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ABSTRACT 

With the energy consumption increase every year, the non-renewable energy sources such 

as fossil fuels, natural gas, and coal will not sustain forever. In this case, searching for a way to 

develop a renewable energy source is an emergency. For decades, dye-sensitized solar cells (DSCs) 

have received intensive attention due to their high power conversion efficiency and low material 

cost. This dissertation describes efforts to design and synthesize near-infrared organic dyes to 

apply to two systems: first, for use in the improvement of DSCs by the optimization of electron 

rich components such as ullazine and cross-conjugated -bridges to increase photon-to-electricity 

conversion and second, as a way to manipulate the UV-vis absorption and emission of the near-

infrared organic dyes to use lower energy photons with wavelength ranges in the therapeutic 

window (700 nm-1000 nm).  
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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION TO NEAR-INFRARED ORGANIC DYES FOR DYE-SENSITIZED 

SOLAR CELLS AND EMISSIVE APPLICATIONS AND PROGRESS OF RESEARCH 

  

Dye-sensitized solar cells (DSCs) have attracted increasing attention since 1991 when the 

modern DSC was developed by Grätzel and O’Regan with 7.1% efficiency.1 DSCs operate through 

light absorption by the sensitizers or dyes anchored to the semiconductor, by exciting electrons 

from the ground-state to the excited-state of the dye, followed by transferring of the electron to the 

semiconductor, collection of the electron by a redox shuttle at a counter electrode after it has 

traveled an external circuit, and return of the electron to the oxidized dye by the redox shuttle.2 

(Figure 1) 

The DSC can be evaluated by the equation (1) below.  

PCE = JscVocFF/I0  equation (1) 

PCE represents the photon conversion efficiency, Jsc stands for the short-circuit current density, 

Voc shows the open-circuit voltage, FF is the fill factor and I0 means the intensity of sunlight. The 

dye is primarily responsible for influencing Jsc which depends on the number of photons absorbed 

by the dye, and Voc which represents the energy difference between the conduction band of 

semiconductor and the redox potential of the redox shuttle. Recently, some representative dyes 

have been published such as Ru-based sensitizers,3 porphyrin-based sensitizers,4 and metal-free 
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sensitizers5–8 demonstrating attractive power conversion efficiencies ranging from 11.5%-14% 

PCE. SM3154 is the leader in metal-based dyes and has shown up to 13% PCE for a single dye 

cell. Yet for multi-dye cells (ADEKA-1 co-sensitized with LEG4) the power conversion 

efficiency increased to 14% which broke the top efficiency for organic dyes set by SM315.

 Ullazine dyes with heterocyclic electron rich donor have been designed and synthesized 

during my Ph.D. progress. YZ7, YZ12, YZ14, and YZ15 have been tested to show further photon 

harvest up to 800 nm with better performance than C218 under the same condition which has been 

published in Chem. Eur. J. 2 (Figure 2) In addition, cross-conjugated electron rich bridges have 

been developed based on the C218’s bridge. As these dyes have extended the bridge by C=C linked 

to phenyl, these dyes showed broader photon coverage in the high energy region than the original 

CPDT bridge and exhibited better efficiency than the C218 under same condition.9 (Figure 2) 

Meanwhile, collaborations between groups were conducted by making solar cells devices and data 

analysis.  

 

 

Figure 1. Schematic of a DSC devices, containing a semiconductor, sensitizer and redox shuttle 

(The figure was remade with inspiration from Grätzel, M. et al. Nature 2001, 414, 338).  
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Figure 2. Representative structures of YZ7, YZ11, TPzPh(TPA)2 and TTD(TT)2, C218 in research 

progress.2,9,10 

 Around 20 years ago, scientists demonstrated small fluorescent dyes can render biological 

molecules visible. These small fluorescent dyes can absorb and emit photons in the therapeutic 

window of 650 nm to 1400 nm (depending on tissue present), where the absorption and auto-

fluorescence of the biological matrix is the lowest, leading to the deepest penetration depth. Higher 

resolution in this region is desirable and is directly related to increased Stokes shifts (change in 

energy between absorption and emission curves), high fluorescence quantum yields (ratio of 

number of photons emitted to the number of photon absorbed), and absorption as well as emission 

within the therapeutic window. Based on these particular features, TTD and TPzPh series dyes 

were designed and synthesized. These dyes showed better photostability than indocyanine green 

(ICG), a dye has been approved by FDA for clinic use. (Figure 2) Additionally, these series of 

dyes have successfully shifted their absorption and emission into the therapeutic window. With 

these characteristics, this project has been published in the Journal of Organic Chemistry.10
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CHAPTER 2 

2.1 NEAR-INFRARED FLUORESCENT THIENOTHIADIAZOLE DYES WITH LARGE 

STOKES SHIFTS AND HIGH PHOTOSTABILITY 

Adapted with the permission from Yanbing Zhang; Shane A. Autry, Louis E. McNamara, 

Suong T. Nguyen, Ngoc Le, Phillip Brogdon, Davita L. Watkins, Nathan I. Hammer, and Jared 

H. Delcamp.; J. Org. Chem. 2017, 82, 5597. Copyright (2019) American Chemical Society. 

 

(See appendix for permission license.) 

This project also a collaborative project between Dr. Delcamp’s group, Dr. Hammer’s 

group, and Dr. Watkins’s group, where Shane Autry and Dr. Louis McNamara contributed to the 

work by measuring the emission and quantum yield of the organic dyes, Suong Nguyen and Ngoc 

Le contributed to the project by synthesizing the furan-furan and thiophen-furan building blocks 

and Philip Brogdon contributed to the project by making TTD(T)2 . 

 

ABSTRACT 

A series of near-infrared (NIR) organic emissive materials were synthesized and the 

photophysical properties analyzed. The donor-acceptor-donor (D-A-D) materials were designed 

with thienopyrazine and thienothiadiazole acceptor groups with thiophene, furan, and 

triphenylamine-based donor groups. The absorption and emission spectra were found to be widely 

tunable based on the donor and acceptor groups selected. Computational analysis confirms these
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materials undergo an intramolecular charge transfer event upon photoexcitation. Large Stokes 

shifts of ~150 nm was observed and rationalized by computational analysis of geometry changes 

in the excited-state. Fluorescence studies on the dye series reveal maximum peak emission 

wavelengths near 900 nm and a quantum yield exceeding 16% for TTD(T)2. Additionally, several 

dyes were found to have reasonable quantum yields within this NIR region (>1%) with emission 

wavelengths reaching 1000 nm at the emission curve onset. Photostability studies were conducted 

on these materials in an ambient oxygen environment, revealing excellent stability in the presence 

of oxygen from all the dyes studied relative to a benchmark cyanine dye (ICG) during 

photoexcitation with exceptional photostability from the TTD(TT)2 derivative. 

INTRODUCTION 

A wide array of applications exists for emissive materials with research interest recently 

increasing regarding materials in the NIR region. Among potential applications for these materials, 

optical biological imaging is becoming a prosperous field due to the high sensitivity and resolution 

without invasive measures.11 This technique can use small organic molecules to absorb and emit 

photons in the therapeutic window of 650 nm to 1400 nm (depending on tissue present), where the 

absorption and auto-fluorescence of the biological matrix is the lowest, leading to the deepest 

penetration depth.12,13 Higher resolution in this region is desirable and is directly related to 

increased Stokes shifts (change in energy between absorption and emission curves), high 

fluorescence quantum yields (ratio of number of photons emitted to the number of photon 

absorbed), and absorption as well as emission within the therapeutic window. Materials with these 

properties could offer new advances in emissive materials applications such as biological 

imaging.12-33 One of the most intriguing dyes for imaging applications is based on a donor-

acceptor-donor (D-A-D) design with a benzobisthiadiazole acceptor and two triphenylamine donor 
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groups (CH1055-PEG) which emits in the NIR II window (Figure 3); however, the fluorescence 

quantum yield can still be improved upon ( = 0.3%).36 Further understanding of the fundamental 

photophysical properties of NIR conjugated systems is needed in order to rationally design future 

generations of applied materials with tailored emissive properties for numerous applications 

including biological imaging.  

 

 

Figure 3. Known ICG,12-33 CH1055-PEG,36 and TPzPh(TPA)2
37 NIR emissive material structures 

compared to target dye TTD(TT)2. 

Recently, our groups evaluated a thienopyrazine (TPz) based D-A-D dye series(Figure 3),37 

which has large Stokes shifts when compared to many common NIR dyes, such as those based on 

cyanine (ICG), of up to 200 nm with a 4% quantum yield (Figure 3). Due to steric interactions 

between the thienopyrazine ring and triarylamine rings, significant reorganization energy is needed 

upon photoexcitation to reach the lowest energy excited-state geometry. This high reorganization 

energy results in a large Stokes shift. Despite these impressive metrics, these dyes can be improved 

upon by a shifting of the absorption and emission profiles further into the NIR region as is needed 
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for many applications.11,13 Herein, we report a fundamental study in tuning the photophysical 

properties of D-A-D dyes by designing a new series of NIR dyes aimed at maintaining the desired 

properties of the prior TPz series while accessing lower energy photons.   

The low energy absorption band of the TPz-based dyes results from the transfer of electron 

density from the donor (D) regions to the acceptor (A) region within the D-A-D framework. We 

reasoned this band could be shifted toward longer wavelengths by: (1) using a stronger accepting 

motif, (2) reducing the acceptor-donor dihedral angle, and (3) increasing conjugation length with 

weaker donors in place of stronger donors with shorter conjugation lengths. The thienothiadiazole 

(TTD) building block was evaluated as a stronger acceptor with reduced steric repulsion between 

the donor and acceptor as a result of introducing a 5,5-fused ring system in place of the 5,6-fused 

TPz (Figure 4). We reasoned the release of ring strain energy from the thiadiazole ring by 

significantly elongating bonds in this ring would maintain significant Stokes shifts. Additionally, 

we sought to evaluate the effects of replacing the previously studied triphenylamine donor with 

furan and thiophene linkages to both the TPz and TTD acceptors. The triphenylamine donor is a 

strong electron donating group with increased steric interactions at the D-A bond, while the furan 

and thiophene groups are weaker electron donors with reduced sterics. While increasing the 

strength of donor and acceptor groups commonly leads to lower energy absorptions in small 

molecules, we reasoned that reduced sterics, elimination of highly resonance stabilized benzene 

rings, and increased conjugation length could result in lower energy absorptions from weaker 

donor building blocks.  

To analyze our hypotheses, we selected a series of systematically targeted dyes for 

comparing the effects of varying donor groups on an identical thienopyrazine core. Dithiophene 

and furan-thiophene based donors (TPzPh(TT)2 and TPzPh(FT)2) were chosen to increase 



 
 

8 

planarity as well as conjugation length to allow for lower energy photon absorption when 

compared to the previously reported TPzPh(TPA)2. However, the Stokes shift is predicted to be 

significantly reduced with higher planarity dyes.37 As the Stokes shift represents the reorganization 

of the dye in the excited-state, varying the acceptor core to a building block with strain that can be 

released in the excited-state can still provide a large Stokes shift without reducing dye planarity as 

is needed to reach longer wavelengths. To provide a desirable reorganization energy and further 

shift the absorption and emission spectrum into the optical therapeutic window, TTD was 

substituted in place of the TPzPh acceptor since thienothiadiazole is more electron deficient than 

thienopyrazine due in part to the inclusion of a hypervalent sulfur atom.38 For a direct comparison 

of these functionalities, TTD(TT)2 and TTD(TPA)2 are valuable target dyes. To assess the 

importance of the second thiophene with TTD(TT)2, TTD(T)2 is targeted to analyze the resulting 

photophysical properties. 

 

 

Figure 4. Target NIR emissive compounds TPzPh(TT)2, TPzPh(FT)2, TTD(TT)2, TTD(TPA)2, 

and TTD(T)2.  

SYNTHESIS 



 
 

9 

All of the target NIR dyes are readily accessible through traditional transition metal cross-

coupling synthetic routes. Synthetic routes to the five target dyes can be been carried out in 5 or 

fewer linear steps from commercially available materials (Scheme 1). Several synthetic analogs of 

the TPzPh39–42 and TTD42–47 target dyes are known primarily in polymer literature as monomer 

precursors for alternative applications. The synthesis of the TPzPh based dyes began with known 

5,7-dibromo-2,3-diphenylthieno[3,4-b]pyrazine (1), which undergoes Stille coupling with 

stannylTT (2) or stannylFT (3) (Scheme 1).35,46-47  3 is available in two steps beginning from 

bromothiophene derivative 4 and 2-tributylstannyl furan and then lithiation with butyllithium and 

quenching with tributyltin chloride to give 3. Due to purification challenges associated with 

chromatographically separating the desired product from the homocoupled stannyl reagent, 

recrystallization was used as the final purification technique to give a 11-12% yield of the final 

pure desired dyes TPzPh(TT)2 and TPzPh(FT)2. The furan-based dye demonstrates limited 

stability and needs to be kept under nitrogen in the dark to reduce decomposition. The synthetic 

route for TTD(T)2 is known and was easily repeated.46 The remaining TTD based dyes followed a 

similar route beginning from known 2,5-dibromo-3,4-dinitrothiophene (6) which underwent Stille 

coupling with Bu3SnTT to generate 7 (x = TT). Analogously, the triphenylamine donors were 

installed via Suzuki coupling of 6 with TPApinacol boronic ester to give 7 (x = TPA). The dinitro 

interemediates 7 underwent quantitative reduction with SnCl2 to give the diamine intermediates 8, 

which were converted to the desired final dyes with thionylaniline and TMSCl. Attempts to 

synthesize the TTD(FT)2 analogue of TTD(TT)2 were not successful as the diamine intermediate 

8 (x = FT) had significantly lower stability and could not be successfully isolated. 

RESULTS AND DISCUSSION 

With the target dyes synthesized, the optical properties of the D-A-D NIR dyes were 
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measured to reveal the effect of the different donors and acceptors on the molar absorptivity and 

optical band gap. The max range for the dye series varied from 629 nm to 717 nm due to what 

appears to be a single, broad intramolecular charge transfer band (Figure 5, Table 1). Comparison 

of the donor group on dye optical properties is possible through a comparison of the previously 

characterized TPzPh(TPA)2 and the newly reported dyes TPzPh(TT)2 and TPzPh(FT)2. 

Scheme 1. Synthetic route to TPzPh(TT)2, TPzPh(FT)2, TTD(TT)2, and TTD(TPA)2.
 

