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ABSTRACT 

Benzo[a]pyrene (BaP) is a ubiquitous environmental contaminant that is both an endocrine 

disruptor and a carcinogen. Aromatase (CYP19) is a key enzyme in steroidogenesis playing a key 

role in the hypothalamus-pituitary-gonad feedback loop. We hypothesized that BaP would 

negatively impact cyp19a1b expression in zebrafish, in turn, adversely affecting development and 

physiology. Here, we consider whether the toxicities observed following BaP exposure are 

comparable to those following a transient morpholino (MO)-mediated CYP19a1b knockdown or 

exposure to an aromatase inhibitor (fadrozole) during early development. One-cell zebrafish 

embryos were injected with a CYP19a1b-MO or control-MO. Other non-injected embryos were 

exposed to nominal waterborne concentrations of BaP (0, 10 or 50 μg/L) and fadrozole (0, 10 or 

50 μg/L) for 96 hours post-fertilization (hpf). Real-time PCR showed both BaP concentrations 

significantly decreased cyp19a1b expression in 96 hpf zebrafish larvae homogenates. Likewise, 

concentrations of E2 in 48 hpf whole body larval homogenates were significantly decreased by 

BaP, fadrozole and CYP19a1b-MO. Cumulative mortality of zebrafish larvae was significantly 

increased following BaP and fadrozole exposure and CYP19a1b knockdown compared to controls. 

Estradiol (E2, 10 nM) co-treatment rescued mortality mediated by 10 μg/L BaP, 10 μg/L fadrozole, 

and CYP19a1b-MO. In a treatment-blinded morphological assessment of larvae at 96 hpf, several 

phenotypes were negatively impacted by BaP, fadrozole, and CYP19a1b knockdown including 

body length, optic vesicle size, swim bladder inflation, pericardial and abdominal edema, and 

incidence of normal larval tail shape and these effects were reversed by exogenous E2-cotreatment. 

Decreased incidence of normal pectoral fins was only impacted by BaP exposure.  In conclusion, 
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certain adverse developmental outcomes caused by BaP exposure are at least in part related to 

BaP-mediated CYP19a1b inhibition. 
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CHAPTER 1. INTRODUCTION 

1.1 Polycyclic aromatic hydrocarbons (PAHs) 

1.1.1 PAHs and its abundance in the environment 

 PAHs are organic compounds that are only composed of carbon and hydrogen, and contain 

multiple fused aromatic (benzene) rings with no additional substituents or heteroatoms.  Based on 

their molecular weight, PAHs are usually classified into two classes; low molecular weight (LMW) 

and high molecular weight (HMW) PAHs. Members that contain two to three benzene rings are 

known as LMW, and those members that have more than four benzene rings are known as HMW 

PAHs. Generally, characteristics of PAHs are high melting and boiling points, low vapor pressure, 

and very low aqueous solubility.  The differences in their sizes and structures make HMW PAHs 

more lipophilic, less volatile, and more resistant to oxidation, reduction, and degradation by 

microorganisms (therefore, they can easily adhere to sediments for months). In comparison LMW 

PAHs can react with sunlight, ozone or NO2 and break down in days or weeks (Perraudin et al., 

2007, Bamforth and Singleton, 2005, Wang et al., 2005).     

In the environment, PAHs exist ubiquitously as a complex mixture. At least thirty PAH 

compounds (including benzo[a]pyrene (BaP)) are listed by the United States Environmental 

Protection Agency (EPA) (http://www.epa.gov/region1/npdes/permits/generic/priority 

pollutants.pdf) as priority pollutants. They are mainly formed by incomplete combustion of 

organic compounds including through natural processes like forest fires, oil seeps, volcanoes, 

microorganisms and anthropogenic processes including petroleum, electric power generation, 

http://www.epa.gov/region1/npdes/permits/generic/priority
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refuse incineration, home heating, production of coke, carbon black, coal tar, and asphalt, internal 

combustion engines and tobacco smoke. PAHs occur and are widely spread in air, water, soil, and 

sediment. PAHs emissions after combustion are able to suspend in the air, be transferred long 

distances (Ma et al., 2013, González-Gaya et al., 2014), be adsorbed to particulate matter such as 

diesel particulate matter (Wichmann 2007), and finally deposit in the soil.  PAH pollution is not 

only restricted to the atmosphere (Zhao et al., 2015, Shen et al., 2013), but also affects the aquatic 

(Allan et al., 2012, Chen et al., 2015, Wu et al., 2011), urban (Pozo et al., 2012, Yu et al., 2014, 

Çabuk et al., 2014), and industrial (Martins et al., 2011, Abril et al., 2014, Dong et al., 2012) 

ecosystems.  

 

1.1.2 Human exposure to PAHs 

 There are various routes through which humans can be exposed to PAHs including the 

respiratory and digestive systems and skin. Through the respiratory tract, exposure to PAHs occurs 

by inhalation of PAH-particulate matter in air such as first and second-stream cigarette smoke 

(Nelson 2001, Rubin 2001, DeMarini 2004), vehicle exhaust (Finlayson-Pitts and Pitts 1997), and 

smoke from residential cookstoves and heaters (Li et al., 2011b, Alkurdi et al., 2014, Shen et al., 

2014). Exposure to PAHs through the digestive tract happens via consumption of PAHs-

contaminated foodstuff including fried and charcoal grilled meat (Larsson et al., 1983, Sinha et al., 

1994), and PAH-contaminated vegetables and fruits which grow in areas that are near to traffic 

and factories sources (Phillips 1999, Camargo and Toledo 2003). Several studies have shown that 

the exposure to PAHs through diet is much higher than exposure to PAHs through inhalation for 

non-smokers (Lioy et al., 1988, Vaessen et al. 1988, De Vos et al., 1990, Lodovici et al., 1995, 

Beckman et al., 1998).  Finally, humans can be exposed to PAHs through the skin following 
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contact with petroleum substances (such as soot, tars, pitch) or with water and soil next to 

contaminated areas (Van Rooij et al., 1993, Moody et al. 2007). The total concentrations of PAHs 

on skin of roofing workers and road-paving crews can reach upto 1,400 ng/cm2 (Jongeneelen et 

al., 1988). 

 Importantly, higher exposure to PAHs can occur in workers in occupational settings 

including aluminum production, coal gasification, coke production, iron and steel foundries, tar 

distillation, shale oil extraction, wood impregnation, roofing, road paving, carbon black 

production, carbon electrode production, chimney sweeping, and calcium carbide production and 

transport industry (Petry et al. 1996, Boffetta et al. 1997, Rota et al. 2014). Therefore, the 

Occupational Safety and Health Administration (OSHA) determined the permissible exposure 

limit (PEL) of 0.2 mg/m3 of PAH in work areas, measured as the benzene-soluble fraction of coal 

tar pitch volatiles. The OSHA standard for coke oven emissions is 0.15 mg/m3 of PAH. The 

National Institute for Occupational Safety and Health (NIOSH) has recommended that the 

workplace exposure limit for PAHs be set at 0.1 mg/m3 for coal tar pitch volatile agents.  

 Studies have shown that maternal PAH exposure during pregnancy could lead to prenatal 

PAH exposure, by testing maternal blood cord for PAH-DNA adducts (Jedrychowski et al., 2014, 

Jedrychowski et al., 2013). A recent study has used the urinary metabolite of pyrene, 1-

hydroxypyrene (1-OHPyr) as a biomarker of total PAH exposure to detect the PAH levels in 

preschool children in Ohio. They found that the median urinary 1-OHPyr concentration was 

0.33 ng/mL in these children (Morgan et al., 2015). This concentration was significantly higher 

compared to other US children. Moreover, as high as 0.67 µg/L of 1-OHPyr was detected in 

amniotic fluid, and 0.15 mmol/mol creatinine of 1-OHPyr was found in maternal urine following 



4 

 

smoking during pregnancy (de Barros Machado et al., 2014). These concentrations of 1-OHPyr 

are significantly higher compared to what are found in non-smoking mothers.  

 

1.1.3 PAHs as a human health concern 

 Various harmful health effects can result follow either short or long-term PAHs exposure. 

Eye irritation, nausea, vomiting, diarrhea, and allergic skin response have been reported as short 

term effects after occupational exposures to PAHs (Unwin et al., 2006). In addition to above 

effects, headaches, dizziness, cough, respiratory diseases, and chest pain have been reported in 

individuals in Louisiana during early months of the Deep Water Horizon oil spill (Solomon and 

Janssen 2010). Also, impaired lung function in asthmatics and thrombotic effects in coronary heart 

disease patients are short term effects of PAH exposure (ACGIH, 2005). However, short term 

effects depend on length of exposure, concentrations of PAHs, route of exposure, age, and pre-

existing health conditions.  

The primary health concerns associated with long term PAHs exposure are their 

carcinogenic and mutagenic toxicities. Among PAHs, BaP, coal tars, coal-tar pitches and tobacco 

are listed in group 1 (carcinogenic to humans) in the World Health Organization International 

Agency for Research on Cancer (IARC) classification. Group 2A (probably carcinogenic to 

humans) includes dibenz(a,h)anthracene, dibenzo(a,l)pyrene and creosotes, while group 2B 

(possibly carcinogenic to humans) includes benz(a)anthracene, benzo(b)fluoranthene, 

benzo(c)phenanthrene, benzo(j)fluoranthene, benzo(k)fluoranthene, dibenzo(a,h)pyrene, 

dibenzo(a,i)pyrene, indeno(1,2,3-cd)pyrene, chrysene, and naphthalene 

(http://monographs.iarc.fr/ENG/Classification/index.php).  Risk of developing lung cancer 
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following occupational (Armstrong et al., 1994) and environmental (Zhang et al., 2009) exposure 

to PAHs has been reported (Boffetta et al., 1997, Brüske-Hohlfeld, 2009). Also, different types of 

cancer are believed to be associated with PAHs exposure. These include colorectal cancer 

(Alexandrov et al., 1996), skin cancer (Mastrangelo et al., 1996), liver cancer (Chen et al., 2002), 

esophageal cancer (Gustavsson et al., 1998), laryngeal cancer (Elci et al., 2003), renal cancer 

(Karami et al., 2011), bladder cancer (Geller et al., 2008), prostate cancer (Rybicki et al., 2006), 

pancreas cancer (Alguacil et al., 2003), and breast cancer (Terry et al., 2004).  

Negative impacts on reproduction associated with PAH exposure are another human health 

concern. The number of human primordial germ cells, which will differentiate and develop to form 

gonad, were reduced following PAH exposure (Kee et al., 2010). Increased risk of male idiopathic 

infertility was associated with increased urinary concentrations of the sum of PAH metabolites 

(Xia et al., 2009). Another study by Xia et al. (2009) found alterations in male semen quality, 

which was evaluated by semen volume, sperm concentration, sperm number per ejaculum, and 

sperm motility as a result of PAHs exposure (Xia et al., 2009). Severely damaged sperm DNA in 

infertile men was correlated with high PAH-adduct levels (Gaspari et al., 2003).  

Increased infertility due to PAH exposure is not only restricted to men. Epidemiological 

studies have shown a correlation between cigarette smoking and menstrual abnormalities (Hornsby 

et al., 1998) and infertility in women (Laurent et al., 1992). Also, follicular fluid and serum of 

smoking women were found to have significantly higher concentrations of PAHs compared to 

non-smoking women. Ability of PAH to enter the placenta and negatively impact pregnancy 

outcomes, such as early pregnancy loss and preterm delivery, have been previously reported 

(Dejmek et al., 2000, Wu et al., 2010, Singh et al., 2008, Gladen et al., 2000).  
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Another human health concern is that developmental toxicities have been linked to PAH 

exposure. Fetal growth restriction and low birth weights were observed after prenatal PAH 

exposure from air pollution or maternal smoking (Ong et al., 2002, Choi et al., 2008). Other studies 

have shown that prenatal exposure to PAHs adversely impacts children’s cognitive development 

at 3 years of age (Perera et al., 2006), and children’s IQ at 5 years of age (Perera et al., 2009). High 

levels of PAH-DNA adducts in maternal and cord blood was associated with negative child 

behavior, at 6-7 years of age, characterized as anxiety and depression (Perera et al., 2012). Also, 

it has been recently reported that the development of left hemisphere white matter is disrupted due 

to prenatal exposure to PAH air pollutants that is, in turn, related to slower processing speed, 

attention-deficit/hyperactivity disorder symptoms, whereas postnatal PAH exposure lead to further  

disturbances in the development of white matter in dorsal prefrontal regions (Peterson et al., 2015). 

High PAH concentrations in maternal serum increases the risk of neural tube defects in offspring 

(Wang et al., 2015). Additionally, in a cohort from Krakow Poland, PAH-mediated birth-length 

deficit persisted, and children that had prenatal PAH exposure above 34.7 ng/m3 was associated 

with decreased height by 1.1 cm at age nine (Jedrychowski et al., 2015). 

 

1.1.4 Benzo[a]pyrene as a model PAH 

 BaP is a five ring polycyclic aromatic hydrocarbon (Fig 1), which is often found in PAH 

mixtures. On the recent ranking of CERCLA’s Priority List of Hazardous Substances, BaP was 

ranked as #8 (http://www.atsdr.cdc.gov/spl/). Like all PAHs, BaP is ubiquitously found in 

sediment, soil, and ambient air resulting from incomplete combustion of organic materials and 

processed food. Inhalation, ingestion of contaminated food, and drinking contaminated water are 

the major BaP exposure sources. The highest airborne BaP concentration reached 9.6 μg/m3 in 

http://www.atsdr.cdc.gov/spl/
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traffic tunnels (De Fré et al., 1994). In Minnesota, a study of children’s exposure to PAHs has 

measured BaP concentrations in house dust, personal air, outdoor air, and food samples and found 

BaP in 43-58% of various types of air samples, 19% of household dust samples, and 22% of food 

samples (Clayton et al., 2003). A recent study of BaP concentrations in urban, industrial and semi-

urban areas in Malaysia detected BaP concentrations as high as 0.61 ng/m3 (Jamhari et al., 2014). 

Although, BaP is found in food, its concentrations vary based on food types. BaP concentrations 

in non-meat food such as greens and cereals were generally low ~0.5 ng/g. Meat-food including 

fried, grilled, and barbecued meat have higher BaP concentrations compared to non-meat food 

(Kazerouni et al., 2001). In a survey of nine Malaysian grilled meat meals, the highest BaP 

concentration was reported (up to 12.5 g/kg) in barbecued beef satay (Farhadian et al., 2010). 

However, fat content (Chen and Chen, 2001, White et al., 2008), heat temperature, and heat source 

(Chung et al., 2011b, Reinik et al., 2007) are key factors that contribute to varied BaP 

concentrations in meat-food. Additionally, BaP can exist in drinking water, even though it has low 

water solubility (2.3 to 4 μg/L) (Mackay and Shiu, 1977). The EPA Maximum Contaminant Level 

(MCL) for BaP in concentrations drinking water is 0.2 μg/L 

(http://water.epa.gov/drink/contaminants/index.cfm#1).  

