Flt3, Axl, Tie2, Metastatic 

medullary thyroid cancer) 

Dasatinib (BCR-Abl, Src, Lck, Yes, Fyn, 

Kit, EphA2, and PDGFRβ, CML*) 



8 
 

                     

Sirolimus (FKBP12/mTOR, Renal transplant) 

 

 

 

      

 

Gefitinib (EGFR, NSCLC*)  

  

 

Everolimus (FKBP12/mTOR, 

Progressive neuroendocrine tumors of 

pancreatic origin, RCC*, subependymal 

giant cell astrocytoma, breast cancer) 

Imatinib (BCR-Abl, Kit, and PDGFR, CML*, 

ALL*, aggressive systemic mastocytosis, GIST*) 
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Lapatinib (EGFR and ErbB2, Breast cancer) Nilotinib (BCR-Abl, PDGFR, CML*) 

 

    

 

 

                              

 

Ruxolitinib (JAK1/2, Myelofibrosis) 

 

Regorafenib (VEGFR1/2/3, BCR-

Abl, B-Raf, B-Raf(V600E), Kit, 

PDGFRα/β, RET, FGFR1/2, Tie2, 

and  Eph2A, CRC*) 

Ponatinib (BCR-Abl, BCR-Abl T315I, VEGFR, 

PDGFR, FGFR, Eph, Src family kinases, Kit, RET, 

Tie2, and Flt3, CML*, Ph chromosome positive 

ALL*) 

Pazopanib (VEGFR1/2/3, PDGFRα/β, 

FGFR1/3, Kit, Lck, Fms, and Itk, 

RCC*, soft tissue sarcomas) 
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Tofacitinib (JAK3, Rheumatoid arthritis)  

 

 

                                      

Trametinib (MEK1/2, Melanoma)             
Vemurafenib (A/B/C-Raf and B-Raf 

(V600E), Melanoma with BRAFV600E 

mutation) 

Vandetanib (EGFRs, VEGFRs, RET, Brk, Tie2, 

EphRs, and Src family kinases, Medullary thyroid 

cancer) 

 

Sorafenib (C-Raf, B-Raf, B-Raf (V600E), 

Kit, Flt3, RET, VEGFR1/2/3, and 

PDGFRα/β, Hepatocellular carcinoma, RCC) 

Sunitinib (PDGFRα/β, VEGFR1/2/3, Kit, 

Flt3, CSF-1R, and RET, RCC*, GIST*, 

pancreatic neuroendocrine tumors) 
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                                Temsirolimus (FKBP12/mTOR, RCC*) 

Figure 1.3. US FDA approved kinase inhibitors 

 

ALL, acute lymphoblastic leukemia, CML, chronic myelogenous leukemia; CRC, colorectal 

cancer; GIST, gastrointestinal stromal tumor; NSCLC, non-small cell lung cancer; RCC, renal 

cell carcinoma. 

1.1.1. The CMGC Group 

The CMGC group (Figure 1.4) is named after the initials of some members including 

cyclin-dependent kinases (CDKs), mitogen-activated protein kinases (MAP kinases), glycogen 

synthase kinases (GSK) and CDK-like kinases [51]. CDKs regulate the progression through the 

different phases of the cell cycle [52]. MAP kinases are involved in signal transduction. MAP 

kinases contain three major subgroups: extracellular signal-related kinases (ERK), the JNK and 

p38 MAP kinases [53].  GSK-3, initially described as a key enzyme involved in glycogen 

metabolism, is now known to regulate diverse cellular functions [54]. 
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Figure 1.4. Phylogeny tree of the CMGC group, showing CDK2 and GSK-3β kinase members. 

 

1.1.1.1. Cyclin-dependent kinases 

Cyclin-dependent kinases (CDKs) are serine/threonine protein kinases and represent a 

large family (21 human genes) that contains classical cyclin–dependent kinases, which control 

various phases of the cell cycle, and other protein kinases, which act as CDK-activating kinases 

CDK2

GSK-3b
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(CAKs), regulating RNA polymerase activity, splicing, transcription and many other cellular 

functions [55]. The human genome has 21 genes that encode CDKs and five more genes 

encoding CDK-like (CDKL) kinases [3, 56].  

CDKs are classified into cell cycle CDKs, C-terminal domain (CTD) CDKs and others. 

Cell cycle CDKs include CDK1 (CDC2), which is the primary regulator of the cell cycle in all 

eukaryotic cells, CDK2, an animal-specific variant of CDK1, and CDK4, a regulator of the G1 

phase of the cell cycle [57]. CTD CDKs have a regulatory function of transcription by 

phosphorylation of the mRNA polymerase II on the heptad repeat unit of its C-terminal domain. 

CTD CDKs include CDK7 that forms the basal transcription factor; CDK8, a part of the 

Mediator complex; CDK9, which is involved in the transcriptional elongation; and CDK12 [58]. 

Other CDKs are mostly involved in non cell cycle activities and include CDK5, which is a brain 

specific CDK, CDK10, which is active in the G2/M phase of cell cycle, CDK11 (PITSLRE) that 

is involved in apoptosis, CDK14 (PFTAIRE), which has a role in cell cycle late development and 

progression [59], CDK16 that is implicated in protein trafficking and secretion, and CDK20, a 

cell cycle related kinase (CCRK), which is involved in cilium biology and hedgehog signaling. 

Other CDK subfamilies are not found in human such as CDK1-DD1, CDK-plant1, CDK-Smoe1 

and CDK-smoe2 [60]. In general, CDK1-11 are classical CDKs, CDK12-13 are two newly 

proposed family members [61] and the names of other CDKs are based on sequence similarity 

with certain CDKs, such as CDC2-like kinases (CDC2L) or cell cycle-related kinases (CCRK), 

or based on the presence of a cyclin-binding element (PFTAIRE and PCTAIRE proteins) [56, 57, 

62-64].  

The catalytic activity of CDKs requires association with specific cyclin or cyclin-like 

subunits [65-67]. CDKs contain conserved specific cyclin-interacting motifs (PSTAIRE and 
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PFTAIRE). The cyclin partner of some CDKs is unknown or non-existent [68]. For example 

CDK5 binds to a cyclin analogous protein (P35), which is not a member of the cyclin family. 

Each cyclin associates with one or two CDKs, and most CDKs associate with one or two cyclins. 

For example, CDK1 complexes with either cyclin A or B, CDK2 associates with cyclin A, C or 

E, CDK4 binds to cyclin D, CDK7 to cyclin H, CDK8 to cyclin C, CDK9 to cyclin K or T, 

CDK10 to cyclin D, CDK11 to cyclin L, CDK12 to cyclin D, CDK14 to cyclin Y, and there is 

some evidence that CDK16 binds to cyclin K or p35 [69, 70]. The cyclin that binds to CDK20 is 

not yet known.  

The primary targets of most of the reported CDK inhibitors are solid tumors or leukemia 

[71]. At the same time, CDK inhibitors are important affecters in many other non-proliferative 

disorders. CDK inhibitors are reported to have essential roles in neurodegenerative diseases 

including Alzheimer’s and Parkinson’s disorders [72], in many viral infections including HSV, 

HCMV, HPV, and HIV [73], in ischemic and stroke conditions [74], in brain tissue damage 

during meningitis [75], in kidney diseases [76], and in cardiac hypertrophy [77]. Despite the 

interest in CDK inhibitors because of the wide spectrum of their pharmacological activities, till 

now, no CDK inhibitor has reached the market and the compounds that are undergoing clinical 

trials are limited [78]. Most of the small-molecule kinase inhibitors show activities against 

multiple members of the kinase family. Due to the encountered off-target activities, undesired 

side effects are expected. Thus designing compounds that are selective inhibitors of CDKs is 

essential [79, 80].  

CDK inhibitors are divided into three general classes based on their target selectivity, 

including inhibitors that have a broad CDK activity profile, inhibitors with specific or selective 

activity towards certain members of CDKs, and inhibitors that have activity against CDKs and 
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additional kinase targets. The anticancer mechanism of action of CDK inhibitors takes place 

through several interacting events [81]. For instance, Roscovitine (Seliciclib, CYC202) [82] is 

reported to inhibit the inactivating phosphorylation of tumor repressors p53 and Rb protein. The 

reported actions of Roscovitine are believed to be involved in the action of other CDK inhibitors. 

The first two CDK inhibitors to enter clinical trials were Flavopiridol (Alvocidib) [83] and 

Roscovitine, which were subsequently followed by other active CDK inhibitors. Flavopiridol has 

promising activity in chronic lymphocytic leukemia (CLL). Roscovitine is an orally active agent 

and is currently in Phase IIb clinical trials for NSCLC [84]. SNS032 is designed as a selective 

CDK2, CDK7, and CDK9 inhibitor to be administered by intravenous infusion for chronic 

lymphocytic leukemia and multiple myeloma [85]. Palbociclib, that was designed by Pfizer [86], 

received breakthrough therapy designation in April 2013 by the United States Food and Drug 

Administration (FDA) as a treatment for breast cancer [87]. AT7519 is an inhibitor of multiple 

CDKs and is currently in Phase I clinical trials. However, it was observed that treatment with 

AT7519 led to hypotension and QTc prolongation [88].  Bay-1000394 is currently in Phase I of 

the clinical trials [89] as an antitumor agent. A more potent analogue of Flavopiridol, P276 [90], 

is in Phase II clinical trials for pancreatic cancer. Terameprocol (EM-1421) is undergoing Phase 

I/II clinical trials and it is designed to be administered through intravenous injection for solid 

tumors [91].  
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1.1.1.1.1. CDK2 

CDK2 (Figure 1.5) is a member of the CDK family. CDK2 activity is restricted to the 

G1-S phase, and is important for the G1-S phase transition of the cell cycle. CDK2 forms 

complexes with and is regulated by a number of regulatory subunits such as cyclin A or E, CDK 

inhibitor p21Cip1 (CDKN1A) and p27Kip1 (CDKN1B). Its activity is also regulated by 

phosphorylation on threonine 160 and tyrosine 15 [92]. CDK2 interacts with cyclins A, B1, B3, 

D, or E. It has the maximum activity among kinases during the S and G2 phases [93]. 
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Figure 1.5. The structure of CDK2 (PDB ID: 1AQ1) [94], represented as wheat surface. The 

secondary structure is shown as yellow cylindrical helices, blue sheets and green loops.  

To better understand how CDK2 inhibitors work to deactivate the enzyme, basic 

information of the cyclins that bind to CDK2 will be useful. CDK2 binds to cyclin A and cyclin 

E at different points of the cell cycle. Binding of cyclin E to CDK2 during G1 phase is required 

for the transition from G1 to S phase while binding of CDK2 with cyclin A is required to 

progress through the S phase [95]. Cyclin A and cyclin E are structurally similar. However, they 

have slight differences in amino acid sequences, in particular in the C-terminal regions. This 

sequence variability affects the strength of cyclin binding to CDK2 [96]. Cyclin E1 [96] is 395 

amino acid residues long. Structurally, it consists of two domains each of five helices and two 

additional helices at the N and C terminals, respectively (Figure 1.6). The N-terminal domain is 

organized as a five-helical domain starting with αNter (N-terminal helix), followed by α1-5, with 

the α3 helix forming a hydrophobic core and the α1, α2, α4, and α5 helices arranged around this 
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core. Ala154 (α2) and Ala184 (α3) interact to allow the observed close packing of the α2 and α3 

helices (Figure 1.6). Cyclin A2 [97] is a globular protein and is 432 amino acid residues long. It 

consists of 12 helices forming two helical domains with identical chain topology (Figure 1.6). 

Each of the two domains consists of a right-handed bundle of three helices and the other two 

helices are packed on the bundle’s side (Figure 1.7). The N- and C-terminals are connected by a 

small loop of 5 amino acids. The two domains contain the cyclin box, which form the binding 

site for CDK2 [98]. The N-terminal cyclin box folds of cyclin E1 (residues 126-225) has >80% 

sequence identity with cyclin A2 (residues 207-305) [99]. The C-terminal cyclin box of cyclin 

E1 is similar to that of cyclin A2 in the helical arrangement; however, the α’1 helix of cyclin E1 

is longer than that of cyclin A2 and its general topology is different (Figure 1.8). The conserved 

amino acids Ala154 and Ala184 in cyclin E1 correspond to Ala235 and Ala264 in cyclin A2 and 

allow close packing of the α2 and α3 helices [96, 97].  

   

Figure 1.6. Cyclin E1 (PDB ID: 1W98) [96] consists of two five helical domains (left). The 

conserved Ala154 and Ala184 allow for close packing of α2 and α3 (right) 
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Figure 1.7. Cyclin A2 (PDB ID: 1FIN) [97] consists of 12 right-handed helices (left). Each 

domain (right) contains a right-handed bundle of three helices (yellow) and the other two helices 

(green) are packed on the bundle’s side. 

 

     

Figure 1.8. Cyclin E1 (left, PDB ID: 1FIN) and cyclin A2 (right, PDB ID: 1W98), showing the 

N- and C-terminal cyclin box folds (in blue and red, respectively). 
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1.1.1.2. Glycogen synthase kinase 3 

Glycogen synthase kinase 3 (GSK-3) is a ubiquitously expressed and conserved 

serine/threonine protein kinase [100]. GSK-3 was originally identified to regulate glycogen 

synthesis, and hence comes its name. However, GSK-3 has been identified to be involved in 

multiple biological processes including metabolism, gene expression, cell fate determination, 

proliferation, and survival [101]. GSK-3 phosphorylates several cellular substrates, including 

multiple transcription factors such as c-Myc, c-Jun, and c-Myb and the translation factor eIF2B 

[102, 103]. The activity of GSK-3 is inhibited through phosphorylation of serine 21 in GSK-3α 

and serine 9 in GSK-3β. Selective small molecule inhibitors of GSK-3β are likely to have 

valuable therapeutic uses and will not cause serious side effects because they will not have multi-

target activities [104]. The potential therapeutic value of GSK-3β inhibitors includes the ability 

to treat neurodegenerative diseases, type II diabetes and cancer [105]. 

1.2. Recent advances in computational modeling techniques and their applications in kinase  

1.2.1. Structure-based design 

Structure-based drug design can make a significant contribution in the area of kinase drug 

design because of the large number of deposited kinase crystal structures, and the high 

conservation of the kinase domain and ATP binding pocket [106]. 

There are a number of computational approaches that have shown success in this area, in 

particular, scaffold-hopping and hybridization, fragment-based lead discovery, homology 

modeling and virtual screening.  
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1.2.1.1. Scaffold-hopping and hybridization 

It is challenging to search for new kinase inhibitors because of the structural diversity of 

kinase inhibitors. This crowded kinase chemical space comes from the significant contributions 

of a huge number of organizations to develop kinase and kinase related inhibitors [107, 108].  

Southall et al. [107] have published an approach for kinase patent space visualization using 

chemical replacements. This approach provided a tool to see the relationship between different 

patents from the chemical structure perspective. By using this approach, it was possible to track 

and analyze the scaffold-hopping approaches in the area of crowded chemistry such as anilino-

quinazolines [107]. Wyeth had patented several molecules with multiple patent applications 

where the anilino-quinazoline scaffold had been replaced with a cyano-quinoline scaffold 

(Figure 1.9). 

                           

Figure 1.9. Scaffold-hopping from anilino-quinazolines (left) to cyano-quinolines (right). 

Scaffold hopping approaches led to identification of novel triazolo[1,5-a]pyrimidines from 

morphing a purine scaffold to target CDK2 [109]. As well, by matching the electrostatic 

characteristics of a thiazole core template, new pyrimidine based inhibitors were developed, and 

one pyrimidine analog progressed to clinical trials [110]. The new Chk1 inhibitors that are 

granulatimide analogs and macrocyclic pyridyl ureas were developed by modifying the adenine 

based inhibitors [111]. Modeled alterations of the VEGFR2 furo[2,3-d ]pyrimidine scaffold led a 
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conversion of activity against GSK-3 [112]. 

One approach of scaffold hopping is to combine the features of one kinase inhibitor with 

the structural features of another and this is called as structural hybridization. This approach is 

used to find new chemical space for the same target, to remove the chemical or biological 

liability or liabilities of one inhibitor, and to combine the features of two inhibitors of two 

different kinases to have a dual inhibitor. Vertex research scientists have published an algorithm 

named BREED for automatic identification of potential [113, 114].  AstraZeneca published a 

hybridization approach using BREED to combine the features of two chemical series with an X-

ray structure-validated common binding mode. This effort led to design of potent and selective 

CDK inhibitors. The starting point was an imidazo[1,2-a]pyridine series, (which has 4 μM in 

CDK2, and 8 μM in CDK4) and a bisanilino-pyrimidine series (which has 32 μM in CDK2, and 

2 μM in CDK4). After hybridization, the resulting compound showed 0.036 μM in CDK2 and 

3.6 μM in CDK4. Subsequent work led to the design of a potent CDK4 inhibitor with 0.032 μM 

in CDK2 and 0.15 μM in CDK4. Then the binding modes of the designed compounds were 

validated by X-ray crystallography. 

       

4 μM in CDK2, 8 μM in CDK4  32 μM in CDK2, and 2 μM in CDK4 
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0.036 μM in CDK2, 3.6 μM in CDK4   0.032 μM in CDK2, 0.15 μM in CDK4 

 

Another published approach used docking-predicted binding modes to hybridize the features of 

growth factor-b type 1 receptor (TGFbR1) inhibitors. This approach led to a compound with 

comparable activity but with much improvement in the bioavailability [115]. 

 

44 (enzyme) and 55 nM (cell)  72 (enzyme) and 22 nM (cell) 

 

1.2.1.2. Fragment-based lead generation 

The idea of fragment-based lead generation (FBLG) is screening a relatively small 

number of fragments that fit well into the binding pocket. FBLG has made significant 

contributions in drug discovery [116-120].  

Potent and selective PDK1 inhibitors have been developed by FBLG using the technique 

of tethering with extenders [121, 122]. Astex reported the discovery of new CDK2 inhibitors 

(Figure 1.10) by using a dynamic combinatorial approach of FBLG that involves the formation 
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of reversible bonds between individual molecules with some selection criteria to get the 

molecules to have the desired properties such as good receptor binding. The authors started with 

a previously reported CDK2 inhibitor containing a hydrazone moiety [123].  

 

Figure 1.10. Discovery of new hydrazine CDK2 inhibitors using FBLG 

Astex [124] screened a library of 500 fragments in pools of four against the protein using 

high-throughput crystallography. Astex identified about 30 new structures with micromolar and 

nanomolar inhibitory activity. The most productive class series of this approach (Figure 1.11) 

started with the indazole (structure 1), which had an IC50 of 185 μM. Adding a phenyl through 

an amide bond linker (structure 2) improved the IC50 to 3 μM. Converting the indazole to a 

pyrazole (structure 3) reduced the IC50 to 97 μM. Adding a second amide to the pyrazole led to a 

3 nM inhibitor (structure 4). Replacing one of the aromatic rings with a piperidine moiety 

(structure 5) improved the solubility without too much reduction in the IC50 (47 nM). The later 

compound progressed to clinical trials. 
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Figure 1.11. Identification of indazole and pyrazole CDK2 inhibitors through FBLG. 

1.2.1.3. Homology modeling  

The desired output of protein modeling is to be able to predict the 3D structure from the 

amino acid sequence with confidence. Homology modeling is needed when experimental 

methods fail to obtain the crystal structure of the protein [125]. In general, proteins that have 

very large structures are not suitable for NMR analysis or X-ray diffraction. Homology modeling 

is a multistep process including template recognition and initial alignment, alignment correction, 

backbone generation, loop modeling, side-chain modeling, model optimization and model 

validation [125]. The homology modeling methods range from simple, to intermediate, to 

complex techniques based on the approach utilized to generate the 3D model.  

In the simple homology modeling techniques, the selection of template comes from a 

standard BLAST search, followed by building and evaluating the resulting model [126-128]. By 

contrast, in the intermediate techniques [129], the model is constructed using the basic (simple) 
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modeling approach as described under the simple methods, and further modified based on 

structural details from other templates. In the complex techniques [130], ligands are extracted for 

manual docking by docking software, and used for modifications of the binding pocket via 

molecular dynamics simulations and energy minimization cycles. Alternatively, homology 

modeling approaches can be classified as single- or multi-template based methods, depending on 

the number of templates used during the model construction [131]. 

The researchers followed an approach for constructing kinase homology models to be 

suitable for virtual screening purposes by selecting a protein template with a large binding pocket 

conformation. For example, staurosporine-bound kinases were selected as templates in this kind 

of homology modeling approaches. Due to the model’s larger binding site, it accommodates a 

wide variety of chemotypes. The use of the ATP or ADP bound kinase as templates for protein 

modeling showed failure in virtual screening because of the closed state of the ATP pocket that 

is important for catalysis purposes but not as useful for drug design [132].  

Construction of a 3D model for Fyn kinase [133], a non-receptor tyrosine kinase, was 

reported to have an excellent agreement with the structural features of the catalytic domain fold 

and staurosporine binding orientation when compared to the published Fyn crystal structure 

(PDB ID: 2DQ7 [134]) that was released while the paper was in press. The construction of the 

model was performed using the following steps, selection of four templates with sequence 

identities to the Fyn catalytic domain between 62-77%, then alignment of the templates and the 

target using MultAlig [135]. The third step was done by using the composer homology modeling 

suite in SYBYL (http://www.tripos.com). Composer builds structurally conserved regions, 

leaving gaps for variable regions and then the program searches a library of all known protein 

structures to find the best match for the variable regions. These steps provide the atomic 
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coordinates of the backbone of the model. A second example is the construction of a 3D model 

for mTOR kinase [136], taking into consideration the advantage of the common features of the 

kinase superfamily during the homology modeling process. PI3Kγ, which has 22% sequence 

identity to the target, was used as the model template. The authors aligned the sequence of 

human mTOR with sequences of mTOR from other seven different species. From this alignment, 

it was identified that Asp235 and Arg233 are conserved, and 13 of the 22 residues of the ATP 

binding site are identical and three are similar. The binding site of mTOR was created based on 

this template. The final model was evaluated based on structural conservation compared to the 

template binding site residues, secondary structure agreement with known kinases, and structural 

stability during MD simulations. 

Another approach was followed by selecting a kinase template bound with a chemotype 

as similar as possible to the compound series of interest. This approach is called as ligand 

similarity based homology modeling and also it is known as structure activity relationship (SAR) 

homology.  For example, a cross docking of staurosporine was performed into homology models 

based on staurosporine-bound templates. The use of templates in SAR homology allowed 

optimizing the structural details of the binding site [137]  

Several homology models were published in the area of kinase structural modeling 

including, modeling of Rho [129], GSK-3/Shaggy-like [138], KDR, Jak2, ALK, RSK2, PfmrK, 

Fyn, PI3-K, MST1, P70S6K, CDPK1, PIK3, HER2, SHK, CDK4, Raf1, ChK2, dCK, c-Src, 

ROS1, VicK, CoaE, MAPK, and others [139].  

Other studies were performed to construct homology models for inhibitors of allosteric pockets 

such as those for MEK, CHK, and the myristoyl pocket of Bcr-Abl [140, 141]. 
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1.2.1.4. Docking 

Protein−ligand docking is a powerful tool to study and provide a proper understanding of 

Protein−ligand interactions [142]. Docking is regularly used in different stages of drug design 

strategies, such as to facilitate design of potentially active leads [143]. Detection of the best 

ligand poses and proper ranking of several ligands’ relative docking propensity are of great 

importance. Molecular docking, in practice, has two essential requirements: structural data, for 

candidate ligands and the protein target of interest and a procedure to estimate protein−ligand 

interaction poses and strengths [144, 145]. The RSCB Protein Data Bank (PDB) repository is the 

main source of protein target structures for docking studies [146, 147]. The number of structures 

deposited in the PDB repository has been rapidly increasing for many years. Currently there are 

>62,000 PDB entries of protein−ligand complexes, of which >60,000 were solved by X-ray and 

>1700 by NMR methods (other techniques were used to solve the remaining structures) [148]. 

The candidate ligands in docking procedures are generally small molecules. There was a 

rapid increase in the number of available synthesized chemical libraries after the development of 

combinatorial chemistry [149], which increased demand for the development of fast and cheap 

ways to test interactions with protein targets. The increasing numbers of PDB entries and of 

chemical database entries, coupled to the strong desire to be able to predict binding modes and 

binding affinities of ligands, has led to a wide acceptance of the routine use of docking methods 

as a crucial step in virtual screening [150]. Various molecular docking algorithms are available 

to predict protein−ligand poses and to rank them based on scoring functions implemented in each 

specific docking approach [151, 152]. Practically, docking software applications require 

protein−ligand sampling algorithms in order to be able to generate acceptable ligand poses. 
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Ligand sampling algorithms, for ligand pose generation and placement in the active site, are of 

three types: shape matching [153, 154], systematic search [155], and stochastic algorithms [156]. 

