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ABSTRACT 

Turtles are one of the most threatened taxa worldwide. In addition to direct anthropogenic 

impacts such as hunting and pollution, unintentional indirect human disturbance affects 

poikilothermic turtles by disrupting thermoregulatory basking behavior. In this thesis I assess the 

behavioral and physiologic impacts of high boat traffic, reductions of basking structures, and 

environmental factors on basking behavior, rates of disturbance, thermoregulation, parasite load, 

shell condition, and population recruitment in two populations of the endangered ringed sawback 

(Graptemys oculifera), also known at the ringed map turtle, on the Pearl River outside Jackson, 

MS. Basking behavior was influenced by availability of basking structures, boat traffic, zone 

(wake or no wake), boat type, air temperature, weather, and Julian day. Mathematic simulations 

of anthropogenically disturbed and undisturbed adult female ringed sawbacks showed a decrease 

in body temperatures due to disturbance, an effect which was magnified in higher probabilities of 

disturbance and in the months of May and June compared to July and August. Parasite load did 

not differ between populations, despite apparent differences in human disturbance. Shell 

condition was poorer in the population near urban development, and fewer juveniles and young 

adults were found in the population subject to higher boat traffic. This study explores the effect 

of unintentional human disturbance on ectothermic riverine turtles and provides management 

recommendations for the conservation of an endangered, endemic species.  
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CHAPTER I: 

ANTHROPOGENIC AND ENVIRONMENTAL FACTORS INFLUENCING THE 

BASKING BEHAVIOR OF AN ENDANGERED RIVERINE TURTLE 

Introduction 

While many studies agree on the direct negative effects of human activities such as 

hunting (Rosser & Mainka 2002), pollution (Trevors & Saier 2009), and habitat loss 

(Sekercioglu et al. 2011) on animal populations, a consensus on the possible effects of indirect 

forms of human disturbance has yet to be reached (Tablado & Jenni 2017). Indirect disturbance 

is typically unintentional (Buchholz & Hanlon 2012) and includes such activities as ecotourism 

(Müllner et al. 2004, Buchholz & Hanlon 2012), winter sports (Arlettaz et al. 2007), hiking 

(Taylor & Knight 2003), and recreational boating (Moore & Seigel 2006). These indirect forms 

of human disturbance may be perceived by wildlife as a predation risk and cause changes in 

behavior and recruitment (Blumstein 2006, Blumstein 2016). Some studies show no effect on 

populations (Blumstein 2006, Bejeder et al. 2006), however many more show that wild animals 

change their behavior in response to the presence of humans (Moore & Seigel 2006, Müllner et 

al. 2004, Arlettaz et al. 2007). 

Because myriad variables influence an animal’s behavior (Reyer 1984, Dill 1987, 

Eckman 1987, Morrison et al. 2004), it can be difficult to predict behavioral responses to human 

disturbance. Even in the absence of humans, individual animals must optimize behavior based on 

extrinsic factors, such as season (Jorgensen et al. 2016), temperature (Weatherhead & Robertson 
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1992), or habitat structure (Pittfield & Burger 2017), and intrinsic factors, such as body condition 

(Brodersen et al. 2008), mass (Wahle 1992), or past experience (Kelley & Magurran 2003). 

When disturbed by humans, animals assess the costs and benefits of an array of feasible 

behavioral reactions to human presence. For example, an animal must decide the distance at 

which a human intruder is allowed to approach before it attempts escape, commonly called the 

flight initiation distance (FID) (Frid & Dill 2002). Jorgensen et al. (2016) found that FID in 

nesting piping plovers (Charadrius melodus) decreased in relation to Julian day. This effect may 

be reflective of parent plovers’ optimization of predation risk and potentially losing a nest which 

increases in past parental effort as the season progresses (Jorgensen et al. 2016).  Pittfield and 

Burger (2017), on the other hand, found that cloud and canopy cover explained variation in the 

FID of basking turtles in the family Kinosternidae turtles. Increased canopy decreases perception 

of predation risk, resulting in shorter FID (Pittfield & Burger 2017).  In small populations and in 

those species already vulnerable to extinction, behavioral decisions that animals make in 

response to humans can have cascading effects in the health and physiology of individuals, 

potentially resulting in population decline (Christiansen & Lusseau 2015, Nowacek et al. 2016).  

Human disturbance of rivers can be particularly problematic since the spatial options 

available to aquatic animals is limited by the linear structures of their habitat (Bodie & Semlitsch 

2000). This problem is especially acute for air-breathing animals that cannot remain below the 

water surface indefinitely (Kramer 1988). Air-breathing species who can remain submerged for 

long periods may still suffer negative physiologic effects from oxygen deprivation such as 

bradycardia and glycogen depletion (Penney 1974). If the species is ectothermic as well, 

exposure to the sun and warmer air above the river surface is essential to functional 

thermoregulation.   Passing watercraft and the removal of deadwood from rivers to aid boat 
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traffic (known as de-snagging) can prevent turtles from being able to bask optimally (Moore & 

Seigel 2006), no doubt contributing to the fact that more than half (60.4%) of all turtle and 

tortoise species are threatened with extinction (Turtle Conservation Coalition 2018).  Basking 

increases body temperatures to allow for digestion (Hammond et al. 1988), egg development 

(Lindeman 1999; Moore & Seigel 2006), and other metabolic activities (Lindeman 2013), as 

well as assisting in the maintenance of a healthy shell free from fungus (Selman et al. 2013). 

Additionally, basking is vital in the removal of ectoparasitic leeches (Selman & Qualls 2009) 

which can transmit harmful blood parasites such as the haemogregarina (Siddall & Desser 2001).  

Frequent boat traffic has been associated with elevated stress (Selman et al 2013) and reduced 

shell condition (Selman et al 2013, Galois & Ouellet 2009) in riverine turtles, ostensibly because 

boats disrupt basking. 

The ringed sawback (Graptemys oculifera), also known as the ringed map turtle, is a US 

federally threatened species. It is listed as an endangered species by the state of Mississippi and 

is found solely in the Pearl River and its tributaries in Mississippi and Louisiana, USA (Jones & 

Selman 2009). This turtle’s threatened status is mainly due to habitat modification and 

degradation by humans, compounded by nest predation by human commensals, such as raccoons 

and crows, and the invasive Argentinean fire ant (Jones & Selman 2009, Jones 2006). Graptemys 

species are known to be habitual baskers compared to other riverine turtles (Ryan & Lambert 

2005) and achieve higher temperatures during basking than other riverine species: body 

temperature averaged 32.7⁰C in false map turtles (Graptemys pseudogeographica) compared to 

30.6⁰C in red-eared sliders (Trachemys scripta elegans) (Boyer 1965, Lindeman 1999). 

Therefore, the consequences of interrupted basking may be higher in this species than other 

riverine turtles, possibly impeding recovery efforts. 
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The objectives of this study were to 1) characterize the indirect human disturbances 

occurring in the habitat of the endangered ringed sawback, and 2) investigate how human and 

environmental factors interact to affect basking. I hypothesize that human disturbance negatively 

affects basking behavior by turtles, and predict that frequent boat traffic (quantified as boats per 

hour) and rarity of basking structures will result in fewer basking turtles and reduced basking 

duration. 

Methods  

Study site 

Two study sites were chosen on the Pearl River outside Jackson, MS based on suspected 

differences in human disturbance (Jones & Hartfield 1995, Jones 2017; Fig. 1.1). The first site, 

located in Canton, MS, is upstream of the Ross Barnett Reservoir (Latitude -89.86⁰, Longitude 

32.62⁰). This site is comprised of the three river miles between Ratliff Ferry Trading Post and a 

large sandbar colloquially known as “Flag Island.”  Ratliff Ferry (RF) is within the Pearl River 

Wildlife Management Area (PRWMA) where de-snagging is prohibited, and the river is 

unchannelized. However, the naturalistic setting and high numbers of sandbars make it attractive 

for boating and other recreational activities. Boat traffic is high, particularly on weekends and 

holidays (Jones 2017), presenting a significant potential disturbance to turtles. There are several 

no wake zones throughout the site, with one no wake zone located around the boat ramp at mile 

1, and two located around large sandbars in mile 3.  

The second site, located in Jackson, MS and the surrounding towns, is downstream of the 

Ross Barnett Reservoir (Latitude 32.33°, Longitude 90.15°). The LeFleur’s Bluff [LB, known as 

the Lakeland site in Jones (2017)] site is comprised of the three river miles upstream of the Pearl 
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River access boat ramp within LeFleur’s Bluff State Park and lacks no wake zones. Its highly 

variable water levels due to its location downstream of the reservoir can lead to extremely 

shallow areas with risk of outboard motor damage, which discourages many boaters. The 

channelized nature of the area and highly variable water levels may limit the availability of 

basking structures for turtles, presenting a different type of anthropogenic disturbance than RF. 

 

 

  

 

 

 

 

Fig. 1.1 Location of two study sites on the Pearl River outside Jackson, MS (image A). Ratliff 

Ferry Trading Post (RF, image B) is upstream of the Ross Barnett Reservoir in Canton, MS 

while LeFleur’s Bluff State Park (LB, image C) is in Jackson, MS. Basking structures are 

indicated by points in images B and C. Approximate location of no wake zones are indicated by 

boxes at RF (image B).  

 

RF 

A 

B 

C 

LB 
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Basking site characteristics  

Assessment of behavior and disturbance took place at RF between 21 May – 2 June and 

30 June – 15 July 2017. Observations took place at LB between 7 June – 14 June and 16 July – 

22 July 2017. The effect of Julian day was therefore not consistent across all sites. Each site was 

divided into three, one river mile sections, and human disturbance was assessed separately at 

each river mile. A study of a related species, the yellow blotched map turtle (Graptemys 

flavimaculata), has shown average home range lengths of 1.8 km for males and 1.5 km for 

females (Jones 1996). Therefore, the river mile where a turtle was captured likely represents the 

area of disturbance experienced by an individual over time. 

Basking structures with two or more turtles present during three days of assessment at the 

site were flagged – this eliminated any smaller structures that were potentially only accessible to 

juveniles and small males.  If changing water levels revealed previously submerged basking 

structures, those additional sites were flagged subsequently. Locations of basking structures were 

recorded by marking waypoints using a handheld GPS (Garmin eTrex 10). The flagging used for 

marking basking structures did not appear to interfere with turtle behavior as turtles were 

observed on all flagged sites. The number of basking structures per river mile was assessed for 

both sites using GPS data imported into ArcGIS (ESRI, vs. 10.2.2). 

Focal observations 

Observations of basking behavior and boat traffic were made with a spotting scope from 

a sandbar or jonboat located on the opposite bank of the river from a basking structure, 

approximately 100 – 250 m away. Basking turtles were observed for a 6-hour period between 

8:30 AM and 4:30 PM, depending on the time of initial observation, that was divided into two, 
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three-hour morning and afternoon windows. Only one focal structure was under observation per 

observation period. The time frame was chosen to cover basking behavior over a range of 

temperatures and conditions. The duration of basking by individual turtles was observed by 

monitoring individuals from the point they emerged from the water until re-entry, while noting 

whether basking ended prematurely due to a visible disturbance. If turtles terminated basking by 

entering the water because of passing watercraft, the type of boat was recorded. Boat types 

observed included motorboats, jonboats, anglers, kayaks, personal watercraft (pwc), and airboats. 

