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ABSTRACT 

Hot melt extrusion (HME) was evaluated as a continuous processing technology for the 

manufacture of solid dispersions. The aim of the current research project was to study the effect 

of pressurized carbon dioxide (P-CO2) on the physico-mechanical properties of three different 

grades of cellulose polymers, Klucel™ ELF, EF and LF hydroxypropylcellulose (HPC) resulting 

from hot melt extrusion techniques, and to assess the plasticization effect of P-CO2 on the tested 

polymers. The physico-mechanical properties as well as the tablet characteristics of the 

extrudates with and without injection of P-CO2 and with non-extruded polymers were examined. 

P-CO2 acted as plasticizer for Klucel™ LF, EF and ELF and allowed for a reduction in 

processing temperature during the extrusion process by 20°C as compared to the processing 

temperature without injecting P-CO2. Furthermore, the CO2 served as a pore former and 

produced foam-like structure extrudates. This morphological change resulted in an increase in 

bulk and tap density as well as surface area and porosity. Additionally, the hardness of the tablets 

of the polymers with P-CO2 was increased compared to polymer processed without P-CO2 and 

the non-extruded polymer. Moreover, the % friability of the tablets improved using P-CO2 

processed polymer. Thus good binding properties and compressibility of the extrudates were 

positively influenced utilizing P-CO2 processing.   

The interest to incorporate a model was increased to investigate the effect of pressurized 

carbon dioxide (P-CO2) on the physico-mechanical properties as well as the drug release 

behavior.   
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Ketoprofen (KTP), used as a model drug, was incorporated with hydroxypropylcellulose 

(HPC) (Klucel™ ELF, EF and LF) as a polymeric carrier to produce KTP amorphous solid 

dispersion using HME technique.  Thermal gravimetric analysis (TGA) was used to evaluate and 

confirm the formulations thermal stability. Differential Scanning Calorimetery (DSC) was 

performed to evaluate the physical state of KTP in the extrudates. The microscopic morphology 

of the extrudates was changed to a foam-like structure due to expansion of the CO2 at the 

extrusion die. The foamy extrudates demonstrated enhanced KTP release compared to the 

extrudates processed without P-CO2 due to the increase in porosity and surface area of those 

extrudates. The moisture content of the extrudates processed with P-CO2 was slightly increased 

and this played a significant role in increasing KTP tablet hardness and decreasing percent 

friability.  

A concern with HME is the limitation of the drug loading due to drug-polymer 

miscibility. In order to solve this issue, we investigated the effect of foam like structure produced 

by pre P-CO2 on the drug loading and the dissolution profile of carbamazepine (CBZ) and low 

molecular weight hydroxypropylcellulose (HPC) matrices using HME technique. The resulted 

extrudates with P-CO2 injection exhibited higher surface area and porosity compared to the 

extrudates processed without P-CO2. Moreover, the CBZ release profile of the 20-50% drug load 

formulations processed with P-CO2 injection showed almost complete drug release within 2 

hours. In contrast, the drug release profiles of 20%, 30%, 40% and 50% CBZ/ Klucel™ ELF 

formulations processed without P-CO2 injection exhibited 90%, 86%, 80% and 73% CBZ drug 

release, respectively. In conclusion, HME processing assisted with P-CO2 increased the drug 

loading capability of CBZ in KlucelTM ELF polymeric matrix as well as optimized CBZ drug- 

release profiles. 
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Drug permeability and dissolution rate are considered as key to predict the drug 

bioavailability. HME was used as an approach to improve solubility and permeability of the 

psychoactive natural product piperine. Piperine 10–40% w/w formulated in Eudragit® EPO/ 

Kollidon® VA 64 or Soluplus® formulation was used in this study to investigate the efficiency of 

various polymers to enhance the solubility and permeability of piperine via HME technique to 

ultimately increase its systemic absorption of the compound.  Scanning electron microscopy 

(SEM) images showed absence of crystals in 10% w/w piperine/Soluplus® indicating that 

piperine was dispersed in the Soluplus® polymer carrier in its amorphous form. However, 

crystals were evident in all other formulations with different ratios. Solubility of 10% and 20% 

piperine/Soluplus® was increased more than 160 and 45 folds in water, respectively. 

Furthermore, permeability studies using non- everted rat intestinal sac model demonstrated the 

enhancement in piperine absorption of the 10% w/w piperine/Soluplus® extrudates up to 158.9 

μg/5mL compared to 1.4 μg/5mL in the case of pure piperine within 20 minutes. 
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CHAPTER I 

INTRODUCTION 

Hot melt extrusion (HME) is a well-known processing technology which represents a novel 

method to prepare solid dispersions. HME can simply be defined as a mixture of one or more 

active pharmaceutical ingredients and at least one polymeric carrier forced through extrusion die 

under controlled conditions to form a solid solution [1]. Being fast, simple, continuous and a 

solvent free process, HME has received great attention in the pharmaceutical industry [2].  

On the other hand most of the polymeric carriers have a high glass transition temperature (Tg) of 

150 oC or more. Therefore, incorporation of a plasticizer is required in order to facilitate the 

processing conditions as well as enhance the stability of the extrudates. The use of plasticizers 

will lower the polymer viscosity due to the reduction in polymer Tg and therefore, increases the 

thermal stability and minimizes the material thermal decomposition. There are many factors to 

be considered to choose the suitable plasticizer such as the plasticizer efficiency, the plasticizer-

polymer compatibility and the plasticizer stability. The resulting extrudates exhibit an elastic 

smooth surface and low porosity. These extrudates properties may lower the formulation drug 

release and also decrease the milling efficiency of those extrudates. The percentage of the 

plasticizers in the formulation varies depending on the type of polymeric carrier as well as the 

plasticizer efficacy.  Incorporating plasticizers in pharmaceutical formulations will increase the 

formulations final weight and result in patients complaints. Therefore, the use of a physical 
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blowing agent as a reversible plasticizer has gained a great interest in HME processing 

technology. 

Carbon dioxide (CO2) is considered as a great example for a physical blowing agent. It acts as a 

reversible plasticizer and foaming agent [3]. CO2 is chemically inert and present in four different 

state, with the change from state to state mainly depends on its temperature and the pressure. 

Figure 1-1 shows the phase diagram of CO2 and its critical point of 31oC and 1073 Psi.  

 

 

 

 

 

 

 

 

 

 

Figure 1-1: Phase diagram of carbon dioxide (CO2) [4] 
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There are many pharmaceutical applications for supercritical CO2 (SC-CO2) such as a 

replacement to organic solvents in extraction, micro and nano particales formation, co-solvents, 

co-precipitating agent, co-crystalizing agent, and in co-precipitation and solid dispersion 

formation [5]. Additionally, there are also future prospects for the use of CO2  as a sterilizing 

agent [6].  

As hot melt extrudates have very low porosity structure which may slow down the penetration of 

dissolution medium and alter the drug release, P-CO2 could be used as a blowing agent to 

provide foamy extrudates with solid porous structure, therefore enhance the drug release. 

Generally, production of foamed extrudates includes three main steps with in the drug polymer 

mixtures; cell nucleation, cell growth and finally, the stabilization step [7].  At the first step, the 

blowing gas implemented the melted mixture then the cell nucleation of the foam is initiated. At 

the second step, expansion of the gas takes place, in which the growth of the foam structure 

occurs. On the stabilization step, the foam formation is completed and the excess gas escapes at 

the extrusion die.  

Formation of foamy hot melt extrudates is described schematically in Figure 1-2. At the P-CO2 

injection site, the sudden reduction in pressure and the increase in the temperature allows for the 

diffusion of CO2 into the melted material. This condition helps to start the foam nucleation and 

the foam structure growth [8].  
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Biopharmaceutics classification system divides the drug into four classes (figure 1-3) depending 

on two important factors, solubility and permeability. These factors play a big role in the drug 

absorption and bioavailability.  Class I drug having no bioavailability issues as they have good 

solubility and permeability and hence are easy to formulate for oral administration. While class 

IV is considered the most difficult one as it represents the drug category which has poor 

solubility and poor permeability. On the other hand, the biopharmaceutical properties of class II 

(poor solubility/good permeability) and class III (good solubility and poor permeability) can be 

modified to develop enhanced bioavailability oral formulations. These modifications can be 

through enhancing the solubility via HME and other techniques or enhancing the permeability of 

those drugs. Depending on the drug permeability mechanism of action, different methods can be 

used to enhance the permeability. Permeability enhancers can be used in case of active 

transportation mechanism while the HME can be used in case of passive transportation 

mechanism.   

 

 

 

 

 

 

 

Figure 1-3: Biopharmaceutics classification system by Shugarts et al. [9] 
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The specific objectives to the current research projects were to study the effect of P-CO2 on the 

drug release and drug loading capacity using Ketoprofen (KTP) and Carbamazepine as drug 

models. In addition, investigate the effect of different polymeric carriers using HME on the 

solubility and permeability of a model drug piperine, is investigated.  
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CHAPTER II 

RESEARCH PROJECTS AND OBJECTIVES 

2.1. Effect of Pressurized Carbon Dioxide on the Physico-Mechanical Properties of Hot 

Melt Extruded Cellulose Polymers 

2.1.1. Objectives: 

The aims of the this research project were 

1. To study the effect of Pressurized carbon dioxide (P-CO2) on the physico-mechanical 

properties of cellulose polymers, Klucel™ LF, EF and ELF hydroxypropylcellulose (HPC) 

resulting from hot melt extrusion techniques. 

2.  To assess the plasticization effect of P-CO2 on the polymers tested (Klucel™ LF, EF and 

ELF hydroxypropylcellulose (HPC). 

2.2. Influence of Pressurized Carbon Dioxide on Ketoprofen-Incorporated Hot-Melt 

Extruded Low Molecular Weight Hydroxypropylcellulose 

2.2.1. Objective: 

The goals of the current research project were to: 

1. Investigate the effect of pressurized carbon dioxide (P-CO2) on the physicomechanical 

properties of Ketoprofen (KTP) and hydroxypropylcellulose (HPC) matrices produced using 

hot-melt extrusion (HME) techniques. 
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2. Study the tablet characteristics of (KTP) and cellulose polymers prepared by Hot-Melt 

Extrusion (HME) with and without injection of pressurized carbon dioxide (P-CO2). 

2.3. Influence of Pressurized Carbon Dioxide on drug loading of High Melting Point 

Carbamazepine and Low Molecular Weight Hydroxypropylcellulose Matrices Using Hot 

Melt Extrusion 

2.3.1. Objective 

The main objective of this research was to investigate the effect of foam like structure produced 

by pressurized carbon dioxide (P-CO2) on the drug loading and the dissolution profile of 

carbamazepine (CBZ) and low molecular weight hydroxypropylcellulose (HPC) matrices using 

hot-melt extrusion techniques. 

2.4. Dissolution Enhancement of the Psychoactive Natural Product- Piperine Using Hot 

Melt Extrusion Techniques 

2.4.1. Objective 

The aims of the current research project were to: 

1. Investigate the efficiency of various polymers to enhance the solubility and dissolution rate 

of piperine using hot melt extrusion techniques. 