Ligand conformational sampling is an essential step that generates a ligand multi-

conformer database to be used in ligand sampling. Conformational search is sometimes 

performed as a separate step before docking [157] or can be implemented as an integrated part of 

the docking algorithm [158]. Protein sampling refers to the allowed degree of binding site 

flexibility. Docking algorithms may consider the protein as a rigid body [159], as a soft body 

[160, 161], to have flexible side chains [162], or to have certain flexible domains [163-165]. 

Alternatively, protein flexibility can be represented by using multiple conformers or ensembles 

of rigid protein structures [166]. Various classes of scoring functions are used to estimate the 

binding affinities of ligand poses [167]. Scoring functions can be classified as force field-based 

[168, 169], empirical [170, 171], knowledge-based [172, 173], clustering and entropy-based 

[174-176], or consensus scoring methods [177-179]. Active site water molecules can be 

considered another aspect of docking target flexibility [180, 181]. Incorporation of active site 

water molecules in the docking procedure is challenging. Each water molecule needs to be 

analyzed to check if it is an integral part of the protein or just an artifact of the crystallization 

procedure. 

There are several publications regarding the utilization of docking in kinase research. 

McInnes et al. [182] were able to design a selective CDK4 inhibitor over CDK2 using literature 

data, crystal structures, homology models and docking experiments. The authors proposed that 

the acidic residue Glu144 in CDK4 is a key amino acid residue for ligand binding and selectivity 

over CDK2, which has Gln131 in the same position (Figure 1.12). Trying to understand ligand 

binding to MEK1 is another example of the utilization of docking experiments [183]. Ligand 
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docking into MEK1 (PDB ID: 1S9J [184] (Figure 1.12)) was performed using Glide [155]. The 

results explained how the docked compounds fit into the binding pocket with the hydrophobic 

ring occupying the hydrophobic pocket formed by Leu118, Ile126, Val127, Phe129, Ile141, 

Met143, Phe209, and Val211. 

 

Figure 1.12. CDK4 (PDB ID: 2W9Z [185]) has an acidic residue compared to the neutral 

residue in CDK2 (PDB ID: 1AQ1 [94]) in the same position, which may have a role in the ligand 

binding selectivity (left). The binding pocket of MEK1 (right, PDB ID: 1SJ9) showing the ring 

of ligand ring occupying the hydrophobic pocket (shown in cyan surface) 

Molecular docking studies were performed to identify new chemotype inhibitors for 

EphA3 and non-phosphorylated Abelson tyrosine kinase (Abl1) [186]. MD simulations of the 

complex of the catalytic domain of a tyrosine kinase receptor, ephrin type-A receptor 3 (EphA3), 

and a manually docked type II inhibitor, were performed to get a set of DFG-out structures. This 

was followed by selection of a single snapshot based on the docking result of reported type II 

inhibitors. The molecular database was then filtered using a pharmacophore model, followed by 

high-throughput docking and ranking of the docked poses based on van der Waals efficiency. A 

series of 5-(piperazine-1-yl)isoquinoline derivatives was identified as a new class for EphA3 and 

non-phosphorylated Abelson tyrosine kinase (Abl1).  
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Molecular docking combined with a machine learning algorithm was used to predict 

potential kinase inhibitors in Leishmania spp. [187] The authors used ChEMBL, therapeutic 

target database (TTD) and DrugBank as sources for kinase inhibitors and targets. Support vector 

machine in conjunction with feature selection techniques were used, and the enzymes were used 

as the training set. A set of druggable kinases was identified in five sequenced Leishmania 

species. After target selection, and homology modeling of target Leishmania kinases, the 

compounds were docked into the models using AutoDock 4, AutoDockVina [188] and DOCK 

[189].  

Another example of docking-based virtual screening is the discovery of Rho-kinase 

inhibitors [190]. Rho kinases (ROCK1 and ROCK2) belong to the serine/threonine (Ser/Thr) 

protein kinase family that exert an essential role in the organization of actin skeleton. Because of 

these activities Rho kinases are considered attractive targets for cancer, renal disease, 

hypertension, ischemia, and stroke. Molecular docking was performed as a virtual screening tool 

to screen molecular databases. Small molecule inhibitors of ROCK1 were identified and 

submitted to biological testing and in vitro assays. The protein–ligand interaction pattern was 

characterized by using MD simulations and free energy decomposition analysis.  

1.2.1.5. Virtual screening 

Virtual screening is a computational tool in which different computational methods are 

used to search molecular databases to identify structures which are most likely to bind to certain 

targets [191]. This approach is aimed at improving the hit rate in drug discovery by increasing 

the number of active structures that are identified to undergo biological testing and at the same 

time is intended to minimize the random choice of compounds [192]. The virtual screening 
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protocol starts with very large commercially available databases and ends with a suitable number 

of possible active compounds to be submitted to biological testing. Among the approaches which 

are usually involved in virtual screening are protein–ligand docking, QSAR- and 

pharmacophore-based methods [193]. Although the structural flexibility and large active site of 

protein kinases made them seem unsuitable for protein−ligand docking approaches, advances in 

computational techniques led to significant structural refinement and post-docking filtration, and 

allowed for wide acceptance of using protein kinases in such approaches [194].  

New inhibitors of checkpoint kinase-1 (CHK1) have been identified by AstraZeneca, 

using a virtual screening approach in which both pharmacophore and docking protocols were 

applied [195]. Analysis of the crystal structure of CHK1 provided the essential structural features 

(Figure 1.13) to construct the pharmacophore model. The pharmacophore elements contain a 

hydrogen bond donor and acceptor pair within a distance of 1.35–2.40 Å apart to allow for bi-

dentate coordination to the hinge region. The resulting structures after pharmacophore screening, 

were subjected to protein–ligand docking to identify possible hits. About 103 molecules were 

selected and progressed to biological screening. The screened compounds showed potency in the 

nanomolar and subnanomolar range. 



34 
 

                      

Figure 1.13. The binding mode of an active CHK1 (PDB ID: 2WMW [196]) inhibitor showing 

the necessary hydrogen bonding to the hinge region. 

A fragment based virtual screening approach to identify PI3K (p110b isoform) inhibitors 

was performed by AstraZeneca [197]. A homology was built for PI3K p110b isoform based on 

the published p110c (Figure 1.14) crystal structure (PDB ID: 2CHW [198]).  A fragment library 

of 183,330 unique structures was docked using Glide. The docked poses were filtered based on 

whether or not the pose formed a hydrogen-bonding interaction with key amino acids of the 

kinase hinge region. The docking and post-docking studies led to identification of 210 fragments, 

18 of which showed biological activity with an 8.6% hit rate. 
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Figure 1.14. The binding pocket of p110c ((PDB ID: 2CHW) which shares structural homology 

with the p110b isoform. 

 

1.2.2. Ligand-based drug design 

1.2.2.1. Quantitative structure activity relationship (QSAR) studies 

A genetic algorithm-multiple linear regression (GA-MLR) QSAR model was built for 

pyrazole derivatives as inhibitors of p38α MAPK. The model has been cross-validated and 

tested. The authors proposed its usefulness in lead MAPK inhibitors identification [199].  

Aurora kinase inhibitors are potential anticancer agents. Molecular docking, 

pharmacophore modeling and 3D-QSAR were performed to study the structural determinants 

and the SAR of a series of imidazo[1,2-a]pyrazines as Aurora kinase inhibitors [200]. The 

aligned docked poses were used to generate multiple pharmacophore models using PHASE. The 

models were tested against known Aurora kinase inhibitors and the best model that fit with the 

known biological activity was selected. The pharmacophore-based alignment was used to 

construct comparative molecular similarity indices analysis (CoMSIA) 3D-QSAR models. The 

statistical performance of the best CoMSIA model was satisfactory (q2= 0.567, r2= 0.992), and 
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the model showed a good predictive ability against the external test set.  

Multiple linear regression and artificial neuronal network methods were used to construct 

QSAR models to pIC50 of N2 and O6 substituted guanine derivatives as CDK2 inhibitors [201]. 

Validation of the QSAR models was performed by leave-one-out cross-validation, external set 

compounds, Y-randomization test, and other statistical parameters.  

QSAR models were prepared for indirubin derivatives as GSK-3β inhibitors [201]. The 

molecular descriptors were calculated by CODESSA and Molconn-Z. PHASE-based alignment 

was used to construct the 3D-QSAR models. The 2D-QSAR model had an R2 of 0.93 and the 

3D-QSAR model showed an R2 of 0.97. The predictive correlation of the external test set for the 

2D-QSAR model was 0.6 and for the 3D-QSAR model was 0.91. 

MLR-based QSAR models were constructed for amides and imidazo[1,2-α]pyridines  

series as interleukin-1 receptor associated kinase 4 (IRAK-4) inhibitors [202]. The database 

consisted of 65 compounds. GA method was used to build the QSAR models and to select the 

most important molecular descriptors. The accuracy of the best MLR model was checked using 

cross-validation, an external test set, and Y-randomization. The predictability of the model was 

found to be satisfactory. 

A CoMFA study was performed on a series of 52 p38-MAP kinase inhibitors with IC50 

ranging from 3.2 to 10,000 nM [203]. The molecular alignment was defined using Distill in 

SYBYL 7.3. Hierarchical clustering was used to divide the data set into a training set and test set, 

based on the CoMFA fields and biological activities (pIC50). The models were validated, and the 

best model showed satisfactory predictions (training R2=0.952, q2=0.678, test R2=0.627).  

 



37 
 

1.2.2.2. Pharmacophore modeling 

Because of the role of CHK2 in DNA-damage, DNA double-strand breaks and related 

lesions, extensive studies were performed to find new inhibitors for this enzyme. Pharmacophore 

hypotheses guided by 3D-QSAR studies were suggested to identify highly active inhibitors 

[204]. Ten pharmacophore models were constructed using HypoGen algorithm. The models were 

evaluated using the cost function analysis of their correlation coefficient (r), RMS, cost 

difference, and configuration cost. The best model showed better performance in the Fischer’s 

cross-validation at a 95% confidence level, and had a correlation coefficient for the test set of 

0.81. 

For a series of pyrrolopyridine derivatives inhibiting mitogen-activated protein kinase 

activated protein kinase-2 (MK2), pharmacophore modeling was attempted to better understand 

the essential structural features for MK2 inhibitors [205]. Pharmacophore modeling was 

performed using PHASE. The best three models had the following pharmacophoric elements: 

one hydrogen-bond acceptor (A), two hydrogen-bond donors (D), one hydrophobic group (H) 

and one aromatic ring (R). The ADDHR1 hypothesis was considered the best model and was 

used to construct a 3D-QSAR model with an R2 value of 0.926. The predictive R2 was 0.882 

against external test sets. Highly predictive pharmacophore models were built for vascular 

endothelial growth factor receptor (VEGFR)-2 kinase inhibitors and used for virtual screening 

with a hit rate of 10% [206]. 

Pharmacophore mapping, molecular docking and MD simulation studies were performed 

to understand the molecular basis of ligand binding to the human mTOR kinase [207]. A 

homology model for mTOR was constructed using the crystal structure of PI3Kγ as a template, 
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and then the ATP binding pocket was characterized. The pharmacophore model was built from 

27 ATP-competitive mTOR inhibitors and it showed two hydrogen-bond acceptors, one aromatic 

ring, and one hydrophobic feature. The 27 inhibitors were docked into the ATP-binding site of 

the homology model. The pharmacophore model was mapped onto the docked poses of the 

inhibitors to explain the pharmacophoric features and their arrangement inside the ATP active 

site. MD studies were performed to further understand the molecular features of the inhibitors 

and how they affect the protein–ligand interactions. 

The pharmacophore approach was proposed to explore the protein–ligand interactions of 

220 kinase crystal structures [208]. The pharmacophoric elements were generated based on the 

interactions made by all ligands with their target proteins. The scoring algorithm is based on 

goodness of fit of the molecule to the binding. By using the 2D chemical structure as input for 

pharmacophore mapping and without any knowledge of the crystal structure, the algorithm was 

able to retrieve very close poses to the crystal structure poses for the majority of ligands.  

Several other pharmacophore models have been published and used in virtual screening, 

including: the construction of a predictive pharmacophore model for KDR kinase inhibitors 

[209], the generation of a pharmacophore model for tyrosine kinase selective inhibitors [210], 

and the development of 3D pharmacophore models for Spleen tyrosine kinase (Syk) inhibitors 

[211].  

1.2.3. Computational methods to study kinase structure and function 

1.2.3.1. Quantum mechanics to study phosphoryl transfer reaction 

Semi-empirical QM calculations were used to study the reactions catalyzed by PKs. The 

calculations explained the phosphoryl transfer through an SN2-like mechanism [212, 213]. The 
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mechanism for phosphoryl group transfer by a variety of kinase related enzymes has been 

investigated by QM methods [214]. Full QM study using DFT/BLYP and QM/MM approach 

was performed taking into account the effect of the whole protein complex system (CDK2/cyclin 

A), and water on the catalytic reaction [215]. This study confirmed the SN2-like reaction of the 

phosphoryl group transfer. The close agreement between the computed free energy for the 

enzymatic barrier and the experimental value suggested the accuracy of the method. Another 

report suggested that by considering a few key water molecules at the QM level, the difference 

between the computed and experimental energy barrier would be further decreased [216]. The 

controversial role of the catalytic aspartic acid was extensively studied. All PKs have one 

conserved aspartic acid residue, located next to the hydroxyl group of the substrate. This Asp has 

been suggested to act as a general base for deprotonation of the substrate [217]. DFT QM/MM 

calculations were performed to study the catalytic reaction of PKA and suggested that Asp166 is 

directly involved in the substrate deprotonation by acting as a general base [218]. Other studies 

at the semiempirical level did not suggest any role for Asp166 in substrate deprotonation [219]. 

The latter studies are in agreement with the relative pKa values of Asp and Ser residues in 

aqueous solution that makes the direct proton transfer from the substrate to Asp unlikely [220]. 

For CDK2, QM and QM/MM studies did not suggest this direct proton transfer to Asp127 [220].  

1.2.3.2. Molecular dynamics to study CDK flexibility 

Cyclin binding induces the conformational changes in CDKs. Understanding the 

structural flexibility would facilitate design of selective inhibitors. The active to inactive 

conformational transition in Abl tyrosine kinase have been studied by long MD simulations and 

experimental techniques [221]. Steered MD simulations studies suggested the activation of 

CDK5 by p25 [222]. Molecular dynamics (MD) simulations and enhanced sampling (ES) 
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methods for energy estimates linked the flexibility and function. The study provided insights on 

new meta-stable druggable CDK conformations. The DFG motif was found to be fixed in the 

‘out’ conformation in case of type-II kinase inhibitors. 

Meta-dynamics in combination with the path-collective variable method were used to 

study T-loop flexibility and open-to-closed conformational motion of CDK5 as an extension to 

the MD studies to address the effect of Thr160 phosphorylation on CDK5 [223]. The initial open 

configuration of CDK5 was defined from an X-ray crystal structure, and the final closed 

structure was determined by homology modeling. Bioinformatics tools were used to provide a 

reliable guess path to the open-to-closed conformation. The open-to-closed conformational 

motion involved breaking the salt bridge between Lys33 and Glu51, allowing for a 45° rotation 

of the C-helix and the generation of a second salt bridge between Glu51 and Arg149. Motion of 

the C-helix by 90° and of the T-loop led to the final closed conformation. 

1.3. Conclusion 

Protein kinases are involved in essential cellular activities, and their deregulation leads to 

many disorders. Several protein kinases were validated as drug targets and this is why scientists 

are attracted towards kinase research. In order to understand the structural requirements for 

kinases to catalyze the phosphate transfer reaction, QM and QM/MM studies were conducted 

suggesting that the phosphorylation reaction is SN2-like. Several molecular dynamics simulation 

studies were performed to evaluate kinase structure flexibility. The general structural flexibility 

of protein kinases and in particular that of the binding pocket made them seem unsuitable for 

computational tools such as molecular docking, homology modeling, and virtual screening 

approaches; however, the advances in computational techniques led to wide acceptance of using 
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protein kinases in such methodologies. Several structure- and ligand-based techniques were used 

to find new small molecule inhibitors. 

The main objectives of conducting our kinase studies are to better understand kinase 

structural features, develop and implement computational tools to solve unknown kinase 

structures, study the basis for selective inhibition of structurally related kinases, study kinase 

domain interaction with other protein domains in multiple domain proteins, implement 

computational algorithms in studying kinase interactions with protein partners, and design useful 

and applicable virtual screening workflows that can be used to search for active/selective kinase 

inhibitors. We designed our studies in the following direction: 

1. Kinase structure modeling in which we modeled multiple domain proteins 

containing the structural features of a kinase domain. Also, we studied the 

effect of kinase structural flexibility on the routinely used computational 

algorithm, docking. We developed a computationally efficient approach for 

modeling multiple domain proteins, and we proposed several recommendations 

that would be useful for conducting docking in kinase research. 

2. Understanding kinase structure, in which we made use of the high number of 

deposited CDK2 structures to construct a non-redundant database in order to 

study the structural features of active, partially active and inactive kinase states. 

We checked the effect of ligand binding on CDK2. Then, we made use of our 

findings to develop a new virtual screening workflow to search for active 

CDK2 inhibitors. 

3. Understanding selective inhibition of closely related kinases. We studied 

CDK2 and GSK-3β as models for related kinases. In this study we found the 
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ligand and target features that are required for selective inhibition. We used a 

unique approach by comparing the structural geometry, and searching for the 

target hotspots. We implemented our findings to design new virtual screening 

workflows to search for selective inhibitors. This study can be applied to 

structurally related kinases in general. 

4. Understanding the interaction between kinases and their partner proteins. We 

used different protein–protein docking algorithms to study the binding of 

CDK2 to cyclin A. We applied the same approach in VDAC1/Bax study and 

our findings were useful to our collaborators 

We can summarize our studies in the following paragraphs. In general, we used 

computational tools to solve and understand kinase structure. We implemented our findings to 

search for active and selective kinase inhibitors. Because the number of solved crystal structures 

is limited compared to the known protein sequences, the importance of homology modeling 

approaches is increasing. We had a set of 12 translational protein sequences from 

Rhodopseudomonas palustris for which there are no solved crystal structures. These sequences 

are made up of multiple domains. Our goal was to construct reliable 3D models for these 

sequences and to study the potential domain–domain interactions. We proceeded in an entire 

sequence approach using the whole sequence of each target protein as query followed by 

searching for multiple protein templates of solved crystal structures to cover our query. The 

domain structural features were not translated in the constructed 3D models, so we tried a 

domain sequence approach, in which we split up the entire sequence of each target protein into 

the individual sequences of the included domains, and then we used 3D models for the individual 

domains. The domain models were then merged using protein–protein docking knowledge to 
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specify their relative orientations. The final models were optimized and validated. The proposed 

homology modeling approach is computationally efficient, able to generated 3D models for long 

sequences and reflects the domain structural information in the final models. 

Because kinase structures are highly flexible we designed a docking challenge approach to assess 

different docking algorithms in kinase research. We considered different protein sampling 

techniques, rigid, soft, flexible side chain, induced fit, combined rigid and multiple receptors. For 

ligand sampling we considered self-generation of multiple conformers by the docking algorithm 

or pre-generation of multiple conformers as a separate step. We docked the compounds, scored 

them and ranked them based on the relation between the docking scores to their biological 

activities. We developed some recommendations that might improve docking performance, such 

as that separate generation of the ligand conformers is preferred, it is preferable not to minimize 

the complex because this will bias the protein−ligand interaction profile and hence will affect the 

docking results, careful analysis of active site crystal water molecules is required, HYBRID 

approaches are favored for targets having multiple crystal structures, induced fit approaches 

should be considered if the target does not have multiple crystal structures, and for virtual 

screening purposes, it is better to consider pose fitting and prediction approaches to rule out 

structures that do not bind in the same manner as native ligands. 

The number of deposited crystal structures of cyclin dependent kinase 2 (CDK2) is numerous. 

We designed a study to construct a non-redundant CDK2 database, study the structural features 

of different states of CDK2, and implement our findings to search for new active CDK2 

inhibitors. We made use of several algorithms to collect, process and calculate the structural 

properties of different CDK2 structures. We checked the amino acid properties of different 

CDK2 states and how that affects ligand binding. The size of the binding pocket revealed the 
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possibility of different chemotypes to interact with CDK2. We clustered CDK2 structures based 

on the side chain and backbone orientations, and then we prepared a protein–ligand interaction 

fingerprint profile (PLIF). Form the PLIF, we generated a pharmacophore query to use as a filter 

in a virtual screening workflow for CDK2 inhibitors. We selected and purchased some 

compounds to be submitted for biological testing. 

Selectivity issues are very important in the field of kinase drug discovery. Because CDK2 and 

GSK-3β are highly correlated, the inhibitors designed for GSK-3β in most cases bind to CDK2 

and vice versa. The biological activities of CDK2 and GSK-3β are different and several side 

effects are expected if one is targeted but the other is also inhibited. We studied the structural 

basis for selective inhibition of CDK2 and GSK-3β. We designed our study to analyze the two 

structures and to check the difference in their structural geometry and unique and common 

contact maps. To find out the structural features of selective inhibitors, we used an ensemble 

docking approach into 20 PDB receptors for each. Our findings were commensurate with 

recently published data. We studied the structural basis of selective inhibition at the target level 

using very large ligand databases, molecular docking, and data mining algorithms. The active 

site of CDK2 was found to be acidic in nature compared to the basis properties of GSK-3β. We 

used these findings to search for selective inhibitors. In our virtual screening workflows we made 

use of the recommendations we proposed before in the kinase structure modeling. To insure 

selective binding to either GSK-3β or CDK2, we used rigid conformers from the pose fitting 

step, and docked them into constrained receptors. Then the resulting compounds were flexibly 

docked into non-constrained receptors for the opposite enzyme. We selected some compounds 

for biological testing. 

Protein–protein interaction is very important in kinase activity. We designed an approach to 
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check the validity of various protein–protein docking algorithms in studying protein–protein 

interactions. We used the known information about CDK2/cyclin A and selected an optimal 

algorithm for studying VDAC1/Bax interaction. The criteria for selection were getting similar 

poses and binding energy values to the original complexes, and computational effectiveness. The 

results of VDAC1/Bax interaction calculations provided valuable interpretation of experimental 

results. 

Several computational tools are available and have been validated in the kinase research 

area. Therefore we used and adjusted many structure-based algorithms in our studies such as 

molecular docking with rigid, soft, partially flexible and fully flexible receptors; homology 

modeling of kinase proteins having long amino acid sequences and multiple domains; and 

contact geometry analysis, 3D feature approaches, database construction and curation. We 

generated a protein–ligand interaction fingerprint (PLIF)–based pharmacophore model as one of 

the ligand–based drug design tools and we used it in a virtual screening workflow. Protein kinase 

and ligand sampling were considered in our calculations. We proposed a new homology 

modeling approach, a selectivity study algorithm, and virtual screening funnels. Our calculations 

provided a non-redundant CDK2 database, ideas on the structural basis for selective inhibition of 

CDK2 and GSK-3β, and a way to study protein–protein interactions. 
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2.1. New approach for generating 3D homology models: Case study on a set of twelve 

proteins obtained from different strains of Rhodopseudomonas palustris 

2.1.1. Introduction 

Rhodopseudomonas palustris is a phototrophic soil and water microbe [224]. Several 

strains belong to this species including BisA53, BisB5, BisB18, CGA009, HaA2 and TIE-1 

[225]. Because of their need to manage stress conditions, all these strains express universal stress 

protein (USP) domain-containing proteins. In general, the USP containing proteins that are 

isolated from this species are multi-domain in nature. The domains are identified from their 

amino acid sequences based on the Pfam protein families [226].  

These proteins have been shown to include amino acid sequences with high homology to 

the sequence of the kinase domain [227, 228]. The twelve proteins that we considered in this 

work have 480 to 1000 amino acids. The first six protein structures contain only two domains; 

the USP and kinase (Pkinase) domains, while the second six proteins [227, 228] consist of USP, 

Osmosensitive K+ channel His kinase sensor (KdpD), His Kinase A (phosphoacceptor) (HisKA), 

and HATPase c (Histidine kinase-, DNA gyrase B-, and HSP90-like ATPase) domains and a 

sequence of unknown function. 

Generally, protein kinase domains show evolutionarily conserved structure and function 

and are responsible for the catalytic function of protein kinases to phosphorylate their substrates 

[229]. The universal stress protein (USP) is a small cytoplasmic protein, which is highly 

expressed under stress conditions to enhance the cell survival rate upon prolonged exposure to 

different stress agents [230]. KdpD regulates the kdpFABC operon that is responsible for 

potassium transport. HisKA has histidine kinase activity [231]. HATPase c is ATPase domain 
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that is commonly found in several ATP-binding proteins [232].  

