
University of Mississippi University of Mississippi

eGrove eGrove

Electronic Theses and Dissertations Graduate School

2012

Comparison Of Apple's Ios 5 And Android For Mobile Applications Comparison Of Apple's Ios 5 And Android For Mobile Applications

Development: A Developer's Perspective Development: A Developer's Perspective

Estela Pochintesta
University of Mississippi

Follow this and additional works at: https://egrove.olemiss.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Pochintesta, Estela, "Comparison Of Apple's Ios 5 And Android For Mobile Applications Development: A
Developer's Perspective" (2012). Electronic Theses and Dissertations. 948.
https://egrove.olemiss.edu/etd/948

This Thesis is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for
inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information,
please contact egrove@olemiss.edu.

https://egrove.olemiss.edu/
https://egrove.olemiss.edu/etd
https://egrove.olemiss.edu/gradschool
https://egrove.olemiss.edu/etd?utm_source=egrove.olemiss.edu%2Fetd%2F948&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=egrove.olemiss.edu%2Fetd%2F948&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/etd/948?utm_source=egrove.olemiss.edu%2Fetd%2F948&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu

Comparison of Apple's iOS 5 and Android for Mobile Applications Development: A

Developer’s Perspective.

A Thesis

Presented for the

Master of Science

Degree

The University of Mississippi

Estela Pochintesta

July 2012

Copyright © 2012 by Estela Pochintesta

All rights reserved

ii

ABSTRACT

 The aim of this research is to study the Apple iOS and Android mobile frameworks from

a developers’ perspective. The first chapter introduces a historical overview of operating systems

for mobile devices as well the motivation and objectives of the research. The second chapter

introduces basic principles of the iOS and Android mobile frameworks in order to evaluate the

platforms. The third chapter evaluates and compares the main features of both frameworks. The

fourth chapter discusses the implementation of several applications on the iOS and Android

mobile frameworks, which are used to demonstrate the advantages and disadvantages of each

platform. The final chapter contains a summary, which gives an outlook of the future of the

platforms.

iii

DEDICATION

This work is dedicated to my family and the love of my life Bichito, without whose tireless

encouragement I would have given up long ago.

iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Dr. Dawn Wilkins,

who originally suggested and guided my research. For her encouragement, enthusiasm,

and knowledge. Besides my advisor, I would like to thank the rest of my thesis

committee: Dr. Yixin Chen and Dr. H Conrad Cunningham, for their encouragement,

guidance and suggestions. In addition, I would like to thank the Writing Center services

for the help in editing of the final document

v

LIST OF ABBREVIATIONS

 ADT Android Development Tools

 IDE Integrated Development Environment

 SDK Software Development Kit

 IDC Information Development Consultants

 MVC Model View Controller

 NFC Near Field Communications

 DDMS Dalvik Debugging Monitor Service

vi

TABLE OF CONTENTS

CHAPTER I .. 1

CHAPTER II ... 7

II.1 ANDROID DEVELOPMENT ESSENCIALS ... 8
II.III HARDWARE VARIATY ... 11
II.IV SDK .. 13
II.V PLATFORM FRAGMENTATION... 14
II.VI DEVELOPMENT TOOLS ... 15

II.VI.I Preferred IDE ... 16
II.VI.II PROJECT STRUCTURE ... 17

II.VII APPLICATION DEVELOPMENT ARCHITECTURE .. 18
II.VII.I APPLICATION COMPONENTS ... 19
II.VII.II COMMUNICATION COMPONENTS ... 25
II.VII.III INTERFACE LAYOUT AND USER INTERACTION ... 27
II.VII.IV EXECUTION WORKFLOW OF AN ANDROID APPLICATION .. 31
II.VII.V APPLICATION PACKAGING .. 34

II.VIII FEATURES ... 35
II.VIII.I MAIN FEATURES ... 35
II.VIII.II SPECIAL FEATURES ... 37

II.IX DISTRIBUTION AND MONETIZATION OF APPLICATIONS ... 38

CHAPTER III ... 39

III.I iOS DEVELOPMENT ESSENCIALS .. 40
III.II ARCHITECTURE .. 42
III.III SDK ... 43
II.IV DEVELOPMENT TOOLS ... 44

III.IV.I PREFERED IDE .. 45
III.IV.II PROJECT STRUCTURE .. 46
III.IV.III APPLICATION PACKAGE .. 47

III.V APPLICATION ARCHITECTURE .. 48
III.V.I APPLICATION SKELETON ... 48
III.V.II INTERFACE LAYOUT AND USER INTERACTION ... 50
III.V.III LIFE CYCLE .. 55

III.VI FEATURES .. 58
III.VI.I MAIN FEATURES ... 58
III.VI.II SPECIAL FEATURES .. 59

III.VII DISTRIBUTION AND MONETIZATION OF APPLICATIONS .. 61

CHAPTER IV.. 62

IV.I COMPREHENSIVE ANALYSIS .. 64
IV.I.I DEVELOPMENT COMPARISON .. 65

vii

IV.I.II DEVELOPMENT UTILITIES .. 68
IV.I.III TESTING AND DEVICES .. 71

IV.I.V APPLICATION ENHACEMENT ... 75
IV.I.VI NON-TECHNICAL FEATURES .. 77

IV.II PRACTICAL ANALYSIS OF MOBILE PLATFORM ... 79

CHAPTER V ... 107

V.I MOST SUITABLE PLATFORM ... 107
V.II FEATURES ... 115
V.III COMPARATIVE SQUARE ... 118
V.IV SUGGESTIONS ... 120
V.V FUTURE WORK ... 120
V.VI CLOSING REMARKS.. 124

BIBLIOGRAPHY ... 126

VITA... 130

viii

 LIST OF TABLES

CHAPTER II .. 7

TABLE 1. ICE CREAM SANDWICH SDK NEW FEATURES. (ANDROID 2012) .. 14
TABLE 2. ANDROID APPLICATION COMPONENTS ... 19
TABLE 3. ANDROID FRAMEWORK MAIN FEATURES. (ANDROID 2012) .. 36

CHAPTER III ... 39

TABLE 4. SDK IOS5 FRAMEWORKS .. 43
TABLE 5. MAIN APPLICATION LIFECYCLE STATES. (SMITH 2011) .. 56
TABLE 6. IOS MAIN FEATURES ... 59

CHAPTER IV .. 62

TABLE 7. DEVELOPMENT COMPARISON ... 67
TABLE 8. DEVELOPMENT UTILITIES ... 70
TABLE 9. TESTING AND DEVICES .. 72
TABLE 10. HARDWARE FEATURES .. 75
TABLE 11. APPLICATION ENHANCEMENT ... 76
TABLE 12. NON-TECHNICAL REQUIREMENTS ... 77
TABLE 13. ANDROIOD & IOS MATCHING PAGE .. 78

CHAPTER V ... 62

TABLE 14. CAPACITY OF NETWORK RELATED PERIPHERALS .. 111
TABLE 15. SUMMARY OF FEATURES IMPLEMENTED BY ANDROID AND IOS .. 115

ix

LIST OF FIGURES

CHAPTER I .. 1

FIGURE 1. APPLICATION DOWNLOADS ... 4

CHAPTER II .. 7

FIGURE 2. APPLICATION ARCHITECTURE (ANDROID 2012) ... 10
FIGURE 3. ICE CREAM SANDWICH HOME SCREEN. (ANDROID 2012) ... 12
FIGURE 4. IDE MAIN SCREEN ECLIPSE WITH ADT PLUG-IN. ... 16
FIGURE 5. ANDROID PROJECT STRUCTURE ... 17
FIGURE 6. ACTIVITY - APPLICATION COMPONENT LIFE CYCLE. (ANDROID 2012) .. 20
FIGURE 7. SERVICE APPLICATION COMPONENT LIFE CYCLE. (ANDROID 2012) .. 21
FIGURE 8. SCREEN LAYOUT ... 29
FIGURE 9. WORKFLOW OF MAIN ACTIVITY. (ANDROID,2012) .. 31
FIGURE 10. ACTIVITY STACK. (ANDROID, 2012) ... 33

CHAPTER III ... 39

FIGURE 11. IOS SOFTWARE LAYERED ARCHITECTURE. (APPLE, 2012) .. 42
FIGURE 12. XCODE IDE ... 45
FIGURE 13. IOS APPLICATION SKELETON. (APPLE 2012) .. 49
FIGURE 14. STACK OF VIEW’S APPLICATION. (APPLE, 2012) ... 52
FIGURE 15. NAVIGATION CONTROL. (APPLE, 2012) ... 54
FIGURE 16. FIGURE3 6. APPLICATION LIFECYCLE LAUNCH IN THE FOREGROUND. (APPLE 2012) 56
FIGURE 17. APPLICATION LIFECYCLE LAUNCH IN THE BACKGROUND. (APPLE 2012) ... 57

CHAPTER IV .. 62

FIGURE 18. ANDROIOD VS. IOS .. 105
FIGURE 19. COMPARATIVE SQUARE .. 119

1

CHAPTER I

This thesis is the outcome of research performed while investigating the mobile

technology industry, with a specific focus on the leading mobile platforms at this time. The

primary focus is from the application developer’s perspective.

Since 1992, a revolutionary type of device was brought into the industry under the name

of smartphone, first developed by IBM. Simon, the first smartphone was a device with primarily

phone functions and a fixed set of applications, which included a calendar, address book,

calculator, and several applications. The term smartphone refers to a mobile phone that offers

advanced computational power and networking capabilities. Formally it is defined as: “a mobile

electronic device which runs an advanced operating system that is open to installing new

applications, is always connected to the Internet, and which provides very diverse functionality

to the consumer” (Cromar, 2011).

With the evolution of smartphones over the past decade, along with the evolution of

communication and networking technologies, the mobility factor of smartphones has brought

about a new style of computing, defined as mobile computing. Mobile computing is a broad term

used to describe technologies that allow people to have networking capabilities using portable

devices.

 The mobile technology is generally defined as a three-part technology consisting of:

mobile hardware, data, and software (Reen, 2000). Mobile computing opened an industry for

hardware manufacturers, platform providers, and content providers. The hardware manufacturers

are the companies that create and design mobile devices, mainly tablets and cellphones. Platform

providers are companies that provide the mobile operating system and the development tools that

2

allow third party developers to create applications to be used on the devices. Finally, third party

developers can be companies or freelance programmers who decide to publish applications in the

market for users to access.

Several companies act as platform providers. The most popular providers today are:

Symbian, Android, iOS, RIM and Mango for Windows Phone. The mentioned platform

providers develop the mobile operating systems and provide the required tools that allow third

party developers to create applications to be run on their operating systems. Each platform offers

its own set of developer tools and features. However, all of them face several similar challenges

of mobile computing (Chlamtac 1998), (Holzer 2009):

• Display device characterized by a small size screen

• Input device to incorporate a speech based interface and touch screen keyborads

• Power source management

• Non- continuity connection and latency problems

3

The mobile software component of the equation is the most relevant for this research,

given the incredible growth of the development of third party applications for mobile platforms.

Jahns et al (Jahns, 2010) predict that the smartphone application market will reach $15.65 Billion

in 2013. When a developer plans to develop mobile applications, she needs to choose a platform

from the available platforms. In general, the developer will face a tradeoff between the features

and tools that each mobile platform offers and the effort and price needed in order to develop the

application. This explosion in the smartphone application market made third party application

development a new, very promising business. According to Sharma (Sharma 2010), the mobile

application industry is estimated to reach $17.5 million by the end of 2012. Moreover, mobile

application downloads are expected to grow at a rate of 92% per year, since from 2009 until

2012 it has reached almost 50 billion.

Developers have a broad set of different platforms and techniques that they can choose

from in order to develop mobile applications. Each platform provides it own solution that

presents some tradeoffs, translated into advantages and disadvantages, which are related to the

special features and the approach that each platform takes.

The motivation of this thesis is mainly driven by the popularity of mobile application

development around the software industry and the lack of a comprehensive documentation that

will give developers the insight of the main strengths and weakness of each platform. One of this

main goals of the thesis is to study and evaluate the main mobile platforms from a developer’s

perspective in order to help developers choose a suitable platform for a specific combination of

requirements. Therefore, this thesis aims to: (1) present the most popular alternatives in the

industry to develop applications for smartphones, (2) describe each platform from a technical

4

perspective with focus on development environment, language, techniques, distribution and

special features, (3) compare and contrast each platform theoretically and in practice.

The outcome will be a set of suggestions that aim to help the developer to choose one

platform over the other, given a certain fixed set of parameters. This mobile platform comparison

is limited to the iPhone and Android mobile platforms; the mentioned platforms cover a large

portion of the smartphone device share. Figure 1 shows the applications downloaded per day,

which gives an insight of the preferable mobile platforms, on which to develop. Clearly, iPhone

and Android are the most popular now.

Figure 1. Application downloads

5

This research is based on a three-step methodology where in the first step an exhaustive

literature review of the frameworks was undertaken in order to write a survey describing the

theory behind the frameworks. Next, a fact-based comparison will be outlined in order to

discover the advantages and disadvantages of each mobile platform. The outcome of the

comparison will lead to the development of application features that will support conclusions

regarding the advantages and disadvantages of each mobile platform from the perspective of a

developer.

 The main contribution of this research is to expose, in a theoretical and practical

manner, a comprehensive comparison between the Android and iOS mobile platforms. The goal

is to help developers to choose which platform is best for development. The research will be

limited to the study and comparison of iOS and Android operating systems for mobile devices.

On one hand, the motivation behind investigating the iOS operating system is because of the

popularity of Apple devices in the market and the quantity of applications that the Apple Store

contains for these devices. On the other hand, the motivation behind studying the Android

operating system is the fact that it is a popular open platform for mobile devices. Specifically,

this first chapter introduces the reader to the details of the research context, objective,

motivation, limitations, and methodology.

6

The remainder of this thesis is organized as follows: Chapter 2 provides a technical

description of the Android mobile platform. Chapter 3 provides a technical description of the

Apple mobile platform. Chapter 4 outlines a comparison of the two frameworks from a

developer’s perspective in a comprehensive, theoretical, and technical manner. Chapter 5

presents the outcome of the research, including conclusion and suggestions in order to identity

the most suitable environment or conditions to identify under which platform is superior to the

other in various application domains.