2. Increase the systemic absorption of piperine via enhancing its permeability. 
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CHAPTER III 

Effect of Pressurized Carbon Dioxide on the Physico-Mechanical Properties of Hot Melt 

Extruded Cellulose Polymers 

3.1. Introduction 

Solubility is considered one of the most important factors to determine the oral bioavailability of 

any active pharmaceutical ingredient (API) [10]. Over 40% of APIs are poorly water soluble and 

result in low oral bioavailability[11]. Thus, enhancement of the solubility and oral bioavailability 

of APIs has received much interest within the pharmaceutical research community. Various 

techniques are used to overcome the poor water solubility of APIs such as salt formation, 

solubilization by cosolvents, particle size reduction, pro-drug approaches, as well as the most 

successful one to date, solid dispersion technique [10, 12] Solid dispersion is defined as “The 

dispersion of one or more active ingredients in an inert carrier matrix at solid-state’’[13]. There 

are many methods to prepare solid dispersions such as the fusion method, ball milling, solvent 

evaporation, lyophilization, hot melt extrusion (HME) and supercritical fluid methods [14-16] 

HME has received increasing attention in the pharmaceutical industry over the last few decades 

as a beneficial technique to produce solid dispersions[17]. There are many advantages of using 

HME over the conventional pharmaceutical processing methods, such as it is a relatively fast, 

continuous manufacturing process [18, 19] and it can convert an active pharmaceutical ingredient 

(API) into its amorphous state [20]. Moreover, another important advantage of HME is that no 
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solvent is required, so it is considered a “green method” to enhance the solubility and oral 

bioavailability of poorly water soluble drugs [21, 22]. However, a concern of HME is drug and 

polymer degradation due to potential high processing temperature. Thus, in case of thermo-labile 

drugs, processing aids or plasticizers might be added to reduce the viscosity and lower the 

minimum processing temperature, thus decreasing both drug and polymer degradation [23]. 

Choice of plasticizers as processing aids in HME depends on the compatibility between the drug 

and other excipients in the formulation. Use of plasticizers may affect the physico-mechanical 

properties and drug release profiles of the hot melt extrudates. Plasticizers often increase the 

elasticity and flexibility of  the extrudates [23]. Some plasticizers adversely affect the storage 

stability of pharmaceutical formulations resulting in changes within their release profiles [24]. 

It has been reported that P-CO2 can act as a reversible plasticizer and foaming agent [25]. CO2 is 

non-toxic, nonflammable and chemically inert in nature [26, 27]. These properties could increase 

the interest in the combination of P-CO2 and HME [28]. Previous investigations have shown that 

P-CO2 when injected during HME processing acts as a plasticizer for some pharmaceutically 

utilized polymers, such as Eudragit® E100, polyvinylpyrrolidone-co-vinylacetate 64 (PVP-VA 

64) and ethylcellulose 20 centipoise (EC 20 cps), (allowing for a decrease in their Tg) [29] and 

thus, reduction in the extrusion processing temperatures [3, 30-33]. Within the HME process, P-

CO2 changes the microscopic morphology of the extrudates to foam-like structures due to its 

expansion characteristics at the extrusion die [25, 34]. This morphological change could result in 

increasing the surface area and porosity , thereby, enhancing the milling efficiency of hot melt 

extrudates [30, 35] . In the recent past, several studies have evaluated the effect of supercritical 

CO2 on HME processing. However, limited studies have been conducted to study the effect of 
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the pressurized (subcritical) state of CO2. P- CO2 entails more advantages than supercritical CO2 

such as being more economical since no pump is required.  

Hydroxypropyl cellulose (HPC) (Figure 3-1) is non-ionic water soluble cellulose ether. It has 

many pharmaceutical applications such as an emulsion stabilizer, binder, film-former, thickener 

and drug carrier [36]. Typically, HPC extrudates may be difficult to mill due to its high elasticity 

and hygroscopicity [37].  An objective of this study is to resolve this potential issue. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1: Chemical structure of Hydroxypropylcellulose (HPC). 



12 
 

3.2. Materials 

Klucel™ LF, EF and ELF hydroxypropylcellulose (HPC) and polyplasdone XL TM were obtained 

as gift samples from Ashland Inc (Wilmington, DW 19808 USA). Propylene glycol and 

Magnesium Stearate were purchased from Spectrum Chemicals (14422 S. San Pedro Street 

Gardena, CA 90248 USA). CO2 was supplied in gas cylinders (pure clean) from Airgas (902 

Rockefeller St, Tupelo, MS 38801 USA), Avicel®102 was received as a gift sample from FMC 

biopolymers (1735 Market Street, Philadelphia PA 19103 USA). Aerosil® was obtained as a gift 

sample from Evonik degussa Corporation (379 Interpace Parkway, Parsippany, NJ 07054 USA). 

All other chemicals and reagents used in the present study were of analytical grade and obtained 

from Fisher scientific (Fair Lawn, NJ 07410 USA). 

3.3. Methodology 

3.3.1. Thermogravimetric Analysis (TGA) 

TGA studies were performed for Klucel™ LF, EF and ELF hydroxypropylcellulose (HPC) to 

determine their stability at the extrusion temperatures using a Perkin Elmer Pyris 1 TGA 

equipped with Pyris manager software (PerkinElmer Life and Analytical Sciences, 710 

Bridgeport Ave., Connecticut, USA). 

3.3.2. Hot Melt Extrusion (HME) 

The HME processes were performed using a twin-screw extruder (16 mm Prism Euro Lab, 

ThermoFisher Scientific). The extruder is divided into 10-barrel segments adjacent to the 

gravimetric feeder. Thermo Fisher Scientific standard screw configuration was used for this 

study, which consists of four conveying segments and three mixing zones and all of the injections 
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Mixing elements Conveying elements 

Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 8 Zone 9 Zone 10 Zone 7 DIE 
Feeding 

Zone 

Feed Port Feed Port 

 

Feed Port Feed Port 

  

were made through the injection port at the conveying zones of the screw configuration (Figure 

3-2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-2: Types of screw elements and the screw configuration. 
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 All of the formulations as mentioned in (Table 3-1) were extruded at maximum torque possible. 

The screw speed was 100 rpm at a temperature range from 90-140°C and, at a feed rate of ~ 

0.7Kg/hr. The propylene glycol was injected in a barrel segment 4 using Watson-Marlow 520S 

IP31 Pump.  

 

Table 3-1: Formulation composition of HME  

 

Formulation 

 

KlucelTM                  

ELF       

(%) 

 

KlucelTM   

EF         

(%) 

 

KlucelTM     

LF          

(%) 

 

Propylene- 

glycol (PG) 

(%) 

 

 

CO2 Injection 

Zone 

K1 100 - - - - 

K2 - 100 - - - 

K3 - - 100 - - 

K4 100 - - - Zone 4 

K5 - 100 - - Zone 4 

K6 - - 100 - Zone 4 

K7 95 - - 5 - 

K8 - 95 - 5 - 

K9 - - 95 5 - 
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CO2 was pressurized and injected into the extruder using a high-pressure regulator connected to 

flexible stainless steel hose with armor casing. The other end of the hose was connected to the 

four-way connection, fitted with a pressure gauge, bleed valve, check valve (ball type for 

unidirectional flow of gas), with the later being connected to the injection port seating on the 

extruder in barrel segment 4 or 6 (Figure 3-3). Metering of CO2 was regulated using the regulator 

knob. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3: Schematic diagram for P-CO2 injection in hot melt extrusion processing.  
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3.3.3. Light Microscopy  

To evaluate the microscopic morphology of the extrudates with and without P-CO2 injection and, 

with the addition of 5% PG, light microscope with camera was used. Thin transverse section (TS) 

of extrudates were placed on glass slides and observed under the microscope. Photographs of TS 

samples were taken with zoom power 3x. 

3.3.4. Milling 

The hot melt extrudates were milled and passed through ASTM mesh sieve #35 using a 

comminuting mill (Fitzpatrick, Model L1A). 

3.3.5. Tabletting 

The milled extrudates were used to prepare the tablet blends using microcystalline cellulose 

(Avicel®102) as diluent, colloidal silicon dioxide (Arosil®) as flowability enhancer, 

polyplasedone XL TM as a disintegrant and magnesium stearate as a lubricant (Table 1-2). The 

tablet blends were compressed with the same compression force (1.5-1.6 kN) on a manual tablet 

press using 8 mm biconcave punch to a final tablet weighing 175mg. The tablet properties such 

as thickness, hardness and tablets percent friability were performed. A digital caliper was used to 

obtain the tablet thickness. Optimal control tablet hardness tester was used for the tablet hardness 

determination. The percent friability was calculated for each batch using a Vanderkamper 

friability tester by applying the following equation. 

 

                                    𝐹 =
𝑊1−𝑊2

𝑊1
 × 100                  (Equation 3-1) 

 

Where F is percent friability, and W1 and W2 are the initial and final tablet weights,              

respectively. 
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Table 3-2: Placebo tablet composition for non-API extrudates with and without P-CO2 

injection and physical mixture of non-extruded polymers 

Excipients % (w/w) Weight (mg/tablet) 

KlucelTM (ELF/EF/LF) 28.57 50.00 

Avicel® 102 68.00 119.00 

Aerosil® 0.57 1.00 

PolyplasdoneTM  XL 2.29 4.00 

Magnesium stearate 0.57 1.00 
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3.4. Results and Discussions 

3.4.1. Thermal Analysis 

Thermogravimetric Analysis (TGA) is a technique in which the material sample weight is 

monitored as a function of temperature. TGA is an essential laboratory tool used to determine the 

material decomposition temperature and the moisture content. The TGA data demonstrated that 

Klucel™ ELF, EF and LF depredation temperatures were about 300 oC in which the polymers 

start losing weight with increasing the temperature. From the TGA thermogram we can conclude 

that all the polymers used in this study were stable under the employed extrusion processing 

temperature (120 oC- 140 oC) which is way lower than their decomposing temperatures (Figure 

3-4). 

  

 

 

 

 

 

 

 

 
Figure 3-4: TGA thermogram of that Klucel™ ELF, EF and LF. 
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3.4.2. Hot Melt Extrusion 

During extrusion with P-CO2 injection, metering of CO2 was controlled using the regulator until 

the reading on the pressure gauge located at the 4-way connector was maintained between 75-150 

psi. CO2 was provided in a liquid form from a CO2 gas cylinder (pure clean). The back pressure 

from the injection port maintained the CO2 in a liquid state that further dropped the temperature 

at the injection port as low as 2°C. The injection zone should be completely filled with the 

physical mixture for the formation of the melt seals to prevent any leakage of gas from the 

extruder and allow good mixing between the materials and CO2. As described by Verreck et al., 

2007d, diffusion and dissolution of the injected P-CO2 in the polymers manifested as extremely 

foamy extrudates with the increment of die swelling accompanied by CO2 expansion at the 

terminal end of the die (Figure 3-5).  

 

 

 

 

 

 

 

 

 



20 
 

With P-CO2 

injection 

Without P-CO2 

injection 

Without P-CO2 

injection 
With P-CO2 

injection 

(Foamy extrudates) 

 

 

 

 

 

 

 

 

 

 

As investigated by Repka et al., HPC extrudates were more dense, flexible and hygroscopic [37]. 

While, upon injection of PG in zone 4, the extrudates were sticky and elastic. Injection of PG as a 

plasticizer reduced the extrusion processing temperature by about 30oC. However, the P-CO2 can 

also act as a plasticizer which has been previously mentioned by Lyons et al. [33]. In 

formulations of k4, k5 and k6 when P-CO2 was injected in zone 4, the processing temperature 

decreased by about 20°C as compared to the processing temperature without injecting P-CO2 

(Table 3-3).  

