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ABSTRACT

When LIGO’s interferometers are in operation, many auxiliary data channels

monitor and record the state of the instruments and surrounding environmental conditions.

Analyzing these channels allows LIGO scientists to evaluate the quality of the data

collected and veto data segments of poor quality. A set of scripts were built up in an ad

hoc fashion, sometimes with limited documentation, to assist in this analysis. In this

thesis, we present DQTunePipe, a set of Python modules to replace these scripts and aid in

the detector characterization of the LIGO instruments. The use of Python makes the

analysis method more compatible with existing LIGO tools. DQTunePipe improves data

quality analysis by allowing users to select specific detector characterization tasks as well

as providing a maintainable framework upon which additional modules may be built. The

nature of the Python DQTunePipe code allows the addition of new features with great

simplicity. This thesis details the structure of DQTunePipe, serves as its documentation at

the time of this writing, and outlines the procedures for incorporating new features.

ii



GLOSSARY & ACRONYMS

analysis segment a time interval within a science segment when triggers are generated,

page 14

DetChar Detector Characterization, page 1

DQ Data Quality, page 1

DQ Flag interval of time when the gravitational wave channel data may be of

questionable quality, denotes periods of time when the auxiliary channels or the

gravitational wave channel may be affected by noise transients, page 13

DQ window specific interval of time identified by a DQ flag, page 13

glitch artifact in data due to noise transients, page 13

Glue Grid LSC User Environment, page 23

hardware injections simulated gravitational wave signals, page 16

KW Kleinewelle, page 15

LIGO Laser Interferometer Gravitational-wave Observatory, page 1

LSC LIGO Scientific Collaboration, page 1

noise transient event of non-astrophysical origin, page 13

science segment interval of time within a science run that contain science data, page 14

SciMon Science Monitor, on-site scientist who monitors data quality, page 16

SNR Signal-To-Noise Ratio, denoted ρ in equations, page 10

tuning modifications to the DQ intervals following offline investigations, page 19

veto interval of time which may be either excluded entirely or only conditionally

included in the search for gravitational waves, page 14
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CHAPTER 1

INTRODUCTION

Gravity may be interpreted in terms of the geometry of space-time. As masses curve

the space-time around themselves, their gravitational interactions with other masses

become apparent. The acceleration of matter produces fluctuations or gravitational waves

of the space-time the matter curves. Astrophysical objects offer the most obvious source

for gravitational wave detection. Gravitational waves are the primary focus of study for the

scientists involved with the Laser Interferometer Gravitational-wave Observatory (LIGO).

LIGO detectors are built for the purpose of directly detecting gravitational waves and

using those detections to develop gravitational wave astronomy. More than 800 researchers

work together in the LIGO Scientific Collaboration (LSC) to operate LIGO and analyze

the data the instruments collect.

In this thesis, Chapter 1 presents a short introduction to gravitational waves and

LIGO. Chapter 2 discusses the noise that interferes with gravitational wave detection at

LIGO and presents some of the methods employed by LSC scientists to overcome this noise

as is relevant to this thesis. Specifically, Chapter 2 describes Data Quality (DQ) flags,

intervals of time identified as containing data of questionable quality for the purposes of

vetoing some of this noisy data, as defined by scientists in the Detector Characterization

(DetChar) team of the LSC.

The main result of this thesis is a Python program for investigating and fine-tuning DQ

flags for use in the search for gravitational waves from compact binary coalescing (CBC)

sources. Chapter 3 outlines the design and the execution flow of the program. Chapter 4

1



describes instructions for operating and modifying the program. Chapter 5 presents an

example of DQ analysis using the program, and conclusions in Chapter 6 include prospects

for further development.

1.1 Gravitational Waves

Gravitational waves may be regarded as fluctuations in the space-time curvature with a

definite spatial and temporal pattern. In the absence of energy or matter, flat space-time

may be described locally by the Minkowski metric,

ηµν =



















−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



















. (1.1)

The space-time interval between two neighboring events in the Minkowski space-time is

ds2 = ηµνdx
µdxν , (1.2)

where µ, ν = 0, 1, 2, 3; xµ = (t,x); and the speed of light is defined in natural units as c = 1.

In the weak field regime, gravitational waves are described by small perturbations of

the Minkowski metric

gµν = ηµν + hµν , (1.3)

where |hµν | � 1. The Einstein field equations,

Gµν = 8πGTµν , (1.4)

relate the Einstein tensor, Gµν , which is a function of the space-time curvature, to the

stress-energy tensor of matter, Tµν [16]. Making use of a transverse-traceless gauge for the
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metric, the metric perturbation hµν in vacuum satisfies the wave equation

(

∇2 −
∂

∂t2

)

hµν (x) = 0. (1.5)

The plane wave solution of Equation (1.5) is

hµν (x) = aµνe
ıkµxµ

, (1.6)

where

kµx
µ = −ωt+ k · x, (1.7)

and aµν defines the polarization tensor, which is traceless and orthogonal to kµ:

ajj = 0, (1.8)

kjaij = 0. (1.9)

For a plane wave propagating along the z-axis, aµ3 = 0, and Equations (1.8) and (1.9) imply

aµν =



















0 0 0 0

0 f g 0

0 g −f 0

0 0 0 0



















, (1.10)

where f, g are constants. Equation (1.10) implies that the gravitational wave is transverse

and its amplitude can be expressed as the linear combination of two amplitudes, h-plus

3



(h+) and h-cross (h×), aµν = fh+ + gh×, where

h+ =



















0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0



















and h× =



















0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0



















. (1.11)

These amplitudes describe the two orthogonal polarizations of the plane gravitational wave

propagating along the z-axis.

LIGO’s design is based on measuring the relative displacement of test masses due to the

perturbation of the metric caused by a gravitational wave. Assuming that a plane

gravitational wave propagates along the z-axis and impinges on a ring of test masses in the

(x, y) plane as in Figure 1.1, Equation (1.6) becomes

hµν (x) =



















0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0



















e−ıωt. (1.12)

An h+ polarized gravitational wave will cause the separation of the test masses to oscillate

with a phase difference of 180◦ along the x and y axes; the distance of two opposite test

masses measured along the x(y) direction will alternatively increase(decrease) with a

frequency equal to the gravitational wave frequency. Likewise, an h× polarized

gravitational wave will “stretch” and “shrink” distances along 45◦ diagonals.

If a pair of test masses are located at a distance L∗ apart along the x-axis in

unperturbed space-time, then in a space-time perturbed by an h+ polarized gravitational
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Figure 1.1: h-plus and h-cross polarizations - Illustrated by changes in distances between
test masses in a plane perpendicular to the direction of travel of the propagating gravitational
wave.

wave, the distance between the masses is

L(t) =

L∗/2
∫

−L∗/2

dx[1 + h11(t)]
1

2 ≈ L∗[1 +
1

2
h11(t)], (1.13)

where the two test masses are assumed to be located at x1 = −L∗

2
and x2 =

L∗

2
, and the

wavelength of the gravitational wave is much larger than L∗. The relative change in the

measured distance, or strain, is

∆L(t)

L∗

=
1

2
h11(t). (1.14)

The amplitude of the gravitational wave is therefore proportional to the gravitational wave

strain, ∆L(t)/L∗ [16].
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1.1.1 Sources of Gravitational Waves

Gravitational waves can provide insight into cosmological phenomena. Gravitational

wave sources include burst sources, such as supernovae; periodic sources, such as rotating

neutron stars; compact binary coalescing sources, such as a pair of orbiting black holes; and

the stochastic gravitational wave background. An in-depth discussion of these sources is

beyond the scope of this writing, but a brief explanation of compact binary coalescing

astrophysical systems as a gravitational wave source is relevant to this thesis.

A compact binary system is an orbiting system of two extremely dense celestial objects,

such as the binary pulsar system discovered by Russell Hulse and Joseph Taylor in 1974

[17]. Over time, such a system loses energy due to gravitational radiation. The evolution of

the system may be described, for the purposes of gravitational wave detection, in terms of

three continuous stages. In the first stage, energy loss from gravitational wave emission

causes the orbit to decay. The corresponding gravitational waveform that represents this

process is known as a ‘chirp’. In a chirp waveform, the gravitational wave frequency and

amplitude increase as the orbit reduces in size. This stage is followed by a stage when the

two spiraling bodies merge into a single object. This process is known as binary coalescence

[14]. After the merger, gravitational waves are produced as the rotating object settles into a

stationary state, in what is known as the “ringdown” stage. The Python program presented

in this thesis is designed for use in searches for compact binary coalescing sources.

1.2 LIGO

1.2.1 Detection of Gravitational Waves

LIGO consists of twin laboratories, one located in Hanford, WA and another located in

Livingston, LA. LIGO’s basic instrument design is that of a Michelson-Morley

interferometer. Each L-shaped interferometer has two 4km arms enhanced with

Fabry-Perot resonance cavities in vacuum. The Hanford site also houses a second 2km arm
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Figure 1.2: A schematic of a LIGO interferometer. - The input test mass mirrors,
ITMX and ITMY along the x and y axes, form the Fabry-Perot cavity with the respective end
mirrors, ETMX and ETMY.

interferometer which was not used in LIGO’s most recent science run. In order to detect

gravitational waves, LIGO scientists measure the differential change in length between the

interferometer arms.

The basic design of the LIGO instrument is as follows. In each LIGO interferometer, a

beam of stabilized infrared light is split in two via a 50% reflecting mirror (beam splitter),

and each beam is directed into the cavities of the interferometer’s arms, (referred to as the

X and Y arms). The beams reflect off mirrors suspended at the end of each arm and are

amplified in Fabry-Perot cavities before recombining. The Fabry-Perot resonators of the

Michelson interferometer increase the sensitivity range [20]. The mirrors function as test

masses which are displaced when a gravitational wave passes through the interferometer.

Power-recycling optics are used to return stray laser beam light back into the system.

LIGO is designed such that under normal conditions the photodetector output is null.
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If the mirrors’ locations are altered by a gravitational wave, photodetectors measure the

oscillations in the recombined beam’s intensity, signaling variations in the lengths of the

interferometer arms.

1.2.2 Calibration

A length sensing and feedback control system monitors and adjusts the locations of the

mirrors to attain stable resonance [12]. Once achieved, the interferometer is said to be

locked, and the interferometer can put into science mode, a state where data collected by

the instrument is suitable for the search for gravitational waves. The Differential Arm

Error (DARM_ERR) signal from the feedback loop of the control system controls the

motion of the interferometer arms and serves as the gravitational wave channel. LIGO

scientists reconstruct the gravitational wave strain from this error signal using the response

function of the interferometer. The error signal is related to the strain (gravitational and

noise) in the frequency domain ŝ(f) by

ŝ(f) = R(f)q̂(f), (1.15)

where R(f) is the response function, and q̂(f) is the error signal, i.e. the data from the

gravitational wave channel DARM_ERR [4, 14]. The response function is dependent on

the parameters of a sensing function, a digital filter function, and the actuation function.

The sensing function, C(f), measures the arm cavity’s response to a gravitational wave and

converts the residual strain to the output of DARM_ERR. It depends on the light power

stored in the interferometer arms and thus changes over time. To keep the cavities locked,

the digital filter, D(f), converts this error signal to a control signal received by the mirrors.

Single frequency sinusoidal calibration signals are continuously added to the control signals

that drive the mirrors in order to measure C(f). The actuation function, A(f), determines

the current to the electromagnets that control the positions of the mirrors and the arm
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cavity lengths. The residual strain (ŝres) can be thought of as what is left when the control

strain (ŝcontrol) is subtracted from the gravitational wave strain,

ŝ = ŝres + ŝcontrol. (1.16)

The residual strain represents the residual motion of the mirrors after the control signal

has been applied to them and implies the corresponding error signal

q̂(f) = ŝresC(f). (1.17)

The control strain is

ŝcontrol = ŝresG(f), (1.18)

where G(f) is the open loop gain of the interferometer. G(f) is given by

G(f) = C(f)D(f)A(f). (1.19)

Using the open loop gain and substituting (1.17), (1.16), and (1.18) into (1.15) gives the

response function is

R(f) =
G(f) + 1

C(f)
. (1.20)

It is essential to accurately determine the response function as it is vital to the

reconstruction of the strain from the error signal, as seen from equation (1.15).

1.2.3 Templates and Matched Filtering

Input data used by the Python program in this thesis (to be presented in Chapter 3) is

generated by comparing the gravitational wave strain to theoretically predicted waveforms

from CBC sources via a matched filtering algorithm.

In the presence of a gravitational wave, the detector output time series, s(t), from the
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gravitational wave channel is the sum of the noise, n(t), and the gravitational wave signal,

h(t):

s(t) = h(t) + n(t). (1.21)

The detector output is then digitally filtered:

S = H +N, (1.22)

where H is the filtered signal and N is the filtered noise,

H ≡

∞
∫

−∞

K(t)h(t)dt , N ≡

∞
∫

−∞

K(t)n(t)dt, (1.23)

respectively. The signal-to-noise ratio, or SNR (ρ), is defined by

ρ2 =
H2

< N2 >
. (1.24)

The filter K(t) is chosen to maximize the SNR [14].

For CBC searches, the matched filtering method is favored since the theoretical

gravitational waveforms are known and so one may construct an optimal filter from the

Fourier transform of the signal [10, 14]. CBC searches make use of banks of template

waveforms representing various physical configurations of binary systems in a range of

parameter combinations. For example, CBC template waveform parameters may include

the masses and spins of the binary components, the end time of the inspiral phase, the

distance to the distance to the binary system, etc. [4].

1.3 Trigger Data

At each interferometer, when the signal-to-noise ratio from matched filtering output

exceeds a predetermined threshold, a trigger may be produced [6]. For inspiral searches,
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triggers are generated such that each trigger is separated in time by the template duration

or chirp time, i.e. the length of time during which a binary system will radiate

gravitational waves within LIGO’s sensitivity band. This duration is established for each

template given a low frequency cutoff value for the detector sensitivity band. When a

trigger is created, its SNR value is compared against SNR values for other triggers within

the chirp time. Only the trigger within the chirp’s duration with the highest SNR value is

recorded, so that the set of triggers are distanced in time by at least one chirp duration.

During data analysis, the list of triggers is reduced by eliminating those triggers that do

not coincide in time and waveform parameters at both detectors. The template parameters

of this smaller collection of triggers are then used to generate a new template bank, and

using this bank, matched filtering is again run on the data [19]. After the second matched

filtering, consistency checks, such as a χ2 test, are used to compare the data to the

template to discriminate between realistic candidate events and noise [9]. Triggers that

survive the consistency tests are again subjected to a coincidence test between

interferometers. At various stages in the analysis pipeline, the list of triggers may be

reduced further by vetoes identifying data of questionable quality, a process to be described

in Chapter 2. Figure 1.3 illustrates the analysis pipeline. Among the information included

in the recording of the triggers are the time of the event, the SNR, the mass parameters of

the template, and the χ2 veto parameters [2].
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Figure 1.3: Illustration of CBC analysis pipeline - The analysis pipeline reduces the
number of triggers, narrowing down possible gravitational wave candidate events. Vetoes are
applied at various stages throughout the pipeline. H1 and L1 indicate the interferometers at
Hanford, WA, and Livingston, LA, respectively.
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CHAPTER 2

DATA QUALITY STUDIES

A variety of disturbances of non-astrophysical origin may contaminate the output of the

gravitational wave channel. The sources of these disturbances have their origin in either the

surrounding environment or the instrument itself. To combat this noise, in addition to the

gravitational wave channel, LIGO also monitors hundreds of auxiliary data channels which

record the state of the instruments and the local environmental conditions. The data from

these channels is used by members of the DetChar group to identify the origin of noise.

2.1 Data Quality

For the purposes of this thesis, noise transients refer to short-lived events of

non-astrophysical origin that may affect data recorded by the gravitational wave channel.

Transients contribute to the background signal of the detector with noise that may

potentially mask real gravitational wave signals. Instrumental or environmental transients

produce glitches in the data stream that are recorded in the auxiliary channels and

possibly the gravitational wave channel. Particularly strong noise transients may cause the

interferometer to lose lock [11].

Data Quality (DQ) flags denote periods of time when auxiliary channels and/or the

gravitational wave channel may be affected by noise transients. A DQ flag’s name typically

refers to either the likely cause of the noise transient or the auxiliary channel that records

the noise transient. A DQ window denotes a specific interval of time identified by a DQ
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flag.

A science run at LIGO refers to an extended period of time when data for astrophysical

analysis are collected. Science data are collected while the LIGO interferometers are in

science mode. The intervals of time within a science run that contain science data are

science segments. The subset of science segments from which triggers are generated are

called analyzed segments.

A veto segment denotes an interval of time which is removed from the analysis to some

degree. Vetoed data may either be excluded entirely or only conditionally included in the

search for gravitational waves. DQ flags are typically used to generate vetoes [6].

Data quality flags may be established online, while interferometer data is being

recorded, or offline from additional knowledge obtained after the interferometer data is

collected. Online DQ flags defined from auxiliary channels are derived from monitoring

either instrumental or environmental noise through the use of automated scripts.