7

CHAPTER II

THE ANDROID MOBILE PLATFORM

Chapter 2, introduces and overview of the Android mobile platform, which was created

by Android Inc. It is an open source platform bought and managed by Google since 2005 and

part of the Open Handset Alliance. Therefore, each manufacturing company can choose which

set of built-in applications and set of hardware features want to include in the Android

compatible devices (phone, tablet). Android is built-up on a modified version of Linux kernel

and consist of a software stack for mobile devices and a software platform foundation for

development of third party applications. It is divided in four layers, and consists of an operating

system, middleware, and applications. Android offers a Software Development Kit (SDK) and

Android Developer Tools (ADT) to third party developers for application development. The

ADT offers tools and instruments for prefer development IDE (Interactive Development

Environment) Eclipse.

The most recent version of the SDK is 4.0. Previous versions, including 2.X did not

include tablets as permitted devices until the inclusion of the 3.X versions. Chapter 2 introduces

the mobile platform by describing: android development essentials, hardware variety, SDK,

platform fragmentation, development tools, application development architecture, features and

distribution and monetization of applications.

8

II.1 ANDROID DEVELOPMENT ESSENCIALS

Android is open source and therefore there is no fixed hardware and software

configurations. In addition, the framework enables reuse and replacement of the application

components. The platform offers a rich development environment including a SDK and ADT,

which contain tools and instruments to debug, test and measure the performance of applications.

It includes a plug-in for Eclipse, the suggested IDE for the development. In addition, the SDK

supports the following features: storage, connectivity, messaging, web browser, media support,

hardware support, multi-touch, multi-tasking, flash, and tethering.

The framework is based on object-oriented techniques, where each application consists of

a set of components modeled by Java classes and that might have an interface associated with

them which is a XML file. The basic organization of an Android application is that components

call each other, to achieve the application’s functionality. There are four types of Android

application components (activities, services, content providers, and broadcast receivers), which

are activated by asynchronous messages called intents. The openness of the platform promotes

reusability of its components. Each component within the application can publish its

functionality, and any other application can make use of those capabilities. Each Android

application runs in its own sandbox and Dalvik Virtual Machine in order to be isolated from the

rest of the applications, providing a secure environment for the operating system. However,

applications are allowed to communicate and share resources by explicitly declared permissions.

9

II.II ARCHITECTURE

The software stack architecture is built-up on four layers, as shown in Figure 2 within the

layers; the Linux kernel is the layer closest to the hardware while the application layer is the one

closest to the end user.

The Linux Kernel layer contains the drivers for the hardware components that the

Android device offers, memory management, process management, security model, and

networking. Afterwards, the following layer includes two groups the Libraries and the runtime.

The libraries group is written in Java and contains all the native APIs. The runtime consist in two

components. The core libraries, enables developers to write applications in Java language

programming, given that the Kernel does not process the Java language. The Dalvik Virtual

Machine, which enables Android applications to run in their own process with their own instance

of the Virtual Machine and translates the Java code in order to be processed by the kernel.

Finally, the last layer, Application framework, contains the built-in applications as well as the

developer’s applications and a toolkit for the development and testing of applications and (Lee

2011) and (Android 2012) .

The toolkit is defined in terms of (Android 2012):

• Activity manager, in charge of life cycle of applications

• Package manager, maintains information of the available applications on the

device

• Windows manager

• Telephony Manager, contains the APIs that allow third party developers to write

phone and SMS applications.

10

• Content provider, allows applications to expose their data to other applications

• Resource Manager, Manages the layout and resources that the application uses as

strings, images, and audio.

• View System, contains the components that are need it to create the user interface

• Location Manager, APIs to manage location-aware and GPS services.

• Notification Manager, alerts the user about events

Figure 2. Application Architecture (Android 2012)

11

II.III HARDWARE VARIATY

 Android is an open platform available for device manufacturers. This implies that each

device provider can choose the set of features that it will include within the device. Moreover,

this means that the developers will need to take into account and make the best effort to generate

device-independent code so the developer’s application will work regardless of underlying

hardware. Specifically, functionalities regarding input methods, screens and sensors are the most

variable hardware pieces among the different devices. James and Allen outlined (James 2010),

(Allen 2012) that the main differences are in terms of input methods, sensors and screen size and

resolution.

Input Methods: Different devices provide a variety of user input methods. Newer

devices will provide touchscreens, while others will have an alternative method to access the

screen, such as the Trackball or Track pad. Touch screen it is important to mention since there

are different technologies that need to be considered in order to avoid drawings or touch

combinations that could only be available to certain technologies (James 2010), (Allen 2012).

 Sensors: Sensors are becoming a key component for the developer. They give

environmental information, which is very useful considering the development of location-based

applications that will incorporate gravity and temperature measurements. The majority of

Android compatible devices will have three types of sensors: accelerometer gyroscope and

magnetizer (James 2010), (Allen 2012).

Screen: There is a wide availability of screens and, the variability involves both screen

size and pixel density. This is a key aspect when developing an application that attempts to be

phone and tablet compatible and to consider the variability of resolutions (James 2010), (Allen

12

2012).

The Android API provides a structured way for the developer to detail the hardware that

is required for the application to run as is expected using Android ID or target system ID to

indicate the target devices for the specific application. In addition, the developer can specify the

hardware that the application requires to run properly. The following snippet of code is an

example of the tags and hardware requirements that the developer can outline in the manifest.

The latest SDK that was releases is 4.0 Ice Cream Sandwich, which was released on October 19

of 2012. It will be evaluated in this research. Figure 2.2 shows the home screen of an Android

device running Ice Cream Sandwich (Android 2012).

Figure 3. Ice cream sandwich home screen. (Android 2012)

android:reqTouchScreen="finger"
 android:reqKeyboardType="qwerty" />
<uses-configuration android:reqFiveWayNav="true"
android:reqTouchScreen="finger"
 android:reqKeyboardType="twelvekey" />

13

II.IV SDK

The new SDK (Ice Cream Sandwich) brings improvements in the Multimedia area by

allowing animation of videos and photos. In addition, the camera includes face detection

capabilities. Moreover, the addition of new content providers and permissions allows developers

to extend their applications capabilities including by being able to access: calendar, voicemail,

and spell checker and contacts profile. For a detailed list of new features read Table 1.

Feature name Comments
Social APIs in Contacts Provider

Content Providers Voicemail and Calendar

Multimedia Incorporates video and photo animation

Camera Incorporates face detection

Android Beam

Wi-Fi Direct

Bluetooth Health Devices

Accessibility

Spell Checker Services

To be incorporated by third party applications

Text-To-speech Engines

To be incorporated by third party applications

Network Usage

Render Script

Enterprise

Device Sensors

Action Bar

User Interface and Views

14

Input framework

 Properties

Hardware Acceleration

JNI Changes

WebKit

Permissions

To spell checker, voicemail, and profile
contacts.

Devices Features

Table 1. Ice Cream Sandwich SDK new features. (Android 2012)

II.V PLATFORM FRAGMENTATION

Given the variety of hardware devices and the fast evolution of the mobile platform

developers might not be able to take advantage of all the new features of the latest SDK release.

The mobile fragmentation is an important topic for Android developers since, it is not desirable

to write code that will not be able to run on all hardware's. This subject is key in the Android

world given the variety of devices and the fact that only “a 0.6 percent of Android phones are

running Ice Cream Sandwich, about 55 percent are running its predecessor, Gingerbread, and

30.4 percent are on Frodo” (Enterprise Mobile 2012).. As a rule, developers should develop for

the lowest version needed by application to have the widest audience possible.

15

II.VI DEVELOPMENT TOOLS

Android does not require a specific underlying hardware a Mac, Windows PC, or Linux

can be used. The programming tools are free and can be acquired from the web. The software

required is the SDK and ADT, which contain the libraries and frameworks that make up Android

mobile platform and allow developers to write and test applications for the platform. The

programming language environment is Java, however other languages such as Ruby and C/C++

can de used to develop native applications. The IDE commonly used is Eclipse, which offers a

plug in that allows the creation, debugging and testing on Android compatible emulator devices

of Android applications. The software that needs to be download and integrate in order to start

creating Android applications are (Lee 2011) :

• Eclipse, Helio version or superior

• Java Virtual Machine (JVM), in order to run Eclipse

• Android Software Development Kit contains the Android libraries, emulator, libraries,

documentation, and examples.

• Android Development Tools (ADT) plug-in for Eclipse that supports the creation and

debugging of Android application.

16

II.VI.I Preferred IDE

The following figure is divided in four sections to show the main features that the most used

IDE.

1. Project structure

2. Code editor

3. ADT, Android Tools (Debugger, Junit test, DDMS, Log cat)

Figure 4. IDE main screen Eclipse with ADT plug-in.

17

II.VI.II PROJECT STRUCTURE

Using the file new menu in Eclipse and selecting Android Application create each

application. There is only one type or template available to create Android Mobile applications.

At this point, there is no necessity of specifying which device this application is going to be built

on. A series of different type of files will be auto generated and structured in a hierarchy of

folders described below and show in Figure 5 (Lee 2011) and (Android 2012):

Figure 5. Android project structure

• Src: Allocates the Java source files for each file. The code for the application is written

in java files and stored in this folder. Eclipse auto-generates the main Activity file

AppName.java

• Gen: contains R.java, a compiler generated file that contains a reference to all the

resources in the project.

• Android versionNumber (Android 2.2): The folder contains one .jar file, which has all

18

the libraries needed in order to build Android applications.

• Assets: Holds the assets used by the application, such as HTML, text files, and databases.

• Res: Holds all the resources of the application. It has subfolders: drawable –resolution,

layout, values. The file main.xml is auto generated and represents the layout that will be

associated to the main activity.

• Android Manifest.xml : Some of the settings, components, and permissions needed by an

application are defined here. It is an xml file, auto generated, that enables editing using

the editor in Eclipse. All the application components need to be defined in this file, along

with their Intent Filters.

II.VII APPLICATION DEVELOPMENT ARCHITECTURE

Each application consist of a set of components as mentioned before modeled by Java

classes and XML file. The openness of the platform promotes reusability of tis components.

Each Android application runs in a separate process and is composed of one, a group, or a

combination of the components mentioned before. By default, all the components run on the

same execution thread and the application is initiated by running the main component. Each

application can be modeled as a block structure of its different components at Table 2 shows at

(Android, 2012):

19

Component Functionality Java Base Class Examples

Activity UI component,
corresponding to one

screen.

Activity Edit a note, play a game

Service Background process Service Play music, update weather
icon

Broadcast
receiver

Response to
notification or can
initiate a broadcast.

BroadcastReceiver Trigger alarm upon event

Content
provider

Enable application to
share data

ContentProvider Open a phone contact

Table 2. Android application components

The communication between these components is performing by the Intent object

aforementioned, which is the glue between the components. The following sub-section will

detailed describe each component.

II.VII.I APPLICATION COMPONENTS

Activities are application components that represent the functionalities the user can

perform while interacting with a screen. In general, an activity will have associated visual

interface that occupies a single screen, but it can also draw widgets, dialogs or faceless.

Activities use view objects in order to display content and manage the interaction with the user

and events; these views create a view hierarchy of single, compound view, and layouts. The pair

(activity, view) is similar to the view controller concept on the MVC (Model View Controller)

design pattern. An Android application can be a combination of its own activities and other

activities exposed by other applications. This allows for reusable tasks such as sending emails,

text messages, or browsing the list of contacts on the phone to be easily integrated. The entry

20

point of any Android application is the component defined as main in the manifest file. Each

component besides the content providers has a lifecycle associated that defines the different

states of the component between its launch and termination. The references for the entire section

of II.VII.I are (Lee 2011), (Android 2012) and (Steele 2011) .

The activity application life cycle is described by seven states and several transitions.

Each change of state corresponds to handling of a system interruption or event, as can be seen

Figure 6.

Figure 6. Activity - Application component life cycle. (Android 2012)

21

The most relevant states from a developer’s perspective are (Lee 2012):

• onCreate(). Initializing the activity is the first state on the life cycle. All activities

override this method in order to link the XML file that lays out the activity’s interface

using the method setContentView() and creates a reference to the widgets that are on

the view and need to be referenced programmatically.

• onPause(). When an interruption comes in like a phone call, the OS automatically

sends the application to this state.

• onResume(). It is invoke when an application was in the background and it will be

send to the foreground. It is important for developers to override in order to retrieve

the state of the application so the user will be able to see the same information that

was seen before.

• onDestroy(). When a configuration change happened the application

automatically destroys, developers might override this state for the system to be able

to re-lunch the application after the changes on the device configuration as was

before.

22

The Android platform supports multitasking, which allows it to run several applications

at once, as well the possibility of running background processes. Background processing is

achieved by the use of the service application components. A background process is

implemented by extending the Service base class. It is characterized by having its own life cycle

and not having a user interface associated with it. Figure 7 shows the different states, where the

developer can override any or all of the associated (onCreate(), onDestroy()) methods.

Figure 7. Service application component life cycle.
(Android 2012)

23

Services can be started by being invoked by another Android component. There are two

types of services, the main difference between them is the way that are instantiated:

• Unbound, which is a service that once started, can be running even though the component

that started the service has finished or was killed.

• Bound services run until the component that the service is bound to stops running. The

life cycle of the services consist of three callback methods, which are outlined in Figure

7.

Broadcast receivers are components used to listen and response to broadcast

announcements. They are implemented as a subclass of BroadcastReceiver programmatically

and each broadcast is delivered as an Intent object. It has a simple life cycle that consists of only

one-callback method valid, for call duration.

A broadcast can be sent as ordered broadcasts that allow sending one and catching by a

broadcast receiver, and gives intent receivers the ability to exchange result of previous intent

receivers or to abort the broadcast. The order of execution is controlled by the android: priority

attribute defined in the AndroidManifest.xml file. Highest priority is 1000. Broadcast receiver

objects are broadly used within the operating system. It uses these components in order to

announce that the battery is low or an SMS was received, registering all of these messages in the

notification bar.

“ void onReceive(Context curContext, Intent broadcastMsg).”

24

Content providers act as a bridge between applications to enable them to share and

exchange data. The content providers cannot be used directly; instead, a wrapper, which is

defined as a content resolver object, needs to be instantiated. Each content provider has an

associated URI used to differentiate with the following structure:

<standard_prefix>://<authority>/<data_path>/<id>.

It is relevant to mention that there are content providers that are supported by the Android

API and there are some others that were discontinued and undocumented on the API. For

example, the content provider URL to view all the contacts that are saved on the:

allContacts = Uri.parse(“content://contacts/people.

However, for the SMS and MMS the content provider is content://sms/inbox, but is

currently not documented.