 

a) 10% PdCl2(PPh3)2, 50oC, overnight, 11-12%; b) 10% Pd(PPh3)4, toluene:DMF, reflux, 

overnight, 84%; c) n-BuLi (1.5 equiv.), Bu3SnCl (0.4 equiv.), 0.1 M THF, -78oC, overnight, 

quantitative; d) 10% Pd(PPh3)4, toluene or dioxane, 24 hours, 37%-53%; e) SnCl2 (10 equiv.), 1.4 

M conc. HCl, 1.0 M EtOH, 0.01 M DCM, room temperature 3 days, 100%; f) thionyl aniline (2.0 

equiv.), TMSCl (7.0 equiv.), 0.2 M pyridine, room temperature, overnight, 38-68%.  

Interestingly, despite the lower electron donating strength of thiophene and furan when 

compared with triphenylamines, the newly synthesized dyes with thiophene and furan donors are 

red-shifted by 29 and 33 nm, respectively, when compared with the parent dye TPzPh(TPA)2. 
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Reduced steric repulsion between the acceptor and a 5-membered thiophene or furan ring when 

compared to the same interaction between acceptor and a 6-membered benzene promotes dye 

planarity enough to desirably red-shift the absorption maximum. Additionally, conjugation length 

is increased through the use of two aromatic heterocycles per donor in place of the single benzene 

in triphenylamine, further causing a bathochromic shift. The molar absorptivity is only modestly 

affected by the change in donor group, with TPzPh(TPA)2 having a molar absorptivity of 14,000 

M-1cm-1 while the TT and FT substituted analogues have molar absorptivities of 12,000 M-1cm-1. 

Little difference is observed in the absorption spectrum for TPzPh(TT)2 and TPzPh(FT)2 in the 

low energy region (450-750 nm); however, at the higher energy region (350-450 nm) a 

significantly stronger absorption is observed for the furan derivative. TTD(TPA)2 and TTD(TT)2 

offer a direct comparison of the thienothiadiazole with the thienopyrazine group of TPzPh(TPA)2 

and TPzPh(TT)2. A near 100 nm red-shift of the max and onset values in toluene is observed for 

the thienothiadiazole derivatives. Additionally, an increase in molar absorptivity is observed for 

each thienothiadiazole derivative (14,000 to 19,000 M-1cm-1 for the TPA derivatives; and 12,000 

to 15,000 M-1cm-1 for the TT derivatives). Otherwise, the charge transfer low-energy absorption 

peaks have similar shapes and widths for the two derivatives. The enhanced molar absorptivity 

and absorption of lower energy photons when using the thienothiadiazole bridge is indicative of a 

more planarized π-conjugated system and an enhanced electron withdrawing strength. Removal of 

a thiophene from the TTD(TT)2 structure to give TTD(T)2 resulted in a 110 nm blue-shift of the 

absorption spectrum onset, which clearly highlights the importance of the added electron density 

of the second thiophene group when developing dyes to access low energy photons in the NIR 

region. 
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Figure 5. Absorption curves of TTD(T)2, TPzPh(TT)2, TPzPh(FT)2, TTD(TT)2, TTD(TPA)2 in 

toluene. 

Table 1. Photophysical properties of TPzPh, TTD and ICG series dyes measured in toluene. 

dye abs
max

  

(nm) 

abs
onset  

(nm) 

ε  

(M-1cm-1) 
emis

ma

x
 (nm) 

Stokes shift  

(nm; eV) 

ϕ  

(%) 

τ  

(ns) 

TPzPh(TPA)2
a 600 730 14,000 748 148; 0.41 4.3 1.2 

TPzPh(TT)2 629 770 12,000 765 136; 0.35 1.2 0.9 

TPzPh(FT)2 633 765 12,000 764 131; 0.34 4.1 0.6 

TTD(TPA)2 698 830 19,000 875 177; 0.36 1.1 1.1 

TTD(TT)2 717 850 15,000 877 160; 0.32 1.0 0.8 

TTD(T)2 624 740 12,000 765 141; 0.37 16.8 2.1 

ICGb 816 870 141,000 819 3; <0.01 9.0 0.7 
aPreviously reported.37 bMeasured in toluene:methanol (2:1). Note: When comparing Stokes shifts 

of dyes, the energy comparison we focus on is in terms of eV whereas small perturbations to dye 

structures often leads to larger shifts in nm values in the NIR region compared to the higher energy 

regions. However, these large changes in energy in terms of nm numerical values in the NIR region 

are represented by relatively small energy changes in terms of eV.  

COMPUTATIONAL RESULTS 

To better understand the optical properties of these dyes, density functional theory (DFT) 

and time-dependent density functional theory (TD-DFT) computational studies were undertaken 
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to analyze the orbital arrangement, planarity, and intramolecular charge transfer (ICT) 

characteristics of the dyes. The geometry of the dyes was first optimized with the B3LYP 

functional and 6-311G(d,p) basis set (Figure 6, Table 2). The highest occupied molecular orbital 

(HOMO) and lowest unoccupied molecular orbital (LUMO) orientations are shown in Figure 5. 

The HOMO is delocalized across the dye from each donor and includes the thiophene region of 

the acceptor groups. Specifically, in the case of the TPA based dyes, the HOMO is only 

substantially present on the benzene ring in conjugation with the acceptor while the two remaining 

TPA rings out of conjugation do not have substantial HOMO contribution. This is in contrast to 

the TT and FT based donors where the HOMO is delocalized across the entire dye, with 

contributions from both rings of each donor. This observation suggests conjugation length changes 

may significantly affect the lowest absorption wavelengths of these dyes. The LUMO is heavily 

localized on the whole acceptor building block, and substantial orbital overlap is observed on the 

thiophene of each acceptor. For the thienopyrazine based dyes, the LUMO does show some orbital 

density on the donor region while the thienothiadiazole shows LUMO orbital density only on the 

acceptor region at the same iso values. This comparison highlights the stronger electron accepting 

ability of the TTD donor and results in a lower energy ICT absorption for these dyes with 

analogous donor groups. As previously noted, a reduction in sterics is expected when changing 

from the TPA to TT or FT donor groups. For the TPz acceptor based dyes, this change in sterics 

from the donor is apparent as the TPA-TPz dihedral angle is 20o and the dihedral angle at the TT-

TPz and TF-TPz bonds are 3.7o-7.7o after geometry optimization. Changing the acceptor building 

block also leads to a significant reduction in sterics at the D-A bond, giving a TPA-TTD dihedral 

angle of 0.0o after geometry optimization. These results support the conclusion that reduced steric 

interactions play an important role in shifting the UV-Vis-NIR absorption values for these dyes as 
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changing the donor from TPA to TT or FT dramatically lowers the dihedral angle value while 

simultaneously absorbing lower energy wavelengths. 

 

 

Figure 6. HOMO (left) and LUMO (right) orbitals of TPzPh(TT)2, TPzPh(FT)2, TTD(T)2, 

TTD(TT)2, TTD(TPA)2. Iso values were set to 0.04. 

TD-DFT analysis with the B3LYP functional and 6-311G(d,p) basis set was used to 

analyze the predicted 10 lowest energy vertical transitions of the dyes in isolation from the 

optimized ground-state geometry in order to identify the orbitals contributing to the absorption 

bands observed (Table 2). The lowest-energy vertical transition trends match the experimental max 

trends based on acceptor building block choice. However, for the donor groups TD-DFT predicts 

similar values for vertical transition energies. Given how close in energy the experimental 

absorption spectrum maxima are for the TPzPh dyes and the similar absorption spectra of the 
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TTD(TPA)2 and TTD(TT)2 dyes, predicting the changes in energy with TD-DFT is challenging as 

only a ≤0.06 eV difference separates each dye set. The oscillator strength values are close for each 

of the dyes, which indicates the molar absorptivity values should be relatively close in value for 

each of the dyes as is observed from solution measurements. In all cases, the TD-DFT results show 

the lowest-energy vertical transitions are dominated by HOMO-LUMO transition (99%) with the 

nearest significant vertical transition substantially higher in energy by >250 nm. These results 

suggest the absorption bands of these dyes extending into the NIR region is predominantly 

resulting from a strong ICT from a donor to acceptor region. 

Table 2. Computational Results of TPz, TTD series from DFT and TD-DFT Analysis. 

dye D-A dihedral 

angle 

vert. trans. (nm; 

eV) 

Oscillator strength 

TPzPh(TPA)2
a 20 706; 1.76 0.41 

TPzPh(TT)2 3.7 725; 1.71 0.56 

TPzPh(FT)2 7.7 699; 1.77 0.49 

TTD(TPA)2 4.6 891; 1.39 0.50 

TTD(TT)2 1.0 887; 1.40 0.54 

TTD(T)2 0.0 725; 1.71 0.21 
a Previously reported.37 

EMISSIVE PROPERTIES 

Having established the strong absorption of these dyes into the NIR spectral region, the 

emissive properties of the dyes were evaluated in toluene solutions (Figure 7, Table 1). All dyes 

were found to emit within the desired wavelength range with emis maxima ranging from 748-877 

nm and emission curve onset values from 900-1000 nm. An additional requirement for biological 

imagining purposes is a large Stokes shift to reduce overlap of the excitation energy and emission 

energy as scattered excitation photons from the laser source dramatically reduce image resolution 

in the absence of significant energy separation. Large Stokes shifts of 131-177 nm (0.32-0.41 eV) 
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in toluene were observed for the dye series. Prior studies have shown the Stokes shift of 

TPzPh(TPA)2 to originate from a substantial shift in ground-state and excited-state geometries 

with a dramatic change at the donor group-acceptor group dihedral angle. The Stokes shift is 

hypothesized to be reduced as a result of lowering steric interactions at the donor-acceptor (D-A) 

group bond.  For the largest acceptor group, TPzPh, the following trend of Stokes shifts was 

observed TPzPh(TPA)2 > TPzPh(TT)2 > TPzPh(FT)2 which is in agreement with the predicted 

steric influence. The smaller acceptor group, TTD should have a similar trend among the donor 

group substituents, only with a 
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Figure 7. Absorption and emission curves of a) TPzPh(TT)2 b) TPzPh(FT)2 c) TTD(TT)2 d) 

TTD(TPA)2 e) TTD(T)2 in toluene.  

lesser extent of Stokes shifts changes. This prediction was observed as the Stokes shift of 

TTD(TPA)2 was greater than that of TTD(FT)2, but lower than TPzPh(TPA)2. Interestingly, 

TTD(T)2 was found to have one of the largest Stokes shifts in the series in terms of eV units at 

0.37 eV using the smallest accepting group, and a 0.05 eV larger Stokes shift than is observed for 

the TTD(TT)2 derivative. This implies the TTD(T)2 has a greater reorganization energy than the 

TTD(TT)2 derivative. Solvatochromic effects were evaluated via absorption and emission 

spectroscopy with TTD(T)2 to examine the effects of solvent polarity on the ground-state and 

excited-state (Figure 42, Appendix). The absorption maxima varied by 0.05 eV (14 nm) over 12 

solvents with widely varied polarities. This negligible change of the absorption spectrum suggests 

the conformation of the molecule in the ground-state is relatively unaffected by solvent polarity. 

Interestingly, the emission maxima energy varied to a great extent by 0.14 eV (73 nm) over the 

same 12 solvents. This change is more significant and suggests a substantial reorganization of the 

TTD(T)2 dye in the excited-state. For the most polar solvent that TTD(T)2 was appreciably soluble 

in (DMSO), the largest Stokes-shift was observed at 0.52 eV (220 nm). To better understand the 

origin of the Stokes-shift for these dyes, computational chemistry was used to analyze the excited-
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state geometry changes. Interestingly, unlike other biological imaging dyes having large Stokes 

shift resulting from dihedral angle changes between donor and acceptor rings, TPzPh(TT)2, 

TPzPh(FT)2, TTD(TT)2, TTD(FT)2, and TTD(T)2 have substantial Stokes shifts but no substantial 

change in dihedral angle has been observed as this value is already near 0o for these dyes.  To 

probe this expectation, computational studies were carried out to optimize the first excited-state 

geometry.  

TTD(TT)2 was closely analyzed as an example dye to evaluate the origin of the observed 

Stokes shifts based on geometry changes in the ground-state (S0) and lowest excited-state (S1, 

Figure 8, Table 3). In a straightforward manner, valence bond theory suggests that bonds 1 and 2 

will be shortened upon excitation to the excited-state as double-bond character is increased upon 

ICT. Conversely, bond 5 should be elongated due to an increase in single bond character upon 

intramolecular charge transfer. Upon careful examination of the calculated excited-state geometry, 

bond length changes in the dyes were found to be the primary reorganization event with the largest 

effects seen at the TTD building block (Table 3). The lengths of bond 1 and bond 2 decrease by 

0.01 and 0.02 Å, respectively, while the length of bond 5 shows the largest change by elongating 

0.06 Å as predicted by valence bond theory. Interestingly, bonds 3 (0.02 Å lengthening) and 4 

(0.03 Å shortening) both change significantly according to computational analysis for the ground- 

and excited-states. We rationalize the change in bond 3 length as occurring due to the loss of local 

aromaticity (and thus less homogenous bond lengths) at the center thiophene ring upon ICT. Bond 

4 in the ground-state is significantly longer than that of the remaining thiophenes in the TTD(TT)2 

dye (1.46 Å versus 1.41 Å, respectively). We attribute this to the hypervalent sulfur (assuming a 

similar geometry preference to SO2 with an AX2N geometry) and both sp2 hybridized nitrogens 

attached to the sulfur atom all preferring bond angles of 120o, which would significantly elongate 
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bond 4 in the ground-state. In the excited-state some of this ring strain is released, presumably due 

to a partial rehybridization of the hypervalent sulfur to more of an AX2N2 geometry (~110o for 

non-cyclic systems) which better matches the ring strain free five member ring geometry at ~110o. 

 

Figure 8. TTD(TT)2 ground-state and excited-state bond length changes. 

Table 3. Comparison of C-C bond lengths of TTD(T)2 in ground-state (S0), excited-state (S1) and 

the length changes (∆R). 

Bond S0 (Å) S1 (Å) ∆R (Å) 

1 1.442 1.432 -0.01 

2 1.425 1.402 -0.02 

3 1.748 1.770 +0.02 

4 1.455 1.427 -0.03 

5 1.638 1.694 +0.06 

 

In addition to inducing large Stokes shifts for better imaging resolution, high fluorescence quantum 

yields are important for either allowing lower dye quantities to be administered for imaging 

applications, or enhanced resolution at larger tissue depths with equal dye amounts administered 

when compared with lower fluorescence quantum yield dyes.37 For this series, despite large Stokes 

shifts, the target dyes maintain a >1% quantum yield which improves on the current state of the 

art emissive dye quantum yields of materials with similar Stokes shifts near this spectral region 

(e.g. CH1055-PEG:  = 0.3%). TTD(TT)2 and TTD(TPA)2 both have emission spectrum 

reaching >950 nm. In this range, a QY greater than 1% (as both of these dyes show) is notable. 