Hourly boat traffic was quantified at each site by recording the number and type of passing 

boats. The percentage of turtles on a focal structure that were disturbed due to each passing 

watercraft was recorded as well. Boat traffic (number of boats per hour) was calculated 

separately for each three-hour morning or afternoon window. Because turtles were not 

individually marked, not all data are independent, although assumptions of independence were 

made for analyses as is common in studies of disturbance (Moore & Seigel 2006, Buchholz & 

Hanlon 2012, Selman et al. 2013).  

Surveys 

Twice daily surveys of the number of basking turtles at flagged sites were taken in the 

morning and afternoon between 1 and 5 days each week. These observations were taken via a 

passing jonboat at a speed and distance to minimize turtle disturbance, approximately 75 – 100 m 

and 3.2 kph. Air and water temperatures at a depth of 0.6 m were taken at three points during the 

survey, at the beginning, halfway point, and end, and averaged. Surveys began at one end of the 

site and continued until the last basking structure at the opposite end to minimize potential 

disturbance events due to the research vessel. Populations within the study site were assumed to 

be consistent throughout the study season as range lengths reported for the related yellow-
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blotched sawback are within the length of the survey area (Jones 1996). Results are reported as 

mean number of turtles per structure.  

Statistical tests 

All statistical tests were carried out using the statistical program R Studio (R Foundation, 

version 3.4.2) with an α of 0.05.  All factorial ANOVAs used a type II Sum of Squares model.   

A multiple regression was carried out to assess the relationship between the number of 

basking turtles seen on surveys (dependent variable) and 8 independent variables: Julian day, 

weekday, weather, air temperature, water temperature, zone type (no wake or wake), density of 

basking structures and average boat traffic of the river mile of the basking structure.  

Multicollinearity was not present between the main effects and data were normally distributed. 

The model with the lowest AIC value excluding predictors with RVI scores less than 0.5 was 

used (Appendix I: Tables 1 and 2). 

To assess the effect of environmental factors and human disturbance on the duration of 

basking (dependent variable), a multiple regression was carried out using 7 independent 

variables: Julian day, weekday, air temperature, water temperature, and the zone type (wake or 

no wake), number of basking structures within the river mile of observation, and boats traffic 

from the morning or afternoon period when the turtle was observed. Multicollinearity was not 

present between main effects, and normality of residuals was present. The model with the lowest 

AIC value excluding variables with a relative variable importance (RVI) value of less than 0.5 

was chosen (Appendix I: Tables 3 and 4).  
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The odds of turtles ceasing basking due to disturbance was calculated using a logistic 

regression with the same initial predictors as the previous multiple regression. The model with 

the lowest AIC value was used.  

A chi-square analysis was used to test if type of disturbance, including non-watercraft, 

was related to whether a turtle was disturbed. A factorial ANOVA tested data from all passing 

boats to assess if zone (wake or no wake) or watercraft type (independent variables) affected 

percentage of basking turtles (dependent variable) disturbed per structure. Because of high 

numbers of boats during the Saturday of Memorial day weekend (27 May), other predictors of 

disturbance were not incorporated into the analysis to prevent data skew due to the high number 

of boats (n=388) causing disturbances not related to speed, angle, or distance of approach. 

Additionally, as there was no “no wake” zone at LeFleur’s Bluff to compare to at Ratliff Ferry, 

and few boats at LB (only 11 out of 676 total boats), the effect of location was not examined. A 

post hoc Tukey test was used to assess significant differences in percentages of disturbance 

between boat types. 

While these methods were carried out on data collected in 2017, surveys, focal 

observations, and assessment of disturbance also took place in 2016. The results from these 

analyses can be found in Appendix II.  

Results  

 Results are given in mean ± standard deviation unless otherwise noted.  

Assessment of disturbance and behavior 

Numbers of basking structures in each river mile at RF were 8, 5, and 26 in river miles 1, 

2, and 3. At LB, 10, 5, and 10 structures were found in river miles 1, 2, and 3. Structure size 
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appeared to be consistent across river miles but was not measured. I estimated structures to vary 

between 0.6 to 1.2 m in length.  

One-hundred twenty-three hours of focal basking observations were made between 23 

May and 22 July 2017. There were 462 instances of basking by turtles used for this analysis: 96 

turtles at LB and 366 turtles at RF. Durations of basking ranged from <1 to 566 min 

(�̅�=34.36±50.11 min) at RF and ranged from <1 to 297 (�̅�=39.68±47.55 min) at LB.  

Surveys were taken from 23 May to 21 July and were comprised of 14 morning and 12 

afternoon surveys at RF and 6 morning and 2 afternoon surveys at LB. Fewer surveys were taken 

at LB due to continued motor malfunctions and inclement afternoon weather impeding the safe 

continuation of surveys. Group sizes on structures ranged from 1 to 19 (�̅�= 3.26 ± 2.88 turtles) at 

RF, and ranged from 1 to 7 (�̅�=1.84 ± 1.56 turtles) at LB.  

Only three boat types - jonboats, motorboats, and kayaks (n=11 boats) - were seen at LB 

while jonboats, motorboats, anglers, pwc, airboats, and kayaks were seen at RF (n=665 boats). 

The highest number of boats were seen on the Saturday of Memorial day weekend at RF 

(�̅�=64.67±19.33 boats per hour, n=388). Boat traffic was non-existent at LB Monday through 

Thursday, while levels fluctuated at RF, reaching peaks on Fridays and weekends (n=288 boats, 

Table 1.1, excluding Memorial day weekend). Boat traffic did not vary throughout the season 

(Kendall’s tau, tau=-0.12, p=0.32).  
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Table 1.1. Table of means and standard errors of measures of boat traffic across weekday and 

location from ANOVA model. Abbreviations are for Ratliff Ferry (RF) and LeFleur’s Bluff (LB) 

(n=288 boats).  

 

RF Mean LB Mean 

Monday 2.00 ± 0.33 Monday 0.00 ± 0.00 

Tuesday 1.25 ± 0.50 Tuesday 0.00 ± 0.00 

Wednesday 2.21 ± 0.47 Wednesday 0.00 ± 0.00 

Thursday 3.53 ± 0.99 Thursday 0.00 ± 0.00 

Friday 2.67 ± 0.62 Friday 0.33 ± 0.34 

Saturday 21.17 ± 9.17 Saturday 0.50 ± 0.50 

 

Survey counts  

In total, 1036 observations of group size on structures were taken during surveys, and a 

total of 1791 turtles were seen. After assessing competing models, the best model contained the 

effects of weekday, Julian day, weather, air temperature, boat traffic, and the interaction between 

weekday and Julian day on the number of basking turtles (multiple regression, model 

AIC=4825.0).  Air temperature had a positive effect on the number of basking turtles (multiple 

regression, F(1, 1019) = 59.04, slope estimate = 0.36, p < 0.001; Fig 1.2), but fewer basking turtles 

were seen as the study period elapsed (multiple regression, F(1,1019) =62.25,slope estimate = -0.01 

,p <0.001, Fig 1.3), and when there was higher boat traffic (multiple regression, F(1,1019) =8.26, 

slope estimate = -0.05, p=0.004; Fig 1.4). Group sizes of turtles on structures were larger on 

Tuesday (5.23 ± 3.47 turtles), Wednesday (3.04 ±2.21 turtles), Thursday (3.06± 3.13 turtles), 

than Friday (2.56±2.52 turtles), Saturday (2.67 ± 2.62 turtles) and Monday (2.04±1.32 turtles) 

(multiple regression, F(5,1019) =3.81, p = 0.007; Fig. 1.5), and the interaction of Julian day and 

weekday resulted in fewer basking turtles (multiple regression, F(5,1019) =3.03, Table 1.2).  
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Weather had a significant effect on the number of basking turtles (multiple regression, F(3,1019) 

=5.35, p=0.001; Fig. 1.6), with more basking turtles seen per structure on sunny (2.66 ± 2.49 

turtles), partly cloudy (3.89 ± 3.14 turtles), and overcast (3.69 ± 3.04 turtles) days compared to 

rainy (1.47 ± 0.62 turtles) days.   

 

Figure 1.2 More turtles are seen basking as temperature increases (n=1791 turtles). Each point 

represents the group size observed on a basking structure at either LeFleur’s Bluff (LB) or Ratliff 

Ferry (RF). Raw data are shown. See text for results of multiple regression model results.  

 

 

Figure 1.3 Fewer turtles were seen basking on structures as the 2017 field season progressed 

(n=1791 turtles). Each point represents an observation of group size on a basking structure at 

either LeFleur’s Bluff (LB) or Ratliff Ferry (RF). Raw data are shown. See text for results of 

multiple regression model results. 
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Figure 1.4 Fewer turtles are seen basking as boat traffic increases (n=1791 turtles). Each point 

represents an observation of group size on a basking structure at either LeFleur’s Bluff (LB) or 

Ratliff Ferry (RF). Raw data are shown. See text for results of multiple regression model results.  

. 

 

 

Figure 1.5 Effect of weekday on number of basking turtles seen per structure during surveys 

(n=1791 turtles). Bars represent standard error. No observations were made on Sunday.  

 

 

 

 

 



14 
 

 

Table 1.2 Effect of interaction of week day and Julian day on the number of basking turtles seen 

per structure during surveys on the Pearl River. Monday serves the baseline comparison for the 

effect of day on basking turtle numbers to compare weekdays to weekends. Slope estimates 

compare the effect of Julian day and other days of the week on the number of basking turtles 

seen on structures to the number of basking turtles seen on Mondays with the effect of Julian 

day. A negative slope indicates that fewer numbers of turtles are seen on those week days later in 

the season compared to days earlier in the field season.  

 

Day Slope estimate p value 

Tuesday -0.10 0.004 

Wednesday -0.05 0.046 

Thursday -0.08 0.001 

Friday -0.09 0.024 

Saturday -0.08 0.009 

 

 

Figure 1.6 Weather had a significant effect on the number of turtles seen basking per structure 

during surveys (n=1791 turtles). Overcast days had complete cloud cover, partly cloudy days 

were mostly cloudy with some visibility of the sun, and sunny days had very few clouds. Bars 

represent standard error.  
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Duration of basking  

The best model assessing correlative effects on the duration of basking contained the 

effects of Julian day, weekday, air temperature, water temperature, zone, number of basking 

structures, boat traffic, and interaction of number of basking structures and boat traffic (multiple 

regression, model AIC=4859.0).  Duration of basking increased across the field season (multiple 

regression, F(1, 449) =29.63, slope estimate = 2.41, p < 0.001; Fig. 1.7), but turtles basked for 

shorter durations when air temperature was higher (multiple regression, F(1,449) = 35.24, slope 

estimate= -22.45, p< 0.001; Fig. 1.8). Turtles basked for longer in no wake zones (n=192 turtles, 

�̅�=41.69 ±64.41 min) than wake zones (n=270 turtles, �̅�=31.03±34.95 min) (multiple regression, 

F(1,449) =5.58, wake zone slope estimate = -21.72, p =0.02; Fig. 1.9), and when there are fewer 

basking structures (multiple regression, F(1,449) =24.16, slope estimate = -2.29, p< 0.001; Fig. 