 

 

Figure 3-5: HME extrudates processed with and without P-CO2 injection. 
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Table 3-3: Processing parameters for hot melt extrusion process of K1- K9 

Formulation Extrusion Temp. (oC) Screw Speed (rpm) Torque (Nm) 

K1 140 100 21-22 

K2 140 100 22 

K3 140 100 20-22 

K4 
Zone 2-4 (140 oC)             

Rest of the zones (120 oC) 
100 18-18.5 

K5 
Zone 2-4 (140 oC)             

Rest of the zones (120 oC) 
100 18 

K6 
Zone 2-4 (140 oC)             

Rest of the zones (120oC) 
100 17-19 

K7 90 100 12-16 

K8 90 100 12-17 

K9 90 100 14-18 
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These findings confirmed that CO2 acts as a reversible plasticizer and escapes from the 

formulation at the end of HME processing and no more weight will be added to the formulation 

as shown by Verreck et al. [31]. Furthermore, CO2 is chemically inert, so the compatibility issue 

of other plasticizers with the polymers used in the study was avoided. The microscopical images 

of the extrudates processed with P-CO2 injection demonstrated higher surface area and porosity 

as compared to the extrudates processed without P-CO2 injection and, the one with PG injection 

(Figure 3-6).  
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Figuer 3-6: Microscopy photographs of KlucelTM (ELF, EF, and LF) extrudates with 

and without P-CO2 injection, or with PG injection (Magnification 3X). (a) ELF 

without P-CO2, (b) ELF with P-CO2, (c) ELF with PG injection, (d) EF without P-

CO2, (e) EF with P-CO2, (f) EF with PG injection, (g) LF without P-CO2, (h) LF with 

P-CO2, (i) LF with PG injection. 
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HPC extrudates typically are very difficult to be milled and a freezing process is required before 

the milling procedure [38]. Because of the high flexibility and hygroscopicity of the extrudates 

with PG injection, milling failing occurs due to the shutdown of the Fitzmill as a result of 

generation of maximum torque (Figure 3-7). 

 

 

 

 

 

 

 

 

 

 

The phenomenon of milling failing on these extrudates with PG injection could not be improved 

even when the freezing process is used before the milling. Milling process is an essential step in 

the pharmaceutical industries and failing of this step will prevent any further processing into 

suitable dosage forms. A significant enhancement of the milling efficiency of extrudates with P-

CO2 injection was observed. The milling efficiency was determined by the torque value of the 

Figure 3-7: Failed milling of KlucelTM (ELF, EF, and LF) extrudates with PG 

injection. 
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Fitzmill. As mentioned by Verreck et al.[30] these processing properties of the materials would 

provide numerous benefits during manufacturing of various solid dosage forms such as tablets 

and capsules. 

Jeong et al. has shown that there is a lowering in bulk density of extrudates in the presence of P-

CO2 injection [39]. Our results showed that foamed milled extrudates exhibited lower bulk 

density and tap density as compared to the extrudates without P-CO2 injection, due to an increase 

in porosity and surface area of the extrudates (Table 3-4).  

 

Table 3-4: Bulk and tap density of milled extrudates with and without P-CO2 injection 

(g/mL) ±SD (n=3) 

Sample name 

Without P-CO2 injection With P-CO2 injection 

Bulk density Tap density Bulk density Tap density 

KlucelTM ELF 0.265± 0.009 0.366± 0.011 0.154± 0.003 0.241± 0.002 

KlucelTM EF 0.294± 0.007 0.441± 0.008 0.131± 0.002 0.213± 0.005 

KlucelTM LF 0.304± 0.013 0.435± 0.004 0.191± 0.004 0.227± 0.007 
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3.4.3. Tablets evaluation 

The bulk density and tap density of the tablet blends prepared with extrudates processed with P-

CO2 injection was lower as compared to the other blends without P-CO2 injection and 

unprocessed physical mixtures, as a result of the foam extrudates (Table 3-5). 

 

Table 3-5: Bulk and Tap density of placebo tablet blends (g/mL) 

 

Sample name 

Physical mixture Without P-CO2 

injection 

With P-CO2 injection 

Bulk 

Density 

Tap 

Density 

Bulk 

Density 

Tap 

Density 

Bulk 

Density 

Tap 

Density 

KlucelTMELF 0.393 0.492 0.366 0.473 0.303 0.419 

KlucelTM EF 0.395 0.510 0.385 0.485 0.303 0.413 

KlucelTM LF 0.407 0.516 0.393 0.492 0.354 0.462 
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The evaluation of all Klucel™ ELF, EF and LF placebo tablets showed that the tablet weight 

variations of all the formulations were acceptable with very low standard deviations (SD < 1.0). 

In case of the tablets prepared with foamed extrudates, tablet hardness was enhanced by 22%- 

33% compared to those prepared by extrudates without P-CO2 injection and unprocessed 

physical mixtures (Figure 3-8). Tablet friability was evaluated for all of the formulations and the 

results showed lowering in the % friability of tablets prepared with foamy extrudates (less than 

0.3%) as compared to the other tablet formulations (0.6%-1.7%) (Figure 3-9). These results 

indicated good binding properties and compressibility of foamy extrudates. 

 

  

 

 

 

 

 

 

 

 

 

Figure 3-8: Hardness in (kp) of Klucel TM ELF/EF/LF placebo tablets. 
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Figure 3-9: % Friability of Klucel TM ELF/EF/LF placebo tablets. 
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3.5. Conclusion 

P-CO2 acted as a temporary plasticizer for KlucelTM ELF, EF, and LF when injected in zone 4 

during HME processing, allowing reduction in extrusion temperatures. Whereas, when the P-CO2 

was injected in zone 6 the reduction in extrusion temperature was not feasible. Thus, the zone in 

which P-CO2 is injected plays a significant role in melt extrusion processing. The microscopic 

morphology of the extrudates with P-CO2 injection was changed to a foam-like structure, which 

increases their surface area and porosity. Moreover, the milling efficiency of all extrudates 

processed with P-CO2 was enhanced, which may be beneficial for optimizing the manufacturing 

of solid dosage forms. A combination of P-CO2 and HME improved the tablet properties (higher 

hardness & lower friability) indicating good binding properties and compressibility of the blends. 
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CHAPTER IV 

Influence of Pressurized Carbon Dioxide on Ketoprofen-Incorporated Hot-Melt Extruded 

Low Molecular Weight Hydroxypropylcellulose 

4.1. Introduction: 

HME is commonly used in the pharmaceutical industry for solubility enhancement applications. 

Carbon dioxide is non-toxic, non-flammable, and chemically inert [26, 27]. It was observed in 

earlier study that hot-melt extrusion processing assisted with P-CO2 increased porosity and the 

surface area of the extrudates and changed the macroscopic morphology to a foam-like structure 

and furthermore enhanced the milling efficiency. Additionally, the drug dissolution rates 

increased significantly up on foaming extrudates structures. In this current research study, the 

main objective was to evaluate the effect of P-CO2 on ketoprofen (KTP) and HPC polymers 

using HME techniques. The model drug KTP (Figure 4-1) is a non-steroidal anti-inflammatory 

agent[40] and, it is crystalline in nature with poor water solubility [41]. It is conventionally 

formulated as an oral dosage form [42]. It is thermally stable with a melting point of 

approximately 95oC and “burns out” over a temperature range of 235-400oC [43]. Indeed the 

literature has recently reported that hot melt extudates of KTP and HPC has demonstrated poor 

milling efficiency [38]. In order to solve these underlining issues, in the present study we 

investigated the effect of P-CO2 on the physico-mechanical properties as well as the release 

profiles of KTP and HPC extrudates produced using HME techniques. 
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4.2. Material  

Klucel™ LF, EF and ELF hydroxypropylcellulose (HPC) and polyplasdone XL TM were obtained 

as gift samples from Ashland Inc. (Wilmington, DW 19808 USA). Ketoprofen was purchased 

from Parchem-Fine & specialty chemicals (415 Huguenot St, New Rochelle, NY 10801 USA). 

CO2 was supplied in gas cylinders (pure clean) from Airgas (902 Rockefeller St, Tupelo, MS 

38801 USA), Avicel®102 was received as a gift samples from FMC biopolymers (1735 Market 

Street, Philadelphia PA 19103 USA). Flow lac® 90 was received as a gift samples from Meggle 

USA Inc. (50 Main street, White Plains, NY 10606 USA). Syloid® was received from W. R. 

Grace & Co.- Conn (7500 Grace Drive, Columbia, MD 21044 USA). Magnesium Stearate was 

purchased from Spectrum Chemicals (14422 S. San Pedro Street Gardena, CA 90248 USA).  All 

other chemicals and reagents used in the present study were of analytical grade and obtained 

from Fisher scientific (Fair Lawn, NJ 07410 USA). 

 

Figure 4-1: Chemical structure of Ketoprofen (KTP) 
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4.3. Method 

4.3.1. Thermal Analysis 

4.3.1.1. Thermogravimetric Analysis (TGA) 

TGA studies were performed for KTP and polymers used in this study to determine their stability 

at the extrusion temperatures using a Perkin Elmer Pyris 1 TGA equipped with Pyris manager 

software (PerkinElmer Life and Analytical Sciences, 710 Bridgeport Ave., Connecticut, USA.  

4.3.1.2. Differential Scanning Calorimetry (DSC) 

DSC was obtained using Perkin Elmer Pyris 1 DSC equipped with Pyris manager software 

(PerkinElmer Life and Analytical Sciences, 710 Bridgeport Ave., Connecticut, USA). 

Approximately 2-4 mg of KTP, physical mixtures or extrudates were heated from 30°C to 200 

°C at heating rate of 10°C/min.  

4.3.2. Physical mixture 

KTP and Klucel TM LF, EF and ELF hydroxypropylcellulose (HPC) polymers were sieved using 

ASTM #35 mesh. Physical mixture of 15% w/w KTP with each polymer were mixed using a V-

Shell blender for 10 minutes. Tree samples from each physical mixture were analyzed for blend 

drug content and uniformity. 

4.3.3. Hot Melt Extrusion 

The physical mixture blends (Table 4-1) were extruded with or without P-CO2 injection using a 

twin-screw extruder (16 mm Prism EuroLab, ThermoFisher Scientific) (Figure 4-2) at screw 

speeds of 100 rpm (temp range: 90–140°C) (Table 4-2) P-CO2 was injected into the extruder as 
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described previously in chapter I using a high-pressure regulator connected with flexible 

stainless steel armor-cased hosing. The other end of the hose was connected to the injection port 

seating on segment 6 of the extruder barrel (Figure 4-3). 

 

Table 4-1: Formulation composition of HME  

Formulation KTP (%) 
KlucelTM 

ELF (%) 

KlucelTM   EF 

(%) 

KlucelTM LF 

(%) 

CO2 injection 

zone 

K10 15 85 - - - 

K11 15 - 85 - - 

K12 15 - - 85 - 

K13 15 85 - - Zone 6 

K14 15 - 85 - Zone 6 

K15 15 - - 85 Zone 6 
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Table 4-2: Processing parameters for hot melt extrusion process of K10-K15   

Formulation Extrusion Temp. (oC) Screw Speed (rpm) Torque (Nm) 

K10 110 75 9-14 

K11 110 75 9-12 

K12 110 75 11-13 

K13 100 75 8-9 

K14 100 75 9-10 

K15 100 75 9-12 
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Figure 4-2: 16 mm Prism EuroLab, ThermoFisher Scientific. 