TPzPh(TT)2, TTD(TT)2 and TTD(TPA)2 all demonstrated roughly similar fluorescence quantum 

yields of ~1% despite significantly different emission ranges with emis max varying by 112 nm 
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(0.21 eV). The energy gap law generally dictates that the non-radiative excited-state decay rate 

increases exponentially as the emission energy decreases leading to dramatically lower quantum 

yields as ( = kr/(kr + knr)), where kr is the radiative decay rate and knr is the sum of all non-radiative 

decay rates.27,50–56 This suggests the energy gap law is not the primary factor controlling the 

relative quantum yields of these materials since as knr increases exponentially an inverse effect is 

expected to be observed on .27,50 To indirectly evaluate the change in knr of these dyes, fluorescent 

lifetimes of these materials were measured through time correlated single photon counting 

(TCSPC) experiments where  = 1/(kr + knr) and  is found through the fluorescence decay curve 

fit (Figure 9).  

 

Figure 9. TCSPC fluorescent decay curves for TPzPh(TT)2, TPzPh(FT)2, TTD(TPA)2, TTD(TT)2, 

and TTD(T)2.  

Fluorescence lifetimes for the dyes are all close with a range from 2.1 ns to 0.6 ns. Since the 

measured  and  values are similar for each of the dyes, this suggests the summed rate of non-

radiative decay events is remaining near constant for these dyes as the emission energies shift to 

lower energy values. Substantially, higher fluorescence quantum yields were observed for 

TTD(T)2 (16.8%) and TPzPh(FT)2 (4.1%). Both materials have emission maximum at similar 
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energies (1 nm difference in energy) which eliminates energy gap law concerns for explaining the 

drastic difference in . Comparison of fluorescence lifetimes shows a 3.5x increase in  value for 

TTD(T)2 when compared with TPzPh(FT)2. Given the 4.1x increase in quantum yield for TTD(T)2, 

and the equation kr =  /  derived from the above equations, essentially no substantial change has 

occurred in the kr term for either of the dyes. This suggests the dramatically improved fluorescence 

quantum yield of TTD(T)2 comes from reducing the non-radiative decay rate by roughly 4 times 

that of TPzPh(FT)2. This decrease in knr is potentially due to fewer thermal deactivation pathways 

in the more concise TTD(T)2 structure. It should be noted that the  of TTD(T)2 is exceptionally 

high for a material emitting photons at >750 nm.  

PHOTOSTABILITY 

A common challenge with many NIR emissive materials is low photostability of dyes 

during prolonged irradiation in the presence of oxygen.57 To evaluate the photostability of these 

dyes, they were dissolved in toluene at a concentration of 1  10-5 M to maintain consistency with 

absorption and fluorescent quantum yield studies. The samples were then irradiated with a 150 W 

Xe lamp (AM 1.5 filter) at distance of 25 cm (94.8 mW/cm2) with a cutoff filter to remove photons 

higher in energy than 400 nm (Figure 10).58 No precautions were taken for the removal of oxygen 

from the dye solution to evaluate the stability of the  
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Figure 10. Photostability behavior of TPzPh(TT)2, TPzPh(FT)2, TTD(TT)2, TTD(TPA)2, 

TTD(T)2 in toluene and ICG in toluene:methanol (2:1) 

dyes under ambient conditions. The dye solutions were placed in front of the lamp for the indicated 

time and then absorption spectra were taken to evaluate the percent change in max as a result of 

irradiation. The data is plotted in Figure 10 as the percent of the max absorbance remaining after 

irradiation.  

All dyes show reasonable stability over the course of a continuous hour of irradiation and 

maintain ~50% to >90% of the original dye concentration. The dye stability in order from most 

stable to least is: TTD(TT)2  TPzPh(TT)2  TTD(T)2  TTD(TPA)2  TPzPh(FT)2 after 1 hour of 

irradiation. Interestingly, among the TTD series the thiophene donor based dyes were significantly 

more stable than the TPA based dye. By a considerable amount, the TTD(TT)2 dye was the most 

stable and maintained >90% dye concentration after being irradiated continuously for one hour. 

When comparing the TPzPh and TTD acceptor with the TT donor group, a significantly higher 

stability is observed for the TTD acceptor, which suggests the decomposition pathways for the 

TPzPh acceptor are more facile than the TTD acceptor.  When comparing the highest stability of 

the TT donor and the FT donor, a greater stability for the TT donor is clearly observed as was 
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noted qualitatively during the synthesis of these materials. This correlates to what would be 

predicted based on the lower resonance stabilization energy of furan when compared with 

thiophene (16 kcal/mol vs. 29 kcal/mol) which likely plays a role in the rate of decomposition. The 

high photostability of TTD(TT)2 is in stark contrast to the cyanine dye ICG.59 The key structural 

elements for introducing high photostability were: (1) the addition of a strong electron withdrawing 

group, and (2) the use of planarizing, weaker donating functionality.  

CONCLUSION 

These results suggest the D-A-D design for NIR dyes can be used as a low energy absorbing 

and emitting dye design with good photostability and high fluorescence quantum yields. All target 

dyes studied were synthesized in 5 reproducible steps. UV-Vis-NIR spectrometry, computational 

studies, photostability and emissive studies were undertaken to analyze photophysical property 

changes of these dye designs. The series of 5 dyes synthesized in this manuscript all absorb and 

emit within NIR region with Stokes shifts from 136 nm to 177 nm (λabs onset 730 nm to 850 nm, 

λemis onset = 950 nm to 1000 nm). Encouragingly, the fluorescence quantum yields of all the dyes 

were observed at >1% (reaching 16.8%), which is particularly intriguing as the energy gap law 

suggests greatly diminished fluorescence quantum yield in this spectral region. Photostability 

experiments indicated all the dyes exhibit reasonable stabilities in the presence of ambient oxygen 

during continuous irradiation, with TTD(TT)2 showing exceptional photostability. These 

characteristics suggest the π-conjugated dye systems are promising candidates for future NIR 

emissive material applications including biological system fluorescence imaging studies with 

several functional positions for tuning dyes to specific application needs.  

EXPERIMENTAL SECTION 
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Materials. All commercially obtained reagents and solvents were used as received without further 

purification. 4,6-Bis(2-thienyl)thieno[3,4-c][1,2,5]thiadiazole,43 4,6-Bis(5-bromo-2-

thienyl)thieno[3,4-c][1,2,5]thiadiazole,46 5,7-dibromo-2,3-diphenylthieno[3,4-b]pyrazine,37 2,5-

dibromo-3,4-dinitrothiophene,37 tributyl(5'-dodecyl-[2,2'-bithiophen]-5-yl)stannane,60 and 2-

bromo-5-dodecylthiopheneade60 were prepared according to literature. Thin-layer 

chromatography (TLC) was conducted with Silica Gel XHL TLC Plates from Sorbent 

Technologies and visualized with UV and potassium permanganate staining. Flash column 

chromatography was performed using Sorbent Tech P60, 40–63 μm (230–400 mesh) silica gel. 1H 

NMR spectra were recorded on Bruker Avance-300 (300 MHz) and Bruker Avance DRX-500 

(500 MHz) spectrometers and are reported in ppm using solvent as an internal standard (CDCl3 at 

7.28 ppm).  NMR data is reported as s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, m 

= multiplet, b = broad, ap = apparent, dd = doublet of doublets, and coupling constant(s) are in 

Hertz, followed by integration information. UV−Vis-NIR spectra were measured with a Cary 5000 

instrument. HRMS spectra were obtained with a QTOF HRMS utilizing nanospray ionization. The 

mass analyzer was set to the 400−2000 Da range. Photostabiltiy studies were performed with a 

Xe-lamp (SF-150-C, 150W, Xe lamp, AM 1.5 filter, ScienceTech solar simulator) and a cutoff 

filter blocking light <400 nm from ThorLabs. Solution-phase fluorescent quantum yields were 

obtained using the optically dilute method described by Crosby and Demas.61 All sample 

concentrations were on the order of 10–5 M to reduce reabsorption. The 647 nm line of a Kr+/Ar+ 

ion laser was used as the excitation source, and zinc phthalocyanine (φ = 0.30 in 1% pyridine in 

toluene)62 was used as a reference. Fluorescent lifetimes were obtained by exciting with the 485 

nm line of a pulsed diode laser (fwhm <100 ps) and detecting with an avalanche photodiode. 

Infrared spectra were recorded with an Agilent Cary 660 ATR-FTIR.  



 
 

25 

2-(5-Dodecylthiophen-2-yl)furan (5). To a degassed mixture of 4 (4.4 g, 13.24 mmol) and 

Pd(PPh3)4 (1.6 g, 1.4 mmol) was added the dry toluene (60 mL) and dry N,N-dimethylformamide 

(60 mL). The solution was stirred at room temperature for 30 min before 2-tri-n-butylstannylfuran 

(4.6 mL, 14.5 mmol) was added. The mixture was stirred at room temperature for another 30 

minutes before being heated to reflux for 48 hours. After being cooled to room temperature and 

diluted with dichloromethane, the product was extracted with deionized water. The organic layers 

were combined, dried over MgSO4, and concentrated under reduced pressure. The product was 

purified by flash column chromatography (petroleum ether) and obtained as light beige oil in 84 % 

yield (3.5 g). 1H NMR (300 MHz, CDCl3) δ 7.37 (s, 1H), 7.05 (d, J = 3.6 Hz, 1H), 6.70 (d, J = 3.6 

Hz, 1H), 6.46 – 6.37 (m, 2H), 2.80 (t, J = 7.6 Hz, 2H), 1.68 (m, 2H), 1.48 – 1.31 (m, 18H), 0.89 (t, 

J = 6.9 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 149.9, 145.3, 141.3, 131.3, 124.7, 122.4, 111.7, 

104.3, 32.1, 31.8, 30.2, 29.8, 29.7, 29.5, 29.2, 22.9, 14.3. HRMS (ESI) m/z calculated for 

C20H30OS [M + Cs]+ 451.1072, found 451.1091. 

Tributyl(5-(5-dodecylthiophen-2-yl)furan-2-yl)stannane (3). Under argon, n-butyllithium in 

hexane (2.5 M, 2.4 mL, 6.0 mmol) was added to a solution of 5 (1.3 g, 4.0 mmol) in dry THF (40 

mL) at –10 oC and the mixture was stirred at this temperature for 30 minutes. Tributyltin chloride 

(1.6 mL, 1.6 mmol) was added, and the reaction mixture was warmed to room temperature and 

stirred for an additional 12 hours. The reaction was then quenched with brine (50 mL) and the 

product was extracted with ethyl acetate. The organic layers were combined, washed with water, 

dried over MgSO4, and concentrated under reduced pressure. The crude product was used directly 

without further purification. 1H NMR (500 MHz, CDCl3) δ 7.05 (d, J = 3.5 Hz, 1H), 6.70 (d, J = 

3.5 Hz, 1H), 6.58 (d, J = 3.0 Hz, 1H), 6.45 (d, J =3.1 Hz, 1H), 2.82 (t, J = 7.5 Hz, 2H), 1.72-1.59 
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(m, 8H), 1.53-1.47 (m, 6H), 1.42-1.30 (m, 24 H), 1.14-1.10 (m, 9H), 0.84-0.82 (m, 3H). HRMS 

(ESI) m/z calculated for C32H56OSSnCs [M + Cs]+ 741.2128, found 741.2147.  

5,7-bis(5'-dodecyl-[2,2'-bithiophen]-5-yl)-2,3-diphenylthieno[3,4-b]pyrazine (TPzPh(TT)2). 

To a flame-dried sealed tube was added 1 (25 mg, 0.056 mmol), tributyl(5'-dodecyl-[2,2'-

bithiophen]-5-yl)stannane (71.3 mg, 0.112 mmol), dimethylformamide (0.3 ml, 0.2 M) degassed 

for 20 minutes, and PdCl2(PPh3)2 (0.014 mg, 0.006 mmol). The whole reaction was heated under 

N2 while stirring at 50oC for 48 hours. The reaction mixture was poured into ether, extracted with 

water, and dried with anhydrous Na2SO4. The product was purified through recrystallization with 

hot hexanes to give a green color crystalline solid (6.4 mg, 12.0%). 1H NMR (300 MHz, CDCl3) 

 7.59 (d, J = 7.7 Hz, 6H), 7.39-7.35 (m, 6H), 7.09 (d, J = 3.7 Hz, 2H) 7.06 (d, J = 3.6 Hz, 2H), 

6.71 (d, J = 3.5 Hz, 2H), 2.79 (t, J = 7.4 Hz, 4H), 1.72-1.67 (m, 4H), 1.34-1.27 (m, 36H), 0.92-

0.86 (m, 6H).  HRMS (ESI) m/z calculated for C58H68N2S5Cs [M + Cs]+ 1085.3041, found 

1085.3046. IR (neat, cm−1) 2953.4, 2920.3, 2852.2, 1723.4, 1459.3, 1377.4, 1260.3, 1094.2, 

1019.2. Melting Point: 130.0-132.4 oC. 

5,7-bis(5-(5-dodecylthiophen-2-yl)furan-2-yl)-2,3-diphenylthieno[3,4-b]pyrazine 

(TPzPh(FT)2). To a flame-dried sealed tube was added 1 (25 mg, 0.056 mmol), tributyl(5-(5-

dodecylthiophen-2-yl)furan-2-yl)stannane (69.5 mg, 0.112 mmol), dimethylformamide (0.3 ml, 

0.2 M) degassed for 20 min, and PdCl2(PPh3)2 (0.014 mg, 0.006 mmol). The reaction was heated 

under N2 with a sealed tube stirring at 50oC for 48 hours. The reaction mixture was poured into 

ether, extracted with water, dried with anhydrous Na2SO4. The product was purified through 

recrystallization with hot hexane to give a green color crystalline solid (5.8 mg, 11.0%). 1H NMR 

(500 MHz, acetone-d6)  7.64 (d, J = 7.0 Hz, 4H), 7.53 (d, J = 5.0 Hz, 2H), 7.46-7.40 (m, 6H), 

7.36 (d, J = 5.0 Hz, 2H), 6.91 (d, J = 3.6 Hz, 2H), 6.88 (d, J = 3.6 Hz, 2H), 2.93 (t, J = 8.9 Hz, 
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4H), 1.79-1.74 (m, 4H), 1.47-1.32 (m, 36H), 0.90-0.88 (m, 6H). MS (ESI) m/z calculated for 

C58H68N2O2S3Cs [M + Cs]+ 1053.3497, found 1053.3505. IR (neat, cm−1) 2951.5, 2924.1, 2854.2, 

1092.9, 1018.7. Melting Point: 126.0-129.4 oC. 