 

 

Figure 1. BaP and its metabolite structures (Bui et al., 2009) 

http://water.epa.gov/drink/contaminants/index.cfm#1
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1.1.5 BaP and its reproductive and developmental toxicities 

 BaP is classified as an endocrine disruptor due to it’s adverse impacts on reproductive 

success. In humans, BaP exposure is related to alterations of sperm morphology and decreased 

sperm and eggs numbers (Cordier et al., 1997, Zenzes et al., 1998). Benzo(a)pyrene diol epoxide 

(BPDE) DNA adducts (Fig 1) have been detected at higher amounts in sperm cells of smokers 

compared to non-smokers (Zenzes et al., 1999a). Higher BaP concentrations were found in serum 

and follicular fluid of smoking women compared to non-smoking women. Those women, with up 

to 1.79 ± 0.03 ng/ml of BaP in their follicular fluid, did not conceive (Neal et al., 2008). In addition, 

BaP has also been found in maternal blood, placenta, cord blood and human breast milk 

(Madhavan and Naidu, 1995).  

  In various in vitro and in vivo animal studies, the reproductive toxicity of BaP is well 

established. BaP exposure inhibited follicle growth in isolated rat follicle culture assay (Neal et 

al., 2007) and reduced fertility and primordial oocyte number in mice in a dose-dependent manner 

(Mattison et al., 1979). Fertility parameters such as testis histology, sperm count, and sperm 

motility of male mice were significantly altered by BaP exposure, and these negative effects were 

observed in three subsequent generations (Mohamed et al., 2010). Also, plasma progesterone, 

estrogen, and prolactin concentrations of female rats were reduced following BaP exposure 

(Archibong et al., 2002). In male rats, BaP exposure reduced testis weight, plasma testosterone 

concentrations, and increased luteinizing hormone (LH) concentrations (Ramesh et al., 2008). 

Similarly, waterborne BaP exposures of Fundulus caused significantly decreased testosterone 

concentrations and testes weights in males and decreased estradiol concentrations in females. Also, 

BaP significantly altered egg fertilization (Booc et al., 2014).  
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 Besides the reproductive success, developmental success is significantly compromised by 

BaP. In humans, BaP-DNA adducts have been detected in preimplantation embryos of smoking 

parents (Zenzes et al., 1999b). Dietary BaP intake during pregnancy was associated with low birth 

weight (Duarte-Salles et al., 2013). In animals, maternal BaP exposure can lead to distribution of 

BaP into placenta. This was reported in mice (McCabe and Flynn, 1990), rats (Withey et al., 1993), 

guinea pigs (Kihlström, 1986), and primates (Lu et al., 1993). Prenatal BaP exposure lead to 

decreased fetal survival (Archibong et al., 2002), low birth weight, and developmental 

abnormalities (Barbieri et al., 1986, Legraverend et al., 1984).  

 

1.2 Aromatase 

1.2.1 Mammalian aromatase 

 Aromatase, which is encoded by CYP19 gene, is a complex enzyme that is formed of two 

components: aromatase cytochrome P450 (P450arom) and, coupled to it, a ubiquitous 

flavoprotein, NADPH-cytochrome P450 reductase (reductase). This enzyme is responsible for the 

conversion of C19 androgen (typically testosterone and androstenedione) to C18 estrogen (Nelson 

et al., 1996). Aromatase in all mammals, with the exception of pigs, have a single form of the 

CYP19 gene (Sebastian and Bulun, 2001).The CYP19 gene in humans is a single copy gene 

located on chromosome 15. This entire gene spans over 123 kb of DNA, but only 30 kb represents 

the coding region (exons II to X) (Sebastian and Bulun, 2001). Human tissue specificity in 

aromatase gene regulation is due to alternative promoter splicing (Simpson et al., 1993). For 

example, untranslated first exons notated I.1, 2a, I.4, I.5, I.f, I.2, I.6, I.3, and PII are spliced for 

expression in placenta (major), placenta (minor 2), skin/adipose, fetal tissues, brain, placenta 
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(minor 1), bone, adipose/breast cancer, ovary/breast cancer/endometriosis, respectively (Fig. 2) 

(Meinhardt and Mullis, 2002, Sebastian and Bulun, 2001).  

 

Figure 2. Human aromatase (CYP19) gene. In humans, expression of the aromatase gene is 

regulated by the tissue-specific activation of a number of promoters via alternative splicing 

reprinted with permission (Bulun et al., 2005). 

 

However, aromatization of testosterone mainly occurs in the endoplasmic reticulum of 

estrogen-producing cells (Simpson et al., 2002). Aromatase is expressed in different cells, 

including the ovarian granulosa cell, the placental syncytiotrophoblast, the testicular Leydig cell, 

and various extraglandular tissues, including the brain, adipose stromal cells, osteoblasts in bone, 

skin fibroblasts and fetal tissues (Conley and Hinshelwood, 2001, Simpson et al., 1994). In 

premenopausal women, the ovarian granulosa tissues have the highest levels of aromatase 
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expression and produce estradiol as a primary product during the follicular phase. This ovarian 

aromatase expression is induced by follicle stimulating hormone (FSH) through activation FSH 

receptors that mediate the cAMP production and activation of promotor II (Simpson et al., 1994). 

In contrast, extragonadal tissues, such as  adipose tissue and skin fibroblasts, are the major 

aromatase-expressing tissues in men and women after menopausal period (Grodin et al., 1973). 

Aromatized estrogen by these extragonadal tissues is very critical for many physiological 

processes such as closure of bone plates and bone mineralization (Bulun, 1999). In adipose and 

skin fibroblast tissues, the aromatase expression is exerted by a distal promoter (I.4) located 70 kb 

upstream of the coding region. A dual action of glucocorticoids and cytokines [e.g.,interleukin 

(IL)-6, IL-11, leukemia inhibitory factor, and oncostatin-M] regulates promoter (I.4) (Zhao et al., 

1995). However, the primary aromatization product of adipose tissues is the estrone, which is 

biologically weaker than estrogen. Because a relatively large amount of estrone is produced by 

adipose tissues, at least half of this peripherally produced estrone eventually could be converted to 

estradiol in tissues outside of the ovary (Perel and Killinger, 1979). In contrast to humans, 

aromatase expression in lower mammals (rodents), birds, and fish is expressed in the brain and 

gonad by highly conserved promoters I.f and II, respectively (Simpson et al., 1994). In higher 

mammals, aromatase is expressed in placenta, skin, adipose tissue, and bone.  

Regarding the human brain aromatase enzymatic activity, immunoreactivity and gene 

expression (mRNA) were reported in studies of specific brain regions, including the temporal 

cortex (Steckelbroeck et al., 1999), hypothalamic and ventral forebrain nuclei (Ishunina et al., 

2005), hippocampus (Stoffel-Wagner et al., 1999), and thalamus (Sasano et al., 1998). The rat and 

monkey brain has low aromatase expression, with high expression present only in the preoptic 

area, ventromedial nucleus of the hypothalamus, medial amygdala, and the bed nucleus of the stria 
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terminalis (Roselli et al., 2001, Takahashi et al., 2006).  While the aromatase expression in various 

tissues is regulated by the use of tissue-specific promoters throughout the action of different 

transcription factors and signaling pathways, the aromatase brain expression regulation is unclear 

and complex due to its abundance in many brain regions. Thus, it is suggested that the aromatase 

expression regulation is region-specific (Roselli et al., 1985, Zhao et al., 2007). A study of rat brain 

aromatase expression has shown that the aromatase expression in most brain areas, including the 

amygdala and hippocampus, is not regulated by gonadal steroids as the aromatase expression in 

preoptic area and hypothalamus (Abdelgadir et al., 1994). Thus, it was suggested that there may 

be both steroid-dependent and/or steroid-independent processes regulating aromatase expression 

in the different brain regions. Generally speaking, aromatase expression and specific estrogen 

receptors are crucial for many physiological processes, including cellular proliferation, 

reproduction, sexual behavior, aggression, cognition, memory and neuroprotection in various 

animal species (Garcia‐Segura, 2008, Saldanha et al., 2009). 

 

1.2.2 Aromatase deficiency 

Aromatase deficiency is a condition characterized by high concentrations of circulating 

testosterone and low concentrations of estrogen. Models of aromatase deficiency, from reported 

human cases or the aromatase knockout mice model (ArKO mice), have highlighted the 

importance of the aromatase enzyme and estrogen in both sexes (Simpson, 2000, Grumbach and 

Auchus, 1999). The mutation in most individuals with aromatase deficiency is characterized by a 

single base pair change that leads to either a single amino acid substitutions or a premature stop 

codon (Carani et al., 1997, Morishima et al., 1995, Conte et al., 1994, Ito et al., 1993, Mullis et al., 

1997). In another example, an exon-intron splice junction was disrupted (Shozu et al., 1991). 
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Although most reported cases have homozygous mutations, some are heterozygous mutations 

(Mullis et al., 1997, Conte et al., 1994). Recently, an aromatase deficiency case documented a 

patient that had a heterozygous aromatase mutation that disrupted the aromatase protein structure 

(Chen et al., 2015). In most reported cases, females have virilization during the pregnancy period 

that subsides postpartum. Therefore, manifestations of aromatase deficiency in females actually 

depend on development stage. During prenatal development, aromatase deficiency causes obvious 

masculization of urogenital sinus and external genitalia and pseudohermaphrodism in the fetus. 

Whereas during puberty, defects in aromatase affects development of secondary sex characteristics 

and causes delayed skeletal maturation, virilization, polycystic ovaries and hypergonadotropic 

hypogonadism (Grumbach and Auchus 1999, Zirilli et al., 2008). The common phenotypes in men 

with aromatase deficiency are hypergonadotropism, macroorchidism, tall stature owing to failure 

of epiphyseal fusion, delayed bone maturation that resulted in osteopenia, elevation of low density 

lipoprotein (LDL) cholesterol, hyperinsulinemia, increased triglyceride levels, elevation of 

testosterone, FSH, LH, and reduced circulating estrogen (Sudeep et al., 2013, Chen et al., 2015, 

Baykan et al., 2013).  

ArKO mice have allowed for further insight into the sex-, tissue- and developmental stage-

dependence of estrogen homeostasis as mediated by aromatase (Hill and Boon, 2009, Britt et al., 

2001). Male ArKO mice have altered spermatogenesis and impaired sexual behavior that leads to 

compromised  fertility (Robertson et al., 2001, Conte et al., 1994). Also, they have displayed 

prostate enlargement, and elevation of circulating testosterone and 5α-dihydrotestosterone (DHT) 

levels (McPherson et al., 2001). Infertility of female ArKO mice is due to ovarian dysmorphis and 

degeneration (Britt et al., 2000). Moreover, they have low estradiol, and high testosterone 

concentrations compared to the wild type females (Fisher et al., 1998). Both ArKO males and 
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females have obese phenotype with increased adipocyte volume and number in gonadal and 

infrarenal fat depots (Jones et al., 2000). Also their serum cholesterol, high density lipoprotein 

(HDL), leptin, and insulin concentrations are high. Despite both sexes of ArKO mice showing 

these metabolic syndromes, only male ArKO mice develop hepatic stenosis (Van Sinderen et al., 

2014). Additionally, decreased trabecular bone volume and thickness in both ArKO males and 

females results in skeletal abnormalities mediated by estrogen deficiency due to the aromatase 

deficiency (Öz et al., 2000). 

 

1.2.3 Estrogen homeostasis  

It is well known that estrogen homeostasis is very important to many mammalian 

physiological processes including: reproduction (Gibson and Saunders, 2012, Brock et al., 2011, 

Akingbemi, 2005, Rochira et al., 2001), development (Fernández-Pérez et al., 2013, Baker, 2013), 

behavior (Balzer et al., 2015, McCall and Singer, 2012), and carcinogenesis (Hu et al., 2012, Suba, 

2012). Estrogen is not only responsible for functional regulation of the uterus, ovary, and breast, 

but is also critical in normal metabolism of bone (Klein-Nulend et al., 2014, Suba, 2012, Khosla 

et al., 2012) and lipids (Mauvais-Jarvis et al., 2013, Kim et al., 2014), in vascular function (Tiyerili 

et al., 2012, Chen et al., 2015, Kim et al., 2014) and arteriosclerosis (Nofer, 2012, Barton, 2013). 

Aromatase deficiency and postmenopausal conditions, which are both characterized by 

estrogen insufficiency, highlight the importance of estrogen. Most phenotypes, including 

osteoporosis, delayed bone maturation, hypergonadotropism, hyperinsulinemia, dyslipidemia, 

ovarian cyst in females, macroorchidism in males, and non-alcoholic fatty liver, resulting from 

estrogen deficiency in patients with aromatase deficiency can be restored by estrogen replacement 
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therapy (Bilezikian et al., 1998, Burckhardt et al., 2015, Baykan et al., 2013, Sudeep et al., 2013, 

Bulun, 1999). It is well known that postmenopausal women are at high risk to develop osteopenia, 

osteoporosis, and cardiovascular diseases. Whereas estrogen replacement therapy during the early 

postmenopausal period prevents reductions in bone density, osteoporosis (Lindsay et al., 2005, 

Bagger et al., 2004), and decreases risk of mortality from heart failure or myocardial infarction 

(Schierbeck et al., 2012).  

 

1.2.4 Aromatase as a potential target for endocrine disrupting chemicals 

 Some environmental contaminants alter aromatase expression by either inhibition or 

induction. For example, organotin compounds like tributyltin  (TBT) and dibutyltin, inhibit human 

placenta aromatase activity in vitro (Cooke, 2002). Also, TBT in combination with bisphenol-A, 

or nonylphenol, have synergistic inhibitory effects on aromatase activity (Benachour et al., 2007). 

In Denmark and Finland, there has been a reported association between newborn boys with 

congenital cryptorchidism and high concentrations of TBT in their mother’s placenta (Rantakokko 

et al., 2013). In a teleost fish, guppy (Poecilia reticulata), TBT inhibited male brain aromatase 

expression which was associated with elevated testosterone concentrations and  a disturbance of 

reproductive behavior (Tian et al., 2015). Other environmental chemicals including 

methylmercury (Hinfray et al., 2006), triazole and imidazole fungicides (Trösken et al., 2004), 

perfluorinated chemicals (PFCs) such as perfluorooctanesulfonate (PFOS), 

perfluorobutanesulfonate (PFBS), and perfluorooctanoic acid (PFOA) (Gorrochategui et al., 2014) 

have been suggested as aromatase inhibitors; whereas estrogenic compounds such as nonylphenol 

(Bonefeld-Jorgensen et al., 2007), bisphenol-A (Nativelle-Serpentini et al., 2003, Chung et al., 

2011a) and ethynylestradiol (Roggio et al., 2014) induce aromatase expression. Therefore, the 
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possibility that aromatase expression and its downstream physiological events are affected by 

environmental contaminants has been a target of intense recent research (Sanderson, 2006, 

Cheshenko et al., 2008, Mills et al., 2014). Our previous work on Fundulus heteroclitus found that 

BaP-waterborne exposure inhibited both adult and embryo brain aromatase expression (Dong et 

al., 2008). 