1.10). Turtles basked for longer when high boat traffic was associated with high basking 

structure density (multiple regression, F(1, 449) =6.68, slope estimate = 0.55, p=0.01, Fig 1.11), 

despite both boat traffic and basking structure density having independent negative effects on 

duration of basking (slopes = -2.29 and –14.82 respectively). 
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Figure 1.7 Ringed sawbacks bask for longer as the field season progressed (n=462 turtles).  Each 

point represents an observation of a basking event of a single individual from emergence from 

water to re-entry at either LeFleur’s Bluff (LB) or Ratliff Ferry (RF). Raw data are shown. See 

text for results of multiple regression model results.  

 

 

Figure 1.8 Ringed sawbacks bask for shorter durations as air temperature increases (n=462 

turtles). Each point represents an observation of a basking event of a single individual from 

emergence from water to re-entry at either LeFleur’s Bluff (LB) or Ratliff Ferry (RF). Raw data 

are shown. See text for results of multiple regression model results.  
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Figure 1.9 Ringed sawbacks bask longer when in a no wake zone compared to a wake zone 

(n=462 turtles). Bars represent standard error.  

 

Figure 1.10 Ringed sawbacks bask for shorter durations when availability of basking structures is 

high (n=462 turtles). Each point represents an observation of a basking event of a single 

individual from emergence from water to re-entry at either LeFleur’s Bluff (LB) or Ratliff Ferry 

(RF). An outlier point (number of basking structures = 26, duration of basking = 566 min) was 

removed from graph to facilitate viewing. Raw data are shown. See text for results of multiple 

regression model results.  
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Figure 1.11 Ringed sawbacks bask for longer durations when high boat traffic is associated with 

high availability of basking structures (n=462 turtles). Each point represents an observation of a 

basking event of a single individual from emergence from water to re-entry. Raw data are shown. 

See text for results of multiple regression model results.  

 

Odds of disturbance 

Two-hundred thirty-three basking turtles were disturbed and 229 basking turtles were 

undisturbed. The model with the lowest AIC value for calculating the odds of a turtle being 

disturbed contained weekday, Julian day, and the density of basking structures (AIC=529.87, 

Cox & Snell R2 =0.24). Compared to Monday, turtles were 1.4x less likely to be disturbed on a 

Tuesday (z=-3.3, p=0.001), 1.1x less likely to be disturbed on a Wednesday (z= -2.7, p=0.006), 

and 1.2x less likely to be disturbed on a Thursday (z=-3.1, p=0.002) (Fig 1.12). Monday was 

chosen as the baseline day to compare weekdays to weekends. Basking turtles were less likely to 

be disturbed as the field season progressed (logistic regression, odds= -0.05, z- -5.5, p<0.001) 
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and are more likely to be disturbed when more basking structures are available (logistic 

regression, odds=0.09, z=5.2, p<0.001). 

 

 

Figure 1.12 The probability of basking terminated by disturbance throughout the week (n=462 

turtles).  

Disturbance type 

Type of disturbance significantly affected the number of disturbed turtles (χ2 goodness of 

fit, χ2= 522.76, df=11, p< 0.001; Fig. 1.13), with motorboats, other turtles, and jonboats causing 

the most disturbances. Of the five most common sources of disturbance, four were 

anthropogenic. 

 

Figure 1.13 Number of turtles who were disturbed and ended basking due to 10 different 

observed stimuli on the Pearl River (n=233 turtles).  
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A total of 676 boats were observed, and 571 of these boats passed structures occupied by 

turtles. Watercraft type significantly affected the percentage of disturbed turtles (ANOVA, 

F(5,562) =8.4806, p<0.0001; Fig. 1.14). Higher percentages of basking turtles were disturbed due 

to kayaks and anglers than other watercraft (Table 1.3). Boats also disturbed more turtles when 

passing in wake zone (n=154 boats, �̅�=19.78 ±34.20%) than in a no wake zone (n=417 boats, 

�̅�=2.28 ± 10.01%, F(1, 562) =67.13, p<0.001; Fig. 1.15). 

 

Figure 1.14 Percentage of basking turtles on a structure disturbed due to passing boats (n=571 

boats). Columns with different letters are significantly different from each other.  Error bars 

represent standard error.  
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Table 1.3 Means and standard error of significant differences between percentages of basking 

turtles disturbed by passing watercraft (n=571 boats).  

Disturbance  Means (%) Disturbance Means (%) p value 

motorboat 5.58 ±0.92 angler 60.00 ± 40.00 0.03 

pwc 3.50 ± 1.57 angler 60.00 ± 40.00 0.018 

jonboat  16.26 ± 4.07 kayak 72.22 ± 14.70 < 0.001 

motorboat 5.58 ±0.92 kayak 72.22 ± 14.70 < 0.001 

pwc 3.50 ± 1.57 kayak 72.22 ± 14.70 < 0.001  

 

 

 

Figure 1.15 Percentage of basking turtles on a structure disturbed due to passing boats (n=571 

boats) in a wake and no wake zone. Error bars represent standard error. 

 

Discussion 

Human and environmental effects interact to affect behavioral decisions made by 

wildlife. Poikilothermic turtles must incorporate information about predation risk, thermal 

efficiency, and competition from other turtles when choosing when to bask and when to 

terminate basking. Achieving a balance between these factors and optimal temperatures for 
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metabolic activities is necessary for the health and survival of individual turtles (Huey 1982, Dill 

1987, Nowacek et al. 2016). 

My study incorporated human and environmental effects into analyses on the basking 

behavior of ringed sawbacks. Environmental factors of air temperature and Julian day 

significantly affected basking behavior of ringed sawbacks. High air temperatures independent of 

water temperatures are associated with shorter basking durations. This suggests that  turtles are 

willing to terminate basking when conditions are thermally favorable for rapid re-warming. 

Unexpectedly, this appears to conflict with the effect of Julian day, as turtles basked for longer 

periods as the study season progressed when air temperatures would be the highest. However, the 

summer of 2017 was one of the wettest on record (NOAA 2017), and there were many days 

when water temperatures were higher than air temperatures even into mid-June. High rainfall has 

been shown to lower water temperature and affect basking in turtles (Pittfield & Burger 2017). 

Because temperature can be important in mediating escape related behaviors in poikilotherms 

(Weatherhead & Robertson 1992, Martín & López 1999) such as turtles, sawbacks react 

behaviorally to optimize predation risk.  Cooler animals may move slower due to lowered 

metabolisms, reducing escape efficiency (Weatherhead & Robertson 1992, Martín & López 

1999), and may react to reduced escape efficiency by shortening FIDs (Pittfield & Burger 2017), 

as has been seen in northern water snakes (Nerodia sipedon) (Weatherhead & Robertson 1992), 

or increasing reluctance to leave shelters as has been seen in the Iberian rock lizard (Lacerta 

monticola) (Martín & López 1999). As more turtles were seen basking in higher air temperatures 

(Fig. 1.2), turtles are likely reacting to lower temperatures by a decreased proclivity to leave the 

relative safety of the water to bask due to susceptibility to predation (Hertz et al. 1982). Air 

temperatures did not consistently remain several degrees higher than water temperatures until 
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July, so it is possible that turtles also did not bask earlier in the season to conserve heat that 

would have been lost due to low air temperatures and evaporative cooling (Boyer 1965, 

Brattstrom 1965). These factors taken together indicate that ringed sawbacks are likely basking 

at temperatures both conducive to thermal gain and escape efficiency.  

In terms of human effects on disturbance, turtles terminate basking sooner when there are 

more basking structures, the opposite of my prediction. If turtles face lower competition for 

access to basking structures in areas with high structure availability, then they may show an 

increased willingness to terminate basking.  Competition has been shown to negatively affect 

successful basking by turtles (Polo-Cavia et al. 2010, Cadi & Joly 2003). Polo-Cavia et al. 

(2010) found that aggressive, invasive red-eared sliders reduced the basking activity and 

structure usage of native, endangered Spanish terrapins (Mauremys leprosa). In my study, other 

turtles were the second most common reason for terminated basking (Fig. 1.12), therefore turtles 

in areas with low density of basking structures may be optimizing basking opportunities in 

relation to perceived competition. 

Considering the longer basking durations in no wake zones, the higher percentage of 

basking turtles that are disturbed by boats passing in wake zones, and the lack of effect of 

number of passing boats, boat wakes may impact basking more than the mere presence of boats. 

This effect may be particularly true of turtles at RF, which may be habituated to and tolerant of 

passing watercraft (Blumstein 2006) but are still swept off structures due to large wakes. During 

high traffic days such as the weekends and Memorial Day weekend, many turtles were observed 

to be washed off structures due to passing wakes. I observed that the effect of boat wake is 

exacerbated by multiple passing boats as waves compound each other to sometimes completely 

submerge the basking structure. Additionally, large, slow moving boats are known to cause more 
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disturbance to turtles than small, fast moving boats (Moore & Seigel 2006). This effect could be 

due to the larger wakes produced by such slow moving boats (Selman et al. 2013). While 

habituation could result in the tolerance of passing boats, turtles may still fail to successfully 

bask due to forcible termination of basking by wakes. 

Unexpectedly, the interaction of boat traffic and basking structures increased duration of 

basking, even though individually each had a negative effect. This may be due to the fact that the 

river mile with the highest boat traffic, mile 3 at RF, contained many no wake zones. Therefore, 

despite high numbers of boats, turtles were potentially less likely to be disturbed because of 

passing boat wakes. This effect may have been magnified due to basking observations from 

Memorial day weekend, when hourly boat traffic reached 84 boats per hour in the afternoon at 

RF river mile 3.  However, due to large crowds and the presence of Mississippi Department of 

Wildlife, Fisheries, and Parks (MDWFP) personnel on law enforcement vessels, boaters 

carefully observed the no wake zone. The cases of basking from this day, combined with other 

cases of high boat traffic observations in the same river mile’s no wake zone, may explain the 

combined positive effect of boat traffic and basking structures on basking durations.  

Day significantly affected the odds of a turtle being disturbed, as they were less likely to 

be disturbed on weekdays than weekends. This could be related to the number of passing boats, 

which are fewer on weekdays, although the amount of boat traffic did not significantly affect the 

odds of being disturbed. This lack of effect could potentially be due to the very few boats at LB 

(11 out of 676 total), where many turtles were instead disturbed by other turtles. In keeping with 

previous findings, high numbers of basking structures increase the odds of turtles being 

disturbed. This is again likely due to optimization of basking opportunity and thermal efficiency.  
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Outside of turtles impeding each others’ basking, motorboats, anglers, and pwc disturbed 

the most number of turtles (Fig. 1.12). However, kayaks, and anglers disturbed the highest 

percentage of turtles basking on a structure (Fig. 1.13), a difference possibly due to cases when 

only a few turtles out of many terminated basking. Moore and Seigel (2006) found that slow 

moving water craft, such as the kayaks in this study which are limited in speed by the kayaker, 

and anglers who remained in the same area for long durations of time, move slowly primarily 

using a trawling motor, and may remain out of the main channel close to basking structures, 

disturbed the greatest number of turtles, as they are potentially more likely to be perceived as a 

predator threat (Blumstein 2006). Increased human approach speed is associated with longer FID 

in the stripefoot anole (Anolis lineatopus), (Cooper 2006) and pedestrians who stop to watch 

basking snakes cause more snakes to flee than pedestrians who walk past (Burger 2001). These 

studies suggest that speed of approach plays an important role in perceived predation risk by 

wildlife. 