5,5''''-didodecyl-3'',4''-dinitro-2,2':5',2'':5'',2''':5''',2''''-quinquethiophene (7, x = TT). To a 

flame-dried round bottom flask was added 6 (50 mg, 0.15 mmol), 2 (303 mg, 0.36 mmol), toluene 

(4.5 ml, 0.03 M), and Pd(PPh3)4 (4.5 mg, 0.004 mmol) under N2. The reaction was sealed and 

heated with stirring 24 hours at 100oC. The reaction mixture was extracted with DCM and water. 

The product was filtered through a pad of silica gel, and recrystallized with hexane to give a red 

solid (46 mg, 37%). 1H NMR (500 MHz, CDCl3)  7.47 (d, J = 7.0 Hz, 2H), 7.14 (ap t, J = 3.9 Hz, 

4H), 6.75 (d, J = 3.6 Hz, 2H), 2.83 (t, J = 7.6 Hz, 4H), 1.73-1.70 (m, 4H), 1.45-1.23 (m, 36H), 

0.92-0.90 (m, 6H).13C NMR (125 MHz, CDCl3)  147.9, 144.2, 135.2, 133.4, 132.9, 132.1, 125.7, 

125.3, 125.2, 123.7, 31.9, 31.5, 30.3, 29.8, 29.7, 29.6, 29.5, 29.4, 29.3, 29.1, 22.7, 14.1. HRMS 

(ESI) m/z calculated for C44H58N2O4S5Cs [M + Cs]+ 971.2054, found 971.2083. IR (neat, cm−1) 

2920.7, 2852.2, 1535.4, 1464.0. Melting Point: 111.6-114.1 oC. 

5,5''''-didodecyl-[2,2':5',2'':5'',2''':5''',2''''-quinquethiophene]-3'',4''-diamine (8, x = TT). To 

a N2 filled round bottom flask was added 7 (x = TT, 46 mg, 0.055 mmol), ethanol (0.34 ml, 0.16 

M), DCM (0.34 ml, 0.16 M), and a solution of tin (II) chloride dihydrate (124 mg, 0.55 mmol) in 

ethanol (0.55 ml, 1.0 M) and concentrated HCl (0.41 ml, 1.35 M). The reaction was stirred 3 days 

at 30oC. The reaction mixture was quenched by 25% NaOH (aq.) and extracted with DCM. The 

product was used immediately, crude without further purification. 1H NMR (300 MHz, CDCl3)  

7.07 (d, J = 3.7 Hz, 2H), 6.98 (ap d, J = 3.5 Hz, 4H), 6.70 (d, J = 3.4 Hz, 2H). 2.81 (t, J = 7.3 Hz, 

4H), 1.94-1.86 (m, 4H), 1.78-1.68 (m, 4H), 1.67-1.52 (m, 36H), 1.19-1.03 (m, 6H). 
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1,3-bis(5'-dodecyl-[2,2'-bithiophen]-5-yl) thieno[3,4-c][1,2,5]thiadiazole (TTD(TT)2). To a 

flame-dried round bottom flask was added 8 (x = TT, 17.5 mg, 0.022 mmol), pyridine (0.12 ml, 

0.18 M), TMSCl (0.012 ml, 0.154 mmol), thionylaniline (0.003 ml, 0.044 mmol) sequentially 

under N2. The reaction was stirred at room temperature overnight. The reaction was quenched with 

1.0 M HCl (aq.) and extracted with DCM. The product was purified through recrystallization with 

hot hexane to give a bright green solid. (8.0 mg, 45%). 1H NMR (500 MHz, CDCl3)  7.47 (d, J = 

3.6 Hz, 2H), 7.12 (d, J = 3.9 Hz, 2H), 7.08 (d, J = 3.3 Hz 2H), 6.73 (d, J = 3.4 Hz, 2H). 2.83 (t, J 

= 7.5 Hz, 4H), 1.74-1.68 (m, 4H), 1.44-1.31 (m, 36H), 0.92-0.89 (t, J = 6.5 Hz, 6H).  HRMS (ESI) 

m/z calculated for C44H58N2S6 [M]+ 806.2924, found 806.2903. IR (neat, cm−1) 2953.3, 2917.3, 

2849.6, 1462.3, 1258.5, 1020.5. Melting Point: 117.8-123.9 oC. 

4,4'-(3,4-dinitrothiophene-2,5-diyl)bis(N,N-bis(4-(hexyloxy)phenyl)aniline) (7, x = TPA) To a 

flame-dried round bottom flask was added 6 (40.0 mg, 0.12 mmol), TPA-Bpin (172.0 mg, 0.30 

mmol), dioxane (20.0 ml, 0.006 M), K2CO3 (4.0 ml, 1.0 M), then Pd(PPh3)4 (70.7 mg, 0.061 mmol) 

was added under N2. The reaction was heated to 90 oC and stirred overnight. The reaction was 

extracted with DCM and H2O. The organic layer was then dried with sodium sulfate. The product 

was purified through column chromatography with 40% DCM:hexane to give a red solid (76.0 mg, 

60%) 1H NMR (500 MHz, CDCl3)  7.62 (d, J = 8.2 Hz,  4H), 7.07 (d, J = 8.2 Hz, 8H), 6.88 (d, J 

= 8.0 Hz,  4H), 6.83 (d, J = 8.9 Hz, 4H), 3.95 (t, J = 6.5 Hz, 8H), 1.83-1.78 (m, 8H), 1.52-1.46 (m, 

8H), 1.38-1.35 (m, 16H), 0.93 (t, J = 6.8 Hz, 12H). 13C NMR (125 MHz, CDCl3)  155.8, 151.5, 

140.2, 135.8, 127.1, 119.2, 118.6, 115.4, 115.3, 83.4, 68.2, 31.6, 25.8, 24.9 22.7, 14.1. HRMS (ESI) 

m/z calculated for C64H75N4SO8Cs [M + Cs]+ 1193.4438, found 1193.4442. IR (neat, cm−1) 2928.7, 

2861.4, 1718.4, 1600.9, 1503.3, 1240.5. Melting Point: 124.1-128.2 oC. 
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2,5-bis(4-(bis(4-(hexyloxy)phenyl)amino)phenyl)thiophene-3,4-diamine (8, x = TPA). 7 (x = 

TPA, 10 mg, 0.01 mmol) was dissolved in ethanol (0.06 ml, 0.16 M) and DCM (0.06 ml, 0.16 M) 

in a round bottom flask under N2. Tin (II) chloride dihydrate (22.6 mg, 0.1 mmol) was added as a 

solution in ethanol (0.1 ml, 1.0 M) and concentrated HCl (0.074 ml, 1.35 M) to the reaction mixture. 

The reaction was stirred 3 days at 30oC. The reaction was quenched with 25% NaOH (aq.) and 

extracted with DCM to give a yellow oil. The crude product was directly used immediately in the 

next reaction without further purification. 1H NMR (300 MHz, DMSO-d6)  7.32 (d, J = 8.6 Hz, 

4H), 6.99 (d, J = 8.7 Hz, 8H), 6.88 (d, J = 8.9 Hz, 8H), 6.79 (d, J = 8.7 Hz, 4H), 4.63 (s, 4H), 3.92 

(t, J = 6.5 Hz, 8H), 1.72-1.67 (m, 8H), 1.41-1.23 (m, 24H), 0.88 (m, 12H). 

4,4'-(thieno[3,4-c][1,2,5]thiadiazole-1,3-diyl)bis(N,N-bis(4(hexyloxy)phenyl)aniline) 

(TTD(TPA)2). To a flame-dried round bottom flask was added 8 (x = TPA, 43 mg, 0.04 mmol), 

N-thionylaniline (0.01 ml, 0.086 mmol), TMSCl (0.04 ml, 0.301 mmol), and pyridine (0.24 ml, 

0.18 M) under N2. The reaction was stirred at room temperature overnight. The reaction was 

quenched with 1M HCl (aq.) and extracted with DCM to give green solid. The product was purified 

through silica gel chromatography column with 40% DCM:hexane. (17 mg, 39 %). 1H NMR (500 

MHz, DMSO-d6)  7.89 (d, J = 8.7 Hz, 4H), 7.06 (d, J = 8.9 Hz, 8H), 6.93 (d, J = 8.9 Hz,  8H), 

6.86 (d, J = 8.7 Hz, 4H), 3.95 (t, J = 6.5 Hz, 8H), 1.73-1.70 (m, 8H), 1.46-1.39 (m, 8H), 1.34-1.21 

(m, 24H), 0.91-0.86 (m, 12H). HRMS (ESI) m/z calculated for C64H76N4O4S2 [M + Cs]+ 1161.4363, 

found 1161.4347. IR (neat, cm−1) 2924.9, 2856.7, 1600.8, 1505.3, 1480.5, 1240.1, 1030.6.
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CHAPTER 3 

3.1 ULLAZINE DONER- BRIDGE-ACCEPTOR ORGANIC DYES FOR DYE-SENSITIZED 

SOLAR CELLS 

Adapted with the permission from Yanbing Zhang,; Hammad Cheema,; Louis McNamara,; 

Leigh Hunt,; Nathan  I. Hammer,; Delcamp, J. H. Chem. Eur. J. 2018, 24, 5939. Copyright 

(2019) Wiley Online Library. 

 (See appendix for permission license) 

 This project is a collaborative project between Dr. Delcamp group and Dr. Hammer 

group. Dr. Hammad Cheema equally contributed to the work by making and analyzing all the 

devices, Dr. Louis McNamara and Leigh Hunt contributed to the project by measuring the 

lifetime of the solid-state of the dyes. 

 

ABSTRACT 

 A series of 4 ullazine-donor based donor-π bridge-acceptor (D-π-A) dyes have been 

synthesized and compared to a prior ullazine donor-acceptor (D-A) dye as well as a triphenylamine 

donor with an identical π-bridge and acceptor. The D-π-A ullazine series demonstrates an 

unusually uniform-in-intensity panchromatic UV-Vis absorption spectrum throughout the visible 

region. This is in part due to the introduction of strong high-energy bands through incorporation 

of the ullazine building block as shown by computational analysis. The dyes were characterized 
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on TiO2 films and in DSC devices. Performances of 5.6% power conversion efficiency were 

obtained with IPCE onsets reaching 800 nm.  

INTRODUCTION 

Dye-sensitized solar cells (DSCs) have attracted increasing attention since 1991 due to low 

manufacturing costs, affordable solar cell materials, easy integration into building materials and 

the potential to meet energy production needs.63–65 DSCs operate through light absorption by a 

sensitizer or dye anchored to a semiconductor, electron transfer from the excited-state dye to the 

semiconductor, collection of the electron by a redox shuttle at a counter electrode after it has 

traveled an external circuit, and return of the electron to the oxidized dye by the redox shuttle. The 

sensitizer component of the DSC devices plays a critical role in controlling light absorption and 

subsequent electron transfers. Organic sensitizers based on the conjugated donor-π-acceptor (D-π-

A) framework offer a modular synthesis, high molar extinction coefficient, and tunable molecular 

design which has furnished organic dyes outperforming precious metal containing sensitizer with 

power conversion efficiencies (PCEs) of over 13%.4,6,66  Additional improvements to organic 

sensitizers are possible by extending the absorption range with precise control of the sensitizer 

energy levels. A key functionality needed for many D-π-A dye systems to extend their absorption 

spectrum is the donor building block.67–71 Frequently, organic dyes do not have ground-state 

oxidation potentials well positioned for minimal energy loss as a result of the limited availability 

of stable, strong electron donating functionality.72 Typically, phenyl amine organic molecular 

building blocks such as coumarin, indoline, triphenylamine, or carbazole are employed as 

donors.66,73 However, these donors often lack planarization of the nitrogen lone pair with the dye 

π-system, conjugation of all p-orbitals on the donor building block, and the ability to add additional 

electron donating groups in conjugation with the dye π-system.68 These inherent challenges have 
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led to the extensive evaluation of various electron rich π-bridges to compensate for the lack of 

desired donor strength. The use of a planarized peri-fused nitrogen containing building blocks such 

as ullazine offers a potential solution to each of these challenges.  

Ullazine is a 16 π-electron planar nitrogen containing peri-fused heterocyclic system which 

is isoelectronic with pyrene.65,67,72-81 Ullazine is fully conjugated with a number of substitutable 

positions for modulating donor strength and tuning dye morphologies. Ullazine has a charge 

separated anionic 14 π-electron aromatic annulene resonance structure around the periphery which 

enhances the donation strength of the nitrogen lone pair by favoring charge separation (Figure 11). 

This charge-separated state can be used to promote intramolecular charge transfer (ICT) at lower 

energies. Additionally, upon ICT, an aromatic ring arises on ullazine in the excited-state. This 

proaromatic pyridinium ring serves to lower the energy necessary for ICT by aromatically 

stabilizing the excited-state.68,70,84 These desirable attributes have been shown to shrink optical 

band gap by ~ 0.7 eV when compared with an analogous triarylamine donor based dye.69 Ullazine 

is also known to be stable during redox processes as is desirable within a solar cell device.82 Due 

to these properties, ullazine has recently attracted interest in donor-acceptor dyes and as a donor 

for porphyrin sensitizers in DSC devices.69,76 However, to date ullazine has only been evaluated 

once in metal-free donor-π bridge-acceptor sensitizers despite the potential for robust, 

panchromatic organic dyes which are desperately needed in DSCs.75 
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Figure 11. Ullazine building block with resonance structures drawn to illustrate favorable ICT. 

 

RESULTS AND DISCUSSION 

Given the promising known properties of ullazine, a series of novel D-π-A based ullazine 

dyes were targeted for synthesis (Figure 12). This series focused on the incorporation of two 

different aryl groups on ullazine with either a para-alkoxy group to maintain a highly electron rich 

donor (YZ7 and YZ12) or di-ortho-alkoxy groups extending over the ullazine π-face to disrupt 

any potential π-stacking based aggregation (YZ14 and YZ15). Given the two strongest donating 

positions (the 4 and 5 positions) of ullazine are ortho substituted, an alkyne was chosen to link the 

donor to the π-bridge in order to enable access to a fully planarized π-system conformation. The 

dyes with identical aryl substituents vary in position of an alkyne linking group either at the meta 

position relative to the nitrogen substituent on the fused benzene ring (5 position) or at the position 

adjacent to the aryl group (4 position). Cyclopentadithiophene (CPDT) was chosen as an electron 

rich π-bridge since DSC dyes typically have considerable energy losses due to lack of electrons 

with high enough potential energy in the ground state of the dye to reach ideal energetics. 