 

1.2.5 Therapeutic aromatase inhibitors   

 Aromatase inhibitors (AI) are generally classified based on their chemical structures as 

steroidal and non-steroidal AIs. Among reported AIs, 80% belong to the steroidal class because 

their chemical structures are related to the natural aromatase substrate. They include: formestane, 

exemestane, atamestane and 10-propargylandrostenedione. The steroidal class are able to 

inactivate aromatase enzyme by binding tightly or irreversible to the active site of the enzyme and 

preventing the endogenous aromatase substrates from the binding and converting to estrogen. Due 

to their strong binding, they are considered as selective AIs (Njar and Brodie, 1999). Unlike 

steroidal AIs, non-steroidal AIs including aminoglutethimide, fadrozole, anastrozole, and 

letrozole, have a heteroatom that interferes with steroid hydroxylations by binding to the heme 

iron of the cytochrome P450s (Brueggemeier et al., 2013).  Also, AIs are classified as first, second, 

and third generation due to their priority in clinical use.  

 Briefly, AIs are clinically used for estrogen sensitive breast cancer in postmenopausal 

women (Brueggemeier et al., 2013, Dowsett et al., 2010) and gynecomastia in children and 

adolescents (Shulman et al., 2008). Other off-label uses of AIs have been reported such as 

treatment of impaired spermatogenesis in men with excess aromatase activity (Schlegel, 2012), 
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ovulation induction in infertile women (Palomba, 2015, Casper and Mitwally, 2012), delayed 

epiphysial maturation and to increase predicted adult height in boys with idiopathic short stature 

and constitutional delay of puberty (Palmert, 2015, Shams et al., 2014). 

1.2.6 Developmental defects associated with aromatase disruption 

The ability of endocrine-disrupting chemicals to interfere with the steroid hormone 

biosynthesis pathway, including aromatase, has been previously elucidated (Sanderson, 2006, 

Zoeller et al., 2012). Over the past two decades, several studies have reported human 

developmental defects in offspring of pesticides applicators living in rural Minnesota (Garry et al., 

1996). Some of the pesticides applied included endocrine disrupting chemicals like triphenyl tin 

(TPT) (Garry et al., 2002), which inhibits aromatase (Saitoh et al., 2001). Central nervous, 

cardiovascular, gastrointestinal, urogenital, and musculoskeletal systems were major organ 

systems that were reported among birth defects in the Minnesota cohort (Garry et al., 2002). In 

rural areas in Argentina, glyphosate (a herbicide which also inhibits aromatase (Gasnier et al., 

2009)) was reported to induce birth defects include neural defects and craniofacial malformations 

(Ho, 2010). These observed malformations were similar to developmental defects in frog embryos 

exposed to glyphosate in the laboratory (Ho, 2010). Developmental defects were also associated 

with prenatal exposure to other aromatase disrupting chemicals such as phthalates and bisphenol-

A (Escamilla-Nunez et al., 2015, Philippat et al., 2012, Bustamante-Montes et al., 2013, Gascon 

et al., 2015, Axelsson et al., 2015). In animals, an aromatase modulator (letrozole) following 

gestational exposure showed toxic effects on prenatal development in rats like increased post-

implantation loss and vertebral anomalies (Tiboni et al., 2008). Prenatal exposure of another 

aromatase modulator, diethylstilbestrol, caused malformation of the external genitalia of male and 

female mice (Mahawong et al., 2014).  
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1.3 Zebrafish as model organism  

 Zebrafish, Danio rerio, are tropical fresh water fish that are native to inland streams and 

rivers of India, and also distributed in North America, Africa, and Europe. They are a highly 

appreciated model in developmental biology (Grunwald and Eisen, 2002). More recently they have 

been successfully used in toxicology testing (Parng, 2005), biomonitoring (Liao et al., 2012), 

biomedical research (Brittijn et al., 2009), and drug development (Chakraborty et al., 2009). 

Additionally, they have become an attractive model for environmental risk assessments owing to 

their ability to provide small-scale and high-throughput analyses (Scholz et al., 2008, Bugel et al., 

2014, Mandrell et al., 2012). A crucial advantage of fish is that they are particularly well suited 

for reproductive and developmental studies because of their transparent chorions, high fecundity 

and rapid development. Relevant to risk assessment and chemical screening, the developmental 

landmarks in zebrafish as they relate to adverse outcome pathway (AOP) development have also 

been recently established (Villeneuve et al., 2014). They develop similar organ systems and share 

common biochemical and molecular pathways with mammals (Patton and Zon, 2001, Bondesson 

et al., 2015, Kettleborough et al., 2013, Howe et al., 2013). Compared to other animal models, they 

are easy to maintain in the laboratory owing to their small size, hardiness, short generation time 

and low cost. Importantly, embryos are able to absorb compounds in water owing to the tiny pores 

of their chorion (Goldsmith, 2004). Many advantages make zebrafish the favorable model 

compared to other fish models, like Fundulus, including their well annotated genome (Woods et 

al., 2000, Kelkar et al., 2014), the precise description of their developmental stages and the seven 

periods of embryogenesis (Kimmel et al., 1995), and the availability of knockdown/out 

technologies (Kelly and Hurlstone, 2011, Timme-Laragy et al., 2012) and transgenic strains that 

allow for pinpointing critical molecular targets associated with toxicity phenotypes (Weinstein, 

2002).   
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1.3.1 Aromatase in fish   

 Unlike most mammals, aromatase in fish is encoded by two distinct CYP19 genes 

(Sebastian and Bulun, 2001, Meinhardt and Mullis, 2002, Britt et al., 2000, Conley and 

Hinshelwood, 2001). These are CYP19A1 (cyp19a1a), which is mainly expressed in the ovary and 

CYP19A2 (cyp19a1b), which is expressed in brain. CYP19 isozymes and promoter regions have 

been cloned in many different teleosts such as Fundulus (Dong et al., 2008, Patel et al., 2006) and 

zebrafish (Kishida and Callard, 2001, Kazeto et al., 2001). Furthermore, consistent with its 

significant biological function, CYP19 is relatively highly conserved. There is about 50-90% 

peptide sequence identity between fish and mammalian forms with higher conservation in the 

heme binding site and the steroid pocket (Conley and Hinshelwood, 2001). CYP19 regulation of 

steroidal estrogens is very important for both sex determination and reproduction in fish (Meyer, 

1999). Estrogen promotes hepatic vitellogenesis during ovarian follicular development while 

synthesis of estrogen in the brain is very important for developmental sex determination, sex-

specific reproductive behaviors, neurogenesis, and brain repair (Melo and Ramsdell, 2001, Diotel 

et al., 2013). The significance of higher aromatase activities in teleost brain compared to gonad is 

not fully understood (Forlano et al., 2001, Coumailleau et al., 2015). These two genes are also 

differentially regulated during development.  

 Adult brain aromatase (cyp19a1b) was found exclusively expressed in radial glial cells 

(RGCs) of teleost fishes including toadfish (Forlano et al., 2001), rainbow trout, and zebrafish 

(Menuet et al., 2005, Menuet et al., 2003). These cells exist in the embryonic brain of all vertebrate 

species and remain abundant in the fish adult brain (Kriegstein and Alvarez-Buylla, 2009), 

whereas; they disappear in mammals at birth to become astrocytes (Malatesta and Götz, 2013, 

Pinto and Götz, 2007). In zebrafish, mRNA in situ hybridization, immunohistochemistry, and GFP 



20 

 

expression driven by cyp19a1b promoter techniques indicated brain aromatase highest expression 

in the GRCs in the olfactory bulbs, telencephalon, preoptic area, and hypothalamus (Diotel et al., 

2010, Pellegrini et al., 2007, Pellegrini et al., 2005, Menuet et al., 2005). Unlike medaka, sexual 

dimorphism in brain aromatase expression of zebrafish and European sea bass was not detected 

(González and Piferrer, 2003, Okubo et al., 2011). However, the cyp19a1b expression was detected 

as early as 48 hpf in zebrafish embryos. Interestingly, increased brain aromatase (cyp19a1b) 

expression was parallel with increased estrogen receptors expression (esr1, esr2b and esr2a) 

(Mouriec et al., 2009b). Also, E2 induces brain aromatase (cyp19a1b) expression in radial glial 

cells mainly in the preoptic area and mediobasal hypothalamus of 48 hpf and 108 hpf larvae. On 

other hand, blocking estrogen receptor action reduced cyp19a1b expression, suggesting that 

estrogen regulates cyp19a1b expression in the brain (Mouriec et al., 2009b, Pellegrini et al., 2005). 

Therefore, cyp19a1b expression has been used as a biomarker for estrogenic endocrine disrupting 

chemicals (Brion et al., 2012). Different studies have shown that an alteration of cyp19a1b 

expression, by pollutant or aromatase modulators, leads to negative impacts on early zebrafish 

development (Shi et al., 2008, Sreedevi et al., 2014, Cohen et al., 2014). Recent work in our 

laboratory found that BaP significantly decreased adult and embryonic brain aromatase mRNA 

expression, and ovarian aromatase activity (Patel et al., 2006, Dong et al., 2008). 

 

1.3.2 Sex determination and gonad maturation 

 Despite many studies into the mechanisms of sex determination, scientists still do not fully 

understand how sex is determined. The genes responsible for sex determination in some 

invertebrates, such as D. melanogaster and C. elegans, are well characterized (Cline and and 

Meyer, 1996, Goodwin and Ellis, 2002). While in vertebrates, sex determination is not well 
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characterized, and many mechanisms are involved. In mammals, females have two X 

chromosomes, whereas males have XY chromosomes. Male sex is determined by a dominant male 

determining gene on the Y chromosome called the sex-determining region Y gene (sry) that 

initiates an up-regulation of the sry-related HMG box gene 9 (sox9) expression. sox9 expression 

ultimately suppresses wnt4, and leads to the establishment of testis-specific pathway (Eggers and 

Sinclair, 2012). Due to the absence of sry in XX individuals, transcription factors wnt4 and rspo1 

are expressed leading to further downstream events that eventually suppress sox9 expression and 

allow ovary-specific pathway to progress (Eggers and Sinclair, 2012, Polanco and Koopman, 

2007). Differentiation of gonads mediates testicular and ovarian hormone production that induces 

anatomical and physiological differences of either fate, and also determines the sexual fate of other 

organs (Brennan and Capel, 2004). In non-mammalian vertebrates, sry is not conserved, but the 

genes functioning downstream of sry, like sox9, are conserved (Rodríguez-Marí et al., 2005). 

Polygenic, environmental factors such as temperature, and social architecture also can be involved 

in sex determination of many vertebrates including fish (Devlin and Nagahama, 2002, Godwin et 

al., 2003).    

 Sex determination in zebrafish is polygenetic and not well understood (Traut and Winking, 

2001, Liew et al., 2012). Like other vertebrates, zebrafish sex determination is impacted by 

different environmental factors such as hypoxia, temperature, food availability, and population 

density (Shang et al., 2006, Spence et al., 2008, Tong et al., 2010, Uchida et al., 2004). However, 

histological differences in developing gonads are the first signs of zebrafish sex determination 

(Yamamoto, 1969). During early zebrafish development, all individuals show oogenesis and form 

an immature non-functional ovary that further differentiates to either mature ovary or testis (Wang 

et al., 2007, Maack and Segner, 2003). Germ line cells are very important for female sex 
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determination because absence of the germ line leads to suppressed expression of cyp19a1a and 

male sex fate (Siegfried and Nüsslein-Volhard, 2008).  

 The impact of endocrine disrupting chemicals, especially aromatase modulators, on 

zebrafish sex determination has been partially elucidated (Andersen et al., 2003, Baumann et al., 

2014, Caspillo et al., 2014, Segner, 2009, Örn et al., 2003). For example, exposing zebrafish during 

gonadal differentiation to an aromatase inhibitor, fadrozole, lead to masculinization with testicular 

morphology (Fenske and Segner, 2004, McAllister and Kime, 2003). However, zebrafish can 

exhibit sexual plasticity. After exposing adult females to aromatase inhibitors, retraction of the 

ovaries and testis-like organs formed (Takatsu et al., 2013). Together these studies highlight the 

importance of aromatase in sex determination and gonad maturation.  

 

1.4 Morpholinos as a gene knockdown tool  

 Morpholino oligonucleotides (MOs) are the most broadly used anti-sense knockdown tool 

in different vertebrates models including zebrafish. They were first discovered by Dr. James 

Summerton (Summerton and Weller, 1997). MOs are typically short chains that are composed of 

about 25 morpholino subunits. Each subunit contains a nucleic acid base that is attached to the 

morpholine ring. These subunits are linked to each other by non-ionic phosphorodiamidate inter-

subunit linkage (Fig 3) to form a complementary backbone to pair with its corresponding RNA. 

This uncharged linkage makes MOs very stable against intracellular nuclease activity. MOs do not 

exert their hindrance effect by degrading their RNA targets, but instead act via a RNAse H-

independent steric blocking mechanism (Summerton 1999).  
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(A nucleic acid base A, T, G, or C)

non-ionic phosphorodiamidate 
intersubunit linkage

Morpholine ring

n= morpholino subunits 

 

Figure 3. Morpholino oligonucleotide unit. 

  

MOs have been used to: hasten gene discovery through large-scale screening (Yamada, 

Shoguchi et al. 2003), explore candidate gene function (Corey and Abrams 2001, Lan, Bayliss et 

al., 2007), verify mutant phenotypes (Dutton et al., 2001, Pickart et al., 2004, Sun et al., 2004), 

and reduce maternal and zygotic gene function (Ciruna et al., 2002, Lee et al., 2013). Because a 

morpholino oligo is able to specifically bind to its target site to block access of cell components to 

that target site, they can be used to block translation, splicing, miRNAs or their targets, and 

ribozyme activity. In splice blocking, MOs bind and inhibit pre-mRNA processing by inhibition 

of the splicesome components. RT-PCR is used to assess the effectiveness of MO to block or 

modify the splicing. Successful splice-modification would appear on an electrophoretic gel as 

changes in the RT-PCR product band size, intensity or disappearance (Draper et al., 2001, Wu et 

al. 2008). For translation blocking, MOs bind complementary mRNA sequences within the 5’ 
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untranslated region (UTR) near the translational start site hindering ribosome assembly (Fig 4). 

Western blot can be used to assess the effectiveness of MOs to knockdown the target protein 

(Nasevicius and Ekker 2000. Also, the in vitro protein synthesis, TNT T7 Quick Coupled 

Reticulocyte Lysate System has been used to assess the effectiveness of MOs to exert its protein 

knockdown effect (Jenny et al., 2009). 

DNA

mRNA

Nucleus

MO

Intiation complex

No Protein

 

Figure 4. Mechanism by which morpholinos can block translation. 

 Although MOs are widely used as anti-sense knockdown tool, recent studies have 

highlighted some disadvantages of MOs such as mediating off-target effects like induction of p53. 

Furthermore there are concerns about the reliability of using MOs to assess genes function (Kok 

et al., 2015, Stainier et al., 2015) because of the absence of the same observed morphant 

phenotypes in genetic mutant embryos. However, about 300 observed morphant phenotypes in 

Zebrafish Information Network (ZFIN) were consistent with stated phenotypes in genetic mutant 
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embryos. Also, the mechanism of how MOs induce, for example, p53 as off-target effects is not 

known, but might be related to variability of MO preparations. Comparing our cyp19a1b-MO 

morphants with those treated with a known aromatase inhibitor (fadrozole) and rescuing morphant 

effects by exposures E2 supplementation helped establish the reliability of the phenotypes noted 

in the cyp19a1b-MO embryos. 
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1.5 Study specific aims and hypotheses 

1.5.1 Central Hypothesis: 

 BaP deregulates the steroid hormone hypothalamus-pituitary-gonad feedback loop, alters 

estrogen homeostasis and adversely impacts developmental and reproductive physiology. 