2.1.1 Online DQ Flags

Examples of online DQ flags derived from the auxiliary channels monitoring the

instrument include, among others, control channel overflows, calibration line dropouts, and

light dips. Overflows occur when the amplitude of the feedback control signals used to

control the interferometer arm lengths and mirror alignments exceed the maximum

allowable amplitude that the processing channel can handle. Calibration line dropouts are

caused by discontinuities in the calibration signal described in Section 1.2.2. Light dips are

due to brief mirror misalignments that cause the power in the Fabry-Perot arm cavities to

decrease relative to the average power over some previous time interval. [6, 8, 10].

In some cases, Data Monitoring Tool (DMT) systems are used to generate DQ flags

from the auxiliary channels. For example, a DMT called LightMon examines the channels

which monitor the photodetectors in the arm cavities and compares the minimum

interferometer arm power value in a given second to the mean value in the previous 10
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seconds. If the interferometer experiences a X percentage dip in power, LightMon creates

the associated lightdip DQ flags IFO :DMT-LIGHTDIP_X_PERCENT (IFO denotes the

interferometer) [15].

Environment-driven online DQ flags are based on the physical environmental

monitoring (PEM) channels. The PEM channels record the output of various sensors

placed at the interferometer sites. These sensors include, magnetometers to detect

electromagnetic fluctuations, microphones to monitor overhead air traffic, and

seismometers and accelerometers to record man-made disturbances and seismic activity.

In the case of air traffic, a DMT called PlaneMon evaluates the excess power in the

microphone channels (such as PEM-BSC5_MIC). If the excess power is deemed plausible

to be from a overhead airplane, PlaneMon creates the DQ flags

IFO :DMT-AIRCRAFT_LIKELY and IFO :DMT-AIRCRAFT_VERY_LIKELY

accordingly [13, 15].

A wavelet-based algorithm known as the Kleinewelle (KW) algorithm can also be used

to establish vetoes. Kleinewelle produces single interferometer triggers for data quality

purposes from the auxiliary and gravitational wave channels [11]. These KW triggers have

some characteristics similar to the gravitational wave triggers described in Section 1.3; the

KW triggers have a peak time and peak significance. The peak significance corresponds to

the amplitude of the triggers. Coincidence of the KW triggers produced from the auxiliary

channels and those produced from the gravitational wave channel allows the DetChar team

to establish auxiliary channel vetoes [10, 18]. The Used Percentage Veto (UPV) set of flags

are derived from KW triggers. The UPV tool examines the percentage of KW triggers in

the auxiliary channels coincident with KW triggers in the gravitational wave channel above

a specified KW significance threshold. If glitches in the gravitational wave channel are

coincident with glitches in an auxiliary channel more than 50% of the time, a UPV flag for

that channel is produced [7, 18].
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2.1.2 Offline DQ Flags

Offline flags are a necessity for unforeseen circumstances, i.e. when automated systems

are not in place to detect a particular noise source. These flags may be created as a result

of ongoing DetChar studies after data collection or by Science Monitors (SciMon) who are

on-site to monitor the data quality. DQ flags created by SciMons are assigned the prefix

SCI in their nomenclature, and those created as a result of DetChar studies are designated

by DCH.

For example, during the most recent science run denoted as S6, DetChar studies

determined that some noise transients in the gravitational wave channel at the Hanford

(H1) site coincided with the hourly computer back-ups at that observatory. A DQ flag,

H1:DCH-AUTOBURT_GLITCH_WIDE, was created to generate time stamps from the

back-up times suspected of producing the transients. Additionally, it was found that large

CPU loads generated these glitches, and so associated DQ flags

(H1:DCH-CPU_ASC312_SOS246, H1:DCH-CPU_ASC316_SOS251,

H1:DCH-CPU_ASC316, and H1:DCH-CPU_SOS251) were created. This observed

problem was corrected by limiting the back-ups at H1 to times when the interferometer

was not in science mode [8, 21].

2.1.3 Vetoes

The significance of a noise transient’s effect on the gravitational wave channel data

varies. Therefore, the DetChar group categorizes vetoes established from DQ flags based

on the severity of the transient. As of S6, categories are numbered 1 through 5. Category 1

vetoes are the most severe, and, excluding the specific category assigned to hardware

injections (to be described later), DQs of each sequential category (higher numbers) are

typically considered to produce weaker effects than the previous category.

Categorization allows veto choices in gravitational wave searches to be fine-tuned, since

a purpose of vetoes is to reduce the rate of false alarms in gravitational wave detection
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searches. LIGO analysts may apply vetoes at all category levels, or they may choose to

only apply vetoes selectively depending on the analysis.

Category 1 vetoes describe intervals of time when the interferometer is not operating

within its configuration parameters. Any data collected during these periods is never

analyzed. Most category 1 vetoes are excluded by design because the interferometer is not

in science mode. (Incidentally, a DQ flag, IFO :DMT-OUT_OF_LOCK, has been created

to distinguish these periods). However, some category 1 vetoes are generated from DQ

flags defined during science time. These time intervals, such as periods when the

calibration is bad because the loop gain is outside physical range

(IFO :DMT-BAD_GAMMA) [15] are excluded in gravitational wave searches.

Category 2 vetoes identify times with well-understood coupling between the noise

transients and the gravitational wave channel. The overflow DQ flags described in Section

2.1.1, such as IFO :DMT-ASC_OVERFLOW or IFO :DMT-LSC_OVERFLOW, are

examples of DQ Flags that are used to define category 2 vetoes in the CBC searches [5].

A few DQ flags identify periods when hardware injections, i.e. simulated gravitational

wave signals, are injected into the interferometer [6]. Hardware injection vetoes are

classified depending on the type of injection and the search. For example, in the CBC

inspiral searches, time intervals corresponding to DQ flags identifying inspiral hardware

injections are assigned category 3. Time intervals corresponding to unmodeled hardware

injections (BURST injections) are vetoed at category 2 [1].

Some DQ flags identify times when the gravitational wave channel shows an apparent

correlation with some auxiliary channels even though the coupling mechanism is not

well-understood. These DQ flags are used to define category 4 vetoes in S6 CBC searches.

Category 5 vetoes identify periods when the gravitational wave data may be marginally

affected by noise transients. The AIRCRAFT flags generated by PlaneMon are an example

of DQ flags used as category 5 vetoes in S6. These flags are typically only used in the

follow-up evaluation of gravitational wave candidates [4, 10].
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2.1.4 Data Quality Flag Metrics

The DQ flag metrics, or figures of merit, are a set of quantities that are used to

evaluate the effectiveness of an individual data quality flag, establish its merit as a veto,

and determine its applicable veto category.

The deadtime, D, is the percentage of cumulative (science) time flagged by a given DQ

flag,

D =
TV

T
∗ 100%, (2.1)

where TV is sum of all flagged time, and T is the total science mode time.

Under the assumption that all triggers are of non-astrophysical origin, the effectiveness

of a DQ flag as a veto in removing triggers above a specific SNR threshold is measured

with the efficiency, E. The efficiency of a flag is the percentage of flagged triggers above a

given SNR threshold, ρ0:

E(ρ0) =
Nt(ρ0)

NT (ρ0)
∗ 100%, (2.2)

where Nt is the number of triggers with ρ > ρ0 within the DQ windows, and NT is the total

number of triggers with ρ > ρ0 in the science time.

One useful quantity in evaluating a DQ flag’s effectiveness is the ratio of the efficiency

to the deadtime. A ratio > 1 indicates that more triggers are flagged than would be

expected by a random selection. This ratio may also be applied to evaluate the safety of a

veto. A veto is considered safe if it does not falsely dismiss a statistically significant

percentage of signal injections. When hardware injections are correlated with other DQ

flag intervals, then the DQ’s “efficiency” in removing hardware injections, Ehi, is compared

to the flag’s deadtime. If Ehi

D
� 1, then the veto is considered unsafe and is rejected [10].

The use percentage (U) of a DQ flag is the percentage of flagged intervals that contain

at least one trigger above the SNR threshold, ρ0:

U(ρ0) =
Nwt(ρ0)

Nw

∗ 100%, (2.3)
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where Nwt(ρ0) is the number of DQ windows containing at least one trigger with ρ > ρ0,

and Nw is the total number of windows for the given flag.

In S6, a further metric based on a chi squared χ2 test, was proposed:

χ2(ρ0) =
Nw
∑

k=1

(nk(ρ0)− Tk〈nt(ρ0)〉)
2

Tk〈nt(ρ0)〉
, (2.4)

where Tk is the duration of the kth window, nk is the number of triggers above the SNR

threshold ρ0 for that window, and 〈nt〉 is the average trigger rate above ρ0. The χ2

statistics measure the correlation between triggers and DQ flag windows; the larger the

value of χ2, the more effective the veto.

Table 2.1 summarizes how these metrics are used to classify DQ flags and eventually

define veto categories. Category 1 vetoes and hardware injection vetoes, being intrinsically

defined, are not assigned based on these metrics.

2.1.5 Category Tuning

Over time, a particular DQ flag may require tuning. Often tuning involves padding, i.e.

adding (or subtracting) extra time to the durations of each window. This need is due to

the fact that DQ flags associated with auxiliary channels identify intervals as indicated by

those channels, but the noise sources that those channels identify may produce triggers not

fully coincident with the DQ flag windows. Triggers occurring near to the flagged times are

closely examined, and padding durations are determined as necessary. Identical padding is

added to all windows of a given DQ flag.

In instances of padding, a single DQ flag may be used to produce vetoes of multiple

categories. A different category is assigned for each of the DQ flag’s padding scenarios.

This usually means that the DQ flag will be used to generate two different vetoes. For

instance (in S6), the IFO :DMT-ASC_OVERFLOW flag is used to produce category 2

vetoes during the windows identified by that flag. A category 4 veto is produced from this
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Category Description of vetoes DQ flag Metric Parameters
1 Vetoes identifying times when the inter-

ferometers were not functioning within
the operational design parameters.

2 Vetoes produced from DQ flags identify-
ing times when the coupling mechanism
between the auxiliary channel and the
gravitational wave channel is well un-
derstood.

These DQ flags often have low
deadtimes, high efficiency at high
SNR thresholds, high efficiency to
deadtime ratios, and large χ2 val-
ues.

3 In CBC searches, vetoes that describe
CBC hardware injections, artificial sim-
ulations of gravitational wave data de-
signed as a check to measure LIGO’s
ability to identify gravitational waves.

4 Vetoes whose coupling may be only par-
tially understood.

DQ flags producing vetoes of this
type tend to have higher deadtimes,
smaller efficiency to deadtime ra-
tios, and lower use percentages.

5 Vetoes with low statistical significance. These DQ flags typically have low
efficiencies, small χ2 values, high
deadtimes, and consequently high
use percentages.

Table 2.1: Summary of veto categories using CBC Data Quality veto category
conventions [10]

flag by adding 8 seconds preceding and following the original windows, since the noise

source typically produces additional triggers with lower SNR during the 8 seconds prior

and after the flagged interval.

In other cases of tuning, as the issues that created the DQ flag are resolved, the category

assignment may be downgraded to a weaker category or removed as a veto altogether, to

reflect the improved circumstances. For instance, in S6c (c denotes the third science data

collecting period in S6), LIGO scientists investigating data quality of the H1 interferometer

removed the use of vetoes produced from the H1:DMT-LIGHTDIP_6_PERCENT flag for

lowmass searches. Vetoes produced from the H1:DMT-LIGHTDIP_9_PERCENT flag

were adopted. DetChar analysis determined that the interferometer needed to experience

at least a 9% dip in power for the data quality in lowmass searches to be affected.
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CHAPTER 3

DESIGN OF THE DATA QUALITY TUNE PIPE

Modifications to the LIGO detector or search techniques during or between LIGO’s

science runs mean that vetoes need to be revised on a continuous basis. Existing DQ flags

may need to be recategorized or have their paddings adjusted. New DQ flags require

categorization and padding assignments. New metrics to determine category assignment

may be considered. Until S6, a number of MATLAB scripts were used to calculate the flags’

figures of merit and other qualities useful for DQ categorization of the CBC searches.

However, these MATLAB scripts would need, sometimes extensive, maintenance to

accommodate these revisions. Because the scripts were designed in an ad hoc fashion and

lacked proper documentation, this maintenance could be very difficult and prone to error.

The Python program DQTunePipe overcomes these shortcomings and improves the

characterization of DQ flags for the CBC searches. In addition to calculating the necessary

metric statistics described in Chapter 2, the DQTunePipe also allows users to:

1.) Easily run isolated portions of the program;

2.) Rerun the program on existing data without repeating the retrieval of all raw

data;

3.) Allow user-specified configuration parameters;

4.) Incorporate new tasks into the program code in a straightforward manner.

In order to satisfy these requirements, DQTunePipe’s design differs from the older
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MATLAB scripts in two major ways. First, the DQTunePipe accepts extensive configuration

options regarding the data to be processed and the specification of the tasks to be run.

Representing these configuration options in a file with a simple syntax allows the user to

create reproducible data that may be used to tune DQ flags precisely. Second, DQTunePipe

provides an abstraction layer, in the form of the DataSet class, over the raw data files. This

data layer frees future developers from worry concerning the details of the raw data files.

The remainder of this chapter discusses how other elements of the design of DQTunePipe

contribute to achieving the goals outlined above. To provide context for understanding the

design of the program, we also present an overview of the execution flow of the program.

Three main stages are executed sequentially during a DQTunePipe run. During the

initial stage the environmental configuration is processed and raw data is acquired. The

second stage uses the configuration and raw data from the first stage to build intermediate

data input. The final stage instantiates the DataSet object and executes the defined tasks.

3.1 Configuration of DQTunePipe

In order to give the user full control over the parameters of each run, DQTunePipe

accepts a large number of configuration parameters via both command line options and a

configuration file. As the first step of execution, DQTunePipe parses these options, giving

precedence to command line arguments over configuration file specifications if necessary.

The result of this step is in an execution environment that is available throughout the rest

of the program. This execution environment includes the properties object which contains

all of the configuration parameters, and the log file used record DQTunePipe’s progress.

DQTunePipe’s initialize.py module establishes the log file as well as the properties

object. The function getConfiguration() (found in configuration.py) sets the values

for properties.attribute, using either default values defined by the Properties class, or

values assigned by the user. The Properties class serves as a central reference to all the

properties available to DQTunePipe. Examples of these properties include gps start time
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(INITIAL_START), gps end time (INITIAL_END), which interferometer data to use (IFOS),

snr threshold values (THRESHOLDS), etc.

3.2 Raw Data

Following the environment set-up, in its default configuration, the DQTunePipe control

structure’s next operation is to retrieve raw data. DQTunePipe uses LIGO’s S6 Segment

Database Tools available in the Grid LSC User Environment (Glue), specifically

ligolw_dq_query, [3] to generate a list of all DQ flags defined at the gps end time specified

by the user. Using only unique DQ names from that list, DQTunePipe then queries the ligo

segment database via ligolw_segment_query to obtain an XML file for each DQ in the

list over the gps start and end times specified by the user. These DQ XML files contain the

union of the segments (windows) of the latest version of the DQ flag over the specified

period, and are placed in a separate directory, identified by DQ_XML_DIRECTORY. If any

existing files are present in DQ_XML_DIRECTORY, then DQTunePipe checks to determine if

DQ_LIST_FILE (the output DQTunePipe derived from ligolw_dq_query) is present. If

DQ_LIST_FILE is not found, then the user has supplied his or her own DQ_XML_DIRECTORY

by setting a value in the configuration file, and it is assumed that all appropriate DQ data

has been supplied. If DQ_LIST_FILE is present, then DQTunePipe verifies that every

relevant DQ XML identified by DQ_LIST_FILE is present in DQ_XML_DIRECTORY, and

queries the segment database for any missing DQ XML files.

To obtain the triggers, DQTunePipe simply copies the XML trigger files that are located

in TRIGGER_SOURCE_DIRECTORIES, specifically those that match the filename formats

identified by CLUSTERED_FORMAT and UNCLUSTERED_FORMAT. Finally, if necessary,

DQTunePipe gets a copy of the vetodefiner file (VETODEFINERFILE_FULLPATH) provided by

the user. The vetodefiner file contains the prior established veto category and padding

definitions; it is either retrieved from www.lscgroup.phys.uwm.edu via wget, or copied

directly from the path indicated by the user. These raw data files are stored in the
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directory structure imposed by DQTunePipe, illustrated in Figure 3.1.

3.3 Intermediate Data

After retrieving raw data, the next process in DQTunePipe is to generate intermediate

data. DQTunePipe extracts the trigger data that the program requires from the raw trigger

XML files and stores that data in more manageable text files. The trigger text files consists

of two columns containing the trigger (chirp) time and the snr value from the template

that generated the trigger.

Two sets of trigger data are necessary, clustered and unclustered triggers. (In CBC

searches, triggers may be grouped over predetermined time intervals; the trigger with the

maximum snr value is selected as the representative trigger for each period.) DQTunePipe

uses the start time, end time, and filename formats specified by the user to identify the

appropriate triggers and create the unclustered and clustered trigger text files.

In addition to the trigger text files, a text file containing the analyzed segments is

generated from the unclustered trigger XML files. This text file contains four columns. The

first column numbers each of the segments, and the last three columns identify the starting

time, ending time, and duration of each segment, respectively.