More turtles were seen basking in higher air temperatures and when the weather was not 

raining. Temperature and weather are both correlated to basking efficiency, as turtles are shown 

to heat quicker in warm air temperatures (Boyer 1965, Crawford et al. 1983), Red-eared sliders 

(Crawford et al. 1983, Schwarzkopf & Brooks 1985) have been observed to bask more when air 

temperatures are closer to optimal operating temperatures of the turtle species. Though basking 

efficiency is higher in direct sunlight, even in heavy cloud cover basking turtles can warm up 3 

degrees Celsius higher than ambient temperatures (Boyer 1965, Brattstrom 1965). Turtles may 

choose to bask under thermally favorable conditions to increase efficiency while minimizing 

predation risk due to terrestrial predators (Huey 1982).  Increased boat traffic was associated 

with fewer basking turtles, likely due to disturbance. While the number of turtles varied with day 
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of the week, the combined effect with Julian day was associated with significantly fewer basking 

turtles. When variation in boat traffic is combined with the higher temperature seen as the season 

progresses, turtles may increase their reactions to perceived predation risk when shorter basking 

times are needed to achieve optimal temperatures.  

To mitigate the effect of human disturbance on basking, increasing the number of no 

wake zones at RF could reduce the number of turtles being swept off structures.  This could also 

reduce boat traffic if boaters decide to utilize the unrestricted boating activities of the Ross 

Barnett Reservoir. Managers could also reduce boat traffic by limiting the number of access 

points to the Pearl River in the PRWMA under the management of the MDWFP. In comparison 

to LB, RF has several access points along the river, including the Ratliff Ferry Trading Post, 

Coal Bluff State Park, and other boat ramps along the Natchez Trace. By closing lesser used boat 

ramps, boaters may move their recreational activities to other locations rather than compete for 

access to boat ramps or endure the greater distances required to reach their desired recreational 

areas 

Conclusion  

To fully predict the effect of human disturbance on animal behavior and populations, 

researchers must incorporate factors, both intrinsic and extrinsic to the individuals under study, 

that may influence behavior. Managers are better able to create plans to conserve threatened 

species after accounting for variations in environmental factors or human disturbance. 

Recovering the ringed sawback will require multiple approaches, and a greater understanding of 

the relationship between humans, turtles, and the environment will be vital to the preservation of 

this and other riverine species. 
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CHAPTER II: 

CONSEQUENCES OF ANTHROPOGENIC DISTURBANCE OF BASKING ON THE 

BODY TEMPERATURE OF THE RINGED SAWBACK (GRAPTEMYS OCULIFERA) 

Introduction 

Organisms have two possible thermal responses to the environment – thermoconformity 

and thermoregulation (Seebacher 2005, Flouris 2011). Thermoconformity occurs when an 

animal’s internal body temperature conforms to match the temperature of the environment (Huey 

& Slatkin 1976), while thermoregulation occurs when an animal maintains a consistent or nearly 

consistent body temperature regardless of changing environmental temperatures (Seebacher 

2005, Flouris 2011). Poikilotherms have the option to thermoregulate or thermoconform based 

on intrinsic body condition and external environmental factors (Huey & Pianka 1977, Mathies & 

Andrews 1997). Thermoconformity may be favorable when environmental temperatures and 

optimal body temperatures are close (Seebacher & Grigg 1997), when energetic costs of seeking 

out thermally optimal habitat are high (Hoekstra 2015), or when predation risk makes limited 

movement favorable (Hertz et al. 1982, Huey 1982). Thermoregulation to achieve a desired 

temperature is favorable when certain metabolic processes are necessary, such as digestion 

(Gatten 1974, Greenwald & Kanter 1979, Blouin-Demers & Weatherhead 2001), egg 

development (Charland & Gregory 1990, Gregory et al. 1999, Lourdais et al. 2008), immune 

function (Merchant et al. 2007, do Amaral et al. 2002), or when attempting to remove 

ectoparasites (Selman & Qualls 2009). Because of the many factors determining whether an 
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organism thermoconforms or thermoregulates, poikilotherms may be sensitive to permutations in 

habitat structure that would influence the favorability of one tactic or another.  

Basking by riverine turtles is an important physiologic activity (Boyer 1965) and is the 

purposeful placement and orientation by an animal on a substrate in the sunlight to enable many 

metabolic functions associated with thermoregulation (Lindeman 2013).  Basking has been 

shown to be important in turtles to aid in digestion (Gatten 1974, Greenwald & Kanter 1979, 

Hammond et al. 1988, Blouin-Demers & Weatherhead 2001), immune function (do Amaral et al. 

2002, Merchant et al. 2007), and has been theorized to play a role in egg development in female 

turtles (Gregory et al. 1999, Lindeman 1999, Moore & Seigel 2006, Lourdais et al. 2008). 

Basking is vital for raising body temperatures above environmental temperatures, presumably to 

reach a more optimal body temperature (Litzgus & Brooks 2000, Lindeman 2013). However, the 

fitness consequences of reduced basking due to disturbance have not been well-studied, as few 

studies incorporate fitness measures or fitness proxies (Moore & Seigel 2006, Selman et al. 

2013, Jain-Schlaepfer et al. 2017).  

Human disturbance has significant, negative effects on wildlife, primarily through the 

perception by wildlife that humans are predators (Blumstein 2006). Many of the studies on the 

effect of human disturbance focus on endotherms (Buchholz & Hanlon 2012), ignoring the 

potential for disturbance affecting thermoregulation and physiologic functions in poikilotherms. 

As predation risk is a strong factor in decisions to thermoregulate, human disturbance may serve 

to discourage optimal basking behavior in poikilotherms (Moore & Seigel 2006, Selman et al. 

2013, Jain-Schlaepfer et al. 2017). Passing boats are shown to negatively affect the basking 

behavior of yellow-blotched sawbacks (Moore & Seigel 2006) and common map turtles 

(Graptemys geographica) (Jain-Schlaepfer et al. 2017) by triggering escape behavior in basking 
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turtles, causing them to enter the water. While the behavioral consequences of human 

disturbance are documented (Moore & Seigel 2006, Selman et al. 2013, Polich & Borazowski 

2016, Pittfield & Burger 2017), the thermal consequence is less explored (Jain-Schlaepfer et al. 

2017). Whether such behavioral disturbance translates into a negative physiologic effect, such as 

reduced metabolism or clutch size merits further examination (Jain-Schlaepfer et al. 2017).  

Thermal modeling and simulations can give important insight into thermal ecology of 

organisms when it is difficult or impossible to extract the same information from live organisms 

(Dzialowski 2005, Dubois et al. 2009, Yagi & Litzgus 2013, Jain-Schlaepfer et al. 2017). 

Temperature change in water and air is proportional to the difference in body temperature and 

the surrounding environment (Dzialowski & O’Connor 2001, Jain-Schlaepfer et al. 2017). This 

proportion is a thermal constant (Dzialowski & O’Connor 2001, Jain-Schlaepfer et al. 2017). 

When change in body temperature over time is regressed against body temperature (Tb), air 

temperature (Tair), and water temperature (Tw), the values of thermal constants can be obtained. 

This information has been used in simulations of disturbance on common map turtles to assess 

reductions in body temperature and metabolic rate of disturbed adult female turtles (Jain-

Schlaepfer et al. 2017). As obtaining accurate body temperature data can be difficult without 

implanting temperature recording devices (Boyer 1965, Dubois et al. 2009), model simulations 

are an excellent method for assessing thermal condition without invasive methods, particularly 

for threatened and endangered taxa.  

In this chapter, I use the results of my disturbance chapter (Chapter 1) to examine a 

potential consequence of interrupted thermoregulatory behavior to draw greater connections 

between anthropogenic disturbance and fitness consequences. My objective is to simulate the 

thermal cost of anthropogenic disturbance from observational field data to assess the impact of 
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reduced basking on an endangered species. I hypothesize that anthropogenic interruptions to 

basking will negatively affect thermoregulation and predict that simulation will show that adult 

female ringed sawbacks who are disturbed due to anthropogenic sources while basking will have 

a lower average body temperature than undisturbed turtles, and that the effect of disturbance will 

decrease as water and air temperatures increase.  

Methods 

Simulation of disturbance 

 To simulate the effect of disturbance on the body temperatures of turtles, methods were 

adapted from Jain-Schlaepfer et al. (2017) as seen in Figure 2.1. Body temperature was 

calculated every minute based on the behavior at that moment, either basking or submersion. The 

average body temperature over the course of a day for adult female ringed sawbacks was 

simulated 100 times each for both anthropogenically disturbed and undisturbed turtles at various 

probabilities of disturbance. The variables needed were 1) values for thermal constants for 

temperature change during basking and submersion, 2) time of day when basking ceased, 3) 

probabilities of disturbance for simulations, 4) average water and air temperature for time period 

of simulation, 5) optimal body temperatures of ringed sawbacks, and 6) behavioral observations 

of the number of minutes to return to basking after a disturbance.  
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Figure 2.1 Chart showing the steps in behavioral simulations of anthropogenically and 

undisturbed turtles based on methods described by Jain-Schlaepfer et al. (2017). Thermal 

constants from Jain-Schlaepfer et al. (2017) for common map turtles are 0.0591, 0.00624, and 

0.0149 for C1, C2, and C3 respectively.   
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Values of thermal constants 

Thermal constants reported for adult females from a related species, the common map 

turtle, were used (Jain-Schlaepfer et al. 2017). While female common map turtles and ringed 

sawbacks differ in average mass (1500 g versus 800 g [Jain-Schlaepfer et al. 2017, Heppard 

Chapter 3]), Jones (2006) reports gravid female ringed sawbacks reaching up to 1457 g. Other 

turtle species with known warming constants differ in both size and shell shape (ornate box turtle 

(Terrapene ornata), mass=250 g [Actams & Decarvalho Jr 1984], spiny softshell turtle (Apalone 

spinifera), mass=7400g [Smith et al. 1981], Table 2.1). Although rate of heat gain is generally 

negatively correlated to organism size (Jain-Schlaepfer et al. 2017), shell shape can impact 

efficiency of basking (Polo-Cavia et al. 2009), so constants from a related species with a similar 

shell structure (the common map turtle) were used. Therefore, Tb calculated using the thermal 

constants from common map turtles may overestimate of the effect on smaller ringed sawbacks. 