 

Figure 5. Hypotheses associated with potential adverse outcomes of BaP exposure as a 

result of disruption of the hypothalamus-pituitary-gonad axis. 
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1.5.2 Specific Aims 

Aim 1. Identify waterborne BaP exposure effects on zebrafish embryonic brain aromatase 

(cyp19a1b mRNA expression). RT-qPCR will be used to assess brain aromatase (cyp19a1b) 

mRNA expression in 96 hpf zebrafish homogenates after BaP-waterborne exposure. 

Hypothesis: BaP will decrease brain aromatase (cyp19a1b) mRNA expression. 

Aim 2. Identify developmental phenotypes mediated by waterborne BaP exposure during early 

zebrafish development. Expose zebrafish embryos to low and high BaP concentrations during their 

early development and assess mortality, hatching efficiency, and morphological abnormalities up 

to 96 hpf. 

Hypothesis: Waterborne BaP exposure will dose-dependently cause developmental abnormalities 

and adverse impacts on the reproductive system.  

Aim 3. Transiently knockdown zebrafish brain aromatase (cyp19a1b) during early development 

and compare resulting phenotypes and molecular consequences with the phenotypes and molecular 

consequences caused by BaP-waterborne exposure. Design a morpholino oligonucleotide 

sequence that blocks translation of cyp19a1b protein and assess developmental defects at 96 hpf. 

Hypothesis: Zebrafish brain aromatase (cyp19a1b) knockdown will cause phenotypes and 

molecular consequences in zebrafish larvae similar to BaP-mediated effects. 

Aim 4. Identify developmental phenotypes mediated by waterborne fadrozole exposure during 

early zebrafish development and compare resulting phenotypes and molecular consequences with 

morphant phenotypes and molecular consequences. Expose zebrafish embryos to low and high 

fadrozole concentrations during their early development. 
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Hypothesis: Waterborne fadrozole exposure will cause developmental abnormalities similar to 

cyp19a1b morphant mediated effects. 

Aim 5. Generate cyp19a1b antibody to assess cyp19a1b-MO effectiveness by western blot. 

Hypothesis: cyp19a1b-MO would knockdown cyp19a1b protein expression.  

Aim 6. Further validate the morpholino effectiveness with the in vitro protein synthesis, TNT 

Quick Coupled Reticulocyte Lysate System expressing cyp19a1b. 

Hypothesis: The cyp19a1b-MO will knockdown zebrafish brain aromatase activity in vitro. 

Aim 7. Evaluate the ability of estradiol to rescue zebrafish larval toxicity caused by BaP-

waterborne exposure, cyp19a1b knockdown, fadrozole exposure. In BaP+E2, cyp19a1b-MO +E2, 

and fadrozole+E2 co-exposed zebrafish larvae, mortality, hatching efficiency, and morphological 

abnormalities will be measured. 

Hypothesis: E2 co-treatment with BaP-waterborne, cyp19a1b-MO, and fadrozole will alleviate 

BaP, cyp19a1b knockdown, fadrozole-mediated morphological deformities in 96 hpf zebrafish 

larvae. 

Aim 8. Evaluate the effect of BaP, cyp19a1b knockdown, and fadrozole on steroid hormone 

(estrogen) concentrations. Use reverse phase-HPLC to measure zebrafish embryo estrogen 

concentrations after BaP-waterborne exposure and cyp19a1b-MO injection. 

Hypothesis: BaP, CYP19a1b-MO, and fadrozole will decrease larval estrogen hormone 

concentrations. 
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Aim 9. Evaluate BaP and cyp19a1b knockdown effects on zebrafish gonad maturation. 

Histological assessment will be used to evaluate the gonad maturation of 52 days post-fertilization 

zebrafish exposed to BaP or injected to cyp19a1b-MO during their early development. 

Hypothesis: BaP-waterborne exposure and cyp19a1b knockdown during early development will 

interfere with gonad maturation.
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CHAPTER 2: METHODS and MATERIALS 

 

2.1 Zebrafish culture 

Both the AB wild-type zebrafish that were purchased from Zebrafish International 

Resource Center (ZFIN, Eugene, OR) and the Fli-EGFP transgenic zebrafish that were gifted by 

Dr. Tanguay (OSU) were raised under IACUC-approved conditions. Fish were kept in Aquatic 

Habitats ZF0601 Zebrafish Stand-Alone Systems (Aquatic Habitats, Apopka, FL) with zebrafish 

water (pH 7.0-7.5, 60 parts per million (ppm) Instant Ocean, Cincinnati, OH) at 24-30°C, 14:10 

light-dark cycle. Adult fish were fed twice daily with tropical flake fish food and live brine shrimp. 

Larvae were fed with ArteMac-0 powered food (20-80 micron size, Bio-Marine, Hawthorne, CA) 

and/or live brine shrimp depending on their age. Sexually mature fish were selected as breeders 

and their eggs were collected for the studies. 

 

2.2 Zebrafish embryos BaP and BaP+E2 exposure 

Fertilized eggs were cleaned and disinfected with 0.4 ppm methylene blue for 1-2 min and 

then randomly sorted into six treatment groups (4-8 replicates per group), namely control 

dimethylsulfoxide (DMSO, 0.01% v/v), control 17β-estradiol (E2 10 nM, 2.72 μg/L), 10 μg/L (40 

nM) or 50 μg/L (200 nM) BaP (stock solution 0.0025 g/5mL in DMSO; final DMSO concentration 

was 0.01% in all treatment groups), 10 BaP+E2, and 50 BaP+E2. Fifty fertilized eggs were pooled 

randomly and raised in 50 mL of zebrafish water (60 ppm, pH 7.0-7.5) in glass petri dishes. During 
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the exposure period (2.5-96 hpf), 0.4 ppm methylene blue was added to zebrafish water to inhibit 

fungus growth. Exposures for each experimental treatment began at approximately 2.5 hpf. Water 

was changed and embryos were re-dosed every day. Embryos were pooled (15 larvae/pool, 3 

replicates/treatment) at 96 hpf (embryos would typically hatch at 48-72 hpf) for RNA extraction 

and larvae were stored in 0.5 ml RNAlater at -80°C immediately. 

 

2.3 Measurement of BaP concentration in water samples by GC-MS 

Both control and BaP water were sampled once from each solution preparation (for a total 

of 4 replicates/treatment). Water samples (25-200 mL) were collected after dosing and analyzed 

to confirm control and BaP concentrations from each preparation of embryo zebrafish exposure. 

Water samples were passed slowly through Sep-Pak C18 3 cc Vac RC Cartridge (500 mg) (Waters 

Corp., Milford, MA) that had been pre-washed with 50 mL of 75% methanol. Methylene chloride 

(7.5 mL, 2X) was added to the columns to elute BaP. Solvents were evaporated under a gentle 

flow of nitrogen gas. Samples were re-constituted in iso-octane. BaP concentrations in the water 

extracts were measured by gas chromatography (Agilent 6890) coupled with mass spectrometry 

(Agilent 5973N) in selected ion monitoring mode for ions 252 and 253. BaP standards (0.1, 0.2, 

0.5, 1, and 2 ppm) were prepared in isooctane to build a standard curve. 

 

2.4 RNA extraction, purification and reverse transcription 

Pooled 96 hpf larvae (15 larvae/pool) were homogenized with a pellet pestle cordless motor 

(Sigma-Aldrich) in QIAzol Lysis Reagent (Qiagen, Valencia, CA). RNA was isolated and purified 

with RNeasy Lipid Tissue Mini Kit (Qiagen, Valencia, CA) following the manufacturer’s 
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protocols. Total RNA (250 ng) was reverse transcribed to double stranded cDNA libraries by using 

TaqMan® Reverse Transcription Reagents (Applied Biosystems). Each reaction contained 

random hexamers, multiscribe RT, RNase inhibitor, deoxynucleotide triphosphate mix, 25 mM 

MgCl2, and 10X RT buffer. 

 

2.5 Quantitative reverse transcription real time (RT-qPCR)  

RT-qPCR primers were designed with Primer Express® Software v2.0 (Applied 

Biosystems) and selected based on their specificity (checked with NCBI Primer-Blast, 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/) (Table 1). Relative abundance of target genes to 

18S rRNA transcripts in the cDNA libraries was determined by qPCR with SYBR®Green in a 

GeneAmp 7500 Sequence Detection System (Applied Biosystems) and calculated with the 2-ΔΔCt 

method. Statistical differences between treatments or was determined on the linearized 2-ΔCt 

values. Each sample was measured in two separate reactions on the same plate. Amplification 

efficiencies of the cyp19a1b and 18S rRNA primer pairs were tested to ensure that they were not 

statistically different.  

Table 1. Zebrafish cyp19a1b RT-Qpcr primers (5 µM) and amplification effectiveness.  

Primer Sequence Slope Efficiency p (18S) Tissue  

18S 

F: 5'-TGG TTA ATT CCG ATA ACG AAC GA-

3' 

-4.0345 76.95    Brain R: 5'-CGC CAC TTG TCC CTC TAA GAA-3' 

cyp19a1b 

807/838 

F: 5'-ATA CCA CCT GGC AGC AAA AGA GC 

-3' 

-3.601 89.54 0.2568  Brain R: 5'-CCA CAA GCT TTC CCA TTT C-3' 

18S 

F: 5'-TGG TTA ATT CCG ATA ACG AAC GA-

3' 

-3.963 78.79   96 hpf  R: 5'-CGC CAC TTG TCC CTC TAA GAA-3' 

cyp19a1b 

807/838 

F: 5'-ATA CCA CCT GGC AGC AAA AGA GC 

-3' 

-4.2805 71.24 0.1603 

 

 

96 hpf R: 5'-CCA CAA GCT TTC CCA TTT C-3' 
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2.6 Zebrafish embryo fadrozole and fadrozole+E2 exposure 

Fertilized eggs were cleaned and disinfected with 0.4 ppm methylene blue for 1-2 min and 

then randomly sorted into six treatment groups (4-8 replicates per group), namely control 

dimethylsulfoxide (DMSO, 0.01% v/v), control 17β-estradiol (E2 10 nM), 10 (38.5 nM) or 50 

μg/L (193 nM) fadrozole (Sigma-Aldrich, stock solution 0.0025 g/5mL in DMSO; final DMSO 

concentration was 0.01% in all treatment groups), 10 F+E2, and 50 F+ E2. Embryos/larvae were 

subsequently raised as described above in Section 2.3.  

 

2.7 Morpholino knockdown 

 Gene-Tools (Philomath, OR) designed the 25 base morpholino sequence to block initiation 

of translation of zebrafish cyp19a1b by overlapping the translational start codon. The cyp19a1b-

MO sequence was 5’-TTACCACATGCTCCATCATCACCTC-3’ and was fluorescein-labeled. 

The designed sequence was aligned (Fig. 6) with the cyp19a1a (gonad form) sequence to confirm 

minimal similarity in the region by the start codon. A standard control morpholino provided from 

Gene-Tools (control MO, 5’-CCTCTTACCTCAGTTACAATTTATA-3’) was used as injection 

control. All MOs were diluted to 250 µM stock (stored at -20 °C) with RNase-free water for 

injection, vortexed well and briefly centrifuged before using. A standard microinjection set up was 

used in our study. Aluminosilicate capillary needles were pulled on a model P-97 needle puller 

with the following program: Heat 550, Pull 190, Velocity 170, Time 170, and Pressure 500. The 

needle was loaded with MOs using a microloader tip (Eppendorf, Hamburg, Germany) and 

inserted into a 3-axis micromanipulator (Narshige, Greenvale, NY). A MDI PM 1000 Cell 

Microinjector (MicroData Instrument Inc. S. Plainfield, NJ) was used to control the injection time 
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and pressure. Incoming pressure varied between 19 to 24 psi depending on the needle opening 

size. Embryos were lined up on the edge of a microscope slide placed in petri-dish and embryo 

injection was conducted at the one to two cell-stage with MO volume around 3-5 nL. Incorporation 

of injection was confirmed under a fluorescence microscope (Nikon 90i Eclipse) (Fig. 7). 

 

Figure 6. Alignment MO, cyp19a1b, and cyp1a1 sequences in the region by the translational start 

codon.  

 

 

Figure 7. Morpholino incorporation. Non-injected embryo at 5 hpf (A). ZF embryo with 

morpholino at 5 hpf (B) and 4 dpf (C). These pictures confirm effective injection and incorporation 

of morpholino. 
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2.8 Developmental deformities 

At 96 hpf, photos were captured with a MicroFire® camera (Optronics, Goleta, CA) 

attached to a Zeiss Stemi 2000-C Stereo Microscope (Jena, Germany) using Picture FrameTM 

Application 2.3 software (Optronics). Five larvae per replicate at a time (ultimately 20 per group) 

were anesthetized in 300 mg/Ltricaine methanesulfonate (MS-222) and 600 mg/L sodium 

bicarbonate. Larvae were immediately placed on a microscope slide with a chamber containing 

5% methyl cellulose and two photos were taken per fish: dorsal view and lateral view. Anatomical 

structures to determine morphological development were recorded as previously described 

(Brannen et al., 2010) with modifications (Corrales et al., 2014b). Feature analysis included body 

length, tail shape, optic vesicle, pectoral fins, heart, swim bladder, abdomen, and craniofacial 

morphology (Fig. 8). 
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Figure 8. Representative measured morphological endpoints from supplemental materials of 

(Corrales et al., 2014b).  

 

 

Blind to treatment measurements and scoring of the anatomical structures were recorded 

using ImageJ software (Schneider et al., 2012). The scale was set to the number of pixels per 

millimeter using a 1-mm micrometer scale. The total body length along the spine was measured 

followed by the area of the swim bladder, area of the pericardial and yolk sac edema when present, 
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area the optic vesicle (eye). Scores for tail and pectoral fin shapes were assigned following specific 

criteria in Table 2.  

Table 2. Larval tail and pectoral fin shape scoring criteria  

Score Tail shape Pectoral fin shape 
4 Normal Normal 

3 bent >0 degrees & <45degrees 1 fin abnormal 

2 bent ≥45 degrees but < 90 1 fin severely abnormal or 2 fins 

mild/moderately abnormal 

1 ≥ 90 or kinked 1 fin missing or 2 fins severely 

abnormal 

Scoring criteria: 4 = normal, 3 = mild abnormality , 2 = moderate abnormality , and 1 = severe abnormality 

 

2.9 Histology and gonad maturation 

 BaP-exposed and cyp19a1b-MO injected zebrafish were euthanized at 52 dpf and fixed in 

Dietrich’s fixative (30% ethanol, 10% formalin, and 2% glacial acetic acid v/v) for two weeks at 

room temperature, followed by dehydration in increasing gradients of ethanol (70-100%). After 

cleared in ClearifyTM (American Master Tech Scientific, Inc., Lodi, CA), fish were embedded in 

melted paraffin (Paraplast X-tra, Sigma-Aldrich) and sectioned (5 μM thickness) with a microtome 

(Olympus American Inc., San Jose, CA). For histopathological examination, sections were stained 

with hematoxylin and eosin with the following procedure: Sections were deparaffinized in 

Clearify™ and hydrated with a gradient of ethanol series (100% twice, 95%, 90%, 80%, 70%) 

each for 2 min and placed in flowing tap water for 5 min. After staining in Harris’s hematoxylin 

for 1 min and washing in tap water for 3 min, slides were incubated in 1% acid alcohol solution (2 

mL HCl + 200 mL 100% ethanol) for 21 seconds. Sections were rinsed in water and placed in 

0.125% ammonium hydroxide solution (200 mL deionized water + 0.25 mL ammonium 

hydroxide) for 1 min until tissues turned blue. After rinsing 2 min in water and 6 min in 95% 

ethanol, sections were stained in eosin for 30 sec and rinsed in 100% ethanol at least twice until 
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color differentiation was correct. Cover slipped slides were assessed under the microscope, and 

gonad maturation were scored to either immature ovary, transition male, mature testis, or mature 

ovary (Fig. 26) based on (Kallivretaki et al., 2007). 