In this research, we tried a new approach to model the possible 3D structure of such 

proteins, by individually predicting the 3D structure of each domain and then using protein–

protein docking knowledge to merge them. We generated homology models for these proteins to 

allow for studying the domain-domain interactions.  

2.1.2. Methodology 

2.1.2.1. Amino acid sequence collection 

We collected the translational sequences of twelve different USP containing proteins 

from twelve strains of Rhodopseudomonas palustris including BisB18: NC_007925 (seq 1, 

http://www.genome.jp/dbget-bin/www_bget?refseq+NC_007925), CGA009: NC_005296 (seq 2, 

http://www.genome.jp/dbget-bin/www_bget?refseq+NC_005296), BisB5: NC_007958 (seq 3, 

http://www.genome.jp/dbget-bin/www_bget?refseq+ NC_007958), TIE-1: NC_011004 (seq 4, 

http://www.genome.jp/dbget-bin/www_bget?refseq+ NC_011004), BisA53: NC_008435 (seq 5, 

http://www.genome.jp/dbget-bin/www_bget?refseq+ NC_008435), HaA2: NC_007778 (seq 6, 

http://www.genome.jp/dbget-bin/www_bget?refseq+ NC_007778), BisA53, NC_008435 (seq 7, 

http://www.genome.jp/dbget-bin/www_bget?refseq+ NC_008435), HaA2: NC_007778 (seq 8, 

http://www.genome.jp/dbget-bin/www_bget?refseq+ NC_007778), CGA009: NC_005296 (seq 

9, http://www.genome.jp/dbget-bin/www_bget?refseq+ NC_005296), BisB18: NC_007925 (seq 

10, http://www.genome.jp/dbget-bin/www_bget?refseq+ NC_007925), BisB5: NC_007958 (seq 

11, http://www.genome.jp/dbget-bin/www_bget?refseq+ NC_007958), and TIE-1: NC_011004 

(seq 12, http://www.genome.jp/dbget-bin/www_bget?refseq+ NC_011004). 
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M S S V S L E P G S S I D G F L I E E R I H Q G G M A T L L N V S R P G S T M P M V M 

K L P K I G E G E D P A A I V S F E M E Q M I M P R L S G V H V P A F V A A G D F S V 

Q P Y I V M E R I A G R A L I S R L P E L P L P Y A D A V A I A A   R I A T A L A D L H 

R Q H V I H H D I K P S N I M F R P S G E A V V L D Y G L A C S D L L P D L M Q E E F 

R L P F G T A P Y M A P E R L L G V R D D P R S D L F A L G V L L Y F F T T G V R P F 

G E T E T M Y G M R R R L W R D P A P P R K L K P D Y P L W L Q E I V L R C L E I E P 

A W R H P T A A Q L V F D L T H P A E V K L T T R S E K L K R D P W S T A L R R R F 

N P D L K Q P R P K A S L A D E L A A A P I I A V A I D L A E G S T A L N D E L R S T A 

E R I L A T L P S A R L A C L N V L K L G R I T I D K T L D E H G H N K H V D R L V A 

L R N W A E P L K L A D N R L T A H V L E A I D P A A A I L D F V Q A S H V N H I L I 

G A R R N S A L R K L L G S V S A K V A A E A P C T V T V V R T F G E K T P R V A V 

E N E E V S 

Seq 1 

 

T I D G F I I E E A I H R G G M A T L F K V R R D D D P T P M V M K I P R I G E G E D P 

A A I V S F E M E Q M L M P R L S G P H V P K F V A M Q D F S T Q P Y I V M E R I A G 

E P L L A R L P E L P L G Y D E A V A I A A K I A T A I A D L H R Q H V I H H D I K P S 

N I M F R P S G E A V L L D M G L A C S D Q L P D L M Q E E F R L P F G T A P Y M A P 

E R L L G V R D E P R S D L F A L G V L L Y F F T T G V R P F G E T E T M Y G M R R R 

L W R D P H P P R K L R P D Y P L W L Q E I V L R C L E I E P A W R Y P T A A Q L V F 

D L T H P S E V K L T T R S E K L K H D P L R T V L R R R F N K E L T R P R A V E S M 

A A H L A S A P I V A V A I D V A E G S G A L N D A L R T T A S R I L A T L P S A R L 

A C L N V L K L G R M T I D R T L D E H G H N K H V D R L V Q L R H W A E P L K L E 

D D R L T V H V L E A V D P A S A I L E F A Q A S R V D H I L I G A R R S S V L R S L L 

G S V S A K V A G E A S C T V T I V R E P Q L A S P R S G P R A G A Q D A 

Seq 2 

 

M D R H S F E P G S V V D G Y I I E G P L H R G G M A S L F A V R R A D D P T P M V 

M K I P R M G E G E D P A A I V S F E M E Q M L M P R L S G P H V P R F V G L A D F S 

T Q P Y I V M E R I A G E P L L S R L P D L P L S D D E A V G I A A K I A A A L A D L H 

R Q H V I H H D I K P S N I M F R P S G E A V L L D M G L A C S D Q L P D L M Q E E F 

R L P F G T A P Y M A P E R L L G V R N D P R S D L F G L G V L L Y F F T T G V R P F 

G E T E T M Y G M R R R L W R D P A P P R K L R P D Y P P W L Q E I V L R C L E I E P 

A W R Y P T A A Q L V F D L T H P T E V K L T T R S E K L K R D S L K T V L R R R F N 

K E L T R S R K E T L A A H L A S A P I V A V A I D V S E G A A A L N E E L R S T A G 

R I L A T L P S A R L A C L N V L K L G R M T I D R T L D E H G H N K H V D R L V A L 

R H W A E P L K L D D A R L T V H V L E A V D P A S A I L E F A Q A S R V D H I L I G 

A R R N S V L R T L A G S V S A K V A S E A N C T V T I V R S A V A A Q V R T S G K 

H A A S Q D N 

Seq 3 
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T I D G F I I E E A I H R G G M A T L F K V R R D D D S T P M V M K I P R I G E G E D P 

A A I V S F E M E Q M L M P R L S G P H V P K F V A M Q D F S T Q P Y I V M E R I A G 

E P L L A R L P E L P L G Y D E A V A I A A K I A T A I A D L H R Q H V I H H D I K P S 

N I M F R Q S G E A V L L D M G L A C S D Q L P D L M Q E E F R L P F G T A P Y M A 

P E R L L G V R D E P R S D L F A L G V L L Y F F T T G V R P F G E T E T M Y G M R R 

R L W R D P H P P R K L R P D Y P L W L Q E I V L R C L E I E P A W R Y P T A A Q L V 

F D L T H P S E V K L T T R S E K L K H D P L R T V L R R R F N K E L T R P R A V E S 

M A A H L A S A P I V A V A I D V A E G S G A L N D A L R T T A S R I L A T L P S A R 

L A C L N V L K L G R M T I D R T L D E H G H N K H V D R L V Q L R H W A E P L K L 

E D D R L T V H V L E A V D P A S A I L E F A Q A S R V D H I L I G A R R S S V L R S L 

L G S V S A K V A G E A S C T V T I V R E P Q L A P P R S G P R A G A Q D A 

Seq 4 

 

M I P A S L E I G A E I D G F V I E D R I H Q G G M A T L L I V R R P D Q S M P M V M 

K L P K I G E G E D P A A I V S F E M E Q M I M P R L S G P H V P A Y V A A G D F S A 

Q P Y I V M E R I A G K A L L S R L P E L P L P Y A D A V D I A A R I A A A L A D L H 

R Q H V I H H D I K P S N I M F R E S G E A V L L D Y G L A C S D V L P D L M Q E E F 

R L P F G T A P Y M A P E R L L G V R D D P R S D L F A L G V L L Y F F T T G E R P F 

G E T E T M Y G M R R R L W R D P P P P R K L K P D Y P P W L Q E V V M R C L E I E 

P A W R Y P T A A Q L L F D L T H P D E V K L T T R S E K L K R D P L T T A W R R R F 

N A D L R Q P R K K A S I A D E I A S A P I V M V A I D L V D G A G A L N D E L R V T 

A E R I L A T L P S A R L A C V N V L K L G R V T I D K T L D E H G H N K H V D R L V 

Q L R H W A E P L K L E D N R L T V H V L E A I D P A A S I L D F V E A S H V S H I L I 

G A R R N S A L R K L L G S V S A K V A A E A P C T V T V V R R A G S A K S A R M L 

E S E S E A E P S V 

Seq 5 

 

M T G M D Q P S F E P G S T V D G Y L I E G P L H R G G M A E L F A V R R A D N P M 

P M V M K I P R T G E G E D P A A I V S F E M E Q M L M P R L N G P H V P Q F V A L 

A D F S T Q P Y I V M E R I A G E P L L S R L P D L P L P Y D E A A G I A A K I A A A V 

A D L H R Q H V I H H D I K P S N I M F R P S G E A V L L D M G L A C S D Q L P D L M 

Q E E F R L P F G T A P Y M A P E R L L G V R N D P R S D L F G L G V L L Y F F T T G I 

R P F G E T E T M Y G M R R R L W R D P V P P R K L R P D Y P P W L Q E I V L R C L E 

I Q P Q W R Y P T A A Q L V F D L T H P T E V K L T T R S E K L R R D P W K T V L R R 

R F N K E L T R P R Q E T L A A H L A S A P I I A V A I D I A E G S A A L N D E L R V T 

A G R I L A T L P S A R L A C L N V L K L G R M T I D R T L D E H G H N K H V D R L V 

A L R H W A E P L K L D D D R L T A H V L E A V D P A S A I L E F A Q A S R V D H I L 

I G A R R N S V L R T L A G S V S A K V A G E A N C T V T I V R A A A A P A R P S R R 

P S V S Q D N R D D Q A 

Seq 6 
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M S N S I V T A R A S P D A L L A M A R K E G R G R L K I F L G A A P G V G K T F A M L 

A A A Q S E K A G G R E V I V G L V E T H R R H E T E R L L D G L E L L P R H R I V Y R N 

Q V M Q E F D L D A A L K R R P S L L L V D E Y A H T N V P G S R H P K R W Q D V D E L 

L A A G I D V W T T L N I Q H L E S L N D V V L K I S K V R V R E T V P D K V F D L A D E 

I V L V D L P P D E L L K R L A E G K V Y V Q D T A A R A V E N F F K P Q N L T A L R E L 

A L R R A A E R V D A A L V N R M Q A Q A I E G P W A A G E R I L A C I G S D A A S P G 

V V R A A K R L A N L M D A P W F A A T V E R P G S N A D T A S R K R A D D A M K L A 

E S L G A E I H T L T G A D F P D E L L R F A R F E N V T Q I V I G R T Q G G S L R E W L R 

R S L P Q E M V Q R S Q D I A V H L V P R Q S D Q P K P L Q L S L A A R L N T F T P A H F 

L Y A T V A V A S A V G A G K L I A Q A M P T P N L S I V F L M A V L F S A I K S G V G P 

A I F A S V L S F F A Y N F F F I P P V H T F T I A E P Y E L L A L L M Y L V V A I V S A T L 

A G R L R E Q V R V S A N R V R A M R R L Y E F T R R L S G L A T A D T I A E A A A S E I 

H A S L A H G V V V L L P A G D D L E L A A A W P P E D A L D A A A M T A A R W A F S 

H N E P A G T D T G T L P M L P W R F L P V R T G H V T Y G V I G V G H D K D S P P L D 

S E A R A L L E T L T E Q T A A A L Q R A A L T K E M V S A R S A T E A E R V R N T L L 

A S I S H D F R T P L S S I L G S A T S L L S Y G D K I D D A S Q R D L L G N I R Q E A E G 

L D E M V R N L L S I T R I E A G A L E L R C D W L D L R E I A T R V V G A A R R R G A H 

Q T L D I A L P D D L P L V H A D A T L A E Q A I G N V V N N A I Q H T A P N S H V T I D 

A V T T P N S V E L R I S D D G A G I D A T A L P H L F E R F T Q S A K I E G A S T D R G Q 

G T G L G L A I A K G I M D A H D G A I R A E S P L A D G R G A R F I L S F P R QR S V P 

Seq 7 

 

M S T S T A T A R A S P D A L L A L A G K E G R G R L K I F V G A A P G V G K T Y A M L 

S A A R S E R D G G R D V V A G L I E T H G R L E T E H L L Q G I E V L S R H P I V Y R N 

R V M R E F D L D G A L A R K P S L L L V D E Y A H T N V P G S R H P K R W Q D I D E L 

L A A G I D V W T T L N I Q H L E S L N D V V L K I S K I R V R E T V P D K A F D R A D E I 

V L V D L P P D E L L K R L A Q G K V Y V Q D T A A R A V E S F F K P Q N L T A L R E L 

A M R R A A E R V D A A L V E R M Q A H A I E G P W A A G E R I L A C V G P D T G S P G 

V V R T A K R L A D L M D A P W I A V T V E R S G V N P D S A A R R Q I D E A L K L A E 

S L G A E T H T L T G N D I P D E L L R F A R F E N V T Q M V I G R A R G G A L R Q W L 

A G S L P Q Q L M Q R S T D I A I H L V P V Q G E P A E R D S R S L A A R L N A S K P A H 

F V Y A T V A V A G A V A V G K A F A Q A I P T A S L S V V F L M A V L F S A V K S G V 

G P A I F A S V L S F F T Y N F F F I A P L Y T F T V A E P Y E L L A L L M Y L V V A I V A 

A T L A G R L R D Q A R I S A G R V R A M R R L Y E F T R R L S G L A T S D D I A E G A A 

S E I H A S L G R P V M V M L P R E D D L V L A A A W P P E D A L D E A A M M A A R W 

A F T H N E P A G F D T G T L P I V P W R F L P V R T G A T T Y G V I G V M Q K K D S A A 

L D S E A Q A L L D T L T E Q T A A A L E R A A L T R D M V R A R T A T E T E R V R N T 

L L A S I S H D F R T P L S S I L G S A T S L S T F G D K L D D A A T R D L L A N I R E E A 

E G L D E M V R N L L S I T R I E S G A L E L R R D W V D L R E I A A R V I E A A R R R G 

A A Q H I D L D C P A D S P L V R A D A A L V E Q A L G N I V A N A V A H T P P T S H I L 

I D A E N D A S S V K L R V T D D G P G V A V A D L P R I F D R F V R S A S G T A P S S S 

R G Q G V G L G L A I A K G I M E A H G G A V S A L S P V A N G H G T R F V L T F M R 

DR T Q E T P Q P 

Seq 8 

 



 52 

M P D P R V E P P S R P S P D A L L E Q A R R Q E P G T G R L K V F L G A A P G V G K 

T Y A M L Q S A H A R A K A G V D V V I G Y A E T H G R A E T E A L L A G L E T V P 

R R R I P Y K G Q V L E E M D L D A V L A R R P Q L A I V D E L A H S N A P G S R H P 

K R Y L D V L E L L A N G I D V Y T A V N I Q H I E S L N D V V A Q I T T V R V R E T 

V P D S A F E R A D A I E L V D L T P D D L I Q R L K E G K V Y V P K Q A E R A L E H 

Y F S P G N L T A L R E L A L R R T A E R V D E Q L L S H M Q A N A I P G P W A A G E 

R V L V C V S H D Q R S Q G L V R Y T K R L A D R L R A P W T A I N I E T R R S L S L 

T E Q Q R D R L A D T L R L A E A L G G E A L A I P G G D R S L A H D I L A F A R A N 

N I T Q I V V G K A P R S F W Y E A L R G S T V H E L V R G S G N I S I H V M T G T A 

V S I E E S Q T G S L R P A E G T E P F N P W P Y P M A L V L V G I G L G V A K L I E P 

F F S I E N V D L V F L T A V V G V A V R Y G L G P S L L A S V V A S L C Y N F F F L 

P P V Y T F T I T D P T N I V A F F F F M L I A I L V S N L A G R V R A Q A T A A A Q R 

V R T T E S L Y A F S R K L A G T A A L D D V L W A T A Y Q I A L M L K V R V V L L 

L P E Q G R I A V K A G Y P P E D Q L D P A D L A A A N W A W E N D R V A G R G S D 

T L P G A K R L F L P M R T G R G P I G V I G I D D D R A G A L L T P D Q R R L L D A 

L T D Q G A L A I E R V H L V E D M D R V K R D A E S D R L R Q A L L T S I S H D L K 

T P L A A V L G A A T T M R D L A S H L S D A Q R T E L I G T I V E E S E R L N R F I A 

N L L D M T K L E S G A V V P N S A A H D L G E L V G A T L R R A T S I L A Q H T V 

K L D L G H D L P L I E V D P V L F E Q A L F N L L D N A A K Y A P A G S A I Q L R A 

A Q S G G Q V E L Q V R D E G E G I P P A E L E T V F D K F Y R V R K G D H I R P G T 

G L G L A I A R G F I E A M G G R L S A G N R S D R S G A A M T I R L P I A S R G D A 

L I S A A 

Seq 9 

 

M A D H R R N A D Q R P S P D A L L D A A R R E D D G R G R L K I F V G A A P G V G 

K T F E M L Q S A H A K R K A G V D V V V G V V E T H G R S E T E A L L A G L E V I 

P R R R L D Y K D H V L D E M D L D A L I A R R P R L A L V D E L A H S N A P G S R 

H P K R Y L D V E E L L S H G I D V Y T A V N I Q H I E S L N D V V A Q I T H V R V R 

E T V P D S I F D R A D A I E L V D L T P D D L I Q R L R E G K V Y V P K Q A E R A L E 

H Y F S P G N L T A L R E L A L R R T A E R V D E Q L L N H M Q A N A I A G P W A A 

G E R I L V C I N E D T R S A G L V R Y T R R L A D R L H A P W S A I C V E T R S A Q 

R L T E V E R D R L A D T L R L A E A L G G E G M T I P G S G R H V A D D V I S F A H 

N N N V T Q I V V G K S T R S L W V E L L R G S V V H D L I R R A G N I S V H V I A G 

E E L A A D P V A R K T V K T L E R N D S F D P R P Y L M A V L M V A A A L G L A I 

L I E P T F G V V N V D L V F L T A V V S V A V R Y G L L P S L L A S V T A S L C Y N 

F F F L P P F Y T F T I A E P T N I A A F L F F M L I A L L V S N L A G R V R S Q A V S A 

I G R V R T T E S L Y A F S R K L A G T A A L D D V L W A T A Y Q A A L M L H V R V 

V L L L P E D G R I V V K A G Y P P E D Q L D D A D L A A A N W A W S N D R P A G R 

G S E T L P G A K R L F L P M R T G R G P I G V I G I D D D R S G P L L T P D Q R R L L 

D A L V D Q G A L A I E R V Q L V E D M D R V K R S A E S D R L R Q A L L T S I S H D 

L K T P L A A V L G A A S T L R D L S P K L S D A Q R A E L I G S I V E E S E R L N R F 

I A N L L D M T R L E A G A V V P N A A L H D L G D V V G S A L R R A A T I L A H H 

N V Q L D L E A E L P M L Q I D A V L F E Q A I F N L L D N A A K Y A P L G T T I T V 

R A A R H G D A V L L Q I I D E G E G I P P E D L E T V F D K F Y R V R K S D Q V R A 
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G T G L G L A I S R G F I E A M Q G S M T A A N R S D R S G A V L S I R L P V P P A R 

A A L D T A A 

Seq 10 

 

M A N P H S D F D Q R P S P E A L L E K A R R E D A G V G R L K I F V G A A P G V G 

K T Y E M L Q S A H A K L K A G V D V V V G V V E T H G R A E T E A L L Q G L E I L 

P R Q R L D Y R D Q V L E E L D L D G L I A R R P Q L A L V D E L A H T N A P G S R H 

P K R Y L D V E E L L T H G I D V Y T A V N I Q H I E S L N D V V A Q I T H V R V R E 

T V P D S V F D R A D A L E L V D L T P D D L I Q R L K E G K V Y V P K Q A E R A L E 

H Y F S P G N L T A L R E L A L R R T A E R V D E Q L L T H M Q A N A I S G P W A V 

G E R I L V C V N D D L R A A G L V R Y T K R L A D R L R A P W T A V N I E T R R N 

L Q L S E E R R D R L A D T L R L A E A L G G E A L S I P S A G H G I A A D I L R F A R 

A N N V T Q I V I G T A P R S W W T G M L R N S V V H G L V G H A G N I S V H V I A 

G D N L A A E P V P K K T V R T A E R T E P F D V R A Y L M A L L L V G I G L G I A E 

L I E P L F G I E N V D L V F L T A V V G V A V L Y G L W P S M L A S V T A S L C Y N 

F F F L P P V Y T L T I T D P T N I A A F F L F M L I A L L V S N L A A R L R T Q A I A A 

A G R V R T T E S L Y A F S R K L A G T A A L D D V L W A T A Y Q T A L M L K V R V 

V L L L P E A G I I A V K A G Y P P E D Q L D P A D L A A A N W A W N N D R P A G R 

G S D T L P G G K R L F L P M R T G R G P I G V I G I D N D R T G P L L T P D Q R R L L 

D A L V D Q G A L A I E R V Q L V E D M D R V K R S I E T D R L R S A L L T S I S H D 

L K T P L A S V L G A A G T L R G F W T K L S E A E R T E L L S T I V D E S E R L N R F 

I A N L L D M T R L E S G A V V P N T A P H D L S E V V G S A L S R A S K I L S H H K 

V E L D L A P E L P M V N L D A V L F E Q A L F N L L D N A A K Y A P E Q T T I C I R 

A R R E G R S V I L Q V I D E G G G I P P H D L D S V F E K F Y R A Q K G D H V R A G 

T G L G L A I A R G F V E A L H G T I V A A N R T D R S G A A M T I T L P V P V S T K 

S L D T A A 

Seq 11 

 

M P D P R V E P P S R P S P D A L L E Q A R R Q E P G T G R L K V F L G A A P G V G K 

T Y A M L Q S A H A R A K A G V D V V I G Y A E T H G R A E T E A L L A G L E T V P 

R R R I P Y K G Q V L E E M D L D A V L A R R P Q L A I V D E L A H S N A P G S R H P 

K R Y L D V L E L L A N G I D V Y T A V N I Q H I E S L N D V V A Q I T T V R V R E T 

V P D S A F E R A D A I E L V D L T P D D L I Q R L K E G K V Y V P K Q A E R A L E H 

Y F S P G N L T A L R E L A L R R T A E R V D E Q L L S H M Q A N A I P G P W A A G E 

R V L V C V S H D Q R S Q G L V R Y T K R L A D R L R A P W T A I N I E T R R S L S L 

T E Q Q R D R L A D T L R L A E A L G G E A L A I P G G D R S L A H D I L A F A R A N 

N I T Q I V V G K A P R S F W Y E A L R G S T V H E L V R G S G N I S I H V M T G T A 

V S I E E S Q T G S L R P A E G T E P F N P W P Y P M A L V L V G I G L G V A K L I E P 

F F S I E N V D L V F L T A V V G V A V R Y G L G P S L L A S V V A S L C Y N F F F L 

P P V Y T F T I T D P T N I V A F F F F M L I A I L V S N L A G R V R A Q A T A A A Q R 

V R T T E S L Y A F S R K L A G T A A L D D V L W A T A Y Q I A L M L K V R V V L L 

L P E Q G R I A V K A G Y P P E D Q L D P A D L A A A N W A W E N D R V A G R G S D 
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T L P G A K R L F L P M R T G R G P I G V I G I D D D R A G A L L T P D Q R R L L D A 

L T D Q G A L A I E R V H L V E D M D R V K R D A E S D R L R Q A L L T S I S H D L K 

T P L A A V L G A A T T M R D L A P H L S D A Q R T E L I G T I V E E S E R L N R F I A 

N L L D M T K L E S G A V V P N S A A H D L G E L V G A T L R R A T S I L A Q H T V 

K L D L G H D L P L I E V D P V L F E Q A L F N L L D 

Seq 12 

 

2.1.2.2. 3D structure generation 

Modeling of multi-domain proteins is challenging [233]. We tried to model the 3D 

structures by following two approaches, an entire sequence-based approach and a domain 

sequence-based approach. In the first approach we used the interactive threading assembly 

refinement (I-TASSER) standalone package [234] and the Prime module of Schrödinger suite 

[235].  