 All the application components need to be registered on the manifest file, which was

mentioned earlier as a component of the project structure. If a component is not declared in, the

manifest is not visible to the system and cannot be invoked or run. However, either broadcast

receivers can be declared in the manifest, or they can be created dynamically in code. It is

relevant to mention that is not necessary to define the main application since it presents the

default.

<activity android:name=".main"android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
</activity>

25

The rest of the activities that are not the main, services, content providers broadcast receivers are

defined with the following tags:

• Activities : <activity> <intent-filter> </intent-filter> <meta-data /> </activity>

• Service: <service> <intent-filter> </intent-filter> <meta-data /> </service>

• Content provider: <provider> > <grant-uri-permission /> <meta-data /> </provider>

• Broadcast receivers: <receiver> <intent-filter> </intent-filter> <meta-data />

</receiver>

II.VII.II COMMUNICATION COMPONENTS

In order for an application to work, all the components need to communicate and work

together in order to achieve the general functionality. The intent object facilitates the different

types of interaction allowed in the operating system. However, the intent can also be used to

share information between activities or to specify that an action needs to be performed. From a

developer’s perspective, it is broadly used to specify an action that a developer wants to perform

or wants to give the user the ability to do. In general, the intent is used in combination with the

following methods:

• startActivity(intent), here the intent could represent an specific activity or a

general action

• broadcastIntent(intent), here the intent is going to be broadcaster

• startService(intent) or bindService(intent), to start a service

26

Intents can be categorized as (Android 2012) on of two types.

• Explicit Intents specifically state which activity to invoke.

• Implicit Intents are broadcasts that define a type of action that needs to be

completed but does not specify which activity should respond to the intent.

In order to declare implicit components, developers can also specify what components of the

application are capable of in order to advertise the actions that the application component can

perform. In order to do this, the developer needs to define an intent filter on the component

definition on the manifest file. An example of registering an intent filter on the manifest is

described below:

<intent-filter . . . >
 <action android:name="com.example.project.SHOW_CURRENT"
/>
 <action android:name="com.example.project.SHOW_RECENT" />
 <action android:name="com.example.project.SHOW_PENDING"
/>
 . . .
</intent-filter>

27

Implicit intents can be used from one activity to invoke another application component

(activity) that is on the same application or another one. For example, calling the built-in

application to send email instead of re-writing a component to perform the same action every

time is demonstrated as a snippet below.

This intent structure allows for easy extensibility of the framework. For example, if a user

has multiple browser applications installed, when clicking on a link, a menu will pop up and

allow the user to choose which browser app to handle the intent.

II.VII.III INTERFACE LAYOUT AND USER INTERACTION

Mobile applications are characterized by being event-driven by user interactions. The

developer needs to be creative and design applications that will take advantage of the reduced

space of the screen and the software features that the mobile platform provides in order to

develop applications that can provide a rich and ergonomic for the user. For that reason, the

following section will provide an overview of which elements conformed the screen, how the

user interface can be enhanced, and the objects that will help to connect the components on the

screen to the logic in the code. The reference material for this sub-section is: (Lee 2011),

(Android 2012) and (Steele 2011)

Uri uri =
Uri.parse("sms:"+numberIntent.getText().toString());
Intent it = new Intent(Intent.ACTION_SENDTO, uri);
startActivity(it);

28

Each activity usually has an associated screen or user interface. This user interface is

presented to the user in a window, which is made up of a group of two types of views and linked

to the activity programmatically by the method setContentView provided by the Activity class. In

other words, each screen is represented as an associated hierarchy of views.

This hierarchy can be viewed as a tree with root and each internal node being a group of

views while the leaf nodes are single views. The hierarchy of views is compound by objects

derived from the View and ViewGroup classes. Objects sub-classing the View class represent

single widgets or controls. Examples of views are: editText, Button, Checkbox, and Spinner for

example. Objects sub-classing ViewGroup class, represent the different types of layouts.

ViewGroup instances are responsible for the position, viewing, and color of its child. This

characteristic is recursively propagated until the leaf nodes are reached.

The ViewGroup class defines the different layouts that a screen can use to present its views.

• Linear Layout arranges its children in a single column or a single row.

• Table Layout arranges its children in rows and columns like a table.

• Relative Layout positions the children relative to each other.

• Absolute requires specific screen coordinates for a component.

• Frame Layout defines a space on the screen to display a single item.

29

Compound layouts can be created. The Table Layout can be achieved using a horizontal

linear layout and a vertical one. In addition, all the positioning of the views and widgets can be

done with drag and drop controls and also by using the required XML tags that allow developers

to set the orientation, background color, positioning, size, text types and more characteristics.

Eclipse has a special drag and drop interface, or the screen can be designed directly in the XML.

 In addition, the View Hierarchy for each object can be created programmatically on each

activity, by extending the Java class that the framework provides. In addition, using the editor in

an XML file can create the hierarchy. The name of an XML element in this file is in one-to-one

correspondence with a Java class that it represents. The following snippet of code is an example

of the definition of a Linear Layout view using the editor in Eclipse and Figure 8 represents the

graphical view of the XML.

Figure 8. Screen layout

30

In addition to the basic hierarchy, the Android framework provides several UI arrangements

and event handlers. The most relevant ones are (Lee 2011):

• Gallery and Image View

• Image Switcher

• Picker Views

• List Views

• Web View

• Analog Clock and Digital Clock View

Moreover, often in game development the necessity of displaying content dynamically,

which binds data to the views, depending on user’s input or interactions with the application; can

be implemented on Android using the Adapter View object. In addition, with the layout of the

screen event handlers need to be defined to capture the user events.

The event handlers are the objects that notify the application and the Android operating

system about external objects or persons interacting with the application, in order to inform that

action performed needs attention. The event handlers for widgets are defined using Java classes

and registering it with the associated view. The view class provides a set of interface methods,

named onAction, for example, onClickListener, onTouchListener, or OnKeyListener, that handle

the different interactions that the user can perform with the views.

31

II.VII.IV EXECUTION WORKFLOW OF AN ANDROID APPLICATION

As was mention before the workflow of an application is defined by the interaction and

calls of the application components and outlined by the life cycle. The entry point of any

application is the Java class that models the component defined as the main one on the manifest.

When the main application is found and its screen is loaded, the application will execute the

onCreate() method in the main application. When it finishes processing, the application will be

kept in the foreground until the user decides to no longer interact with it or an interruption

(phone call, text message) comes in. Graphically, the execution of an Android application can be

divided in three groups, which divided in Figure 9, by three concentric circles. The division can

help the developer to divide the processing and functionality of the application in order to decide

at which stages, it needs to be performed. Specifically, the most inner circle stages when the

application is active, while the further represents when the application is alive, on pause, or the

middle circle represents the active stage when the application is visible and interacting with the

user on active or pause states and (Lee 2011) (Android 2012).

32

As was mentioned before the operating system supports multitasking capabilities where

more than one application can be executed at a time. Moreover, it supports background

applications, where a task is a sequenced collection of related activities that the user interacts

with while performing a task. Normally, the activity that starts the task is called the root activity,

and the navigation between activities generates a activity stack, which arranges the activities in a

stack in the order in which each activity is launched. More specifically, “The way Android

manages tasks and the back stack, as described above—by placing all activities started in

Figure 9. Workflow of main activity. (Android,2012)

33

succession in the same task and in a last in, first out fashion manner.” (Android, 2012). However,

it is also possible to interrupt this behavior and customized it according to the developers

preference. Figure 10 describes a sequence of applications and how the applications are placed

on a popped off activity stack.

Figure 10. Activity stack. (Android, 2012)

34

II.VII.V APPLICATION PACKAGING

After going over the workflow, execution is interesting to understand how the component

model is collected on an unique file that later will be publishable on the Android online store

called Google Play. The component model is collected into the Android application package file,

which has an APK extension. Each application is compiled and packaged in a single file that

contains the application code, resources, and manifest file. It is usually compressed using a ZIP

format, which is generally located under the directory of /system/app folder for built in

applications and /data/app for third party applications installed (FileExtension.org, 2012) and

(Android 2012).

The primary components of every applications are:

• Assets inform about application, HTML files. �

• META-INF application metadata. There are several files in the META-INF folder

namely, CERT.RSA, CERT.DSA, CERT.SF and MANIFEST.MF.�

• res folder contains resource files that the application used, such as graphics, sounds,

settings, and strings. �

• AndroidManifast.xml file contains the application properties, it is an XML file.

• classes.dex is Dalvik virtual machine executable file. This file contains compiled Java

source codes.

• resource.arsc is a binary resource file after compilation.

35

II.VIII FEATURES

The following section summarizes the most important features that the Android mobile platform

offers in terms of software and hardware and the description of some relevant special feature that

the platform offers to developers.

II.VIII.I MAIN FEATURES

The main features of Android in terms of software are related with the powerful

multitasking model with background processing that offers to developers, thread programming

management that allows the creation of asynchronous tasks in order to do not over load the main

thread, where the UI is running. In addition, it provides debugger and testing tools including an

emulator that can mimic most software and hardware features of real devices. On the other hand,

in terms of hardware Android does not require devices to support a minimum set of peripherals,

which present a clear disadvantage to the developer since he or she cannot use the API to

optimize the application for a specific hardware. Table 3 summaries the main features that the

new version of the SDK will include.

 Description Comments
Debugger Log cat, DMS perspective

Networking support WIFI, Bluetooth

Memory management Garbage Collector

Testing JUnit test

Last version Ice Cream Sandwich 4.0 Jelly Bean 4.1 coming fall
2012

System calls Performed by using
Android tasks

36

Inter-process
communication

Content providers

Multitasking Yes, background processing

Location based services Yes

Location services Full integration with
Google Maps API

Developing on devices Emulator and real devices

Web Services Rest

Persistence SD card, SQLite

Networking WIFI, Bluetooth, 3G.

Sensors Broad variety

Threads Multithread programming Main and UI run on the same
thread

Application distribution Online store, Google play.

Table 3. Android framework main features. (Android 2012)

37

II.VIII.II SPECIAL FEATURES

Android has several built in applications, each of which has associated a database along

with content provider that allows its manipulation. Below is the list of built-in applications that

most of the Android devices will have. It is important to mention that not all devices might have

the same set of application

An interesting feature is the openness of the Android platform, which allows third party

applications to have root access. By default, each application has the lowest level of privilege

however it can ask for higher levels of privilege by adding the correct tags and information into

the manifest. In addition, and thanks to the openness of the platform, Android allows developers

to define their own applications as Android components that another developer can use to build

their own applications. In order to do that the developer will need to create a library .jar and in

order to other developers to use it they will only need to include it as any other library on

Eclipse.

• Alarm Clock
• Browser
• Calculator
• Camera
• Contacts
• Custom Locale (developer app)
• Developer Tools (developer app)

• Email
• Gallery
• IMEs for Japanese, Chinese,

and Latin text input
• Messaging
• Music
• Phone
• Settings
• Spare Parts (developer app)

38

II.IX DISTRIBUTION AND MONETIZATION OF APPLICATIONS

The main distribution channel for Android applications is the online store provided by

Google, called Google Play, which replaces the Android Market. In order to submit an

application to Google Play, the developer will need to register using a Google account as a

developer one by paying a one-time fee of $25 dollars. Applications can be distributed under the

free or pay model. If the developer chooses to distribute the application with a price, it also needs

to register as a Google Checkout Merchant. In addition, Google will retain a transaction fee of

30% of the total price and some countries will require that the prices reflect the inclusion of

taxes. The developers are required to link to an AdSense account in order to receive payments

from the applications purchases. Moreover, if the developer does not like the conditions or the

application is decline for submission in Google Play, it can be publish on Amazon Market or the

developer’s personal web page.

39

CHAPTER III

IOS MOBILE PLATFORM

The following subsection is intended to be a quick overview of the iOS mobile platform.

Apple named the mobile platform iOS after the 4.0 version. The iPhone was released in 2007. In

these chapter the version 5.0 is particularly discuss in this research, although version iOS 6 will

be released in fall 2012. The iOS operating system is a reduced version the iMac operating

system. The different version have been improving the platform, specially iOS 4 allow

developers to write applications that perform background processing. The operating system

philosophy is propietary and does not the developer any customization or direct communication

with the operating system. Each application run on its own Sandbox and applications have

restricted access towards sharing information with others applications. iOS provides a complete

SDK and preferred IDE (Xcode) to help developers built applications for the mobile platform.

The following sections describe the platform in terms of: iOS development essentials,

hardware variety, SDK, platform fragmentation, development tools, application development

architecture, features and distribution and monetization of applications.

40

III.I iOS DEVELOPMENT ESSENCIALS

 The mobile platform offers developers a complete SDK, grouped by framework

functionality. The preferred IDE and to which the platform provides documentation is Xcode.

Xcode provide a complete environment that allows developers to have code, interface view at the

same time. In addition, code can de directly link to the user interface components by drag and

drop controls.

The iOS system framework is built using object oriented design and is modeled around the

following design patterns: Model View Controller, Delegate, Target-action, Block Object, and

Sandbox. The iOS operating system assumes that each third party application is built using the

MVC pattern. The rest of the patterns are mainly used to manage the integration with the

framework, interaction with the user and to define and allocate the third application space within

the iOS operating system. . The developer’s code need to be integrated into the framework by

modifying the hot spots of each framework component, it order to use it and access the system

functionalities. The iOS supports the development of native and web applications based on

HTML 5 and CCS. Each application represents a process that has only one entry point the main

file.

The main patterns are described bellow: (Apple 2012) and (Smyth 2011):

• Model View Controller (MVC). Defines the overall architecture of an iOS application.

An example is the UIKit framework, which is the core of any user interface application,

and follows the principles of MVC.

• Delegation. Defines the inter-object communication and exchange of data. For example,

41

the MapKit framework defines delegates to perform location-based functionalities.

• Target-action. Defines the architecture of the event handling system. As an example, the

UIKit framework uses this pattern in order to handle the user actions for buttons on the

user interface.

• Block –objects. Implements the callbacks and asynchronous calls. As an example, it is

used by the framework in order to implement self-contained functions that are triggered

by an event such as the scroll of a view when the user wants to edit a field or the view of

animations and transitions.

• Sandbox. Defines the application space the application settings, data, and files are saved

on the sandbox. This provides a secure environment for the operating system and the rest

of the applications since they do not allow third party applications to access to anything

other part than its own sandbox. Moreover, the sandbox does not allow applications to

root in the system.

42

III.II ARCHITECTURE

The available frameworks are distributed within the iOS layered architecture. The mentioned

architecture is built in four layers shown in Figure 11.