 

2.10 Sample preparations and HPLC quantitation of estrogen concentrations 

Non-exposed zebrafish embryos were collected at 4, 48, and 72 hpf. Also, exposed 

embryos, either to BaP (10 and 50 µg/L), fadrozole (50 µg/L), or injected with cont-MO or 

cyp19a1b-MO were collected at 48 hpf (n=3, 25 embryos/pool). Embryos/larvae were washed 

with deionized water three times then sorted in 1.5 mL ultra-centrifuge epitubes. Water was 

completely removed, and 0.5 mL of 0.2 N perchloric acid (Sigma-Aldrich) was added. Then 

embryos/larvae were homogenized on ice for three cycles (each cycle consisted of 10 sec 

homogenization followed by 10 sec rest), and sonicated for 20 min (Branson 3510). After 

centrifugation at 40,000 rpm (98,400 x g) for 30 min at 23ºC using an Optima Max Ultracentrifuge, 

the supernatant was transferred to a test tube and an additional 0.5 mL of 0.2 N perchloric acid 

was added. Two additional extractions were performed as described. All combined supernatants 

were evaporated to dryness using a stream of nitrogen gas at 45ºC in a water bath. After 

evaporation, the dried residue was reconstituted in 100 µL of the mobile phase consisting of HPLC 

grade acetonitrile:water (40:60% v/v). For sample cleanup, a Waters HPLC system consisting of 

717 plus autosampler, 600 pump, and 2489 UV detector, and Empower 3 software was used. A 

volume of 96 µL of each sample was injected onto a C18 column (100 mm length, 4.6 mm 

diameter, and 3 µm particle size, Phenomenex # 00D-0075-E0) using a 0.6 mL/min flow rate 

(pressure was 1560±30 psi) and a 15 min run time. The wavelength of UV detector was 280 nm. 

The eluent was collected manually 1 min before the retention time of the E2 standard peak and 2 
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min after for each sample. This eluent was dried and then reconstituted with 60 µL of mobile phase 

(HPLC grade acetonitrile:water (50:50% v/v)). Because the limit of detection of E2 using UV 

detection was only 500 nM, a different system with more sensitive fluorescence detection was 

used for ultimate E2 quantitation. The second system was a Waters HPLC system with 717 plus 

autosampler, 515 isocratic pump, and 2475 fluorescent detector and a HP 3395 integrator system. 

Detection of E2 concentrations was done by injecting 50 µL of cleaned-up sample, onto a C18 

column (150 mm length, 4.6 mm diameter, and 3 µm particle size, Phenomenex # 00F-4311-E0) 

at 0.6 mL/min flow rate (Pressure was 1340±150 psi) and a 14 min run time. The fluorescent 

detector was used at 280 nm for excitation wavelength, 310 nm for emission wavelength, 30 nm 

for gain, and 600 nm for EUFS. The retention time of E2 was 8.479±0.130 min. The external 

standard curve of known E2 concentrations ranged from 2.344 to 300 nM and was analyzed as 

described above with the fluorescence system (Table 3, Fig. 9). To verify the recovery of E2 during 

the clean-up method, a 225 nM stock of E2 was processed as described above. The E2 recoveries 

(n = 3) for E2 during sample clean-up were 95.8 ± 1.23 %.  
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Table 3. Estradiol standard curve concentrations. 

Area under the curve Conc. (nM) Calculated Conc. using Std. curve (nM) 

13018224 300 301.6 

6340211 150 146.7 

3273810 75 75.52 

1685863 37.5 38.68 

808534 18.8 18.32 

445403 9.38 9.90 

219247 4.69 4.65 

135639 2.34 2.71 

The correlation coefficient was 0.999895. 

 

 

 

Figure 9. Estradiol standard curve graph. 
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2.11 Statistics  

 Results were analyzed using GraphPad Prism 5.0 (La Jolla, CA) and presented as mean ± 

S.E. Mortality, hatching, qRT-PCR, and data of developmental deformities were analyzed using 

the 1-way ANOVA followed by Neuman–Keulls post hoc test. Deformity incidence by treatment 

across score classifications was analyzed by 2-way ANOVA. Statistical significance was accepted 

at p ≤ 0.05.  
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CHAPTER 3: RESULTS 

 

3.1 BaP Waterborne Embryo-Larval Results 

3.1.1 GC/MS BaP water concentration confirmation. 

 Actual BaP concentrations of BaP waterborne exposures were 7.6 ± 1.19 µg/L (for 10 

µg/L), and 37.5 ± 2.15 µg/L (for 50 µg/L). Collected at t = 0 for n=4 independent exposures.  

3.1.2 Effect of BaP on cyp19a1b mRNA expression in 96 hpf zebrafish larvae homogenates. 

 The RT-qPCR results showed that 10 and 50 μg/L BaP significantly decreased cyp19a1b 

mRNA expression of whole larvae extracts compared to controls at 96 hpf (Fig. 10).                                                                                         
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Figure 10. cyp19a1b mRNA expression in 96 hpf zebrafish larvae homogenates. Both BaP 

concentrations significantly reduced cyp19a1b mRNA-expression compared to control. Bars with 
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different letters are statistically significant (ANOVA, n = 3 replicates/treatment, 15 larvae/pool, 

p<0.05). 

 

3.1.3 Impacts of BaP exposure and BaP+E2 on mortality of zebrafish embryos/larvae  

 Zebrafish embryos/larvae exposed to waterborne concentrations of DMSO, BaP (10 and 

50 μg/L) alone or BaP + E2 (10 nM, 2.72 μg/L) for 96 hpf showed that 10 and 50 μg/L BaP 

significantly increased the mortality compared to control at 24 and 96 hpf.  Co-treatment of 10 nM 

E2 significantly decreased the mortality caused by 10 BaP. The highest mortality was in the 50 

BaP + E2 treatment group (Fig. 11).  
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Figure 11. Cumulative mortality of zebrafish larvae. BaP (10 and 50 μg/L) significantly 

increased the mortality compared to control at 24 and 96 hpf.  At 24 hpf, 10 BaP + E2 (10 nM) 

significantly decreased the mortality that was caused by 10 BaP alone, but 50 BaP + E2 

significantly increased the mortality at 96 hpf compared to all treatment groups (ANOVA; n = 4 

replicates/treatment, 50 larvae/pool, p<0.05). 



44 

 

3.1.4 Impacts of BaP exposure and BaP+E2 on hatching efficiency of zebrafish embryos 

 Hatching efficiency was significantly decreased by 10 and 50 μg/L BaP compared to 

control group at 48 hpf (Fig. 12). This effect was also observed in the BaP+E2 co-exposure, but 

no significant change in hatching efficiency was observed by any treatment at 72 hpf.  
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Figure 12. Hatching efficiency of zebrafish larvae. BaP (50 and 10 μg/L) significantly decreased 

the hatching efficiency compared to control at 48 hpf.  Also, 10 and 50 BaP + E2 (10 nM) 

significantly decreased the hatching efficiency at 48 hpf (ANOVA; n = 4 replicates/treatment, 50 

larvae/pool, p<0.05). 
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3.1.5 Impact of BaP exposure and estradiol co-exposure on larvae body length, optic vesicle, 

and swim bladder  

 Body length of 96 hpf larvae was significantly decreased from 3.68 ± 0.043 mm in control 

group to 3.26 ± 0.089 mm and 2.79 ± 0.09 mm by 10 and 50 µg/L BaP, respectively (Fig. 13A). 

While decreased body length by 10 BaP was restored by estradiol co-exposure, the 50 BaP + E2 

did not rescue the decreased body length mediated by 50 BaP alone.  

 Optic vesicle (eye) area of 96 hpf larvae was significantly reduced from 0.07 ± 0.0009 mm2 

in control group to 0.052 ± 0.004 and 0.041 ± 0.001 mm2  by 10 and 50 µg/L BaP, respectively 

(Fig. 13B). Following 10 BaP + E2 co-exposure, E2 significantly restored the decrease in optic 

vesicle area mediated by 10 BaP exposure. However, the 50 BaP + E2 co-exposure did not change 

the optic vesicle area reduction mediated by 50 BaP alone.  

 Control larvae had swim bladders with average areas of 0.024 ± 0.01 mm2 but in larvae 

from the 10 and 50 µg/L BaP groups, 100% of the larvae had uninflated swim bladders (Fig. 13C). 

E2 treatment alone also caused a decreased swim bladder area, with 15 of the 20 larvae having 

uninflated swim bladders.  
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Figure 13. Morphological changes in larvae caused by BaP waterborne exposure at 96 hpf. 

Both BaP 10 and 50 μg/L concentrations significantly reduced body length (A), optic vesicle area 

(B), and swim bladder (C).  Co-treatment with 10 nM E2 significantly counter-acted larval body 

length and optic vesicle size caused by 10 BaP (ANOVA, n = 4 replicates/ treatment, 50 larvae/ 

pool, p<0.05). 
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3.1.6 Impact of BaP exposure and estradiol co-exposure on larvae heart and yolk sac  

  Both BaP concentrations, 10 and 50 μg/L, caused pericardial edema (Fig. 14). Yolk sac 

edema area was significantly increased by BaP in a dose-dependent manner. Both pericardial and 

yolk sac edema caused by 10 μg/L BaP was significantly alleviated by estradiol co-exposure.  
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Figure 14. Morphological changes in larval heart and yolk sac caused by BaP waterborne 

exposure at 96 hpf. Both BaP concentrations significantly increased pericardial and yolk sac 

edema. E2 co-exposure significantly counter-acted the increased pericardial and abdominal edema 

caused by low but not the high BaP concentrations (ANOVA, n = 4 replicates/treatment, 5 larvae/ 

pool, p<0.05). 
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3.1.7 Impacts of BaP and estradiol co-exposure on larvae tail and pectoral fin shapes 

 Incidence of normal tail shape significantly decreased from 95% in the control group to 

20% in the 50 BaP and 50 BaP + E2 (Fig. 15A). Mild tail deformity incidence was significantly 

increased by 50 BaP and 50 BaP + E2, while the moderate tail deformity incidence was 

significantly increased by only 50 BaP + E2.  Both BaP concentrations and BaP + E2 co-exposure 

significantly decreased incidence of normal pectoral fin from 90% in control group to 50% and 

0%, respectively (Fig. 15B), moderate pectoral fin deformity incidence was significantly increased 

by 50 μg/L BaP. Only 50 μg/L BaP significantly increased the incidence of severe pectoral fin 

deformity.  
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Figure 15. Degree of larval morphological changes caused by waterborne BaP exposure at 

96 hpf. Incidence of normal tail shape (A) was significantly decreased by 50 μg/L BaP.  Both the 

10 and 50 μg/L BaP concentrations significantly decreased the incidence of normal pectoral fins 

(B). Treatment bars with different letters are statistically significant within a category (ANOVA, 

n = 4 replicates/treatment, 5 larvae/pool, p<0.05). Treatment groups and bar colors as in figure 11. 
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Figure 16. Representative morphological anomalies mediated by BaP exposure in larvae at 

96 hpf. Red arrows demonstrate changes in swim bladder. Yellow arrows show changes in larval 

tail. Brown arrows represent the abnormal pectoral fins. Purple and blue arrows indicate pericardial 

and yolk sac edema, respectively. 
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3.2 cyp19a1b-MO Knockdown Results 

3.2.1 Impacts of cyp19a1b-MO knockdown and cyp19a1b-MO+E2 on zebrafish 

embryos/larvae mortality  

 Embryos/larvae mortality significantly increased from about 20% in control-MO group to 

about 40% by cyp19a1b-MO at all-time points (24, 48, 72, and 96 hpf) (Fig. 17). E2 (10 nM) 

significantly prevented the increased mortality mediated by cyp19a1b knockdown. 
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Figure 17. Cumulative mortality of zebrafish larvae. Injection of cyp19a1b-MO significantly 

increased the mortality compared to injection of control MO at 24, 48, 72, and 96 hpf. E2 (10 nM) 

significantly reduced the mortality caused by cyp19a1b MO at all-time points (ANOVA; n = 8 

replicates/treatment, 30 larvae/ pool, p<0.05). 
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3.2.2 Impacts of cyp19a1b-MO knockdown and CYP19a1b-MO+E2 on hatching efficiency of 

zebrafish embryos 

 At 48 hpf, cyp19a1b-MO significantly decreased the percent of hatched larvae from 84% 

in control-MO group to 35% (Fig. 18). cyp19a1b Morphants that were treated with E2 hatched 

similarly to controls. At 72 hpf, there was no significant change in hatching percentage by any of 

the treatments.  
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Figure 18. Hatching efficiency of zebrafish larvae. Injection of cyp19a1b-MO significantly 

decreased the hatching efficiency compared to injection of control-MO at 48 hpf. Decreased 

hatching efficiency mediated by cyp19a1b-MO was rescued by E2 treatment (ANOVA; n = 4 

replicates/treatment, 30 larvae/pool, p<0.05). Treatment groups and bar colors as in Figure 17.  
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3.2.3 Impacts of cyp19a1b-MO knockdown and cyp19a1b-MO+E2 on larval body length, 

optic vesicle, and swim bladder 

 cyp19a1b-MO significantly decreased larval body length from 3.93 ± 0.07 mm in the 

control-MO group to 3.31 ± 0.06 mm (Fig. 19A). Estradiol treatment significantly restored the 

decreased larval body length in cyp19a1b morphants.  

 Larval optic vesicle area significantly decreased from 0.079 ± 0.001 mm2 in control-MO 

group to 0.063 ± 0.001 mm2 in cyp19a1b morphants (Fig. 19B). The cyp19a1b-MO + E2 treatment 

significantly counteracted the reduction in larval optic vesicle area. 

 In all treatment groups (10 nM E2, cyp19a1b-MO and cyp19a1b-MO +E2) deflated larval 

swim bladders were observed (Fig. 19C).  
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Figure 19. Larval morphological changes at 96 hpf caused by injection of cyp19a1b-MO. 

cyp19a1b knockdown significantly reduced body length (A), optic vesicle size (B), and swim 

bladder inflation (C), while 10 nM E2 treatment significantly restored both body length and optic 

vesicle area (ANOVA, n = 4 replicates/treatment, 50 larvae/ pool, p<0.05). 
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3.2.4 Effects of cyp19a1b-MO and cyp19a1b-MO+E2 on zebrafish larval heart and yolk sac.  