2.1.2.2.1. I-TASSER based models 

We used I-TASSER’s standalone version [234] to construct the 3D model of each 

protein. Multiple protein templates were defined, identified and selected in the threading step by 

matching against a non-redundant sequence database from PSI-BLAST [236]. The secondary 

structure was then predicted for the sequence profile using PSIPRED [237]. LOMETS (local 

meta threading server) was used to thread the target sequence. LOMETS [238] collected the high 

scoring target-to-template alignments from seven threading programs (FUGUE [239], 

HHSEARCH [240], MUSTER [241], PROSPECT [242], PPA [243], SP3 [244] and SPARKS 

[245]). We selected the top 20 highest ranked template hits based on I-TASSER’s z-score. The 

structural assembly step was performed using the I-TASSER reduced model [234]. Loops and 

tails were not perfectly aligned with any of the selected templates, and therefore ab initio 

modeling [246] was used to generate the 3D structures of such regions. After generating the 3D 
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structure of high and low scoring target to template aligned regions, the 3D fragments were 

assembled with a modified replica exchange Monte Carlo simulation technique [247] which 

implements a composite force field with different PDB-derived statistical terms [246, 248, 249] 

and SVMSEQ terms [250, 251]. To select the most acceptable orientation of residue side chains, 

a conformational clustering was performed by using SPICKER [251]. The model selection and 

refinement step was performed in two runs, to remove steric clashes and to refine the global 

topology of the conformational cluster centroids. The lowest energy structures were selected as 

inputs for REMO [252] to build the all-atom models. 

2.1.2.2.2. Prime based models 

Prime is developed by Schrödinger, LLC [235] and uses a combination of sequence and 

secondary information to generate alignments. Model building in Prime is performed using atom 

coordinates from the aligned fragments of the templates [233]. Two force fields were used: 

OPLS2000 all-atom force field [253] for building the models for amino acids and OPLS2001 

force field for ligands and other non-amino acid residues [254]. The Surface Generalized Born 

(SGB) continuum solvation model [255] was used to add water molecules in the 3D models. 

Loops and tails were shown not to align perfectly with the protein templates. These regions were 

built by an ab initio modeling method in a similar way to that of I-TASSER [256]. 

Sequence homologs for each amino acid sequence were generated and 20 templates were 

selected for each. HMMER/Pfam [257, 258] families were searched and aligned to the query 

sequence. Prime was used to edit the alignments of the query to the template sequence, based on 

the secondary structure information predicted by the bundled SSpro [259] and a third party 

PSIPRED [237] program. We used the composite/chimera option to allow for use of multiple 
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templates to build the 3D model. Modeled loops and tails were generally represented as local 

minima, and therefore required to be refined, and the conformations of their side chains were re-

predicted to remove all clashes. Some of the predicted loops were more than 20 amino acids in 

length and we were not able to refine them properly using the built-in algorithm of Prime. In 

these cases, we divided the loops into smaller portions to allow refinement. After model building 

and refinement steps, the structures were minimized. 

2.1.2.2.3. Domain sequence-based approach 

In the second approach, we modeled each individual protein domain separately, followed 

by stitching together the domains of each structure.  

Each domain was constructed using I-TASSER and Prime. Stitching of the domains was 

performed using two techniques. First we used Prime, and in the homolog-finding step we 

imported the structures of the individually modeled domains and used them for modeling the 

entire sequence. In the second stitching approach we used Hex [260]. 

2.1.2.2.4. Protein–protein docking 

Hex is a protein–protein docking program. Hex uses a closed-form 6D spherical polar 

Fourier (SPF) correlation expression [261] to avoid the grid-sampling overhead of the Cartesian-

based methods [262]. Hex assumes that protein structures are rigid bodies [263].  

Shape representation [264, 265], Van der Waals surface calculation of the protein [266], and the 

solvent accessible surface calculation [267] were performed. Contouring was performed using 

marching tetragons [268] which is reported to be better than the marching cubes algorithm [269]. 

We considered one domain as the receptor and the second one as the ligand. The receptor and 
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ligand origins and orientations were edited to keep the last residue of the receptor and the first 

residue of the ligand in close proximity at the end of the docking procedure. We performed 

docking using the default docking search range and clustering parameters which were sufficient 

to generate suitable coverage of the search space and to distinguish unique solutions. Clustering 

of solutions was performed because Hex uses essentially a brute-force search approach to the 

docking problem [263]. The clustering algorithm provides a useful way to reduce the number of 

false-positives generated by a docking search. 

2.1.2.2.5. Merging domains 

After performing domain-domain docking, the most acceptable solutions were saved in 

PDB format. The PDB files were then annotated using python pdb-tools [270] and the pdb mode 

[271] of xemacs [272] to adjust residue numbers, atom numbers and chain IDs. We manually 

stitched the consecutive domains together followed by protein minimization to relax the resulting 

3D structure. 

2.1.2.2.6. Interface analysis 

The domain-domain interface was studied using Dimplot [273]. The plots of the 

interactions across a domain-domain interface include hydrogen bonds and non-bonded contacts. 

These contacts were extracted from HBPLUS [274] output by the DIMER program; then 

LIGPLOT [273] was used to generate the 2D plot. The prepared domain files reflected the 

residues in each domain and the chain ID. 
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2.1.3. Results and Discussion 

We tried to model the 3D structure of 12 multi-domain translational sequences. We used 

Prime and I-TASSER software with two general approaches, entire sequence- and domain 

sequence-based modeling. There was no template with more than 20% identity to any of the 

sequences, and therefore we selected multiple protein templates to cover the entire sequence.  

I-TASSER-based models were prepared by using multiple protein templates along with 

the entire query sequence. There is no option to specify templates in the I-TASSER standalone 

package, and I-TASSER will automatically select the templates based on the target-to-template 

alignment score. The models showed secondary structural features that are not similar to that of 

the known features of the included domains (Figure 2.1.1). Prime-based models were prepared 

by selecting multiple protein templates for different regions of the entire query sequence. Similar 

structural features were observed to that of I-TASSER-based models. However, the models 

showed many loops, some of which were more than 20 amino acids long, for which refinement 

took unreasonably long times and gave unreliable results. The USP domain in the I-TASSER- 

and Prime-based models showed only α-helices and loops.  

I-TASSER and Prime showed good features for the kinase domain but were not able to 

reflect the USP part (Figure 2.1.1). Known USP containing proteins, such as PDB IDs: 1JMV 

[275], 1MJH [276], 1Q77, 1TQ8, 1WIG, 2GM3, showed five β-strands, but these were not found 

in the modeled structures (Table 2.1.1 and Figure 2.1.2). 
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Figure 2.1.1. I-TASSER-based model of seq 1 using the entire sequence approach; the model 

shows the secondary structural features of the kinase domain (left) but not of the USP domain.  

Table 2.1.1. RMSD values (Å) of 10 USP containing proteins. 

 1JMV 1Q77 1TQ8 1WJG 2GM3 2IEL 2Z08 2Z09 2Z3V  

1MJH   4.600 3.559 4.826 1.153 2.779 11.890 0.801 0.784 1.158 

1JMV           4.277 11.795 1.974 2.947 10.599 1.448 1.347 3.998 

1Q77                   5.333 5.845 13.589 10.375 2.135 3.048 5.815 

1TQ8                           7.214 10.206 12.063 2.795 3.499 7.257 

1WJG                                   1.000 4.662 0.296 0.267 0.302 

2GM3                                          13.833 0.861 0.841 0.705 

2IEL                                                   4.766 4.701 4.684 

2Z08                                                           0.085 0.316 

2Z09                                                                   0.342 
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Figure 2.1.2. The secondary structural features of some known USP containing proteins showing 

the β-sheets which were not displayed by the first approach. 

 

 

 

 1JMV       1MJH 

       
                          1Q77                                                     1TQ8 

 

  
               1WIG      2GM3 
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I-TASSER performed better compared to Prime, with respect to the time required for 

model generation, loop refinement and final structure quality. Constructing the 3D structure of a 

sequence with multiple domains by this approach did not result in models with the known 

domain information, even with the multi-template approach. This may be attributed to the 

sequence length, the number of domains, and the absence of protein templates with sufficient 

sequence coverage range to the query. Multi-domain protein modeling is reported to be 

challenging [131, 277, 278] and most homology modeling packages such as MODELLER [279] 

or SWISS-MODEL [280] use their inherent algorithms to determine protein domains based on 

the length of the amino acid sequences and then specify different templates for each domain. 

Our ultimate goal was to build reliable 3D models for these long multi-domain sequences 

by a simple approach. For that purpose, we built separate 3D structures for each domain 

followed by merging them into the corresponding protein. Prime was used to model each domain 

and then these domains were used as the templates to model the entire structure. The modeled 

structures by this approach were more reliable and showed the 3D features of all included 

domains, but refinement of some loops and tails was not an easy step because of their length. 

There is no option in I-TASSER to select the template, as we described before, and therefore 

after modeling the individual domain sequences of each protein we used Hex as a tool to find out 

the most acceptable relative domain-domain position (Figure 2.1.3). 
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Figure 2.1.3. A docking solution showing the origin points of the receptor and ligand. We 

specified these two points to restrict the number of ligand docking solutions into the receptor. 

After clustering and optimizing the docking solutions by imparting backbone flexibility 

using FiberDock [281], the domains were merged manually in Maestro by making a peptide 

bond between the first domain and the domain that follows. Taking docking knowledge into 

consideration allowed us to select the possible domain orientations. Specifying the connection 

points of each two consecutive domains limited the number of docking solutions at the end of the 

procedure and allowed for faster and better clustering. Imparting backbone flexibility for the 

docking solutions improved the quality of the final structures. 

2.1.3.1. Two-domain protein structures 

We generated 2000 docking solutions for each two-domain protein. After specifying 

domain connection points, the number of docking solutions was reduced to ~200. We clustered 

these into 10 clusters. The first model is presented here to exemplify the above-mentioned 

results; we considered the kinase domain as a receptor and the USP domain as a ligand. We got 

docking energies ranging from -614 to -381 kcal/mol, with clusters showing docking energies of 

-614 to -388 kcal/mol.  
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We considered one docking solution from each cluster for further calculations (Figure 2.1.4). We 

manually annotated the resulting solutions by adjusting chain IDs, residue and atom numbers to 

allow for correct merging. The chain IDs should be the same and residue/atom numbers had to 

be sequential. Maestro was used to sketch the peptide bond between the consecutive domains 

followed by Prime energy minimization for complete relaxation of the model.  

 

 

Figure 2.1.4. Two different docking solutions of kinase (left domain) and USP (right domain) 

domains, showing different orientations of USP domain relative to the kinase domain.  

The results of the entire sequence and domain sequence approaches are significantly 

different. The USP domain in the entire sequence approach showed features of α–helices and 

loops with no β–sheets (Figure 2.1.1), while in the domain sequence approach we observed the 

features of α–helices, loops and β–sheets (Figure 2.1.5). Comparing these results with already 

solved USP containing structures (Figure 2.1.2 and Table 2.1.1), we concluded that the second 

approach gave more reliable results.   
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Figure 2.1.5. Two 3D structures of the first sequence using the domain approach, showing the 

kinase domain (left domain of each model) and USP domain (right domain of each model). The 

USP domain shows the required α–helices, loops and β–sheets. 

The possible orientations of the modeled domains with respect to each other were 

studied. We kept the most energetically acceptable and highest quality models (Figure 2.1.6 and 

2.1.7). We used Dimpolt to examine the domain-domain interface. The kinase and USP domains 

showed significant interactions mostly of the type of hydrogen bonds and hydrophobic contacts 

(Figures 2.1.8-2.1.11). The most significant interactions were the hydrogen bonds between 

Phe172 (kinase domain) and Arg308 (USP domain), and between Asp166 (kinase) and Ser478 

(USP). Phe172 is the gatekeeper residue and is important for substrate and ligand binding. 

Asp166 is a part of the DFG region which is a part of the ATP binding pocket. By considering all 

acceptable models, studying the domain-domain interaction will lead to better understanding of 

the biological function of the protein.  
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Figure 2.1.6. A 3D model of the first sequence showing the domain-domain interface in black. 

The model was constructed by the domain sequence approach. 
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Figure 2.1.7. The acceptable models of the first sequence (surface, left and cartoon models, 

right); the domain interfaces are shown in grey. Models were constructed by the domain 

sequence approach. 

                   

Figure 2.1.8. Domain-interface interface of the first sequence. The USP domain is shown in 

yellow sticks and the kinase domain in green sticks. The interface of the model constructed by 

the entire sequence (left) and domain sequence (right) is shown. 
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Figure 2.1.9. Domain-domain interactions of the first sequence by the entire sequence approach. 
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Figure 2.1.10. Domain-domain interactions of the first sequence by the domain sequence 

approach. 
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Figure 2.1.11. Domain-domain interface of the second sequence (left) is displayed as surface 

and domain-domain interactions (right) by the domain sequence approach. 

2.1.3.2. Five-domain protein structures 

The sequences are composed of five domains: USP, two kinase domains, one ATPase 

and one domain of unknown function (Figure 2.1.12-2.1.14). The models generated by the entire 

sequence approach showed only features of the first kinase domain. The models generated by 

Prime and I-TASSER showed different secondary structural features, because of relying on 

different protein templates in each case. In such circumstance modeling the individual domains 

was beneficial to show the domain structural features in the final models (Table 2.1.2, Figure 

2.1.15). Due to the large number of possible domain-domain orientations, we kept the five most 

acceptable and energetically favored models after merging the five domains. We used FiberDock 

to optimize the models and relax the backbone structure, followed by Prime model minimization 

to relax the whole model, remove atom clashes and improve the model quality. These models 

were analyzed for possible domain-domain interactions (Table 2.1.3, Figure 2.1.16).  
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Figure 2.1.12. First domain (left) and second domain (right) of the 7th sequence. 

 

Figure 2.1.13. Third domain (left) and fourth domain (right) of the 7th sequence. 
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Figure 2.1.14. Fifth domain of the 7th sequence. 

 

Figure 2.1.15. The 3D model (left) of the 7th sequence after docking, backbone relaxation, and 

overall minimization in the domain sequence approach. The 3D model (right) generated by the 

entire sequence approach. The domain sequence approach showed the secondary structural 

features of each domain, while the entire sequence approach led to a completely different model 

with domain-unrelated features. 
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Table 2.1.2. Summary of the secondary structure information for the 7th sequence generated by 

the domain sequence approach. 

Type Number 

Number of H-Bonds 283 

Number of Helices 14 

Number of Strands 20 

Number of Turns 53 

 

Table 2.1.3. Hydrogen bonds in the domain-domain interface of the 7th sequence generated by 

the domain sequence approach. 

Donor Acceptor Distance 

(Å) 
Residue Chain Res No Atom Residue Chain Res No Atom 

Ser A 478 O Asp A 166 O 3.14 

Lys A 305 N Gln A 169 O 2.45 

Arg A 308 NH Phe A 172 O 2.98 

Arg A 308 N Val A 190 O 2.56 
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Figure 2.1.16. Domain-domain interactions of the kinase and USP domains of the 7th sequence 

generated by the domain approach. 

2.1.4. Summary and Conclusion 

Modeling of multi-domain protein is not an easy task, in particular if these proteins have 

sequences with large number of amino acids. In this research project we modeled twelve protein 

structures from Rhodopseudomonas palustris species. We used an entire sequence approach with 

multi-protein templates; however, the results obtained using that methodology did not reflect the 
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structural features of the domains in each sequence. Therefore we tried a new approach by 

constructing the 3D structure of each domain individually, followed by merging them. We used 

the multi-template approach of Prime to merge the domains by selecting the individually 

constructed 3D structure of each domain as the templates. In another approach, we merged the 

structures using protein–protein docking knowledge. The domain sequence approach provided us 

with models having the features of the included domains. This approach is computationally 

efficient and can be used with large sequences containing multiple domains. The ab initio 

methods are computationally expensive and can only be used to model sequences with less than 

100 amino acids. 
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2.2. Docking challenge: Protein sampling and molecular docking performance 

2.2.1. Introduction 

Computational tools are essential in the drug design process, especially in order to take 

advantage of the increasing numbers of solved X-ray and NMR protein–ligand structures. 

Nowadays, molecular docking methods are routinely used for prediction of protein–ligand 

interactions and to aid in selecting potent molecules as a part of virtual screening of large 

databases. The improvements and advances in computational capacity in the last decade have 

allowed for further developments in molecular docking algorithms to address more complicated 

aspects such as protein flexibility. The effects of incorporation of active site water molecules and 

implicit or explicit solvation of the binding site are other relevant issues to be addressed in the 

docking procedures. Using the right docking algorithm at the right stage of virtual screening is 

most important. We report a staged study to address the effects of various aspects of protein 

flexibility and inclusion of active site water molecules on docking effectiveness to retrieve (and 

to be able to predict) correct ligand poses and to rank docked ligands in relation to their 

biological activity, for CHK1, ERK2, LpxC and UPA. We generated multiple conformers for the 

ligand, and compared different docking algorithms that use a variety of approaches to protein 

flexibility, including rigid receptor, soft receptor, flexible side chains, induced-fit, and multiple 

structure algorithms. Docking accuracy varied from 1 to 84%, demonstrating that the choice of 

method is important. 

In this work, which was part of the annual Community Structure-Activity Resource 

(CSAR) challenge, we studied the ability of different protein–ligand molecular docking 

algorithms to regenerate the correct ligand binding mode of crystal structure bound ligands, and 
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to rank active ligands with respect to their activity data. The study involved a five-stage docking 

approach based on the degree of allowed protein flexibility (Figure 2.2.1).  

 

Figure 2.2.1. The study protocol starts with ligand and protein sampling, followed by setting up 

the docking calculations then, scoring, ranking and pose predication of the docked ligands. 

Protein sampling accounts for five approaches, rigid receptor, soft receptor, multiple (ensemble) 

receptors, FSC receptor and IF receptor. Ligand sampling is either preceding to the docking 

procedure or a part of the specific docking technique. Scoring, ranking and pose prediction are 

carried out in relation to known active and co-crystallized ligands. 

2.2.2. Methods 

2.2.2.1. Protein/ligand databases collection  

Ligand databases for all target proteins in the study were downloaded from CSAR [282]. Initial 

databases did not include the activity data, whereas the final databases did include it. Protein-
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bound ligands were included in both the initial and final databases to serve as a check on pose 

prediction accuracy. 

2.2.2.1.1. Serine/threonine-protein kinase Chk1 (CHK1) 

The structure of CHK1 (also called checkpoint kinase 1) was downloaded from the RCSB PDB 

repository (PDB ID: 2E9N) [283] and used for primary study. A database of 17 additional PDB 

structures was downloaded in mol2 format from CSAR and in PDB format from the RCSB PDB 

(PDB IDs: 4FSM, 4FSN, 4FSQ, 4FSR, 4FST, 4FSU, 4FSW, 4FSY, 4FSZ, 4FT0, 4GH2, 4FT3, 

4FT5, 4FT7, 4FT9, 4FTA, and 4FTC).  

A database of 47 ligand structures was obtained from CSAR to be used in the primary study. 

Subsequently a final database of 184 ligands including the previous 47 was obtained from 

CSAR.  

2.2.2.1.2. Extracellular signal-regulated kinase 2 (ERK2)  

For primary study of ERK2 (also called mitogen-activated kinase 1 or MAPK1), we downloaded 

3I5Z.pdb [284] from the RCSB PDB repository. To follow on, we downloaded 12 protein mol2 

structures from CSAR and the same ones in PDB format from the RCSB PDB repository (PDB 

IDs: 4FUX, 4FUY, 4FV0, 4FV1, 4FV2, 4FV3, 4FV4, 4FV5, 4FV6, 4FV7, 4FV8, and 4FV9). 

The initial ligand database contained 39 structures and the final database was extended to include 

a total of 52 structures. 

2.2.2.1.3. UDP-3-O-N-acetylglucosamine deacetylase (LpxC) of Pseudomonas aeruginosa 

The PDB structure of LpxC (PDB ID: 3P3E) [285] was downloaded for the primary study. We 

downloaded 5 other protein structures in mol2 format from CSAR, 4 of which were deposited in 
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PDB format. The PDB structures have been deposited in the RSCB PDB repository (PDB IDs: 

4FW3, 4W4, 4FW5, 4FW6, and 4FW7) but are not yet released. The initial ligand database 

consisted of 16 ligands, whereas the final database was extended to a total of 31 ligands. 

2.2.2.1.4. Urokinase-type plasminogen activator (UPA) 

We retrieved the PDB structure of UPA (also known simply as urokinase or urokinase 

plasminogen activator) from the PDB (PDB ID: 1OWE) [286]. Seven UPA structures were 

downloaded from CSAR as mol2 files and from the RSCB PDB repository as PDB files (PDB 

IDs: 4FU7, 4FU8, 4FU9, 4FUB, 4FUC, 4FUD, and 4FUE). The initial ligand database consisted 

of 20 structures, but that was extended to 46 structures in the final database. 

2.2.2.2. Protein preparation with Protein Preparation Wizard [287] 

The PDB protein–ligand structures were processed with the Protein Preparation Wizard in the 

Schrödinger suite [288]. The protein structure integrity was checked and adjusted, and missing 

residues and loop segments near the active site were added using Prime [23, 289-291] Hydrogen 

atoms were added after deleting any original ones, followed by adjustment of bond orders for 

amino acid residues and the ligand. The protonation and tautomeric states of Asp, Glu, Arg, Lys 

and His were adjusted to match a pH of 7.4. Possible orientations of Asn and Gln residues were 

generated. Active site water molecules beyond 5.0 Å from the ligand were deleted. Hydrogen 

bond sampling with adjustment of active site water molecule orientations was performed using 

PROPKA [292] (propka.ki.ku.dk) at pH 7.4. Water molecules with fewer than two hydrogen 

bonds to non-waters were deleted. Then, the protein–ligand complex was subjected to geometry 

refinement using an OPLS2005 force field [293] restrained minimization with convergence of 

heavy atoms to an RMSD of 0.3 Å. 
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2.2.2.3. Ligand preparation with LigPrep [294]  

Ligands were prepared using LigPrep from the Schrödinger suite. We obtained the initial ligand 

databases as collections of SMILES (simplified molecular-input line-entry system) strings 

(which do not contain 3D coordinates). The final ligand databases were in the mol2 format (3D 

structures). We included all structures without performing pre-docking filtering. We generated a 

single low energy 3D conformer with acceptable bond lengths and angles for each 2D structure 

in the initial databases. For the initial and final databases, after 3D structure generation we 

prepared ligand structures for molecular docking. LigPrep used the OPLS2005 force field and 

charges in all ligand preparation steps. All possible protomers (protonation states) and ionization 

states were enumerated for each ligand using Ionizer at a pH of 7.4. Stereoisomers were 

generated for the five structures with unassigned stereogenic centers, with a limit of 32 

stereoisomers considered per ligand. Tautomeric states were generated for chemical groups with 

possible prototropic tautomerism. Only the lowest energy conformer was kept for each ligand. 

2.2.2.4. Ligand conformational sampling 

Ligand conformational sampling was used with the FRED [295] and HYBRID [296] modules of 

OpenEye. Other molecular docking software applications we used in this study have their own 

integrated conformational sampling algorithms. We used OMEGA 2.4.6 (OpenEye)[52, 297, 

298] as the conformer generator. The SMILES notations of the initial databases and mol2 

structures of the final databases were used as input for OMEGA 2.4.6. The conformational 

search force field was defined as the 94s variant of the Merck Molecular Force Field 

(MMFF94s) [299]. We kept all generated conformers within a 10.0 kcal/mol energy window, 

except that to eliminate redundant conformers an RMSD cutoff of 0.5 Å was used. 



 80 

2.2.2.5. Protein sampling 

To address protein flexibility in molecular docking, a large number of degrees of freedom should 

be considered. We performed a staged study starting from rigid body docking and continuing all 

the way to fully flexible active site docking. 

2.2.2.5.1. Docking using rigid receptors 

The OEDocking v3.0.0 distribution using the FRED ligand shape fitting algorithm was utilized 

for receptor rigid body docking. All receptors used in this study were co-crystallized with 

ligands. The bound ligands were used to specify the active site. A 3D box was generated around 

each ligand to enclose the active site. Because we do not have any extremely large active site in 

our study, a negative image potential was created for each active site with disabled inner contour. 

No constraints were added except for the LpxC target, for which we prepared receptor docking 

sites with and without a Zn+2 metal constraint. We prepared each receptor with and without 

active site water molecules. We saved the multi-conformer ligand files in OEBinary and 

therefore there was no need to use the FRED conformer test flag. FRED was used with standard 

docking precision using 1.0 Å for the ligand translational step size and 1.5 Å for the rotational 

step size. Because the databases we used are small, we maintained the default value of keeping 

the 500 top scoring molecules with a maximum of one pose to be saved for each molecule. 