These potential differences in warming constants were accounted for by running statistical tests 

on body temperature differences between undisturbed and disturbed turtles, rather than 

calculated Tb. Constant 1 (C1) was found to be 0.0591, constant 2 (C2) was found to be 0.00624, 

and constant 3 (C3) was found to be 0.0149 (Jain-Schlaepfer et al. 2017). 

Table 2.1 Selection of reported thermal constants from turtle species. 

Species C1 Mass (g) Publication 

Terrapene ornata 0.3934 250 Actams & Decarvalho 1984 

Apalone spinifera 0.023 7400 Smith et al. 1981 

Graptemys geographica 0.0591 1500 Jain-Schlaepfer et al. 2017 
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Time of basking end and probabilities of disturbance 

 Turtles were assumed to cease basking at 18:00 (R. Jones, pers. comm). The probability 

of disturbance in each hour was run under several conditions: 0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 

1. This range of probabilities covered the range of hourly disturbances seen in behavioral 

observations (see below) and simulated the effect of extremely high disturbances. 

Air and water temperatures 

Four time periods were chosen for simulations based on activity periods from Jones 

(2006): 27-31 May (early nesting, primarily for large females), 13-17 June (peak nesting), 13-17 

July (late nesting, primarily for large females with second clutch), and 1-5 August (end nesting). 

By using time frames based on nesting activities, inferences can be made on the effect of 

lowered Tb on egg development, an important physiologic activity that could have consequences 

for the recovery of the species.  

Hourly air and water temperatures from each of the four given activity periods were 

averaged over five days in 2016 and 2017 from data taken from the United States Geologic 

Survey (USGS) NSTL Station on the Pearl River, located in Hancock County, MS (Lat 

30°21'08", Long 89°38'45" NAD27) (USGS 2017). Table 2.2 shows the air and water 

temperature averages for each of the four activity periods used in the simulation. Water 

temperatures were higher than air temperatures across activity periods. 
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Table 2.2 Mean and standard error of hourly air and water temperatures for four time frames in 

2016 and 2017 from the United States Geologic Survey NSTL station located in Hancock 

County, MS. 

 

Time frame 

Air temperature 

(⁰C) 

Water temperature 

(⁰C) 

May (27-31) 24.38 ± 0.20 25.39 ± 0.90 

June (15-17) 26.28 ± 0.21 27.38 ± 0.08 

July (15-17) 27.09 ± 1.19  28.80 ± 0.08 

August (1-5) 26.38 ± 0.21 28.21 ± 0.12 

 

Optimal body temperatures 

The optimal basking temperature represents the optimal operating temperature for a 

basking turtle; any temperature higher than it should result in cessation of basking (Dubois et al. 

2008, Jain-Schlaepfer et al. 2017). Average basking temperatures were calculated from four 

captive ringed sawbacks housed at the Mississippi Museum of Natural Science (Jackson, MS). 

Heat lamps hanging above wooden basking structures provided warmth, water temperature was 

approximately 29° C, and air temperature was approximately 26° C. Two adult male and two 

adult female ringed sawbacks were equipped with Thermochron iButtons (Model # DS1921H, 

Maxim Integrated San Jose, CA) attached to carapaces via marine epoxy and observed over the 

course of four days. Past study has shown that optimal body temperature is similar between 

females, males, and juveniles (Bulté & Blouin-Demers 2010, Jain-Schlaepfer 2017). The average 

carapace temperature during the observed basking period was assumed to be the optimal 

temperature, and was calculated to be 31.6⁰ C.  
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Behavioral observations 

Behavioral and disturbance observations took place between 27 June and 6 August in 

2016 and 23 May and 15 July in 2017, and are explained fully in Chapter 1.  

Because individual turtles were not identified, the time to return after an anthropogenic 

disturbance was calculated from the time when a passing watercraft disturbed all turtles on a 

structure to the time of the first turtle to return to basking. As time to return from a watercraft 

disturbance did not vary between months (ANOVA, F(3,42)=0.542, p=0.656), all times to return 

from anthropogenic disturbance were combined for use in the simulation. The time to return to 

basking after non-anthropogenic disturbance was calculated from the time when a turtle was 

disturbed by another turtle to the time when the next turtle surfaced, as it was assumed to be the 

same disturbed turtle as this was observed to be the case many times. The use of this time to 

return served as a comparison between natural disturbance and voluntary cessation of basking 

compared to anthropogenic disturbance. The time to return from anthropogenically disturbed 

basking was 15.91 ± 17.29 min (n=22) and nonanthropogenic disturbance was 6.73 ± 6.81 min 

(n=46).  

Percentage of observed basking turtles disturbed each month can be found in Table 2.3. 

Observed probability of disturbance per hour was 0.02 in May, 0.01 in June, 0.004 in July, and 

0.02 in August. The observed probability of disturbance each hour was 0.16 during the day of 

highest observed hourly boat traffic (64.67±19.33 boats per hour) which was the Saturday of 

Memorial day weekend (27 May in 2017).   
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Table 2.3 Number of basking turtles on the Pearl River observed and percent disturbed for four 

months in 2016 and 2017. 

Month Total basking turtles Percent disturbed 

May  194 75.77 

June  226 39.82 

July  481 37.21 

August  163 52.76 

 

Limitations of the simulations 

 This study was limited by several factors. By using thermal constants from a different, 

larger species, accurate simulated Tb cannot be determined, limiting comparisons to the 

difference in temperatures between simulations. As individual turtles were not marked for 

observation, the time between cessation of and return to basking may not reflect behavior of 

individual turtles, and time to return from a disturbance may differ between adult male and 

female turtles and juveniles.  

Statistical tests 

 All statistical tests were carried out using the statistical program R Studio (R Foundation, 

version 3.4.2) with an α of 0.05.   

A multiple regression was used to test if differences in body temperatures (dependent 

variable) varied between anthropogenically disturbed and undisturbed simulations across 

probabilities of disturbance (independent variables). Multicollinearity was not present between 

variables, and the model with the lowest AIC value and variables with relative variable 

importance factors over 0.5 was used (see Appendix Tables 5 and 6).  
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Results  

Model simulations 

 The interaction between activity period and probability of hourly disturbance 

significantly affected the difference in simulated body temperature between anthropogenically 

disturbed and undisturbed turtles (multiple regression, F(3,3592)=283.67, p <0.001, Fig. 2.2).  

Difference between Tb of anthropogenically disturbed and undisturbed turtles increased as the 

probability of disturbance increased, and were highest in May, followed by June, August, and 

July. Average body temperatures across probabilities of disturbance and activity periods can be 

seen in Table 2.4. 

 

Figure 2.2 Differences in simulated body temperatures of undisturbed and anthropogenically 

disturbed adult female ringed sawbacks in the Pearl River over different probabilities of 

disturbance during four activity periods: 27-31 May (early nesting, primarily for large females), 

13-17 June (peak nesting), 13-17 July (late nesting, primarily for large females with second 

clutch), and 1-5 August (end nesting).  
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Table 2.4 Average and standard deviations of simulated daily body temperature differences 

between undisturbed and anthropogenically disturbed adult female ringed sawbacks across four 

summer months.  

Probability of 

disturbance May June July August 

0      -0.02±0.33 -0.01±0.21 -0.01±0.11 0.01±0.16 

0.01 0.15±0.3 0.04±0.2 0.01±0.12 0.02±0.17 

0.05 0.57±0.34 0.26±0.22 0.08±0.13 0.19±0.16 

0.1 1.23±0.35 0.28±0.19 0.21±0.14 0.32 ±0.18 

0.2 1.96±0.39 0.95±0.20 0.43±0.16 0.65±0.15 

0.2 2.89±0.22 1.26±0.18 0.62±0.14 0.90±0.16 

0.5 2.57±0.21 1.55±0.16 0.88±0.10 1.16±0.13 

0.7 2.63±0.21 1.66±0.17 0.98±0.10 1.27±0.12 

1 2.74±0.23 1.73±0.14 1.08±0.10 1.34±0.11 

 

Discussion  

This study sought to quantify the difference in body temperatures between simulations of 

thermoregulation in anthropogenically interrupted and uninterrupted basking adult female ringed 

sawback turtles across four activity periods relevant to egg development and nesting. While 

ringed sawbacks are the model for this study, if species exist in a similar climate or habitat 

structure, such as the related yellow-blotched sawback which has already been shown to suffer 

from high amounts of boat traffic that impact basking and nesting (Moore & Seigel 2006), then it 

is likely that my findings may be applicable to those other riverine species. 

 While body temperatures significantly differed between month and probability of 

disturbance, as the effect of disturbance was most pronounced in May, whether this difference is 

ecologically relevant is unknown. Disturbed turtles at the highest natural disturbance rate (0.20) 
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in May had a temperature difference of ~2 ⁰C in May and ~1 ⁰C in June. While body 

temperatures in gravid versus non-gravid turtles has not been assessed, previous studies of 

temperature differences have shown temperature increases of ~1 ⁰C in eastern box turtles 

(Terrapene carolina) injected with bacterial lipopolysaccharide to elicit an immune response (do 

Amaral et al. 2002) and ~1.5⁰C to facilitate digestion in recently fed ornate box turtles compared 

to unfed turtles (Gatten 1974). However, the largest temperature difference between disturbed 

and undisturbed turtles at a probability seen on a non-holiday across months (0.01) was only 

0.15⁰ C in May. On the other hand, reduced daily Tb of 0.11⁰ C in disturbed common map turtles 

corresponded to an average reduction in standard metabolic rate of 2.7% (Jain-Schlaepfer et al. 

2017). Persistent, lowered metabolic rate could result in reduced growth in juveniles (Williamson 

et al. 1989, Litzgus & Hopkins 2003), making them more susceptible to predation (Jones 2017), 

impede immune function (Smith et al. 2017), and reduce metabolic rate and embryonic growth in 

nestlings due to maternal effects (Steyermark & Spotila 2000, Rowe et al. 2017). This chronic 

reduction in metabolism could impede individual survival and population growth in disturbed 

populations and obstruct recovery efforts.  

 Additionally, variation in body temperature, rather than average lower Tb, during 

gravidity could affect reproduction in adult female ringed sawbacks. Body temperatures were 

found to be less variable in gravid children’s pythons (Antaresia children) (Lourdais et al. 2008) 

and prairie rattlesnakes (Crotalus viridis) (Charland & Gregory 1990) compared to non-gravid 

snakes. Maintaining a consistent body temperature may be more favorable than an elevated Tb, 

particularly as Charland and Gregory (1990) found that average Tb did not differ between gravid 

and non-gravid snakes. Studies on a similar potential pattern in turtles would be valuable for 

predicting if frequent changes in body temperatures due to terminating basking could correspond 
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to reduced reproductive output (Jain-Schlaepfer et al. 2017), potentially impeding recovery in 

this species.  

Persistent lowered body temperatures may represent a possible mechanism responsible 

for observed differences in health and physiology between populations of turtles.  Selman et al. 