Figure 11. iOS software layered architecture. (Apple, 2012)

The layer closest to the hardware is called Core OS Layer, followed by Core Services

Layer, which technically provides wrappers based on Objective-C to the services provided by the

lower layer. The third layer is denominated Media Layer and provides the majority of the

frameworks related with audio and multimedia services that iOS 5 offers. Finally, the fourth

layer is called Cocoa Touch Layer, which is a minimized and modified version of Cocoa Layer

for Mac Computers. It allocates the frameworks that help the developer to define the UI elements

of the application, and manage and control the life cycle of applications and the frameworks that

manage the user events and interruptions (Apple 2012).

43

III.III SDK

One of the main characteristics of the iOS platform is the mature and extensive list of

frameworks available since it is built as a reduction of the available frameworks for Apple

desktop and laptop computers. In iOS, the frameworks provide infrastructure to access the

system components that the application needs. It provides the generic structure that each third

party application will customize by adding specific application behavior. In order to give a quick

overview of the main frameworks that can be found on the iOS mobile platform, Table 4

provides a description of each framework divided by layer. It is structured to emphasize

how Apple designed the architecture in order to provide access and keep developers away from

the low level programming concerns of the underlying hardware of the operating system itself

(Apple 2012).

Layer Frameworks
Cocoa Touch Layer AddressBookUI, EventKitUI, GameKit, MapKit,

MessageUI, Twitter, UIKit
Media Layer AssetsLibrary, Audio Toolbox, AudioUnit, AVFoundation,

CoreAudio, CoreGraphics, CoreImage, CoreMDI,
CoreText, CoreVideo, GLKit, ImageIO
MediaPlayer,OpenAL, OpenGLES, QuartzCore

Core Services Layer Accounts, AddressBook, CFNetwork, CoreData,
CoreFoundation, CoreLocation, CoreMedia, CoreMotion,
CoreTelephony, EventKit, Foundation,MobileCoreServices
NewsstandKit, QuickLook, StoreKit, SystemConfiguration
and UIAutomation

Core OS Accelerate, CoreBluetooth, ExternalAccessory , Security
and System

Table 4. SDK iOS5 Frameworks

44

II.IV DEVELOPMENT TOOLS

The hardware needed to develop third party applications is an Intel Mac computer, either

desktop or laptop version. The iOS operating system supports the development for iPhone, iPod,

and iPad devices. In addition, the underlying software requires the hardware to be able to run

Mac OS Leopard or later versions of Mac operating system. The development language used in

the framework is based on Objective-C. Because Objective-C is a superset of C, the developer

can easily integrate code based on this language into the application project. It is relevant to

mention that information in section II.IV was extract from (Apple 2012), (Lee 2012) , (Smyth

2011) and (BeginningIos5Development 2012).

The iOS SDK includes the following elements: Integrated Development Environment (IDE),

XCode, iOS Developer Library, Interface Builder, Emulator and Instruments (Apple 2012).

• XCode: Integrated Development Environment, is the centralized place that allows you to

an application. It includes an interface builder, which provides a visually drag and drop

interface builder. Xcode provides multiple iOS application templates: Page-Based, Empty

Application, Single View Application, Utility Application, Tabbed Application, and

OpenGL Game.

• iOS Developer Library: Provides frameworks such as: foundation framework, UIKit,

Map Kit, Core Motion

• iOS Emulator: It emulates the iPhone abilities and is useful for testing. It is important to

take into account that it cannot emulate the software feature. For that reason, the

following functionalities can be tested: phone, camera, GPS, accelerometer, Bluetooth,

and memory usage.

45

• Instruments: Contains tools that allow performance analysis and debugging tools, This

allows measuring non-functional requirements related with memory usage, performance,

and graphics performance.

III.IV.I PREFERED IDE

The preferred IDE and recommended by Apple is Xcode as shows Figure 12. It is possible to

downloaded for free although applications will only be tested on the emulator and not real

devices.

1. Project structure

2. Code view

3. UI view

Figure 12. Xcode IDE

46

III.IV.II PROJECT STRUCTURE

It is important to notice that when a new project is created using the IDE tool (Xcode), the

classes mentioned before are organized in a unique project layout that contains the four folders

described below. It is important to notice that the IDE will auto generate some classes at the

creation of the project, which corresponds with the following iOS application architecture .

(Smyth 2011)

(1) Name: ApplicationName. Allocates the binary files of the compile version of the

developer’s source code and the files that define the user interface. Since iOS

applications are developed using objective-C, each source code file has a header (.h) and

implementation file (.m). The user interface file is named nib file whose extension is a

.xib, a binary file that allocates all the user interfaces, objects, and connections with the

view and controllers, its extension changed because now it is based on xml tags. Auto

generated files: Generates the view controller files under the generic name of

AppNameViewController.h and AppNameViewController.m extensions.

(2) Resources. Contains source code and resources that are not written in objective-C, but

are necessary for the application to function. As an example, this folder can contain

pictures or audio files. Files automatically generated:

a. AppName.plist: This is a property list xml file that contains properties such us

language, built in applications called, whether background processing etc.

b. InfoPlist.strings. This is a text file that contains strings that might be referenced

during the application if the developer’s application implements

internationalization, for example.

47

c. Main.m. contains the starting point of the developer’s application, the main

method.

d. App_Name_Prefix.pch. Contains a list of header files, from the external

frameworks, that will be used within the application.

(3) Frameworks. Contains references to Apple and third party frameworks used by the

application. It is important to take into account that Xcode will not load the framework

by default this needs to be manually added by the developer.

(4) Products. Holds the application itself under a file called AppName.app.

 The project organization is provided by Xcode in order to simplify developer’s use of it.

Xcode also creates an application bundle that is a directory on the file system. It groups the

executable files and the other resources needed for the application as audio files or pictures.

III.IV.III APPLICATION PACKAGE

iOS package the application on its bundle, which contains the following structure (Apple 2012):

• Application executable

• Information property list file (info.plist)

• Application icons

• Launch images

• User interface files

• Ad hoc distribution icon

• Settings bundle

• Localize resource files

• Non-localize resource files

48

III.V APPLICATION ARCHITECTURE

In order to develop an application, first it is necessary to understand the underlying

architecture, its components that come together to create an executable application. It is also

important to understand the IDE structure, the project which represents the application, and the

life cycle of a general application, since the third party application will be running on the

operating system, which handles the third party application as well interruptions coming from a

phone call or text message. As mentioned previously, the structure of an application is defined

by the MVC design pattern. Given that each application skeleton will consist of a Model, View,

and Controller, each application can have one or a group of MVC model.

III.V.I APPLICATION SKELETON

More specifically, the model component of the skeleton allocates the objects that model

the data structure and business logic that defines the specific engine of the developer’s

application. In addition, the view component allocates the objects that present the application

content on the iPhone screen and interact with the user. Moreover, the controller component

allocates the objects that manage the views and provides the logic or protocol that handles the

communication between the view and the model. The communication between the view and

controllers is well structured in terms of actions, outlets, and delegate objects. The actions

communicate the view to the controller through a controller method; the outlet allows the

controller to communicate with the view in order to modify some of its properties. Finally, the

delegate objects act on behalf of from (and at the request of) another framework object that

handles interruptions of touch events so the controller can identify which element the user

49

interfaces in the view and act accordingly, (Smyth 2011) and (Apple 2012).

Figure 13. IOS application Skeleton. (Apple 2012)

Figure 3.3 illustrates the model, view and controller sections and the distribution and

communication of core objects, which provides the basic structure for MVC component (Apple

2011)

• Model: Data model Objects

• Controller : UIApplication Object, App Delegate Object, and View Controller Objects

• View: Views and UI objects and UIWindow

50

The references on the picture categorize the different objects. The top group help the

developer with the definition and construction of the model, view, and controller. For example,

for the model it provides data classes in the foundation model that allows the creation of a

custom data model if the model does not present a well-defined structure. Moreover, if the data

model is based on files, the UIDocument framework provides services to define a data model

based on documents. As is well known, the iOS applications are characterized by having a rich

user interface. Keeping in mind the MVC model, it will be modeled as object views. iOS

provides two: the UIKit framework and the OpenGL ES (The Open Graphics Library), used in

cases of content change of the user interface or a programming environment that requires high

frames and sophisticated drawings. Finally, for the controller the iOS offers drag and drop

functionality from the Interface builder into the controller class in order to define outlets and

actions without the necessity of writing code.

III.V.II INTERFACE LAYOUT AND USER INTERACTION

The phone is characterized by a very small screen, which allows creative arrangement of

views to display content. The relationship between the view components is a very important part

of the application design because iOS applications are event driven and most of the time the user

initiates them by touch events. The UI is an important component of the application since it

represents the screen that the user sees and interacts. The UI is compounded by a window object,

a group of views organized in a hierarchy, and view controllers. The references used in the entire

section are: (Apple 2012), (Smyth 2011) and (Lee 2012).

51

Each iOS application has one single instance of a window in charge of displaying

content, which is an instance of the Window class. It also serves as a place to allocate one or

more views. A view is an instance of the class UIView and is the primary mechanism for

interacting with the user. Each view has a controller associated that is instance of the class

UIViewController. The view controller is responsible for swapping the different views in the

unique window and event-handling methods. As a summary, each application will have one

single window with a group of views and controllers that the user is not be able to manipulate

directly to open or close them. This feature needs to be implemented programmatically by the

developer. The views are the main objects that the user sees and its main responsibilities are:

Layout, sub view management, display of content, drawing, animation and event handler.

All the views that compound an application are structured in a hierarchy that needs to be

understood in order to handle events correctly. Controllers are in charge of managing and

propagating the events to the operating system, UIKit and Core Motion. For example, each

specific type of view, such as the clock and table bar, is independent, but they will sit on top of

each other, so that when an upcoming event needs to be passed to the right view. However, from

a developer’s perspective the views are not on top of each other, they form a hierarchy as a three

layered structure. Figure 14 illustrates the views from the user’s perspective. (Apple 2012)

52

Figure 14. Stack of view’s application. (Apple, 2012)

The developer can choose to create these hierarchical views programmatically or using

the interface builder. The interface builder is recommended because the developer can assemble

the views, see the relationship, and visualize how they will appear when the application is

executing. The implementation of dynamic views is supported in iOS 5, which allows the

generation of the application dynamically by receiving input from the user, the user interface will

adapt in response to specific inputs. For more information, please see the Apple documentation

(Apple 2012). Figure 15 shows a few of the navigation controllers.

53

iOS framework provides the following pre-built layouts (Apple 2012):

• Container View. The views that have complex behavior that allows them to perform

higher functions rather than just displaying controls and contents. An example is

UIScrolView class, which adds scrolling capabilities into the application without the

necessity of the developer to code anything.

• Display View. Display content with a nice layout. An example is UILabel or

UIImageView class.

• Text and Web View. Allows text or web content to be displayed in a structured way. For

example, the class UIWebView allows the display of HTML data. In addition,

UITextView allow the display and editing of text in a scrollable area.

• Alert Views and action sheets are views that show the user options or notifications that

are the result of their interaction. For example, a UIActionSheet displays a menu option in

the bottom of the screen.

• Navigation Views. Allows tab bars and navigation views to be implemented

• Table View. Provides a way to display a dynamic list of objects.

• UIPicker View and Date PickerView, allows the user to make a selection from a list of

options. This view is used in the built-in calendar application

Each of these views has an associated controller, which is responsible for

• Creating the views

• Responding to orientation changes

• Unloading unused views during low memory conditions

• Navigating between the views and the related controllers that will help handle the

54

events and show or hide content-related views

UIKit framework provides the classes that manage the view controllers. Each view

control is an object type of the UIViewController class. The main subclasses that manage the

views described above are:

• UITabBarController

• UINavigationController

• UITableViewController

• UIImagePickerController

• UIContentController

Figure 15. Navigation control. (Apple, 2012)

55

III.V.III LIFE CYCLE

The lifecycle, is a sequence of events and transitions that occurs between the launch and

termination of the application. It is divided chronologically into six stages: (1) Launch, (2) App

Initialized, (3) Load main lib, (4) Wait for event, (5) Handle event and (6) Exit Application.

However, each application must behave differently in the Foreground and Background. The

operating system notifies the application when a transition happens. This involves changing

several aspects of the application behavior, and for that reason, the life cycle is divided in two

section, depending on whether the application is launched from the foreground or background.

(Lee 2012), (Smyth 2011) and (Apple 2011). Table 5 summarizes the main application states.

State name Description

Not-running The application has not yet started running or was just

terminated

Inactive The application is running in the foreground but not

receiving events. It can be inactive for a period of time

when the system prompts the user to respond to a system

event such as: a phone call or SMS message, or the user

locks the screen.

Active Application is in the foreground and receiving events

Background This will be the initial state an application has been

launched from in order to execute background code.

56

Suspended The application is in the background, not executing code.

The system could automatically move an application to this

state during low-memory conditions.

Table 5. Main application lifecycle states. (Smith 2011)

Figures 16 and 17 provide a visual representation IO of the life cycle application when it

is launched from the foreground and the background respectively. These events/states are

chronologically ordered from top to bottom, and each has two sides, which represent the

transitions that happen within the framework source code and the developer source code. The

label “Your code” means “Developers code.” It is important to point out that iOS 5 does not

allow all applications to be run as background applications. Only applications that manage

Audio, VOIP, or Location can be implemented as background processing.

Launch application in the foreground

Figure 16. Figure3 6. Application lifecycle launch in the foreground. (Apple 2012)

57

Launch application in the background

Figure 17. Application lifecycle launch in the background. (Apple 2012)

III.V.IV EXECUTION WORKFLOW OF AN iOS APPLICATION

The entry point for any application is the file Main.m that is auto generated, it will create

an instance of UIApplication object, which belongs to the UIKit Framework. However, in the

application project structure there is not a subclass of UIApplication class. Each has one instance

of it, generally implemented as a delegate, and for that reasons the project has an AppDelegate

class. After invoking UIApplicationMain(), reading in the .xib files to display the UI and linking

up all the objects, the view controller is loaded. This will start the event loop, where it will

remain until an event, or interruption is processed by the operating system. These events are

classified in three categories. (Apple 2012) and (Smith 2011):

• Remote control, which are devices that are externally connected to the phone and are

58

multimedia related, for example headphones.

• Multi-touch events, which are generated when the user interacts with the view.

• Accelerometer events or, an application that receives motion when the user moves the

device.