3.4 The DataSet

With these initial set-up operations (environment configured, raw data retrieved, and

intermediate data generated) complete, the main program is ready to execute. This process

begins by instantiating a DataSet object, which is fundamental in enabling DQTunePipe to

satisfy the requirements described at the beginning of this chapter, particularly

requirement 4.

The DataSet represents the information necessary to run DQTunePipe, so new tasks will

use DataSet without the need to create extraneous temporary files to organize data, which

was an issue with the MATLAB scripts. The DataSet is built from the raw DQ XML files and
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Figure 3.1: Directory hierarchy - Directory names with descriptions of files and other
subdirectory names contained within. IFO indicates interferometer (H1, L1 ); GPS Start and
GPS End indicate the starting and ending gps time the user has specified.
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the intermediate trigger text files, and other variables defined from the configuration

parameters. It is constructed by a call to createDataSet(ifo) where ifo refers to the

interferometer whose data is to be used. Appendix C.1.1 serves as documentation for this

class.

createDataSet(ifo) first creates an instance of a DataSet for the interferometer ifo,

the user-specified science flag name for that interferometer, and the user’s selected start

and end gps times (see Section 4). createDataSet then proceeds to add the DQ

information, specifically the DQ flag names and associated windows to the DataSet object,

using the raw DQ XML files. Next, if the padded data is to be evaluated, createDataSet

adds the padding information to the DataSet, using the information contained in the

user-provided vetodefiner file. Lastly, createDataSet adds the trigger information to the

DataSet, retrieving each trigger’s time and snr from the clustered and unclustered trigger

text files created during the intermediate data stage.

3.5 Tasks

With the DataSet established, the program is ready to execute its tasks. Since the

tasks rely solely on the DataSet, and not directly on the raw or intermediate data files, this

means that changes to the raw data’s format do not require modifications to the tasks.

Each task of DQTunePipe is represented by an object(s). The following sections outline the

object classes associated with each task.

3.5.1 Figures of Merit

The FiguresOfMerit class produces the output XML table containing generalized

overview of the veto metrics described in Section 2.1.4. An output XML file is created for

every snr threshold upon which the metric quantities are calculated, and each has a listing

for every DQ flag object in the dataSet. These XML tables are designed to be viewed with

a ligo lightweight stylesheet, identified as LIGO_LW_XSL, which is included with the source
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Figure 3.2: Example of Figure of Merit Table - an excerpt of calculated metrics for
padded data, as displayed in browser with ligo lightweight stylesheet. Unpadded data is simi-
larly displayed but lacks the category and padding information column. The category column
indicates the padding specified by the vetodefiner file, and links to the vetodefiner file if either
multiple paddings, or no paddings from the vetodefiner file are applicable.

code of DQTunePipe. The stylesheet has been modified from the standard ligolw.xsl in use

with other LIGO lightweight XML files to support displaying links, and is copied into the

directories housing these XML files by the FiguresOfMerit class.

The FiguresOfMerit class relies on the class Metric, which calculates the efficiency,

efficiency/deadtime, use percentage, and χ2 outlined in in Section 2.1.4. The Metric also

calculates and stores additional useful information about the veto metrics, which is written
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Output for IFO: L1 and DQ Flag: DCHOMC_INPUT_ANGULAR_MED

Time analyzed: 254148.0sec

Number of inspiral clusters: 18395

Mean time between clusters: 13.816

Median snr of inspiral clusters: 5.938

Maximum snr of inspiral clusters: 6574.139

Veto window buffer: cat: 4, (0.0, 0.0) sec

applicable over (961545615.0, 971654415.0, version:1)

Number of veto windows: 11293

Median length of veto windows: 2.0

Deadtime: 9.305%

Max chiSquared Value (SNR, chiSquared): at SNR > (1000, 207918.296)

SNR > vetoed/total Efficiency Eff/deadTime Used Windows/Total UsedPercent

6 1436/8136 17.65 % 1.90 1378/11293 12.20 %

8 120/544 22.06 % 2.37 116/11293 1.03 %

12 51/286 17.83 % 1.92 51/11293 0.45 %

20 36/187 19.25 % 2.07 36/11293 0.32 %

50 27/85 31.76 % 3.41 27/11293 0.24 %

100 21/51 41.18 % 4.43 21/11293 0.19 %

200 17/24 70.83 % 7.61 17/11293 0.15 %

500 15/15 100.00 % 10.75 15/11293 0.13 %

1000 11/11 100.00 % 10.75 11/11293 0.10 %

Figure 3.3: Example of Figures of Merit Summary for the L1:DCH-
OMC_INPUT_ANGULAR_MED flag

to a text file for each DQ flag. These text files contain a detailed summary of information

used in calculating the metrics, including the total number of DQ windows used and the

degrees of freedom in determining the χ2 value. Additionally, this text file contains the

metric quantities for all DQs at every snr threshold calculated (THRESHOLDS), to allow the

user to evaluate the metric quantities from different snr thresholds for the same DQ flag.

A configuration option (fom) allows users to choose whether to execute this task

explicitly. The classes for calculating the veto metrics and writing them have been

separated from each other. Future LIGO users may want to change the format of this

output, or perhaps put it into a database as the categorization process becomes more

automated. Establishing the Metric object separately means the fundamental metric
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calculations can be executed regardless of the output format.

3.5.2 Isolated and Overlapping Windows and Triggers

Often, multiple auxiliary channels may create DQ flags during the same interval of

time. When a glitch occurs during a DQ flag window whose duration overlaps with a

window of another DQ flag, it may indicate a connection between the two DQ flags,

particularly if the same two flags consistently have overlapping windows. It is therefore of

interest to LIGO detector analysts to determine whether or not a triggers, and by

extension, DQ windows, are isolated or overlapping.

DQTunePipe has a task to identify isolated and overlapping DQ windows, with specific

category rules imposed. For the CBC inspiral search, (where hardware injections are

assigned to category 3 [1]), DQTunePipe defines a DQ flag window (self ) as isolated if one

of the following conditions is met:

• There are no other DQ flag windows which overlap in time with it (self window).

• The self window is of category 1 and all other DQ flag windows with which it

overlaps in time are not category 1.

• All other DQ flag windows with which it overlaps in time are of a category value

greater than its (self ) category, and the other category value is not assigned to an

injection of the search.

The OverlappingWindows class of DQTunePipe defines the object associated with the

task to determine which windows are isolated and which are overlapping. The

makeOverlappingWindows method applies the category rules to determine the overlapping

windows.

For clarification, Table 3.5.2 outlines the overlapping category rules. For example, if

category 4 applies to self window, and category 2 applies to the other window which

overlaps with self, then the self window is considered an overlapping window. Likewise, if
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Category
applicable to
window of

self window is
considered

Category
applicable to
window of

self window is
considered

self other isolated overlapping self other isolated overlapping
1 1 X 3 4 X
1 2 X 3 5 X
1 3 X 4 1 X
1 4 X 4 2 X
1 5 X 4 3 X
2 1 X 4 4 X
2 2 X 4 5 X
2 3 X 5 1 X
2 4 X 5 2 X
2 5 X 5 3 X
3 1 X 5 4 X
3 2 X 5 5 X
3 3 X

Table 3.1: Category rules of determining whether a DQ window is considered
isolated or overlapping for CBC searches - The isolated or overlapping status of a given
self DQ window depends on the category of the veto that self DQ would produce, as well as
the category of the vetoes of other DQs whose windows overlap in time with the self window.

category 4 applies to self window, and category 5 applies to the other window which

overlaps with self, then the self window is considered an isolated window. In CBC inspiral

searches, a self window of category 2 would be considered overlapping if it overlapped in

time with other window of category 3, since the category assigned to injections (INJ_CAT)

of the search is category 3. However, a self window of category 2 would be considered

isolated if it only overlapped in time with other windows of category 4 or 5.

Using the OverlappingWindows object, the main program then writes XML tables

listing the isolated windows and overlapping windows. In the MATLAB scripts, the user was

limited to examining only those DQ windows which overlapped in time with one other DQ

window. DQTunePipe allows the user to set a maximum number of overlapping windows to

examine, as the OverlappingWindows object keeps a record of all the other windows with

which a single DQ window overlaps. The default behavior is to print to the XML table DQ

windows with a maximum of three overlapping windows, thereby creating three XML
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Figure 3.4: Example of Isolated Trigger Table - as displayed in browser with ligo
lightweight stylesheet.

tables: an XML table listing DQ windows with two other overlapping windows, an XML

table listing DQ windows with one other overlapping window, and an an XML table listing

DQ windows with zero other overlapping windows, i.e. isolated DQ windows.

Next, this task identifies the isolated and overlapping triggers and writes them, again to

an XML file. Only the triggers whose snr values are above a predetermined threshold,

SNR_ISOLATED_THRESH, are evaluated. A trigger is considered isolated if it is occurs during

a given DQ flag window that is also considered isolated. An overlapping trigger occurs

during an overlapping DQ flag window, regardless of when the trigger occurs with respect

to that window’s duration. These triggers are plotted against the background of

unclustered triggers, along with the boundaries of the DQ flag windows in which they

occurred.

As with FiguresOfMerit, the XML tables produced by this task are designed to be

viewed with LIGO_LW_XSL, which this task copies into the necessary subdirectories it

creates. Configuration options allow the user to select whether to execute this task, as well
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Figure 3.5: Example of Overlapping Trigger Plot - Overlapping trigger (larger dot, in
red) plotted with background unclustered triggers and overlapping window boundaries.

as allow the user to choose only to write the isolated or overlapping window XML tables,

or to create only the isolated or only the overlapping trigger plots. Since it is necessary to

generate the OverlappingWindows object to create trigger plots, the command option to

create either the overlapping (isolated) plots automatically activates the command to

create the corresponding XML tables for the overlapping (isolated) windows and triggers.

In contrast, choosing the option to create only the overlapping (isolated) XML tables will

not create the corresponding plots.

3.5.3 Vetoed, Non-Vetoed, and Outlying Triggers

Another task of DQTunePipe is to determine at what category level triggers are vetoed.

The VetoedAndNonvetoedTriggers object determines which triggers are vetoed at which

category level, and creates a set of XML tables, listing the triggers vetoed and the triggers
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Figure 3.6: Example Histogram of vetoed and nonvetoed triggers

not vetoed, for each category level. In addition, VetoedAndNonvetoedTriggers will also

use its histogram method to generate histograms identifying the vetoed and non-vetoed

triggers at each category level (See Figure 3.6). VetoedAndNonvetoedTriggers task also

uses the class Outliers to create a set of XML tables that lists the outlying triggers, i.e.

non-vetoed triggers at each category level whose snr value is above the given

OUTLIER_THRESH threshold, but occur nearby to DQ windows. A nearby DQ window is the

DQ window whose boundary is both contained within the same analyzed segment window as

the trigger, and is the nearest DQ window boundary to the trigger’s time. The Outliers

class also creates plots of the outlying triggers (See Figure 3.7).

Again the XML tables produced by this task are designed to be viewed with

LIGO_LW_XSL, which VetoedAndNonvetoedTriggers copies into the necessary subdirectories

it creates. Configuration options allow the user to choose to execute this task, and to what
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extent. If the user selects to create either the histograms or outlying trigger plots, the

corresponding veto and non-vetoed trigger file will be created (See Figure 3.6); when the

Histogram task is active, the table indicates where the associated histogram is located. For

the outlying trigger option, the outlying trigger XML table will also be created.

Figure 3.7: Example Outlier Plot - Outlying trigger (larger dot, in red) plotted against
background unclustered triggers, with nearest DQ window boundary.
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CHAPTER 4

USING THE DATA QUALITY TUNE PIPE

DQTunePipe is a flexible tool for DetChar analysis. This flexibility allows the user to

run DQTunePipe in a number of different ways and configurations. Each of these varied

executions of the program requires some degree of configuration by the user, although

defaults are in place to reduce this configuration requirement to a minimum.

In its simplest format, the program may by invoked from the command line with only a

single argument: the path to the configuration file.

> python DQTunePipe.py f (configuration filename)

Figure 4.1

In addition to configuration parameters available to the user, DQTunePipe is also

designed to be extensible for future development. By extending the existing DQTunePipe

and taking advantage of the framework that it provides, the necessity of implementing

common code structures such as property configuration, parsing data files, etc., is removed

and a developer may instead focus on new functionality. Expected types of new

functionality that a developer may add to the base program include new metrics and new

tasks.

This chapter discusses the requirements for running the program, its various

configuration properties, the default values of those properties, and how to set

user-specified values for these properties via the command line and configuration file. The

chapter will conclude with instructions on how to extend DQTunePipe by implementing a
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new metric and a new task.

4.1 Requirements

It is assumed that every user attempting to install and run this program will be

operating inside of the LIGO Data Grid environment. As such, the user will have access to

a version of Python ≥ 2.4 with accompanying NumPy and SciPy modules, and a current

copy of LIGO tools (specifically Glue). When running, the program will expect to have

available a number of input data files.

To install the program, the user may unpack the source, DQTunePipe.tar.gz, into a

directory (for example ~/DQTunePipe/). We will call this directory $DQTunePipe_HOME.

Inside the directory the following Python source files should be present:

DQTunePipe.py

config_rules.py

configuration.py

createDataSet.py

entities.py

ExampleConfigurationFile.txt

figuresOfMerit.py

initialize.py

mod_ligolw.xsl

manageData.py

metric.py

outliers.py

OverlappingWindows.py

plotTriggers.py

properties.py

rawData.py

summaryDataFiles.py

utility_box.py

vetoedAndNonVetoedTriggers.py

writeDeadTime.py

xmlColumnTag.py

XMLTableReader.py

In addition to the source files the necessary input data should be available to the

program. DQTunePipe requires the input data be of the standard ligolw xml format, and

includes:

1. an existing vetodefiner file (required when padding scenarios are to be investigated),
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2. DQ xml files available via ligolw_segment_query, including the DQ flag that specifies

the science data.

3. CBC first stage trigger xml files (either zipped or unzipped).

4.2 Configuration Option File

The user provides input parameters via the configuration file. The attributes of the

Properties class identify these parameters. The configuration file is a simple text file with

a list of the attributes of the properties object and the value for each attribute, separated

by an equal sign. Figure (4.2) provides an example configuration file with the minimum

required information that the user must provide. The example configuration file in Figure

INITIAL_START = 931035296

INITIAL_END = 935798487

OUTPUT_DIRECTORY = $HOME/OutputDir/

VETODEFINERFILE_FULLPATH = $HOME/vetodefiner.xml

#Either TRIGGER_SOURCE_DIRECTORIES or IHOPE_TRIGGER_SOURCE:

TRIGGER_SOURCE_DIRECTORIES=/archive/home/user/931035296935798487/full_data/

IHOPE_TRIGGER_SOURCE = /archive/home/cbc/ihope_daily/

CLUSTERED_FORMAT = SIRE_FIRST_FULL

UNCLUSTERED_FORMAT = INSPIRAL_FIRST_FULL

#Name of DQ flags that denote science time: DQ_SCIENCE_H1, DQ_SCIENCE_H2,

#DQ_SCIENCE_L1, and DQ_SCIENCE_V1, unless only a single IFO is specified:

DQ_SCIENCE_H1 = DMT_SCIENCE

DQ_SCIENCE_L1 = DMT_SCIENCE

DQ_SCIENCE_H2 = DMT_SCIENCE

DQ_SCIENCE_V1 = ITF_SCIENCEMODE

Figure 4.2: Example of minimum configuration file - The attributes of the Property

class, documented in Appendix B.1.3, and the values the user wishes to assign to each attribute
are separated by an equal sign. A “#” denotes a commented line.

(4.2) illustrates how the configuration parameters, the attributes of the Properties class,

are set by the user. The first three entries are INITIAL_START and INITIAL_END, the gps

37



start and end times over which the DQ flags are evaluated, respectively, and

OUTPUT_DIRECTORY, the output directory in which DQTunePipe writes the output.

VETODEFINERFILE_FULLPATH is the location of the vetodefiner file. If only unpadded

data are to be evaluated, then VETODEFINERFILE_FULLPATH is not required. Otherwise, the

user must supply the vetodefiner file’s location. A local copy may be specified, as in the

example, or a server location, such as VETODEFINERFILE_FULLPATH =

https://www.lscgroup.phys.uwm.edu/ligovirgo/cbc/public/segments/S6/vetofile.xml

can also be specified. DQTunePipe will then attempt to retrieve it via wget. In either case

the entire full path location and name of the vetodefiner file must be provided.

TRIGGER_SOURCE_DIRECTORIES is the directory location of trigger xml files, zipped or

unzipped. This parameter can also accept multiple directory names, comma-separated.

Alternatively, the user can set the parameter for IHOPE_TRIGGER_SOURCE, which, if used, is

expected to contain trigger xml files, zipped or unzipped, in sub-directories of form

IHOPE_TRIGGER_SOURCE/yearMonth/yearMonthDay/. If values for both

TRIGGER_SOURCE_DIRECTORIES and IHOPE_TRIGGER_SOURCE are provided, DQTunePipe will

use TRIGGER_SOURCE_DIRECTORIES to locate triggers.