Additionally, CPDT is a well-established π-bridge in high efficiency DSCs which allows for a 

straight forward comparison of a ullazine-alkyne donor to common amine donors such as 

triphenylamines (TPAs).85–87 All dyes utilize the ubiquitous cyanoacrylic acid acceptor. 
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Figure 12. Structure of ullazine-based dyes YZ7, YZ12, YZ14, YZ15, and JD21 as well as TPA 

dye C218. 

 

The synthesis of YZ7, YZ12, YZ14 and YZ15 is briefly described here from known 

intermediates (Scheme 2). The ullazine heterocycle with two di-ortho-hexyloxyphenyl groups was 

synthesized similar to prior analogs.69 Briefly, the di-ortho-hexyloxyphenyl alkyne (2b) was 

synthesized from the corresponding aryl aldehyde (1b) via treatment with TMS-diazomethane and 

LDA in 91% yield. Alkyne 2b was coupled to dibromophenyl pyrrole 3 via a Sonogashira reaction 

in 83% yield. InCl3 catalyzed cyclization furnished parent ullazine 5b in 29% yield. Formyl groups 

were installed via Vilsmeyer-Haack reaction to give the two desired isomers 6b and 7b, which 

were separated via silica gel chromatography and carried forward.69 The aldehydes 6a, 6b, 7a and 

7b were subjected to modified Corey-Fuchs reaction conditions to give desired alkynes 8a, 8b, 9a, 

and 9b in high yield except for derivative 9b presumably due to sterics. For aldehyde precursors 

to final dyes YZ7, YZ12 and YZ14, Sonogashira cross couplings with 6-bromo-4,4-dihexyl-4H-

cyclopenta[2,1-b:3,4-b']dithiophene-2-carbaldehyde 10 and intermediates 8a, 8b, or 9a were 
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carried out in low to high yields. Alkyne 9b, a precursor to YZ15, gave no desired product under 

similar 

 
Scheme 2. Synthetic route to YZ7, YZ12, YZ14 and YZ15. Yields are only listed for compounds 

which are novel to this manuscript. 
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conditions, thus an alternative alkyne-stannylation/Stille coupling route was used to furnish the 

desired aldehyde 12b in 46% yield. Knoevenagel condensation on the resulting aldehydes (11a, 

11b, 12a, or 12b) furnished the desired dye series.  

With the desired dyes in hand, the absorption properties of the YZ dyes were examined to 

determine the suitability of these dyes in DSC devices and to better understand the effects of the 

ullazine-donor group on ICT. The ullazine-based dyes have a broad absorbance from 400-700 nm 

with high molar absorptivities of (26,000-29,000 M-1cm-1, Figure 13, Table 4). The absorption 

spectra of YZ7-YZ15 exhibit an intense peak at around 535 nm, which is due to the HOMO-

LUMO transition of the conjugated molecule (discussion below). The introduction of the alkyne-

CPDT π-system to give a D-π-A structure led to a red-shift of the absorption spectrum relative to 

D-A ullazine-cyanoacrylic acid dye JD21 (Figure 12).69 Additionally, the D-π-A structure 

broadened the absorption spectrum relative to the simple D-A dye and led to the introduction of a 

strong high-energy absorption band. This high-energy transition band is unique to ullazine D-π-A 

CPDT bridged dyes as triphenylamine analogues such as C218 only have a single strong 

absorption band in the visible region.88 This is important as the introduction of high-energy bands 

in the absorption spectrum has been related to higher performing DSC devices due to a more 

uniform absorption of the solar spectrum.89 The molar absorptivities of these high energy bands 

are comparable to that of the ICT low energy band ranging from about 15,000-30,000 M-1cm-1. 

Dyes with strong absorption across the full visible spectrum are desirable and rare in DSC reports. 

Comparing the effects within the proposed series, only a modest shift (10 nm) of the absorption 

maximum is observed based on the substitution  
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Figure 13. Absorption of YZ7 (black line), YZ12 (red line), YZ14 (blue line), YZ15 (purple 

line) measured in CH2Cl2. 

position of the alkyne on ullazine with the position closest to the aryl group (4 position) giving 

the most red-shifted values. The ullazine-phenyl group substituent selection had little effect on 

the position of the absorption maximum.   

 Having established a desirable broad absorption spectrum for use in DSC devices, the dye 

energy levels were analyzed to evaluate the thermodynamic suitability of these dyes for DSCs. 

Cyclic voltammetry was used to measure the ground-state oxidation potentials (E(S+/S)) (Table 4). 

The E(S+/S) values were measured within a range of 0.71-0.90 V versus NHE which are significantly 

more positive than the iodide/triiodide redox shuttle (0.35 V versus NHE). This indicates neutral 

dye regeneration is favorable with a driving force of 360-550 mV. The ground-state oxidation 

potential is similar or higher in energy for  

 

Table 4. Optical and electrochemical data for ullazine dyes YZ7, YZ12, YZ14, YZ15, JD21, and 

a TPA analogue C218. *See experimental for detailed energy measurements and calculations  
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dye λmax 

(nm) 

ε (M-1cm -

1) 

E(S+/S)  

(V) 

E(S+/S*)  

(V) 

Eg
opt  

(eV) 

YZ7 532 29,000 0.90 -0.98 1.88 

YZ12 543 28,000 0.90 -0.94 1.84 

YZ14 537 28,000 0.71 -1.08 1.79 

YZ15 549 26,000 0.84 -1.05 1.89 

JD21 582 28,000 1.09 -0.94 2.03 

C218 550 21,000 0.89 -1.06 1.95 

 

 

these dyes relative to a triphenylamine analogue (C218), which we attribute to the strong donation 

strength of the ullazine donor. The decrease in overpotential used to regenerate the dye is important 

to maximizing DSC device efficiencies, and maintaining high energy E(S+/S) values with NIR 

absorbing materials is critical for efficient solar-to-electric conversion at low energy with TiO2 

based DSC devices. The ullazine aryl substituents were found to have a significant effect on the 

dye ground state oxidation potential with the  

relative to the di-ortho-alkyoxyphenyl substituted dyes (YZ14 and YZ15). This highlights that the 

ullazine-phenyl group plays a key role in tunably tailoring E(S+/S) values. For favorable electron 

transfer to TiO2 the dye excited-state oxidation potential (E(S+/S*)) should be higher in energy than 

-0.5 V versus NHE. The dye E(S+/S*) values were calculated by subtracting the optical band gap 

(Eg
opt) found at the absorption onset from E(S+/S). E(S+/S*) values for the dye series were found to be 

between -0.94 and -1.08 V versus NHE, which provides enough overpotential for injecting an 

electron from the photo-excited dye to the TiO2 conduction band. 

In addition to the suitable energetics found for each of the dyes, well positioned orbitals 

are required for efficient DSC devices. The dye lowest unoccupied molecular orbital (LUMO) 

should be positioned near the TiO2 surface for efficient electron transfer from the dye to TiO2. 

Additionally, the highest occupied molecular orbital (HOMO) should be positioned away from the 

TiO2 surface to diminish back electron transfer from TiO2 to the oxidized dye.  Computational 
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studies via density functional theory (DFT) were carried out to examine the position of the HOMO 

and LUMO at the B3LYP and 6-311G(d,p) level (YZ7: Figure 14; YZ12, YZ14, YZ15: Figure 

43 in Appendix). The HOMOs of the four ullazine-based dyes are primarily positioned on the 

ullazine motif with some delocalization onto the CPDT π-bridge. This position is ideal for good 

separation of the HOMO from the TiO2 surface in space as the ullazine-donor is at the opposite 

end of the dyes relative to the anchor. The LUMO is partially delocalized over the CPDT bridge 

and primarily positioned on the acceptor/anchor. The position of both the HOMO and LUMO 

suggests these ullazine-based dyes can perform efficiently in DSC devices, and also suggests the 

ullazine-based D-π-A dyes are absorbing light via ICT.  

Time-dependent DFT (TD-DFT) calculations were carried out to access the orbital 

contributions to each of the transitions observed in the absorption spectrum.  For the ullazine D-π-

A dyes, TD-DFT indicates the low energy transition band centered at ~530 nm is dominated by a 

HOMO to LUMO transition (99%) which confirm the ICT nature of these dyes (see Figure 14 for 

orbitals, see Table 13, Appendix, for TD-DFT results). The high energy transition band at ~430 

nm which led to a true panchromatic absorption in the UV-Vis-NIR absorption spectrum is 

attributed to a combination of transitions from the HOMO-1 to LUMO (62%) and HOMO to 

LUMO+1 (36%). The HOMO-1 and LUMO+1 both have substantial involvement from the 

ullazine building block showing the importance of this building block in adding these strongly 

absorbing higher energy bands. 
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Figure 14. HOMO, LUMO, HOMO-1, LUMO+1 orbitals for dye YZ7 given by DFT 

calculations at the B3LYP/6-311G(d,p) level. 

YZ7, YZ12, YZ14 and YZ15 were found to have a panchromatic solution absorption, 

properly positioned energy levels and properly positioned orbitals to perform well in DSC devices. 

Thus, devices were fabricated with the ullazine D-π-A dyes using TiO2 as the semiconductor and 

iodine/triiodide as the redox shuttle (Figure 15 and Table 5). Sensitization of TiO2 films is 

commonly done with EtOH:THF solutions for many organic dyes; however, the dyes examined in 

this report were not fully soluble at the desired 0.3 mM concentration. The addition of DMF to 

give a 4:1:2 (EtOH:THF:DMF) solution gave higher solubility and films were sensitized from this 

mixture. Initially the dyes were found to have PCE values of 2.1-4.4% with YZ7 and YZ15 having 

the highest performance according to the equation PCE = (Jsc x Voc x FF)/I0 where Jsc is the short 

circuit current density, Voc is the open circuit voltage, FF is the fill factor, and I0 is the sun intensity 

(Table 5, Figure 15). The dyes show similar FF values (0.68-0.70) and similar Voc values (543-

568 mV, except YZ14 with 477 mV). The Voc values were low in part due to significant LiI needing 

to be added to the cell electrolyte to increase Jsc values.  
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The largest change in dye performance was from the Jsc parameter, which ranged from 6.2-

11.3 mA/cm2. Such a broad variation in this parameter is somewhat surprising given the similarity 

of the dye orbital properties and dye energetics. Additionally, the two highest Jsc value dyes were 

YZ7 and YZ15, which vary structurally the most in the series with a change at the position of the 

bridge-acceptor substitution and at the substituents on the aryl groups. To better understand this 

large variation in Jsc values, incident photon-to-current conversion efficiency (IPCE) 

measurements were undertaken.  All of the dyes show a broad IPCE spectrum from 350 nm to 

approximately 800 nm, however the height of the IPCE spectrum varies dramatically with peak 

IPCE values in the following order YZ14 (35%) < YZ12 (55%) < YZ15 (65%) = YZ7 (65%). A 

slight increase in the high-energy region breadth explains the higher current from YZ7 compared 

to YZ15 observed from the IV curve measurements. 

Table 5. DSC device parameters for YZ7, YZ12, YZ14 and YZ15. 

Dye Voc/mV Jsc/ mA cm-2 FF PCE (%) 

YZ7 551 11.3 0.68 4.4 

YZ12 543 9.6 0.70 3.8 

YZ14 477 6.2 0.70 2.1 

YZ15 568 10.9 0.69 4.4 

YZ7* 559 14.1 0.67 5.6 

See experimental for device details. *Indicates YZ7 optimized device conditions. 

The highest performing dye in the series (YZ7) was subjected to time correlated single 

photon counting (TCSPC) excited-state lifetime analysis to evaluate electron injection efficiency. 

YZ7 shows excited-state lifetimes shorter than our instrument response time of 150 ps, both on 

TiO2 and Al2O3 films, compared to 1.25 ns in DCM (Figure 16). This is surprising as a decrease 
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in excited-state lifetime on TiO2 is commonly thought to correlate with electron injection; however, 

electron injection is not possible with Al2O3 as it is an insulator. Yet, Al2O3 shows a dramatic 

decrease in excited-state lifetime. A possible rationale for this observation is heavy aggregation of 

the dye on film surfaces which diminishes excited-state lifetimes. 

To evaluate this hypothesis, solid film UV-Vis absorption measurements were made for 

comparison to solution measurements for YZ7 (Figure 17). Compared to solution measurements, 

the strength of the low energy and high energy transitions are reversed on the film. The results 

support our aggregation hypothesis as YZ7 appears to aggregate heavily on solid films of TiO2. 

CDCA is commonly used to disrupt aggregation and at very high loadings (100:1 CDCA:dye), the 

film absorption spectrum begins to look more like the solution spectrum in terms of relative 

transition intensity. Thus, the shorter excited state lifetime 
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Figure 15. J-V curves (top) and IPCE (bottom) for DSC devices with YZ7, YZ12, YZ14 and 

YZ15. *Indicates different dye sensitization solution was used (see Table 5 for details). 

 

Figure 16. Time correlated single photon counting graph with YZ7 in DCM solution, YZ7 on 

Al2O3, YZ7 on TiO2 and YZ7 on TiO2 with CDCA. 

in the solid-state and the appearance of aggregation induced absorption may explain the need for 

higher LiI loading to achieve a higher injection free energy from the aggregates to TiO2 by 

lowering TiO2 conduction band (Table 14 in Appendix). 
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Figure 17. Normalized UV-Vis absorption of YZ7 in DCM, and TiO2 film absorption of YZ7 

with no CDCA and 100:1 CDCA:dye. 

Given the similar energetics and absorption breadths, aggregation of these dyes on the TiO2 

surface is a potential PCE diminishing factor in this series. Evidence for this includes: (1) the IPCE 

spectrum onsets at a 100 nm longer wavelength than that of the DCM solution, (2) the absorption 

spectrum of the dye on TiO2 shows the higher energy absorption band as the strongest transition 

while the solution absorption spectrum shows the lower energy absorption band as the strongest, 

(3) TCSPC studies show Al2O3 films decrease excited-state lifetimes dramatically compared to 

solution measurements, and (4) the addition of a co-sensitizer (D35) increased the IPCE intensity 

of YZ7 in a region of the spectrum where D35 does not absorb which implies disruption of 

aggregates (Figure 44, Appendix). Attempts to diminish aggregation through addition of CDCA 

to the dye-deposition solution only showed a modest change in the dye-TiO2 film absorption 

spectrum and no significant enhancement of device performance. To evaluate the effects of 

deposition solvent with the best performing dye, YZ7, a series of solvents were examined (Table 

15, Figure 45, Appendix). The PCE efficiency varied substantially with deposition solvent from 

3.4-5.6% PCE. The best conditions were found to be deposition of YZ7 from acetonitrile:tert-

butanol:chlorobenzene (1:1:1.2,v/v/v) with 10:1 CDCA:dye. The IPCE curve of YZ7 under 
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optimized conditions shows an increase in percent intensity from 350 nm to 800 nm with a peak 

value of 75%. The integrated current under the IPCE curve is in good agreement with the short-

circuit current density (Jsc) of 14.1 mA/cm2 measured under AM 1.5 conditions. The measured Jsc 

combined with an open-circuit voltage (Voc) of 559 mV and fill factor (FF) of 0.67 gives the highest 

power conversion efficiency (PCE) of the series at 5.6%. These results show that the Ullazine 

donor is exceptional at the introduction of desirable dye properties (panchromatic light absorption, 

multiple transitions in the UV-Vis spectrum, and maintaining high energy oxidation potentials); 

however, in the solid state the aggregation of these dyes leads to diminished device performances 

which must be carefully optimized to increase IPCE response and device PCE. 