(2013) found that yellow-blotched sawbacks had poorer shell quality (assessed by prevalence of 

fungal and bacterial infections on the carapace) and higher heterophil:lymphocyte (H:L) counts 

at a recreationally disturbed site on the Pascagoula River in comparison to a undisturbed reach of 

the Leaf River in Mississippi. A lowered ability to thermoregulate may be responsible for 

increased stress of individuals, as H:L counts are often used as indices of stress and immune 

function. Bennett et al (2009) investigated differences in common map turtle populations in 

disturbed and intact areas in Ontario, Canada and found that turtles in riverine areas with high 

concentrations of locks, dams, and other construction projects were smaller than those in 

uninterrupted stretches of the river. Reduced metabolic function due to lower body temperatures 

could account for this effect (Litzgus & Hopkins 2003). 

 Future studies should seek to quantify ecologically relevant temperature changes in 

turtles for physiologic activities such as digestion, escape behavior, and egg development to 

assess critical decreases in body temperature. If boat traffic affects body temperatures in an 

ecologically relevant way, measures should be taken to reduce anthropogenic effect on basking, 

such as increasing the number of no wake zones and reducing river access as discussed in 

Chapter 1. Since environmental temperatures play a role in efficiency of thermoregulation 

(Boyer 1965), as shown by the reduced effect of disturbance as the summer progresses, future 

studies could examine the effect of body temperature reduction across climate zones. 
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Conservationists may then target specific regions with environmental temperatures which 

exacerbate the effect of anthropogenic disturbance. 

Conclusion 

This study demonstrates a significant difference in average body temperatures between 

anthropogenically disturbed and undisturbed turtles. While the ecological relevance of body 

temperature reduction has not been studied fully Jones (2017) showed that the population of 

ringed sawbacks at RF is in decline. Considering other studies which show consequences of boat 

traffic (Moore & Seigel 2006, Selman et al. 2013), efforts to minimize anthropogenic disturbance 

should be considered. 
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CHAPTER III: 

OTHER OBSERVATIONS ON THE RINGED SAWBACK (GRAPTEMYS OCULIFERA) 

AND MANAGEMENT RECOMMENDATIONS 

 

General Introduction 

 The previous two chapters of this thesis have attempted to elucidate the effect of human 

disturbance on the behavior and physiology of the endangered ringed sawback. This final chapter 

is a collection of observations that were made during the course of this study, but do not warrant 

individual chapters. While limited in scope, this information is worth documentation as 

preliminary data that will draw attention to areas suitable for future research.   

Human disturbance can affect riverine turtles via removal of substrate and interruption of 

basking activities by passing watercraft, as outlined in Chapter 1, and as seen in Moore & Seigel 

(2006), Selman et al. (2013), and Jain-Schlaepfer et al. (2016). I have shown the effects of 

human disturbance on ringed sawback basking behavior in Chapter 1, and effects on thermal 

regulation in Chapter 2. Here, I will use indices of individual health (parasite load, shell quality), 

and population health (age structure) to compare my two study sites that vary in the amount of 

human disturbance present; site differences are summarized in Table 3.1.  Details on the study 

sites, Ratliff Ferry (RF) and LeFleur’s Bluff (LB) can be seen in Chapter 1 and Fig. 1.1.  
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Table 3.1 Comparison of assumed human disturbance at two sites, Ratliff Ferry (RF) and 

LeFleur’s Bluff (LB), on the Pearl River outside Jackson, MS 

Site Hourly boat 

traffic 

Effect on 

population 

Availability of 

basking 

structures 

Effect on 

population 

RF High Negative High Positive 

LB Low Positive Low Negative 

 

 The objectives of this chapter are to describe variation in parasitism across sites and types 

of human disturbance, to describe variation in age classes and shell condition, and to provide 

management recommendations drawing from this thesis and previous related studies. 

All collections and animal handling were carried out in accordance to IACUC protocol 

#16-022, MDWFP Scientific Collecting Permit #0430171, and USFWS Endangered Species 

Permit #TE98486B-0. 

Parasitism  

Introduction 

Turtles have many different endo- and ecto-parasites (Telford 1984, Telford 2009). One 

of the most common ectoparasites are leeches (Placobdella, spp.), which will attach to turtles 

and draw blood meals both from soft tissues (Readel et al. 2008) and from bony tissue (Siddall & 

Gaffney 2004). Leeches have been recorded in many species of freshwater turtles, including 

common map turtles (Ryan & Lambert 2005), common musk turtles (Sternotherus odoratus) 

(Ryan & Lambert 2005, Readel et al. 2008), and common snapping turtles (Chelydra serpentine) 

(Brown et al. 1994, Siddall & Gaffney 2004, Readel et al. 2008) in the United States. Leeches 

present a physiological cost both through their taking of blood meals (Berven & Boltz 2001), 
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which can lead to anemia (Readel et al. 2008), and because they may transmit haematozoa, such 

as haemogregarina and trypanosomes to the host (Telford 1984, Siddall & Desser 2001, Telford 

2009).  

Infections of haemogregarines have been noted in Blanding’s turtles (Emydoidea 

blandingii) (Lacroix et al. 2012), common snapping turtles (Paterson & Desser 1976), and 

Sicilian pond turtles (Emys trinacris) (Arizza et al. 2016), and the genus Haemogregarina has 

been noted to occur in reptiles on most continents (Telford 2009). While haemogregarine 

infection is thought to cause no significant harm to turtle species (Brown et al. 1994, Davis & 

Sterrett 2011, Arizza et al. 2016) infection of weak individuals may have consequences. Özvegy 

et al. (2015) associated haemogregarina infections with skin lesions on European pond turtles 

(Emys orbicularis). Mihalca et al (2002) noted reduced lymphocyte and increased eosinophil 

counts in European pond turtles infected with haemogregarina, which could affect immune 

responses to other stressors. 

Because basking removes leeches via desiccation (Selman & Qualls 2009) and basking 

has been shown to be important in immune function (do Amaral et al. 2002, Ibáñez et al. 2015), 

human disturbances that reduce basking may result in higher parasite loads. Therefore, 

quantifying ecto- and endo-parasite load both by site and disturbance quantified as average 

hourly boat traffic and number of basking structures in the river mile of capture (see Methods in 

Chapter 1) could offer clues on the impact of human disturbance on individual health. I 

hypothesize that human disturbance will be associated with higher parasite counts and predict 

that areas with high boat traffic and low structures per river mile will have turtles with higher 

parasite loads.  
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Methods 

Assessment of disturbance 

Sampling and assessment of disturbance were made in the two sites, RF and LB, 

discussed in the general introduction to this chapter. Assessment of boat traffic and basking 

structures are covered in detail in Chapter 1.  

Sampling methods 

 Sampling of adult and juvenile ringed sawbacks took place between May and August 

2017. Turtles were captured via basking traps attached to flagged deadwood structures 

(excluding structures currently under boat traffic observation). Traps were made of crawfish wire 

formed into an open-topped box or made from modified hoop nets (after Lindeman 2014) and 

were checked at least once a day.  

 The shells of captured turtles were cleaned and marked uniquely with holes drilled into 

marginal scutes (Cagle 1939).  These populations were previously marked by Jones and Hartfield 

(1995) between 1988 and 1990, by Jones (2006) 1995-1996, and intermittently by Jones (2017) 

between 1994-2004.  The capture location, number of leeches (Placobdella spp.), and a blood 

sample (0.2 mL) was taken from adult turtles with a 27 gauge needle via the dorsal coccygeal 

vein (Hughe 2010, McAuliffe 1977, Siddall & Desser 2001). Individuals who were recaptured 

during the course of the study (n=3) were not resampled.  A thin smear was prepared from a drop 

of blood on a glass slide, which was air-dried, and fixed with methanol for five minutes before 

being stored for staining in the laboratory at a later date (Wood & Ebanks 1984, Barta & Desser 

1984). 
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Quantification of haematozoa 

 Fixed blood smears were stained with 1:10 Giemsa (Fisher Scientific Wright’s Giemsa, 

pH = 7) in buffered water for fifty-five minutes, rinsed with buffered water, and air dried 

(McAuliffe 1977, Wood & Ebanks 1984, Barta & Desser 1984).  Blood smears were examined 

under 1,000x magnification for the presence of haematozoa per 1,000 erythrocytes (McAuliffe 

1977, Barta & Desser 1984). Haematozoa were compared to images in Telford (2009) for 

preliminary identification.  

Statistical methods 

All statistical tests were carried out using the statistical program R Studio (R Foundation, 

version 3.4.2) with an α of 0.05.  

To assess if parasitism (dependent variable) differs between site and indices of human 

disturbance, a MANOVA was carried out using boat traffic and number of structures for the river 

mile where an individual was caught, and location (RF or LB) as independent variables. Leech 

load and haematozoa infections were given a Z score to place them within the same unit of 

comparison. Assumptions of normality of residuals and equal variance for were not met despite 

transformations, but significance of the tests was not likely affected by the violations. 

A logistic regression was carried out to assess if boat traffic and number of basking 

structures per river mile, or location predicted the likelihood of a turtle being infected with 

parasites, including haematozoa or leeches.  

 

 



47 
 

Results 

Assessment of disturbance 

Of the 288 boats observed in total, more were seen at RF (n=277 boats) than LB (n=11 

boats). Number of basking structures per river mile was similar at both RF (13.0 ± 9.27 

structures, total structures=39) and LB (8.33 ± 2.89 structures, total structures=25). Average 

hourly boat traffic and basking structures per river mile can be found in Table 3.2. Boat traffic 

was not assessed at mile 2 at RF because of lack of availability of observation locations for 

monitoring structures. However, this deficiency did not affect analyses as no turtles were 

captured within that river mile. 

Table 3.2 Measurements of human disturbance in 3 river miles at Ratliff Ferry (RF) and 

LeFleur’s Bluff (LB) on the Pearl River. Boat traffic (average boats per hour) was not assessed at 

RF due to lack of available observation site.  

Location River mile Boat traffic 

Number of 

basking 

structures 

RF 1 4.83 8 

RF 2             N/A         5 

RF 3 8.43 26 

LB 1 1.00 10 

LB 2 1.17 5 

LB 3 0 10 

 

Nineteen adult ringed sawbacks and 0 juveniles were captured and sampled at Ratliff 

Ferry and 21 adults and 8 juveniles were sampled at LeFleur’s Bluff. At RF all turtles were 

captured within the same river mile (mile 3). At LB, 5 were captured at river mile 1, 4 were 
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captured at river mile 2, and 11 turtles were trapped at river mile 3. An adult male was sampled 

at RF that had been first captured and marked by Dr. Robert Jones in 1988, with an estimated age 

now of at least 34 years. 

Four of the 40 adult captured turtles had one or more leeches (�̅�=1.50±0.50 leeches). 

Leeches were not observed on basking turtles as all leeches were found attached to skin 

connecting to the carapace or plastron. Twenty turtles were infected with haematozoa; of these, 2 

turtles carried leeches. Prevalence of haematozoan infection was similar at LB (10 infected out 

of 21 total) and RF (10 infected out of 19 total). In infected turtles, haematozoa infections ranged 

from 1 (0.1% cells infected) to 28 (2.8% cells infected) haematozoa per 1,000 RBCs, with an 

average infection of 4.78 ± 6.50 RBCs. These haematozoa infections were comprised of 

haemogregarina (Apicomplexa: Adeleiorina) and an unknown haematozoa that could not be 

identified (Fig 3.1).  