Figure 4-3: P-CO
2
 injection port. 
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4.3.4. Microscopical images 

Microscopy photographs were performed for thin transverse section (TS) of all extrudates using 

light microscope with camera (Nikon SMZ-U). Photographs of TS samples were taken with 

zoom power 3x. 

4.3.5. Milling 

All the extrudates were milled and sieved through ASTM #35 mesh using a comminuting mill 

(Fitzpatrick, Model L1A). 

4.3.6. High-Performance Liquid Chromatography (HPLC) 

All samples were analyzed using a Waters HPLC equipped with Empower software to analyze 

the data. HPLC consisted of a Water 600 binary pump, Waters 2489 UV/detector, and Waters 

717 plus autosampler (Waters Technologies Corporation, 34 Maple St., Milford, MA 0157). The 

column used was phenomenex luna C18 (5µ, 250 mm × 4.6 mm). The mobile phase constituted 

of  acetonitrile/20 mMol phosphate buffer, 55:45 (%v/v) at pH 4 [38, 44] at a flow rate of 1 

mL/min and injection volume of 20 μl. The UV detector wavelength for KTP detection was set at 

256 nm. 

4.3.7. In Vitro Drug Release 

Extrudates equivalent to 25 mg KTP were filled in HPMC capsules and in vitro drug release 

profiles were performed using a USP type II dissolution apparatus. The dissolution media was 

1000 mL 0.05 M phosphate buffer pH 7.4 and, was maintained at 37 oC. A sample volume of 2 

mL were taken at time points 10, 20, 30, 45, 60 min. [45], filtered and analyzed using HPLC and 
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2 mL of fresh dissolution media were added back to the dissolution vessel at each time point. 

The release profiles of 25 mg KTP tablets were obtained in the same conditions. 

4.3.8. Tabletting 

4.3.8.1. Tablet preparation 

The milled extrudates were used to prepare the tablet blends using microcystalline cellulose 

(Avicel®102) or lactose (flow lac® 90) as diluent, silicon dioxide (Syloid®) as flowability 

enhancer, polyplasedone XL TM as a disintegrant and magnesium stearate as a lubricant (Table 4-

3). The 25 mg strength tablets were compressed with the same compression force (1.5-1.6 kN) 

on a manual tablet press using 10 mm biconcave punch to a final tablet weight of 350 mg. 

 

Table 4-3: KTP tablet composition of extrudates with and without P-CO2 injection 

Excipients % (w/w) Weight (mg/tablet) 

KTP 7.14 25.00 

KlucelTM (ELF/EF/LF) 40.46 141.66 

Avicel® 102 24.60 86.10 

Flowlac 90 12.30 43.05 

Syloid® 10.00 35.00 

PolyplasdoneTM  XL 5.00 17.5 

Magnesium stearate 0.50 1.75 
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4.3.8.2. Tablet Evaluation 

Tablets were evaluated for thickness, hardness, friability, and disintegration time as well as 

release profiles. 

4.3.9. Moisture Analysis 

To evaluate the moisture content of the extrudates , OHOUS MB45 moisture analyzer  was used. 

6-7 gm. of the extrudates placed in the sample pan and inserted in the sample chamber and then 

heated to 110 oC for 15 minutes. Samples weight loss of drying was recorded as well as the % of 

the moisture. 

4.3.10. Stability Study 

All KTP/Klucel TM ELF, EF and LF extrudates with and without P-CO2 injection were sealed in 

glass bottles and stored at 25oC/60% RH for three months. Recrystallization assessments were 

determined by DSC. 

4.4. Results and discussion  

4.4.1. Thermal Analysis 

TGA data demonstrated that all formulations utilized in this study were stable under the 

employed processing temperature (Figure 4-4).  

Differential Scanning Calorimetry, or DSC, is a thermal analysis technique evaluates how a 

material’s heat capacity (Cp) is changed by temperature. The information generate by DSC is 

used to understand amorphous and crystalline behavior of the polymer and drug in the 

pharmaceutical industries. The DSC data showed that ketoprofen melting peaks at 90oC 
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disappeared for all of the milled extrudates with and without P-CO2 injection, which indicated 

the conversion of the crystalline form into the amorphous form. All milled extrudates remained 

in an amorphous form at the end of the last time point after 3 months of storage at 25oC/60% RH 

(Figure 4-5).  

 

 

 

 

 

 

Figure 4-4: TGA thermogram of that Ketoprofen and Klucel™ ELF, EF and LF. 
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Figure 4-5: DSC thermogram of Ketoprofen, physical mixture and extrudates with and 

without P-CO2 injection at 0, 1, 2, 3 months. 
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4.4.2. Hot Melt Extrusion 

Hot melt extrusion processes were performed using 16 mm Prism Euro Lab, Thermo Fisher 

Scientific) with Thermo Fisher Scientific standard screw configuration. The injections were made 

through the injection port at the conveying zone of the screw configuration. The resulted 

extrudates processed without P-CO2 injection were dense, opaque, elastic and sticky extrudates 

with all polymeric matrices. While other extrudates which processed with P-CO2 were foamy and 

porous extrudates (Figure 4-6).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-6: KTP/ Klucel
TM

 extrudates with and without P-CO
2 

injection. 

Foamy extrudates 

with P-CO2 injection 

Regular extrudates 

without P-CO2 injection 
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The microscopical images of the TS sections of different extrudates showed that the porosity of 

the extrudates processed with P-CO2 was increased (Figure 4-7). This change in the extrudates 

morphological properties was due to the expansion of the carbon dioxide at the extrusion die.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Without CO2 With CO2 

Figure 4-7: Microscopy photographs of TS sections of a) 15% KTP& Klucel
TM

 ELF 

b) 15% KTP& Klucel
TM

 EF, and c) 15% KTP& Klucel
TM

 EF extrudates with and 

without P-CO2
 
injections (Magnification 3X). 

a 

b 

c 
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As observed previously, the milling efficiency of the extrudates processed with P-CO2 was 

enhanced compared with extrudates processed without P-CO2 (Figure 4-8). The foamed milled 

extrudates exhibited lower bulk density and tap density as compared to the extrudates processed 

without P-CO2 injection, due to an increase in porosity and surface area of the extrudates (Table 

4-4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

 
Dry ice + Milling 

Milling 

Milled extrudates 

Without P-CO2 injection 

With P-CO2 injection 

Figure 4-8: Milling processing and milled extrudates. 
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Table 4-4: Bulk and tap density of milled extrudates with and without P-CO2 injection 

(g/mL) 

 

Sample name 

Without P-CO2 injection With P-CO2 injection 

Bulk density Tap density Bulk density Tap density 

KTP/ KlucelTM 

ELF 
0.382± 0.012 0.434± 0.008 0.175± 0.001 0.270± 0.003 

KTP/ KlucelTM 

EF 
0.286± 0.009 0.373± 0.007 0.150± 0.001 0.235± 0.005 

KTP/ KlucelTM 

LF 
0.325± 0.013 0.415±0.011 0.145± 0.002 0.240± 0.006 

 

4.4.3. Drug Content 

HPLC analysis confirmed that the drug content uniformity of KTP in all formulations were 

acceptable and within the range of 98-105%. These results indicated good homogeneity of all 

formulations.  

4.4.4. In-vitro Drug Release  

The in vitro drug release concedes as an important aspect in drug development that reflect drug 

in vivo performance [46]. The in vitro dissolution profiles were performed to evaluate the KTP/ 

Klucel™ ELF, EF and LF release behavior of milled extrudates with or without P-CO2 injection 

as well as unprocessed physical mixtures. Plots of time vs. % drug release, which is the average 

of three replicates, were used as dissolution profiles for different formulations (Figures 4-9, 4-10, 

and 4-11). These profiles demonstrated a significant improvement of KTP release in the presence 
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of P-CO2 injection as compared to the other formulations. The release enhancement was 

observed as a direct result of the foam-like structure and high surface area of those extrudates 

with P-CO2 injection[47-50].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-9: Dissolution profiles of KTP/KlucelTM ELF extrudates with and without P-

CO2 injection and physical mixture (pH 7.4 phosphate buffers, USP App II, 50 

rpm/37oC).  
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Figure 4-11: Dissolution profiles of KTP/KlucelTM LF extrudates with and without P-

CO2 injection and physical mixture (pH 7.4 phosphate buffers, USP App II, 50 

rpm/37oC).  

 

Figure 4-10: Dissolution profiles of KTP/KlucelTM EF extrudates with and without P-

CO2 injection and physical mixture (pH 7.4 phosphate buffers, USP App II, 50 

rpm/37oC).  
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4.4.5. Tablet Evaluation 

The tablet blends prepared with extrudates processed with P-CO2 injection showed lower bulk 

and tap density compared to other tablet blends due to formation of foam like structure as well as 

increase porosity and surface area of these extrudates (Table 4-5). 

 

Table 4-5: Bulk and Tap density of KTP tablet blends (g/mL) 

 

Sample Name 

Physical mixture 
Without P-CO2 

injection 

With P-CO2 

injection 

Bulk 

Density 

Tap 

Density 

Bulk 

Density 

Tap 

Density 

Bulk 

Density 

Tap 

Density 

KTP/ KlucelTM 

ELF 
0.40 0.61 0.46 0.66 0.35 0.49 

KTP/ KlucelTM 

EF 
0.39 0.57 0.44 0.59 0.33 0.47 

KTP/ KlucelTM 

LF 
0.39 0.57 0.44 0.59 0.33 0.47 
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Tablets were successfully prepared (Figure 4-12) and showed that the drug content of all 

formulations ranged from 96-110% indicating good drug uniformity of all formulations. 

Furthermore, tablet weight variations of all the formulations were very low with standard 

deviations (SD < 1.0). 

 

 

 

 

 

 

 

 Tablets processed using P-CO2 assisted extrudates exhibited higher hardness (Figure 4-13) and 

lower % friability (Figure 4-14) due to good binding properties and compressibility of the 

extrudates, as compared to those not processed with P-CO2. To understand this phenomenon, 

moisture content of the extrudates was performed. Table 4-6 showed the moisture content of the 

extruades with and without P-CO2 injection. The results clearly demonstrated that extrudateds 

processed with P-CO2 having more moisture than extrudateds processed without P-CO2. This 

observation explained the increases of the tablet hardness in case of using blends of extrudateds 

processed with P-CO2. 

 

Figure 4-12: Ketoprofen tablets.  
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Figure 4-13: Hardness in (kp) of KTP/Klucel TM ELF/EF/LF tablets, with and 

without P-CO2 injection and physical mixture.  
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Figure 4-14: % Friability of KTP/Klucel TM ELF/EF/LF tablets, with and without 

P-CO2 injection and physical mixture.  
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Table 4-6: Moisture content of KTP/ KlucelTM ELF, EF, and LF 

Sample Name 

LOD% 

Without P-CO2 With P-CO2 

KTP/ KlucelTM ELF 0.53 0.88 

KTP/ KlucelTM EF 0.69 0.91 

KTP/ KlucelTM LF 0.56 1.54 

 

The tablets were also subjected to in vitro dissolution studies of KTP/ KlucelTM EF tablets with 

and without P-CO2 injection. No significant differences were observed in the drug release 

profiles of tablets with and without P-CO2 extrudates (Figure 4-15). These results indicate that 

the dissolution improvement of extrudates processed with P-CO2 was due to the high surface 

area and porosity, as compared to the extrudates without P-CO2 injection. Whereas, when these 

extrudates were compressed into tablets, the compression force reduced the surface area of the 

foamy extrudates which eliminates the dissolution improvements utilizing P-CO2 injections. 