2.2.2.5.2. Docking using soft receptors 

We used Glide 5.8 [300] for soft receptor molecular docking. The receptor grid for each target 

was prepared using the OPLS2005 force field. We specified the area surrounding the co-

crystallized ligand as the receptor binding pocket. We excluded all bound ligands from the grid 

generation, except for Zn+2 in the case of LpxC and active site water molecules when applicable. 
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Softening the potential of the nonpolar parts of the receptor was carried out by scaling the van 

der Waals radii by a factor of 0.8. Atoms were considered as nonpolar if their absolute partial 

atomic charge was determined to be ≤ 0.25. The grid center was set to be the centroid of the co-

crystallized ligand and the cubic grid had a side length of 10 Å. No constraints were used in any 

of the receptor grids. Rotations were allowed for the hydroxyl groups in SE, Thr and Tyr, and the 

thiol group in Cys residues. After grid preparation, prepared ligand databases were docked into 

the generated receptor grids using Glide SP docking precision. Flexible ligand sampling was 

considered in the docking procedure. For the docking runs, a second softening potential was 

considered. A 0.8 scaling factor was used for van der Waals radii of the ligands’ nonpolar atoms 

with absolute partial atomic charge ≤ 0.15. All poses were subjected to post-docking 

minimization. We saved the best-docked structure for each ligand, based on the model energy 

score which combines the energy grid score, the binding affinity, the internal strain energy and 

the Coulomb-van der Waals interaction energy scores. 

2.2.2.5.3. Docking using receptors with flexible side chains 

We used the protein–ligand ant system (PLANTS) [301] to deal with side chain flexibility of 

amino acid residues. PLANTS uses the artificial ant colony optimization (ACO) algorithm to 

find the best ligand pose in the binding pocket. ZODIAC 0.65 [302] was used to prepare 

PLANTS input files. All ligands and protein structures were preprocessed by the structure 

protonation and recognition system (SPORES) [303] to adjust the protonation and tautomeric 

states, and to assign stereoisomers for non-specified asymmetric centers. The binding site was 

specified from the co-crystallized ligand coordinates. We used normal ligand sampling search 

speed with 20 ants and simplex rescoring. We used values for the sigma parameter (σ=1.0) and 

evaporation rate (ρ=0.5) which have been shown to be sufficient with 20 ants [304]. Planar bond 



 82 

rotations were forced. For clustering, an RMSD of 2 Å and a maximum of 10 clusters were 

defined. CHEMPLP [305] was specified as the scoring function. All amino acids in the defined 

binding site were selected to have flexible side chains during docking. 

2.2.2.5.4. Docking using flexible binding domain for receptors, or induced fit docking (IFD) 

Ligands are known often to induce conformational changes in the active site upon binding. We 

used the Schrödinger induced fit docking (IFD) protocol to represent this. The receptor grid 

center was specified from the bound ligand, and the cubic grid had a side length of 10 Å. A 2.5 

kcal/mol energy window was used for ligand conformational sampling. The scaling factors to 

soften the potentials of the receptors and ligands were set to 0.5 in both cases. A maximum of 20 

poses was saved. All residues within 5.0 Å of ligand poses were refined using the Prime 

molecular dynamics module to allow for binding domain flexibility. Glide SP was used for the 

re-docking step into the top 20 receptor structures generated within 30 kcal/mol of the best 

structure by the Prime refinement.  

2.2.2.5.5. Docking using an ensemble of protein structures 

Another way to address protein flexibility is to use multiple or an ensemble of protein structures. 

OEDocking v3.0.0 with its HYBRID program was used for this. We used the same options as in 

FRED docking but with multiple structures of each target. All protein structures were treated as 

rigid. 

The Schrödinger suite has the same capability of ensemble docking but with a soft receptor 

approach. Receptor grids were prepared as described above. The van der Waals scaling factor 

was specified as 0.8 for receptor nonpolar atoms and a partial charge cutoff of 0.15 was used. 

Glide SP was used for docking and one pose was saved for each ligand. 
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2.2.2.6. Pose prediction of single ligands and pose fitting of native ligands 

For more accurate pose fitting and prediction we tried POSIT v.1.0.2 from the OpenEye suite 

[306]. We prepared the receptors and allowed mild ligand–protein clashes in the generated 

receptors to account for the average coordinate error expected in PDB structures. We used the 

combine-receptor option to allow for identifying and subsequent use of pockets that would be 

unexplored if we used only single PDB files. The merged receptors were used in the FRED 

docking step as well. We allowed alternate posing of each ligand within 0.5 Å RMSD in each 

receptor. Mild clashes similar to those used in receptor preparation were allowed during pose 

prediction. We forced aromatic rings to be planar. The minimum probability to accept poses 

within 2.0 Å of the native ligand was set to 0.33 with minimum initial probability of 0.05. 

Receptors that had initial rigid TanimotoCombo < 0.8 [307] were rejected. All generated 

protein–ligand complexes were subjected to a final optimization preserving the interactions 

associated with atoms involved in the TanimotoCombo score. A cutoff of 10 kcal/mol was used 

as the maximum strain to accept. 

2.2.3. Results and discussion 

Ligand recognition by a protein depends on both shape (3D structure) and electrostatic 

complementarities. Several reports have described the effect of ligand and protein preparation 

steps on molecular docking efficiency. We used LigPrep, Protein Preparation Wizard and 

SPORES to adjust the protonation, tautomeric, and stereoisomeric states of protein and ligand 

databases. Ligand conformational sampling is as important as correct ligand preparation. FRED 

and HYBRID require multic-onformer databases to be prepared separately. Glide modules—

Glide docking, Glide ensemble docking and Glide induced-fit docking (IFD)—PLANTS and 
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POSIT each have an integrated conformational search algorithm. Pre-generation of conformers 

could be more beneficial if we have ligand databases with saturated rings, and non-specified E/Z 

vinyl, E/Z amide bonds and stereogenic centers, and if the integrated conformational search 

algorithm has limited options to handle these situations. Molecular docking efficiency is 

influenced by the correct preparation of the target protein structure [308]. All PDB structures that 

were used in this study were checked for integrity, especially of the active site region, and any 

structure which showed gap(s) in the binding site region was rejected. Some reports advocate not 

to include any geometry refinement step prior to generating the receptor for docking, because 

this may incorrectly improve the protein–ligand interactions [309]. Protein–ligand complexes 

were minimized before preparing the receptor grid for use in the Glide modules. This 

minimization step was not implemented for the other software applications. The active site was 

defined by the amino acid residues surrounding the bound ligand (Figure 2.2.2). Protein 

conformational changes often take place upon ligand binding, so ignoring protein flexibility 

during molecular docking may give results that are incorrect [310]. There are several approaches 

to include protein flexibility in the docking procedure. We tried rigid body docking with FRED, 

soft receptor docking by softening the potential of receptor nonpolar regions with Glide, docking 

using receptors with flexible side chains with PLANTS, docking in multiple protein structures 

with HYBRID and Glide ensemble docking, and IFD. Each technique has its own 

approximations, advantages and limitations.  

As a first step, we aligned the binding sites of the PDB structures of each target to check for 

conformational flexibility of active site residues. The four targets have different degrees of 

flexibility. CHK1 showed a high degree of flexibility in the P-loop region (residues 13-23) and 

for the side chains of Lys38, Glu55, Val68, Lys91, Ser147 and Asp148 (Figure 2.2.3).  
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Figure 2.2.2. Active site structures of target proteins; CHK1 (PDB ID: 2E9N, panel A), ERK2 

(PDB ID: 3I5Z, panel B), LpxC (PDB ID: 3P3E, panel C) and UPA (PDB ID: 1OWE, panel D). 

The images were generated using PyMol [311]. The α-helices, β-sheets and loops are colored in 

yellow, blue and green, respectively. Key amino acids in the active sites have their side chains 

displayed as lines and are labeled based on their position. Only polar hydrogen atoms are 

displayed in white. All Cα atoms are represented as spheres and colored according to the 

corresponding secondary structure. Other carbons of the amino acids are colored green. Ligands 

are displayed as sticks with grey carbons and no hydrogen atoms are depicted. Oxygen, nitrogen 

and sulfur atoms are colored red, blue and yellow, respectively. 
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Figure 2.2.3. The structure of CHK1 (PDB ID: 2E9N, panel A) is displayed as blue cartoon. The 

most flexible residues have side chains represented as red lines (inside the yellow box). This 

flexibility is inferred from aligning the CHK1 active site from multiple PDB structures (panel B). 

The α-helices, β-sheets and loops in panel B are yellow, blue and green, respectively. The images 

were generated using PyMol. 

The P-loop in protein kinases often moves to accommodate ligands with variable sizes 

[312], and the hydroxyl, carboxyl and amino side chains of Lys, Glu, Val, and Asp in the active 

site rotate to allow for making hydrogen bonding and electrostatic interactions with bound 

ligands. In the case of ERK2, a high degree of flexibility is observed throughout the active site 

(Figure 2.2.4) which allows varied ligands to fit. LpxC showed some flexibility in residues 191-

207, His19 and Met62 (Figure 2.2.5). The structure is relatively conformationally conserved at 

the metal binding site, as shown by the minor orientation differences for the histidine residue 

(Figure 2.2.5B). In the case of UPA, scattered residues are shown to be flexible around the active 

site (Figure 2.2.6). UPA active site flexibility mainly includes rotation of the side chains of the 
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involved residues, such as His54, Tyr59, His106, Gln208, Ser211 and Arg233, to form hydrogen 

bonds with bound ligands. 

 

Figure 2.2.4. The structure of ERK2 (PDB ID: 3I5Z, panel A) is displayed as blue cartoon. The 

most flexible residues have side chains represented as red lines (inside the yellow box). The 

flexibility of the active site is shown by the alignment of the ERK2 binding site as determined 

from multiple PDB structures (panel B). The α-helices, β-sheets and loops in panel B are yellow, 

blue and green, respectively. The images were generated using PyMol. 

Active site water molecules can be considered another important aspect of target 

flexibility. Water molecules should be checked carefully to avoid using artifact waters (those that 

are not essential to the protein structure) in the docking process. Using artifact active site water 

molecules can have a deleterious effect by providing false energetic stability to the protein–

ligand complex. The PDB structures of CHK1, ERK2, LpxC and UPA, which were used in the 

initial docking step, were checked carefully for active site water molecules. CHK1, ERK2, LpxC 

and UPA have, respectively, 2, 2, 6 and 7 active site water molecules showing at least 2 

hydrogen bonds with non-waters (with protein and/or ligand). 



 88 

                 

Figure 2.2.5. The structure of LpxC (PDB ID: 3P3E, panel A) is displayed as blue cartoon. The 

most flexible residues have side chains represented as red lines (inside the yellow box). The 

flexibility of the active site is shown by the alignment of the LpxC binding site as determined 

from multiple PDB structures (panel B). The α-helices, β-sheets and loops in panel B are yellow, 

blue and green, respectively. The images were generated using PyMol. 

 

Figure 2.2.6. The structure of UPA (PDB ID: 1OWE, panel A) is displayed as blue cartoon. The 

most flexible residues have side chains represented as red lines (inside the yellow box). The 

flexibility of the active site is shown by the alignment of the UPA binding site as determined 

from multiple PDB structures (panel B). The α-helices, β-sheets and loops in panel B are yellow, 

blue and green, respectively. The images were generated using PyMol. 
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The binding site area that is defined by one PDB structure does not necessarily have the 

same features as the binding site area of another PDB structure of the same protein. To avoid 

misleading information that can come from relying on a single PDB structure, which would be 

expected to degrade the docking performance, we compared several protein–ligand co-crystal 

structures of each target. We explored the binding area of each target (Figure 2.2.7) to make use 

of all possible pockets in the rigid docking step. We tried receptor merging to add the advantage 

of fast rigid docking to the use of an expanded protein conformational space. 

 

Figure 2.2.7. The binding area of ERK2 as defined by a single PDB structure, 3I5Z, is shown in 

orange surface mesh (around the ligand) and dark green surface mesh (extended to the protein 

surface close to the ligand) (left), and the merged area as defined by two PDB structures, 3I5Z 

and 4FUX, in light green surface mesh surrounding the ligand and extended protein surface from 

3I5Z alone (right). The α-helices, β-sheets and loops are red, yellow and white, respectively. The 

image was generated using VIDA [313].  
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The performance variability of docking software applications (Table 2.2.1) may be attributed to 

the specific target at hand, the scoring function, and the ligand and protein conformational 

sampling approaches. We defined percent accuracy for a particular method as 100 times the 

correlation coefficient, r2, between docking scores and experimental activity data.  

Table 2.2.1. Docking algorithm features, computational times and percent accuracies. 

 Rigid Soft *FSCa IFD Ensemble Docking 

Glide Hybrid 

Scoring 

Function 

Chemgauss4 *Glide 

SP 

PLANTSPLP Glide SP Glide 

SP 

Chemgauss4 

Conformational 

sampling 

Pregeneration Integral Integral Integral Integral Pregeneration 

Comp. 

time/ligand 

(min) 

< 1 1-5 ~30 ~60 ~45 ~15 

Protein % Accuracy 

CHK1 11 4 4 4 10 21 

ERK2 15 7 20 32 42 60 

LpxC 81 79 1 73 75 84 

UPA 1 10 51 43 1 25 
a FSC is Flexible Side Chain 

The CHK1 active site has a high degree of flexibility, with the P-loop residues showing 

the greatest conformational changes upon ligand binding (induced fit). We expected the flexible 

docking approaches (Figure 2.2.8) to perform better in this case; however, the rigid-body 

docking (Figure 2.2.9) showed the best accuracy. Allowing adjustments to the receptor 

conformation through the soft receptor approach, using flexible side chains or IFD did not show 

any improvement. Ligand sampling is a key factor in this case. OEDocking used OMEGA ligand 
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conformational sampling as a predocking step that allowed adding more flexibility during 

conformer generation. In other software, ligand sampling is an internalized feature with limited 

ability to be manipulated. Protein sampling in the flexible docking approaches could not provide 

the required flexibility to handle the highly movable active site regions. Also, the conformational 

space occupied by the binding pocket upon binding with some of the varied ligands is not 

covered by the available crystal structures. Using multiple protein structures in Glide and 

OEDocking gave a moderate increase in the docking performance from 4% to 10%, and from 

11% to 21%, respectively. The larger improvement in the case of OEDocking is likely because 

of the predocking ligand sampling and the approach of using an ensemble of structures. In cases 

like that of CHK1, docking techniques cannot be depended on to play a significant role in the 

virtual screening process.  

 

Figure 2.2.8. The binding region used in flexible docking to the CHK1 active site. (Left) 

PLANTS generated multiple orientations for each side chain of the active site residues, each 

conformation was tried for each ligand and the best scoring conformation was kept (carbon 

atoms are grey). (Middle) The IFD approach allowed for domain movements (backbones and 

side chains orientations) upon ligand binding, and the P-loop region was shown to be flexible to 

allow ligand fitting (carbon atoms are green). (Right) Ensemble docking used multiple PDB 
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structures aligned based on the active site information. Each individual PDB structure was tried 

for each ligand and the best scoring PDB structure was saved for each ligand separately (carbon 

atoms are green). In the center and right panel the α-helices, β-sheets and loops are yellow, blue 

and green, respectively. Figure generated using PyMol. 

                                 

Figure 2.2.9. The docked poses in the CHK1 active site using rigid receptor approaches. (Left) 

OEDocking with pre-generation of ligand conformers using OMEGA. (Right) Soft receptor 

approach using Glide Maestro with self-generation of ligand conformers. Figure was generated 

in Maestro [314]. All secondary structures are colored grey; ligand poses are displayed as sticks 

(with carbon grey, oxygen red, and nitrogen blue). 

The active site of ERK2 contains residues which are involved in forming parts of the 

protein β-sheets, α-helices and loops (Figure 2.2.4). PLANTS and IFD both showed that the 

active site is highly flexible (Figure 2.2.10). The observed high flexibility of backbone and side 

chains of the active site residues would be expected to limit the docking efficiency. For this 

protein target, there were substantial increases in the accuracy when using the flexible 

techniques. Combining the predocking ligand sampling with the use of an ensemble of structures 

showed the best accuracy (60%). The conformational space provided by the multiple crystal 
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structures was varied enough to cover the conformational space of the ERK2 active site and 

hence, to improve the ensemble docking performance. 

The active site of LpxC contains Zn+2, and there is structural evidence that ligands form metal 

chelates upon binding. Adding a chelate formation as a docking constraint enhanced the overall 

accuracy of all techniques (Figure 2.2.11) except for the flexible side chain method, which needs 

special handling of this metalloenzyme before running docking. PLANTS generated a large 

number of side chain conformers throughout the active site even though there is supposed to be a 

more conserved region at the metal binding site (Figure 2.2.5), explaining why PLANTS 

performed badly for this target. The IFD approach allowed for domain movements but did not 

move the metal-binding side chains.  

 

Figure 2.2.10. The docking site (active site) of ERK2. (Left) PLANTS generated multiple 

orientations for each side chain of the active site residues (carbon atoms are grey). (Middle) The 

IFD approach allowed for backbones and side chains orientations to be adjusted to accommodate 

ligand binding (carbon atoms are green). (Right) Multiple PDB structures were used for the 

ensemble docking and aligned based on the active site information (carbon atoms are green). In 
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the center and right panel the α-helices, β-sheets and loops are yellow, blue and green, 

respectively. Figure generated using PyMol. 

 

Figure 2.2.11. The docking site (active site) of LpxC. (Left) PLANTS generated multiple 

orientations for each side chain of the active site residues (carbon atoms are grey). (Middle) The 

IFD approach allowed for adjustments to accommodate ligand binding (carbon atoms are green). 

(Right) Ensemble docking used multiple PDB structures and aligned them based on the active 

site information (carbon atoms are green). In the center and right panel the α-helices, β-sheets 

and loops are yellow, blue and green, respectively. Figure generated using PyMol. 

For UPA, the active site showed little flexibility according to the evidence from the 

available crystal structures. Hence, we anticipated rigid docking methods to perform well; 

however, they showed the lowest accuracy. The flexible side chain method and IFD (Figure 

2.2.12) showed the best performance, providing enough space for ligands to fit. Upon combining 

predocking conformational sampling with using multiple crystal structures, the results showed a 

significant increase in performance from 1% to 25%. The conformational flexibility of the active 

site of UPA is not covered by the available crystal structures and this is the main reason for the 

low accuracy of the ensemble docking methods. 
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Figure 2.2.12. The docking site (active site) of UPA. (Left) PLANTS generated multiple 

orientations for each side chain of the active site residues (carbon atoms are grey). (Middle) The 

IFD approach allowed for adjustments to accommodate ligand binding (carbon atoms are green). 

(Right) Ensemble docking used multiple PDB structures and aligned them based on the active 

site information. In the center and right panel the α-helices, β-sheets and loops are yellow, blue 

and green, respectively. Figure generated using PyMol. 

The overall performance of rigid body docking was increased by using merged receptors 

over using the single receptor, but that still was not as good as using multiple receptors. The 

merging method adds more information to the receptor model and provides additional pockets 

that were unexplored by the original receptor. As we previously described above, active site 

waters should be manipulated with extreme care. Ligands may interact with real active site water 

molecules forming hydrogen bonds or may displace active site waters, disrupting an important 

hydrogen bond network. Artifact water molecules caused by the crystallization technique will 

falsely appear to improve the energetics of ligand binding and the docking score. The latter 

scenario is shown to occur in this case. The number of surviving active site water molecules 

during protein preparation was limited by keeping only waters forming 2 hydrogen bonds with 

non-waters. When we increased the number of constraints such that waters needed to form 3 or 4 

hydrogen bonds with non-waters, none of the proteins had any water molecules in the active site 
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except for LpxC, which showed one water molecule in the active site. Incorporation of active site 

waters led to a significant decrease in all docking performance.  

We checked the performance of the docking applications to regenerate the correct pose of 

ligands of already solved X-ray co-crystal structures, by performing docking using any ligands 

for which there were such structures, from the training or test sets. The docking was not done to 

the ligand’s native X-ray crystal structure (“redocking”) but rather to a different X-ray structure 

of the same protein. This docking was done as part of the primary study before the experimental 

activity data in the CSAR exercise was released. Then comparison was made between the final 

docked pose and the co-crystallized docked conformation of the same ligand. In order to do this 

it was necessary to align the two protein structures first (all protein atoms were used in this rigid 

alignment). To check the performance of regenerating the correct ligand pose, we docked ligands 

having known protein bound crystal structures into 2E9N (CHK1), 3I5Z (ERK2), 3P3E (LpxC) 

and 1OWE (UPA). We calculated the RMSD (for all protein atoms only) for each of the PDB 

structures used in the docking step compared to the original PDB co-crystallized structure of the 

particular ligand. We referred to this value as the protein RMSD for a particular ligand. Next, the 

difference for the ligand only between the docking pose and the crystal conformation was 

measured by calculating an atom-by-atom ligand RMSD. The rigid docking approach we used 

for this (OEDocking’s Fred) out-performed the soft receptor approach (Schrödinger’s Glide) in 

three of the four cases, other than for UPA (Figure 13). In flexible receptor methods, the side 

chains and protein backbone can move and/or rotate to help a particular ligand to fit more 

optimally into the binding pocket, but the movement of the protein may result in a deviation of 

the ligand from the actual binding pose found in the crystal structure [315]. To make sure we are 

using a common frame for comparing ligands’ RMSD in case of flexible techniques, we used the 
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RMSD of protein backbone atoms instead of all atoms as in the previous case (Figure 2.2.13). 

The higher values of protein RMSD in flexible approaches is attributed to the allowed 

movements of side chain and backbone active site residues that lead to considerable deviations 

form the original crystal structure. Because of residue movements, the best scoring docked pose 

in most cases is not necessarily, the one with lowest ligand RMSD value. Rigid body docking 

and soft receptor methods showed better performance than the flexible receptor methods, 

especially if these approaches were combined with using multiple receptors in the hybrid and 

ensemble docking algorithms.  

 

Figure 2.2.13. Performance of docking applications to regenerate correct ligand poses. Ligands 

(ordered from left to right based on increasing RMSD) are plotted against their ligand RMSD 

values. Each line represents the ligand RMSD, while the “error bars” represent the magnitude of 

the protein RMSD (cf. main text). Blue: rigid docking (OEDocking’s Fred); red: soft receptor 

docking (Schrödinger’s Glide); green: IFD (Schrödinger); orange: flexible side chain docking 

(PLANTS) 
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We used POSIT for docking of all ligands and compared those for which there is an X-ray co-

crystal structure to those for which there is none. The former had docked poses with RMSD < 

1.0 Å compared to their crystal structures. Posit predicted for the active ligands with no X-ray 

co-crystal structure that they had probabilities > 70% to bind within the active site of the 

proteins. Greater than 90% of the inactive ligands did not show any binding probability. 

The scoring functions are another important aspect to address since they play an important role 

in ligand ranking and pose selection. In OEDocking, the scoring function is used to select the 

best pose and ligand placement in the active site is based on a shape-fitting algorithm. In Glide 

and flexible side chain algorithms, ligand posing and ranking are based solely on the scoring 

function. We found that OEDocking performed the best. Utilization of the newly implemented 

chemical Gaussian overlay (CGO) function [316] may enhance OEDocking performance even 

more.  

2.2.4. Conclusion 

The best docking technique should be chosen after studying in detail the target, candidate ligands 

and docking method performance. Benchmark analysis should be considered before choosing the 

technique. Protein flexibility could be considered based on the facts of the case under 

consideration. The rigid receptor method showed high accuracy for ranking active ligands. It 

performed better in case of metalloenzymes than in the other cases. Soft receptor methods were 

comparable to rigid body docking, with better performance in UPA. The flexible side chain 

method had moderate performance in most cases and performed better in UPA. It gave the worst 

results in case of the metalloenzyme. It needs special handling of the target before running 

docking. The induced fit docking (IFD) method showed stable results in all cases. By modifying 
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the softening potential, IFD produced enough flexibility to adjust the p-loop of ERK2 providing 

a better representation for the docking step and hence a better chance for improved results. 

Ensemble docking methods showed stable results as well, except for UPA. The number of crystal 

structures of UPA was not enough to cover the conformational space of the enzyme. 

Computational expense is an important issue, especially for virtual screening of a large number 

of candidate ligands. IFD is the most expensive of the techniques, in particular if we use the 

Glide XP scoring function. Glide ensemble docking would be the most expensive if we included 

molecular dynamics and MM-GBSA calculations for obtaining more accurate and representative 

binding free energies. Incorporation of structural water should be considered only after careful 

analysis. In this work, incorporation of active site waters negatively affected the results of all 

docking methods and in particular lowered the performance of the IFD and flexible side chain 

methods. 