Neither boat traffic, number of basking structures per river mile, nor location was related 

to leech load or haematozoa infection rate (MANOVA, all p >0.15).  

 After comparing AICs of possible logistic regression models predicting the likelihood of 

infection, the best model included boat traffic alone. However, boat traffic did not significantly 

predict the likelihood of an individual being infected with haematozoa (logistic regression, 

AIC=59.3, Z=-0.387, p=0.699). 
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Figure 3.1 Representatives of haematozoa at 1000x magnification found in adult ringed 

sawbacks (Graptemys oculifera) collected from the Pearl River outside Jackson, MS. The top 

photo is the gamont stage of haemogregarine from an adult female (F11). The bottom photo is an 

unknown haematozoa from an adult female (F19).  

 

 

 

 

F11 

F19 
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Discussion 

Human disturbance can have wide reaching consequences on individual health, causing 

cascading effects that may impact species populations (Moore & Seigel 2006, Nowacek et al. 

2016, Jones 2017). The measure of individual health used in this study, parasite load, was not 

correlated to the measures of human disturbance used in this analysis – number of basking 

structures and average hourly boat traffic. Indeed, haematozoa load was close to equal at both RF 

and LB despite apparent differences in amount of human disturbance. While I predicted that 

differences in basking due to disturbance would lead to higher leech loads, and thus higher 

haematozoa counts, leech load and haematozoa infection did not appear to be related in the few 

captured turtles that were parasitized by leeches. To my knowledge, the only study directly 

examining differences in parasite load based on human disturbance was by Lacroix (2012), who 

found that haematozoa infections were highest in Blanding’s turtles near wetlands compared to 

more modified habitats. This difference was attributed to prevalence of leeches in wetlands 

which may transmit haemotozoa. However, very few turtles were found to be infected with 

leeches in this study. 

There are a few possible explanations for the lack of relationship between human 

disturbance, leech parasitism, and haematozoa infection. Potential interruptions to basking 

because of disturbance may not impact leech attachment and feeding. This is counter to the 

“desiccating leech hypothesis” (Shealy 1976, Ryan & Lambert 2005) which posits that basking 

by turtles serves to desiccate and remove leeches. However, the low number of turtles found with 

leeches (10% of captures) is in keeping with Ryan and Lambert (2005) who found that leeches 

will preferentially feed on common snapping turtles rather than common map turtles even when 

basking is denied. Leeches may preferentially avoid feeding on ringed sawbacks in favor of more 
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benthic turtle species, or may not stay attached long enough to either transmit haematozoa or 

pose a prolonged cost through the drawing of blood meals. A second explanation could be that 

haematozoa transmission in this species occurs primarily through another vector, such as a 

mosquito (Paterson & Desser 1976), indicating that interruptions to basking and leech 

attachment do not influence haematozoa transmission, or may suggest that map turtles are 

resistant to infection via leeches. Finally, as species of leeches differ in their attachment behavior 

(Maloney & Chandler 1976), leeches that transmit haematozoa may not remain attached long 

enough to be recorded. Placobdella parasitica has been shown to remain attached to riverine 

turtles long after feeding, while Placobdella ornata releases the host shortly after feeding 

(Maloney & Chandler 1976). If ringed sawbacks are primarily parasitized by P. ornata, evidence 

of their attachment may not be obvious.  

Levels of human disturbance do not appear to influence parasite load in ringed sawbacks, 

although further research should explore the reasons for the absence of this relationship, as it 

presents an interesting case study for parasite-host relationships. 

Differences in population structure and shell condition 

Introduction  

The southeastern United States has been identified as a hotspot for turtle biodiversity, 

containing representatives from 42 species, 11 of which are endemic (Mittermeier et al 2015). 

Unfortunately, turtles across the United States are threatened, with 26 out of the 57 species found 

in the US listed in Appendix 3 on CITES by the US Fish and Wildlife Service (USFWS, The 

IUCN Red List).  Recovery of these listed species may be impeded by direct and indirect effects 

of human disturbance.  
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Selman et al. (2013) found that yellow-blotched sawbacks in more disturbed areas had 

poorer shell condition than those in undisturbed areas. Shell condition was assessed by the 

presence or absence of white spots on the carapace which occur when marginal scutes are not 

shed properly and indicate the presence of a bacterial or fungal infection (Selman et al. 2013). As 

this failure to shed marginal scutes with poor shell condition is seen in captive turtles with 

improper light and heat sources (Hernandez-Divers et al. 2009), improper basking likely results 

in the same condition. Shell condition then may serve as an index for basking ability and 

individual health between populations. 

Examining age structure and recruitment between sites can also indicate potential effects 

of human disturbance. Passing watercraft, and the humans they carry, can directly reduce 

recruitment in populations. Boat traffic interferes with nesting activities by startling gravid, 

nesting turtles from sandbars into the water (Moore & Seigel 2006), and human occupation of 

sandbars for camping and other recreational activities unintentionally destroy nests (Moore & 

Seigel 2006). Food and trash left on sandbars attract human commensals such as raccoons, 

armadillos, and fish crows (Jones 2017). These vertebrate predators represent a serious threat to 

nests, destroying up to 86% of nests within days of laying (Jones 2006, Jones 2017). A twenty-

year study by Jones (2017) concluded that the population at RF decreased while the ringed 

sawback population at LB increased. The last year of sampling for the study was in 2014 and 

continued assessment of these trends would be valuable in the assessment of conservation efforts 

(USFWS 2005).  

I hypothesize that sites of increased human disturbance will be linked to poor individual 

population health and predict that high human disturbance will be linked to poor shell condition 

and fewer juveniles and young adults.  
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Methods 

Capture methods 

Collection of adult and juvenile ringed sawbacks took place between May and August 

2017 at the two sites, RF and LB addressed in Chapter 1. Capture methods are addressed earlier 

in this chapter.  

The shells of captured turtles were cleaned and marked uniquely with holes drilled into 

marginal scutes (Cagle 1939). These populations were previously marked by R. Jones and P. 

Hartfield (1995) between 1988 and 1990, by R. Jones (2006) 1995-1996, and intermittently by R. 

Jones (2017) between 1994-2004.  The capture location, plastron length (PL), plastron width 

(PW), plastron height (PH), carapace length (CL), carapace width (CW), mass, sex, gravidity via 

palpation (if female), and age were recorded (Richards-Dimitrie 2011). Carapaces were 

examined visually for the presence or absence of white spots as an assessment of shell condition.  

Statistical tests 

Differences in population age and composition between sites (RF and LB) were assessed 

using a Fisher’s exact test, first between number of adults and juveniles per site, then between 

age classes of adults as assessed by the presence or absence of annuli. While present in young 

turtles, annuli become worn over time and are not visible in older adult turtles (Huntzinger & 

Brown, pers. comm). As age ranges were not even amongst captured turtles and age is correlated 

with body size (Cagle 1946; Halliday & Verrell 1988), inferential statistics were not run between 

body sizes to prevent conclusions which could be attributed to age class differences.  
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 A Chi-square contingency analysis was used to assess if shell condition, as measured by 

the presence or absence of white spots on carapaces of adult turtles (dependent variable) differed 

between sites (independent variable).  

Results 

White spot fungus was present on carapaces of more adult turtles at LB (n=13 turtles, 

62% of captures) than at RF (n=5 turtles, 26% of captures) (χ2= 5.10, df=1, p=0.02).  

More juveniles were caught at LeFleur’s Bluff (n=8) than at Ratliff Ferry (n=0) (Fisher’s 

exact test, p=0.017). More adult turtles had visible annuli at LeFleur’s Bluff (n=8) than Ratliff 

Ferry (n=1) (Fisher’s exact test, p=0.021), indicating a younger population overall at LeFleur’s 

Bluff. A summation of body measurement differences between captured adult turtles can be seen 

in Table 3.3.  

 

Table 3.3 Mean and (± SD) of adult ringed sawback body measurements between two sites on 

the Pearl River; Ratliff Ferry (RF) and LeFleur’s Bluff (LB) (n=40). Abbreviations indicate 

carapace length (CL), carapace width (CW), carapace height (CH), plastron length (PL), plastron 

width (PW).  
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Discussion 

By examining differences between individual health (shell condition) and population 

structure between sites, I have identified trends which may be of interest to managers seeking to 

conserve ringed sawbacks or other riverine turtle species. 

Turtles at LB had a higher prevalence of white spots on carapaces, due to fungal and 

bacterial infections which can develop in between scutes that are not shed properly (Hernandez-

Divers et al. 2009, Selman et al. 2013). As duration of basking did not differ between RF and LB 

(J. Heppard, see Chapter 1), there is likely another explanation for differences in shell condition. 

As LB is below the Ross Barnett reservoir and receives drainage both from the reservoir and 

from the greater Jackson area, water quality is likely worse there than at RF. I observed trash and 

chemical discharge at LB during field work, particularly after high rains and high water events, 

where water was released from the reservoir. Poor water quality could nurture shell infections 

more readily at LB than the less contaminated RF site (Garner et al. 1997).  

There were significantly fewer juveniles and young adults found at RF compared to LB. 

This is in keeping with Jones (2017) who found a decreasing population trend at RF but not at 

LB. There are several likely explanations for differences in recruitment and population age 

structure, all of which are likely due to human disturbance effects. First, human usage of nesting 

beaches may impact nesting success. RF had higher boat traffic throughout the week compared 

to LB where boats were few and restricted to the weekend (Chapter 1). Boaters at RF were also 

observed to stop and park boats at sandbars while boaters at LB were primarily kayakers passing 

between boat ramps.  Passing boaters can interrupt females in the process of scouting and 

creation of a nest and the laying of eggs (Moore & Seigel 2006, Jones 2006) and may destroy 

nests unwittingly through the course of picnicking or camping (Moore & Seigel 2006).  
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A second potential explanation could be reduction in recruitment if human disturbance 

alters choice of nesting location to areas where they are easily accessed by predators.  During the 

study, many empty nests were observed at RF surrounded by egg shells (judged to be from 

Graptemys species based on their oblong shape and location on sandbars) and predator (raccoon) 

tracks at the edges of sandbars close to the tree line. Human occupation of “prime” sandbars may 

force females to nest close to forested areas which are within easier access of vertebrate nest 

predators such as raccoons and armadillos (Jones & Selman 2009).  

A third explanation is that high human presence at RF attracts vertebrate predators of 

nests such as raccoons and armadillos. These vertebrate nest predators are supplemented by 

human presence and are attracted to camping and picnicking areas both by the scraps of food left 

by humans and the removal of apex predators that can control their numbers (Jones 2017).  One 

or more of these human effects may be critical in reducing recruitment, and therefore the 

maintenance and recovery of the population, at RF.  