CLUSTERED_FORMAT and UNCLUSTERED_FORMAT identify the file name format for

clustered and unclustered trigger files. DQ_SCIENCE_H1, DQ_SCIENCE_H2, DQ_SCIENCE_L1,

and DQ_SCIENCE_V1 identify the DQ flag naming scheme for science data for H1, H2, L1

and V1, respectively.

4.3 Additional Configuration Options

In addition to these requirements, a number of other properties may be specified by the

user in the configuration file. These properties are listed in Figures 4.3a and 4.3b. If the

value for the properties attribute is left blank, DQTunePipe will use default values. The

default values of these configurable attributes, in conjunction with the values assigned by

Figure 4.2, are shown in Figure 4.6.
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#ADDITIONALLY AVAILABLE CONFIGURABLE PROPERTIES:

#List IFOs to use, accepts commaseparated list.

IFOS =

#List SNR thresholds to use, accepts commaseparated list.

THRESHOLDS =

#SNR thresholds to use for determining isolated triggers.

SNR_ISOLATED_THRESH =

#SNR threshold to use for determining outlying triggers.

OUTLIER_THRESH =

#Maximum number of overlapping DQ windows to consider.

MAX_OVERLAPS =

#Minimum number of overlapping DQ windows to consider. Advise: Must be > 0

MIN_OVERLAPS =

#Specify whether to calculate padded or unpadded Metrics (True or False):

PADDINGS =

#Specify whether to examine clustered or unclustered data (True or False):

IS_CLUSTERED =

#Do Tasks(True or False) MAY BE PREFERABLE TO USE COMMAND LINE OPTIONS

DO_FOM_TABLE =

DO_DEAD_TIME_TABLE =

DO_ISOLATED =

DO_OVERLAPPING =

DO_ISOLATED_PLOTS =

DO_OVERLAPPING_PLOTS =

DO_VETOED_NONVETOED_TRIGGERS =

DO_OUTLIERS =

DO_HISTOGRAM =

#Print Values to be assigned to running environment and exit (True or False):

PRINT_VALUES =

#Specify gravitationalwave search (currently only supports "INSPIRAL")

#  for use in overlapping windows, applies category = 3 to injections

GW_PROGRAM =

#Specify specific DQ flags to be excluded, as regular expressions,

#in commaseparated list, for example: .*BCV\.*,.*UPV\.*
EXCLUDE_DQ_FLAGS =

Figure 4.3a: Example configuration file - continued : Since the running environment of
DQTunePipe is configured by assigning values to the attributes of properties, the configuration
file must be in the format illustrated by the examples in Figures 4.2, 4.3a, and 4.3b.
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##ADDITIONALLY AVAILABLE CONFIGURABLE PROPERTIES (CONTINUED):

#Existing clustered and unclustered trigger summary files.

UNCLUST_TRIGGER_FILE_H1 =

UNCLUST_TRIGGER_FILE_H2 =

UNCLUST_TRIGGER_FILE_L1 =

UNCLUST_TRIGGER_FILE_V1 =

CLUST_TRIGGER_FILE_H1 =

CLUST_TRIGGER_FILE_H2 =

CLUST_TRIGGER_FILE_L1 =

CLUST_TRIGGER_FILE_V1 =

FULL_TRIGGER_SEGMENT_FILE_H1 =

FULL_TRIGGER_SEGMENT_FILE_H2 =

FULL_TRIGGER_SEGMENT_FILE_L1 =

FULL_TRIGGER_SEGMENT_FILE_V1 =

#Specify location to find DQ xml files (if not pulling from server)

DQ_XML_DIRECTORY =

#Specify ligo_lightweight stylesheet for viewing xmls (must be compatible)

LIGO_LW_XSL =

Figure 4.3b: Example configuration file - Additional configurable properties.

Properties that are most likely to be set differently between runs may also be set by a

command line argument, see Figures 4.5a, 4.5b, and 4.5c. The user may assign all the

configurable values in the configuration file, or choose some combination of command line

options that include the required configuration file and other command-line options. For

example, the user may wish to run each task individually using the same configuration file.

The configuration file is always required, but all command line options except for the one

which specifies the configuration file are optional. If the user specifies a property both in

the configuration file and on the command line, the command line argument is used.

4.4 Command Line Configuration Options

Use of command line arguments allow the user to override parts of the configuration file.

Not all configuration parameters are available via the command line, only those options

which are likely to frequently vary. These include options that specify that DQTunePipe
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only executes selected tasks or evaluates only particular data types, and options that assist

the user in operating DQTunePipe. All the command line options are described in the

output of the help command, h or help, the output of which is seen in Figure (4.5a).

> python DQTunePipeControl h

Figure 4.4

options:

h, help show this help message and exit

REQUIRED:

f CONFIGFILE, file=CONFIGFILE

read configuration data from CONFIGFILE, must contain:

INITIAL_START,

INITIAL_END,

OUTPUT_DIRECTORY,

VETODEFINERFILE_FULLPATH (if padded data is to be evaluated),

TRIGGER_SOURCE_DIRECTORIES or IHOPE_TRIGGER_SOURCE,

CLUSTERED_FORMAT,

UNCLUSTERED_FORMAT,

DQ_SCIENCE_H1 (if H1 interferometer data is to be examined),

DQ_SCIENCE_H2 (if H2 interferometer data is to be examined),

DQ_SCIENCE_L1 (if L1 interferometer data is to be examined), and

DQ_SCIENCE_V1 (if V1 interferometer data is to be examined).

Figure 4.5a: Output of help option - Available command line arguments, f

configuration file must be specified from command line. (continues on next page).

The user may specify that DQTunePipe uses data from a specific interferometer (ifo),

or specify SNR thresholds for figure of merit quantities (thresh). The user may also

specify subsets of data to be evaluated. DQTunePipe may calculate metric quantities on

padded or unpadded DQ windows exclusively(pd or unpd). When unpd is used,

DQTunePipe does not retrieve the vetodefiner file, does not apply the padding and category

information to the dataSet object, and does not execute tasks that require the padding

information; only the FiguresOfMerit and VetoedAndNonVetoedTriggers tasks, for

unpadded values, are executed. The user may also prefer to only evaluate clustered or

unclustered trigger data (clusteredonly or unclusteredonly)
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MORE CONFIGURATION OPTIONS:

ifo=IFO indicate IFO, ex: H1 or H2 or L1 or V1.

thresh=THRESHOLDS, threshold=THRESHOLDS

Use custom snr threshold values in determining

figure of merit tables.

unpd, nopadding

when running pipeline, get figure of merit table

only for UNPADDED data quality windows.

DEFAULT: both padded and unpadded.

pd, onlypadding

when running pipeline, get figure of merit table

only for PADDED data quality windows.

DEFAULT: both padded and unpadded.

CLUSTERED DATA OPTIONS:

Note: Use these options with the knowledge that increased data equals

increased processing time.These options allow you choose to run

pipeline on only clustered or unclustered data.

clusteredonly Uses clustered trigger data only, still retrieves

unclustered for later use

unless a startPoint option is also specified.

unclusteredonly Uses unclustered trigger data only, still retrieves

clustered for later use

unless a startPoint option is also specified.

HOUSE CLEANING OPTION:

Caution: use this option at your own risk.

Note: if data directories are already populated with data, that data

will be used, hence the house cleaning option.

clean Consider Yourself WARNED: This DELETES existing

outputdir and ALL contents contained within, which

may include outputs for ifos as well as all initial

data. Note: Configuration file must still be

specified, so output directory may be identified.

DEBUGGING OPTIONS:

debug Print some debugging info.

printValues Print values of configurable properties and exit

(forces DEBUG=False) Configuration file must still

be provided.

Figure 4.5b: Output of help option, continued - Available command line arguments,
debug and clean cannot be specified by configuration file, must be specified via command
line. (continues on next page).
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TASK OPTIONS:

Which tasks can you do? If no tasks are specified, all tasks

(excluding the individual dead time table) are executed. These options

allow you to run only a particular part of the pipeline.

Note: if any of these options are selected, they overwrite (to do 

True) any corresponding tasks assigned in configuration file.

fom Write figure of merit table and summary figure of

merit files only.

deadTime Write deadTime table only.

isolated Produce list of isolated windows and isolated

triggers.

overlapping Produce list of overlapping windows

and overlapping triggers.

isolatedPlots Create lists of isolated windows,

isolated triggers, and plots of those triggers.

overlappingPlots Create lists of overlapping windows,

overlapping triggers, and plots of those triggers.

histograms Create lists and histograms of vetoed and nonvetoed

triggers.

outliers Create list and plots of outlying triggers.

Figure 4.5c: Output of help option - Available Command line options for executing tasks.

The command line options also include (clean), which removes any existing data

from previous executions of DQTunePipe in the output directory; a debugging option,

(debug), which writes a detailed log of DQTunePipe actions, as well as an option to print

the current properties values (printValues).

4.4.1 printValues, debug, and clean

Not all attributes of the Properties class may be configured (since they are internal

references), and attempts to configure these will be ignored. To help the user identify

configurable properties, printValues lists all configurable properties and the current

values they would be set to given the supplied configuration file (See Figure 4.6). All

attributes, configurable or otherwise, along with other debugging information, are written

in dqtunepipe.log in the user’s operating directory if debug is invoked. If the debug

is not used, the dqtunepipe.log is still written but omits the full attribute listing; only
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1 properties.CLUST_TRIGGER_FILE_H1 = $HOME/OutputDir/data/summary/clustered_time_snr_mass_H1.txt

2 properties.CLUST_TRIGGER_FILE_H2 = $HOME/OutputDir/data/summary/clustered_time_snr_mass_H2.txt

3 properties.CLUST_TRIGGER_FILE_L1 = $HOME/OutputDir/data/summary/clustered_time_snr_mass_L1.txt

4 properties.CLUST_TRIGGER_FILE_V1 = $HOME/OutputDir/data/summary/clustered_time_snr_mass_V1.txt

5 properties.CLUSTERED_FORMAT = SIRE_FIRST_FULL

6 properties.CONFIGURATION_FILENAME = exampleConfigurationFile.txt

7 properties.DEBUG = False

8 properties.DO_DEAD_TIME_TABLE = False

9 properties.DO_FOM_TABLE = True

10 properties.DO_HISTOGRAM = True

11 properties.DO_ISOLATED = True

12 properties.DO_ISOLATED_PLOTS = True

13 properties.DO_OUTLIERS = True

14 properties.DO_OVERLAPPING = True

15 properties.DO_OVERLAPPING_PLOTS = True

16 properties.DO_VETOED_NONVETOED_TRIGGERS = True

17 properties.DQ_SCIENCE_H1 = DMT_SCIENCE

18 properties.DQ_SCIENCE_H2 = nil

19 properties.DQ_SCIENCE_L1 = DMT_SCIENCE

20 properties.DQ_SCIENCE_V1 = nil

21 properties.DQ_SERVER_LOCATION = ldbd://segdb.ligo.caltech.edu

22 properties.DQ_XML_DIRECTORY = $HOME/OutputDir/data/ALL_DQS_931035296935798487/

23 properties.FULL_TRIGGER_SEGMENT_FILE_H1 = $HOME/OutputDir/data/summary/H1segments.txt

24 properties.FULL_TRIGGER_SEGMENT_FILE_H2 = $HOME/OutputDir/data/summary/H2segments.txt

25 properties.FULL_TRIGGER_SEGMENT_FILE_L1 = $HOME/OutputDir/data/summary/L1segments.txt

26 properties.FULL_TRIGGER_SEGMENT_FILE_V1 = $HOME/OutputDir/data/summary/V1segments.txt

27 properties.EXCLUDE_DQ_FLAGS = []

28 properties.GW_PROGRAM = INSPIRAL

29 properties.IFOS = [‘H1’, ‘L1’]

30 properties.IHOPE_TRIGGER_SOURCE = nil

31 properties.INITIAL_END = 935798487

32 properties.INITIAL_START = 931035296

33 properties.INJ_CAT = 3

34 properties.IS_CLUSTERED = [True, False]

35 properties.LIGO_LW_XSL = /mnt/zfs2/rankins/DQTunePipe/mod_ligolw.xsl

36 properties.MAX_OVERLAPS = 2

37 properties.MIN_OVERLAPS = 1

38 properties.OUTLIER_THRESH = 50

39 properties.OUTPUT_DIRECTORY = $HOME/OutputDir/

40 properties.PADDINGS = [True, False]

41 properties.PRINT_VALUES = True

42 properties.SNR_ISOLATED_THRESH = 60

43 properties.THRESHOLDS = [6, 8, 12, 20, 50, 100, 200, 500, 1000]

44 properties.TRIGGER_SOURCE_DIRECTORIES= [‘/archive/home/user/931035296935798487/full_data/’]

45 properties.UNCLUST_TRIGGER_FILE_H1 = $HOME/OutputDir/data/summary/unclustered_time_snr_mass_H1.txt

46 properties.UNCLUST_TRIGGER_FILE_H2 = $HOME/OutputDir/data/summary/unclustered_time_snr_mass_H2.txt

47 properties.UNCLUST_TRIGGER_FILE_L1 = $HOME/OutputDir/data/summary/unclustered_time_snr_mass_L1.txt

48 properties.UNCLUST_TRIGGER_FILE_V1 = $HOME/OutputDir/data/summary/unclustered_time_snr_mass_V1.txt

49 properties.UNCLUSTERED_FORMAT = INSPIRAL_FIRST_FULL

50 properties.VETODEFINERFILE_FULLPATH = $HOME/vetodefiner.xml

Exiting: Finished Displaying Configurable Properties

Figure 4.6: Example of output from printValues - configurable properties attributes
and their assigned values are printed to the console. (Shown: default values in conjunction
with exampleConfigurationFile.txt as in Figure 4.2, but with only IFOS = H1, L1 assigned.

status information and errors are written.

The local storage directory for triggers is not a configurable property and will always be
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OUTPUT_DIRECTORY/data/triggers(individual ifo). When DQTunePipe initially runs,

if either this directory or the DQ_XML_DIRECTORY is already populated with data then

DQTunePipe does not attempt to retrieve this raw data again, as described in Section 3.2.

Likewise, if the intermediate data is already located in DATA_SUMMARY_DIRECTORY (another

non-configurable attribute) then both the intermediate stage and the retrieve data stage

(for triggers) is skipped. Hence, clean exists to remove any and all data from the

supplied OUTPUT_DIRECTORY, which includes raw input, intermediate, and output data.

4.4.2 Task options

Among the most likely to be used of these command line options are the Task options.

The Task options allow the user to indicate which specific tasks are to be completed by

DQTunePipe. If any task option is selected, all other non user-specified tasks default to

non-active, with the exception of other tasks upon which the selected task option is

dependent.

4.5 Adding New Functionality

One of the advantages to DQTunePipe is the ability to add new functionality by

employing the methods available to the dataSet and its related classes to analyze data.

When incorporating new operations, the developer should first consider whether a new

functionality requires its own class or should be incorporated into an existing class. This

decision should be based both on the extent of the required calculations and the

dependency relationship of those calculations to other tasks. For example, most of the

metric quantities described in Section 2.1.4 are interrelated and computed by the methods

of the Metric class. The exception to this is deadtime, which due to its simplicity and

independence from other metric quantities, is calculated by a method of the DQ class,

deadTimeCalc (Appendix C.1.3).
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4.5.1 Including a New Metric Quantity

If a developer wants to incorporate a new metric quantity to be calculated into

DQTunePipe, the necessary steps will be to incorporate the new quantity into the Metric

(or possibly DQ) class by creating a new method for that class and calling it upon

instantiation of the Metric class. Then the developer needs to append the FiguresOfMerit

class to write that new quantity into the output xml files, and if desired, to the DQ metric

summary txt files. Specifically, in the FiguresOfMerit class, the new metric quantity needs

to be identified in the writeMetricTable method, and the values for the new quantity

need to be included in the writeMetricData method. (See the example in Figure 4.7). To

write to the summary text, the method writeSummaryFile in the FiguresOfMerit class

needs to be modified in a similar manner to include the new quantity.

4.5.2 Writing New Tasks

If the new functionality is extensive enough to be considered a new task, (instead of a

new metric quantity to be calculated) then it will require a new class and must also be

incorporated into the main control structure. The steps to do this are:

1. Create the new class for the task.

(a) Use existing methods of class dataSet to access the input information. Do not

access data from the raw source, there is no need. The dataSet class (as well as

its associated classes) is located in entities.py, see Appendix C.1.1.

(b) Separate the output information from the task’s calculations; either by creating

a separate class to handle the output, or by creating a separate method for this

task’s class. This is done for consistency with existing tasks; future developers

may wish to modify the output format.

(c) Use the properties.attribute to access the properties to be used by this task;

make certain that both properties and log have been imported from the
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In class Metric(object), the metric quantity is first calculated when the object is initialized:

...

#Calculate efficiency:

if triggersAboveThresh == 0.0:

efficiency = "NaN"

self.__efficiency = float(efficiency)

else:

efficiency = ((float(self.totalTriggersVetoed))/

(float(triggersAboveThresh)))*100.0

self.__efficiency = efficiency

...