 Significantly increased pericardial and yolk sac edema was measured in cyp19a1b 

morphants with respective average areas of 0.062 ± 0.018 and 0.084 ± 0.0264 mm2 (Fig. 20). Both 

types of edemas were significantly alleviated by E2 treatment. 

 

Figure 20. Larval morphological changes at 96 hpf caused by injection of cyp19a1b-MO. 

cyp19a1b-MO knockdown significantly increased pericardial edema and yolk sac edema. In 

cyp19a1b-MO + 10 nM E2 larvae, pericardial and yolk sac areas were not different than in controls 

(ANOVA, n = 4 replicates/treatment, 50 larvae/pool, p<0.05). 
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3.2.5 Impacts of cyp19a1b-MO and cyp19a1b-MO+E2 on larvae tail and pectoral fin shapes 

Incidence of normal tail shape was significantly decreased from 80% in the control-MO 

group to 25% by cyp19a1b-MO (Fig. 21A). Also, cyp19a1b morphants had significantly increased 

incidence of severe tail shape deformities compared to the control-MO group. In morphants co-

treated with E2, no significant reduction in normal tail shape was noted. There were no significant 

changes in pectoral fin shape observed in cyp19a1b morphants (Fig. 21B).  
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Figure 21. Degree of larval morphological changes at 96 hpf caused by injection of cyp19a1b-

MO. Incidence of normal tail was significantly decreased by injection of cyp19a1b-MO. Also, 

injection of cyp19a1b-MO significantly increased the incidence of severe tail deformity (A). 

Treatment of cyp19a1b morphants with E2 restored incidence of normal tail and decreased the 

incidence of severe tail to control levels (A). Treatment bars with different letters are statistically 

significant within a category (ANOVA, n = 4 replicates/treatment, 5 larvae/pool, p<0.05). 

Treatment groups and bar colors as in Figure 17. 
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 Figure 22. Representative morphological anomalies mediated by cyp19a1b-MO observed in 

larvae at 96 hpf. Red arrows demonstrate changes in swim bladder. Yellow arrows show changes 

in larval tail. Purple and blue arrows display pericardial and abdominal edema, respectively. 

 

 

 

 

 

 

 

 

 



57 

 

3.3 Fadrozole waterborne embryo-larval results 

3.3.1 Effects of fadrozole and fadrozole+E2 on zebrafish embryos/larvae mortality 

 At all-time points (24, 48, 72, and 96 hpf), mortality of embryos/larvae was significantly 

increased by 10 and 50 μg/L (38.5 and 193 nM) fadrozole compared to control (Fig. 23). Mortality 

mediated by 10 μg/L fadrozole was significantly rescued by 10 fadrozole+E2 co-treatment. In 

contrast, 50 fadrozole+E2 significantly enhanced the mortality from 5% in 50 fadrozole alone to 

11%.  
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Figure 23. Cumulative mortality of zebrafish larvae exposed to fadrozole and fadrozole+E2. 

Both 10 and 50 μg/L fadrozole significantly increased mortality compared to control at 24, 48, 72, 

and 96 hpf. While 10 nM E2 significantly rescued the mortality caused by 10 μg/L fadrozole, 50 

μg/L fadrozole + E2 co-treatment significantly increased the mortality compared to all treatment 

groups (ANOVA; n = 4 replicates/treatment, 50 larvae/pool, p<0.05). 
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3.3.2 Effects of fadrozole and fadrozole+E2 on zebrafish hatching efficiency  

 At 48 hpf, the percentage of hatched larvae significantly decreased from 69% in the control 

group to 2%, 4%, 11%, and 2% by 10, 50 μg/L fadrozole and 10 fadrozole+E2, 50 fadrozole+E2, 

respectively (Fig. 24). Only the 10 μg/L fadrozole treatment group had a significantly decreased 

percent hatched (97%) at 72 hpf.  
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Figure 24. Hatching efficiency of zebrafish larvae. Both the 10 and 50 μg/L ± E2 fadrozole 

groups had significantly decreased hatching efficiency compared to control at 48 hpf. Only 10 

μg/L fadrozole significantly decreased the hatching efficiency at 72 hpf (ANOVA; n = 4 

replicates/treatment, 50 larvae/pool, p<0.05). Treatment groups and bar colors as in Figure 23. 
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3.3.3 Effects of fadrozole and fadrozole+E2 on larval body length, optic vesicle, and swim 

bladder 

 Both 10 and 50 μg/L fadrozole significantly decreased larval body length from 3.76 ± 

0.0204 mm in the control group to 3.34 ± 0.04 and 3.20 ± 0.12 mm, respectively (Fig. 25A). E2 

co-treatment significantly restored the decrease in larval body length mediated by 10 and 50 μg/L 

fadrozole.  

 Larval optic vesicle area was significantly decreased from 0.07 ± 0.002 mm2 in controls to 

0.056 ± 0.003 and 0.053 ± 0.003 mm2 by 10 and 50 μg/L fadrozole, respectively (Fig. 25B). These 

decreases in larval optic vesicle were significantly counteracted by E2 co-treatment. 

 Deflated swim bladder was observed in all treatment groups (Fig. 25C). Larval swim 

bladder area was 0.0114 ± 0.001 mm2 in controls. One hundred percent of the 10 and 50 μg/L 

fadrozole-treated larvae had uninflated swim bladders. The swim bladder area was significantly 

increased by fadrozole + E2 co-treatments but not to the area of controls.  
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Figure 25. Morphological changes in larvae caused by fadozole waterborne exposure at 96 

hpf. Both 10 and 50 μg/L fadrozole concentrations significantly reduced body length (A), optic 

vesicle area (B), and swim bladder area (C).  The 10 nM E2 co-treatment significantly counter-

acted the decreases in larval body length, optic vesicle, and swim bladder area caused by both 

fadrozole concentrations (ANOVA, n = 4 replicates/treatment, 50 larvae/pool, p<0.05). 
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3.3.4 Effects of fadrozole and fadrozole+E2 on larval heart and yolk sac 

 Pericardial and yolk sac edema were detected in zebrafish larvae following 10 and 50 μg/L 

fadrozole exposure. Average pericardial edema area was 0.0199 ± 0.008 and 0.025 ± 0.005 mm2 

in the 10 and 50 μg/L treatment groups, respectively (Fig. 26). E2 co-treatment significantly 

decreased pericardial edema area. The average yolk sac edema area in 10 μg/L fadrozole group 

was 0.035 ± 0.012 and 0.043 ± 0.005 mm2 in the 50 μg/L fadrozole group. Yolk sac edema 

mediated by both fadrozole treatments was significantly alleviated by E2 co-treatment.  

Treatment group

A
re

a
 (

m
m

2
 )

C
ont.D

M
S
O

10
 F

50
 F

10
 F

+E
2

50
 F

+E
2

C
ont.D

M
S
O

10
 F

50
 F

10
 F

+E
2

50
 F

+E
2

0.00

0.02

0.04

0.06

a

b b

a
a

a

b b

a

a

Pericardial edema Yolk sac edema

 

Figure 26. Morphological changes in heart and yolk sac edema caused by fadrozole 

waterborne exposure at 96 hpf. Both fadrozole concentrations significantly increased pericardial 

and yolk sac edema. E2 co-exposure significantly counteracted both types of edema caused by 

fadrozole alone (ANOVA, n = 4 replicates/treatment, 5 larvae/pool, p<0.05). 
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3.3.5 Effects of fadrozole and fadrozole+E2 on larval tail and pectoral fin shapes 

 Incidence of normal tail shape was decreased from 90% in the controls to 45% and 50% 

by 10 and 50 μg/L fadrozole, respectively (Fig. 27A). Estradiol co-treatment significantly 

counteracted the reduction of normal tail shape mediated by fadrozole treatments, but the incidence 

of pectoral fin shape was not changed by any fadrozole treatment (Fig. 27B). 
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Figure 27. Degree of larval morphological changes caused by waterborne fadrozole exposure 

at 96 hpf. Incidence of normal tail shape (A) was significantly decreased by 10 and 50 μg/L 

fadrozole.  E2 co-treatment significantly restored the decreased incidence of normal tail shape in 

larvae from both fadrozole concentrations (A). Treatment bars with different letters are statistically 

significant within a category (ANOVA, n = 4 replicates/treatment, 5 larvae/pool, p<0.05). 

Treatment groups and bar colors as in Figure 23. 
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3.4 Effects of BaP, fadrozole, and cyp19a1b knockdown on estrogen concentrations in 

zebrafish embryos. 

Clean-up chromatography followed by reverse phase-HPLC with fluorescent detection was 

used to quantiate the concentration of E2 in control zebrafish embryos/larvae and treated-

embryos with either BaP (10 and 50 µg/L), fadrozole (50 µg/L), or injected with cyp19a1b-MO. 

Estradiol significantly increased during development in a time-dependent manner from 78.57 ± 

4.08 pg/embryo in 4 hpf to 137 ± 6.55, and 170 ± 9.31 pg/larvae at 48 and 72 hpf, respectively 

(Fig. 28A). 

 Estradiol concentrations (137 ± 6.55 and 131 ± 4.23 pg/embryo) of 48 hpf in control groups 

(control-DMSO and cont-MO) significantly decreased to 66.7 ± 10.8, 86.0 ± 19.0, 77.4 ± 14.5, 

and 57.2 ± 0.51 pg/embryo by 10 BaP, 50 BaP, 50 fadrozole, and cyp19a1b-MO, respectively 

(Fig. 28B) 
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Figure 28. E2 concentrations in normal and treated zebrafish embryos/larvae. Estradiol 

concentrations in non-exposed zebrafish embryos significantly increased in a time-dependent 

manner from 4 hpf to 72 hpf (A). Both BaP concentrations, 50 fadrozole, and cyp19a1b-MO 

significantly decreased E2 in 48 hpf larvae compared to control groups (B) (ANOVA, n = 3 

replicates/treatment, 25 embryos or larvae/pool, p<0.05). 
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3.6 Preliminary data of effects of BaP and cyp19a1b knockdown on zebrafish gonad 

maturation 

 Histological assessments of gonad maturation of 52 dpf zebrafish that were exposed to 10 

and 50 μg/L BaP from 2 – 96 hpf and matured in clean water or had transient cyp19a1b knockdown 

during early life are shown in Table 4 and Fig. 29. The number of biological replicates was not 

enough to evaluate the gonad maturation end point due to increased mortality observed during 

maturation mediated by either BaP exposure or cyp19a1b knockdown. In future studies designed 

to assess the effects of BaP exposure and cyp19a1b inhibition on gonad maturation, lower 

concentrations of BaP and aromatase inhibitor are suggested.   

Table 4. Gonad maturation at 52 dpf. Observed percentage of immature ovary, 

transitional testis, mature ovary, or mature testis following BaP or cyp19a1b-MO 

treatment. 

Gonad Maturation 

Cont. DMSO 

(n=15) 

10 BaP   

(n=13) 

50 BaP      

(n=13) 

cyp19a1b-MO 

(n=9) 

Immature ovary  86% 23% 69% 55% 

Transition male  0% 23% 0% 11% 

Mature ovary  0% 7% 7% 0% 

Mature testis  13% 46% 30% 33% 
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Figure 29. Representative zebrafish gonad maturation at 52 dpf. Immature ovary containing 

perinucleolar oocytes (arrows) (A), ovary transition to testicular tissue distinguished by 

deteriorating oocytes (arrow) and spermatogonial cysts (double arrows) (B), mature testis (C), and 

mature ovary with perinucleolar (single arrow) and cortical alveolar (double arrows) oocytes (D).
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CHAPTER 5. DISCUSSION 

 

The focus of this study was on brain aromatase cyp19a1b. As discussed in the introduction, 

teleosts are unique from most mammals because they express two distinct aromatase genes, one 

that is primarily expressed in the brain and one that is primarily expressed in the gonad. Yet when 

nucleotide sequences are compared, little functional divergence among vertebrate aromatases 

suggests similar functionality, though transcription of these genes can be highly variable (Wilson 

et al., 2005). In fish, brain aromatase activity is higher up to one thousand times compared to brain 

aromatase activity in mammals (Callard et al., 1981, Pasmanik and Callard, 1985). The ability to 

synthesize estrogen in the fish brain has been suggested to be associated with continuous 

neurogenesis (Pellegrini et al., 2007). Other proposed roles of neuronal aromatase in various fish 

species include reproduction-related vocalizations (midshipman, (Forlano et al., 2001, Dong et al., 

2008) and sex determination (sea bass, medaka, pejerrey and wrasse, Blazquez and Pieferrer 2004; 

Marsh et al., 2006; Melo and Ramsdell 2001; Strobl-Mazzulla et al., 2005). Early developmental 

expression of cyp19a1b has been reported in zebrafish (Brion et al., 2012, Trant et al., 2001, 

Sawyer et al., 2006, Menuet et al., 2005) and in Fundulus by our lab (Dong et al., 2008). 

Soon after the recognition of the unique brain form of aromatase, it was discovered that its 

expression was inducible by estrogenic compounds (Kuhl et al., 2005; Tchoudakova et al., 2001). 

By now, the effects of many environmental contaminants on brain aromatase have been elucidated. 

For example, 10 nM E2 induced cyp19a1b mRNA expression and enzyme activity in zebrafish 

embryos/larvae (Menuet et al., 2005). Also ethynylestradiol (EE2), a potent estrogenic 
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contaminant in the aquatic environment, induced cyp19a1b protein in zebrafish larvae in both 

dose- and time-dependent manners (Vosges et al., 2010). cyp19a1b mRNA was also induced in 

male goldfish exposed to EE2 (10 nM) (Martyniuk et al., 2006). Male-to-female sex reversal in 

medaka was associated with induction of cyp19a1b expression and activity following 

dichlorodiphenyltrichloroethane (DDT) exposure (Kuhl et al., 2005). With respect to BaP’s ability 

to disrupt aromatase gene expression and activity, our previous studies have used the 

environmentally relevant estuarine fish Fundulus heteroclitus. Initial studies with RT-qPCR 

showed no significant effect on cyp19a1b expression in either BaP–exposed adult or embryo 

Fundulus which was attributed to high inter-fish variability (Patel et al., 2006). In contrast, in situ 

hybridization showed that BaP significantly decreased cyp19a1b expression in both Fundulus 

adults and embryos (Dong et al., 2008).  

While Fundulus is a useful model for studying potential consequences of direct 

environmental contamination and ecosystem effects (e.g. Superfund sites like the Elizabeth River, 

Virginia (Wills et al., 2010)), they prove harder to use for mechanistic analyses for several reasons. 