Human disturbance appears to be a significant cause of site differences of shell condition 

and poorer recruitment. Efforts to mitigate the effects of human disturbance will be vital to 

ensuring the maintenance of healthy populations 

Thesis conclusions and management recommendations 

Long-lived species such as turtles pose unique challenges when assessing population 

sizes (Jones 2017), which can confound assumptions about the effect of disturbance if a 

population appears to be stable when a large population of adults exists (Nowacek et al. 2016, 

Jones 2017). Riverine turtles are in a unique position as they are limited by the confines of the 

riverine system (Bodie & Semlitsch 2000), must thermoregulate through basking behavior 
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(Boyer 1965, Seebacher 2005), and have a reproductive strategy that results in a long time to 

maturity and very few eggs laid per season (Jones 2006).  Studies such as this one which factor 

individual health and the presence of juveniles and young adults into assessments of disturbance 

and population assessments that are taken over many years are vital for understanding the effects 

of disturbance and predicting future population shifts (Jones 2017).  

Throughout this thesis I have examined the effect of two aspects of human disturbance, 

reduction of basking structures and increased boat traffic, on the ringed sawback. Based on 

behavioral changes, thermal consequences, and reduced recruitment likely from high boat traffic, 

I suggest the following measures.  

1) Reduce boat traffic at RF in order to increase recruitment and decrease 

disturbances to basking.  

a) Reduce river access to RF. In contrast to LB, which only has two 

access points at LeFleur’s Bluff State Park and the spillway below the Ross 

Barnett Reservoir 10.4 river mi upstream, boaters can access RF directly 

upstream of the reservoir, at various access points on the Natchez Trace, at 

Ratliff Ferry Trading Post, and at Coal Bluff State Park. Reducing the number 

of access points to the river may encourage boaters to utilize recreational areas 

at the Ross Barnett reservoir rather than enter the river and travel further to 

reach desired sand bars. 

b) Increase the number of no wake zones at RF to include all the 

PRWMA, as this has been shown to reduce disturbance and may reduce 

erosion to sandbars that can destroy nests (Selman et al. 2013). These 

expanded no wake zones could also be in place only during the early summer 
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months (May and June) in order to reduce impacts on basking behavior during 

egg development. 

c) Restrict boat access to areas of RF. There are many inlets off the 

main river channel at RF; constructing barriers out of deadwood or posting 

signs to restrict boat traffic to the main river channel could allow ringed 

sawbacks undisturbed places to bask and nest. 

2) Improve nesting habitats at RF.  

a) Jones (2006) found most nests approximately 18m from the water line and 

within 1m of the vegetation line. If gravid turtles make nest placement decisions 

based on distance to the vegetation line, managers could reduce vegetation on minor 

sandbars (those with approximately a meter between the water and vegetation lines) 

to increase overall depth. Increasing the distance between the river and the vegetation 

line could allow the presence of viable nests on minor sandbars throughout the river. 

These minor sandbars would hopefully pass the notice of recreational boaters and 

increase the amount of available nesting substrate.  

b) While PRWMA has prohibited long-term camping on sandbars and all 

camping on minor sandbars, placing informative signs or restrictions on sandbars 

could change behavior of campers and encourage them to utilize the larger sandbars 

that would not be used by ringed sawbacks. 

3) Improve water quality at LB.  

a. Increase monitoring to locate chemical leaks more quickly and 

improve clean-up efforts, particularly after heavy rain events 
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By examining consequences of human disturbance, I have outlined possible short-term 

(behavioral, thermal) and long-term (body condition, recruitment) effects on the behavior and 

physiology of an endangered riverine turtle. Seemingly innocuous human disturbance may infect 

have far reaching consequences on ringed sawbacks, and careful action must be taken to prevent 

extirpation of populations. Scientists and managers must strike a balance between encouraging 

the public to engage with and enjoy nature and creating sustainable habitats for threatened 

populations.  
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Table 1. Measures of relative variable importance (RVI) of the predictor variables Julian day, air 

temperature, week day, weather, the interaction of day and Julian day, boat traffic, number of 

basking structures, the interaction of day and weather, and the interaction of air temperature and 

number of structures on number of basking turtles seen on surveys. Variables with RVI scores 

greater than 0.5 have a moderate to strong effect on the response variable.  

 

 

Table 2. Akaike information criterion (AIC) scores for the multiple regression models with 

lowest AIC values of the predictor variables Julian day, air temperature, week day, weather, the 

interaction of day and Julian day, boat traffic, number of basking structures, the interaction of 

day and weather, and the interaction of air temperature and number of structures on number of 

basking turtles seen on surveys. A plus (+) underneath a variable indicates its inclusion in the 

model. 
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Table 3. Measures of relative variable importance (RVI) of the predictor variables Julian day, air 

temperature, number of basking structures, zone, boat traffic, the interaction of boat traffic and 

number of structures, the interaction of boat traffic and Julian day, the interaction of boat traffic 

and zone, the interaction of boat traffic and number of structures, the interaction of boat traffic 

and Julian day, the interaction of boat traffic and zone, and water temperature on duration of 

basking by turtles. Variables with RVI scores greater than 0.5 have a moderate to strong effect 

on the response variable.  

 

 

 

Table 4. Akaike information criterion (AIC) scores for the multiple regression models with 

lowest AIC values of the predictor variables Julian day, air temperature, number of basking 

structures, zone, boat traffic, the interaction of boat traffic and number of structures, the 

interaction of boat traffic and Julian day, the interaction of boat traffic and zone, the interaction 

of boat traffic and number of structures, the interaction of boat traffic and Julian day, the 

interaction of boat traffic and zone, and water temperature on duration of basking by turtles. A 

plus (+) underneath a variable indicates its inclusion in the model.  
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Table 5. Measures of relative variable importance (RVI) of the predictor variables month, 

probability of disturbance, and the interaction of month and probability of disturbance on body 

temperature differences between simulations of anthropogenically disturbed and undisturbed 

basking. Variables with RVI scores greater than 0.5 have a moderate to strong effect on the 

response variable.  

  Month 

Probability 

of 

Disturbance 

Month:Probability 

of Disturbance 

RVI 1 1 1 

 

Table 6. Akaike information criterion (AIC) scores for the multiple regression models with the 

lowest AIC values of the predictor variables month, probability of disturbance, and the 

interaction of month and probability of disturbance on body temperature differences between 

simulations of anthropogenically disturbed and undisturbed basking.  A plus (+) underneath a 

variable indicates its inclusion in the model. Only a single model was generated.  

  Month 

Probability 

of 

Disturbance 

Month:Probability 

of Disturbance 

AIC 

score 

Inclusion + 
+ 

+ 3393.6 
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Introduction 

While basking surveys and focal observations were measured at RF (but not LB) in 2016, 

high degrees of multicollinearity between variables precluded survey counts and basking 

durations from inclusion in models seen in Chapter 1. Data on boat traffic and rates of 

disturbance at RF, however, were combined from 2017 and 2016 for the models below.  

Methods 

Focal basking observations in 2016 and assessment of boat traffic took place between 8 

July and 6 August at RF. Methods of focal observations and boat traffic assessment are discussed 

in Chapter 1.  

A chi-square analysis was used to test if type of disturbance, including non-watercraft, 

was related to whether a turtle was disturbed at RF. A factorial ANOVA tested data from all 

passing boats to assess if zone (wake or no wake) or watercraft type (independent variables) 

affected percentage of basking turtles (dependent variable) disturbed per structure. Because of 

high numbers of boats during the Saturday of Memorial day weekend (27 May 2017), other 

predictors of disturbance were not incorporated into the analysis to prevent data skew due to the 

high number of boats (n=388) causing disturbances not related to speed, angle, or distance of 

approach. A post hoc Tukey test was used to assess significant differences in percentages of 

disturbance between boat types.  

Results 

 Descriptive statistics are given in mean ± standard deviation unless otherwise noted. 
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A total of 977 iterations of basking were observed; of these, 547 were undisturbed and 

430 were disturbed. Type of disturbance significantly affected the number of disturbed turtles (χ2 

goodness of fit, χ2= 1473.9, df=12, p< 0.001; Fig. 1), with motorboats, other turtles, and jonboats 

causing the most disturbances. Of the five most common sources of disturbance, three were 

anthropogenic. 

 

Figure 1. Number of turtles in 2016 and 2017 who were disturbed and ended basking due to 13 

different observed stimuli on the Pearl River (n=430 turtles). 

 

A total of 1308 boats were observed, and 1051 of these boats passed structures occupied 

by turtles. Watercraft type significantly affected the percentage of disturbed turtles (ANOVA, 

F(5,1044) =16.84, p<0.0001; Fig. 2). Higher percentages of basking turtles were disturbed due to 

anglers and kayaks than other watercraft (Table 1). Boats also disturbed more turtles when 

passing in wake zone (n=543 boats, �̅�=4.97±16.26%) than in a no wake zone (n=508 boats, 

�̅�=14.31 ± 30.12%, F(1, 1044) =37.86; Fig 3). 
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Figure 2. Percentage of basking turtles on a structure disturbed due to passing boats in 2016 and 

2017 (n=1051 boats). Similar letters indicate no statistical difference between categories. Error 

bars represent standard error. 

 

Table 1. Means and standard error of significant differences between percentages of basking 

turtles disturbed by passing watercraft (n=1051 boats). 

Disturbance Mean % Disturbance Mean % p 

angler 84.0±16.0 jonboat 15.85 ± 3.05 < 0.001 

angler 84.0±16.0 motorboat 9.41±0.87 <0.001 

angler 84.0±16.0 pwc 3.96±1.24 <0.001 

angler 84.0±16.0 airboat 20.19±4.81 0.049 

jonboat 15.85 ± 3.05 kayak 72.22±14.70 0.002 

jonboat 15.85 ± 3.05 pwc 3.96±1.24 <0.001 

kayak 72.22±14.70 motorboat 9.41±0.87 <0.001 

kayak  72.22±14.70 pwc 3.96±1.24 <0.001 

motorboat 9.41±0.87 pwc 3.96±1.24 0.008 
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Figure 3. Percentage of basking turtles on a structure disturbed due to passing boats (n=1051 

boats) in a wake and no wake zone. Error bars represent standard error. 

 

Discussion 

 More types of disturbances were seen in basking observations from combined years 2016 

and 2017 at RF as disturbances from birds, dogs, and picnickers were not observed in 2017 at RF 

and LB. Interestingly, this means that at RF in 2016 and 2017 two of the top five disturbances 

were due to non-anthropogenic causes, namely other turtles and birds. However, anthropogenic 

disturbance accounts for a larger percentage of disturbances (73%) compared to natural 

disturbances (27%), indicating that high amounts of anthropogenic disturbance occur in this 

population. Anglers, kayaks, and airboats disturbed the highest percentage of turtles. While 

kayaks disturbed a higher percentage of turtles in 2017 than anglers at RF and LB, this could be 

due to either more observations of anglers or of fewer kayaks at RF.  These results still support 

the conclusions in Chapter 1 – that slow moving water craft disturb a higher percentage of turtles 

than faster moving water craft, presumably due to perception of predation risk (Moore & Seigel 

2006, Selman et al. 2013, Blumstein 2006).  
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 Boats passing in wake zones disturbed more turtles than those in no wake zones, again in 

agreement with results from Chapter 1. Again, this could be due to turtles being washed off 

structures in no wake zones. While turtles at RF may habituate or become tolerant of passing 

boats, the physical removal of turtles from basking structures due to boat wake may still reduce 

basking in the population.   
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