#Calculate newMetricQuantity:

... DO STUFF TO CALCULATE THE NEW METRIC QUANTITY ...

self.__newMetricQuantity = float(valueOfNewMetic)

Then, a method exists to reference the quantity:

def getEfficiency(self):

return self.__efficiency

efficiency = property(getEfficiency)

def getNewMetricQuantity(self):

return self.__newMetricQuantity

newMetricQuantity = property(getNewMetricQuantity)

In class FiguresOfMerit: In method writeMetricTable, the metric quantities are identified,
in the order in which they are included in the xml table, by dataTupleList.

def writeMetricTable(self, ifo, properties):

...

dataTupleList.append(("efficiency", "float"))

dataTupleList.append(("newMetricQuantity", "float"))

...

Then, in method writeMetricData, the values for the metric quantities are identified, in the
order in which they are included in the xml table, by:

def writeMetricData(self, ifo, threshold, dq, properties, doc, streamTag):

...

line = line +","+str(round(metric.efficiency,6))

line = line +","+str(round(metric.newMetricQuantity,6))

...

Figure 4.7: Example of including new metric quantity - This example presents code
snippets to show how the metric quantity efficiency is evaluated and written to xml tables,
and how to include a new metric quantity newMetricQuantity. The new metric quantity is
calculated and included as part of the Metric object, and then each Metric object is written
to output by FiguresOfMerit.
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initialize module so they are available for the new task to use.

2. Incorporate the new task into the main control structure.

(a) Create a new attribute, DO_TASK, to notify DQTunePipe when to execute this

task:

i. In Properties class add a new attribute, DO_NEWTASK, following the format

of other DO_NEWTASK-type attributes, as in illustrated in Figure (4.8)

def _get_do_newtask(self):

return self._do_newtask

def _set_do_newtask(self, do):

self._do_newtask = parseBoolean(do)

def _get_default_do_newtask(self):

return True

DO_NEWTASK = property(_get_do_newtask, _set_do_newtask)

Figure 4.8: Adding a DO_NEWTASK attribute to the Properties class - all Properties at-
tributes have _get_ methods, attributes that are configurable by the user have _set_ methods,
and attributes with defined default values have _get_default_ methods.

i. In parse_options() (in configuration.py), add a line similar to Figure

4.9 to the OptionGroup called taskOptions to make this new task an

executable command line option.

taskOptions.add_option("newtask", action="store_true", dest="DO_NEWTASK",

help="Execute this new task.")

Figure 4.9: Creating a newTask command-line option

(b) In main control structure:

i. Include a call to properties.DO_NEWTASK in main control structure to

indicate whether to execute this new task.

ii. Include a call to instantiate the new task’s class, followed by a call to the

output class or method for this task as well.
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iii. Use log.info(message) (or log.debug(message)) to include status (or

debugging) information in dqtunepipe.log.

Figure 4.10 illustrates how a NewTask might be incorporated into DQTunePipe.

if properties.DO_NEWTASK:

task_string = ifo +": NEWTASK: "

log.info(task_string + "BEGIN TASK")

for isClustered in properties.IS_CLUSTERED:

if isClustered:

cluster_string = "clustered"

else:

cluster_string = "unclustered"

for padding in properties.PADDINGS:

if padding:

padding_string = "padded"

else:

padding_string = "unpadded"

log.info(task_string + "calculating for "+cluster_string

+" triggers and "+padding_string+" windows")

#Create the NEWTASK object  initialize and calculates NEWTASK:

NEWTASK_OBJECT = NEWTASK(dataSet, padding, isClustered)

log.info(task_string + "calculation finished for "+cluster_string

+" triggers and "+padding_string+" windows")

#Call NEWTASK’s writeOutput method to generate output:

log.info(task_string + "writing for "+cluster_string

+" triggers and "+padding_string+" windows")

NEWTASK_OBJECT.writeOutput(ifo)

log.info(task_string + "END TASK")

Figure 4.10: Example of control structure calling a NewTask, with logging. The
control structure will only execute task if the value of properties.DO_NEWTASK is True. This
example assumes that NewTask would be executed for both padded and unpadded values, on
both clustered and unclustered data. To execute on only padded data, replace “for padding

in properties.PADDINGS:” with “if filter(None, properties.PADDINGS):” or, for only un-
padded data, with “if not filter(None, properties.PADDINGS):” (Similar modifications
can be made with properties.IS_CLUSTERED to execute on only clustered or unclustered data).
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4.5.3 Extending DQTunePipe to non-inspiral searches

In addition to adding new tasks, DQTunePipe can be extended to evaluate DQ flags

applicable to other gravitational wave searches, provided those searches rely on similar

trigger data to identify potential gravitational waves. Specifically, the trigger data must

consist of triggers identifiable at instants of time with corresponding SNR values to

evaluate the relationship between the triggers and DQ flags. For the purposes of extending

DQTunePipe to other searches, a configurable property attribute GW_PROGRAM has been

included, though at present it is not used as the DQTunePipe currently only supports

inspiral gravitational wave searches. While it is beyond the scope of this thesis to cover in

depth the requirements of extending DQTunePipe to cover non-inspiral searches, all such

extension will likely require the modification of a few modules.

In properties.py, the new program name must be added to the collection of

supported_gw_programs. To ensure the correct trigger data is evaluated,

summaryDataFiles.py must be extended to appropriately support both the existing

GW_PROGRAM == “INSPIRAL” and the new program value. Both the

make_intermediate_trigger_data and time_and_snr functions look for specific tag

names to identify the information in the XML files, which may not be applicable to

non-inspiral searches. If new functions are added to generate intermediate trigger data,

then in DQTunePipe.py the correct make_intermediate_trigger_data function must be

called for the correspondingly supported GW_PROGRAM. It may also be necessary to limit

which tasks are applicable to select programs, this may be done in configuration.py, see

the section of the code identified as verify tasks.

4.6 Maintaining DQTunePipe

A new task can be added by creating a new object class and instantiating the object

from DQTunePipe’s main control structure. It is uncomplicated to incorporate a new task,

as well as modify an existing task, because the abstraction layer of the DataSet class
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buffers the task execution from the raw input data. A configurable attribute, GW_PROGRAM,

is also already in place to aid the developer in extending DQTunePipe to other searches.

DQTunePipe is also highly configurable, due to the utilization of Properties attributes.

The attributes of the Properties class with _set_ methods afford the user the luxury of

customizing DQTunePipe’s environment through the use of the configuration file and

command-line arguments. Yet attributes with _get_default_ methods keep the user’s

actual input requirements to a minimum. Likewise, attributes with _get_ methods, along

with the abstraction layer of the DataSet, make adding new functionality to DQTunePipe a

straight-forward endeavor.
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CHAPTER 5

EXAMPLE ANALYSIS

LIGO scientists may use the output of DQTunePipe to tune DQ flags in order to

improve the effectiveness of vetoes produced by those flags. Tuning may take the form of

adjusting the padding applied to windows of a DQ flag.

In this chapter, we will present a brief analysis of the results of applying DQTunePipe to

data collected over the four day time span, September 14-18, 2010, 00:00:00 UTC, applied

to highmass inspiral triggers, configured as indicated by Figure 5.1. In particular we will

look at a few flags in detail: for the H1 interferometer, we will examine

H1:DMT-OM1_DCPD_OVERFLOW, H1:DMT-OM1_OVERFLOW, and

H1:DMT-SEVERE_LSC_OVERFLOW. These three are all overflow flags, as described in

Section 2.1.1. These flags were eventually chosen for use as category 2 and category 4

vetoes. For the L1 interferometer, we will briefly examine L1:APC-L0_PEM_BSC4_MIC,

L1:APC-L0_PEM_BSC5_MIC, L1:APC-L0_PEM_HAM6_MIC,

L1:APC-L0_PEM_ISCT1_MIC, and L1:APC-L0_PEM_LVEA_MIC, and discuss how

the their figure of merit values lead us to determine that they should not be considered as

vetoes. For the purposes of this analysis, we assume we do not know the category

assignments.
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INITIAL_START = 968457615

INITIAL_END = 968803215

OUTPUT_DIRECTORY = /home/rankins/WWW/BIGDOG_2010091420100918

VETODEFINERFILE_FULLPATH =

https://www.lscgroup.phys.uwm.edu/ligovirgo/cbc/public/

segments/S6/H1L1V1S6_CBC_HIGHMASS_D_OFFLINE9615455430.xml

TRIGGER_SOURCE_DIRECTORIES =

/home/tdent/S6/S6d/highmass/chunk3_20110310/

968543943971622087/full_data

UNCLUSTERED_FORMAT = INSPIRAL_FIRST_FULL

CLUSTERED_FORMAT = SIRE_FIRST_FULL

DQ_SCIENCE_H1 = DMTSCIENCE

DQ_SCIENCE_L1 = DMTSCIENCE

MAX_OVERLAPS = 5

Figure 5.1: Configuration file used in example analysis - From September 14, 2010
00:00:00 UTC (gps time 968457615) to September 18, 2010 00:00:00 UTC (gps time 968803215).

5.1 Figures of Merit

As described in Chapter 3, the output of the FigureOfMerit task are the metric

quantities of the flags defined in the time interval from INITIAL_START to

INITIAL_END. These metric quantities will be used to verify the category assignments of

the DQ flags that we are considering. The figure of merit of the three overflow flags are

shown in Figure 5.2. The deadtime for these flags is smaller than the average deadtime of

all other category 2 DQ flags over this period (See Figure 5.3). The efficiency per deadtime

and the χ2 value at SNR = 6 are comparable to the corresponding average quantities of

Figure 5.3. Moreover, from Figure 5.4, we see that the maximum values of the χ2 occur at

high SNR thresholds. This is consistent with the results in Figure 5.3, where it seen that

χ2 values peak at high SNR. All these observations suggest that these flags should be

assigned as category 2.

A similar analysis can be performed for the L1 microphone flags:
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Figure 5.2: Figure of merit for H1:DMT-OM1_DCPD_OVERFLOW, H1:DMT-
OM1_OVERFLOW, and H1:DMT-SEVERE_LSC_OVERFLOW - The values in
the table are calculated using clustered triggers and unpadded DQ windows.

Figure 5.3: Average metrics for all category 2 DQ flags, excluding the analyzed overflow flags.

L1:APC-L0_PEM_BSC4_MIC, L1:APC-L0_PEM_BSC5_MIC,

L1:APC-L0_PEM_HAM6_MIC, L1:APC-L0_PEM_ISCT1_MIC, and

L1:APC-L0_PEM_LVEA_MIC. Figure 5.5 shows the figure of merit summary detail for

each of these flags. The maximum χ2 values and the efficiency per deadtime values are

comparable with the corresponding average values for category 5. The use percentage

decreases with increasing SNR, which implies that high SNR glitches are not likely to be

associated with these DQ flags. These results suggest that these flags should be used at

best as category 5 vetoes. In S6, the DetChar group did not use these DQ flags as vetoes.
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Figure 5.4: Detailed summary of figures of merit for H1:DMT-OM1_DCPD_OVERFLOW,
H1:DMT-OM1_OVERFLOW, and H1:DMT-SEVERE_LSC_OVERFLOW.

5.2 Window Padding

It is of interest to examine the overflow flags with categories and padding applied.

Because these flags are all overflows they were categorized and padded identically. The

vetodefiner shows that these flags were also classified as category 4, with a padding of 8

seconds added to the beginning and end of each window. This dual categorization is

typical of overflow flags because of the presence of additional noise preceding and following

the flagged time.

Since no additional padding is applied at category 2, the metric quantities of the

category 2 flags are identical to the metric quantities previously discussed. The metrics of

the resulting category 4 veto are show in Figure 5.6.

There are two points of particular interest in Figure 5.6. First the number of windows

for H1:DMT-OM1_DCPD_OVERFLOW and H1:DMT-SEVERE_LSC_OVERFLOW for

category 2 is different from the number of windows of category 4. This can be explained as

follows: The metrics are computed over science time, i.e. the DQ flag windows are

intersected with H1:DMT-SCIENCE. When extra padding is considered, a window may

overlap with an additional science segment, thus creating an extra DQ window in science

time.

For instance, H1:DMT-OM1_DCPD_OVERFLOW has a window from gps time

968459019 to 968459022. This time interval is not in science time. However, when category

4 padding is applied, the padded window is defined from gps time 968459011 to 968459030

and now intersects the science time segment defined from gps time 968457615 to
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Figure 5.5: Detailed summary of figures of merit for L1:APC-
L0_PEM_BSC4_MIC, L1:APC-L0_PEM_BSC5_MIC, L1:APC-
L0_PEM_HAM6_MIC, L1:APC-L0_PEM_ISCT1_MIC, and L1:APC-
L0_PEM_LVEA_MIC

968459018. The interval from gps time 968459011 to 968459018 is now included in the

evaluation of the figures of merit.

The second point of interest in the padded figure of merit table is that the metric

calculations for H1:DMT-OM1_OVERFLOW for both categories 2 and 4 are identical.

This is because the vetodefiner file only defines the categories and padding for this flag for

a time range that ends before INITIAL_START. The category column in Figure 5.6 shows

the relevant time frame over which the category and padding is applicable. If multiple

paddings are defined for a single category, or the applicable time range is outside the

user-defined INITIAL_START or INITIAL_END time, the vetodefiner file is linked in the table

for reference.
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Figure 5.6: Figure of merit for H1:DMT-OM1_DCPD_OVERFLOW, H1:DMT-
OM1_OVERFLOW, and H1:DMT-SEVERE_LSC_OVERFLOW - The values in
the table are calculated using clustered triggers and padded DQ windows.

5.3 Isolated and Overlapping Triggers

The analysis shows that there is an isolated trigger with SNR greater than 60. This

trigger, at gps time 968744747.83593750 is flagged by a H1:DMT-SEVERE_OVERFLOW

and is shown in Figure 5.8.

There are 12 additional isolated triggers identified over the evaluation period, and most

of those triggers are contained within injection flags, seen in Figure 5.7. The figure of merit

summaries, in Figure 5.4, for the three overflow flags we are evaluating, shows that each

flag vetoes at least 2 triggers with SNR greater than 60. Since only one of these triggers is

included in the isolated trigger table (for H1:DMT-SEVERE_LSC_OVERFLOW), there

must be at least two triggers with SNR greater than 60 that are flagged by one of the three

overflows and another category 2 DQ flag.

Indeed, the DQTunePipe analysis shows that there are two overlapping triggers for

H1:DMT-OM1_DCPD_OVERFLOW and H1:DMT-OM1_OVERFLOW, and a third

overlapping trigger, at 968778029.834 for all three overflow DQ flags. These are shown in

Figures 5.9 and 5.10, respectively.
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Figure 5.7: List of isolated triggers with SNR greater than 60.

Incidentally, DQTunePipe also identifies an additional overlapping trigger, at

968605409.935 for three category 4 flags: H1:DCH-ALL_SAFE_UPV,

H1:DMT-BRMS_SEISMIC_LVEA_Z_3_10_HZ_THRESH_2E3, and

H1:DCH-SEISVETO_CBC. Note that there are five individual windows belonging to only

three DQ flags in the interval when the overlap occurs, and this is indicated in the last

column in Figure 5.10 where the total number of unique windows, 5 for this trigger, is

shown.

The plots of the overlapping and isolated triggers illustrate to the user the applied

padding amounts and may be used to determine if the chosen padding is appropriate. For

instance, the plots of the overflow flags show that category 2 assignment vetoes the triggers

of high SNR, but does not veto all triggers associated with the glitch. The padding applied

to the flags at category 4 catches these additional low SNR triggers.

The user may set the number of overlapping flags in the analysis. This is useful in

examining the relationship between flags. For example, Figure 5.11 shows a plot which is

obtained by setting the number of overlapping flags to at least 5. Often, there is a

well-understood relationship between some of the flags. For example, the flags in our 2 and

3 overlap examples are overflow flags and are generally expected to be active at the same
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Figure 5.8: Plot of isolated trigger at gps time 968744747.83593750 - This trigger is
contained within a window of H1:DMT-SEVERE_LSC_OVERFLOW.

times. In this case, there is no need to examine a large number of different overlapping

overflow flags. However, when new flags are introduced, evaluating their overlaps and the

triggers they capture may prove beneficial in understanding their relationships to produce

safe, effective vetoes.

5.4 Vetoed and Non-vetoed Triggers

In addition to identifying triggers in specific numbers of overlapping windows,

DQTunePipe can also identify all triggers vetoed by a particular category (or combination of

categories), or conversely, all triggers not vetoed by a specific category (or combination of
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Figure 5.9: List and plots of triggers contained within 2 overlapping windows.

categories). Figure 5.12 shows snippets of two text files produced by the

vetoNonVetoTriggers task, showing vetoed and non-vetoed triggers in categories 1,2,3,4

and 5. A corresponding lightweight ligo XML file is also produced, but it is better suited
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for viewing smaller sets of trigger data. The histogram in Figure 5.12 graphically

represents the vetoed and non vetoed triggers.