CONCLUSIONS 

In summary, we have designed and synthesized a series of metal-free ullazine based D-π-

A dyes for the first time. These dyes were characterized by UV-Vis-NIR absorption spectroscopy, 

cyclic voltammetry, and computational analysis, which reveal suitable characteristics for use in 

DSC devices. The broad, near uniform solution absorption intensity from 350-700 nm is 

particularly desirable for DSC applications. This dramatic change in absorption spectrum from the 

prior reports on D-A ullazine sensitizers with relatively narrow absorption spectrum response is 

encouraging. A PCE of 5.6% was obtained for the highest performing dye in the series (YZ7) with 

an IPCE onset of 800 nm. Given the relatively few metal-free dyes reaching 800 nm in an IPCE 

spectrum this dye-design warrants further investigation. TCSPC studies and film absorption 

measurements show substantial aggregation of the dyes on the TiO2 surface. This strongly suggests 

the diminishment in IPCE peak value (75% with a maximum of 90%) is the result of surface 

aggregation. Future dye designs will focus added substituents to the ullazine building block which 

are known to dramatically reduce dye aggregation. 
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EXPERIMENTAL SECTION 

General Information. All commercially obtained reagents were used as received. 3,9-

bis(4-(hexyloxy)phenyl) indolizino[6,5,4,3-ija]quinoline-5-carbaldehyde (6a) and 3,9-bis(4-

(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinoline-4-carbaldehyde (7a) were made according to 

literature.69 6-bromo-4,4-dihexyl-4H-cyclopenta[2,1-b:3,4-b']dithiophene-2-carbaldehyde (10) 

was prepared according to literature procedure.90 1-(2,6-dibromophenyl)-1H-pyrrole (3) was 

prepared according to literature procedure.69 Thin-layer chromatography (TLC) was conducted 

with Sorbtech silica XHL TLC plates and visualized with UV. Flash column chromatography was 

performed with Silicycle ultrapure silica gel P60, 40-63 μm (230-400 mesh). Reverse phase 

column chromatography was performed with premium grade C18 silica gel from Sorbent 

technologies. 1H NMR spectra were recorded on Bruker Avance-300 (300 MHz) and Bruker 

Avance DRX-500 (500 MHz) spectrometers and are reported in ppm using solvent as an internal 

standard (CDCl3 at 7.28 ppm).  NMR data is reported as s = singlet, d = doublet, t = triplet, q = 

quartet, p = pentet, m = multiplet, br = broad, ap = apparent, dd = doublet of doublets, and coupling 

constant(s) are in Hertz, followed by integration information. UV−Vis-NIR spectra were measured 

with a Cary 5000 instrument. HPLC measurements were taken using an Agilent 1100A HPLC 

instrument, equipped with an Agilent Eclipse Plus C18 column and UV-Vis detector. 90% 

isopropanol: 10% water was used as the mobile phase at 0.3 ml/min for all the measurement. 

HRMS spectra were obtained with a QTOF HRMS utilizing nanospray ionization. The mass 

analyzer was set to the 400−2000 Da range. CV data was collected with a CH Instruments 

CHI600E instrument. 

Electrochemical Characterization. Cyclic voltammetry was measured with a 0.1 M 

Bu4NPF6 in CH2Cl2 solution using a glassy carbon working electrode, platinum reference electrode, 
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and platinum counter electrode with ferrocene as an internal standard. Values are reported versus 

NHE with ferrocene taken as 0.70 V vs NHE.  E(S+/S*) is calculated from the equation E(S+/S*) = 

E(S+/S) - Eg
opt. Eg

opt is estimated from the onset of the absorption spectrum and converted from 

nanometers to eV with the equation: Eg
opt = 1240/λonset. 

Computational Protocol. MM2 energy minimization in ChemBio3D Ultra 

(version:13.0.2.3021) was used for the initial energy minimization of the four dyes. Dihedral 

angles for the relevant groups were set to values between the global minimum and the next local 

minimum on the conformation energy diagram as calculated by ChemBio3D. Accurate geometry 

optimizations were performed sequentially by density functional theory (DFT) using Guassian09 

with the B3LYP functional with the following basis sets: first 3-21g, second 6-31g (d,p) and finally 

6-311g (d,p). No imaginary frequencies were observed for the optimized geometries. Time-

dependent density functional theory (TD-DFT) computations were performed with optimized 

geometries and with the B3LYP functional and 6-311g (d.p) basis set to compute the lowest energy 

10 vertical transitions and oscillator strengths. Orbital images were prepared with Avogadro 1.0.3 

with an iso value of 0.30. 

Time Correlated Single Photon Counting (TCSPC) Measurements: Fluorescence 

lifetime curves were obtained using the 485 nm line of an LDH series 485B pulsed diode laser 

(pulse width approx. 100 ps) as the excitation source and emission was detected using a PicoQuant 

PDM series single photon avalanche diode (time resolution approx. 50 ps) and TimeHarp 260 time 

correlated single photon counter (25 ps resolution). The alumina paste was prepared by following 

the reported procedure with the following modifications.91 167 mg of Al2O3 NPs (particle size ~ 

150 mesh, pore size = 58 Å, surface area = 155 m2/g, SigmaAldrich) was dispersed in a 5 mL 

solution containing α-terpineol/ethylcellulose (Sigma aldrich # 46080, 48.0-49.5% (w/w) ethoxyl 
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basis) (ethylcellulose content: 6 wt % of α-terpineol, 280 mg) with 5 ml of acetone. The suspension 

was kept under stirring conditions over a period of 2 days, after which the remaining acetone was 

removed by rotary evaporator. The α-terpineol/ethylcellulose mixture was first prepared by 

completely dissolving ethylcellulose in α-terpineol in the presence of 5 ml ethanol, once dissolved 

excess ethanol was removed by rotary evaporator. The prepared paste was then used to screen print 

films with a Sefar screen (54/137–64W) resulting in 1 µm thick films on TEC 15 FTO glass. Before 

its use, the TEC 15 was cleaned by submerging in a 0.2% Deconex 21 aqueous solution and 

sonicated for 15 minutes at room temperature. The FTO glass was rinsed with water and sonicated 

in acetone 10 minutes followed by sonication in ethanol for 10 minutes. Finally, after paste printing 

and drying on a hot plate for 7 minutes at 125oC, substrates were then sintered with progressive 

heating from 125oC (5 minute ramp from r.t., 5 minute hold) to 325oC (15 minute ramp from 

125oC, 5 minute hold) to 375oC (5 minute ramp from 325oC, 5 minute hold) to 450oC (5 minute 

ramp from 375oC, 15 minute hold) to 500oC (5 minute ramp from 450oC, 15 minute hold) using a 

programmable furnace (Vulcan® 3-Series Model 3-550). After cooling to room temperature, the 

electrodes were dipped in the 0.3 mM dye solution for 16 hours and used as it is for TCSPC 

measurements. 

Photovoltaic Measurements: Current-Voltage curve photovoltaic characteristics were 

measured using a 150 W Xenon lamp (Model SF150B, SCIENCETECH Inc. Class ABA) solar 

simulator equipped with an AM 1.5 G filter for a less than 2% spectral mismatch. Prior to each 

measurement, the solar simulator output was calibrated with a KG5 filtered mono-crystalline 

silicon NREL calibrated reference cell from ABET Technologies (Model 15150-KG5). The 

current density-voltage characteristics of each cell was obtained with a Keithley digital source-

meter (Model 2400). The incident photon-to-current conversion efficiency was measured with an 
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IPCE instrument manufactured by Dyenamo comprised of a 175 W Xenon lamp (CERMAX, 

Model LX175F), monochromator (Spectral Products, Model CM110, Czerny-Turner, dual-

grating), filter wheel (Spectral Products, Model AB301T, fitted with filter AB3044 [440 nm high 

pass] and filter AB3051 [510 nm high pass]), a calibrated UV-enhanced silicon photodiode 

reference, and Dyenamo issued software. 

Device Fabrication: For the photoanode, TEC 10 glass was purchased from Hartford 

Glass. Once cut into 2x2 cm squares, the substrate was submerged in a 0.2% Deconex 21 aqueous 

solution and sonicated for 15 minutes at room temperature. The electrodes were rinsed with water 

and sonicated in acetone 10 minutes followed by sonication in ethanol for 10 minutes. Finally, the 

electrodes were placed under UV/ozone for 15 minutes (UV-Ozone Cleaning System, Model 

ProCleaner by UVFAB Systems). A compact TiO2 underlayer is then applied by pretreatment of 

the substrate submerged in a 40 mM TiCl4 solution in water (prepared from 99.9% TiCl4 between 

0-5oC). The submerged substrates (conductive side up) were heated for 30 minutes at 70oC. After 

heating, the substrates were rinsed first with water then with ethanol. The photoanode consists of 

thin TiO2 electrodes comprised of a 10 μm mesoporous TiO2 layer (particle size, 20 nm, Dyesol, 

DSL 18NR-T) for YZ7-YZ15 for devices using the iodine redox shuttle and a 5.0 μm TiO2 

scattering layer (particle size, 100 nm, Solaronix R/SP). Both layers were printed from a Sefar 

screen (54/137–64W). Between each print, the substrate was heated for 7 minutes at 125oC and 

the thickness was measured with a profilometer (Alpha-Step D-500 KLA Tencor). The substrate 

was then sintered with progressive heating from 125oC (5 minute ramp from r.t., 5 minute hold) to 

325oC (15 minute ramp from 125oC, 5 minute hold) to 375oC (5 minute ramp from 325oC, 5 minute 

hold) to 450oC (5 minute ramp from 375oC, 15 minute hold) to 500oC (5 minute ramp from 450oC, 

15 minute hold) using a programmable furnace (Vulcan® 3-Series Model 3-550). The cooled 
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sintered photoanode was soaked 30 min at 70oC in a 40 mM TiCl4 water solution and heated again 

at 500oC for 30 minutes prior to sensitization. The complete working electrode was prepared by 

immersing the TiO2 film into the dye solution overnight at room temperature. The solution is 0.3 

mM of dye in different solvent mixtures (Table S2). For preparing counter electrodes, 2x2 cm 

squares TEC 7 FTO glass was drilled using a Dremel-4000 with Dremel 7134 Diamond Taper 

Point Bit with FTO side protected by tape. Electrodes were washed with water followed by a 0.1M 

HCl in EtOH wash and sonication in acetone bath for 10 minutes. These washed FTO electrodes 

were then dried at 400oC for 15 minutes. A thin layer of Pt-paste (Solaronix, Platisol T/SP) was 

slot printed on the FTO, and the printed electrodes were then heated at 450oC for 10 minutes. After 

allowing them to cool to room temperature, the working electrodes were then sealed to the Pt-FTO 

electrodes with a 25 μm thick hot melt film (Solaronix, “Meltonix”, Surlyn) by heating the system 

at 130oC under 0.2 psi pressure for 1 minute. Devices were completed by filling the electrolyte 

through the pre-drilled holes in the counter electrodes, and finally the holes were sealed with a 

Surlyn circle and a thin glass cover by heating at 130oC under a pressure of 0.1 psi for 25 seconds. 

Finally, soldered contacts were added with a MBR Ultrasonic soldering machine (model USS-

9210) with a solder alloy (Cerasolzer wire diameter 1.6 mm, item # CS186-150). A circular black 

mask (active area 0.15 cm2) was punched from black tape and used in the subsequent photovoltaic 

studies. Film absorption was done using TEC 15 glass with 3 μm mesoporous TiO2 film (particle 

size, 20 nm, Dyesol, DSL 18NR-T), and progressively heated as described previously.  

SYNTHETIC DATA  

2-ethynyl-1,3-bis(hexyloxy)benzene (2b): To a flame dried flask was added freshly prepared 

dibromomethyl-triphenylphosphonium bromide76 (38.6 g, 75.3 mmol, 2.02 equiv.) and 

tetrahydrofuran (377 ml). In one portion, potassium tert-butoxide (7.93 g, 70.8 mmol, 1.90 equiv.) 
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was added and the mixture stirred at ambient temperature for 3 minutes. A solution of 1b69 (11.4 

g, 37.3 mmol, 1.0 equiv.) in tetrahydrofuran (63.2 ml) was added to the reaction mixture via 

cannula, and the resulting mixture was stirred at room temperature for 10 minutes. The reaction 

was cooled to -78oC and potassium tert-butoxide (20.8 g, 187 mmol, 5.0 equiv.) was added in one 

portion following gradual warming to ambient temperature. After 1.5 hours, the reaction mixture 

was diluted with dichloromethane and rinsed with water, dried by Na2SO4 and evaporated. The 

crude mixture was purified through silica gel chromatography using 20% dichloromethane: hexane 

was the eluent to get clear oil. (8.51 g, 75%). 1H NMR (500 MHz, CDCl3)  = 7.18 (t, J = 8.4 Hz, 

1H), 6.50 (d, J = 8.5 Hz, 2H), 4.03 (t, J = 6.7 Hz, 4H), 3.48 (s, 1H), 1.95-1.70 (m, 4H), 1.60-.142 

(m, 4H), 1.42-1.22 (m, 8H), 0.95-0.92 (ap t, 6H). 13C NMR (125 MHz, CDCl3)  = 161.8, 129.9, 

104.5, 101.4, 85.1, 76.3, 68.9, 31.6, 29.1, 25.6, 22.6, 14.0. IR (neat, cm−1): 3324, 2936, 2918, 2852, 

1583, 1453, 1391, 1289, 1251, 1092, 894, 771. HRMS (ESI) m/z calc’d (positive mode) for 

C20H31O2 [M+H]+ 303.2324, found 303.2304. 