In general, we may summarize our major findings with the following points: 

1. It is better to separately generate the ligand conformers as efficiently as possible and not 

depend upon the self-generation approach. 

2. For the protein preparation step, it is preferable not to minimize the complex because this will 

bias the protein−ligand interaction profile and hence will affect the docking results. 

3. Careful analysis of active site crystal water molecules is required. Inclusion of water 

molecules should be considered after studying the hydrogen bonding with non-water residues 

and after studying the relative abundance of water molecules by analysis of multiple crystal 

structures. 

4. If the target under consideration has multiple crystal structures with a good coverage of 
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possible active site conformations, the hybrid approach with rigid receptors or the ensemble 

docking protocol with soft receptors will be preferred due to their accuracy and computational 

efficiency. 

5. If the target does not have multiple crystal structures and there is prior knowledge from 

benchmark studies of possible movements of the active site residues, IFD and FSC protocols 

should be considered. 

6. For virtual screening purposes, it is better to consider pose fitting and prediction approaches to 

rule out structures that do not bind in the same manner as native ligands. Only those compounds 

that bind in a similar way to that of the native ligands would be used in further steps of virtual 

screening. 
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3.1. Introduction 

More than 500 protein kinases have been identified and they are involved in 

phosphorylation of other protein substrates [3]. CDK2 is one of 21 identified human CDKs [55]. 

CDKs are serine/threonine protein kinases that act as key regulatory elements in cell cycle 

progression. Cyclin E and CDK2 in particular are essential for the G1/S phase transition [317]. 

The activity and substrate specificity of CDKs are dependent on the presence of their partner 

proteins, the cyclins [318].  

CDK2 is regulated by binding to cyclins A, E and others [319]. Cyclin A is required for 

the progression from G1 phase to S phase while cyclin E is essential for the progression through 

the S phase of the cell cycle [320]. CDK2 activity is also regulated by phosphorylation at Thr160 

(activating phosphorylation) and Tyr25 (inhibitory phosphorylation) [65]. The CDK2/cyclin A 

complex regulates the G1 to S phase checkpoint and, therefore, represents an attractive 

therapeutic target to arrest or recover control of the cell cycle in dividing cells. CDK2 is also 

necessary for meiotic cell division in male and female germ cells, and therefore CDK2 inhibitors 

provide promise for male contraceptive development [320]. 

Inhibiting the activities of CDK2 would cause cancer cell death without affecting the 

normal reversible cell cycle [321]. Due to the recent interest in kinase inhibitors a huge boost in 

the number of their X-ray structures has been observed and the number of CDK2 crystal 

structures is increasing as well. In order to understand the structural features of CDK2 in its 

inactive, active, bound and unbound states, we have performed systematic analysis of the 3D 

structure of CDK2 (Figure 3.1.1).  
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Figure 3.1. Flowchart demonstrating the procedure used for CDK2 structural analysis. We 

started by retrieving CDK2 PDB files from RSCB Data Bank, protein preparation and finally, 

structural analysis.   

3.2. Methods 

3.2.1. Collection of CDK2 structures 

  The amino acid sequence of human CDK2 is defined under the 

P24941 (CDK2_HUMAN) entry in the Uniport Knowledgebase (UniProtKB) [322]. In the 

UniProtKB, based on the splicing process, there are two CDK2 isoforms (Isoform 1 and Isoform 
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2). Isoform 1 “P24941-1” has been chosen as the canonical sequence of human CDK2 and it 

consists of 298 amino acids. Isoform 2 “P24941-2” is known as CDK2deltaT in which residues 

163-196 are missing and therefore it has 264 amino acids. We downloaded all CDK2 structures 

from the RCSB Protein Data Bank (PDB) using the amino acid sequence of the UniProtKB 

isoform 1. We selected the option of masking low complexity and specified an Expectation value 

cut off of 1E-70 in the RCSB FASTA search engine. 

“M E N F Q K V E K I G E G T Y G V V Y K A R N K L T G E V V A L K K I R L D T E T E 

G V P S T A I R E I S L L K E L N H P N I V K L L D V I H T E N K L Y L V F E F L H Q D 

L K K F M D A S A L T G I P L P L I K S Y L F Q L L Q G L A F C H S H R V L H R D L K 

P Q N L L I N T E G A I K L A D F G L A R A F G V P V R T Y T H E V V T L W Y R A P E 

I L L G C K Y Y S T A V D I W S L G C I F A E M V T R R A L F P G D S E I D Q L F R I F 

R T L G T P D E V V W P G V T S M P D Y K P S F P K W A R Q D F S K V V P P L D E D 

G R S L L S Q M L H Y D P N K R I S A K A A L A H P F F Q D V T K P V P H L R L” 

Seq. 1. The sequence of CDK2 Isoform 1.  

3.2.2. Initial preparation of CDK2 structures 

In order to analyze CDK2 structure, we curated the PDB structural files in sequential 

steps. We used our in-house program to split each PDB structure into the individual protein 

chains, ligands (other than water) and water molecules. We saved the amino acid sequence of 

each protein chain in FASTA format to be used in the next step. The sequences were then 

searched for the protein kinase domain (Pfam ID: PF00069) [323] using HMMER’s hmmsearch 

module [324]. Protein chains having sequences of the protein kinase domain were kept. If the 

PDB structure has more than one kinase chain, only one was considered. We processed each 



 105 

protein structure to remove redundancy; for example, some PDB files have more than one set of 

atomic coordinates for one or more amino acid residues and/or ligand molecules. In these cases, 

we saved each distinct set of PDB atomic coordinates as a separate PDB file.  

3.2.3. Protein preparation 

3.2.3.1. Adjusting amino acid residues 

We used Reduce version 3.16 [315] with build option to fix the PDB molecular structure 

files. Missing hydrogen atoms were added in a standardized geometry to amino acid residues, 

and the orientations of OH, SH, NH3+, Met methyls, Asn and Gln side chain amides, and His 

rings were optimized. We checked for flipped Asn, Gln, and His.  

3.2.3.2. Ligand Preparation 

Small ligands with less than 10 atoms were removed. Reduce version 3.16 was used to 

add missing hydrogen atoms to HET groups based on the HET connectivity table of the RCSB. 

In our study we considered ATP and ATP-like and non-ATP ligands for analysis. We checked 

ligands for the possibility of multiple sets of atomic positions. 

2.3.3. Merging files 

Structural files of the prepared protein chains, adjusted ligands and water molecules were 

merged into one PDB molecular structure file for each PDB entry. We used PDBCat [208] 

version 1.3 to standardize the merged PDB file into acceptable format. PDBCat is a useful tool to 

treat erroneous fields in the PDB files, allowing the conversion of the RCSB PDB file from 

column based format records of ATOM and HETATM to a field based one, and back again. 

HETATM record positions were adjusted for each PDB file using our in-house program. All 
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PDB files were inspected using the XEMACS PDB mode to adjust atom and residue numbering. 

In very rare cases the merging procedure resulted in more than one ligand per chain. We visually 

checked merged structures for such cases using PyMol [191] to retain only ligands in the active 

site and to remove the extra ligands from the PDB HETATM record. We used KNIME in 

Schrödinger to sample water orientations and to assign and adjust the hydrogen bond network of 

the merged files using Protein Preparation Wizard [170] with PROPKA [292] at PH 7.4. 

3.2.4. Calculation of residue properties 

The secondary structural elements of the merged PDB files were calculated based on the 

atomic coordinates, hydrogen bond energy and main chain dihedral angles using Stride [325]. 

The same properties were calculated based on atomic coordinates and pattern recognition of 

hydrogen-bonded and geometrical features only using the Dictionary of protein secondary 

structure (DSSP) [326]. Protein backbone ϕ and ψ angles were calculated using the Bayesian 

inferential method of DANGLE [327] (Dihedral ANgles from Global Likelihood Estimates). The 

atomic solvent accessible area of each residue was calculated using Naccess [328]. We used 

BioLuminate [329] to check protein quality and analyze all amino acid residues. To check for the 

allowed ligand sizes based on the crystallographic information, PyMol was utilized to calculate 

the binding pocket volume of each PDB molecular file. To investigate CDK2 structures for 

possible binding pockets other than the ATP pocket, we calculated other protein cavities and 

their druggabilities using fpocket, which is “free protein pocket detection software” [308, 330]. 

The relative abundance of water molecules was calculated from the coordinates of all waters 

within 8 Å around ligand molecules. 
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3.2.5. Clustering 

 We used the Family-wise Analysis of SubStructural Templates (FASST) method to 

cluster the PDB structural files based on their backbone and side chain variations [331].  We 

specified seven sets of protein substructures to be compared. The comparison sets are the amino 

acid residues forming: the binding pocket (residue IDs: 10, 11, 12, 13, 14, 18, 31, 33, 55, 63, 64, 

66, 78, 80, 81, 82, 83, 84, 85, 86, 89, 127, 129, 131, 132, 134, 143, 144, 145, 148, 162, 163, 164, 

and 165), HRD motif (Residue IDs: 125-127), the whole HRD motif (Residue IDs: 125-134), 

DFG motif (Residue IDs: 145-147), hinge region (Residue IDs: 80-86), and conserved lysine 

motif (Residue IDs: 31-33). After defining the comparison sets, multiple alignments were 

performed followed by computing an all-vs-all substructure distance matrix, reducing the 

dimensionality by principal components analysis, and finally, identifying the sub-groups/clusters 

of related substructures based on clustering the dimensionality-reduced substructure feature 

vectors. 

3.2.6. Protein ligand interaction fingerprint 

The Protein Ligand Interaction Fingerprints (PLIF) method uses a fingerprint scheme to 

summarize the protein ligand interactions. Hydrogen bonds, ionic interactions and surface 

contacts are classified according to the interacting amino acid residue, and built into a fingerprint 

scheme. We uploaded the PyMol-aligned CDK2 structures into the molecular operating 

environment molecular database viewer (MOE MDV) [332]. We allowed the program to 

compute all kinds of interactions in which a residue may participate: side chain hydrogen bonds 

(donor or acceptor), backbone hydrogen bonds (donor or acceptor), ionic interactions, and 

surface interactions. Then, the PLIF was computed and used to generate a pharmacophore query. 



 108 

The volumes occupied by the amino acids residues were considered as excluded volumes in the 

pharamcophore query. 

3.2.7. CDK2 inhibitor database 

 A set of  ~4000 small molecule CDK2 inhibitors were downloaded as SDF files from the 

binding database [332]. We selected only the structures that have IC50 values. We used LigPrep 

[294] to prepare the database to be suitable for the next step. LigPrep used the OPLS2005 force 

field and charges in all ligand preparation steps. All possible protomers (protonation states) and 

ionization states were enumerated for each ligand using Ionizer at a pH of 7.4. Stereoisomers 

were generated for the structures with unassigned stereogenic centers, with a limit of 32 

stereoisomers considered per ligand. Tautomeric states were generated for chemical groups with 

possible prototropic tautomerism. Only the lowest energy conformer was kept for each ligand. 

3.2.8. Creating ROCS queries 

We used the docked poses of highly rigid and selective CDK2 inhibitors to generate a 

shape query with colored atoms. Colored atoms were selected to represent the structural features 

of the inhibitors in the form of hydrogen bond donor/acceptor, hydrophobic/ring, etc. The shape 

queries were prepared using the ligand model builder in ROCS 3.1.2 [159, 333, 334]. Because 

we started with the docked pose, we specified a single model to be generated per each ligand.  

3.2.9. Validation of the ROCS queries 

Active (~1000 molecules with IC50 < 100nM) and inactive (decoy, ~1000 molecules 

with IC50 > 1000nM) CDK2 databases were constructed from the binding database. OMEGA 

2.4 [335-338] was used to generate multiple conformers for each ligand. We generated all 
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possible conformers for each ligand within an energy window of 10 kcal/mol. The queries were 

validated against the actives and decoys databases with full optimization option. Based on the 

AUC (area under the curve) and early enrichment values, the best model was selected for further 

calculations. 

3.2.10. Preparation of ZINC database 

All purchasable compounds were downloaded from the ZINC database [339, 340]. We 

used Filter 2.1.1 [341] to eliminate the compounds that do not follow Lipinski’s rule of five 

[342], and structures with metabolically vulnerable groups. This filtration ended with ~11 

million compounds. We used OMEGA 2.4 to generate a maximum of 300 conformers for each 

ligand within an energy window of 10 kcal/mol. 

3.2.11. PLIF-based virtual screening, pose fitting, shape scoring, clustering and selection 

The multiple conformers of the filtered ZINC database were screened using the PLIF 

pharmacophore model. We kept all compounds that matched the pharmacophore query with an 

RMSD value less than 2.5 Å. The resulting compounds were subjected to pose fitting. For more 

accurate pose fitting and prediction we tried POSIT v.1.0.2 from the OpenEye suite [306]. We 

prepared 20 CDK2 receptor files and allowed mild ligand–protein clashes in the generated 

receptors to account for the average coordinate error expected in PDB structures. We allowed 

alternate posing of each ligand within 0.5 Å RMSD in each receptor. Mild clashes similar to 

those used in receptor preparation were allowed during pose prediction. We forced aromatic 

rings to be planar. The minimum probability to accept poses within 2.0 Å of the native ligand 

was set to 0.33 with minimum initial probability of 0.05. Receptors that had initial rigid 

TanimotoCombo < 0.8 [307] were rejected. All generated protein–ligand complexes were 
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subjected to a final optimization preserving the interactions associated with atoms involved in 

the TanimotoCombo score. A cutoff of 10 kcal/mol was used as the maximum strain to accept. 

After the pose fitting filtration step, we scored the compounds using the shape query to allow for 

structural clustering and selection. 

3.3. Results and discussion 

A total of 303 CDK2 crystal structures were deposited in the RSCB PDB [128] repository 

as of Jan 31, 2103 (Figure 3.2) Of them, 204 structures are CDK2-ligand, 47 are CDK2-cyclin-

ligand and 4 re CDK2-cyclin-peptide-ligand complexes. A database of CDK2 structures was 

constructed from the individual protein chains (one kinase chain per each PDB file), the merged 

PDB files and the binding pocket of ligand-protein complexes. For the analysis step, we used 

PDB molecular files with and without co-crystalized ligands. Binding pockets in ligand-protein 

complexes were defined by neighboring residues and crystallographic water molecules within 8 

Å of the ligands. 
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Figure 3.2. Released CDK2 crystal structures in the RCSB protein databank till Jan 31st 2013  

CDK2 is a monomer that consists of 298 amino acids. It is regulated by phosphorylation 

at Thr160 and Tyr15, and by binding to cyclins. Structurally, CDK2 consists of a small N-

terminal lobe and a large C-terminal lobe. The N-lobe is made up of five β sheets and one α helix 

in the order of β1, β2, β3, α1, β4 and β5. The PSTAIRE helix, which is important for cyclin 

binding, is part of α1. The C-lobe contains eight α helices and three β sheets in this order α2, α3, 

β6, β7, β8, αL12, α4, α5, αL14, α6, and α7 (Figure 3.3).  
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Figure 3.3. The N-lobe (left) and C-lobe (right) of CDK2 showing the secondary structural 

elements. The N-lobe is small consisting of five β-sheets and one α-helix. The C-lobe is large 

and has eight α-helices and three β-sheets. 

The derived secondary structural information suggested three major CDK2 clusters that 

can be functionally categorized into inactive, partially-activated and fully-activated states. 

Conserved and variable structural regions have been identified (Figure 3.4). In general, we could 

define four main regions in CDK2, two variable regions consisting of amino acid residues 1-44 

and 147-168 and two conserved regions consisting of residues 45-146 and 169-298. Structures in 

the database were analyzed amino acid by amino acid. The calculated secondary structure (ss) 

information for each amino acid residue showed variations for key amino acids (Figure 3.5). The 

main reasons for that are activation of CDK2 by phosphorylation at Thr160, binding to cyclin 

A/E, and binding to ligand molecules of different scaffolds. The binding pocket is found to be 

more structurally conserved within 8 Å around the ligand, except for the P-loop region (Figure 

3.6), which is quite variable suggesting it is flexible. To understand the activation of CDK2 and 

effect of ligand binding we studied each amino acid in sequence, and we tried to look into native 

ligands and their effects upon binding to CDK2. Several amino acids are found to be essential for 



 113 

ligand interaction, and their conformations are important for imparting selectivity for binding to 

CDK2 (Figure 3.7). The conformation of the DFG region, which is a part of the binding pocket, 

is conserved.  
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Figure 3.4. CDK2 structures colored by Cα deviation from 1GY3. A. All ligand bound CDK2 

structures were aligned to 1GY3 as a frame of reference. The B factor column of the PDB files 

was modified to represent characteristic colors for conserved and variable regions. Blue 

represents conserved regions, while red and grey represent variable structural regions. The P-

loop, T-loop and in general the N lobe are shown to be highly flexible. B. Aligned CDK2 

structures with an average of 0.6 Å (range 0.01-7.00 Å) RMSD of backbone atoms. The N lobe 

shows variability between β1 and β2, and the L12 helix has a loop-like feature with Cα 

deviations. C. CDK2 with an average of 0.8 Å (0.01-8.00 Å) RMSD of backbone atoms. The N 

lobe shows high variability, the L12 helix shows a loop feature and conserved conformations. D. 

and E. CDK2 structures that have an average of 1.4 Å (0.03-13.00 Å) RMSD of backbone atoms. 

In D, the PSTAIRE helix rotates ~90° in two different conformations, the binding site is smaller 

in size. In E, β3 is most variable. F. CDK2 with an average of 1.7 Å (0.01-20.00 Å) RMSD of 

backbone atoms. The PSTAIRE helix rotates and shows two conformations. G. and H. CDK2 

structures with an average of 2.4 Å (0.05-30.00 Å) RMSD of backbone atoms. The PSTAIRE 

and L12 helices are highly variable. 
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Figure 3.5. 5a shows the collective secondary structure (ss) information for all structures in the 

database for each amino acid residue; 5b. ss for P-loop region; and 5c. Example of one region 

having conserved ss in all PDB structures. B=Bridge, C=random coil, G=310-helix, H=α-helix, 

E=β-strand, and T=Turn. 
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Figure 3.6. The binding site, defined as 8 Å around the ligand. It is represented by conserved 

conformations at the hinge region but with greater variability in the P-loop, PSTAIRE and L12 

regions. 

                                             

Figure 3.7. The gate-keeper residue F80 shows the same conformation in all protein–ligand 

complexes. 

Six structural motifs were defined (Figure 3.8) and used for clustering (Figure 3.9). 

CDK2 structures were clustered into five groups upon using the structural information of the 

backbone and side chains of the binding pocket, DFG+1 motif, conserved Lys motif, and hinge 

region + gatekeeper residues. Also, CDK2 was clustered into four groups based on DFG-1 motif, 

into 7 groups based on the complete HRD motif, into 6 groups based on the HRD motif, and into 
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8 groups based on the structural information of the P-Loop motif. All these motifs and specified 

regions are important for ligand and cyclin binding. The conformation of the DFG region, which 

is a part of the binding pocket, is conserved as ‘DFG in/intermediate’ for all CDK2-ligand 

complexes, and it shows five distinct clusters based on the backbone and side chain orientation 

of the Asp residue (Figure 3.10). The hinge region interacts with hydrogen bonding to the ligand, 

and therefore this region should be carefully considered upon designing new inhibitors. The 

hinge region was calculated to have five clusters because of the His residue (Figure 3.10). 

 

Figure 3.8. Different motifs and regions of CDK2 (PDB ID: 1AQ1) which are important for 

ligand and cyclin binding. The amino acid residues of each motif are represented as grey sticks. 

The ligand is shown as green sticks. The figure was prepared using PyMol. 

Pocket DFG Hinge 

HRD Lys P-Loop 
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Figure 3.9. Clusters of CDK2 structures based on the backbone and side chain flexibility of 

different motifs.  

 

Figure 3.10. The DFG motif (left) shows five clusters as represented by the backbone and side 

chain orientation of Asp. The hinge region (right) is clustered into five groups based on His 

flexibility. 

Pocket Ploop 

HRD-total HRD 

Gate-Hinge 

DFG + 1 

DFG - 1 

Lys 33 



 120 

We can summarize the structural features of CDK2 as: CDK2 is a monomer and consists 

of 298 amino acid residues. CDK2 undergoes extensive conformational changes upon cyclin 

binding: PSTAIRE helix rotated ~90°; L12 helix converted partially to β-strand; T loop moved 

~10 Å to allow for substrate binding. Thr160 phosphorylation allows for contacting arginine (50, 

150 and 157) and keeps them in close proximity, permitting interaction with Leu187 and Glu188 

of cyclin E, and Glu269 and Ile270 of cyclin A (Figure 3.11).  

 

Figure 3.11. Conformational changes of CDK2 upon cyclin binding and T160 phosphorylation. 

Unbound CDK2 (left) (3EZR), Cyclin A bound (center) (1BUH) and Cyclin A bound with 

pT160 (right) (1GY3). 

For the drug design purposes we need to understand CDK2 binding site flexibility and the 

structural effect of ligand binding. Besides that, to consider a CDK2 PDB file for one or more 

steps during the drug design process, we need to use clean CDK2 structures that are free from 

structural redundancies. For example, some CDK2 crystal structures have structural anomalies 

(Figure 3.12) such as having more than one atomic coordinate sets of some amino acid residues 

and/or ligands. These redundancies should be curated before using the PDB files for further 
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studies such as docking experiments. 

 

Figure 3.12. Example of PDB structure redundancy. A number of sets of ligand coordinates.  

We tried to look into native ligands and their effects upon binding to CDK2. The molecular 

surface area of the binding pocket is generally 1800–2600 Å2 (Figure 3.13). The wide range in 

molecular and polar surface areas of the CDK2 native ligands illustrates the potential number of 

candidates that can be designed as CDK2 inhibitors.  

                              

Figure 3.13. Molecular surface area of the active site varies upon ligand binding to 

accommodate a wide variety of molecular structures. 
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The properties of CDK2 residues change upon ligand binding, and this can be illustrated 

by the solvent accessible surface area (SASA) of CDK2 structures before and after binding with 

ligands. The SASA of β-strands was calculated and found to be higher than that of α-helices and 

loops. Ligand binding affects the SASA of CDK2 and in particular of its β-strands (Figure 3.14). 

The most interesting point here is that the unbound CDK2 inhibitors have very close total SASA; 

however after binding, SASA values are greatly variable. That means that all CDK2 inhibitors 

should have general features and atomic composition in common.  

                

Figure 3.14. Effect of ligand binding on CDK2 solvent accessibility. Inhibitors of DFG-

intermediate state CDK2 (first 50 structures) have greatly decreased SASA compared to DFG-

out state inhibitors (remaining structures).  
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Active site water molecules are important for protein–ligand interactions. We analyzed 

all water molecules in CDK2 structures, and we noticed several water clusters in various regions 

of CDK2 (Figure 3.15). We analyzed in detail the active site water molecules (Figure 3.16) and 

we defined a set of 39 water molecules to be conserved within 8 Å around the ligand, based on 

their relative abundance. At least two of those waters should be taken into account when 

designing new CDK2 candidates (> 80% abundant, Figure 3.17). These results were supported 

by water mapping calculation (Figure 3.18). 

 

Figure 3.15. Aligned CDK2 structures (represented as lines) showing the native ligands as 

wireframe and water clusters as spheres. 
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Figure 3.16. The distribution of water molecules within 10 Å around the ligands. Actual active 

water molecules from CDK2 alignments (left), relative positions of 39 conserved active site 

water molecules (right): 20% - 40% relative abundant waters are shown as green spheres, yellow 

spheres > 40%, orange spheres > 60% and red spheres > 80%.  

                           

Figure 3.17. Relative abundance of active site water molecules. More than 900 coordinates for 

active site water molecules are found in all analyzed CDK2 structures; 39 of them are believed to 

be conserved. 
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Figure 3.18. Water map of CDK2 binding pocket upon ligand binding, showing in red surface 

the possible receptor hydration that can be interrupted by inhibitors to improve the binding 

profile. 

Based on the above findings we constructed a pharmacophore query from the most 

abundant protein–ligand interaction fingerprints. We selected 75 PDB structures representing the 
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different CDK2 clusters. Leu83 (hinge region) is found to have backbone and side chain 

hydrogen bonding interactions with more than 80% of the ligands (Figure 3.19-3.21).  

 

Figure 3.19. PLIF (left) is represented as the residue number, the fingerprint ID, in parentheses, 

and the type of interaction. Right, the interacting residues, type of interaction and relative 

abundance of the interaction. Bk is for Backbone, Ch for Chain, Donn for Donnor, Acc for 

acceptor, and Surf for Surface. 