Therefore, there was no effect of P-CO2 injection on the tablet release profile. 
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Figure 4-15: Dissolution profiles of KTP/KlucelTM EF tablets with and without P-CO2 

injection (pH 7.4 phosphate buffers, USP App II, 50 rpm and 37oC). 
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4.5. Conclusion 

It has been observed that Hot-melt extrusion processing assisted with P-CO2 increased porosity 

of the KTP/ KlucelTM ELF, EF and LF extrudates and changed the macroscopic morphology to a 

foam-like structure due to expansion of the carbon dioxide at the extrusion die. These properties 

allowed enhancement of the milling efficiency of the extudates assisted with P-CO2. 

Furthermore, the extrudates processed with P-CO2 injection demonstrated an enhancement of 

KTP release as compared to the physical mixtures and the extrudates processed without P-CO2 

injection, due to the increase in the surface area and porosity. However, there was no significant 

difference in the drug release profiles of tablets prepared with or without CO2 extrudates after the 

compression process, which indicates that P-CO2 injection does not alter the drug release profiles 

of tablets.  Alternatively, it instead improves the processing properties of the tablets. P-CO2 

utilized in HME processing may exhibit similar benefits of supercritical CO2 while avoiding 

some of the disadvantages experienced when utilized at the supercritical fluid level. 
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CHAPTER V 

Influence of Pressurized Carbon Dioxide on drug loading of High Melting Point 

Carbamazepine and Low Molecular Weight Hydroxypropylcellulose Matrices Using Hot 

Melt Extrusion 

5.1. Introduction 

Carbamazepine (CBZ) (Figure 5-1) is an anticonvulsant drug used in the treatment of epilepsy, 

bipolar disorder and specific analgesic for trigeminal neuralgia [51, 52]. Biopharmaceutics 

Classification System categorized CBZ as class II with poor water solubility and good 

permeability [53]. It has prolonged absorption rate due to its lower dissolution rate [54]. 

However, CBZ crystalizes under at least four polymorphic crystal forms which include; Triclinic 

(Form I), Trigonal (Form II), P-Monoclinic (Form III), C-Monoclinic (Form IV). Variations in 

dissolution rate and absorption rate of CBZ have been reported due to the presence of the drug in 

different crystalline forms [55]. To overcome this issue, CBZ solid dispersion formulations were 

prepared by different methods to produce uniform and stable CBZ solid dispersion and to 

minimize the absorption variability. Zerrouk et al used fusion and crystallization to prepare the 

solid dispersion of CBZ with PEG 6000 and observed the ability of PEG 6000 to enhance the 

CBZ solubility [56]. Soluplus and polyvinylpyrrolidone (PVP/ VA 64) were used as polymeric 

carriers to prepare CBZ solid dispersion via HME process [53, 57]. However, a concern of HME 

is the limitation of the drug loading due to drug-polymer miscibility. In a previous study, we 

investigated the effect of P-CO2 on the physico-mechanical properties as well as the drug release 
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profile using HME process. Successfully, foamed extrudates were prepared with high surface 

area and enhanced drug release profiles [58]. Elizondo et al observed that P-CO2 can be used to 

prepare highly loaded antibiotic nanostructured PVM/MA matrices [59]. Considering these 

observations, it would be interesting to investigate the effect of P-CO2 on the drug loading and 

the dissolution profiles of CBZ processed by HME.  

 

 

 

 

 

 

 

 

5.2. Material 

Klucel™ ELF hydroxypropylcellulose (HPC) was received as gift samples from Ashland Inc 

(Wilmington, DW 19808 USA). CBZ was purchased from AFINE Chemicals Limited (Sandun 

Town, Hangzhou 310030 China). CO2 was supplied in gas cylinders (pure clean) from Airgas 

(902 Rockefeller St, Tupelo, MS 38801 USA). All other chemicals and reagents used in the 

present study were of analytical grade and obtained from Fisher scientific (Fair Lawn, NJ 07410 

USA). 

Figure 5-1: Chemical structure of Carbamazepine (CBZ). 



56 
 

5.3. Method 

5.3.1. Thermal Analysis 

5.3.1.1. Thermogravimetric Analysis (TGA) 

TGA studies were performed for CBZ and Klucel TM ELF to determine their stability at the 

extrusion temperatures using a Perkin Elmer Pyris 1 TGA equipped with Pyris manager software 

(PerkinElmer Life and Analytical Sciences, 710 Bridgeport Ave., Connecticut, USA). 7-10 mg. 

of the sample was weighed and heated from 30°C to 400 °C at heating rate of 20°C/min under 

nitrogen purging. 

5.3.1.2. Differential Scanning Calorimetry (DSC) 

DSC was performed to evaluate the drug polymer miscibility at different drug loading as well as 

the physical state of the all extrudates using Perkin Elmer Pyris 1 DSC equipped with Pyris 

manager software (PerkinElmer Life and Analytical Sciences, 710 Bridgeport Ave., Connecticut, 

USA). Approximately 2-4 mg of CBZ, physical mixtures or extrudates were heated from 30°C to 

230°C at heating rate of 10°C/min. DSC data are also used to evaluate the % crystallinity of CBZ 

in the extruded formulation. 

5.3.2. Hot Melt Extrusion (HME) 

CBZ and Klucel TM ELF hydroxypropylcellulose (HPC) polymers were sieved using ASTM #35 

mesh. Physical mixtures of 20-50% w/w CBZ with Klucel TM ELF (Table 5-1) were mixed 

using a V-Shell blender for 10 minutes. Three samples from each physical mixture were 

analyzed for blend drug content and uniformity. The resulting blends were extruded with or 

without P-CO2 injection using a twin-screw extruder (16 mm Prism EuroLab, ThermoFisher 

Scientific) at screw speeds of 100-120 rpm and temperature range 110–130°C. P-CO2 was 

injected at 125-175 psi into the extruder using a high-pressure regulator connected with flexible 



57 
 

stainless steel, armor-cased hosing. The other end of the hose was connected to the injection port 

seating on segment 6 of the extruder barrel. All of the extrudates were milled and sieved through 

ASTM #35 mesh using a comminuting mill (Fitzpatrick, Model L1A). 

 

Table 5-1: CBZ formulation composition of HME  

 

 

 

 

Formulation CBZ (%) KlucelTM ELF(%) 
CO2 injection 

Zone 

CO2 Pressure 

(PSI) 

C1 20 80 - - 

C2 20 80 Zone 6 175 

C3 30 70 - - 

C4 30 70 Zone 6 150 

C5 40 60 - - 

C6 40 60 Zone 6 150 

C7 50 50 - - 

C8 50 50 Zone 6 125 
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5.3.3. Density 

Bulk and tap density were performed for all extrudates as well as for physical mixtures. True 

density was measured using Micromeritics AccuPyc II1340 Gas Pycnometer, where the samples 

were measured by helium displacement methods. The principle of this operation is to seal the 

known volume sample in the instrument compartment then the helium as an inert gas is inserted, 

and then helium molecules rapidly fill the pores; only the solid phase of the sample displaces the 

gas. Dividing this volume into the sample weight gives the gas displacement density. 

5.3.4. Surface Area 

Surface areas of all milled extrudates with and without CO2 injection were evaluated using 

Micromeritics, Gemini VII. 2-3 gm. of milled extrudates were placed in the sampling tube and 

the reference sample was used to calibrate the analysis to produce continued accuracy of results. 

Before analysis start, each sample was placed under vacuum to remove the moisture. The 

nitrogen adsorption-desorption isotherms of the samples were obtained at liquid nitrogen 

temperature (-195 Co). The specific surface area of the samples was obtained by means of the 

standard method of Brunauer Emmett-Teller (BET). 

5.3.5. Scanning Electron Microscopy (SEM) 

Scanning Electron Microscopy (SEM) was used to evaluate the morphology of the extrudates 

with and without P-CO2 injection. Samples were mounted on adhesive carbon pads placed on 

aluminum then they sputter coated with gold using a Hummer® 6.2 sputtering system (Anatech 

LTD, Springfield, VA) in a high vacuum evaporator. A JEOL JSM-5600 scanning electron 

microscope operating at an accelerating voltage of 10kV was used for imaging.   
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5.3.6. High-Performance Liquid Chromatography (HPLC) 

All samples analyses were performed on a Waters HPLC and Empower software was used to 

analyze the data. HPLC system consists of Waters e2695 separation Module and Waters 2489 

UV/Visible detector (Waters Technologies Corporation, 34 Maple St., Milford, MA 0157). A 

Phenomenex luna C18 (250 mm × 4.6 mm, 5µ) coulmn was used. The mobile phase constituted 

of 65:35:0.1 (%v/v) Methanol: Water: Acetic acid at flow rate of 1 mL/ min and injection 

volume of 20 µl. The UV detector wavelength for CBZ detection was set at 285 nm. 

 

5.3.7. In-Vitro Drug Release  

Extrudates equivalent to 50 mg CBZ were filled in HPMC capsules. The in vitro drug release 

profiles were performed using a USP type II dissolution apparatus. The dissolution medium was 

900 mL water and, was maintained at 37 oC with paddle rotation speed of 100 rpm. A sample 

volume of 2 mL was taken at time points 10, 20, 30, 45, 60, 90 and 120 min., filtered and 

analyzed using HPLC and 2 mL of fresh dissolution medium were added back to the dissolution 

vessel at each time point to maintain the dissolution medium volume. 

To understand the CBZ release results, data observed from in-vitro release study were used to 

calculate Dissolution Efficiency (DE) and Mean Dissolution Time (MDT) of the all formulation 

as a model independent method to compare the drug release profile of the extrudates with and 

without P-CO2 injection. KinetDS 3.0 software was used to calculate DE and MDT [60] using the 

following equations.  
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                                𝐷𝐸 =
∫ 𝑄 𝑑𝑡

𝑡
0

𝑄100×100
× 100                                                   (Equation 5-1) 

Where: 

Q – amount (%) of drug substance released at the time t 

t- time 

Q100 – maximum amount of drug released (= 100%) 

                                  𝑀𝐷𝑇 =
∑ 𝑡𝑗

𝐴𝑉×∆𝑄𝑗
𝑛
𝑗=1

∑ ∆𝑄𝑗
𝑛
𝑗=1

                                                     (Equation 5-2)  

Where: 

ΔQ = Q(t) - Q(t-1) 

tj
AV= (ti + ti-1)/2 

n – amount of time points 

Similarity factors (f2) were also calculated using (equation 5-3) to evaluate the effect of P-CO2 on 

the drug release. 

          𝑓2 = 50 × log {[1 + (1/𝑛) ∑ 𝑊𝑗 |𝑅𝑗 − 𝑇𝑗|
2𝑛

𝑗=1 ]
−0.5

× 100}                    (Equation 5-3)       
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5.4. Results and Discussion 

5.4.1. Thermal Analysis 

TGA data of CBZ, KlucelTM ELF and physical mixture did not show any sign of degradation 

until reaching approximately 250 oC and 300 oC for CBZ and KlucelTM ELF respectively. At 

those temperatures, the samples weight decreased by elevation the temperature. These results 

indicate that all prepared formulations were stable under the utilized processing temperatures 

(Figure 5-2). Additionally, TGA data also showed that KlucelTM ELF exhibited around 3% 

moisture uptake. 