Their genome is not fully annotated and available. Also, Fundulus develop more slowly, and MO 

studies are harder to perform in this model. For these reasons, in this study zebrafish were used to 

further investigate the effects of cyp19a1b inhibition by BaP on the early development. Both 

species show similar developmental deformities (e.g. cardiac and body shape defects) upon 

exposure to BaP (Wassenberg and Di Giulio, 2004, Corrales et al., 2014b, Fang et al., 2013, Fang 

et al., 2015, Goodale et al., 2013, Andreasen et al., 2002, Knecht et al., 2013, Clark et al., 2010, 

Wills et al., 2009, Wassenberg et al., 2002). Furthermore, in both species cyp19a1b gene 

expression was decreased following BaP exposure (Fig. 10 and Dong et al., 2008). RT-qPCR 

showed significantly decreased cyp19a1b mRNA expression in 96 hpf zebrafish larvae exposed to 
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nominal BaP-waterborne concentrations of 10 and 50 µg/L. Upregulation of brain aromatase 

cyp19a1b by E2 in Fundulus heteroclitus (Greytak et al., 2005) has been suggested to be mediated 

by estrogen response element (ERE) and estrogen receptor (ER) binding sites in the cyp19a1b 

promotor (Dong et al., 2008, Dong and Willett, 2008).  Likewise, the brain aromatase cyp19a1b 

promotor in zebrafish contains ERE and ER binding sites (Kazeto et al., 2003, Mouriec et al., 

2009b, Le Page et al., 2008, Le Page et al., 2006, Menuet et al., 2005). Together ERE and ER are 

responsible for the neuronal upregulation of cyp19a1b by estrogen and androgen hormones 

(Mouriec et al., 2009a, Menuet et al., 2005, Handa et al., 2008). Expression of esr1 and esr2b were 

temporally and locationally parallel with early expression of cyp19a1b in zebrafish embryos, and 

blocking these receptors by ICI182,780 (ER antagonist) decreased the expression of cyp19a1b 

suggesting that esr1 and esr2b are important in the regulation of the basal expression of cyp19a1b 

(Mouriec et al., 2009b). Furthermore, knockdown of zebrafish esr1 and esr2b has shown that E2-

inducible cyp19a1b expression was specifically mediated by esr2b (Griffin et al., 2013). 

BaP is lethal and teratogenic to zebrafish embryos with LC50 of 5.1 µM (1285 µg/L) and 

an EC50 of 0.52 µM (131 µg/L), respectively (Weigt et al., 2011). Our previous work found that 

environmentally relevant concentrations of BaP (2.4 and 24 µg/L) increased the larval mortality 

to 38.5% and 25%, respectively compared to control (Fang et al., 2013). Comparatively, in this 

study both BaP concentrations 10 and 50 µg/L increased the mortality by 7.5% and 21%, 

respectively. The mortality typically increased within the first 24 hpf, and then remained stable 

until 72 hpf. In another study, zebrafish parents and their embryos were exposed continuously to 

42 µg/L BaP, and the mortality of zebrafish embryos significantly increased to 55.2% within 24 

hpf, and to 68.5% at 96 hpf  (Corrales et al., 2014a). The higher mortality of zebrafish embryos in 

Corrales study was likely due the multigenerational aspects of the exposure. Increased 
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embryo/larval mortality mediated by BaP in our study is a well-established impact of PAHs 

waterborne exposure (Carls and Thedinga, 2010, Barron et al., 2004, Hawkins et al., 2002, Carls 

et al., 1999, Fang et al., 2013, Bugiak and Weber, 2010). Because mortality is a relatively blunt 

measure of developmental toxicity, our study was designed to measure more subtle developmental 

deformities that might in turn contribute to either reduced overall fitness and/or subsequent 

mortality.  

That said, the potential role for cyp19a1b to be mediating a role in survival was shown by 

the fact that cyp19a1b knockdown and both aromatase inhibitor doses (10 and 50 µg/L fadrozole) 

significantly increased mortality of zebrafish embryos and larvae at all time points compared to 

control groups. This finding was consistent with the increased mortality of zebrafish larvae that 

were exposed to aromatase inhibitors including fadrozole (Santos et al., 2014, Allgood et al., 

2013).  

Because of aromatase’s role in estrogen synthesis, embryos/larvae were provided 

supplemental E2 to mechanistically validate and rescue the aromatase inhibition caused by either 

BaP, cyp19a1bMO or fadrozole. With HPLC analyses, it was confirmed that all three of these 

aromatase inhibitory mechanisms decreased E2 concentrations in 48 hpf larvae by 43 – 63 % (Fig. 

28b). Similarly, co-treating embryos/larvae with E2 (10 nM) was able to decrease mortality 

mediated by 10 BaP, 10 fadrozole and cyp19a1b-MO knockdown.  

It is known that estrogen is important in many physiological processes. In humans, E2 

concentrations vary based on gender and developmental stage. In adult men, the normal E2 

concentrations range from 21-30 pg/mL (parts per trillion) (Baykan et al., 2013). Men with 

aromatase deficiency had significantly lower concentrations ranging from undetectable to 7 pg/mL 

(Morishima et al., 1995, Chen et al., 2015). In adult women, E2 concentrations vary. Typical 
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premenopausal women have a baseline of 55 pg/mL of E2 that dramatically increases during the 

menstrual cycle phases to reach up to 106 pg/mL at the mid luteal phase (Rothman et al., 2011). Also, 

postmenopausal women or those with aromatase deficiency have low E2 concentrations in the range of 5 - 

10 pg/mL (Conte et al., 1994, Rothman et al., 2011). Similarly, aromatase knockout mice (ArKO) showed 

a significant reduction in E2 concentrations down to 6-8 pg/mL (Ling et al., 2004). Adult male and female 

zebrafish have reported serum E2 concentrations of ~5 and 11 ng/mL, respectively (ppb) (Deng et al., 2010). 

For comparison, we found that during early zebrafish development E2 concentrations increased in time-

dependent manner from 78.57 ± 4.08 pg/embryo in 4 hpf to 137 ± 6.55 and 170 ± 9.31 pg/larvae at 48 and 

72 hpf, respectively. When expressed on a per weight basis, whole embryo E2 was ~650 ppb in controls.  

Like in the ArKO mice, the E2 concentration of cyp19a1b-morphant 48 hpf embryos was significantly 

reduced to 57.2 ± 0.51 pg/embryo (a ~60% reduction). Also, 10 g/L BaP, 50 g/L BaP, and 50 g/L 

fadrozole significantly decreased embryo/larval E2 concentrations. We believe that the HPLC method used 

herein was more reliable and specific than some of our previous unpublished work that quantitated E2 in 7 

dpf larvae and 21 dpf zebrafish by ELISA methods.  In those studies we found E2 concentrations in control 

fish to be 250-300 pg/larvae and 500 pg/fish respectively (data not published).  Compared to another study 

that quantified E2 concentrations in 48 hpf embryos by HPLC- PDA detection, our control fish E2 

concentrations were slightly lower (137 vs. 500 pg/embryo) (Trickler et al., 2014) potentially because FLU 

detection provided more specificity.     

While E2 was able to rescue mortalities associated with the low BaP and fadrozole 

concentrations, the 50 BaP+E2 and 50 fadrozole+E2 significantly increased the mortality of 

zebrafish embryos and larvae compared to the mortality caused by either 50 BaP and 50 fadrozole 

alone. BaP is a ligand of aryl hydrocarbon receptor (AhR), which is a member of the basic-helix-

loop-helix Per (Period)–ARNT (aryl hydrocarbon nuclear translocator)–SIM (single minded) 

(bHLH-PAS) family (Gu et al., 2000). After activation by ligands like BaP or TCDD, AhR binds 
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ARNT and associates with AhR response elements (XRE) on the target genes, such as cyp1a1, and 

cyp1b1 (Hankinson, 1995). These genes were induced due to the induction of AhR pathway in 96 

hpf zebrafish exposed prenatally and developmentally to waterborne BaP (Fang et al., 2015). 

Induction of these genes is mechanistically involved in BaP’s carcinogenicity and teratogenicity 

(Mandal, 2005). However, it is also established that CYP1A1 and CYP1B1 enzymes can 

metabolize E2 (Lee et al., 2003), and this is one of the proposed mechanisms in the cross talk 

between AhR and ER pathways (Matthews and Gustafsson, 2006). In fact, the larval E2 

concentrations were decreased in BaP compared to control 48 hpf larvae in this study.  

Cross-talk has also been found because some E2-induced genes are inhibited by activation 

of AhR (reviewed in: Safe and Wormke, 2003). As mentioned previously, the promoter of 

zebrafish cyp19a1b has an ERE which is a mediator of cyp19a1b upregulation by E2, but the 

cyp19a1b promotor also has AhR recognition site (Tong and Chung, 2003). A recent study 

specifically evaluated the cross talk between the AhR and ER pathways in goldfish by measuring 

the effects of E2, BaP, and the combination of E2+BaP on the expression of ahr2, ER, and cyp1a 

as well as circulating vitellogenin concentrations and CYP1-enzyme activity. BaP induced ahr2 

and cyp1a in a dose-dependent manner but antiestrogenic activity was noted in E2 + lower 

concentrations of BaP (20 and 50 g/L) reflected by inhibited ahr2 and cyp1a expression and a 

decrease in vitellogenin concentrations and, thus, a “reciprocal inhibiting mode of ER-AhR 

interaction” was suggested (Yan et al., 2012).  

Similar to the Yan study, the effects caused by the lower concentrations of BaP were 

rescued by E2 treatment, whereas the higher doses in co-treatment often showed enhanced toxicity. 

Our co-treatment studies further support the potential for AhR and ER cross-talk (Fig. 30).  Yet, 

the reason for enhanced incidence of mortality by co-exposure of E2 and high doses of BaP is not 
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understood. One possibility is E2-mediated inhibition of cyp1a. It is well known from knockdown 

and CYP1A-inhibitor studies that CYP1A is protective against PAH-mediated developmental 

toxicity (Billiard et al., 2006). While it is speculation, and cyp1a, er, and AhR2 expression were 

not measured in this study, perhaps the higher dose BaP toxicity was enhanced by ER-mediated 

inhibition of AhR2 which in turn CYP1 expression (Fig. 30). 

  

Figure 30. A scheme of the potential AhR2 and ER cross talk that could explain enhanced larval 

toxicity seen following E2 + 50 g/L BaP co-treatments. 

In a transcriptomic analysis of differential gene expression in 96 hpf zebrafish exposed 

parentally and developmentally to waterborne BaP, organismal death was the most highly 

significant disease pathway impacted and included 212 differentially regulated molecules (Fang 

2015).  Based on BaP-mediated differential expression, inhibition of key mediators related to 

activation of organismal death included: transforming growth factor (tgf) beta, bone 

morphogenetic protein 2 (bmp2), and growth differentiation factor 2 (gdf2) (Fang et al., 2015). 



74 

 

Further studies are needed to investigate these candidate genes/pathways to determine the impact 

of aromatase modulation on gene expression. Importantly, estrogen is important in both the 

activation of tgf pathway by liberating it from its latent complex during implantation period in 

mouse (Ma et al., 2013) and in upregulation of bmp2 protein (Kousteni et al., 2007). 

Normally, zebrafish embryos start to hatch out of the chorion between 48 – 72 hpf (Kimmel 

et al., 1995). The potential of environmental contaminants, such as PAHs including BaP, to impact 

zebrafish embryos hatching efficiency has previously been observed. Hatching can occur earlier 

(Carls and Thedinga, 2010, Colavecchia et al., 2004, Corrales et al., 2014b, Carls et al., 1999)  or 

longer compared to respective controls (Colavecchia et al., 2004, Carls and Thedinga 2010). In 

this study, waterborne exposure to both low and high BaP doses significantly increased hatching 

time compared to control (at 48 hpf) that was consistent with a previous study that has shown same 

effect (Fang et al., 2013). Also, fadrozole exposure and knockdown of cyp19a1b showed 

significantly increased time to hatch. In zebrafish, there are conserved molecular mechanisms for 

hatching including: the hatching gland cells secrete hatching enzyme 1 (ZHE1) that in turn cleave 

the chorion glycoproteins, zona pellucida  glycoproteins 2 and 3, that soften the chorion (Sano et 

al., 2008), so that the embryo’s contractile movements burst the chorion and the embryos hatch 

(Okada et al., 2010). Although this study did not assess the effects of BaP, fadrozole, and cyp19a1b 

on specific molecular or physical hatching-associated mechanisms, it is hypothesized that because 

of general reduced fitness (reflected in decreased length, edemas, body and fin axis defects) that 

the delayed hatching could be due to decreased contractile movements. Delayed development and 

fitness of zebrafish embryos has been previously suggested to account for alterations in hatching 

period (Danzmann et al., 1989, Pakkasmaa and Jones, 2002). Importantly, by 72 hpf all treatment 
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groups completely hatched so the overall impact of delayed hatch may not be physiologically 

significant.  

In addition to mortality, six developmental phenotypes were negatively impacted by BaP 

and fadrozole waterborne exposure and cyp19a1b knockdown in 96 hpf zebrafish larvae including: 

body length; optic vesicle; swim bladder inflation; pericardial and abdominal edema; and 

incidence of normal larval tail. Many of these phenotypes were consistent with those reported in 

other mammalian models following exposure to PAHs and/or BaP.  

For example, human epidemiological studies suggest that when comparing offspring of 

smoking and non-smoking mothers, babies of smoking moms have significantly lower birth 

lengths (Wang et al., 1997, Prabhu et al., 2010, Vardavas et al., 2010). Furthermore, studies of 

fetal exposure to PAH via ambient pollution has found that newborns had a significantly decreased 

birth-length (Perera et al., 1998, Perera et al., 2003), and this birth-length deficient persisted into 

their childhood (Jedrychowski et al., 2015). Likewise, mallard duck (Anas platyrhynchos) embryos 

exposed to crude oil had reduced growth, body weight, crown‐rump length, and bill length 

(Hoffman and Gay, 1981). In fish, BaP significantly decreased length of seabass (Dicentrarchus 

labrax) juveniles (Gravato and Guilhermino, 2009). Also, decreased in body length was one of 

phenotypes that resulted of zebrafish parental dietary BaP exposure in F1 generation (Corrales et 

al., 2014b). Here, we found that both BaP and fadrazole waterborne exposure and cyp19a1b 

knockdown significantly decreased zebrafish larvae body length. This finding is consistent with a 

study that reported aromatase inhibitors (aminoglutethimide and 4-hydgoxyandrostenedione) and 

selective estrogen receptor modulators (tamoxifen and clomiphene) treatments decreased zebrafish 

larvae body length (Hamad et al., 2007). Many studies have shown the importance of steroid 

hormones, especially estrogen, in bone formation and growth.  Also, the pubertal growth spurt of 
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both sexes is driven primarily by estrogen (Cutler, 1997, Kini and Nandeesh, 2012, Singh et al., 

2011). Therefore, we found that estradiol rescued zebrafish larvae body length reduction mediated 

by 10 BaP, 10 and 50 fadrozole, and cyp19a1b knockdown in co-treatment. Likewise, decreased 

body length caused by tamoxifen treatment alone was rescued by E2 co-treatment (Hamad et al., 

2007). In the larval zebrafish transcriptomic study mentioned above, deactivation of apolipoprotein 

E (ApoE) pathway by BaP is suggested as a possible mechanism mediating decreased body size 

(Fang et al., 2015). Accordingly, estradiol is a key element in activation of ApoE pathway 

(Srivastava et al., 1997). Future work could study the effect of aromatase inhibition on the ApoE 

activity and receptor expression and the role of this pathway as a possible explanation of ability of 

estradiol to rescue decreased body-length mediated by BaP, fadrozole, and cyp19a1b knockdown. 