Looking at the life cycle, the developer will need to think in which stage to perform the

basic functionality of the application. These main stages or moments according to the life cycle.

are: Launch code, at this moment all the functionality that needs to be accomplish right when

the application starts needs to be implemented at the launch stage of the life cycle. Run is where

anything that can change while the application is running at the loop stage of the life cycle goes.

Finally, Shut down, contains the code that will liberate resources, and save data that needs to

persist at the termination stage at the life cycle.

III.VI FEATURES

iOS provides an extensive set of software and hardware feature will be summarized in the

following subsections. In addition, a description of the special feature that is unique to the iOS

mobile platform.

III.VI.I MAIN FEATURES

 iOS is characterized by providing strong application architecture defines by the MVC pattern

and where Xcode allows developer to easily create user interfaces and complex navigation

controls between the screens of the application. In terms of hardware, developers can take

advantage of the uniformity and develop applications using the APIs that are

59

optimized for the underlying hardware. Table 6 shows the main features that the SDK offers.

III.VI.II SPECIAL FEATURES

This section will introduce some special features that the iOS offers to the programmers. The

most relevant references at this point are (Smyth 2011), (Lee 2012), and (Apple 2012)

(BeginningIos5Development 2012).

• iCloud: Allows sharing documents among a user’s device. The API provides easy access

using a generated URL that access to a share directory. The API provides services to

 Description Comments
Location based services Consume functionality

of Google Maps web
service and MapKit
API to display and
annotation of maps.

Animation Audio, photo and
Video animation

Persistence SQLite
Multimedia Open GL ES Provides a specific

interface API that
allows the creation of
3D animations and
complex graphics
techniques.

Web services SOAP API’s that enable the
third party application
to consume web
services using SOAP.

Networking
Memory management ARC (Automatic

Reference Counting)

Multitasking Limited background
processing

Threading
programming

Yes Threads share memory

Table 6. iOS main features

60

access, query, and modify the documents store in the iCloud.

• VoIP: Allows integrating VoIP capabilities into iOS applications.

• Bonjour Programming: API that auto-discover devices connected over the same

network. It is useful add to the third party application the functionality of sharing

resources and files trough the network without adding to much complex of the current

source code of the application.

• Storyboards: Allow developers to see in one place all the screens and their transitions

that conform.

• Integration of built in applications: One of the main characteristics of IPhone is that

includes a big group of built in applications. The developer has the right to invoke and

use them in the third party application by using API’s within the iOS SDK. However, the

developer from the third party application has not root access so it is not allow to access

to the built in applications data base or its code in order to modify it or built on top of

them. A built in application can be invoke by using the URL associated to it, for

example, the SMS built in application define the following URL.

A side note regarding root access of third party applications is the fact that If the IPhone

goes trough the Jailbreak process which is privilege escalation, the third application will have

direct access to the lower layer API’s tat allow you access to: iMessage CoreTelephony API for

example. This will allow the developer to send a text message without the necessity of using the

NSString *stringURL = @"sms:+12345678901"; NSURL
*url = [NSURL URLWithString:stringURL];
[[UIApplication shared Application] openURL:url];

61

built-in application or intercept text messages before it is displaying on the screen as a new

incoming message.

III.VII DISTRIBUTION AND MONETIZATION OF APPLICATIONS

iOS applications can be distributed on the Apple online store called Apple store.

Developers need to be register on the Apple’s Developer Program. This program offers two

types of memberships such as: individual or company with a yearly fee associated. As a

developer of applications for the App Store, you are bound by the terms of the Program License

Agreement. Applications can be distributed as free or charge of the download or use of it.

Submitting updates to your application on the App Store.

62

CHAPTER IV

MOBILE PLATFORM COMPARISON

As was mentioned in earlier sections, this research focuses on Android and iOS mobile

platforms. However, developers have several other mobile platforms to choose from beyond just

Android and iOS. Although the mobile application industry is growing incredibly fast, there is

still a lack of software engineering processes or best practices for mobile application

development. However, it is generally accepted by developers that user experience, non-

functional requirements, processes, tools, architecture, and portability are the main aspects that

the developer needs to effectively address (Wasserman 2010).

In order to know which platform will be best for the developer’s specific needs, it is

useful to have documentation available that will expose the strengths and weaknesses of each

platform around the main aspects that were mentioned before. Over the years, research has been

performed to compare the most popular mobile platforms, including (Oliver 2009)(Asthana,

2012) and (Hall, 2009). However, previous research generally addresses the advantages and

disadvantages of each platform and lacks a comprehensive analysis.

The outcome of this research will be a set of suggestions to address which platform is the

better to use under certain conditions or functionality that the developer wants to achieve. On one

hand, one platform might be more suitable for developing games given the broad and

sophisticated APIs, which allow developers to create more complex animations and graphics.

63

 On the other hand, this same platform might not be suitable to create a business

application that requires sophisticated multitasking and screen transitions. The following chapter

is divided into two sections: a comprehensive analysis of mobile platforms and practical analysis

of mobile platforms. Section IV.I presents a fact based side-by-side comparison of both iOS and

Android with a comprehensive set of comparison criteria used to evaluate each mobile platform,

This comparison will aid in identifying weaknesses of each platform from a developers

perspective. Section IV.II presents a practical comparison based on the author’s experiences

through the implementation of basic functionalities. This approach will allow the reader to take a

closer look at how to interact and use each framework and make use of APIs, which will provide

a better understanding of the differences of each platfor

64

IV.I COMPREHENSIVE ANALYSIS

The following section presents a fact based, side-by-side comparison of the Android and

iOS mobile platforms. Several criteria were identified in order to compare the two platforms.

Those criteria are group into six different categories: Development system, Developer Utilities,

Testing and Devices, Hardware features, Application enhancement, and non-technical

features. Within each category, a group of comparison criteria is evaluated in order to present a

more fine-grained comparison. The chosen criteria were based on the criteria used in earlier

research (Leader, 2011). Table 4.1 gives a summarized review of the criteria discussed within

each section.

The first comparison category, called Development Comparison, compares the basic

hardware, software, and technologies a developer needs to be familiar with in order to being

developing for each platform. Moreover, the steps involved in becoming a registered developer

and creating the first application is explained. The second category is Developer Utilities, which

aims to introduce the developer to the tools and instruments that each platform provides in order

to manage the non-functional requirements of an application. This includes the performance and

features available that will allow a third party application to communicate with its device and

other applications, including the operating system. Testing and Devices is the third category,

which describes the testing capabilities that each platform provides. Following testing features,

the Hardware Feature category introduces the developer the functional hardware that each

device incorporates and the API’s and framework that support the hardware. The next category is

Application enhancement, which summarizes the main utilities that the developer has available

to incorporate the latest technology trends such as iCloud and VoIP. Finally, the last category is

65

the Non-technical Features section, which aims to introduce the three main concerns that are

not technical, such as application security, data privacy, and cross-platform development. In

Cross-platform development developers write applications that can run in more than one mobile

platform, is a native application that can run in more than one mobile platform. Usually the

developer will use a third party framework that will allow this type of development.

IV.I.I DEVELOPMENT COMPARISON

The first set of comparison criteria is related to the main aspects that a developer will take

into consideration when deciding on a mobile platform for development. The environment

required for each platform includes software and hardware requirements, programming language,

and user interface development. Some platforms may require extra effort by the developer to

learn a new language or purchase software and hardware start up material.

Table 7 summarizes the differences between using the Android and iOS mobile

platforms, looking at the infrastructure and environment of each mobile platform. Specifically,

iOS requires the developer to purchase specific Apple hardware and software in order to start

developing iOS applications, while Android does not require more than the average hardware,

and the software can be acquired on the Internet free.

Another interesting point is that Android applications are developed in Java, a language

that aims to be written once and run anywhere, as opposed to Objective-C, which is a language

specifically for developing applications on the different Apple OS platforms. However, since

Objective-C is known as a superset of C, it is possible for part of the source code can be written

in C++ and incorporated into the project. Android is open source software licensed with Apache

2.0, which allows any manufactures to adopt it as the mobile operating system. This is not the

66

case with iOS since it is not open and only runs on Apple devices. Finally, the application

submission into the store is a key point for developers. Both platforms provide an online store

that allows developers to distribute their applications under both the free and pay models.

The Android application store is called Google Play and in order for developers to

distribute their applications, they need to register and pay a one-time twenty-five dollar fee. The

Apple Store requires the developer to register in their developer program, which has several

memberships with annual fees. It is relevant to mention that application submission and review

process is very different for each platform, Apple has a strict set of guidelines that applications

need to follow and they are reviewed before publishing on the market. As a final remark it

should be noted that iOS requires a unique programming environment while Android is less

restricted but strongly recommends using Eclipse as the IDE. In addition, the possibility of

having an online store to distribute the applications is an advantage to the developer. The

developer will have a tradeoff between having a big expense acquiring the tools required to

develop with iOS or using Android that usually does not.

 Android iOS
Supporting OS
for
development

Hardware requirements will be fulfilled with
almost every computer available now days.

Hardware
Macintosh
computer either a
desktop or laptop
is required.

Development
operating
system

Windows XP, Vista or Windows 7. Mac OS X
10.5.8 or later (x86 only) and Linux (tested on
Ubuntu Linux, Lucid Lynx).

iOS application
can run is on Mac
OS X.

Latest version

Ice Cream Sandwich 4.0 and Jelly Bean 4.1
coming this fall.

iOS5 and iOS 6
coming this fall.

IDE Eclipse IDE Helios + JDT (Java Developer Tool)
and the ADT (Android Developer Tool) + JDK 6

Xcode and
integrated

67

+ SDK. development
environment.

Open source Yes No
Programming
Language

Java Objective-C

Development
device

HTC, Samsung, LG, Sony, and others. iPhone, iPod and
iPad

Application
distribution

Google Play Apple Store

Acquiring the
software

Eclipse IDE+ JDK + SDK.
Reference site:
http://developer.apple.com/iphone

Xcode. Reference
site
http://developer.an
droid.com

Programming
model

Multicomponent MVC design
pattern

Registration
developer

One time fee of $25 Individual
program $ 99,
Free program
limitations
towards
publishing
application and
testing on real
device and
University
limitations
towards
publishing on the
store.

Creating the
first project

Creation of application components: activities,
services, broadcast receivers, and the UI using
the XML.

Select template
and target device.
Design UI, define
the model and the
controllers.

Table 7. Development Comparison

68

IV.I.II DEVELOPMENT UTILITIES

One of the main challenges in mobile applications is to design an ergonomic and

attractive user interface, which is difficult since the developer needs to fit all the user interface

controls into a small screen and the user expects a nice look and feel. Moreover, the application

will need to present an efficient response time. The performance of mobile applications is

already limited by external factors such as: hardware and networking latency. It is important that

the developer recognizes and incorporates the utilities that each framework exposes efficiently

into the source code in order to reach higher performance rates. This category presents the

following comparison criteria: thread and memory management, interruptions, networking, and

notifications,

Table 8 summarizes the differences between using the Android and iOS mobile platform

with respect the availability of tools that allow improving the performance of an application, for

example, the garbage collector or power management tool. By observing the table criteria on

memory management, iOS has a clear disadvantage compare to Android because of the lack of a

garbage collector feature. The ARC (Automatic Reference Counting) on iOS tool can only take

care of the assignment and release of memory. Both iOS and Android applications run in their

own sandbox, which does not allow the application to exchange data or communicate with other

applications directly. Conversely, the Android platform allows access to other application

resources using content providers.

An interesting feature, more efficiently implemented by iOS, is the notification system,

which has a few more choices when it comes to how the developer wants to show and receive

notifications and even implement push notifications. As a summary, given the open nature of the

69

Android mobile platform, it offers developers who make third party applications the possibility

of root access. Alternatively, an Android developer can use another third party application as a

component and have access to build-in and third applications data. Regarding their programming

the provide different approaches. For example by default, Android uses the main thread to

modify the UI if components need heavy computation there is the possibility to define separate

trends for these application components. Moreover, asynchronous tasks can done implementing

multiple threads. Although in iOS there is a main thread and each functional component that can

be performed on separated threads, the memory is shared by all of them. Having a large number

of threads can slow the performance and consume more memory.

 Another important aspect is the multitasking where both platforms present that capability

but Android provides a special component with its own life cycle to be optimized to model

background processing (a service). iOS introduces multitasking capabilities on the later version,

but it is restrict to VOIP, audio or location services. Finally, regarding power system

management neither of the platforms has come up with a solution to the battery consumption on

mobile devices. However, iOS presents a superior approach that manages the software that is not

being used in order to control the power consumption. As a concluding remark the developer will

face a trade-off between having a more powerful memory management system or having more

options and liberty regarding thread programming, background processing and inter-process

communication.

 Android iOS

Thread Management Main and UI runs on the same
thread. Wrapped on a runnable

Main

70

object.
File management system
Memory management Garbage collector.

Automatic Reference
Counting (ARC)

Interruptions

 Application notification Notification center Push-up and notification
center.

Multitasking Yes, threads class to perform
asynchronous processing

Limited background
processing

Desktop synchronization USB cable ITunes
Inter-process
communication

Content providers, intents. URL protocol handlers and
custom file type handlers by
file extension

Power system
management

toggle screen & keyboard
back-light, brightness sleep and
standby CPU mode, power
setting change event and
battery state change event

iOS manages the hardware
that is not being use in order
to control the power
consumption.

Table 8. Development Utilities

71

IV.I.III TESTING AND DEVICES

The Android market, now Google Play, and Apple strongly enforce the testing of

applications before making them available in the online stores. Apple specifically requires

submission of any third party application to a review process before publishing it in the store.

Given that, testing it is a very important task that the developer will need to perform before

releasing the application. It is common knowledge that mobile testing is a challenging task.

Testing is even more difficult because not all mobile platforms provide virtual devices that

emulate the hardware and software device capabilities. Without a good emulator, a developer is

required to purchase a device in order to test applications. In addition, the complex application

life cycle that mobile applications have and need to handle incoming calls and messages at the

same time, testing is even more difficult. Moreover, several mobile operating systems support a

broad group of devices, so it is also important to be familiar with platform fragmentation and

compatibility in order to develop applications relatively independent of hardware API version.

Table 9 summarizes the differences between the Android and iOS mobile platforms using

the following comparison criteria: debugger, development on device, development on virtual

devices, application notification, compatibility, test cases, and extensibility. Android faces the

problem of fragmentation due to the disparate hardware and compatibility with the latest SDK

version. This issue it is only present in Android because iOS offers a fixed set of devices

developed by the same company that develops the OS. However, iOS only provides developers

with a emulator virtual device, which only emulates part of the operating system capabilities.