 

 

 

 

 

 

 

 

 

 
Figure 5-2: TGA thermogram of carbamazepine (CBZ) and Klucel
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DSC analysis was performed to determine the miscibility of CBZ/KlucelTM ELF in different drug 

load as well as evaluate the physical state of the CBZ in all extrudates prepared in this study. The 

DSC thermogram showed the CBZ endotherm melting peaks at 190oC. On the other hand, the 

physical mixtures showed a slight melting point depression of CBZ in the presence of the Klucel 

TM ELF, indicating its miscibility in the polymeric matrix (Figure 5-3). DSC data of the 

extrudates exhibit the disappearance of the endothermic melting peak of CBZ for all extrudates 

with and without P-CO2 injection except for C7 and C8. The absence of the CBZ endothermic 

melting peak indicates the formation of amorphous solid dispersion (Figure 5-4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5-3: DSC thermogram of CBZ/ Klucel TM ELF physical mixtures showing the 

drug- polymer miscibility at different drug loading.   

 
 

Temperature (oC) 

H
ea

t 
F

lo
w

 E
n

d
o

 U
P

 (
m

W
) 



63 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-4: DSC thermogram of 20%, 30%, 40% and 50% of CBZ/ Klucel TM  ELF 

extrudates with and without P-CO2 injection  as well as pure CBZ. 
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DSC data are also used to determine the % crystallinity of CBZ in C7 and C8 formulation using 

the following equation  

 

Crystallinity (%) = [ΔHExtrudate/ (ΔHCBZ × w %)] ×100                       (Equation 5-4) 

 

The DSC thermogram (Figure 5-5) showed that ΔH of the CBZ is 102.402 J/g and the w% of the 

formulations were calculated depending on the drug content results. There was no significant 

different between the % crystallinity of C7 and C8 (approximately 23%). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-5: DSC thermogram showing the ΔH values of 50% CBZ/ Klucel TM  ELF 

extrudates with and without P-CO2 injection  as well as pure CBZ.  
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5.4.2. Hot Melt Extrusion (HME) 

The extrusion processing parameters were set depending on the TGA results and the feasibility 

and processability of the physical mixtures used in this study (Table 5-2). The twin-screw 

extruder (16 mm Prism EuroLab, ThermoFisher Scientific) consists of ten segments and an 

extrusion die. The screw configuration used in this study was Thermo Fisher Scientific standard 

cofiguration which consists of four conveying segments and three mixing zones and all of the 

injections were made through the injection port at the conveying zones of the screw 

configuration. The carbon dioxide was injected in the extruder using a high-pressure regulator 

connected with flexible stainless steel hose with armor casing. The other end of the hose was 

connected to the four-way connection, fitted with a pressure gauge, bleed valve, check valve 

(ball type for unidirectional flow of gas), with the later being connected to the injection port 

seating on the extruder in barrel segment 6. Before the injection of P-CO2, all the extruder barrel 

segments were filled with melted physical mixture to form melt seal and prevent the escaping of 

CO2 from the feeding zone. 
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Table 5-2: Processing parameters for hot melt extrusion process of C1-C8 

 

Formulation Extrusion Temp. (oC) Screw Speed (rpm) Torque (Nm) 

C1 130 100 9 

C2 130 100 7 

C3 110 100 8-9 

C4 110 100 6-8 

C5 110 100 9-12 

C6 110 100 9-10 

C7 120 100 14-18 

C8 120 100 8 
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With CO
2 
injection 

Without CO
2 
injection 

The exrudates without P-CO2 were dense and opaque, also having plastic morphology. On the 

other hand, the morphology of all extudates processed with P-CO2 were changed to a foam like 

structure (Figure 5-6) due to the carbon dioxide expansion exiting at the terminal end of the die. 

The torque values of the extruder were decreased with the formulations processed with P-CO2 

injection compared with the formulations without P-CO2 injection. This observation indicating 

the plasticization effect of carbon dioxide and prove the decrease in the glass transition 

temperature (Tg) of the blends processed with P-CO2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-6: Photographic picture of CBZ /Klucel
TM

 ELF extrudates with and without 

P-CO
2
 injection. 
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The milling efficiency of formulations C2, C4, C6 and C8 were higher than the milling efficiency 

of formulations C1, C3, C5 and C7. This result was concluded by the torque values of the 

comminuting mill (Fitzpatrick, Model L1A).  

5.4.3. Density 

True density was evaluated using AccuPyc II1340, Micromeritics to all formulations, C1-C8. 

There are negligible differences in the true density values of the extrudates with and without CO2 

injection indicating no chemical change in the nature of the CBZ/KlucelTM. This result confirmed 

that CO2 is an inert material and there is no interaction between CO2 and CBZ/KlucelTM 

formulations. On the other hand, there was a decrease in the bulk and tap densities of the 

formulations processed with CO2 injection (C2, C4, C6, C8) than those processed without CO2 

(C1, C3, C5, C7) as a direct result of the formation of foamy like structure extudates in case of 

CO2 injection as well as increase in the pore size of those extrudates. Table 5-3 displayed that the 

bulk density of formulations (C2, C4, C6, C8) are lower than formulations (C1, C3, C5, C7) by 23-

43%, While, the tap density lowered by 16- 35%. 
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Table 5-3: Bulk and tap density of CBZ /KlucelTM ELF with and without P-CO2 injection ± 

Standard deviation n=3 

Sample Name Bulk Density Tap Density 

20% CBZ/ELF  PM 0.436 ± 0.013 0.578 ± 0.008 

C1 0.356 ± 0.009 0.470 ± 0.006 

C2 0.205 ± 0.008 0.307 ± 0.005 

30% CBZ/ELF  PM 0.335 ± 0.001 0.554 ± 0.032 

C3 0.377 ± 0.011 0.490 ± 0.002 

C4 0.262 ± .001 0.367 ± 0.001 

40% CBZ/ELF  PM 0.452 ± 0.003 0.637 ± 0.004 

C5 0.469 ± 0.003 0.616 ± 0.011 

C6 0.325 ± 0.006 0.449 ± 0.010 

50% CBZ/ELF  PM 0.484 ± 0.008 0.715 ± 0.016 

C7 0.507 ± 0.011 0.638 ± 0.017 

C8 0.391± 0.006 0.537 ± .016 
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5.4.4. Surface area 

Surface area is considered as one of the important factors that affect the dissolution profiles of 

any drug. It was observed that increasing the surface area of any formulation will result in more 

contact with the dissolution medium and hence increase the in-vitro drug release. Moreover, the  

drug absorption will increase which enhance the drug bioavailability. Gemini VII, Micromeritics 

was used to measure the surface area of C1-C8. Table 5-4 shows the surface area and the 

calculated % porosity for C1-C8 formulations. The % porosity was calculated using the following 

equation: 

 

                     % 𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 = (1 −
𝐵𝑢𝑙𝑘 𝐷𝑒𝑛𝑖𝑠𝑡𝑦

𝑇𝑟𝑢𝑒 𝐷𝑒𝑛𝑠𝑖𝑡𝑦
) × 100                        (Equation 5-5) 

 

Formulations C2, C4, C6 and C8 exhibited higher surface area as well as higher % porosity 

compared to formulations C1, C3, C5 and C7. This is considered as a direct result of 

morphological change of C2, C4, C6 and C8 due to the injection of P-CO2 during the HME 

process. 
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Table 5-4: Surface area and % porosity of different drug loading CBZ /KlucelTM ELF with 

and without P-CO2 

Sample Name Surface Area (m2/gm) % Porosity 

C1 0.261 71 

C2 0.394 84 

C3 0.350 70 

C4 0.493 79 

C5 0.412 62 

C6 0.489 74 

C7 0.445 59 

C8 0.523 68 
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5.4.5. Scanning electron microscopy (SEM) 

SEM images were used to evaluate the morphological surface of the extrudates C1-C8. Figure 5-7 

presented the differences in the morphological characterization of formulations C1, C3, C5, C7 

(without P-CO2 injection) and formulations C2, C4, C6, C8 (with P-CO2 injection) by using 

longitudinal section (LS) of the extrudate samples. The images confirmed that all formulations 

processed with P-CO2 were porous that is one of the foam like structure characterization. While, 

the other extrudates formulated without P-CO2 were dense and no evidence of any pores in their 

extrudates structure was observed. 
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a 

b 

Figure 5-7: SEM image of LS of CBZ /Klucel
TM

 ELF extrudates a) without P-CO
2
 

injection, b) with P-CO
2
 injection. 
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5.4.6. CBZ Drug Content and Uniformity 

HPLC analysis was used to evaluate the drug content uniformity of all CBZ/KlucelTM ELF 

extrudates and physical mixtures with different drug loading that were used in this study. The 

results showed that, all physical mixture blends and extrudates were in an acceptable range of 

(93%-101%). With more focus on the formulations processed with P-CO2, the drug content 

results indicating more precision and uniformity of the drug in the polymer carrier (97%-101 

%.). These results may give more additional advantage of the carbon dioxide as a drug content 

uniformity enhancer. 

5.4.7. In-Vitro Drug Release 

As mentioned earlier, the in-vitro drug release profile is important for the prediction of the 

absorption and the bioavailability of any API. In many published reports, changing the 

morphology of the hot melt extrudates as well as increasing the surface area will enhance the 

release profile of the API. In this study, all the formulations processed with P-CO2 exerted an 

enhancement of CBZ release in water at 37oC compared to other formulations without P-CO2 

and the pure CBZ (Figure 5-8). Moreover, the CBZ release profile of the 50% drug load 

formulations processed with P-CO2 injection was less than 20%, 30% and 40% drug loading 

which have a complete drug release within 2 hours. While, the drug release profile of different 

drug loading formulations processed without P-CO2 injection results showed that 20% , 30%, 

40% and 50% having 90%, 86%, 80% and 73% CBZ drug release respectively. From these 

results, it can be concluded that 40% drug load is the saturation point of the CBZ/ Klucel TM. 

Because of reaching this point, 50% drug loading formulations C7 and C8 the CBZ dispersed as a 

mixture of amorphous and crystalline state. 
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Figure 5-8-a: Dissolution profiles of 20% CBZ/KlucelTM ELF extrudates with and without 

P-CO2 injection and pure CBZ (Water, USP App II, 100 rpm and 37oC). 
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Figure 5-8-b: Dissolution profiles of 30% CBZ/KlucelTM ELF extrudates with and 

without P-CO2 injection and pure CBZ (Water, USP App II, 100 rpm and 37oC). 
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Figure 5-8-c: Dissolution profiles of 40% CBZ/KlucelTM ELF extrudates with and 

without P-CO2 injection and pure CBZ (Water, USP App II, 100 rpm and 37oC). 
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Figure 5-8-d: Dissolution profiles of 50% CBZ/KlucelTM ELF extrudates with and 

without P-CO2 injection and pure CBZ (Water, USP App II, 100 rpm and 37oC). 
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f2 values were calculated to compare the formulations of the same drug loading with and without 

P-CO2 injection. The results showed that all f2 values were less than 50 (Table 5-5) indicating 

that dissolution profiles were not similar. Furthermore, 30% and 40% drug loading formulation 

exhibited significant dissimilarity with f2 values of 27.96 and 28.18 respectively. 