Deformity of tail shape, such as spinal curvature, is a common development alteration 

resulting from environmental contaminant exposure in, for example, medaka, zebrafish, and 

fathead minnow larvae (Nassef et al., 2010, Oliveira et al., 2009, Parrott and Bennie, 2009). In 

humans similar spinal deformities, like idiopathic scoliosis, have been reported  (Wong and Tan, 

2010). Environmental factors, estrogen hormone reduction, and estrogen receptor polymorphism 

are suggested as causes of idiopathic scoliosis (Wang et al., 2011, Esposito et al., 2009). Here, we 

found that 50 µg/L BaP, (10 and 50 µg/L) fadrozole, and cyp19a1b knockdown significantly 

decreased the incidence of normal tail shape. This is consistent with inducing spinal curvature of 

sea bass, Dicentrarchus labrax L, and zebrafish larvae by exposure to PAH or fadrozole, 

respectively (Santos et al., 2014, Danion et al., 2011). Although 10 µg/L BaP decreased the 

incidence of normal tail shape from 90% in control to 70%, this effect was not significant. 

Interestingly, E2 co-treatment significantly rescued the severe tail shape abnormality that was 

caused by 50 µg/L fadrozole and cyp19a1b knockdown, and also increased the incidence of normal 
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shape in zebrafish larvae that were exposed to 10 or 50 µg/L fadrozole, or had cyp19a1b 

knockdown. In addition, incidence of normal tail shape in the 10 µg/L BaP group increased from 

70% to almost 90%. This suggests the importance of E2 in prevention of tail shape deformities.  

Decreased optic vesicle (eye) area (microphthalmia) is one of the phenotypes that was 

observed in our studies. This negative effect could be due to dysfunctions in eye development or 

just be correlated to the overall decreased body size previously discussed. BaP-waterborne 

exposure caused microphthalmia in rainbow trout alevins (Hose et al., 1984). When considering 

eye development, it is possible to use morphological or cytochemical criteria to distinguish most 

retinal cell types and layers (retinal pigment epithelium RPE, outer nuclear layer ONL, inner 

nuclear layer INL, inner plexiform layer IPL, ganglion cell layer GCL) at 72-96 hpf (Malicki et 

al., 1996, Morris and Fadool, 2005). A recent study found that BaP (5, 50, and 504 µg/L) reduced 

the length of RPE, ONL, INL, IPL, GCL, diameter of the lens, and the cellular density in GCL. 

Furthermore, the above morphological changes were accompanied by differential expression of 15 

genes involved in eye development and visual perception by either induction (cry5, per5, hspb6, 

chrna1, cyp1b1, cryba4, atoh8, and zgc:73142) or inhibition (arr3l, guk1, lin7a, gnat2, opn1sw1, 

opn1mw1, and LOC 100004285). Also, protein levels of arr3l, guk1, lin7a, and opn1mw1 were 

reduced by BaP exposure (Huang et al., 2014).  Another study has shown that retinoic acid 

deficiency lead to microphthalmia in zebrafish due to inhibition of retinaldehyde dehydrogenase 

(Le et al., 2012). We reported that BaP exposure altered gene expression of aldehyde 

dehydrogenase (aldh1a1) in 96 hpf zebrafish larvae (Fang et al., 2015).  

Aromatase inhibitors like aminoglutethimide also cause reductions in zebrafish larvae eye 

diameter that was accompanied with decreased thicknesses of the ONL, OPL, IPL, and GCL. 

Moreover, selective estrogen receptor modulators tamoxifen and clomiphene decreased the retina 
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thickness and IPL in larvae, respectively (Hamad et al., 2007), suggesting that estrogen hormone 

and its receptors are important in eye development. In our study, estradiol co-treatment with 10 

µg/L BaP, both fadrozole doses and cyp19a1b knockdown countered the decreased zebrafish 

larvae eye area. Because different studies have found that estrogen up-regulated retinoid synthesis 

and retinoic acid receptors (Li et al., 2004, Prins et al., 2002), and increased aldehyde 

dehydrogenase ADH activity and mRNA expression (Simon et al., 2002), more studies are needed 

to clarify the interaction between all pathways mentioned above and their involvement in the eye 

development. 

Epidemiological studies have linked maternal smoking and infant congenital heart defects 

(Alverson et al., 2011). Likewise, many studies have reported an increased risk of ischemic heart 

disease and cardiovascular mortality due to cardiovascular disease in employees who are 

occupationally exposed to high concentrations of PAHs (Burstyn et al., 2005, Tüchsen et al., 

1996). Cardiac anomalies, such as pericardial edema, due to PAHs exposure is a well-recognized 

pathology in fish including zebrafish, Japanese medaka, and rainbow trout (Oncorhynchus mykiss) 

(Carls et al., 1999, Rhodes et al., 2005, Billiard et al., 1999, Incardona et al., 2004). Additionally, 

decreased ventricular length, increased ventricular wall thickness and increased blood vessel 

diameter were reported in zebrafish co-exposed to BaP and α-naphthoflavone (Bugiak and Weber, 

2010) . This is consistent with our finding both BaP concentrations, 10 and 50 µg/L, significantly 

caused pericardial edema. A potential mechanism of this cardiac defect mediated by BaP exposure 

has been previously clarified by Incardona and his colleagues when they found that cardiac 

toxicities were accompanied with induction of myocardial and endocardial CYP1A, and these 

toxicities were decreased following AhR2 knockdown suggesting that BaP exerts its 

cardiotoxicities through induction of  CYP1A via AhR2 (Incardona et al., 2011). Additionally, via 
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pathway analysis, inhibition of ACTC4, KAT6A, NOTCH2, and PKD2 in 96 hpf zebrafish 

exposed parentally and developmentally to waterborne BaP were predicted to activate atrial septal 

defects (Fang et al., 2015). Further studies are needed for assessing the action of co-treatment of 

10 BaP+E2 on the above candidate regulated molecules and the atrial septal pathway.  

 Likewise, fadrozole exposure, and cyp19a1b knockdown significantly caused pericardial 

edema. This negative impact might be related to the decreased body E2 concentrations mediated 

by both fadrazole and cyp19a1b knockdown (Fig. 27B). Reduction of E2 has been shown to have 

deleterious effects that promote cardiovascular diseases in, for example, postmenopausal women, 

while E2 replacement therapy decreases cardiovascular diseases risk in this population (Schierbeck 

et al., 2012). Correspondingly, an aromatase inhibitor (4-hydroxyandrostenedione) caused 

congestive heart failure-like symptoms (pericardial edema and decreased heart rate) in zebrafish 

larvae, and that was ameliorated by 10 nM E2 co-treatment (Allgood et al., 2013). This 

preventative effect mediated by E2 did not occur when embryos were treated with aromatase 

inhibitor+E2+nitric oxide inhibitor (NOI) suggesting that E2 prevents cardiotoxicities mediated 

by AIs through its action on the nitric oxide synthetase (NOS) pathway (Allgood et al., 2013). 

Furthermore, cardiotoxicity mediated by AI was alleviated when embryos were co-treated with AI 

+ NO. Enhancement of NOS by E2 supported this finding (Weiner et al., 1994).  In our 

fadrozole+E2, and cyp19a1b knockdown+E2 co-treatment experiments, we found that E2 

significantly diminished cardiotoxicity mediated by fadrozole and cyp19a1b knockdown.  

In many ways the fish swim bladder is believed to be an evolutionarily similar to the 

mammalian lung (Zheng et al., 2011). Development of the swim bladder in zebrafish starts as early 

as 48 hpf by formation of an epithelial bud that is followed by differentiation and growth that 

forms mesodermal layers (Winata et al., 2009). After 72 hpf, the swim bladder of a zebrafish larva 
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begins to inflate (Robertson et al., 2007). This inflation is critical for larvae to decrease their body 

density and maintain neutral buoyancy to be able to capture food and escape predators (Li et al., 

2011a). Endothelial cells and blood circulation are important in the both the differentiation and 

inflation of the swim bladder (Winata et al., 2010). In our study, non-inflated swim bladders were 

observed among BaP, fadrozole, E2 only and cyp19a1b knockdown treated larvae. Non-inflated 

swim bladders were also reported in zebrafish offspring following a parental dietary exposure to 

the BaP (Corrales et al., 2014b) and in zebrafish embryos exposed to fadrozole (Santos et al., 

2014). Furthermore, the non-inflated swim bladder phenotype following 3,3′,4,4′,5-

pentachlorobiphenyl PCB126 exposure was AhR2 dependent, but was independent from cyp1 or 

cox signaling (Jönsson et al., 2012). However, in fish exposed to PAH- and oxy-PAH contaminated 

soil extracts incidence of non-inflated swim bladder was not definitively rescued by AhR2 

knockdown (Wincent et al., 2015). In our study, exogenous E2 treatment did not rescue the non-

inflated swim bladder phenotype mediated by BaP exposure and cyp19a1b knockdown. In larvae 

co-treated with either fadrozole concentration plus E2, there was an increased percentage of fish 

that had inflated swim bladders (~60%) compared to those exposed to fadrozole concentrations 

alone, but this percentage was still low compared to the control. Together these data suggest that 

E2 homeostasis is important in swim bladder formation and inflation.  Some genes that have been 

reported to play role in development of swim bladder tissues include: nkccl, prl, shha, ihaa, ptc1, 

ptc2, fgf10a, and acta2 (Winata et al., 2009, Abbas and Whitfield, 2009, Li et al., 2011a). Future 

work analyzing promoter regions of these target genes for AhR and/or ERE response elements, 

measurement of potential BaP or E2-mediated differential expression of target genes, and/or 

quantitation of embryo/larval E2 concentrations may further resolve the adverse outcome pathway 

associated with the non-inflated swim bladder phenotype.  
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In this study, pectoral fin deformities (e.g; short or missing fin) were observed only in BaP 

exposed larvae. This finding is parallel with the multigenerational impact of dietary BaP on F1 

and F2 pectoral fin formation (Corrales et al., 2014b). Also, it is consistent with the perturbation 

of pectoral fin development due to oxygenated PAHs exposure (Knecht et al., 2013).  Estradiol 

co-treatment did not rescue these fin morphological defects suggesting that BaP exposure disrupts 

larval pectoral fin development through pathways that are not associated with aromatase and E2-

mediated pathways. The transcriptomic study of 96 hpf zebrafish larvae that were exposed 

prenatally to BaP showed downregulation of exon expression corresponding to genes involved in 

the fin development for example lama5 and skiv2l2 (Fang et al., 2015). Lama5 encodes laminin 

alpha 5 protein that is involved in establishing and elongation of the apical fold (Dane and Tucker, 

1985, Webb et al., 2007) that emerges from the apical epidermal ridge and is  critical for fin 

morphogenesis (Yano et al., 2012). Further studies are needed to investigate the specific effects of 

BaP on laminin alpha 5 protein expression and potential linkages with  human developmental 

defects (Colognato and Yurchenco, 2000).
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CHAPTER 5: CONCLUSIONS and FUTURE WORK 

 In conclusion, this study has further highlighted the importance of neuronal aromatase 

(cyp19a1b) in the normal early development of zebrafish. cyp19a1b-morphants and 

embryos/larvae exposed to the aromatase inhibitor fadrozole had similar developmental 

deformities including decreased body-length, optic vesicle area, deformities in tail shape, non-

inflated swim bladders, pericardial and yolk sac edemas. In addition to these morphological 

defects, aromatase inhibition caused increased mortality and delayed hatch. These phenotypes 

were also associated with decreased embryonic E2 concentrations at 48 hpf. Furthermore, all these 

phenotypes, except non-inflated swim bladders, were alleviated by E2 co-treatment further 

supporting the role of aromatase in the mechanism of toxicity.  

 Furthermore, zebrafish embryos exposed to nominal BaP concentrations (10 and 50 µg/L) 

exhibited both decreased cyp19a1b mRNA expression and many of the same phenotypic defects 

manifested by aromatase inhibition including increased mortality, delayed hatch, decreased body-

length, decreased optic vesicle area, lower incidence of normal tail shape, non-inflated swim 

bladders, pericardial and yolk sac edemas. In addition, BaP exposure decreased the concentration 

of E2 in 48 hpf embryos. BaP+E2 co-exposure effectively rescued all phenotypes mentioned above 

mediated by 10 µg/L BaP. However, in contrast, co-exposure of 50 µg/L BaP with E2 enhanced 

the mortality compared to that caused by 50 µg/L BaP alone suggesting potential estrogen receptor 

and aryl hydrocarbon receptor cross-talk at the higher concentration of the AhR agonist. Pectoral 

fin defects were uniquely caused by BaP exposure, and E2 co-exposure did not rescue this 
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phenotype suggesting that non-aromatase dependent molecular pathways are responsible for BaP-

mediated pectoral fin deformities.  

This research has centered on identifying the potential for PAHs, BaP specifically, and 

aromatase inhibitors to adversely affect development. There is a relatively new appreciation and 

associated area of scientific inquiry considering the developmental origins of health and disease 

(DOHaD). The underlying hypothesis is that environmental stress during key stages of 

development manifests in long term adverse outcomes and disease susceptibility. Future work 

should investigate the adult and potential multigenerational consequences of developmental 

aromatase inhibition. While our preliminary experiments were designed to assess impacts on sex 

determination, our sample numbers were limited because of mortalities as the developmentally 

exposed fish matured. Other predicted adverse outcomes that may occur in adults after aromatase 

inhibition include decreased reproductive fitness, cardiac defects and growth deficits. The 

zebrafish model is especially well suited to further investigate these longer term consequences of 

developmental exposures.  

Our previous transcriptomic work (Fang et al., 2015) has identified a number of pathways 

that were differentially regulated by developmental BaP exposure and appear to be consistent with 

phenotypic deficits noted in the larvae (e.g. optic and cardiac defects, mortality). Future work can 

further probe the direct relationships between aromatase inhibition and the ApoE, AhR and Notch 

pathways. Relatively novel findings suggesting BaP-mediated eye and fin developmental toxicity 

need further mechanistic validation as well. Promoter analysis of candidate genes may indicate 

unexplored AhR and ER response elements. In turn, site directed mutagenesis of response elements 

and/or antisense knockdown of these candidate genes along with phenotypic anchoring will further 



84 

 

support the molecular mechanisms involved in PAH and estrogen dependent developmental 

toxicities.   
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300 nM E2  

 

Arrow indicated the E2 peak. HPLC Methods are described in section 2.10. 

 

 

 

 



133 

 

 

 

2.34 nM E2 
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Recovered 225 nM after clean up steps 
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Western blot using Spring Valley produced anti-CYP19b polyclonal antibody and 

commercially available b-actin (Anti-actin-beta (CT),Z-FishTM) (Anaspec) (for loading 

efficiency). In blot A, the protein concentration was 50 µg while in blot B, 35 µg was 

loaded. The incubation period for blocking solution, primary Ab and secondary Ab (Goat 

Anti-Rabbit IgG (H+L)-AP Conjugate, Bio-Rad) were each overnight. Primary Ab 

concentration was 1/100, secondary Ab was 1/2000 and β-actin was 1/100. MB = male 

brain from adult zebrafish. Larval samples represent 150 homogenized. The blue arrow 

indicated the hypothesized size of the CYP19a1b. 
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