However, iOS provides, the APIs necessary to run structured unit tests on the applications

72

feature that Android does not offer. In addition, iOS provides Xcode settings that allow

applications to be made universally so they can be run on both the iPhone and iPad. This feature

is achieved by the definition of two .xbi files, the auto-resizing widgets property, use of the latest

SDK but oldest OS and defining weak links to the frameworks within the application. The

developer will face a tradeoff between the ability of more powerful virtual devices (Android).

 Android iOS
Debugger util.Log and DDMS perspective. Xcode
Test case JUnit tests Yes

Developing on
devices

Yes Yes.

Developing on
virtual devices

Emulator that mimic the software and
the hardware’s phone.

Apple provides an emulator,
which only is able to mimic
the software environment.

Fragmentation Yes, backward compatibility Less, good updating service
Universal

applications
No Yes

Unit test No Yes
Table 9. Testing and Devices

73

IV.I.IV HARDWARE FEATURES

One of the advantages of third party applications is that they enhance the use of the

hardware peripherals that the phone includes. Popular applications use sensors to determine the

temperature, fine location, the allow tracking capabilities, and so on. Although each device

presents its own set of peripherals, there is a basic set of hardware features, which are the

comparison criteria under this category: input options, graphics, memory expansion, GPS,

sensors, and camera. From the developers’ perspective this is important if the application that is

going to be developed requires a certain set of hardware on the device in order to function

properly.

Table 10 summarizes the differences between the hardware that Android and iOS mobile

platforms offer to developers. iOS does not include the possibility of a memory expansion slot,

which is required by some applications. Android includes a mechanism the developer can used to

describe the hardware needed for the application to run smoothly. Both platforms present several

input options. In particular Android with the text-to-speech and speech recognition API allows

the developer to add a new input method to access the phone. Also, both mobile platforms

provide APIs that allow the user of the GPS to implement navigation and location aware

services. In particular, Android includes the version of Google Maps API while iOS signed a

service agreement to consume a set of features that the Google Web Services offers and has its

own API to allow annotation and the possibility of embedded maps. An interesting feature is the

possibility that iOS offers to avoid the constant use of GPS in order to get location coordinate.

Instead, it will use alternative methods according to the precision of the coordinate update

74

request in order to save power consumption. Android devices provide an extensive list of

sensors, although it is not guaranteed that all the devices will have a particular sensor.

Both platforms define graphics in terms of windows, layers, and views. The main

difference is that in iOS, several processes (applications) share the screen, which is represented

as an one window, and in Android, each activity has an associated screen. As a summary, both

platforms present the basic hardware with API’s that allow the developer to interact with them

using a high level language that provides an abstraction of low-level programming details. The

developer will face the tradeoff between not being able to develop software which will be

optimized for the underlying software or have the option of memory expansions lot and more

sensors that might be available.

 Android iOS
Input Options

Depends on the

hardware usually
Touchscreen or
quart keyboard.

Speech interfaces

Touchscreen with
keyboard on the

screen.

Graphics Windows, hierarchy
of views and layers

Windows, hierarchy
of views and layers

Memory expansion

slot

SD cards No

Network capabilities

WIFI, 3G+
Bluetooth, and

tethering.

WIFI, 3G+ radio
capabilities and

Bluetooth.

Navigation

Gps with Google
Maps integration

Yes with a reduce
version of Google
Maps and its own
map view API.

75

Camera Varies 2 pixels with a front
facing camera.

Sensors Varies up to 13. Accelerometer,

gyroscope,
magnetometer, and
shaking detector.

Table 10. Hardware Features

IV.I.V APPLICATION ENHACEMENT

The mobile platform industry is becoming very competitive, where each platform aims to

provide a broad range of extraordinary software features that will allow developers to create

interesting applications with new technologies or software components that will improve the user

experience. In addition, developing cross-platform applications is an achievable task by cross-

compilation or by using web development techniques (Hartmann 2011) . The comparison criteria

considered within the software features category are: Cloud, framework customization,

localization/internationalization, VoIP, advertisement features, UI design, multimedia, web

development, and cross-platform development.

Table 11 summarizes the differences between the software features that Android and iOS

mobile platforms offer to developers. The summary suggests that on one hand iOS of supports

iCloud and VoIP features, for example. On the other hand because Android is an open platform,

it supports framework customizations that will allow developers to write applications that replace

the functionality of any major system component, including the home screen. In addition, both

platforms support web applications and cross-platform development by using HTML5, Java

Script and CSS technologies or C++, C# and Ruby for cross-development platform by using

76

external frameworks, such as PhoneGap or Titanium. iOS leads by incorporating Apple TV on

the equation and the performance of video animation. Regarding animation, iOS provides a set of

callbacks in order to listen to some animation event while Android listens to them through the

definition of listeners as inner classes of the main java class. In summary, the developer will face

the tradeoff of having the possibility to develop third party code applications or having more

possibility towards the multimedia and cloud programming techniques.

 Android iOS
Cloud

Google sync iCloud

Framework customizations

Yes No

Localization/Internationalization Yes

Yes

VoIP

No Yes

Inclusion of advertising on the
application

AdMob AdMob and iAid

UI design

XML Xcode or
programmatically.

Multimedia Recording of video and
images, audio, effects

Recording of video
and images, audio,

effects
Animation Asynchronous,

runs on a different
thread from the UI

Social network integration Yes, 3 party solutions Twitter
Cross platform development Yes + HTML 5,

Java Script, CSS
Yes + HTML 5, Java Script,

CSS

Table 11. Application Enhancement

77

IV.I.VI NON-TECHNICAL FEATURES

There are some aspects less technical but as important as the rest. For example, with

more online services incorporating mobile device support, security and privacy must be fully

supported. In addition, the privacy of personal data that is stored on the phone can be shared

without the user’s permission if developers do not take precautions. Recent research suggests the

appearance of malicious applications in the online stores for mobile software (Zhou 2012), (Davi

2011).

Table 12, summarizes the differences between the implementation of non-technical

requirements in the Android and iOS mobile platforms. Neither of the platforms offers a

fine-grained privacy solution in order to protect the user’s private information. Regarding

security, both platforms provide encryption solutions to exchange personal information over the

network provided by the operating system or third party developers.

Android

iOS

Security None Encryption of hardware and
software.

m-commerce Yes No
Privacy Permissions on

the manifest.
By default built in

applications, access certain
user data as contacts,

calendars, and photo library.
Portability Yes No, tight to the OS.

Table 12. Non-technical Requirements

78

As a closing remarks of the section IV a matching concepts is summarized on Table 13.

On each platform it is represented, which will be useful for developers that are already familiar

with one platform to familiarize with the commonalities and difference of iOS and Android

platforms

 Android iOS
Application It is a multicomponent unit Monolithic

Communication between
activities

Content providers and intents URL

Project properties XML File XML File

Navigation between
activities

Intents Navigation controls

Running application
environment

Sandbox and permission
system

Sandbox

Event handler finviewObject and listeners
for widgets

Outlets and actions

Table 13. Androiod & iOS Matching page

79

IV.II PRACTICAL ANALYSIS OF MOBILE PLATFORM

The results of the side-by-side comparison in the previous subsection, where the two

development platforms were compared based on a variety of criteria gives a purely theoretical

comparison. In addition, to the mentioned comparison a practical hands-on is conducted thought

the development of applications on both platforms in order to assist in the analysis of the

platforms. This section describes the implementation and development process provided by each

platform through a series of specifically chosen applications.

The analysis is focus on functionalities related with the familiarization of the platform,

internationalization, UI design, and navigation features. Each application class or feature to

develop will be describe in general in terms of application objective, type of application and

components. Followed by the implementation on each platform. Finally, at the end of each

implementation application a summary on how well each mobile platform implement the feature

is describes.

80

Application name: Hello World

Application objective: Introduce the platform tools that facilitate the developer’s task towards

the creation and management the project.

Type of application: Application that response to basic user input.

 Components: Basic UI with text field, label and button.

iOS platform

After installing Xcode, the creation of the project involves the lunch of the Xcode application,

the first time will prompt into the welcome screen, select Create a new Xcode project.

1. Xcode opens a new window to choose

an application template. Xcode includes

several built-in app templates, for

example, the Tabbed template creates an

app that is similar to iTunes and the

Master-Detail template creates an app that is similar to Mail. In this example the “Single

View” template was selected. In addition, a project detail dialog window opens to fill out:

Product Name: HelloWorld�Company Identifier: Your company identifier, if you

have one. Class Prefix: HelloWorld. Device family: iPhone.

81

Afterwards, Xcode opens your new project in a window (called the workspace window), which

displays several tools of Xcode and the auto generated project structure.

In the picture where the project structure is showed

different files, it is relevant to mention that

the source code files have a m and h version because of

the underline language objective-C, which has a header

(.h) file and an implementation (.m). The delegate pair

of flies contains the logic of the life cycle application

and it is the developer should add the custom code into

the overall life cycle application to achieve the

desire functionality. The view controller pair of files manages the UI components. The nib

(.xib) file provides an interface to the application.

82

The workspace window is virtually divided in three main areas:

1. Navigation

2. Editor

3. Utility

Because an Xcode template was used, much of the basic app environment is automatically

created, including the application file within the Products folder. The delegate files is where the

developer will integrate the custom code into the overall life cycle of the application. View

Controllers files manages the UI components. Nib file provides the interface to the application.

1
d

1
2

3

83

Each iOS application is develop around several patterns, specifically the MVC and Application

Delegate define the main skeleton of the application. The Hello World application does not

require a complex model definition for that reason it is embedded into the controllers.

UI Configuration

Using the interface building embedded on Xcode, within a white empty window which represent

the screen that will be presented to the user and interact with it. The first step will be adding two

widgets to the window: label and a button. Selecting the objects does it and draping into the

screen, notice that the re-sizing, color text alignment is done by the tools bard.

Configuration the code after placing and layout the widgets on the screen it is necessary to

integrate them within the code and define controls. iOS use outlets and actions to achieve this.

Outlets are define over widgets that need to be referenced within the code, in this case the label

need an outlet so when the user press the button the application can set the hello world text in

order to be display. This is achieving while pressing the control button over the label a

84

connection will be establish from the design to the code view. It sets a property that it can be use

to retrieve or set the text on the label.

The next step is to create a

method that will set the text and it is triggered by the user pressing the button. In order to create

this method and then associated to the button an action object is define

The definition of the method is done on the viewController.h file and the implementation on the

viewController.m file. Afterwards, a connection needs to be establishing between the code and

the button. This is done by do a “right click” on the button and pressing control make the

connection with the code view.

85

86

Now everything is ready for execution. It is going to be tested on the emulator.

87

Android

The Eclipse IDE with the Android Plug-in is used to create the first Android project.

The application will contain one screen to which the user will interact with for that reason the

application will be modeled with only one activity, which will have an UI, associated to it. By

default, the creation of the project will create the class main.java, this class is characterize by

88

extending from the Activity class defined on the Android API. In this case, it is necessary to

override the onCreate() method in order to link the activity whit the UI that need to be display

when the user will click on the application. First, the creation of the screen will be presented

followed by the code need it to link the UI to the main application.

The next step is to link the UI elements with the code, two things need to be done. First, register

the button and label on the source code (java class) so it can be set. Secondly, an event needs to

be associated with the button so when the user pressed it an action is triggered in order to receive

a response. The link between the UI elements and the code will be done using the id that Android

generates to them and the method findViewById and the set of the activity interface by the

method setContentView(R.layout.main);.

89

The next step is to define the control over the button in order to handle the event generated by

the user pressing it, this is done on the code part by the creation of an inner listener class and the

override of the onClick() method.

90

Execution, it is perform on the emulator by selecting � run as � android application.

91

Application name: Internationalization

Application objective: Introduce how an application can be modify to implement location-

awareness services.

Type of application: Application that adapt to location configuration settings.

 Components: One screen, strings resource locale for each language and internationalization of

widgets.

iOS

The hello world application has strings which are hardcoded as the text on the button and the one

that is set to the label, in order to localize them it is necessary to define and store them using

string files for each language, iOS utilized the strings file format as key = content. In addition,

the name of the application need to change according with the new locate, however this is done

by the definition of another info.plist.strings for each language. Three steps: localize the

strings, localize the widgets, and localize the applications name.

Localize strings: It is necessary to create a string file called Localization.strings and then on the

right used the tool box to add the Spanish locale under the Localization tab. Afterwards two

Localizable.strings files will be created under the name of: Lozalizable.strings(English) and

Localizable.strings(Spanish).

92

Localization of widgets

The localization of widgets is performing by doing a similar procedure with the files associated

with the interface, which is the .nib file. The idea is to select the .nib file and add a new locale,

which will auto generate two xib. Files one for each locale under the name of

ViewController.xib(English) y ViewController.xib(Spanish).

93

94

Localization of the bundle

The localization of the bundle is achieved by creating two different version of the file that

contains the properties of the application info.plist.

95

Execution

96

Android

The internationalization is made externalizing all the hard code strings that the application

contain to the resource string file on the project structure, each language supported will have a

string file saved on a folder under resources named values- follow by the code language. For

example, Spanish is value-es and English values. In this case there is no need to separate

implement the localization of application name and widgets text everything is done in one place

by externalizing on the string file by a key = value structure all the text.

97

The last step is to externalize the string that was linked to the label so it can be set and adapt

according with the locate, in the step before it was added as a textView1 string name, now it is

going to change in the main class

according to the following code:

98

Application name: Navigation between activities

Application objective: Introduce the creation and management of an application with more than

one activity.

Type of application: Application that transition between screens based on user input.

 Components: Two screens, navigation elements.

iOS

In particular, iOS4.1 introduces a new element called storyboards, which describes the

transitions between the various screens. In order for the application to include the storyboard it

need to be selected on the first screen of the creation project sequence.

It created the following project structure

99

It is relevant to mention that there is no xib file,

although a .storyboard file was created, this is because

the storyboard will allocate not only one view controller

for the application but all of them.

Once the project is created, the .storyboard file allocates

a point by an arrow, which described the first screen with which the user will interact, since this

example aim to show the transition between the screens, the next step is to add another

screen/controller and associated their transition with a “Swipe Gesture Motion.”

100

The association of the gesture with the second view it is perform by pressing the “control” key

and daring the arrow to the second view.

101

Android

The navigation between two different screens on the same application is perform by using the

intent object.