  Models independent approaches were used to understand and compare the drug dissolution 

profile of the same drug loading formulation with and without P-CO2 injection. The dissolution 

efficiency of all formulations processed with P-CO2 were increased compared with the same drug 

loading formulation processed without P-CO2 (Table 5-6). On the other hand, the mean 

dissolution time of all formulations processed with P-CO2
 were decreased compared with the 

same drug loading formulation processed without P-CO2 (Table 5-6). C4 and C6 formulation 

observed the maximum DE value of 70.577 % and 66.374% and the lowest MDT of 35.308 and 

37.987 minutes respectively. Based on f2, DE and MDT results it was confirmed that the 

injection of P-CO2 through HME process increased the CBZ/klucelTM ELF solid dispersion drug 

load capacity up to 20% more than the regular HME process. 
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Table 5-5: Similarity factor of 20%, 30%, 40% and 50% CBZ /KlucelTM ELF formulations 

with and without P-CO2 

Formulation f2 Similarity Status 

C1 and C2 43.967 Dissimilar 

C3 and C4 27.960 Dissimilar 

C5 and C6 28.183 Dissimilar 

C7 and C8 43.744 Dissimilar 

 

Table 5-6: Dissolution efficiency and the mean dissolution time of 20%, 30%, 40% and 

50% CBZ /KlucelTM ELF formulations with and without P-CO2 

 

Without P-CO2 injection With P-CO2 injection 

DE* MDT** DE* MDT** 

20% CRZ 

/KlucelTM ELF 
50.276 53.291 61.800 45.837 

30% CRZ 

/KlucelTM ELF 
45.626 56.968 70.577 35.308 

40% CRZ 

/KlucelTM ELF 
40.941 59.296 66..374 37.987 

50% CRZ 

/KlucelTM ELF 
39.907 54.600 52.950 51.292 

 

DE*         Dissolution efficiency 

MDT**   Mean Dissolution Time 
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5.5. Conclusion 

Carbamazepine (CBZ) polymeric dispersions can be prepared using the novel technique of 

linking HME with P-CO2 injection. The resulted extrudates showed an increase in porosity and 

changed the macroscopic morphology to a foam-like structure due to expansion of the carbon 

dioxide at the extrusion die. HME processing assisted with P-CO2 increased the drug loading 

capability of CBZ in KlucelTM ELF polymeric matrix as well as optimized CBZ drug- release 

profiles. These processed properties of materials would provide numerous benefits during 

manufacturing of various solid dosage forms. 
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CHAPTER VI 

Dissolution Enhancement of the Psychoactive Natural Product- Piperine Using Hot Melt 

Extrusion Techniques 

6.1. Introduction 

Oral drug delivery is considered as the simplest and easiest route of the drug administration[61, 

62]. Oral bioavailability is mainly affected by drug solubility, permeability [63-66] and first pass 

metabolism [67]. In fact, most of the new APIs have low water solubility with low release 

profiles after oral administration. The biggest challenge in the pharmaceutical industry was to 

enhance the solubility, and the permeability of those drugs as key factors to improve their 

bioavailability. There are many techniques which have been used to improve the drug water 

solubility and release profile, and solid dispersions are considered to be the most successful 

techniques. There are two main solid dispersions manufacturing methods ; the melting methods 

such as hot melt extrusion; and solvent evaporation methods such as spray drying [15]. Hot melt 

extrusion (HME) is one of the most commonly used techniques to enhance the solubility and oral 

bioavailability of poorly soluble drugs as a beneficial technique for solid dispersion. It involves 

simple dispersion of poorly water soluble API in an inert carrier (polymer), where the drug could 

exist in amorphous or crystalline state. . There are many advantages of using HME due to the 

speed and the continuous manufacturing process. Moreover, since no solvent is required, it is 

considered to be a green method for enhancement of the solubility and oral bioavailability of 

poorly soluble drugs. Depending on the polymeric carrier; hot melt extrusion can be also used for 



83 
 

other purposes such as taste masking, controlling or modifying drug release and stabilizing the 

active pharmaceutical ingredient.  

Piperine (1-piperoylpiperidine) (Figure 6-1) is a crystalline pungent alkaloid isolated from black 

pepper (Piper nigrum), long pepper (Piper longum) and other pepper species (family: 

Piperaceae) [68-70]. Piperine is a poorly water soluble compound with a melting point at 135 oC. 

It has been extensively used in folk medicine in many Asian countries [69] and various studies 

have focused on investigating the pharmacological effects of piperine. Recently, it was reported 

as an anti-inflammatory, analgesic [71] [72], anti-depressant [73], cytoprotective, anti-leukemic 

and anti-oxidant agent [68, 74]. Furthermore, piperine significantly improves spatial memory and 

neurodegeneration in an Alzheimer’s disease animal model [75]. Furthermore, piperine was 

reported to be a bioavailability enhancer [76]. Pattanaik et al investigated that 20 mg oral 

piperine can enhance the bioavailability of phenytoin and carbamazepine by increasing their 

plasma dug concentration[77, 78]. Atal et al proved that piperine is a potent inhibitor of the drug 

metabolism [79]. Literatures reports show that piperine acts as a metabolic inhibitor which 

inhibits the drug metabolizing enzyme such as CYP3A4, CYP1B1, CYP1B2 and CYP2E1. [76] 

[80] [81]. This finding gave the interest to incorporate the piperine with the anti-cancer acetyl-

11-keto-ß-boswellic acid to increase its bioavailability and therapeutic efficacy [82]. 

Additionally, piperine modulate the permeability characteristics to increase the drug absorption 

through the cell membrane by increasing the vasodilation of the GIT membrane [70, 83]. Being a 

natural product, piperine had many advantages compared to other chemical entities such as low 

coast due to availability from plant material using easy and well known extraction and isolation 

methods [84]. Moreover, it is safe to use.     
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In the current study, the main goals were to enhance the solubility and the permeability of 

piperine in order to enhance its bioavailability and therapeutic efficacy. Three polymeric carriers 

Soluplus®, polyvinylpyrrolidone-co-vinylacetate 64 (Kollidon® VA 64) and Eudragit ® EPO were 

used via the hot melt extrusion process to accomplish these goals. 

6.2. Materials  

Piperine was purchased from Sigma-Aldrich (Milwaukee, WI 53233, USA), while Soluplus® and 

Kollidon® VA 64 were obtained from BASF- SE (Ludwigshafen, Germany), Eudragit ® EPO was 

received as a gift sample from Evonik Industries (Parsippany, NJ 07045, USA). All other 

chemicals and reagents used in the present study were of analytical grade and obtained from 

Fisher Scientific (Fair Lawn, NJ 07410 USA). 

 

 

 

Figure 6-1: Chemical structure of piperine. 
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6.3. Methods 

6.3.1. Thermogravimetric Analysis (TGA) 

TGA analysis were performed for piperine, Soluplus®, Kollidon® VA 64 and Eudragit ® EPO to 

evaluate their stability at the extrusion temperatures using a Perkin Elmer Pyris 1 TGA equipped 

with Pyris manager software (PerkinElmer Life and Analytical Sciences, 710 Bridgeport Ave., 

Connecticut, USA). Approximately 10-15 mg of piperine, polymers as well as  physical mixtures 

were heated from 30°C to 300 °C at heating rate of 20°C/min. 

6.3.2. Differential Scanning Calorimetry (DSC) 

DSC studies were obtained using Perkin Elmer Pyris 1 DSC equipped with Pyris Manager 

Software (PerkinElmer Life and Analytical Sciences, 710 Bridgeport Ave., Connecticut, USA). 

Approximately 2-4 mg of piperine, physical mixtures or extrudates were heated from 30°C to 

200°C at a heating rate of 10°C/min.  

6.3.3. Hot Melt Extrusion (HME) 

Piperine 10–40% w/w and Eudragit® EPO, Kollidon® VA 64 or Soluplus® (Table 6-1) were 

mixed using a V-shell blender (Patrtreson-Kelley Twin Shell Dry Blender) for 10 minutes. The 

resulting physical mixture blends were extruded using a twin-screw extruder (Process 11 Twin 

Screw Extruder, ThermoFisher Scientific) at the screw speed of 150 rpm at a temperature range 

of 100–130°C. All extrudates were milled and sieved through an ASTM #35 mesh to obtain a 

uniform particle size. 
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Table 6-1: Piperine formulation composition of HME  

 

 

 

 

 

 

Formulation 
Piperine (PIP) 

(%) 

Eudragit ® PE  

(%) 

Soluplus ® 

(%) 

Kollidon® VA 

(%) 

P1 10 90 - - 

P2 20 80 - - 

P3 40 60 - - 

P4 10 - 90 - 

P5 20 - 80 - 

P6 40 - 60 - 

P7 10 - - 90 

P8 20 - - 80 

P9 40 - - 60 
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6.3.4. Scanning Electron Microscopy (SEM) 

The morphology and physical state of the extrudates were evaluated using SEM analysis. 

Samples were mounted on adhesive carbon pads placed on aluminum and were sputter coated 

with gold using a Hummer® 6.2 sputtering system (Anatech LTD, Springfield, VA) in a high 

vacuum evaporator. A JEOL JSM-5600 scanning electron microscope (SEM) operating at an 

accelerating voltage of 10kV was used for imaging.   

6.3.5. Fourier transforms infrared spectroscopy (FTIR) 

FTIR spectra of piperine, polymeric carriers, physical mixtures as well as extrudates were 

performed using Agilent Cary 630 FTIR spectrometer equipped with a DTGS detector. 2-4 mg 

sample was placed directly on ATR and the scanning range was 400 - 4000 cm−1 and the 

resolution was 1 cm−1. 

6.3.6. High Performance Liquid Chromatography (HPLC) 

 HPLC analyses were performed on all samples for piperine content using a Waters HPLC 

equipped with Empower software to analyze the data. HPLC consisted of a Waters e2695 

separation Module and Waters 2489 UV/Visible detector, (Waters Technologies Corporation, 34 

Maple St., Milford, MA 0157). The column used was Phenomenex Luna C18 (5µ, 250 mm × 4.6 

mm). The mobile phase consisted of a mixture of 0.1% ortho phosphoric acid and acetonitrile 

(45:55 v/v) with a flow rate of 1.2 mL/min and 20µL injection volume. The column temperature 

was 35oC (±2). The UV detector wavelength for piperine detection was set at λmax  262 nm [85]. 
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6.3.7. Solubility test 

The solubility was determined at pH 1.2, 5 (water), and 6.8 for formulations P4 - P9 as well as 

pure piperine. Sample equivalents to approximately 100 mg of piperine based on the drug load of 

each formulation were shaken in 20 mL scintillation vials containing 10 mL of tested pH 

solution. The samples were shaken at 80 rpm and at 25oC using Thermo Scientific Precision 

Reciprocal Shaking Bath. A sample volume of 1 mL was collected at time points 4, 10, 20 and 24 

h. The samples were filtered and analyzed by HPLC, and 1 mL of the same pH solution was 

added back to the scintillation vials to maintain the volume.  

6.3.8. In-vitro Drug Release 

A sample equivalent to 40 mg piperine of each extrudate as well as pure piperine were filled in 

gelatin capsules and the in-vitro drug release profiles were run using a USP type II dissolution 

apparatus. The used dissolution medium was 900 mL 0.1 N HCl maintained at 37 o C. A sample 

volume of 2 mL was taken at time points 10, 20, 30, 45, 60, 90, and 120 min. and was filtered 

and analyzed using HPLC; then2 mL of fresh dissolution medium was added back to the 

dissolution vessel at each time point to maintain the volume.  