In addition to the histograms, the vetoNonVetoTriggers task also invokes the

outliers task. Figure 5.13 shows an outlier that remains unvetoed if categories 1, 2, 4,

and 5 have been applied, but is vetoed by a veto window of category 3. In CBC searches,

injections are identified by category 3 vetoes. An injection is seen in the plot in Figure 5.13

at gps time 968654557.931 with SNR of 7.16. The outlier occurs at gps time

968654549.122, 8 seconds before the injection time, and has SNR 121.788. Investigating the

outliers of categories 1, 2, 4, and 5, as in Figure 5.13, verifies that category 3 injections are

not vetoed by other DQ flags. Investigating outliers can also help LIGO scientists identify

significant, unexpected glitches that should be flagged.
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Figure 5.10: List and plots of triggers contained within 3 overlapping
flags. The column labeled “Total (Unique, Original)” indicates the number of over-
lapping DQ windows as originally extracted from the DQ database. The first trigger
counted, gps time 968605409.935058593, belongs to three overlapping flags: H1:DMT-
BRMS_SEISMIC_LVEA_Z_3_10_HZ_THRESH_2E3, H1:DCH-SEISVETO_CBC, and
H1:DCH-ALL_SAFE_UPV. H1:DCH-ALL_SAFE_UPV overlaps with the other two flags
through 3 distinct windows. The far right column indicates a total of 5 windows: three from
the H1:DCH-ALL_SAFE_UPV flag, and one each from the other two DQ flags.
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Figure 5.11: List and plots of isolated triggers contained within 5 overlapping flags
for the analyzed time. - The plot shows the trigger at gps time 968773083.
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Figure 5.12: Histograms and an excerpt of lists of triggers vetoed and not vetoed
by combination of categories - Both clustered and unclustered triggers are shown.
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Figure 5.13: An outlier and its nearby windows - An excerpt of the table listing all DQ
windows within the same analyzed segment as the outlier. The plot shows the boundaries of
the DQ window nearest to the outlier. This outlier, at gps time 968654549.122070312, is found
to be vetoed at category 3. It occurs approximately 8 seconds before an injection at gps time
968657557. The full table lists all DQ flags windows in the analyzed segment that includes the
outlier.
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CHAPTER 6

CONCLUSIONS

The motivation for DQTunePipe is to aid LIGO’s DetChar team in categorizing and

tuning DQ flags. As LIGO scientists gravitate toward the application of more Pythonic

analysis tools, it is logical to develop a comprehensive set of Python modules for DetChar

use. DQTunePipe’s flexibility, versatility, and extensive documentation may make it a useful

tool for future LIGO science runs, i.e, Advanced LIGO.

A major purpose for developing DQTunePipe was to create a tool in Python for

evaluating and tuning DQ flags. The rationale for using Python is that there are many

open source and freely available implementations of Python and many existing LIGO tools

are written in the Python language. The goal of DQTunePipe is a well-documented and

easily maintainable tool that allows the user to:

1. Easily run isolated portions of the program;

2. Rerun the program on existing data without repeating the retrieval of all raw data;

3. Allow user-specified configuration parameters;

4. Incorporate new tasks into the program code in a straightforward manner.

DQTunePipe achieves these goals through an abstract data layer and modular structure of

the program, and by incorporating adaptable configuration parameters.
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6.1 Abstraction and Modularity

A major benefit of DQTunePipe is the implementation of an object representation of the

input data. The dataSet object is generated only once (per ifo) when DQTunePipe is

executed and removes from all tasks any dependence on the format of the input.

DQTunePipe is structured to allow a developer to add new tasks without modifying the

input and likewise modify the input without modifying the tasks.

The modular construction of DQTunePipe provides increased flexibility and

maintainability. Because of the modular design, future changes to the way that data is

processed should require minimal changes in the code. For example, if the format of any of

the raw data files were to change, only those functions which process the raw data files

would require alteration. The tasks, which rely on the data abstraction layer, would not

need to be altered. Since any change is likely to be restricted to individual modules, the

software is easier to maintain.

Furthermore, the modularity of each task separates calculations from output. For

example, the FigureOfMerit task involves two classes, the object FigureOfMerit (for

generating output) and the object Metric (for calculating metric quantities). In other

tasks, objects have separate methods to produce output. This is beneficial in that it allows

for future modification to the output without affecting the fundamental calculations. For

example, it may become preferable to write the metric quantities for each DQ to a

database, or store plots as Python objects. Likewise, since each task is represented by an

object, the objects can be passed to another task for analysis.

6.2 Configurability and Flexibility

DQTunePipe is flexible enough to allow the user a variety of options, yet retains

simplicity of use by requiring a minimal configuration file and applying default parameters

when not user-provided. The configuration options allow the user to select which tasks to
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perform and which data subset to evaluate. This makes DQTunePipe a good tool for

analysis since the user may, for example, choose to execute one task on existing data and

repeat calculations on a variety of configurable parameters (i.e. changing the snr threshold

for isolated triggers, or applying different padding amounts via a different veto definition

file) for comparison.

The use of a configuration file, as well as locally storing the raw data, ensures that

DQTunePipe’s execution parameters are readily available for repeat analysis. For instance,

the user can reuse a configuration file retaining the specifications from a previous run but

apply those parameters to a different task by invoking different task option from the

command line.

When new DQ flags are proposed, DQTunePipe’s unpd option allows users to calculate

the metric quantities and outlying triggers based solely on unpadded windows. This is a

useful feature when no veto definition file is available.

6.3 Maintenance and Documentation

DQTunePipe is also easy to maintain. The structure of DQTunePipe’s task are such that

input, calculations and output are distinct processes. Therefore, the input source for a

particular task can be easily determined, and the output format or naming schema can be

changed with no adverse effects on other tasks. For example, Outliers uses the

vetoNonVetoedTrigger object. However, modifications to the displayed output of

vetoNonVetoedTrigger task have no impact on the Outliers task.

The DataSet representation and the use of attributes of the Property class make it

easier to extend DQTunePipe’s functionality. It is straightforward to add new tasks using

the DataSet methods to access the data and the Property attributes to access the

configurable parameters. Creating an alternative DataSet instance using the existing class

and its methods could make DQTunePipe tasks accessible to non-inspiral gravitational wave

searches.
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The documentation provided in this thesis describes the steps necessary to incorporate

a new task into DQTunePipe’s main control structure, including the steps required to add

new tasks as user options. The documentation in this thesis also defines the rules for

overlapping DQ windows when veto categories for CBC inspiral searches are applied

(Figure 3.5.2). The appendices describe the functionality of every module in DQTunePipe,

and those descriptions are likewise included in the code itself.

6.4 Summary

DQTunePipe accomplishes its goals and the requirements outlined in Chapter 3 via an

abstract data layer, modular construction, and flexible configuration options. By satisfying

its objectives, along with the inclusion of comprehensive documentation, DQTunePipe

surpasses the previously used collection of MATLAB scripts in documentation, versatility,

usability, and simplicity of use.
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APPENDIX A

MAIN CONTROL STRUCTURE OF THE DQTUNEPIPE

A.1 DQTunePipe.py

DQTunePipe is the main control structure which is used to execute tasks and is

initialized via the command line, by: python DQTunePipe f <configuration File>

<ADDITIONAL ARGUMENTS>:

Acquires Raw Data and process Intermediate (Trigger) Data, as necessary.

For each ifo:

Establishes the dataSet object.

If requested by user (not executed by default), executes the deadtime task:

Instantiates the WriteDeadTime object and generates the DeadTime Table for

Padded and Unpadded Windows

Executes the Figures of Merit task:

Instantiates the FiguresOfMerit objects for both Padded and Unpadded

Windows with both Clustered and Unclustered Triggers,

Calls the writeSummary and writeMetricTable methods for those objects.

Executes the Isolated and Overlapping Windows and Triggers task:

Instantiates the OverlappingPaddedWindows object. Then for both isolated

and overlapping windows and both clustered and unclustered Triggers:
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Calls the writeOverlappingWindows and writeOverlappingTriggers

methods,

Calls the createTriggerDictionary method of OverlappingWindows to

instantiate a PlotTriggers object. Isolated (Overlapping) Triggers are

plotted against a background of Unclustered Triggers.

Executes the Vetoed, Non-Vetoed, and Outlying Triggers task:

Instantiates a VetoedAndNonVetoedTriggers object for both Padded and

Unpadded Windows and for both clustered and unclustered Triggers:,

Calls the writeFiles method of the VetoedAndNonVetoedTriggers object.

The Outliers object is instantiated when the writeFiles method is

called, as is the histogram method of the

VetoedAndNonVetoedTriggers object.

Writes the output of tasks to user-specified output directory: Additionally, a log

file, dqtunepipe.log , containing information and status of the run, as well as any

errors, is written to the directory from which the user executes the DQTunePipe.
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APPENDIX B

PYTHON DATA QUALITY TUNER OBJECTS - SET UP

B.1 properties.py

B.1.1 Allowed Values

Lists of currently supported values used throughout the Properties class.

AllowedIFOS = [‘H1’,‘L1’,‘H2’,‘V1’] List of ifo values currently supported.

DQTunePipe may be expanded to support additional ifo values.

supported_gw_programs = [‘INSPIRAL’,‘RINGDOWN’] Search programs currently

supported. DQTunePipe may be expanded to support additional GW Programs.

supported_inj_cats = [1,2,3,4,5] Identifies the category values allowed for injections.

B.1.2 class PropertyError

PropertyError(Exception) The PropertyError class is used to raise exceptions in the

Properties class.

B.1.3 class Properties

Properties(object) The attributes of the Properties class are used to identify the

properties used by DQTunePipe, and are referenced by the DQTunePipe via

properties.attribute.
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Attributes that MUST be specified by user, i.e. no defaults: these attributes

have _get_ and _set_ methods.

CONFIGURATION_FILENAME Identifies the configuration file to be used. Command-line

argument only.

INITIAL_START Identifies the starting time of data to be used.

INITIAL_END Identifies the ending time of data to be used.

OUTPUT_DIRECTORY Identifies the directory to in which to write output data.

VETODEFINERFILE_FULLPATH Identifies the full path location of the vetodefiner file.

TRIGGER_SOURCE_DIRECTORIES Identifies the initial directories of trigger input files.

IHOPE_TRIGGER_SOURCE Identifies the initial directory location of ihope trigger input

files.

CLUSTERED_FORMAT Identifies the nomenclature used in clustered data input files.

UNCLUSTERED_FORMAT Identifies the nomenclature used in unclustered data input files.

DQ_SCIENCE_H1 Identifies the DQ science flag associated with the H1 interferometer.

DQ_SCIENCE_L1 Identifies the DQ science flag associated with the L1 interferometer.

Attributes that MAY be specified by user, i.e. have defaults, and are available

for configuration from the command line: these attributes have _get_,

_set_, and _get_default_ methods.

IFOS Identifies the interferometers.

THRESHOLDS Identifies the snr thresholds to be used in calculating the metric

quantities.

PADDINGS Identifies whether padded or unpadded data should be used.

IS_CLUSTERED Identifies whether DQTunePipe should use clustered or unclustered

trigger data.
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DEBUG Identifies whether DQTunepipe writes additional debugging information to log.

PRINT_VALUES Identifies whether the DQTunepipe writes the values of the

properties attributes to console and then exits.

DO_FOM_TABLE Identifies whether DQTunePipe should execute the tasks for

figureOfMerit.

DO_DEAD_TIME_TABLE Identifies whether DQTunePipe should execute the task for

calculating just the deadTime.

DO_ISOLATED Identifies whether DQTunePipe should execute the tasks for isolated

triggers.

DO_ISOLATED_PLOTS Identifies whether DQTunePipe should execute the tasks for

isolated trigger plots.

DO_OVERLAPPING Identifies whether DQTunePipe should execute the tasks for

overlapping triggers.

DO_OVERLAPPING_PLOTS Identifies whether DQTunePipe should execute the tasks for

overlapping triggers plots.

DO_OUTLIERS Identifies whether DQTunePipe should execute the tasks for Outliers,

including plotOutlyingTriggers.

DO_HISTOGRAM Identifies whether DQTunePipe should execute the task for histogram

in VetoedAndNonvetoedTriggers.

DO_VETOED_NONVETOED_TRIGGERS Identifies whether DQTunePipe should execute the

task for VetoedAndNonvetoedTriggers.

Attributes that MAY be specified by user, i.e. have defaults, but are only

available to be configured from the configuration file: these attributes

have _get_, _set_, and _get_default_ methods.
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SNR_ISOLATED_THRESH Identifies the snr threshold to be used in determining the

isolated and overlapping triggers.

OUTLIER_THRESH Identifies the snr threshold to be used in determining the outlier

triggers.

MAX_OVERLAPS Identifies the maximum number of overlapping windows for a given DQ

that the DQTunePipe writes to file.

MIN_OVERLAPS Identifies the minimum number of overlapping windows for a given DQ

that the DQTunePipe writes to file.

DQ_XML_DIRECTORY Identifies the location of the directory storing the raw DQ xml

files.

DQ_SERVER_LOCATION Identifies the server location of the DQ database.

LIGO_LW_XSL Identifies the location of style-sheet to display output XML files,

mod_ligolw.xsl.

UNCLUST_TRIGGER_FILE_H1, UNCLUST_TRIGGER_FILE_H2,

UNCLUST_TRIGGER_FILE_L1, and UNCLUST_TRIGGER_FILE_V1 Identifies the

unclustered trigger text file to use for H1, H2, L1, and V1.

CLUST_TRIGGER_FILE_H1, CLUST_TRIGGER_FILE_H2, CLUST_TRIGGER_FILE_L1, and

CLUST_TRIGGER_FILE_V1 Identifies the clustered trigger text file to use for H1,

H2, L1, and V1.

ANALYZED_TRIGGER_SEGMENT_FILE_H1, ANALYZED_TRIGGER_SEGMENT_FILE_H2,

ANALYZED_TRIGGER_SEGMENT_FILE_L1, and

ANALYZED_TRIGGER_SEGMENT_FILE_V1 Identifies the analyzed segment trigger

text file to use for H1, H2, L1, and V1.

GW_PROGRAM Identifies the gravitational wave search data to use. Currently

DQTunePipe supports only trigger data from INSPIRAL and RINGDOWN

searches.
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INJ_CAT Identifies the category assigned to vetoes from hardware injections.

Attributes that may NOT be specified by user, and their values: (includes

filenames, directory names, internal-only references, etc): these attributes

have only _get_ methods.

H1 Identifies the H1 interferometer.

H2 Identifies the H2 interferometer.

L1 Identifies the L1 interferometer.

V1 Identifies the V1 interferometer.

DATA_DIRECTORY Identifies the directory to in which to store input data:

OUTPUT_DIRECTORY/data/

DATA_SUMMARY_DIRECTORY Identifies the location of the summary directory that

stores intermediate data: DATA_DIRECTORY/summary/

DQ_LIST_FILE Identifies the location of the file to contain the list of DQ flag names:

DATA_DIRECTORY/DQ_LIST_INITIAL

VETO_DEFINER_FILE Identifies the location of the copy of the vetodefiner file:

DATA_DIRECTORY/vetodefiner.xml

TRIGGER_FILES Identifies the trigger directory locations of the copied trigger data

associated with each interferometer: DATA_DIRECTORY/triggers-ifo/

IFO_MAIN_OUTPUT Identifies the main output directory for each interferometer:

OUTPUT_DIRECTORY/ifo_INITIAL_STARTINITIAL_END/

FOM_OUTPUT Identifies the directory for figuresOfMerit task output for each

interferometer: IFO_MAIN_OUTPUT[ifo]/FiguresOfMerit/

FOM_SUMMARY_OUTPUT Identifies the subdirectory for figuresOfMerit task summary

output: FOM_DQSummaries/ , in each IFO_MAIN_OUTPUT[ifo]
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CLUSTERED_SUBDIRECTORY Identifies the output subdirectories for each task

executing on clustered triggers: clustered_triggers

UNCLUSTERED_SUBDIRECTORY Identifies the output subdirectories for each task

executing on unclustered triggers: unclustered_triggers

ISOLATED_OVERLAPPING Identifies the subdirectory for isolated and overlapping DQ

windows and triggers for each interferometer:

IF0_MAIN_OUTPUT[ifo]/IsolatedOverlappingWindowsAndTriggers/

ISOLATED_OVERLAPPING_WINDOWS Identifies the subdirectory for isolated and

overlapping DQ windows: isolatedOverlappingWindows/

ISOLATED_OVERLAPPING_TRIGGERS Identifies the subdirectory for isolated and

overlapping triggers: isolatedOverlappingTriggers/

ISOLATED_OVERLAPPING_PLOTS Identifies the subdirectory for plots of isolated and

overlapping triggers: isolatedOverlappingPlots/

VETOED_NONVETOED_TRIGGERS Identifies the subdirectory for vetoed and non vetoed

triggers: vetoedAndNonVetoedTriggers/

OUTLIERS Identifies the subdirectory for outlier triggers: outliers/

OUTLIER_PLOTS Identifies the subdirectory for outlier plots: outlierPlots/

HISTOGRAMS Identifies the subdirectory for histograms: histograms/

DQ_SCIENCE_FLAGS Internally assigns DQ_SCIENCE_H1 and DQ_SCIENCE_L1 to

DQ_SCIENCE_FLAGS[ifo] for use throughout DQTunePipe.