Fingerprint Bits

8
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donor to sidechain

10
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surface contact

12
(5)
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acceptor from sidechain

acceptor from sidechain

ionic attraction

ionic attraction
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(10..11)

donor to sidechain

donor to sidechain
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(12)

surface contact

81
(13..14)
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(15..18)
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(19..20)
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(32..34)
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donor to backbone
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132
(35..37)

donor to sidechain

donor to sidechain

acceptor from sidechain

145
(38..43)

donor to sidechain

donor to sidechain

acceptor from backbone

acceptor from backbone

ionic attraction
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Figure 3.20. Barcode of the PLIF. The x-axis represents the interacting residue. The y-axis 

represents the PDB structure having this interaction. The horizontal lines above each residue 

refer to one kind of interaction. 

                      

Figure 3.21. PLIF population, showing the percent abundance of each interaction type and the 

residue showing this interaction. 
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From the PLIF, we prepared a three point pharmacophore query (Figure 3.22) to cover at least 

75% of the PDB files. The pharmacophoric elements are Hydrogen bond donor (F1), Hydrogen 

bond donor/acceptor/metal ligation (F2), and Hydrogen bond donor/acceptor/metal ligation (F3). 

To add more selectivity to the model, we considered the space occupied by the surrounding 

amino acids as excluded volumes (Figure 3.23). 

                        

Figure 3.22. The pharmacophore query generated from the PLIF, including the pharmacophoric 

elements (left) and the inter-feature distances (right). 

                     

Figure 3.23. The pharmacophore query after adding the excluded volumes. The large pink 

spheres represent the selected features, the small spheres are for the ignored less abundant 

features, and the grey large spheres are for the excluded volumes (left); the pharmcophore query 

after omitting the less abundant features (right).  
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We used the PLIF pharmacophore query to screen the ZINC database for active CDK2 

inhibitors (Figure 3.24). We got ~ 120,000 possible hits from 11 million druggable compounds. 

After pose fitting into 20 receptors from different CDK2 clusters we got ~8000 compounds left. 

Shape scoring and clustering led to selection of 37 compounds to be used in further studies 

(Figure 3.25). We purchased 15 of the compounds, which were submitted for biological testing.  

 

Figure 3.24. The virtual screening workflow that we used to search for new CDK2 inhibitors. 

We started with 20 M compounds. After using a drug filter we had 11 M compounds left. PLIF-

based screening led to 120,000 compounds, and pose fitting provided us with 8000 compounds 

with more than 70% binding probability to CDK2. We selected 37 compounds based on the 

shape scoring and clustering. 
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K-37 

Figure 3.25. Virtual screening hit structures obtained from the VS workflow shown in Figure 

4.24.  

          

3.4. Summary and conclusion 

CDK2 is an attractive target for drug design, but proper understanding of its structure is 

required before attempting to use it for structure-based drug design. The CDK2 X-ray crystal 

structures can be clustered into inactive, partially activated (phosphorylated) and fully activated 

(phosphorylated and cyclin associated). There are structural characteristics regarding these states. 

In this study we focused on comparing amino acid to amino acid, ligand binding effects and 

CDK2 hydration. We found 39 conserved active site water molecules based on their relative 

abundance in all CDK2 crystal structures, ranging from 20%-90% abundant. We mapped the 

active site for hydration effects. We defined two water molecules that should be included in 

docking calculations. We used this information to build a virtual screening workflow. And we 

ended with selecting some compounds to be submitted for biological testing. 
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4.1. Introduction 

CDK2 and GSK-3β are members of the serine/threonine protein kinase family. Several inhibitors 

have been developed to target GSK-3β and CDKs. Due to the structural similarity between 

protein kinases and in particular in the active site (the catalytic domain), the development of 

selective kinase inhibitors is challenging. Most of the inhibitors that were designed to bind to 

GSK-3β, also bound to CDKs and in particular to CDK2. The cellular functions of CDK2 are 

different from those of GSK-3β and therefore the search for selective inhibitors is required to 

avoid the development of side effects that could be caused if using a non-selective agent. In this 

study we tried to find the structural basis that imparts selective binding to either GSK-3β or 

CDK2. Our approach starts with structural analysis and comparison of the two enzymes, finding 

the ligand structural features of active/selective inhibitors, and searching for the amino acid 

residues of the active site which are responsible for selective ligand binding. To follow up, we 

developed a virtual screening workflow based on our findings to allow for finding selective 

enzyme inhibitors.  

 4.2. Methods 

4.2.1. CDK2 and GSK-3β structural analysis 

4.2.1.1. Pairwise comparison and binding site analysis 

We downloaded staurosporine-bound CDK2 (PDB ID: 1AQ1) and GSK-3β (PDB ID: 

1Q3D [343]). RCSB PDB Protein Comparison Tool [344] was used for pairwise sequence and 

C-α structure alignment. Sequence alignment was performed by using the blast2seq algorithm 

[344]. We aligned the structures using the java version of the incremental combinatorial 

extension algorithm (jCE) [345]. The maximum allowable gap size was specified as 30. The 
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fixed aligned path constructed from the aligned fragment pairs (AFPs) was set to 8. CDK2 and 

GSK-3β were subjected to binding site alignment using the aligning binding site feature of 

Maestro, considering the amino acids within 8 Å around bound ligands. 

4.2.1.2. Contact map and geometry analysis 

We used the interactive contact map visualization and analysis (CMView) algorithm 

[346] to study the geometrical characteristics of each protein. PyMol was integrated into the 

CMView to allow for interactive protein analysis of the contact maps in 3D space. We compared 

the C-α atoms of the backbone of 1AQ1 to that of 1Q3D with a distance cutoff of 8 Å. Two 

dimensional (2D) maps were constructed for each protein. To look for the unique and common 

regions of each protein, we generated a comparison 2D map by superposing the two structures 

using the Needleman-Wunsch sequence alignment algorithm [347]. To understand the non-

covalent geometry of each protein, we used the contact geometry analysis plugin (CGAP) for 

CMView [329]. 

4.2.2. Fetching the protein–ligand features 

4.2.2.1. Ligand Database construction 

We collected all deposited CDK2 and GSK-3β inhibitors that have IC50 and Ki values 

from the binding database. We constructed three different databases, a database for CDK2 that 

contained ~2500 structures, a database for GSK-3β that had ~4000 structures, and a small 

database contained the compounds that showed inhibitory activity against both enzymes. The 

databases consisted of compounds having a very wide range of inhibitory activity. All the 

structures were downloaded from the binding database in (2D) SDF format, and therefore ligands 

were prepared using LigPrep from the Schrödinger suite. LigPrep used the OPLS2005 force field 
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and charges in all ligand preparation steps. Possible protonation and ionization states were 

enumerated for each ligand using Ionizer at a pH of 7.4. Stereoisomers were generated for the 

structures with unassigned stereogenic centers, with a limit of 32 stereoisomers considered per 

ligand. Tautomeric states were generated for chemical groups with possible prototropic 

tautomerism. Only the lowest energy conformer was kept for each ligand. We ended up with 

~5000 molecules in CDK2 and GSK-3β databases. The small database did not change 

significantly. 

4.2.2.2. Protein database construction 

We downloaded 20 PDB structural files from the RCSB PDB repository for CDK2, 

including 1DM2, 1FVV, 1E1V, 1E9H, 1G5S, 1KE5, 1H1Q, 1GZ8, 1P2A, 1OIR, 1R78, 1V1K, 

1OIU, 1PYE, 1Y91, 2BHH, 2B54, 2C6L, 2IW8, and 3BHV. For GSK-3β, we downloaded 20 

PDB files, including 3L1S, 2OW3, 2Q5K, 1ROE, 1Q5K, 1Q3D, 1Q3W, 1Q41, 1Q4L, 2JLD, 

2DU8, 3F7Z, 3I4B, 3GB2, 3PUP, 3M1S, 3Q3B, 3ZRM, 3ZRL, AND 3SD0.  The PDB protein–

ligand structures were processed with the Protein Preparation Wizard in the Schrödinger suite. 

The protein structure integrity was checked and adjusted, and missing residues and loop 

segments near the active site were added using Prime. Hydrogen atoms were added after deleting 

any original ones, followed by adjustment of bond orders for amino acid residues and the ligand. 

The protonation and tautomeric states of Asp, Glu, Arg, Lys and His were adjusted to match a 

pH of 7.4. Possible orientations of Asn and Gln residues were generated. Active site water 

molecules beyond 5.0 Å from the ligand were deleted. Hydrogen bond sampling with adjustment 

of active site water molecule orientations was performed using PROPKA at pH 7.4. Water 

molecules with fewer than two hydrogen bonds to non-waters were deleted. Then, the protein–
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ligand complex was subjected to geometry refinement using an OPLS2005 force field restrained 

minimization with convergence of heavy atoms to an RMSD of 0.3 Å. 

4.2.2.3. Ensemble docking 

We used the ensemble docking feature of Schrödinger suite with a soft receptor approach. 

Receptor grids were prepared. The van der Waals scaling factor was specified as 0.8 for receptor 

nonpolar atoms and a partial charge cutoff of 0.15 was used. Glide SP was used for docking and 

one pose was saved for each ligand. 

4.2.2.4. Fetching the residues responsible for useful protein–ligand pharmacological 

interactions 

In this study, we used the interactive generic evolutionary method for molecular docking 

(iGEMDOCK) tool [332]. The binding site was defined by the bound ligand, extracted and used 

for the docking step. The molecular databases were prepared in LigPrep and saved in mol2 

format. Ligand conformations and orientations relative to the binding pocket were computed 

using the genetic algorithm in the standard docking method with the following parameters; 

population size = 200, generations = 80, and number of docking solutions = 3. We generated 

protein–ligand interaction tables in the form of protein–ligand interaction profiles of electrostatic 

(E), hydrogen-bonding (H), and van der Waals (V) interactions. 

Based on these profiles, we continued with post-docking analysis using k-means and hierarchical 

clustering methods to get the most useful pharmacological interactions and amino acid residues 

contributing in these interactions. 
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4.2.3. GSK-3β selective inhibitors virtual screening 

We started with all purchasable compounds from the ZINC database, followed by 

running a druglike filter. The filtered compounds were pose fitted into the 20 GSK-3β PDB 

structural files using POSIT v.1.0.2 from the OpenEye suite. We prepared the receptors and 

allowed mild ligand–protein clashes. We allowed alternate posing of each ligand within 0.5 Å 

RMSD in each receptor. Mild clashes similar to those used in receptor preparation were allowed 

during pose prediction. We forced aromatic rings to be planar. The minimum probability to 

accept poses within 2.0 Å of the native ligand was set to 0.33 with minimum initial probability of 

0.05. Receptors that had initially rigid TanimotoCombo < 0.8 were rejected. All generated 

protein–ligand complexes were subjected to a final optimization preserving the interactions 

associated with atoms involved in the TanimotoCombo score. A cutoff of 10 kcal/mol was used 

as the maximum strain to accept. All compounds showing less than 42% docking probability 

were discarded. 

The resulting compounds from the pose fitting step were docked into the receptors generated 

from five GSK-3β PDB structures, 3L1S, 1ROE, 1Q5K, 1Q3W, and 2JLD, using HYBRID. We 

added several docking constraints as defined from the useful protein–ligand pharmacological 

interactions. We used the same docked poses from the pose fitting step without further 

conformational analysis. We called this step posed-constrained docking to account for the 

POSIT-generated conformations (rigid ligand sampling) and receptor constraints. 

The resulting compounds were then docked into five CDK2 PDB structural files, 1E9H, 1KE5, 

1H1Q, 2BHH, and 3BHV. We generated all possible conformations for these compounds to be 

docked into the receptors generated from the previously mentioned PDB files without any 
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constraints by HYBRID. We called this step conformational docking to account for multiple 

conformer generation (flexible ligand sampling). 

Then, we prepared a shape query using ROCS for a highly selective GSK-3β inhibitor, to be used 

for the scoring step. 

Based on the GSK-3β pose constrained docking score, CDK2 conformational docking score and 

the shape score, we clustered the compounds and selected a number of structures to be submitted 

for biological testing. 

4.2.4. CDK2 selective inhibitors VS 

We started from the last step of the CDK2 virtual screening workflow (cf. section 3.2.11). 

The resulting compounds were docked into five CDK2 PDB structural files, 1E9H, 1KE5, 

1H1Q, 2BHH, and 3BHV using the posed constrained docking approach. The compounds then 

were docked into five GSK-3β PDB structures, 3L1S, 1ROE, 1Q5K, 1Q3W, and 2JLD, using the 

conformational HYBRID docking approach. 

After clustering based on the docking and shape scores, we selected some compounds to be 

submitted for biological testing. 

4.3. Results and discussion 

CDK2 and GSK-3β are structurally related. Both are composed of a small N lobe and 

large C lobe (Figure 4.1). We aligned the CDK2 and GSK-3β structures using the jCE algorithm. 

We made use of proteins bound to the same ligand to make sure that the proteins did not change 

a lot due to ligand binding. The 3D alignment results (Figure 4.2) showed an average RMSD 

value of 2.09 Å, Z-score of 7.13, sequence identity of 36% and sequence similarity of 61%. We 
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compared the CDK2 and GSK-3β binding pockets to have a wider picture of what imparts 

selective enzyme inhibition. The binding pocket was defined by the bound ligands. The amino 

acids that are 8 Å around the ligands were aligned based on the C-α atoms of the backbone. The 

3D alignment of the binding pockets showed RMSD of 1.5 Å (Figure 4.3). The jCE-based 

sequence alignment revealed the identical and unique amino acid residues in each enzyme. The 

chemical environment of each binding pocket was found to be quite different (Table 4.1); CDK2 

seems to be more acidic in nature with more Glu and Asp acid residues, while GSK-3β is more 

basic. The gatekeeper residue in CDK2 is Phe and in GSK-3β is Leu. The acidic Glu residue in 

the P-loop of CDK2 is replaced with the neutral Asn in GSK-3β. This chemical environment 

may have an impact on selective ligand binding to CDK2 and GSK-3β. 
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Figure 4.1. The structural features of CDK2 (right) and GSK-3β (left). The N lobe is shown in 

red and the C lobe in blue. The binding pocket is represented by the region occupied by the 

ligand. 

 

Figure 4.2. Sequence alignment based on the 3D jCE algorithm. The first row represents CDK2 

and the second row represents GSK-3β. Identical regions are shown in purple and similar regions 

in blue. Other regions are shown in grey and gaps are indicated using hyphens. 
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Figure 4.3. The 3D structural features of the binding pockets of CDK2 (right) and GSK-3β (left). 

The upper figures show the binding pocket and the bound ligand. The C-α atoms are shown as 

spheres. The lower figures show the residue IDs of the binding pocket residues. 
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Table 4.1. Sequence alignment of the binding pockets of CDK2 and GSK-3β. 

CDK2 Resid* CDK2 Resn* GSK-3β Resid* GSK-3β Resn* 
10 Ile 62 Ile 

11 Gly 63 Gly 

12 Glu 64 Asn 

13 Gly 65 Gly 

14 Thr 66 Ser 

18 Val 70 Val 

31 Ala 83 Ala 

33 Lys 85 Lys 

55 Leu 101 Met 

63 Ile 109 Ile 

64 Val 110 Val 

66 Leu 112 Leu 

78 Leu 130 Leu 

80 Phe 132 Leu 

81 Glu 133 Asp 

82 Phe 134 Tyr 

83 Leu 135 Val 

84 His 136 Pro 

85 Gln 137 Glu 

86 Asp 138 Thr 

89 Lys 141 Arg 

127 Asp 181 Asp 

129 Lys 183 Lys 

131 Gln 185 Gln 

132 Asn 186 Asn 

134 Leu 188 Leu 

143 Leu 198 Leu 

144 Ala 199 Cys 

145 Asp 200 Asp 

148 Leu 203 Ser 

162 Glu 219 Ser 

*Resid is Residue ID, Rsen is Residue name. Unique amino acid residues are highlighted with 

yellow. 

To understand better the dissimilarity of the two structures, we further studied their 

contact maps. The contact maps were specified in terms of C-α atoms of the backbone with 8 Å 

as a cutoff. The 3D protein structures are defined by the non-covalent interactions. The contact 

maps revealed the unique and common atomic contacts. The binding pockets were found to be 

similar with some unique differences in the amino acid sequence. From the contact maps, there 
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are common (shown in black dots) and unique C-α contacts in CDK2 and GSK-3β (shown in 

green and purple dots, respectively) (Figures 4.4 and 4.5). We translated these contact points into 

3D figures using PyMol, and from these figures we can conclude that despite the structural 

similarity of the two enzymes and especially at the binding pocket, there are unique features of 

each enzyme which could be useful to design selective inhibitors. 

           

                             

Figure 4.4. The unique contact map of CDK2 (left, above) and GSK-3β (right, above). The 3D 

common contact features at the binding pocket are shown using yellow lines in the lower figures. 

The unique CDK2 contacts are shown in green and those of GSK-3β are shown in purple. 
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Figure 4.5. The aligned CDK2 and GSK-3β contact maps (left). The common contacts are 

shown in black, whereas unique CDK2 contacts are in green and those of GSK-3β are in purple. 

The aligned common 3D contacts (right) are shown with yellow lines, whereas unique CDK2 

contacts are in green and those of GSK-3β are in purple. 

We studied the general contacts at the binding pockets (Figure 4.6). Also we searched for 

the structural dissimilarity by looking at sheet-to-sheet (Figure 4.7), helix-to-helix (Figure 4.8) 

and all-atom contacts (Figure 4.9). In general, there are more non-covalent contacts at the 

binding pocket of CDK2 compared to GSK-3β. The contacts are much more for helix-to-helix 

and sheet-to-sheet in case of GSK-3β suggesting that CDK2 is more flexible than GSK-3β. We 

checked the CDK2(GSK-3β) I10(66) to D145(200) statistical residue contact potentials and 

orientation dependencies. The neighborhood describing string (nbhString) was extracted in each 

case as 10I-145D_VEKxGEGVVYKAVALKEFLHDL for CDK2 and 66I-

200D_DTKVxGNGVVYQAVAIDYV for GSK-3β. The dihedral angular contacts to all non-

bonded C-α were observed. The chemical environment was found to be significantly different in 

each case as observed from the orthographic azimuthal projection figures (Figures 4.10 and 
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4.11). We can say that the binding pockets of CDK2 and GSK-3β are structurally similar but 

with significant differences in the chemical environment. Designing selective inhibitors is 

possible if we consider the common and unique non-covalent C-α contacts. Inhibitors that would 

be able to occupy the binding pocket and interrupt the unique contacts are proposed to be 

selective in each case. 

 

Figure 4.6. The 3D contacts of the binding pocket of CDK2 (left) and GSK-3β (right). 

 

Figure 4.7. The helix-to helix contacts of CDK2 (left) and of GSK-3β (right). 
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Figure 4.8. The sheet-to-sheet contacts of CDK2 (left) and of GSK-3β (right). 

 

Figure 4.9. The all atom contacts of CDK2 (left) and of GSK-3β (right). 
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Figure 4.10. 10I-145D_VEKxGEGVVYKAVALKEFLHDL Sphoxel Map of CDK2 at the 

binding pocket. Cylindrical projection of contact potentials between Ile10 and Asp145 with a 

scaled hot-cold color-scale. The cylindrical projection is rotated 45º each time to show the whole 

coverage of the chemical environment. Solid lines for direct contacts, red (>25º) and blue 

(<−25º) for angular contacts.  
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Figure 4.11. 66I-200D_DTKVxGNGVVYQAVAIDYV Sphoxel Map of GSK-3β at the binding 

pocket. Cylindrical projection of contact potentials between Ile66 and Asp200 with a scaled hot-

cold color-scale. The cylindrical projection is rotated 45º each time to show the whole coverage 

of the chemical environment. Solid lines for direct contacts, red (>25º) and blue (<−25º) for 

angular contacts. 
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We tried the ensemble docking algorithm using the small molecular database with 20 

CDK2 and 20 GSK-3β PDB structural files (Figure 4.12). Our goal was to find the main ligand 

structural features that may be useful to allow for selective inhibition of the enzymes. The 

inhibitors that showed the best docking scores were examined. In the case of GSK-3β, selective 

inhibitors were found to be highly rigid structures, with a five membered ring and bulky 

substituents in trans configuration (Figure 4.13 and 4.14, Table 4.2). CDK2 allows for more 

chemotypes with varying rigidity. Inhibitors of CDK2 were found to have certain atomic 

compositions with at least 4 nitrogen atoms and/or hydrogen donor/acceptor groups (Figures 

4.13, 4.14, Table 4.3). 

     

Figure 4.12. 3D aligned 20 CDK2 structures (left) and GSK-3β (right). Sheets are colored in 

blue, loops in green and helices in red. 
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Figure 4.13. Aligned best docked poses of GSK-3β (left) and of CDK2 (right). 

Table 4.2. Docking scores of selective GSK-3β inhibitors. 

ID GSK-3β Selectivity Docking Score GSK-3β Docking Score CDK2 

1 4000 -11.89 -7.82 

2 2615 -11.78 -8.21 

3 5.3 -11.73 -9.78 

4 27.6 -11.70 -9.85 

5 3375 -11.69 -7.88 

6 43 -11.67 -6.63 

7 677 -11.51 -8.63 

8 40 -11.31 -8.59 

9 16870 -11.21 -8.89 

10 790 -11.18 -8.30 

 

Table 4.3. Docking scores of selective CDK2 inhibitors. 

ID GSK-3β Selectivity Docking Score GSK-3β Docking Score CDK2 

1 1.25 -9.34 -13.05 

2 1.25 -9.54 -12.58 

3 3.3 -9.35 -12.29 

4 1.6 -9.44 -12.14 

5 1.6 -9.44 -12.14 

6 65 -9.25 -12.09 

7 1.3 -8.11 -12.08 

8 26.3 -9.34 -12.04 

9 6.6 -9.34 -12.00 

10 5 -10.04 -11.97 
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Figure 4.14. Docked pose of a selective GSK-3β inhibitor (left) fits well in the binding pocket. 

The CDK2 inhibitor is more flexible (right). Rigid structures with bulky substituents will not fit 

well. 

After gaining some clues about the ligand structural features that may affect the selective 

inhibition of both enzymes, we tried to determine the necessary amino acid residues to consider 

during the design of selective inhibitors and their contribution to the overall protein–ligand 

interactions. We studied the most useful protein–ligand pharmacological interactions using 

interactive genetic evolutionary method for molecular docking. The pharmacological interactions 

were calculated without relying on the experimental data of active/inactive compounds and were 

calculated from the computed docking poses. Conserved interacting residues have specific 

physicochemical properties and are supposed to play essential roles in the functioning of target 

protein. We computed the protein–ligand interaction profiles in terms of electrostatic (E), 

hydrogen-bonding (H), and van der Waals (V) interactions with either the side chain or main 

chain of the interacting residues (Figures 4.15).  
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Figure 4.15. Protein–ligand interaction profile of CDK2 (above) and of GSK-3β (below). The x-

axis represents the specific interacting amino acid residue; the y-axis represents the clustered 

ligands which are interacting with those residues. The interaction profile is color coded from 

useful (green, -3 kcal/mol) to non-useful (red, 3 kcal/mol); black means this amino acid residue 

did not show any kind of interaction. To the right, a specific ligand cluster is extracted, including 

their binding pocket. 
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 We specified a cutoff of -2.5 kcal/mol to consider the electrostatic and hydrogen bonding 

interactions with a specific amino acid residue as significant. For the van der Waals interactions 

we used -4 kcal/mol as a cutoff because of the high abundance and contribution of this kind of 

interaction. The protein–ligand interaction profiles revealed the interacting amino acid residues 

and the type of protein–ligand interaction involved. For CDK2, several amino acid residues were 

found to be important to interact with ligands including Glu8, Ile10, Gly11, Glu12, Gly13, 

Thr14, Val18, Lys33, Leu83, Asp86, Lys89, Gln131, Leu134, Asp145, and Glu162 (Table 4.4). 

The hydrogen bonding interactions with the conserved Lys33 and the hinge Leu83 were found to 

important. For GSK-3β (Table 4.5), the positioning in space of the amino acid residues that 

showed significant interactions with the ligands are different from that of CDK2, suggesting the 

possibility to design selective inhibitors.  

Table 4.4. The amino acid residues of CDK2 that showed significant interactions with ligands. 