6.3.9. Ex vivo permeability model (non-everted intestinal sac) 

The permeability studies were performed for the most promising formulation (P4) and pure 

piperine was used as the control. Non-everted intestinal sacs of male Sprague- Dawley rats, 

weighing approximately 200 -250 g, were provided from Charles river (Wilmington MA 01887, 

USA). Sacs of 4-5 cm in length were prepared. Each sac was filled with 0.5 mL of incubated 

Krebs-Ringer bicarbonate phosphate buffer, pH 7.4 with piperine 5mg/ml. Each non-everted sac 

was placed in 25mL beaker containing 5mL of Krebs-Ringer bicarbonate phosphate buffer, pH 
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7.4. A sample volume of 1 ml was taken from the solution outside the sac at time points of 0, 20, 

50, 80 and 120 minutes. The samples were filtered and analyzed for the content using HPLC. 

Fresh Krebs-Ringer buffer (1 mL) was added back to the beaker at each time point to maintain 

the volume. Cumulative dissolution profiles were calculated.  

6.4. Results and discussion: 

6.4.1. Pre-formulation Studies 

Under all utilized processing temperatures, TGA data showed no decrease in sample weight 

which indicate that all formulations in the study were stable under all applied extrusion 

temperatures.  

DSC data showed the endothermic crystalline melting peak at 135oC for pure piperine and all the 

physical mixture samples (Figure 6-2). Alternatively, all the extrudates showed absence of 

crystalline melting peaks in DSC data (Figure 6-3).  
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Figure 6-2: DSC thermogram of 10%, 20% and 40% of PIP/ Eudragit ® PEO, PIP/ 

Soluplus® and PIP/ Kollidon® VA 64 physical mixtures.  
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Figure 6-3: DSC thermogram of 10%, 20% and 40% of Piperine/ Eudragit ® PEO, 

Piperine/ Soluplus® and PIP/ Kollidon® VA 64 extrudates. 
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6.4.2. Hot Melt Extrusion (HME) 

 HME process was carried out using (Process 11 Twin Screw Extruder, fromThermo Fisher 

Scientific. The Thermo Fisher standard screw configuration was used in this study. The screw 

configuration consists of four conveying zones and three mixing zones (Figure 6-4). The hot melt 

extrusion processing conditions such as extrusion temperature, screw speed and the torque values 

are showen in (Table 6-2). The resulting extrudates were transparent, greenish yellow and brittle 

extrudates except for P3 (40% piperine0/ Eudragit® EPO) which was opaque. This observation 

can be explained by the fact that 40% of drug load exceeded the Eudragit ® EPO carrier capacity 

allowing the extudate to mimic the appearance of the piperine only. All extrudates were milled 

using coffee grinder and sieved through an ASTM #35 mesh to obtain a uniform particle size. 
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Figure 6-4: Standard screw configuration of Process 11 Twin Screw 

Extruder, Thermo Fisher Scientific. 
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Table 6-2: Processing parameters for hot melt extrusion of PIP/ Eudragit ® PEO, PIP/ 

Soluplus® and PIP/ Kollidon® VA formulations 

 

Formulation 

Processing 

Temperature  

(oC) 

Screw Speed 

(rpm) 

Torque 

(Nm) 

Extrudate 

Image 

P1 110 150 6-7 
 

 

P2 110 150 4-5 
 

 

P3 110 150 3 
 

 

P4 120 150 7-8 
 

 

P5 120 150 4-5 
 

 

P6 120 150 3-4 
 

 

P7 130 150 7-8 
 

 

P8 130 150 3-4 
 

 

P9 130 150 3-4 
 

 

 

 

 

 



95 
 

6.4.3. Scanning electron microscopy (SEM) 

SEM images showed absence of crystals in 10% w/w piperine/Soluplus® indicating that piperine 

was dispersed in the Soluplus® polymer carrier as an amorphous form. This may help to enhance 

the solubility and the bioavailability of this formulation. However, crystals were evident in the 

other piperine/ Soluplus® formulations with different ratios (Figure 6-5). In addition, SEM 

images demonstrated crystals in Kollidon® VA 64 and Eudragit ® EPO formulation (Figure 6-6). 

These results are not consistent with the DSC results that showed absence of the piperine 

crystalline peak in the resulting extrudates. This observation be explained the fact that all  

polymers used in this study i.e., Eudragit® EPO, Kollidon® VA 64, and Soluplus® had a Tg 

temperature of 45 oC, 101 oC and 70 oC respectively which are lower than the piperine melting 

point. Due to this; the polymers used will soften before the melting temperature of piperine 

allowing the piperine to solubilize in the polymer matrix and prevent the melting peak 

appearance. 
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 Figure 6-5: SEM of extrudates: a) 10% w/w piperine/Soluplus
®
, b) 20% 

w/w piperine/Soluplus
®
, c) 40% w/w piperine/Soluplus

®
.    
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Figure 6-6: SEM of extrudates: a) 20% piperine/Eudragit
 ® 

EPO, b) 

20% piperine/Kollidon
 ® 

VA64.  
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6.4.4. Fourier transforms infrared spectroscopy (FTIR) 

FTIR analysis was performed to evaluate any chemical or physical interaction between piperine 

and the different polymeric carriers. Figure 6-7 shows the FTIR spectra of Soluplus and their 

formulations, the physical mixture displays a sharp peak at 1623 cm-1, and this peak shifts to 

approximately 1629 cm-1 for all Soluplus formulations confirmed the presence of hydrogen 

bonding between piperine and Soluplus®. While, there were no shift observed in Eudragit® EPO 

(Figure 6-8), and Kollidon® VA 64 formulations (Figure 6-9). The formation of hydrogen 

bonding will increase the stability of the Soluplus solid dispersion formulations and prevent 

recrystallization of piperine [15, 86, 87]. 
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Figure 6-7: FTIR spectra of Soluplus
® 

, piperine, 10% piperine /Soluplus
® 

, 

20% piperine /Soluplus
®

, and 40% piperine /Soluplus
® 

extrudates. 
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Figure 6-9: FTIR spectra of Kollidon
 ®  

VA 64, piperine, 20% piperine / Kollidon
 ®  

VA 64 physical mixture and extrudates. 
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6.4.5. Solubility Evaluation 

The shake- flask method was used to determine the piperine solubility at pH value at equilibrium 

state [88].Solubility study was performed for formulations P4, P5, P6, P7, P8 and P9 using three 

different solvents pH (1.2, 5 [(water)], and 6.8) to evaluate whether piperine solubility is pH 

dependent or not. The pH did not have any effect on the solubility of piperine as there were slight 

changes in the solubility values at pH 1.2 and 6.8 (Table 4-3). Furthermore, in formulations P4 

P5, P6, P7, P8 and P9 water solubility of piperine increased more than 160, 45, 25, 20, 5 and 3 

folds respectively compared to pure piperine solubility in water (Table 6-3). This significant 

enhancement in the water solubility of piperine in P4 was due to the dispersion of piperine in its 

amorphous state. Amorphous solid dispersion play a significant role in increasing the solubility 

and the dissolution rate of poorly water soluble APIs [89-92]. In general, amorphous API is more 

soluble than crystalline ones because of its higher effective surface area than the crystalline form 

[93-95]. However, the main problem associated with amorphous API is its instability, which can 

lead to recrystallization during storage as well as during dissolution [96]. In contrast, amorphous 

solid dispersions are stable as the polymeric carrier prevent the API recrystallization [97]. 
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Table 6-3: Solubility of piperine and piperine formulation in water, pH 1.2 and 6.8  

 

Formulation 

Solubility in Water 

(mg/L) 

Solubility in pH 1.2 

(mg/L) 

Solubility in pH 

6.8 

(mg/L) 

Piperine  1 0.9 0.9 

P4 163 117 117 

P5 47 39 45 

P6 27 21 27 

P7 20 18 17 

P8 6 6 6 

P9 3 3 3 
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6.4.6. In-vitro Release Profiles 

Dissolution studies demonstrated improvement in piperine drug release of 10% and 20% w/w 

piperine/Soluplus® extrudates up to 95% and 74%, respectively (Figure 6-10). However, no 

effect on piperine drug release profiles for other formulations was noted due to remaining of 

piperine in the crystalline state. These results confirmed that the dispersion of piperine in 

amorphous state plays a big role in enhancing the solubility [98] and drug release. Additionally, 

it can be concluded that the maximum drug loading capacity of piperine in Soluplus to form 

stabilized amorphous solid dispersion is approximately 10%. Soluplus® (Polyvinyl caprolactam-

polyvinyl acetate-polyethylene glycol graft copolymer) is a relatively new polymer designed 

mainly for use in solid dispersion preparation ApIs [99]. It acts as a polymeric stabilizer and 

solubilizing agent to improve the solubility and bioavailability of poor water soluble APIs [100-

102]. It is a good polymeric carrier candidate to prepare amorphous solid dispersions of many 

poor water soluble APIs such as clotrimazole, carbamazepine, griseofulvine, and itraconazole by 

improving their dissolution profiles as well as their intestinal absorption and bioavailability 

[100]. In the recent study, Soluplus® was successfully used to prepare 10% piperine amorphous 

solid dispersion with a significant increase in the piperine release profile.   

 

 

 

 

 



105 
 

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120

%
 D

ru
g
 R

el
ea

se

Time in mins. 

P2 P4 P5 piperine P6 P8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 6-10: In-vitro release profiles of 10% w/w piperine/Soluplus®, 20% w/w 

piperine/Soluplus®, 40% w/w piperine/Soluplus®, 20% piperine/Eudragit ® EPO, 

20% piperine/Kollidon ® VA64 and pure piperine. 
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6.4.7. Ex vivo permeability model (non-everted intestinal sac) 

There are many in vivo, ex-vivo and in vitro assays used to evaluate the intestinal drug 

permeability [103, 104]. These assays include  perfusion, diffusion chambers, gut sac, cultured 

cell and artificial membrain [105]. The results of a research investigation showed that there was a 

good correlation between rat and human oral absorption. There are two types of  rat intestinal sac 

models which are used to evaluate the drug permeability, everted and non-everted sacs. Some 

studies have been done to compare the permeability values of some APIs through both everted 

and non-everted sacs and no significant difference was observed in the permeability results. In 

this study, non everted rat intestinal sac model have been used to give an idea about the piperine 

absorption in humans. The permeability study results (Figure 6-11) demonstrated the 

enhancement in piperine absorption of 10% w/w piperine/Soluplus® up to 158.9 μg/5mL 

compared to 1.4 μg/5mL in the case of pure piperine within 20 min. as a direct result of the 

solubility improvement. 
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Figure 6-11: Piperine absorption characteristics using jejunum non-everted sac under 

normal physiological conditions (Krebs Ringer bicarbonate phosphate buffer, pH 7.4). 
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6.5. Conclusion 

HME was successfully used to enhance the solubility of the psychoactive natural product 

piperine. The drug release profiles of 10% and 20% w/w piperine/Soluplus® hot melt extrudates 

were significantly enhanced due to piperine in its amorphous state. In addition, the formation of 

hydrogen bond between piperine and Soluplus® may inhibit drug recrystallization and assist in 

the maintenance of the drug in its amorphous form thereby enabling good formulation stability. 

Furthermore, a significant improvement in piperine permeability has been confirmed using a 

non-everted rat intestinal sac. These results demonstrate that increase the absorption and 

bioavailability of piperine are possibilities. 
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