102

The navigation between the two screens (activities) is archived programmatically, by creating the

intent object and the method startActivity()

103

As a closing remark of chapter IV, it is relevant to point out the commonalities and main

differences between each platform. This will be useful for developers who are already familiar

with one platform to familiarize them with the commonalities and difference of both mobile

platforms. The main difference is related with the philosophy under which each mobile platform

was built. Android is an open source platform and iOS is tightly closed. While Android promotes

peer production, community development, and improvement of the platform and framework

customization, Apple is not interested in opening the platform.

 From a developer’s perspective, Android’s openness provides more flexibility and the

ability to use the operating system as a white box being able to create applications that modify

the core functionality of the device and reuse components by others or the operating system it. In

addition, Android does not require a specific set of development tools, operating system, or

language. Moreover, given the openness if a third party application is rejected by Google Play it

can still be publish using Amazon Market or even the developer web site. However, the openness

also has disadvantages for the developer such as variety of hardware, which makes developers

unable to optimize the application for the underlying hardware and fragmentation, that limit

developers on using the latest SDK features.

The iOS philosophy on the other hand, does not allow any framework customization or

communication with the operating system unless Apple decides. Developers are limited to use

Apple IDE Xcode on an Apple hardware and software. In addition, iOS devices are able to run

the iOS operating system and third party applications can only be distributed using Apple’s

online store. Moreover, if an application it is rejected from the Apple store it cannot be published

anywhere else. The closed philosophy, comes along with the advantages for developers to

104

optimize the software for the iPhone device and built universal applications that can easily adapt

and run on iPad as well. Despite the openness of the platform and like iOS, Android isolates

applications by assigning its own Sandbox. However, the openness of Android platform allows

application to share data by defining permissions.

The commonalities of both platforms are related with development environment,

programming paradigm and application architecture. The development environments are very

similar both provide a well structure IDE and developer tools and instruments that allow

developers to debug, emulate and measure performance metric of third party application. In

addition, both platforms adhere to the concept of object-oriented programming and patterns,

which are extensively use in the development of the applications using both platforms. Finally,

both platforms support the creation of event driven applications. Although, iOS uses a pure MVC

model it can also be achieved by Android but is not impose as the architecture of the

applications. Finally, on a fine-grained look the diagram bellow summarized the commonalties

and differences between both platforms in terms of features available to the developer. Figure 18

summarizes all this concepts.

105

Figure 18. Androiod vs. iOS

iOS Android

106

107

CHAPTER V

CONCLUSIONS AND FUTURE WORK

 After introducing the architecture of both platforms and presenting a theoretical and

practical comparison it is relevant to conclude the research by detailing suitability of each

platform for certain classes of applications and for the implementation of specific features. This

is followed by a comparative square that aims to put the platforms in perspective. Afterwards, a

set of recommendations, based on the experience of developing applications for both platforms,

is given. Finally, a conclusion, future work, and closing remarks, are provided.

V.I MOST SUITABLE PLATFORM

Android and iOS mobile platforms allow the development of an extensive list of

applications, including: e-readers, budgeting management applications, calculators, voice

recorders etc. As a general rule, almost any kind of application can be equally implemented

using the Android or iOS mobile platform, because both provide a structured and solid IDE and

SDK, which includes APIs to implement complex functionality, debugging, coding and testing.

However, both platforms do not equally offer tools, software and hardware feature. What makes

one platform superior for the development of certain classes of applications. The difference

between the platforms is influenced by several factors:

108

• Android is an open source platform, which utilizes Java as the development language.

• In addition, each application is represented as a combination of components that

cooperate in order to create the application’s functionality.

• iOS is a propietary platform that uses Objective C as the development language. In

addition, each application represents a monolithic process modeled under the concepts of

object oriented design patterns including MVC and application delegate.

In order to evaluate which platform is better to develop certain classes of application or

features it is necessary to organize applications into classes. Although the literature reviewed

does not outline a universal taxonomy, and Android and iOS online stores use their own

categorization, this research used the taxonomy outlined by Nickerson, et al (Nickerson 2009). It

is relevant to mention that, for this research, nine categories were included because they are

related to the main challenges that mobile platforms face (power management, computational

power, security, small screen). These categories are: mobile communications, mobile messaging,

purchasing, location-based consent, product location and tracking for individuals, mobile actions

and financial services, mobile games, mobile advertisement, mobile habitat/environmental

monitoring and mobile social networking. The outline used to described each class consists of:

category name and description, application examples (that each store offers), mobile platform

that is believed to be more suitable for development and the rationale of the choice.

109

Category name: Mobile advertisement

Category description: Although a purely mobile application is not as common to create, the aim

of developers to distribute free applications brought the advertisement business into mobile

applications as embedded advertisements on third party applications, generating a source of

revenue for developers.

Application examples: Angry Bird, Bubble.

Preferred mobile platform: iOS

Rationale: Android and iOS provide APIs that allow developers to define spaces where

advertisements could be displayed within their applications. This feature provides a source of

revenue by the monetization and promotion. Monetization refers to connecting the application

with advertisers and showing relevant ads in the application, obtaining revenue when the users

click on the ads (AdmobMonetizeAnd) . Promotion refers to the design and distribution of online

campaigns through the mobile network (AdmobMonetizeAnd). Android uses AdMob and

Google services while iOS has its own solution named iAd and supports AdMob solutions.

Moreover, both platforms implement filters that allow the developer to discourage the

advertisement engine from selecting ads based on URLs and text filters.

The main advantages, in the case of Android is the support of house ads, which allows

developers to promote their applications for free on their own application space and incorporate

custom search ads that Google offers. However, iOS offers a better monetization model by

giving developers 70 percent of the iAd network revenue. Google, on the other hand, does not

provide a fixed rate, but instead uses a variable rate that increases with the popularity of the

110

application and decreases if a large amount of filters is defined. Finally, the platform chosen is

iOS, since it supports Google AdMob and it has its own advertisement functions in SDK

incorporated into Xcode, which does not require extra configuration on the IDE or APIs in order

to enable development with iAds as Google does. In addition, iOS allows instruments and tools

to generate content that will be advertised on iAd, which lets users, click on the applications

banner and download an application instantaneously without going through the Apple store.

Category: Mobile Games

Category description: This category groups the creation of applications that represent games

and can be played individually or in groups

Application examples: Angry birds or Pacman.

Preferred mobile Platform: iOS

Rationale: Android and iOS support Open GL (Open Graphics Library), which is a software

interface to graphics hardware that allows the implementation of complex drawing in two and

three dimensions and other complex drawing techniques. However, iOS is the most suitable

platform because Android device’s hardware varies in terms of CPU and screen resolution,

which needs to be fixed, for hardware optimization. Moreover, iOS offers the game center

feature to third party developers, which allows players to keep track of game scores and

competing with friends in multiplayer games, by using the Gamekit framework, which uses an

internal mechanism that also detects devices in proximity, running the same application.

Category: Location and Map navigation

Category description: This class includes applications with GPS capabilities, map navigation,

tracking, and location-aware services.

111

Application examples: Tom Tom mobile solution.

Preferred mobile platform: Android for Map Navigation or continued tracking and iOS for

location-aware based services.

Rationale: Android fully supports the Google Maps API, while iOS has a service agreement

with Google, which is a front end client to the Google Maps web service that allow iOS

developers to utilize certain features of Google Maps API. In addition, iOS provides the Mapkit

framework, which allows developers to embed maps and manipulate of them. However, iOS

does not support street view or navigation with speech directions. In this class both platforms are

suitable for Location and Map navigation because Android provides a better platform for

implementing applications that involve map navigation and directions, while iOS is a better

platform for location-aware sevices. In iOS, Map Kit can be used with the Core Location

framework in order to display locations and by using a combination of tower cellular, Wi-Fi, and

GPS for calculating the user’s location according to the precision that the developer needs in the

application.

Table 14 detailed each of them with the precision . This feature avoids measuring position

periodically (like in Android) .

Source Accuracy

Cellular tower Within city or region

WI-FI Within city block

GPS Within a maximum

distance of 5 meters.

Table 14. Capacity of network related peripherals

112

Category: M-commerce

Description: The M-commerce class of applications refers to applications that allow users to

perform business transactions. This includes all e-commerce mobile version applications.

Application examples: EBay, Amazon, and Mint.

Preferred mobile platform: Android

Rationale: The strong implementation of two features determined the success of this class of

applications: security and the transaction component commonly known as Near-field

communications, which enables mobile payment. iOS offers hardware and software encryption

by the implementation of the NSFileProtectionComplete framework, over the stored files, which

are encrypted on the file system. This feature takes care of protection the information that need

to be saved in the phone in order to perform m-commerce transactions. However, iPhone devices

are not NFC compatible, which is why Android is the most suitable platform in this category, at

this time since Android supports encription features as well.

Category: Multimedia applications

Category description: Multimedia includes a combination of text, audio, images, animation,

video, or interactivity content forms.

Application examples: Brushes, Shazam, Movies.

Preferred mobile platform: iOS

Rationale: Android and iOS both provide APIs that allow developers to record and manipulate

audio, photos, and video and create animations. Moreover, iOS provides integration with iTunes

and support for AirPlay, which allows streaming video via WIFI to a TV.

113

Category: Environmental applications

Category description: This category includes applications that use the peripheral sensors that

the mobile devices include in order to collect information from the environment to be processed

in the application.

Application examples: Gain Span

Preferred mobile platform: Android and iOS

Rationale: Sensors in mobile phones allow applications to measure and analyze several

environmental features, such as temperature, noise, and motion. Android provides an API that

supports the following sensors: accelerometer, temperature, gravity, gyroscope, light, linear

acceleration, magnetic field, orientation, pressure, proximity, relative humidity, rotation vector,

and temperature. However, not all of them might be included on all Android devices and if they

are, they are not disabled automatically when the application is not in use, which can affect the

power consumption. On iOS, it is possible to define update intervals for each sensor. For that

reason both platforms are suitable, to develop environmental applications since Android provides

more variety and on iOS it is possible to turn them on and off automatically.

Category: Core functionality

Category description: This category includes the ability to create application that are an

alternate set-up for the core applications that the device provides, such as home screen,

wallpapers, and lock screen.

Application examples: Slide your phone (only supported if your phone is in jailbreak mode) for

iPhone.

Preferred mobile platform: Android

114

Rationale: For certain purposes, the creation of an application that will change the core

functionality of the phone is useful. On iOS 5, it is now possible to run the camera and audio

reproduce from the lock screen. However, this API is not available to let developers include

more features. Android, on the other hand, allows the creation of a third party application that

will replace the default lock screen. Android is the most suitable platform since iOS does not

provide this capacity or feature unless the iPhone is in jailbreak mode. In addition, the Apple

store does not allow the inclusions of such applications into the store, citing the statement. “Apps

that create alternate desktop/home screen environments or simulate multi-app widget experiences

will be rejected” (Apple, 2011).

Category: Enterprise applications

Category description: This category represents the applications that companies develop to offer

a mobile version of their current desktop application. These applications aim to connect to

enterprise resources, increase productivity, or promote collaboration within the company.

Application examples: Delta, American Airlines.

Preferred mobile platform: iOS

Rationale: Generally, enterprise applications are characterized by presenting a complex data

model that needs to be acquired using mobile application computing. iOS is superior given the

architecture of each application, which allows separating the model implementation of the view

and the controllers. Moreover, iOS offers a Core Data Framework (CDF), which provides the

architecture and API to design and maintain the complex data models. In Android, there is no

specific API to model complex data management because the data model of an application is

represented as java objects. In addition, iOS’s CDF presents a migration tool to manage schema

115

changes, which is very useful to an application that will adapt to business changes.

V.II FEATURES

In general, both platforms include the same basic features, although it might happen that

one platform does not offer a feature or provides a superior implementation from the developer’s

perspective. Table 1 shows the summarized version of the main relevant features, distinguishing

which features are better in one of the platforms or both. The first feature on Table 1 refers to the

implementation of notifications, which is a resource that developers use to inform the user of

changes or updates. Both platforms provide an API that allows the creation and placing of

notifications on the home screen presented to the user. In addition to the notification center

where notifications are grouped to present to the user, iOS also supports push notifications.

 Android iOS Better
support by

Notifications Does not support
push up

notifications.

� iOS

Browsing Chrome Safari Both

Internationalization � � Both

Rich interfaces � � iOS better
controllers

Text-to-speech and
speech recognition

� � Android

Social media integration � Twitter Android

Dynamic content Widgets, home
screen

Push up notifications Both

Usage of built in
applications

Content providers,
APIs to access
functionality

Initiating calls with
URLs

Table 15. Summary of features implemented by Android and iOS

116

Internationalization, refers to the possibility of mobile platforms that allow the developer

to internationalize the application. Localization, or internationalization, is the process of adapting

the application’s content to a specific region or language by adding a locale-specific component

for each language. As was showed in the Internationalization example in chapter 4, there are two

language changes on an application:

• Change of the language of the application.

• Change of the language of the application in order to adapt to system language changes.

Both mobile platforms support this feature by the implementation of different resource files that

externalize the strings used in the application. More specifically, the different languages in

Android have a code associated with it, and the string file should be presented for each language

supported. For example, Italian translations would be located in 'res\values-it\strings.xml and

Spanish translation is 'res\values-en\strings.xml '. In iOS, the feature is implemented by using the

same concept, based on the translation of the text/strings and attaching them to the resource

folder, so when the application loads the correct string resources. On iOS the different

text/string, files are saved under the following directory structure:

‘resources/Localizable.strings(English) resources/Localizable.strings(French)’. In both mobile

platforms, a change in the system language required the destruction and re-start of the

application in order to adapt to new configurations and reloading of the alternative resources. On

Android, the application will execute be sent to the onDestroy() method and on iOS the

applicationWillTerminate method will execute when the application received a

UIApplicationWillTerminateNotification. In both iOS and Android, the developer is responsible

for saving and restoring the state of the application. Finally, iOS allows the internationalization

117

of the nib file in order to localize the text on widgets, while in Android the widget text is

retrieved from the strings file, as usual.

The text-to-speech and the speech recognition engine allow devices to incorporate a

speech command based on interaction. Unfortunately, iOS presents the capabilities of both

features, but they are reserved for use by the operating system only. However, Android provides

the APIs that allow developers to implement text-to-speech and speech recognition capabilities.

Moreover, in Android speech processing is to internationalization. The text-to-speech engine is

supported in several languages, so it can be adapted to changes in the system locale.