Residue Type of interaction Interaction strength 

(Z-score) 

Interaction significance 

[W
Pharma

 (0 to 1)] 

Glu8 E-S, H-M 8.48, 6.55 0.73, 0.07 

Ile10 H-M, V-M, V-S 19.16, 11.32, 128.98 0.2, 0.07, 0.88 

Gly11 V-M 47.2 0.3 

Glu12 E-S, H-M, H-S, V-S 11.68, 94.28, 4.97, 19.01 1, 1, 0.05, 0.12 

Gly13 V-M 83.46 0.54 

Thr14 H-M, H-S 2.47, 39.95 0.03, 0.42 

Val18 V-S 155.46 1 

Lys33 H-S 44.8 0.48 

Leu83 H-M 31.89 0.34 

Asp86 E-S, V-S 2.72, 73.6, 67.44 0.23, 0.78, 0.43 

Lys89 H-S, V-S 12.15, 46.38 0.13, 0.3 

Gln131 H-M, V-M 91.31, 101.7 0.97, 0.65 

Leu134 V-S 75.97 0.49 

Asp145 H-S 39.17 0.42 

Glu162 H-M, V-M 44.15, 23.64 0.47, 0.15 

Interaction type. E: electrostatic; H: hydrogen-bonding; V: van der Waals; S: side-chain; M: 

main-chain 
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Table 4.5. The amino acids residues of GSK-3β that showed significant interactions with 

ligands. 

Residue Type of interaction Interaction strength 

(Z-score) 

Interaction significance 

[W
Pharma

 (0 to 1)] 

Ile62 H-M, V-M, V-S 12.34, 10.64, 120.8 0.12, 0.05, 0.61 

Val70 V-S 197.81 1 

Lys85 H-S, V-S 41.63, 56.7 0.39, 0.29 

Val110 V-S 150.6 0.76 

Asp133 H-M 43.62 0.41 

Tyr134 H-S, V-S 34.7, 106.88 0.22, 0.54 

Val135 H-M, V-M 106.43, 60.45 1, 0.31 

Arg141 E-S 2.1 0.65 

Arg144 E-S 3.2 1 

Leu188 V-S 138.82 0.7 

Cys199 H-S, V-M, V-S 51.32, 6.97, 64.25 0.48, 0.04, 0.32 

Asp200 H-M, H-S, V-M, V-S 23.85, 85.06, 40.08, 111.36 0.22, 0.77, 0.2, 0.56 

Interaction type. E: electrostatic; H: hydrogen-bonding; V: van der Waals; S: side-chain; M: 

main-chain 

 We studied the interactions of specific amino acid residues. We focused on the Asp 

residue of the DFG region in each case. The Asp200 V-S (side chain van der Waals interaction) 

in GSK-3β showed high contribution in the overall docking score for compounds having -80 to -

160 kcal/mol (Figure 4.16). At the atomic level the carbons and nitrogen of Asp145 of CDK2 

(Figure 4.17) showed varied contributions based on the type of interaction with the ligand. When 

we compared the overall V-S of Asp145 and Asp200 in the docking score in each case (Figure 

4.18), we found that Asp145 V-S contributes more to the non-useful side (compared to GSK-3β) 

and with less useful values (0 to -5 kcal mol) to the overall docking score. For GSK-3β, Asp200 

V-S showed less non-useful contribution and more value to the useful side (0 to -15 kcal/mol). 

By studying the protein–ligand interactions at residue and atomic levels, we could explain the 

selective inhibitor binding. We can conclude that the binding pocket of CDK2 is more acidic and 
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that of GSK-3β is more basic (Figure 4.19). The structural rigidity of GSK-3β is the key for 

selective binding over CDK2 (Figure 4.20). 

                                 

Figure 4.16. The contribution of Asp200 van der Waals side chain interactions in the overall 

docking score of GSK-3β ligands. The x-axis and y-axis are in kcal/mol. The x-axis is the 

docking score per ligand. The y-axis is the value of Asp200 V-S in the individual ligand docking 

score.  

      

Figure 4.17. The atomic contribution of Asp145 of CDK2 in the docking score. The x-axis 

represents the ligand. The y-axis is the value of carbon (C) interactions (left) and nitrogen (N) 

interactions of Asp145 in the individual ligand docking score (kcal/mol). E: electrostatic; H: 

hydrogen-bonding; V: van der Waals 
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Figure 4.18. The contribution of Asp145(200) van der Waals side chain interaction to the overall 

docking score. The x-axis and y-axis are in kcal/mol. The x-axis is the docking score per ligand. 

The y-axis is the value of Asp145(200) V-S in the individual ligand docking score.  

 

 

Figure 4.19. The binding pocket of CDK2 (right) showing the amino acid residues that were 

retrieved from the useful protein–ligand pharmacological interaction, and that of GSK-3β (right) 
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Figure 4.20. A selective GSK-3β inhibitor did not show a perfect binding to CDK2 (left), while 

it bound well with GSK-3β (right). 

 We tried to implement the previous findings to search for selective inhibitors (Figures 

4.21, 4.23). Our approach was to get the compounds that have binding probability with at least 

42%, followed by docking of these compounds with their rigid form (the conformation that we 

obtained from the previous step) without any conformational analysis but using receptor 

constraints from the protein–ligand pharmacological interaction study. 

The resulting compounds from the posed-constrained docking were then subjected to flexible 

ligand docking to the other receptor type that we want to have selectivity over without imparting 

receptor constraints. We selected 36 compounds for GSK-3β (Figure 4.22) and 23 compounds 

for CDK2 (Figure 4.24) after clustering based on the posed-constrained docking, conformational 

docking and shape scores. We purchased some of these compounds to be biologically tested. 
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Figure 4.21. The virtual screening workflow to search for selective GSK-3β inhibitors. 

   

KG-1   KG-2    KG-3 

ZINC Database (~20 M) 

Drug Filter (~11 M) 

Pose Fitting (~600,000) 

Posed Constrained Hybrid 

(~2000) 

Conformational 

CDK2 Hybrid Scoring 

Shape Scoring 

Clustering 

and 

Selection 

(36) 
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 KG-4    KG-5    KG-6 

                 

 KG-7    KG-8    KG-9 

           

  KG-10    KG-11    KG-12 

         

 KG-13    KG-14    KG-15 
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 KG-16     KG-17    KG-18 

                 

 KG-19     KG-20    KG-21 

          

 KG-22     KG-23    KG-24 

    

 KG-25   KG-26    KG-27 
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 KG-28     KG-29    KG-30 

      

 KG-31    KG-32     KG-33 

            

 KG-34       KG-35 

                                     

      KG-36 

Figure 4.22. Virtual screening hit structures obtained from the VS workflow shown in Figure 

4.21.  
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Figure 4.23. The virtual screening workflow to search for selective CDK2 inhibitors. 
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 KC-5    KC-6   KC-7 

           

 KC-8  KC-9  KC-10   KC-11 

            

 KC-12    KC-13    KC-14 

           

  KC-15     KC-16 
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  KC-18     KC-19 

            

  KC-20      KC-21 

      

  KC-22     KC-23 

Figure 4.24. Virtual screening hit structures obtained from the VS workflow shown in Figure 

4.23. 

 

4.4. Conclusion 

In this research we designed a simple approach to study the structural basis for selective 

inhibition of two essential enzymes (CDK2 and GSK-3β). In our approach, we analyzed the 

contact geometry of each enzyme and we defined the unique and common non-covalent contacts. 

We defined the unique features of the binding pocket of CDK2 as more acidic in nature which is 

opposite to the basic nature of GSK-3β. The structural features of the small molecule inhibitors 
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revealed that rigid structures with bulky substituents are more selective for GSK-3β, while the 

atomic composition with nitrogen atoms in the proper arrangement and less structural bulkiness 

favored selectivity for CDK2. We applied our findings to develop a new virtual screening 

workflow using pose prediction, rigid docking of the pose–predicted conformers in multiple 

constraints receptors of the enzyme of interest, and flexible ligand docking in the opposite 

enzyme. We selected a few candidates for biological testing.  
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CHAPTER 5. PROTEIN–PROTEIN INTERACTION 

IMPLICATION FOR UNDERSTANDING OF CDK2†† ACTIVITY 

AND AN APPLICATION ON VDAC1‡‡
 

 

 

 

††CDK2/cyclin A2 study, KM Elokely and RJ Doerksen, unpublished. 
‡‡ VDAC1/Bax study, KM Elokely, P Pandey, MB Jekabsons, RJ Doerksen, unpublished. 
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5.1. Introduction 

Protein–protein interactions play an important role in regulating cellular processes such 

as the cell cycle, cell growth, apoptosis, and metabolism. The voltage dependent anion channel 1 

(VDAC1) is the most abundant mitochondrial outer membrane (MOM) protein, (≈10,000 copies 

per mitochondrion). It is critical for metabolism and cellular processes, and may also have a role 

in mitochondria-mediated apoptosis. It contains 288 amino acids, which adopt a β-barrel 

architecture composed of 19 β-strands and one α-helix. A few studies have reported that VDAC1 

interacts with the pro-apoptotic protein Bax, although the functional significance of the 

interaction remains unclear [281]. 

The structural epitopes and amino acid residues involved in the Bax–VDAC1 interaction are 

unknown. In this work, computational modeling was used to identify all thermodynamically 

favorable interactions. These data will serve as a guide for future mutagenesis and drug 

discovery experiments to further understand the regulation and significance of the interaction 

[333, 334]. 

In this study, we tried to understand the structural basis of the interaction of Bax with VDAC1 

and to identify the amino acid residues involved in such interaction. Docking of Bax into 

VDAC1 followed by calculating the total binding energy could be a useful tool to give insights 

into that kind of protein–protein interaction. 

In order to validate our methodology, we tried the same approach on already crystalized 

protein/protein partner complexes of CDK2/cyclin A2. 
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5.2. Methods 

5.2.1. Protein crystal structure preparation 

A PDB structural file of the human CDK2/cyclin A2 complex was downloaded from the 

RSCB PDB (PDB ID: 2C6T [109]). The structural files of the human VDAC1 (PDB ID: 2JK4 

[333]) and human Bax (PDB ID: 1F16 [334]) were downloaded. The Bax NMR structure is an 

average of 20 conformations; we considered each conformation as an individual structure. 

The PDB protein structures were processed with the Protein Preparation Wizard [287] in the 

Schrödinger suite. The protein structure integrity was checked and adjusted, and missing residues 

and loop segments were added using Prime [235]. Hydrogen atoms were added after deleting any 

original ones, followed by adjustment of bond orders for amino acid residues. The protonation 

and tautomeric states of Asp, Glu, Arg, Lys and His were adjusted to match a pH of 7.4. Possible 

orientations of Asn and Gln residues were generated. 

Then, the protein was subjected to geometry refinement using an OPLS2005 force field 

restrained minimization [293].  

5.2.2. VDAC1–Lipid bilayer preparation 

A VDAC1 protein structure file (PSF) was prepared based on the CHARMM force field 

topology information [335]. The internal helix was used as the center of VDAC1 orientation. 

Helmut Grubmüller’s SOLVATE program [336] was used to solvate the protein with a water 

layer 3 Å thick. VDAC1–membrane matching was guided by the “Orientations of Proteins in 

Membranes (OPM)” database [337], which predicts the orientation of protein domains based on 

energetics and thermodynamics properties. The lipid bilayer was prepared using DPPA, DPPC, 
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DPPE, DPPS and DPPG in the ratio of 2.5:23:16.5:1:3.5, respectively, using VMD software 

[348]. VDAC1 was placed in the prepared lipid bilayer membrane with a size of 120 x 80 Å and 

a total of 47269 lipid bilayer atoms. After alignment, the system was then solvated with water. 

The system was relaxed and equilibrated. The stability of VDAC1 in the phospholipid membrane 

was confirmed by a 10 ns simulation study. We used the equilibrated structure for further 

calculations. 

5.2.3. Rigid body protein–protein docking 

We used Hex [260], Piper [338] and PatchDock [339] to do calculations on the 

CDK2/cyclin complex. The software that provided the best performance, PatchDock, was then 

utilized for VDAC1/Bax. For the CDK2/cyclin complex, chain A and chain B were extracted. 

Chain A was considered as the receptor and chain B as the ligand.  

PatchDock is based on the shape complementarity principles. It provided the best performance in 

terms of computational expenses, post-docking analysis and ability to retrieve similar complexes 

to the native one. We used PatchDock in the following steps. VDAC1 was considered as the 

receptor and Bax as the ligand. The Connolly surface was created for the proteins. For VDAC1–

lipid bilayer, all amino acid residues of VDAC1 were considered as the active site for docking. 

The docking solutions of potential complexes were sorted by geometric shape complementarity 

score. 

5.2.4. Docking solutions refinement 

We used FiberDock [340] to model the backbone and side chain flexibility. FiberDock 

refines the docking solutions using a Normal Mode Analysis (NMA) algorithm for backbone 

atoms, and its rotamer database for side chain atoms. The transformations (rotations and 
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translations) of the docking solutions were considered for refinement. Hydrogen atoms were 

added to the receptor and ligand structures. In case of VDAC1–lipid complex, the lipid bilayer 

was removed and only VDAC1 atoms were considered. 200 normal modes of the proteins were 

calculated, considering only the C-α atoms of the backbone. We used restricted side chain 

optimization and 50 Monte Carlo cycles in the rigid body optimization (RBO). Atomic radius 

scaling was set to 0.8 to remove atomic clashes during refinement. The integer linear 

programming (ILP) solver – glpk – was used to find the bioactive conformations [340]. The 

scaling factor for backbone movement was 0.05 Å.  

5.2.5. Binding free energy calculation 

The OpenEye Poisson-Boltzmann (PB) solver, ZAP, was used to calculate binding 

related data [341]. Atom types, van der Waals radii and bond orders were assigned. The 

MMFF94 [299] force field was used for partial charge calculation. Several binding data have 

been calculated including binding energy, bound ligand area, bound ligand area energy, the area 

that had become buried as a result of binding and the energy penalty associated with that area. 

5.3. Results and conclusion 

5.3.1. CDK2/cyclin A2 study 

We studied the CDK2/cyclin A2 protein–protein interaction by analysis of the 

CDK2/cyclin interface. We compared our analysis with the results we got from the protein–

protein docking algorithms. In general, Piper performed very well in retrieving very close 

docking poses (in the top 10 best scoring poses) to the original structure, with less than 1.5 Å 

RMSD. However, the required computational time (using a 16–core 2.27 GHz Intel Xeon 

workstation with a total memory of 24 GB) was more than three days per complex. We tried Hex 
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and it showed good performance as well but the number of generated docking poses was too 

large to study in detail. A docking constraint was required to limit this number. Then, we tried 

PatchDock, and we got suitable docking poses with a RMSD of 1.5-2.5 Å compared to the 

original complex. The number of generated docking poses was suitable to be used for further 

study. We wrote multiple programs to automate the docking step in PatchDock, and the 

refinement step in FiberDock. The total computational time required by PatchDock and 

FiberDock was ~30 minutes per complex. We decided to proceed with PatchDock for the 

VDAC1/Bax study.  

We computed the binding pocket that accommodates cyclin A2 (Figure 5.1). The pocket is closer 

to the activation loop and it is formed due to the close packing of the Arg (50, 150, 157) residues 

because of the interaction with the phosphorylated Thr160. This packing allowed for the 

interaction with the Glu residues from cyclin A2. 
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Figure 5. 1. The pocket formed due to phosphorylation of Thr160 of CDK2. The helices of 

CDK2 are shown in yellow and those of cyclin A2 are in green. The ATP binding pocket is 

shown as spheres between the blue sheets and the yellow helices. The cyclin binding pocket is 

the spheres between the green and yellow helices. 

 The interface between CDK2 and cyclin A2 was analyzed (Figure 5.2). The Glu268 of 

cyclin A2 has multiple hydrogen bonding interactions with Arg150 and Arg157 of CDK2. 

Lys288 of cyclin A2 projects into the binding pocket and form a hydrogen bonding interaction 

with Thr41 (Figure 5.3). A set of hydrogen bonding networks is observed between Val275, 

Lys266, and Glu295 (cyclin), with Glu42, and Glu295 (CDK2) (Figure 5.4). Other significant 

hydrophobic, van der Waals, and hydrogen bonding interactions were observed between Phe267, 

Lys30, His296, Asp305, and Ala307 (cyclin), and Arg50, His71, Thr72, Lys56, AND Arg122 

(CDK2) (Figure 5.5). We converted the 2D representation into 3D features for better 
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understanding (Figure 5.6). We noticed that the phosphate group on Thr160 made interaction 

with Arg50, Arg150 and Arg157. This interaction allowed these residues to be close enough to 

interact with the acidic residues in cyclin A2 (Figure 5.7). The interface between the proteins 

showed a binding pocket that can targeted. 

                       

Figure 5.2. The protein–protein interface is shown as a surface around the amino acid residues 

that are represented as sticks (red for cyclin, white for CDK2). 



 176 

             

Figure 5.3. 2D representation of the ion–ion interaction between Glu268 with Arg150, Arg157 

and ion-dipole interaction between Lys288 and Thr41. CDK2 is shown in orange and cyclin in 

purple. Carbon atoms are shown as black spheres, oxygen as red, nitrogen as blue and hydrogen 

as green. The hydrogen bonds are shown as green dots. The hydrophobic interactions are the arcs 

which have straight lines projecting towards the interacting residue(s) or atom.  

             

Figure 5.4. 2D representation of the ion–ion and ion–dipole interactions between Val275, 

Lys266, and Glu295 (cyclin) with Glu42 and Val44 (CDK2). 
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Figure 5.5. 2D representation of important interactions between various amino acid residues in 

CDK2 and cyclin A2. 
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Figure 5.6. 3D representation of the interface between CDK2 (green) and cyclin A2 (grey). 
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Figure 5.7. Close up view to show the packing of Arg residues of CDK2 due to phosphorylation 

of Thr160. 

5.3.1. VDAC1/Bax study 

5.3.1.1. Calculations without membrane 

VDAC1 is an X-ray crystal structure, while Bax is an NMR-based one (an average of 20 

structure) (Figure 5.8). We docked Bax (each of the 20 structures) into VDAC1 using 

PatchDock, which uses shape complementarity and divides the receptor/ligand surface into 

patches depending upon its shape (concave, convex or flat). We refined the docking solutions 

using FiberDock. Based on binding energy calculations and the orientation of VDAC1 in the 



 180 

membrane, we can generally propose four main different binding modes of Bax into VDAC1. 

Bax showed the least favorable binding to VDAC1 from the proposed cytosolic side, followed 

by three possible orientations (Figures 5.9, 5.10) that showed insertion of Bax into the 

mitochondrial membrane to the inner mitochondrial side. We checked the protein–protein 

interface to find out the amino acid residues which are involved in VDAC1/Bax interaction 

(Figure 5.11).   

  

Figure 5.8. Cartoon representation of VDAC1 (left) and Bax (right). β-sheets are in yellow, and 

α-helices in red with loops in green (VDAC1) or cyan (Bax). Bax is shown as aligned NMR 

structures. 
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Figure 5.9. Interface (electrostatic surface) between VDAC1 (blue) and Bax (green) (left). The 

proposed membrane orientation (right), with blue cytosolic mitochondrial membrane and red 

inner mitochondrial membrane (binding energy 237.2 kcal/mol) 

          

–55.9 kcal/mol –61.8 kcal/mol     –62.5 kcal/mol  –63 kcal/mol 

Figure 5.10. Possible binding modes of Bax (colored wheat) into VDAC1 (colored yellow). The 

binding energy is shown under each figure. 
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Figure 5.11. 2D-representation of key interacting residues for the lowest energy binding mode of 

VDAC1 (labeled between 1-288) and Bax (289-430). Residues shown in ball and stick mode 

participate in hydrogen bonding (green dashed lines). 

 

5.3.1.2. Calculations with membrane 

We obtained a limited number of docking solutions after considering the membrane in 

our calculations. The membrane hindered the movement of Bax except for in the upper and 

lower regions of VDAC1. In our calculations we restricted the binding site to VDAC1 and we 

did not include the membrane. The presence of the lipid bilayer led to ~70 docking solutions. 

The higher number of docking solutions from the inner mitochondrial side suggested the 

possibility that Bax is inserted into the membrane and binds from the other side. This was 

supported by the calculated binding energy which favored the mitochondrial side over the 

cytosolic one. Out of 68 docking solutions, 55 are from the mitochondrial side and 13 from the 

cytosolic side (Figure 5.12). Bax showed the most favored binding mode from the inner 
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mitochondrial side (Figure 5.13), and had fewer binding modes from the cytosolic side (Figure 

5.14). We calculated which of the amino acids of VDAC1 were involved in binding with Bax 

(Figure 5.15)  

        

Figure 5.12. Bax binding modes to VDAC1: 55 binding modes of Bax from the mitochondrial 

side (left); 13 Bax binding modes from the cytosolic side (right). Colors: wheat for Bax, yellow 

for VDAC1; water and phosphorus are displayed as spheres.  

 

Figure 5.13. The most favored binding mode (left); the interface, depicted as sticks (middle), 

and the electrostatic surface of the interface between Bax and VDAC1 (right). 
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Figure 5.14. The least favored binding mode (left): the interface, depicted as sticks (middle), and 

the electrostatic surface of the interface between Bax and VDAC1 (right). 

 

 

Figure 5.15. VDAC1 amino acids involved in the VDAC1–Bax interaction, as determined from 

all the protein–protein interaction poses.  

5.4. Conclusion  

Protein–protein interactions are essential for cellular viability. In this work, an allosteric 

site was calculated which is required for cyclin binding and it is possible to target this site by 

small molecule inhibitors. VDAC1 is predicted to interact with Bax from both the cytosolic and 

the inner mitochondrial sides. This finding was validated by our collaborator and by the presence 
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of trans-membrane conservative sequences in Bax. 

CDK2 interacts with cyclins during various phases of the cell cycle. Our analysis 

suggests that a druggable pocket is formed in CDK2 to allow for binding of cyclin A2. The 

phosphorylation of Thr160 provided the suitable chemical environment to change the 

conformation of Arg residues to interact with the acidic residues of cyclin A2. The protein–

protein docking software showed good performance in retrieving the actual CDK2/cyclin A2 

binding mode. PatchDock is preferable software to use for this, considering its computational 

time and automation. VDAC1 orientation in the lipid bilayer is governed by the residue 

properties. The results of our studies suggest that binding of Bax with VDAC1 is favored from 

the inner membrane side of the outer mitochondrial membrane. Based on 68 Bax–VDAC1 

docking solutions, 38 amino acids of VDAC1 contribute with >20% to contacts with Bax, and 

these are mostly polar residues. Large portions of VDAC1 were found to be in contact with Bax 

(Figure 5.16), which suggests the ability of Bax to move through biological membranes, which 

should be tested experimentally. 
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Figure 5.16. The regions of VDAC1 involved in any kind of contacts with Bax. The α–helix is 

shown in red, β-sheets in yellow and loops in green.  
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The same methods used in this work for CDK2 structural analysis and the lessons learned 

can be applied to other protein kinases having numerous deposited PDB structural files reporting 

experimental structures. Mutation studies of the binding pocket of protein kinases can be 

performed using the Bioluminate suite of Schrödinger software. Such mutation studies will 

provide essential information to understand resistance development that is observed in the kinase 

field. Water mapping of the active site using the szmap module of OpenEye and relative 

abundance calculations of active site water molecules will be useful to provide information about 

the structure of the active site of native kinase structures. Comparing the calculated water maps 

and the highly abundant active site water molecules of the native structure would provide the 

required information to predict the possible active site water molecules in mutated structures. 

After defining the active site features and geometry of the mutated kinase structure, docking 

could be utilized as a virtual screening tool in both the native and mutated structures. The 

compounds that show good docking scores in native and mutated structures could be clustered 

and some selected for biological testing against resistant protein kinases. A flowchart (Figure 

6.1) shows the proposed general steps of the study. 

In our study of the structural basis of selective inhibition of CDK2 and GSK-3β, we 

provided a computationally efficient methodology that can be applied to highly related kinases 

such as GSK-3α and GSK-3β. In general, the study approach may include sequence pairwise 

comparison, binding pocket analysis, contact geometry, interactive generic evolutionary method 

for molecular docking, mapping the useful pharmacological interactions, and virtual screening. 

For much more understanding of the mode of ligand binding, a Glide approach with MM-GBSA 
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post-docking processing will be helpful. MM-GBSA through Glide is more computationally 

efficient than the routinely used MD methods. 

 

Figure 6.1. Proposed study workflow to search for small molecule inhibitors for resistant 

kinases.  

 In our effort to understand CDK2/cyclin binding using protein–protein interaction 

algorithms, we found a binding pocket at the interface between the two proteins. We suggest that 

this pocket could be validated by structure-based methods. Docking algorithms and fragment-
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based study will facilitate the discovery of inhibitors predicted to affect CDK2 binding to cyclin 

which could be useful as therapeutic agents (Figure 6.2) 

 

Figure 6.2. Proposed study workflow to search for small molecule inhibitors to interrupt CDK2 

binding to cyclin. 

The selected compounds from the virtual screening workflows (CDK2 and GSK-3β) 

could be purchased or synthesized. Then they could be subjected to biological screening in 

multiple kinase assays.  
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