1-(2,6-bis((2,6-bis(hexyloxy)phenyl)ethynyl)phenyl)-1H-pyrrole (4b): To a flame dried N2 

filled flask was added 1-(2,6-dibromophenyl)-1H-pyrrole (3),69 (3.53 g, 11.3 mmol, 1.0 equiv.), 2-

ethynyl-1,3-bis(hexyloxy)benzene (2b) (8.51 g, 28.2 mmol, 2.4 equiv.), CuI (89.4 mg, 0.47 mmol, 

0.04 equiv.), Pd[P(tBu)3]2 (359 mg, 0.70 mmol, 0.06 equiv.), dioxane (23.5 ml), and 

diisopropylamine (4.21 ml, 28.1 mmol, 2.4 equiv.). The mixture was stirred at room temperature 

overnight. The reaction mixture was then extracted with DCM and H2O. The crude mixture was 

purified through silica gel chromatography using 5% ether: hexane as the eluent to give the pure 

product (7.22 g, 83%). 1H NMR (500 MHz, CDCl3)  = 7.65 (d, J =7.7 Hz, 2H), 7.36 (br s, 2H), 

7.27 (t, J = 7.7 Hz, 1H), 7.18 (t, J = 8.3 Hz, 2H), 6.51 (d, J = 8.3 Hz, 4H), 6.28 (br s, 2H), 4.02 (t, 

J = 6.4 Hz, 8H), 1.95-1.80 (m, 8H),  1.63-1.33 (m, 24H), 0.95-0.90 (ap t, 12H). 13C NMR (125 
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MHz, CDCl3)  = 161.3, 141.4, 133.7, 129.9, 126.0, 122.8, 121.7, 108.2, 104.6, 102.4, 94.3, 87.5, 

69.0, 31.8, 29.3, 25.9, 22.8, 14.2. IR (neat, cm−1): 3098, 3057, 2925, 2860, 1578, 1454, 1383, 1297, 

1251, 1093, 1012, 901. HRMS (ESI) m/z calc’d (positive mode) for C50H66O4N [M+H]+ 744.4992, 

found 744.5026. 

3,9-bis(2,6-bis(hexyloxy)phenyl)-4,4a1-dihydroindolizino[6,5,4,3-ija]quinolone (5b): To a 

flame dried, N2 filled flask was added 1-(2,6-bis((2,6-bis(hexyloxy)phenyl)ethynyl)phenyl)-1H-

pyrrole (4b), (6.90 mg, 9.27 mmol, 1.0 equiv.), InCl3 (1.23 g, 5.58 mmol, 0.60 equiv.) and toluene 

(46.5 ml, 0.2 M). The mixture was stirred at 100oC overnight. The reaction mixture was filtered 

through a pad of silica gel with 5% ethylacetate: hexane as eluent to give the crude product after 

evaporation. Then, the mixture was purified through silica gel chromatography with 10% 

dichloromethane:hexanes to give the final pure product (1.99 g, 29%). 1H NMR (500 MHz, CDCl3) 

 = 7.51-7.42 (m, 3H), 7.37 (t, J = 8.4 Hz, 2H), 7.20 (s, 2H), 6.76 (d, J =8.4 Hz, 4H), 6.60 (s, 2H), 

4.10-3.88 (m, 8H), 1.70-1.49 (m, 8H), 1.32-1.05 (m, 24H), 0.79 (t, J = 6.7 Hz, 12H). 13C NMR 

(75 MHz, CDCl3)  = 158.3, 132.9, 129.1, 127.0, 126.4, 126.1, 123.0, 121.0, 118.3, 117.2, 105.7, 

105.2, 69.0, 31.4, 29.0, 25.6, 22.5, 13.9. IR (neat, cm−1): 3585, 3174, 3055, 2920, 2855, 2334, 

1585, 1452, 1410, 1365, 1244, 1091, 1030, 863. HRMS (ESI) m/z calc’d (positive mode) for 

C50H65O4NCs [M+Cs]+ 876.3968, found 876.3904. 

3,9-bis(2,6-bis(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinoline-5-carbaldehyde (6b): To a 

flame dried, N2 filled round bottom flask was added 3,9-bis(2,6-bis(hexyloxy)phenyl)-4,4a1-

dihydroindolizino[6,5,4,3-ija]quinolone (5b) (1.90 g, 2.6 mmol, 1.0 equiv.), dichloroethane (8.4 

ml, 0.13 M), and anhydrous N,N-dimethylformamide  (0.48 ml, 6.24 mmol, 2.4 equiv.). The 

mixture was stirred at room temperature while POCl3 (0.60 ml, 6.24 mmol, 2.4 equiv.) was added 

dropwise via syringe. The reaction was stirred for 5 hours at room temperature to give a red 



 
 

53 

solution. The reaction mixture was then diluted with a 50 mL ~1:1 mixture of 

dichloromethane:NaOAc (sat. aq.) for 2 hours. The product was purified with silica 

chromatography using 10% dichloromethane:hexanes to give an orange oil (156 mg, 7.8 %) as the 

major side product. 1H NMR (500 MHz, CDCl3)  = 10.32 (s, 1H), 8.95 (s, 1H), 7.89 (d, J =8.2 

Hz, 1H), 7.53 (d, J =8.2 Hz, 1H), 7.44 (s, 1H), 7.41-7.32 (m, 2H), 6.91-6.96 (m, 2H), 6.73 (dd, J 

=2.9 Hz, J =2.9 Hz, 4H), 4.01-3.82 (m, 8H), 1.55-1.42 (m, 8H), 1.22-0.98 (m, 24H), 0.77-0.59 (m, 

12H). 13C NMR (75 MHz, CDCl3)  = 191.0, 158.1, 158.0, 131.9, 131.2, 130.8, 129.8, 129.6, 

129.5, 128.4, 127.9, 126.6, 121.7, 121.2, 119.2, 116.7, 116.5, 115.9, 109.1, 108.7, 105.4, 105.3, 

68.9, 68.8, 31.3, 31.3, 28.9, 28.9, 25.5, 25.5, 22.4, 22.4, 13.8, 13.8. IR (neat, cm−1): 3489, 3284, 

3186, 3111, 2922, 2855, 2714, 2337, 1664, 1582, 1453, 1350, 1297, 1245, 1185, 1092, 1028, 940. 

HRMS (ESI) m/z calc’d (positive mode) for C51H65O5NCs [M+Cs]+ 904.3917, found 904.3705. 

3,9-bis(2,6-bis(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinoline-4-carbaldehyde (7b): This 

material was formed as the major product during the formylation reaction to form 3,9-bis(2,6-

bis(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinoline-5-carbaldehyde (6b).  3,9-bis(2,6-

bis(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinoline-4-carbaldehyde (7b) was observed as a 

slightly lower Rf than 3,9-bis(2,6-bis(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinoline-5-

carbaldehyde (6b) on TLC with 10% dichloromethane:hexane as eluent. The product was isolated 

by silica chromatography with 10% dichloromethane:hexanes to give a yellow solid (1.09 g, 55%). 

1H NMR (500 MHz, CDCl3)  = 9.44 (s, 1H), 7.59-7.50 (m, 3H), 7.46 (s, 1H), 7.64-7.49 (m, 2H), 

7.23 (s, 1H), 7.08 (s, 1H), 6.71 (dd, J = 2.7 Hz, 2.7 Hz, 4H), 4.29-3.78 (m, 8H), 1.89-1.41 (m, 8H), 

1.41-0.98 (m, 24H), 0.72 (ap t, 12H). 13C NMR (125 MHz, CDCl3)  = 186.6, 158.1, 157.8, 131.9, 

130.4, 130.3, 129.7, 128.2, 127.4, 126.7, 126.4, 125.8, 125.2, 124.4, 123.7, 120.9, 120.4, 120.4, 

116.4, 115.4, 105.3, 105.3, 105.3, 104.7, 68.7, 68.7, 31.3, 31.2, 29.0, 28.9, 25.6, 25.5, 22.4, 22.4, 
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13.8, 13.8. IR (neat, cm−1): 3311, 3180, 3057, 2924, 2858, 2335, 1648, 1587, 1523, 1454, 1386, 

1290, 1245, 1194, 1093, 908, 879. HRMS (ESI) m/z calc’d (positive mode) for C51H65O5NCs 

[M+Cs]+ 904.3917, found 904.3762. 

 

5-ethynyl-3,9-bis(4-(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinoline (8a): To a flame dried 

flask was added freshly prepared dibromomethyl-triphenylphosphonium bromide92 (2.01g, 4.04 

mmol, 2.02 equiv.) and tetrahydrofuran (20.2 ml). In one portion, potassium tert-butoxide (426 

mg, 3.80 mmol, 1.90 equiv.) was added and the mixture stirred at ambient temperature for 3 

minutes. A solution of 3,9-bis(4-(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinoline-5-

carbaldehyde (6a)69 (1.149 g, 2.0 mmol, 1.0 equiv.) in tetrahydrofuran (3.4 ml) was added to the 

reaction mixture via cannula, and the resulting mixture was stirred at room temperature for 10 

minutes. The reaction was cooled to negative 78oC and potassium tert-butoxide (426 mg, 3.80 

mmol, 5.0 equiv.) was added in one portion following gradual warming to ambient temperature. 

After 1.5 hours, the reaction mixture was diluted with dichloromethane and rinsed with water, 

dried by Na2SO4 and evaporated. The crude product was filtered through a pad of silica gel, eluting 

with 50 % dichloromethane/hexanes to give the desired product as a yellow oil (1.08 g, 95%). 1H 

NMR (500 MHz, CDCl3)  = 7.80 (d, J = 8.6 Hz, 2H), 7.75 (d, J = 8.6 Hz, 2H), 7.69 (s, 1H), 7.65 

(d, J = 8.1 Hz, 1H), 7.44 (d, J = 8.1 Hz, 1H), 7.21 (s, 1H), 7.10 (d, J = 7.3 Hz, 2H), 7.08 (d, J = 

7.3 Hz, 2H). 4.21-3.95 (m, 4H), 3.53 (s, 1H), 2.00-1.75 (m, 4H), 1.74-1.20 (m, 12H), 0.96 (t, J = 

6.8 Hz, 6H). 13C NMR (125 MHz, CDCl3)  = 159.5, 159.5, 133.9, 133.6, 131.4, 130.8, 130.6, 

129.6, 129.6, 129.4, 128.2, 128.1, 127.5, 127.1, 127.0, 126.3, 118.5, 118.2, 117.3, 114.7, 114.7, 

109.8, 107.2, 82.8, 81.7, 68.2, 31.7, 29.8, 29.4, 28.3, 25.9, 22.7, 14.2 IR (neat, cm−1): 3312, 2925, 
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2855, 2334, 2093, 1602, 1503, 1493, 1389, 1299, 1276, 1240, 1171, 1110, 1032, 824, 792. HRMS 

(ESI) m/z calc’d (positive mode) for C40H41O2NCs [M +Cs]+ 700.2192, found 700.2186. 

3,9-bis(2,6-bis(hexyloxy)phenyl)-5-ethynylindolizino[6,5,4,3-ija]quinoline (8b): The synthesis 

follows the same procedure as 5-ethynyl-3,9-bis(4-(hexyloxy)phenyl)indolizino[6,5,4,3-

ija]quinoline (8a) except 3,9-bis(2,6-bis(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinoline-5-

carbaldehyde (6b, 64.3 mg) was used in place of 3,9-bis(4-(hexyloxy)phenyl)indolizino[6,5,4,3-

ija]quinoline-5-carbaldehyde (6a). The reaction mixture was extracted by DCM and H2O, dried 

with Na2SO4 and evaporated. The crude mixture was purified through silica gel chromatography 

using 50% dichloromethane:hexane as the eluent to give a pure yellow oil (54.3 mg, 85%). 1H 

NMR (500 MHz, CDCl3)  = 7.67 (s, 1H), 7.63 (d, J = 8.0 Hz, 1H), 7.43-7.31 (m, 3H), 7.23 (s, 

1H), 6.68-6.60 (m, 6H), 4.20-3.80 (m, 8H), 3.43 (s, 1H), 1.70-1.42 (m, 8H), 1.29-1.00 (m, 24H), 

0.73 (ap t, 12H).  13C NMR (75 MHz, CDCl3)  = 158.2, 158.2, 132.1, 129.3, 129.2, 127.8, 127.5, 

127.4, 127.3, 127.2, 126.5, 120.9, 119.9, 117.5, 116.9, 116.7, 109.0, 106.5, 106.4, 105.5, 105.5, 

105.5, 83.3, 80.6, 68.9, 68.9, 31.3, 31.3, 28.9, 28.9, 25.5, 25.5, 22.4, 22.4, 13.8, 13.8. IR (neat, 

cm−1): 3307, 2927, 2862, 1591, 1457, 1421, 1395, 1366, 1297, 1247, 1098, 1027, 872. HRMS 

(ESI) m/z calc’d (positive mode) for C51H65O5NCs  [M+Cs]+ 900.3968, found 900.3716. 

4-ethynyl-3,9-bis(4-(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinoline (9a): The synthesis 

follows the same procedure as 5-ethynyl-3,9-bis(4-(hexyloxy)phenyl)indolizino[6,5,4,3-

ija]quinoline (8a) except 3,9-bis(4-(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinoline-4-

carbaldehyde (7a, 280 mg)69 was used in place of 3,9-bis(4-(hexyloxy)phenyl)indolizino[6,5,4,3-

ija]quinoline-5-carbaldehyde (6a). The crude mixture was purified through silica gel 

chromatography using 50% dichloromethane:hexanes as the eluent to give the pure product (253 

mg, 91%). 1H NMR (300 MHz, Acetone-d6)  =  7.87 (d, J = 6.7 Hz, 1H), 7.70 (d, J = 8.5 Hz, 
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2H) , 7.67 (d, J = 8.4 Hz, 2H), 7.60 (d, J = 7.7 Hz, 1H), 7.52 (t, J = 7.7 Hz, 1H),  7.34 (s, 1H), 

7.13-6.97 (m, 5H), 6.84 (d, J = 4.3 Hz, 1H), 4.13-4.00 (m, 4H), 3.99 (s, 1H), 1.90-1.71(m, 4H), 

1.60-1.25 (m, 12H), 1.11-0.80 (m, 6H). 13C NMR (75 MHz, acetone-d6)  = 159.6, 137.3, 132.6, 

131.2, 130.9, 130.2, 129.2, 128.6, 127.5, 126.9, 125.7, 125.0, 124.1, 120.2, 119.3, 118.6, 114.7, 

114.0, 109.1, 108.6, 107.0, 86.4, 80.2, 67.8, 67.8, 31.5, 25.6, 25.6, 22.4, 13.5. IR (neat, cm−1): 

3279, 2924, 2856, 1976, 1604, 1507, 1428, 1406, 1395, 1360, 1278, 1244, 1174, 1116, 1071, 1027, 

830. HRMS (ESI) m/z calc’d (positive mode) for C40H41O2NCs [M + Cs]+ 700.2192, found 

700.2178. 