UNCLUST_TRIGGER_FILE Internally assigns UNCLUST_TRIGGER_FILE_H1 and

UNCLUST_TRIGGER_FILE_L1 to UNCLUST_TRIGGER_FILE_FLAGS[ifo] for use

throughout DQTunePipe.

CLUST_TRIGGER_FILE Internally assigns CLUST_TRIGGER_FILE_H1 and

CLUST_TRIGGER_FILE_L1 to CLUST_TRIGGER_FILE_FLAGS[ifo] for use

throughout DQTunePipe.
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ANALYZED_TRIGGER_SEGMENT_FILE Internally assigns

ANALYZED_TRIGGER_SEGMENT_FILE_H1 and

ANALYZED_TRIGGER_SEGMENT_FILE_L1 to

ANALYZED_TRIGGER_SEGMENT_FILE_FLAGS[ifo] for use throughout DQTunePipe.

Additional methods available to the Properties object.

set_defaults Method to assign all default values to those properties which do not

yet have a value assigned.

show_all_set Method to display values assigned to configurable properties.

show_all Method to display all values assigned properties.

add_slash Method used to ensure that user-provided directory names contain an

ending ‘/’.
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APPENDIX C

PYTHON DATA QUALITY TUNER OBJECTS - TASKS AND DATA

C.1 entities.py

C.1.1 class DataSet

DataSet(object) A dataset object represents all information necessary to run the

DQTunePipe. Initialized with DataSet(ifo, start, end, scienceFlagName).

Each of the following is an attribute of DataSet, with associated get and set

methods:

ifo The interferometer of interest for this DataSet.

start The gps start time of the period of interest for this DataSet.

end The gps start time of the period of interest for this DataSet.

analyzedSegments The list of analyzed segments for this DataSet.

clusteredTriggers The list of clustered triggers for this DataSet.

unclusteredTriggers The list of unclustered triggers for this DataSet.

threshold The list of snr thresholds of interest for this DataSet.

dqs The list of DQ flag objects in this DataSet.

paddings The list of the Padding objects in this DataSet.

The following methods are part of the class DataSet:
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getScience Returns the science data, i.e. the DQ flag object identified by the

scienceFlagName in the initialization of this DataSet.

getTimeAnalyzed Returns the sum of the duration of all of the windows of the

science data.

getDQByName(dqname) Returns an individual DQ flag object identified by its dqname.

getPaddingsByDQ(dq) Returns padding objects associated with an individual dq (DQ

object) identified by its dqname.

getPaddingByDQCategory(dq, category) Returns padding objects associated with

an individual dq (DQ object) identified by its dqname and category.

getUndefinedDQs Returns the names of all DQ flags that have paddings but do not

have associated DQ objects in this DataSet.

C.1.2 class Padding

Padding(object) A Padding object represents the lengths of time (in seconds), per

applicable category, to be added to the beginning and end of a specific DQ Window object.

Initialized with Padding(dqName, category, left, right, paddedSegmentWindow).

Each of the following is an attribute of Padding, each with associated get and

set methods:

dqname The name of the DQ flag to which this padding applies.

category The category to which this padding applies.

left The length of time to be applied before the start of a window.

right The length of time to be applied after the end of a window.

paddedSegmentWindow The segment of time to which this padding applies.
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C.1.3 class DQ

DQ(object) A DQ object has a name and windows, and represents a DQ flag. Initialized

with DQ(dataSet, name).

Each of the following is an attribute of DQ, each with associated get and set

methods:

dataSet The DataSet to which this DQ belongs.

name The name of this DQ flag.

windows The list of windows associated with the DQ.

The following items are methods of the class DQ:

intersectWindows(otherWindows, category=None) Returns a set of

resultWindows that are the intersection of the self windows of this DQ and the

set of other windows that intersectWindows requires as an argument. May also

take a category value as an argument to return a set of resultWindows that are

the intersection of self.PaddedWindows and other windows.

getNumOfWindowsThatIntersect(otherWindows, category=None) Returns the

number of windows in self DQ that intersect otherWindows. Requires

otherWindows as an argument and may take a category value as an argument.

If a category argument is given, compares self.PaddedWindows for that category

to otherWindows. (Uses intersectWindows).

getMedianDurationOfWindowsThatIntersect(otherWindows, category=None)

Returns the median duration of resultWindows from intersectWindows.

Requires otherWindows as an argument and may take a category value as an

argument. If a category argument is given, compares self.PaddedWindows for

that category to otherWindows. (Uses intersectWindows).
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getScienceDuration(category=None) Returns the sum of the duration of all of the

resultWindows from the intersection of the self windows and the windows of

science data. May accept a category value as an argument. If a category

argument is given, compares self.PaddedWindows for that category to

otherWindows.

getCategories The list of veto categories, as defined by paddings, which may be

defined from this DQ flag.

getPaddings The list of paddings associated with this DQ flag.

getPaddingByCategory(category) Returns padding used for specific category

applicable to this DQ. Requires a category value argument.

getPaddedWindows(category) Return a list of windows that have been padded

according to this dq, category, version and time frame

(paddedSegmentWindow) of applicable padding. Combines windows (of same DQ)

that overlap due to padding into single window. Requires a category value

argument.

getUnpaddedWindows Returns a list of UnpaddedWindows for this DQ.

getDeadTimeCalc(category=None) Returns the deadtime of the DQ, the percentage

of time flagged by this DQ while science data was collected

self.getScienceDuration per the total science time,

dataSet.getTimeAnalyzed.

C.1.4 class Window

Window(object) A window object represents a period of time. It is initialized with

Window(start, end, version=None), (version is an optional initialization argument, as it

is only applicable to DQ windows).

Each of the following is an attribute of Window with associated get and set
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methods:

start Start time of window.

end End time of window.

version The version number of the window, for DQ flag windows.

The following items are methods of the class Window:

getDuration Returns duration of window.

overlaps(other) Takes other window as argument. Returns True if self overlaps in

time with other window (exclusive of start/end times), else returns False.

adjacent(other) Takes other window as argument. Returns True if self is adjacent

in time with other window at start or end times, else returns False.

containedBy(other) Takes other window as argument. Returns True if self is

contained in time within other window, else returns False.

contains(trigger) Takes trigger as argument. Returns True if trigger is contained

in time within self window, else returns False.

C.1.5 class AnalyzedSegmentWindow

AnalyzedSegmentWindow(Window) A window representing a full segment. Initialized

with AnalyzedSegmentWindow(start, end).

Each of the following items is an attribute of the class AnalyzedSegmentWindow,

each with associated get and set methods:

getStart Returns the start of this window.

getEnd Returns the end of this window.

The following items are methods of the class Window:

getDuration Returns duration of window.
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C.1.6 class PaddedWindow

PaddedWindow(Window) A window object augmented with DQ and category information.

Initialized with PaddedWindow(window, dq, category).

Each of the following is an attribute of PaddedWindow with associated get and

set methods:

dq The DQ object to which this window belongs.

category The category to which this window will be assigned.

The following items are methods of the class PaddedWindow:

getPadding Returns the Padding which will be assigned to this window based on the

DQ and category.

getStart Returns the start of this window adjusted by self.padding.left.

getEnd Returns the end of this window adjusted by self.padding.right.

getWindow Returns the base Window.

C.1.7 class UnpaddedWindow

UnpaddedWindow(Window) A window with DQ information. Initialized with

UnpaddedWindow(window, dq).

Each of the following is an attribute of UnpaddedWindow, each with associated

get and set methods:

dq The DQ to which this window belongs.

The following items are methods of the class UnpaddedWindow:

getStart Returns the start of this window.

getEnd Returns the end of this window.

getWindow Returns the base Window.
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C.1.8 class Trigger

Trigger(object) A trigger object represents a trigger by a point in time, and an SNR

value. Initialized with Trigger(time, snr, mass=None, timeString=None), (mass and

timeString are optional initialization arguments; mass is not used by DQTunePipe).

Each of the following is an attribute of Trigger with associated get and set

methods:

time Chirp time of trigger.

snr Signal-To-Noise ratio of trigger.

mass Template mass of trigger.

timeString String representation of time.

The following items are methods of the class UnpaddedWindow:

getCoarseTime Returns self.time rounded to the nearest integer.

containedByWindow Check if time is within a specific window. Takes a window as

argument, returns True if self.time is between window.start and window.end,

else returns False.

C.1.9 def mergeWindows

mergeWindows Stand alone method called by mergeWindows(windows,

adjacent_parameter=False).

mergeWindows Method for merging windows that overlap, requires a sorted list of Windows

as argument and may take an additional argument adjacent_parameter. If

adjacent_parameter=True, will merge windows that are immediately adjacent, i.e.

end time of one window equals start time of next window, and if

adjacent_parameter=False (default), will not merge windows that are immediately

adjacent. Returns a list of Window objects.
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C.2 figuresOfMerit.py and metric.py

C.2.1 class FiguresOfMerit

FiguresOfMerit(object) The FigureOfMerit class is used to create the output xml files

containing the calculated veto metric quantities. Initialized by FiguresOfMerit(dataSet,

thresholds, isPadded, isClustered).

Each of the following is an attribute of FiguresOfMerit:

dataSet The DataSet to which this FigureOfMerit belongs.

thresholds The list of snr thresholds to be used in calculating metric quantities.

isPadded True (False) value indicating whether PaddedWindows (UnpaddedWindows)

are to be used in calculating metric quantities.

isClustered True (False) value indicating whether clustered (unclustered) triggers

are to be used in calculating metric quantities.

triggersAboveThresh Dictionary of clustered (unclustered) triggers, where each key

is an snr threshold, and the corresponding value is a list of triggers above that

snr threshold.

metrics The list of metric quantities calculated via calculateMetrics, for each

threshold with the corresponding set of triggers.

The following are methods of the class FiguresOfMerit:

getDataSet Returns dataSet.

getMetrics Returns metrics.

getThresholds Returns thresholds.

checkIfPadded Returns isPadded value.

checkIfClustered Returns isClustered value.

94



getTriggersAboveThresh For each snr threshold in list of thresholds, returns the

set of clustered (unclustered) triggers with snr above that threshold in

dataSet, according to the value of checkIfClustered.

getNumberOfTriggersAboveThresh(threshold) Returns the number of triggers

with snr above threshold.

calculateMetrics(threshold, triggers) Returns a list of Metric objects (of all

padded (unpadded) DQ objects), calculated with triggers with snr above a given

threshold value. Uses PaddedWindows (UnpaddedWindows) in dataSet,

according to the value of checkIfPadded.

calculateChiMaxForMetrics(metrics) For each DQ in metrics, returns the

maximum value of chiSquared (across all chiSquared values for that DQ) and

the corresponding snr threshold value.

writeMetricTable(ifo) Creates the FiguresOfMerit directory structure (with

clustered (unclustered) subdirectories) to house the figure of merit data. Copies

stylesheet from properties.LIGO_LW_XSL into subdirectories. Uses

writeMetricData to write the DQ object and its metric quantities for each snr

threshold into an xml in table/colummn/stream format to be interpreted by

stylesheet.

writeMetricData(ifo, threshold, dq, doc, streamTag) Writes the metric

quantities for each dq (DQ object), for each snr threshold into the stream

identified by the streamTag of the xml file identified as doc.

writeSummary(ifo) Creates figures of merit summary subdirectory in clustered

(unclustered) subdirectory. Loops over DQ objects, per Padding, to write a txt

file using writeSummaryFile that contains DQ object and metric details.

writeSummaryFile(file, metrics, ifo, dq, category) Writes details of dq (DQ

object) and its associated metric quantities to a txt file identified as file, for
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each Padding applied to that dq.

C.2.2 class Metric

Metric(object) The Metric class is used to determine metric quantities for a specific

DQ object and category, based on a set of triggers with snr values above a given threshold.

Initialized with Metric(dq, triggers, threshold, figureOfMerit, category)

(category may be None).

Each of the following is an attribute of Metric:

dq The specific DQ object to which this Metric refers.

triggers The set of triggers on which this Metric refers.

threshold The snr threshold on which this Metric is based.

category The veto category determining the padding amounts added to windows of

the specific DQ object to which this Metric refers.

figureOfMerit The FigureOfMerit object to which this Metric refers.

chiSquared The χ2 value for this Metric, i.e. the sum of the terms in equation 2.4,

across all windows for the dq.

chiDegFreedom Degrees of freedom in χ2, i.e. a count of the number of terms in the

sum of χ2 (Equation 2.4) less 1.

chiSquaredRatio The ratio of chiSquared per the inverse cumulative distribution

function (confidence of 95%).

usedWindows The number of windows of dq that contain triggers.

totalTriggersVetoed The number of triggers contained by windows of dq.

effiency The efficiency of the DQ flag, i.e. the percentage of

totalTriggersVetoed per the number of triggers above the snr threshold via

figureOfMerit.getNumberOfTriggersAboveThresh(threshold).
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usePercent The use percentage of the DQ flag, i.e. the percentage of usedWindows

per number of windows of dq that intersect with windows of science data (via

dq.intersectWindows(dq.dataSet.science.windows, category)).

corrTerm The correlation term relating effiency, usePercent, and deadtime;

effiency/(usePercent ∗ dq.getDeadTimeCalc(category)).

C.3 writeDeadTime.py

C.3.1 class WriteDeadTime

WriteDeadTime(object) The WriteDeadTime class is used to write the deadTime of

each DQ to an xml file. Initialized by WriteDeadTime(dataSet, isPadded).

Attributes of WriteDeadTime:

dataSet The DataSet to which this WriteDeadTime belongs.

isPadded True(False) value indicating whether PaddedWindows (UnpaddedWindows)

are to be used in calculating deadTime.

The following are methods of the class WriteDeadTime:

getDataSet Returns dataSet.

checkIfPadded Returns isPadded value.

writeDeadTimeXML(ifo) Writes the xml containing the deadTimes calculated for

each DQ in DQDataSet Object in table/colummn/stream format to be interpreted

by the stylesheet, properties.LIGO_LW_XSL. Uses writeDeadTimeData to write

the DQ object and its deadTime for padded (unpadded) windows.

writeDeadTimeData(ifo, dq, doc, streamTag) Write the deadTime info for each

DQ.
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C.4 OverlappingWindows.py and plotTriggers.py

C.4.1 class OverlappingWindows

OverlappingWindows(object) The OverlappingWindows class is used to determine

and store which DQ windows overlap with other DQ windows. Initialized by

OverlappingWindows(dataSet).

Each of the following is an attribute of OverlappingWindows:

dataSet The DataSet to which this FigureOfMerit belongs.

overlappingWindows A python dictionary where the key is the window object of

interest and the value is a list of other window objects that overlap in time with

the (key) window object of interest.

the following are methods of the class OverlappingWindows:

getOverlappingWindows Returns overlappingWindows.

addOverlappingWindows(window, overlappingwindow) Adds an

overlappingwindow to overlappingWindows[window].

getTriggersAboveIsolatedThresh(isClustered) Returns clustered (or

unclustered) triggers with snr values above above a given threshold.

makeOverlappingWindows Loops over all DQ objects with assigned categories in

dataSet and compares the PaddedWindow object each DQ to the other

PaddedWindow objects every other DQ. If the other PaddedWindow overlaps in

time with the first Paddedwindow, per the category rules described in section

3.5.2, then calls self.addOverlappingWindows to add the other window to the

list of overlappingWindows keyed by the first Paddedwindow. Note: A DQ is not

compared against itself.
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filterWindowsForFiles(numberOfOverlaps, INJ_CAT) Filters the windows listed

in self.overlappingWindows for the purpose of writing to file. Applies the

following filters:

1. Filters out category 1 windows, which are not written to file overlap file.

2. Separates category 3 windows, whose overlaps are to be written to a

separate file.

3. Sorts the overlappingWindows to arrange alphabetically by dqname and in

ascending category value.

writeOverlappingWindows(ifo, numberOfOverlaps, INJ_CAT) Writes

overlappingWindows to xml, uses filterWindowsForFiles.

filterOverlappingTriggers(isClustered, numberOfOverlaps, INJ_CAT)

Returns a list where each element in the list a is python tuple consisting of a

trigger and the window that contains it, where the window also contains the

information regarding which other windows overlap it.

writeOverlappingTriggers(ifo, isClustered, numberOfOverlaps, INJ_CAT)

Writes the set of Overlapping (or Isolated) triggers to xml, uses

filterOverlappingTriggers.

createTriggerDictionary(isClustered, maxNumberOfOverlaps) Creates a

python dictionary, where each key is a tuple of the each trigger from

filterOverlappingTriggers and number of overlapping windows currently

being processed, and the value is the list of all the overlapping windows in

which the (key) trigger is associated. Note that a trigger is considered to be

overlapping if it occurs within an overlapping window, therefore all other

windows with which the initial window overlaps are associated with that trigger.
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C.4.2 class PlotTriggers

PlotTriggers(object) The PlotTriggers class is used to generate plots of the isolated

and overlapping triggers. Initialized by PlotTriggers(dataSet, triggerSetDictionary).

Each of the following is an attribute of PlotTriggers:

triggerSetDictionary Python dictionary keyed by trigger and number of

overlapping windows where the values are lists of all the overlapping

windows in which the (key) trigger is associated.

dataSet The DataSet from which this PlotTriggers instance is derived.

unclusteredTriggers The list of unclustered triggers that belong to the DataSet on

which this PlotTriggers instance is derived.