The creation and layout of interfaces, must be designed ergonomically and attractively,

and associated with complex controls. The UI components and layouts that both platforms

provide are similar, including tables, sliders, pickers, text fields, checkboxes, web view,

switches, and lists. The main difference, is related to how easy it is to design, layout and update

the view hierarchy. In this aspect, iOS is the better of the two.

One final feature to consider is the possibility to add dynamic content to the screen through the

customization of interactive widgets, which are simple controls that can be placed on the home

screen to inform the user about important updates within the applications. It is common to have a

weather or stock application as a widget. This is a handy feature for applications that need to

have updated information constantly and instant access to the application without the need to

open the application screen. Unfortunately, iOS does not allow the creation of third party

widgets. However, Android has an API dedicated to the creation of widgets. It is relevant to

know that iOS provides a dock that contains all the open application but does not allow users to

place them in the home screen or showing information.

118

V.III COMPARATIVE SQUARE

The comparison square in Figure 19 provides a summary version of features where both

platforms need improvement, both platforms provide a reasonable solution or one platform is

better than the other Android tends to outperform iOS the development of applications that alter

the environment of the home screen, wallpaper, or allow users to customize the appearance of

the device. In addition, and continuing with the customization aspect of Android, it is also

possible to use the built-in applications as components in third party applications and modify or

extend their capabilities Moreover, it is possible expand the memory by using an SD card.

Finally, Android is the superior platform regarding the implementation of multitasking and

background processing by using specialized components/objects (services), that do not require a

user interface and can be started and used from others components. They also can run longer

than the activity that initiated them or associate a timer to the service.

On the other hand, iOS is superior concerning features related with fragmentation since

iOS runs on an unique hardware set up, and the latest iPhone supports latest version of iOS,

version 5. In addition, Xcode incorporates features that facilitate the creation of applications that

are portable to the iPad device. Continuing with the Xcode advantages, it provides a powerful

interface builder and instruments that allow developers to layout views, incorporate controllers

and measure the performance of the applications. Finally, iOS includes the game center where

users can keep up with their score and share it with friends, which, makes iOS superior to

Android, since both support the same Open GL API.

119

To conclude, it is relevant to mention that both platforms include APIs and libraries to

implement location-based services, data base storage, internationalization features and interface

layout, in general. Moreover, each platform might vary on some extra functionality, but neither

of them presents a clear advantage over the other one. Particularly, both platforms need

improvement in power management, privacy, productivity, and security.

Figure 19. Comparative Square

120

V.IV SUGGESTIONS

The suggestions are based on the research performed, which presents several factors that

need to be considered before choosing the right mobile application platform. First, considering of

which class of application is needed and whether the application will be possible submitted to the

store. Second, given the fragmentation concerns with Android, developer must identify features

that must be included to select the earliest SDK that supports the features. The third

consideration is related to testing since the developer might not be able to acquire real devices

and certain application features might not be emulator compatible. The fourth factor is

distribution and monetization. If the application aims to be a source of revenue, adding

advertisement or having a free version with a minimum set of features should be considered.

V.V FUTURE WORK

The future of mobile platforms it is very dynamic and in constant change. There is a lot

of competition between the mobile platforms. Each new releases pushes the other to do better.

The changes can be challenging for developers, but in the end, users are the beneficiaries of

greater functionality. OS providers are iterating to add greater functionality so their mobile

platform can be the leading one.

However, it is not possible to identify the leading mobile platform at any moment. In this

research and given the constant growth of the mobile platform, the future work is described in

terms of near and long term future.

121

The near feature is driven by the announcements of Google, Microsoft, and Apple reading

new SDK versions. Android with Jelly Bean 4.1, Apple with iOS 6, and finally Microsoft with

Windows Phone 8. The main improvements of each platform concentrate on providing richer

interfaces, map and navigation system, m-commerce, and browsing. Specifically, within each

area the mobile platforms announced:

• Interface: Android continues to improve the widgets to provide a better experience

though it interaction with the user, iOS6 is strengthening Siri, which is not available to

developers. Finally, Windows 8 adopted a Live Tiles system. It is basically a grid of

square where each of them expose content to the user and allow third party developers to

customize and update this content.

• Maps: Android is based on Google maps, supporting the pedestrian, and motorist with

satellite navigation, where developers can include calendar suggestions about when to

leave according to traffic. iOS6 has deprecated the use of Google maps services to

introduce a new property system, without many updates regarding which Map APIs

developers will have available in the future. Finally, Windows 8 uses the Nokia mapping

services instead of Bing Maps, which worries developers with respect to support and

optimization features of its APIs on non-Nokia hardware.

• M-commerce: Android is planning to bring back the Google wallet service only to the

US territory. iOS6 introduces Passbook, which is not yet an NFC technology, although it

provides storage and dynamic update of airline tickets, sports, and storage on cards, all in

one centralized place.

• Browsing: An interesting number of web site provide a mobile version in order to allow

122

better mobile navigation and efficient and functional browsing technologies for

developers to interact with the browsing APIs. In addition, web developers can enhance

or optimize their mobile applications to mobile browsers. Android with Jelly Bean will

include a version of Google Chrome, bringing opportunities of synchronization with

Google and Google + accounts for developers. iOS6 will include offline reading and

integration with the key cloud features for developers, as well the possibility to advertise

their applications on web banners that will run on Safari. Windows 8 will include the

latest version of Internet explorer. Finally, the idea of each platform to integrate their own

browsing technologies might extend the developers capabilities allowing cross product

development.

In addition, developers look for answers in the short run regarding fragmentation, mobile

devices, and cross-platforms solutions, which are several ongoing issues . Regarding

fragmentation Android is still trying to move users to at least Ice Cream Sandwich in order to

reduce the fragmentation rate. Windows dropped the phone version of the SDK to build

Windows 8 by creating a completely different API, which presents a disadvantage to developed

applications for the phone. Related with mobile devices available, all the platforms offer phone

and tablet versions Android faces adaptation between phone and tablet applications, iOS

provides support to easily adapt the applications using Xcode and Windows will introduce this

fall a tablet version named Surface. Finally, frameworks that will facilitate cross-platform

development are introduced to the market such as Phone Gap and AppMobi. Cross-platform and

web development present an advantage to developers a single language and technologies they are

likely already familiar with will increase productivity. In addition, cross-platform and web

123

development provide built in security solutions to potential security problems. Hybrid

approaches between native and web applications appear to be promising for future mobile

development efforts.

Android must continue to work on device compatibility and fragmentation issues. In

order to compete, iOS must consider opening the speech-processing framework. With Microsoft

introduction of a new renovated mobile operating system, and tablet this fall, all platforms will

have a pressure to improve, especially in Microsoft strength of productivity solutions. Google

wants to penetrate the productivity market with the recently acquisition of Quick Office, while

iOS has its own productivity version of iWork, not currently supported on mobile phones.

Finally, no mobile platform seems to be superior among all areas. For that reason, during

the next couple of years, each platform will try to mimic the strengths of the others and add new

the features. Android has its own solution towards social networks and Microsoft towards

productivity while Apple does provide unification among Apple devices that allow its

synchronization across iTunes. The latest version suggests that there is still more improvement

needed in the following areas: interface design and design improvements, alternative input

interfaces, map and navigation services, and productivity capabilities. These improvements could

produce a decrease on PC. Purchases according to a study performed by IDC predicts from the

end of 2012 et al () with a 2 to 1 rate.

The main challenges on mobile devices are clear. For example, power management

solutions by energy profiling, utilization of multiple radios and effective transmissions

techniques are needed. In addition, computing power solution that incorporate cloud services to

reduce the necessity of high-end hardware and shift the computation and processing to the Cloud

124

will likely be more relevant. Finally, the solution to smaller screens is the introduction of tablet

devices and a unified platform ecosystem that will allow users to adapt and choose the most

efficient device to display its content. As a summary, mobile platform providers aim to drive

consumers into a platform ecosystem and not just a device. Motivated by Apple’s success,

companies and consumers all their devices (pc’s, laptops, tablets and phones) running on the

same system and displayed on whatever screen is the best. Providing a strong content platform

delivered from the cloud. Supported by one of the top ten predictions of IDC (Information

Development Consultants) et al (IDC, 2011) is that Big data, mobile and cloud will represent the

combination necessary, given the volume of digital content growth to 2.7ZB(1ZB zettabyte = 1

billion terabytes = 1021) in 2012, up 48% from 2011.

V.VI CLOSING REMARKS

As closing remarks, from the fact-based comparison, where technical features were

considered, comes the result that Android is the leading platform with factors related to the

openness and the application structure. In addition, the inclusion of an emulator and a plug-in to

Eclipse ensures short curve learning. On the other hand, the disadvantages of the Android mobile

platform are related to the platform fragmentation, several device manufacturers, and difficulty

in creating rich user interfaces. The practical comparison section showed how easily iOS allows

linking complex view objects to the screen compared with Android. Moreover, different

manufactures use different user interface components, which does not ensure the best experience

for the user interaction. Finally, the mobile applications future is promising with the introduction

of new types of applications in the productivity area and m-business capabilities. With a third

125

platform, Microsoft, having potential to gain significant market share, the race is on to develop

even better software for mobile devices.

126

BIBLIOGRAPHY

127

AdMob -- monetize and promote your mobile apps with ads – Google Ads. Retrieved July 11,
2012, from http://www.google.com/ads/admob/

Android Developers. Retrieved July 11, 2012, from http://developer.android.com/index.html

2012, Beginning iOS 5 development : exploring the IOS SDK, Apress, US.

Asthana, A. & Asthana, R.G.S., 2012, IOS 5, Android 4.0 and Windows 8--A Review, IEEE
Code of Ethics.

Chlamtac, I. & Redi, J., 1998, Mobile Computing: Challenges and Potential, Encyclopedia of
Computer Science, 4.

Charland, A. & Leroux, B., 2011, Mobile application development, Communications of the
ACM, 54(5), p. 49.

Computing Now Archive | November 2011: Challenges and Opportunities in Mobile Web
and App Development. Retrieved July 11, 2012, from
http://www.computer.org/portal/web/computingnow/archive/november2011

Davi, L., Dmitrienko, A., Sadeghi, A.R. & Winandy, M., 2011, Privilege escalation attacks
on Android, Information Security, pp. 346-60.

Egele, M., Kruegel, C., Kirda, E. & Vigna, G., 2011, Proceedings of the Network and
Distributed System Security Symposium, PiOS: Detecting privacy leaks in iOS applications..

Less Than 1 Percent of Android Devices Run Latest OS - www.enterprisemobiletoday.com.
Retrieved July 12, 2012, from
http://www.enterprisemobiletoday.com/features/hardware/less-than-1-percent-of-android-
devices-run-latest-os.html

File-Extensions.org - File extension library. Retrieved July 11, 2012, from
http://www.filextensions.org/

Goadrich, M.H. & Rogers, M.P., 2011, Proceedings of the 42nd ACM technical symposium
on Computer science education, Smart smartphone development: iOS versus Android. pp.
607-12.

Grønli, T.M., Hansen, J. & Ghinea, G., 2010, Proceedings of the 3rd International
Conference on PErvasive Technologies Related to Assistive Environments, Android vs
Windows Mobile vs Java ME: a comparative study of mobile development environments.
p.45.

Hall, S.P. & Anderson, E., 2009, Operating systems for mobile computing, Journal of

128

Computing Sciences in Colleges, 25(2), pp. 64-71.

Hartmann, G., Stead, G. & DeGani, A., 2011, Cross-platform mobile development,
Holzer, A. & Ondrus, J., 2009, Mobile Wireless Middleware, Operating Systems, and
Applications-Workshops, Trends in mobile application development. pp. 55-64.

Holzer, A. & Ondrus, J., 2011, Mobile application market: A developer’s perspective,
Telematics and Informatics, 28(1), pp. 22-31.

iOS Dev Center - Apple Developer. Retrieved July 11, 2012, from
https://developer.apple.com/devcenter/ios/index.action

Leader, M.W.T., Comprehensive Analysis of SmartPhone OS Capabilities and
Performance, .Jahns Ralf-Gordon. Smartphone Application Market To Reach US$15.65
Billion In 2013. Retrieved June 11, 2012, http://www.research2guidance.com/smartphone-
application-market-to-reach-us15-65-billion-in-2013/

Lee, W.-M., 2011, Beginning Android application development, Wiley Pub, Indianapolis, IN.

Lee, W.-M., 2012, Beginning ios 5 application development, Wiley Pub., Inc, Indianapolis,
IN.

Mary Meeker Matt Murphy, 2011. TOP MOBILE INTERNET TRENDS
Cromar, 2011. Smartphones in the U.S.: Market Analysis

Nickerson, R., Muntermann, J., Varshney, U. & Isaac, H., 2009, Taxonomy development in
information systems: developing a taxonomy of mobile applications, .

Oliver, E., 2009, A survey of platforms for mobile networks research, ACM SIGMOBILE
Mobile Computing and Communications Review, 12(4), pp. 56-6

Oliver, E., 2009, A survey of platforms for mobile networks research, SIGMOBILE Mob.
Comput. Commun. Rev., 12(4), pp. 56-63

Pocatilu, P., 2011, Android Applications Security, Informatica Economică, 15(3), pp.
163-71.

Puder, A., 2010, Proceedings of the 8th International Conference on the Principles and
Practice of Programming in Java, Cross-compiling Android applications to the iPhone. pp.
69-77.

Rani, C.R., Kumar, A.P., Adarsh, D., Mohan, K.K. & Kiran, K.V., 1963, LOCATION
BASED SERVICES IN ANDROID.

129

Smyth, N., 2011, IPhone iOS 5 development essentials, s.n.], S.l. Steele, J. & To, N., 2011

The Android developer's cookbook : building applications with the Android SDK, Addison-
Wesley, Upper Saddle River, NJ.

Wasserman, T., 2010, Software engineering issues for mobile application development, FoSER
2010.

130

VITA

Born in 1986, Montevideo Uruguay. Estela Pochintesta attend High School and College in

Montevideo. She graduate from her Science bachelors at Catholic University in December of

2009. Afterwards, start her Master in Science at the University of Mississippi in Spring 2011.

Estela it is a member of the Upsilon Pi Epsilon chapter at the University of Mississippi. Her

hobbies are cooking, traveling, and reading.

	Comparison Of Apple's Ios 5 And Android For Mobile Applications Development: A Developer's Perspective
	Recommended Citation

	Microsoft Word - $ASQ166211_supp_undefined_8A792F0A-DAEB-11E1-A54A-84252E1BA5B1.doc