The following are methods of the class PlotTriggers:

getTriggerSetDictionary Returns triggerSetDictionary

getDataSet Returns DataSet.

getUnclusteredTriggers Returns unclusteredTriggers.

makeTriggerPlots Verifies that all windows containing a particular trigger are

included in the plot, then uses createTriggerPlot to create the plot of the

trigger. Note: Verifying window inclusion is necessary since a DQ is not

compared against itself in determining overlappingWindows, but a DQ can

generate vetoes of multiple categories with different PaddedWindows.

createTriggerPlot(trigger, containingWindows, originalWindows,

additionalWindows) Creates the plot of the isolated or overlapping trigger

against the background of unclusteredTriggers, with all boundaries of all

windows that contain that trigger.
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getIsolatedTriggerWindowBoundaries(trigger, windows) Determines the

boundary axes of an isolated or overlapping trigger plot. Used by

createTriggerPlot in determining background triggers to include in plot.

C.5 VetoedAndNonvetoedTriggers.py and outliers.py

C.5.1 class VetoedAndNonvetoedTriggers

VetoedAndNonvetoedTriggers(object) The VetoedAndNonvetoedTriggers class is used

to identify the vetoed and non-vetoed triggers, sort by veto category and generate histograms

relating the vetoed and non-vetoed triggers. Initialized by

VetoedAndNonvetoedTriggers(dataSet, isClustered, isPadded).

Each of the following is an attribute of VetoedAndNonvetoedTriggers:

isPadded True (False) value indicating whether PaddedWindows (UnpaddedWindows)

are to be used.

isClustered True (False) value indicating whether clustered (unclustered) triggers

are to be used.

dataSet The DataSet from which this VetoedAndNonvetoedTriggers instance is

derived.

triggers triggers from dataSet.clusteredTriggers or

dataSet.unclusteredTriggers depending on value of isClustered

vetoedTriggers A python dictionary of vetoed triggers where the keys are the

categoryKeys, and the values are lists of triggers vetoed by DQ windows of

those veto categories.

nonVetoedTriggers The set of all triggers not in vetoedTriggers after each

categoryKey is applied.
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categoryKeys A list of tuples of categories and combinations of categories for DQ

windows. Note: categorykeys are a list, as follows: [(1,), (2,), (3,), (4,), (5,),

(1,2), (1,2,3), (1,2,3,4), (1,2,3,4,5)].

The following are methods of the class VetoedAndNonvetoedTriggers:

writeFiles Creates subdirectories, loops over categoryKeys callign writeToFiles

to write triggers, calls histogram, creates Outliers, and calls

writeOutlyingTriggers to write outlying triggers.

writeToFiles(subDirectory, categoryKey, vetoed)Writes vetoedTriggers

(nonVetoedTriggers) to XML tables per category or categories by which the

triggers are vetoed(survive vetoing).

histogram(subDirectory, categoryKey, binStep, triggerbins, triggerfreq)

Generates histograms of vetoedTriggers and nonVetoedTriggers per category

level.

C.5.2 class Outliers

Outliers(object) The Outliers class is used to identify the outlying triggers.

Initialized by Outliers(dataSet, properties, threshold, categoryKey,

nonVetoedTriggers, isClustered, isPadded)).

Each of the following is an attribute of Outliers:

dataSet The DataSet from which this Outliers instance is derived.

threshold The snr threshold on which this Outliers instance is based.

categoryKey The veto category or combination of veto categories from which this

Outliers instance is derived.

nonVetoedTriggers The list of nonVetoedTriggers
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isPadded True (False) value indicating whether PaddedWindows (UnpaddedWindows)

are to be used.

isClustered True (False) value indicating whether clustered (unclustered) triggers

are to be used.

outliers A python dictionary of outlying triggers where the keys are the

trigger.coarseTime of the trigger objects, and the value of each is the

trigger object which has the highest trigger.snr value of all trigger objects

which correspond to that trigger.coarseTime.

nearbyDQWindows A python dictionary of nearby windows, keyed by the same

trigger.coarseTime keys as outliers, with values that are a list of DQ

windows whose boundaries are within the same analyzedSegmentWindow as the

outlying trigger.

analyzedSegments A python dictionary of analyzed segments which is keyed by

the same trigger.coarseTime keys as outliers and having values that are a

list of analyzed segment windows (See AnalyzedSegmentWindow in appendix

C.1.5) that contain that trigger.coarseTime.

scienceSegments A python dictionary of science segments, keyed by the same

trigger.coarseTime keys as outliers, with values that are a list of science

windows (See getScience in appendix C.1.1) that contain that

trigger.coarseTime.

The following are methods of the class Outliers:

getWindowWithMaxEndTime(listOfWindows) Returns the Window object with latest

end time from the list given as the argument.

getWindowWithMinStartTime(listOfWindows) Returns the Window object with

earliest start time from the list given as the argument.
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checkIfCloseBefore(triggerCoarseTime, maxBeforeWindow) Confirm that the

(nearest) DQ window ending before triggerCoarseTime is within the same

analyzedSegments window containing that triggerCoarseTime.

checkIfCloseAfter(triggerCoarseTime, minAfterWindow) Confirm that the

(nearest) DQ window beginning after triggerCoarseTime is within the same

analyzedSegments window containing that triggerCoarseTime.

getNearbyDQWindows Determines and returns nearbyDQWindows.

writeOutlyingTriggers Writes the outliers to an XML table.

plotOutlyingTriggers Generates plots of the outlying triggers in outliers.
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APPENDIX D

FUNCTIONS FOR SETTING UP THE ENVIRONMENT

D.1 initialize.py

Initializes log and properties object.

D.2 configuration.py

D.2.1 def parse_options

parse_options The parse_options function parses the user options. Called by

parse_options().

D.2.2 def getConfiguration

getConfiguration The getConfiguration function, called by getConfiguration(log):

Creates properties object with configuration file values.

Deletes existing directory if clean option selected.

Updates properties dictionary with command line options

Verifies user tasks and tasks associated with user assigned tasks.

Applies default properties values, optionally print properties to console.

Verifies Properties requirements.

Returns Property object used in this execution of DQTunePipe.
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D.2.3 def LoadConfigFile

LoadConfigFile The LoadConfigFile is used to load the configuration parameters

specified by the user via a configuration file. Called by LoadConfigFile(file,

properties=Properties().

Returns the Property object with configuration file values applied.

D.2.4 class DefaultSectionHeader

DefaultSectionHeader(object) The DefaultSectionHeader class is used to create a

generic section header for loading the configuration file. Initialized by

DefaultSectionHeader(fp).

Each of the following is an attribute of DefaultSectionHeader:

fp file pointer, (an open file for writing).

sectionHead String, “[Configuration Options]” to serve as default section to use with

LoadConfigFile.

Methods of the class DefaultSectionHeader:

readline Returns the default section header as the a line read from the open file to

use with ConfigParser.

D.3 config_rules.py

D.3.1 class Rule

Rule(object) The Rule class is an abstract class for defining Rule objects.

Methods of the class Rule:

print_value Prints the value of the properties attribute for this Rule.
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apply Abstract method which tests the rule.

get_fail_message Abstract method which returns the failure message for this rule.

_has_value Abstract method which determines if a value has been assigned.

D.3.2 class Required

Required(Rule) The Required class extends Rule to require that the specified property

contains a value. Initialized by Required(propertyA).

Attributes of Required:

propertyA The property attribute.

The following are methods of the class Required:

apply Apply Rule: Return True if propertyA has a value that is not None.

D.3.3 class OrRequired

OrRequired(Rule) The OrRequired Rule is used to determine if at least one of two

required properties attributes have values. Initialized by OrRequired(propertyA,

propertyB).

Attributes of OrRequired:

propertyA The first property attribute.

propertyB The second property attribute.

Methods class OrRequired:

apply Apply Rule: Return True if propertyA or propertyB has a value that is not

None.
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D.3.4 class IfThenRequired

IfThenRequired(Rule) The IfThenRequired Rule is used to determine that if one

properties attribute is set then a second property attribute is also set. Initialized by

IfThenRequired(propertyA, propertyB).

Attributes of IfThenRequired:

propertyA The first property attribute.

propertyB The second property attribute.

Methods of the class IfThenRequired:

apply Apply Rule: Return True if propertyA is not set or propertyA is set and

propertyB is also set; otherwise returns False.

D.3.5 def test_rules

test_rules The test_rules method is used to verify that user has provided all required

input parametersand is called by test_rules(rules, properties).

Returns no output: Prints an error message to screen if a rule is broken, i.e. a required

user input has not been provided.

D.4 manageData.py

D.4.1 def has_dq_xml_files

has_dq_xml_files Called by has_dq_xml_files(ifo).

Return True if the DQ XML directory properties.DQ_XML_DIRECTORY has any

appropriate files, else return False.
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D.4.2 def get_dq_xml_data

get_dq_xml_data Initialized by get_dq_xml_data(ifo).

Return True if DQ data must be retrieved, else return False is DQ data already present.

D.4.3 def has_intermediate_trigger_data

has_intermediate_trigger_data Initialized by

has_intermediate_trigger_data(ifo, format).

Return True if the summary data directory has appropriate intermediate files.

D.4.4 def has_raw_trigger_data

has_raw_trigger_data Initialized by has_raw_trigger_data(ifo, format).

Return True if the trigger directory (properties.TRIGGER_FILES[ifo]) has appropriate

files, else return False.

D.4.5 def get_raw_trigger_data

get_raw_trigger_data Initialized by get_raw_trigger_data(ifo, format).

Retrieves the raw trigger data.

D.5 rawData.py

D.5.1 def getDQxmlsALL

getDQxmlsALL The getDQxmlsALL method writes the DQ XML files (output returned

by ligolw_segment_query) to the location identified by properties.DQ_XML_DIRECTORY.

Called by getDQxmlsALL(ifo).

Returns no output.
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D.5.2 def getDQNamesFromligolwDQTools

getDQNamesFromligolwDQTools The getDQNamesFromligolwDQTools method writes

the DQ output returned by ligolw_dq_query to a customized file,

(properties.DQ_LIST_FILE) and keeps this data for use by all IFOs. Called by

getDQNamesFromligolwDQTools(ifo).

Returns outDQList: A unique list of all DQ names in properties.DQ_LIST_FILE for a

specific ifo.

D.5.3 def copyTriggers

copyTriggers The copyTriggers method is used to copy the triggers from the location

identified by properties.TRIGGER_SOURCE_DIRECTORIES to the locations specified for each

interferometer by properties.TRIGGER_FILES[ifo]. Called by copyTriggers(ifo,

fileFormat).

Returns no output.

D.5.4 def copyVetodefinerFile

copyVetodefinerFile This method puts a copy of

properties.VETODEFINERFILE_FULLPATH in the local directory when executing on

padded data (properties.PADDINGS includes True value). Called by

copyVetodefinerFile().

Returns no output.

D.6 summaryDataFiles.py

D.6.1 def time_and_snr

time_and_snr The time_and_snr method creates a triggerList containing the end

time and snr of each trigger in the XML table identified by the dataTag. Called by
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time_and_snr(ifo,reader,dataTag).

Returns triggerList: List of Trigger objects.

D.6.2 def segment

segment The segment method creates segmentList containing the duration of each

trigger in the xml table identified by groupTag. Called by segment(IFO,reader,groupTag).

Returns segmentList: List containing Trigger durations.

D.6.3 def make_intermediate_trigger_data

make_intermediate_trigger_data The make_intermediate_trigger_data method

creates the clustered and unclustered trigger text files and creates the analyzed segment text

file from the unclustered XML files. Called by make_intermediate_trigger_data(ifo,

clustered).

Returns no output.

D.7 createDataSet.py

D.7.1 def createDataSet

createDataSet createDataSet is a method that initializes the (DataSet) and is called by

createDataSet(ifo):

Instantiates DataSet object, dataSet, with ifo, properties.INITIAL_START,

properties.INITIAL_END, properties.DQ_SCIENCE_FLAGS[ifo].

Loops over DQ xml files in properties.DQ_XML_DIRECTORY; uses XMLTableReader to read

each DQ xml file. Adds DQ object, dq created from name of DQ in xml file to

dataSet.

Adds Window object created from start and end times of DQ segments in DQ xmls to dq.
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Reads properties.VETO_DEFINER_FILE via XMLTableReader to extract padding

definitions and adds Padding objects for each dq to dataSet.

Adds list of clustered and unclustered Trigger objects to dataSet via

getTriggersFromFile.

Returns dataSet: The instance of DataSet object. See Appendix C.1.

D.7.2 def getTriggersFromFile

getTriggersFromFile The getTriggersFromFile method creates a list of Trigger object

instances in the unclustered (clustered) trigger text file identified by

properties.UNCLUST_TRIGGER_FILE (properties.CLUST_TRIGGER_FILE)]. Called by

getTriggersFromFile(file).

Returns triggers: List of triggers for use by createDataSet.

D.8 Additional materials included with DQTunePipe that are not python modules.

D.8.1 exampleConfigurationFile.txt

An example configuration file. The user may use this as a template from which to

develop a working configuration file for his environment.

D.8.2 mod_ligolw.xsl

Default stylesheet assigned to properties.LIGO_LW_XSL for use in viewing various

DQTunePipe output in browser.
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APPENDIX E

BACKGROUND AND SUPPLEMENTAL CLASSES AND FUNCTIONS

E.1 XMLTableReader.py

E.1.1 class XMLTableReader

XMLTableReader(object) The XMLTableReader class is used to read xml data from a

ligolw xml. Initialized by XMLTableReader(fileName). A side note on import lines: from

elementtree.ElementTree import parse must be used for Python version 2.4.3 or earlier

(such as on ligo.caltech.edu), but should be replaced with from xml.etree.cElementTree

import parse on Python versions 2.5 and later.

Each of the following is an attribute of XMLTableReader:

tables List of tables elements in a ligolw XML, identified by Table and parsed via

class XMLTable.

The following are methods of the class XMLTableReader:

getTables Returns tables.

getTable Takes tableName as an argument, returns the individual table identified

by the given tableName.
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E.1.2 class XMLTable

XMLTable(object) The XMLTable class is used to identify the contents of a particular

Table element in a ligolw XML. Initialized by XMLTable(tableElement).

Each of the following is an attribute of XMLTable:

tableName The name of the Table element

columns The columns of the Column elements for the table

streams The stream of the Stream elements for the table

The following are methods of the class XMLTable:

getName Returns tableName.

getColumns Returns columns.

getRawStream Returns streams, as one continuous string of text.

getStream Returns data in streams, as a list of python dictionary items, keyed by

the name of the column, where the value is the associated content from the

stream.

E.1.3 class XMLTableColumn

XMLTableColumn(object) The XMLTableColumn class is used to identify contents of

Column elements inside Table elements. Initialized by XMLTableColumn(columnElement).

Each of the following is an attribute of XMLTableColumn:

name The name of the Column element

type The type of the Column element

The following are methods of the class XMLTableColumn:

getName Returns the name.
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getType Returns the type.

getValue Takes a valueString as argument, and returns the string, valueString,

which is the content associated with column instance.

E.1.4 class XMLTableStream

XMLTableStream(object) The XMLTableStream class is used to identify contents of

xml streams in the tables of ligolw xmls. Initialized by XMLTableStream(streamElement).

Each of the following is an attribute of XMLTableStream:

name The name of the Stream element

type The type of the Stream element

delimiter The delimiter of Stream stream element

data The contents of the Stream element.

The following are methods of the class XMLTableStream:

getName Returns the name.

getType Returns the type.

getDelimiter Returns the delimter.

getData Returns the data.

E.2 xmlColumnTag.py

E.2.1 def xmlColumnTag

xmlColumnTag The xmlColumnTag function loops over a list of tuples containing the

name and type of items in a ligolw column and adds them to a supplied dataTag. Called by

xmlColumnTag(doc, dataSetTag, tupleList).
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Returns dataTag: Used for creating ligolw column elements that identify contents of

XML tables.

E.3 utility_box.py

E.3.1 def makeDirectory

makeDirectory The makeDirectory method verifies that a directory named newdir does

not exist, and creates newdir and its necessary parent directories. Called by

makeDirectory(newdir).

Returns no output.

E.3.2 def median

median The median method sorts a list of numbers and determines the median value.

Initialized by median(list).

Returns medianValue: The median value of input list.

E.3.3 def parseBoolean

parseBoolean The parseBoolean turns a string “True” or “False” into a boolean True

or False value. Initialized by parseBoolean(b), where b is a string.

Returns True for any string whose first character is t, y, or 1.

Returns False for all other strings.

E.3.4 def uniquifyList

uniquifyList The uniquifyList function returns a sorted list comprised of the unique

elements in the input list. Called by uniquifyList(originalList).

Returns uniqueList: A sorted list of unique elements.
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E.3.5 def cluster_triggers

cluster_triggers The cluster_triggers method groups Trigger objects into a

cluster so that all Trigger objects within the cluster are no more than delta apart in time.

For each cluster it selects the Trigger object with the max snr to represent the cluster. A

list of these representative triggers is returned. Called by cluster_triggers(triggers,

delta).

Returns cluster_triggers: List of Trigger objects
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