3,9-bis(2,6-bis(hexyloxy)phenyl)-4-ethynylindolizino[6,5,4,3-ija]quinoline (9b): The synthesis 

follows the same procedure as 5-ethynyl-3,9-bis(4-(hexyloxy)phenyl)indolizino[6,5,4,3-

ija]quinoline (8a) except 3,9-bis(2,6-bis(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinoline-4-

carbaldehyde (7b, 466 mg) was used in place of 3,9-bis(4-(hexyloxy)phenyl)indolizino[6,5,4,3-

ija]quinoline-5-carbaldehyde (6a). The reaction mixture was extracted by dichloromethane and 

H2O, dried with Na2SO4 and evaporated. The crude mixture was purified through silica gel 

chromatography using 50% dichloromethane:hexanes as the eluent to give a yellow oil (153 mg, 

33%). 1H NMR (300 MHz, CDCl3)  = 7.44 (br s, 3H), 7.38-7.25 (m, 2H), 7.18 (d, J = 8.5 Hz, 

2H), 6.70 (d, J = 8.3 Hz, 2H), 6.64 (ap d, 3H), 4.08-3.80 (m, 8H), 2.59 (s, 1H), 1.68-1.40 (m, 8H), 

1.38-0.99 (m, 24H), 0.81-0.59 (m, 12H). 13C NMR (125 MHz, CDCl3)  = 158.8, 158.1, 132.4, 

129.3, 129.2, 128.4, 126.6, 126.1, 126.0, 126.0, 125.9, 123.6, 123.0, 122.3, 119.3, 119.1, 116.3, 

116.2, 109.7, 105.4, 105.0, 99.2, 79.2, 77.6, 68.9, 68.9, 31.3, 31.3,  29.0, 28.9, 25.6, 25.5, 22.4, 

22.4, 13.8, 13.8. IR (neat, cm−1): 3310, 2926, 2861, 1589, 1457, 1388, 1296, 1247, 1097, 871. 

HRMS (ESI) m/z calc’d for (positive mode) C52H66O4N [M+H]+ 768.4992, found 768.4495. 
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6-((3,9-bis(4-(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinolin-5-yl)ethynyl)-4,4-dihexyl-4H-

cyclopenta[2,1-b:3,4-b']dithiophene-2-carbaldehyde (11a):  To a flame dried N2 filled round 

bottom flask was added CuI (0.67 mg, 0.003 mmol, 0.04 equiv.), dioxane (0.18 ml), 

diisopropylamine ( 0.03 ml, 0.211 mmol, 2.4 equiv.), Pd[P(t-Bu)3]2 (2.69 mg, 0.005 mmol, 0.06 

equiv.), 5-ethynyl-3,9-bis(4-(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinoline (8a) (60 mg, 0.106 

mmol, 1.2 equiv.), and 6-bromo-4,4-dihexyl-4H-cyclopenta[2,1-b:3,4-b']dithiophene-2-

carbaldehyde (10)90 (40.0 mg, 0.088 mmol, 1.0 equiv.). The mixture was stirred at room 

temperature overnight. The reaction mixture was then diluted with dichloromethane and extracted 

with dichloromethane/H2O, dried by Na2SO4 and evaporated. The product was then purified 

through silica gel chromatography with 50% diethyl ether:hexanes to give the desired product as 

a red solid (79 mg, 97%). 1H NMR (300 MHz, CDCl3)  = 9.88 (s, 1H), 7.82 (d, J = 8.5 Hz, 2H), 

7.76 (d, J = 8.6 Hz, 2H),  7.70 (s, 1H), 7.66 (d, J = 8.1 Hz, 1H), 7.59 (s, 1H), 7.46 (d, J = 8.0 Hz, 

1H), 7.29 (d, J = 5.7 Hz, 1H),  7.22 (br. s, 3H), 7.11 (dd, J = 8.8 Hz, 8.7 Hz, 4H), 4.26-4.00 (m, 

4H), 2.30-0.60 (m, 48H). 13C NMR (125 MHz, CDCl3)  = 182.6, 161.8, 159.6, 159.5, 158.9, 

147.2, 143.8, 136.7, 134.1, 133.8, 131.6, 130.7, 130.5, 129.8, 129.6, 129.5, 128.0, 127.5, 127.3, 

127.2, 126.8, 126.4, 125.7, 118.8, 118.4, 117.4, 114.8, 114.8, 110.1, 107.4, 107.4, 95.5, 88.3, 68.2, 

37.7, 31.6, 31.6, 29.7, 29.7, 29.3, 25.8, 24.6, 22.7, 22.6, 14.1, 14.0. IR (neat, cm−1): 3303, 3051, 

2926, 2856, 2179, 1657, 1604, 1503, 1393, 1369, 1246, 1176, 834. HRMS (ESI) m/z calc’d 

(positive mode) for C62H69O3NS2 [M]+ 939.4719, found 939.4890. 

6-((3,9-bis(2,6-bis(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinolin-5-yl)ethynyl)-4,4-dihexyl-

4H-cyclopenta[2,1-b:3,4-b']dithiophene-2-carbaldehyde (11b): The synthesis follows the same 

procedure as 6-((3,9-bis(4-(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinolin-5-yl)ethynyl)-4,4-

dihexyl-4H-cyclopenta[2,1-b:3,4-b']dithiophene-2-carbaldehyde (11a) except 3,9-bis(2,6-
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bis(hexyloxy)phenyl)-5-ethynylindolizino[6,5,4,3-ija]quinoline (8b, 55.8 mg) was used in place 

of 5-ethynyl-3,9-bis(4-(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinoline (8a). The crude mixture 

was purified through silica gel chromatography using 50% dichloromethane:hexanes as the eluent 

to give a red solid (17.4 mg, 21%). 1H NMR (500 MHz, CDCl3)  = 9.84 (s,1H), 7.65 (s,1H), 7.61 

(d, J =8.1 Hz, 1H), 7.56 (s,1H), 7.45-7.29 (m, 3H), 7.21 (s,1H), 7.14 (s,1H), 6.81-6.64 (m, 6H), 

4.05-3.90 (m, 8H), 2.00-1.80 (m, 4H), 1.70-0.79 (m, 54H), 0.79-0.61 (m, 12H). 13C NMR (125 

MHz, CDCl3)  = 182.5, 161.8, 158.7, 158.2, 158.1, 147.5, 143.5, 136.1, 132.2, 129.8, 129.4, 

128.7, 127.6, 127.4, 127.4, 127.1, 126.6, 125.4, 121.2, 120.0, 117.8, 117.0, 116.6, 116.5, 109.2, 

106.9, 106.7, 105.4, 105.4, 105.4, 96.4, 87.4, 69.0, 68.9, 54.1, 37.8, 31.6, 31.3, 31.3, 29.4, 28.9, 

28.9, 25.6, 25.5, 24.6, , 22.6, 22.4, 22.3, 14.0, 13.0, 13.8. IR (neat, cm−1): 3367, 3063, 2923, 2851, 

1656, 1592, 1496, 1458, 1421, 1395, 1364, 1302, 1247, 1098. HRMS (ESI) m/z calc’d (positive 

mode) for C74H93O5NS2Cs  [M+Cs]+ 1272.5550, found 1272.5785. 

6-((3,9-bis(4-(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinolin-4-yl)ethynyl)-4,4-dihexyl-4H-

cyclopenta[2,1-b:3,4-b']dithiophene-2-carbaldehyde (12a): The synthesis follows the same 

procedure as 6-((3,9-bis(4-(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinolin-5-yl)ethynyl)-4,4-

dihexyl-4H-cyclopenta[2,1-b:3,4-b']dithiophene-2-carbaldehyde (11a) only 4-ethynyl-3,9-bis(4-

(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinoline (9a, 41.3 mg) was used in place of 5-ethynyl-

3,9-bis(4-(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinoline (8a). The crude mixture was purified 

through silica gel chromatography using 10% acetone: hexane as the eluent to give a red solid (39 

mg, 57%). 1H NMR (500 MHz, CDCl3)  = 9.88 (s, 1H), 7.96 (br t, 1H), 7.81 (d, J = 8.5 Hz, 2H), 

7.74 (d, J = 8.4 Hz, 2H), 7.62-7.52 (m, 3H), 7.32 (s, 1H), 7.18-6.97 (m, 6H), 7.00 (d, J = 4.1 Hz, 

1H),  4.13 (t, J = 6.4 Hz, 2H), 4.07 (t, J = 6.5 Hz, 2H), 2.00-1.80 (m, 8H), 1.69-1.49 (m, 8H), 1.49-

0.89 (m, 21H), 0.86 (t, J = 6.8 Hz, 12H). 13C NMR (125 MHz, CDCl3)  = 182.6, 161.8, 159.5, 



 
 

59 

159.4, 158.9, 147.1, 143.7, 136.9, 136.4, 132.8, 131.6, 131.2, 130.5, 129.8, 129.3, 128.9, 128.1, 

127.9, 127.3, 125.8, 125.5, 124.6, 124.1, 120.0, 119.7, 118.7,114.8, 114.2, 109.4, 109.0, 107.3, 

94.5, 91.6, 68.2, 68.2, 37.7, 32.0, 31.7, 31.6, 31.6, 31.6, 29.7, 29.6, 29.4, 29.3, 29.2, 25.8, 25.8, 

24.6, 22.7, 22.7, 22.7, 22.6, 22.6, 14.1, 14.1, 14.0, 14.0. IR (neat, cm−1): 3020, 2925, 2855, 2362, 

2335, 1651, 1504, 1463, 1395, 1362, 1260, 1175, 1023, 892. HRMS (ESI) m/z calc’d (positive 

mode) for C62H69O3NS2Cs [M + Cs]+ 1072.3773, found 1072.3646. 

6-((3,9-bis(2,6-bis(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinolin-4-yl)ethynyl)-4,4-dihexyl-

4H-cyclopenta[2,1-b:3,4-b']dithiophene-2-carbaldehyde (12b): To a flame dried, N2 filled 

round bottom flask was added 6-bromo-4,4-dihexyl-4H-cyclopenta[2,1-b:3,4-b']dithiophene-2-

carbaldehyde (10)90 (34 mg, 0.075 mmol, 1.0 equiv.), Pd(PPh3)4 (13.9 mg, 0.012 mmol, 0.16 equiv.) 

and dry N,N-dimethylformamide  (10.8 ml, 0.007 M). A separate solution of 3,9-bis(2,6-

bis(hexyloxy)phenyl)-4-((tributylstannyl)ethynyl)indolizino[6,5,4,3-ija]quinoline (13b) (158 mg, 

0.15 mmol, 2.0 equiv.) in dry N,N-dimethylformamide  (2.5 ml, 0.06 M) was added dropwise 

followed with stirring at 110oC and the mixture was stirred overnight. The reaction was cooled 

down to room temperature and extracted with diethylether and H2O. The crude product was further 

purified by silica column chromatography with 10% ethyl acetate:hexanes to give a red solid (39 

mg, 46%). 1H NMR (300 MHz, CDCl3)  = 9.85 (s, 1H), 7.57 (s, 1H), 7.51-7.41 (m, 3H), 7.36 (dd, 

J = 9.1 Hz, J = 8.5 Hz, 2H), 7.23 (s, 1H), 7.19 (s, 1H), 6.72 (d, J = 8.2 Hz, 2H), 6.71 (d, J = 8.4 

Hz, 2H),  6.67 (d, J = 4.7 Hz, 1H), 6.67 (d, J = 4.7 Hz, 1H), 4.10-3.79 (m, 8H), 2.00-1.75 (m, 4H), 

1.75-1.42 (m, 8H), 1.42-0.80 (m, 46H), 0.80-0.60 (m, 12H).  13C NMR (125 MHz, CDCl3)  = 

182.4, 161.6, 158.5, 158.5, 158.3, 158.2, 158.2, 147.9, 143.0, 135.0, 132.4, 129.8, 129.6, 129.4, 

127.9, 126.8, 126.6, 126.0, 125.4, 123.8, 123.6, 122.5, 119.6, 119.4, 116.2, 116.0, 109.0, 105.5, 

105.5, 105.2, 105.2,  99.6, 93.6, 85.0, 68.9, 68.9, 37.7, 31.7, 31.3, 31.3,  29.7, 29.7, 29.0, 25.6, 
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25.5, 24.6, 22.6, 22.5, 22.4, 14.0, 13.9, 13.9. IR (neat, cm−1): 3311, 3052, 2926, 2857, 1655, 1590, 

1495, 1458, 1421, 1396, 1300, 1228, 1120, 1098, 870.6. HRMS (ESI) m/z calc’d (positive mode) 

for C74H93O5NS2 [M]+ 1139.6495, found 1139.6481. 

3,9-bis(2,6-bis(hexyloxy)phenyl)-4-((tributylstannyl)ethynyl)indolizino[6,5,4,3-ija]quinoline 

(13b): To a N2 filled flame dried round bottom flask was added 3,9-bis(2,6-bis(hexyloxy)phenyl)-

4-ethynylindolizino[6,5,4,3-ija]quinoline (9b) (100 mg, 0.13 mmol, 1.0 equiv.) and dry THF (4.4 

ml, 0.03M). The solution was cooled to -78oC, then 2.5 M n-BuLi in hexane (0.06 ml, 0.15 mmol, 

1.16 equiv.) was added at -78oC and stirred for 2.5 hours.  Bu3SnCl (0.04 ml, 0.14 mmol, 1.1 equiv.) 

was added and the whole reaction was stirred at room temperature for 2.5 hours. The reaction 

mixture was extracted with diethyl ether and H2O, dried with Na2SO4 and evaporated to get the 

crude product that was used without further purification in the next step (137 mg, 100%). 1H NMR 

(300 MHz, CDCl3)  = 7.45-7.24 (m, 5H), 7.10 (d, J = 2.7 Hz, 2H), 6.68 (d, J =8.4, 2H), 6.65-6.55 

(m, 3H), 4.01-3.80 (m, 8H), 1.81-0.80 (m, 59H), 0.80-0.60 (m, 12H). 

(E)-3-(6-((3,9-bis(4-(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinolin-5-yl)ethynyl)-4,4-

dihexyl-4H-cyclopenta[2,1-b:3,4-b']dithiophen-2-yl)-2-cyanoacrylic acid (YZ7): To a round 

bottom flask was added 6-((3,9-bis(4-(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinolin-5-

yl)ethynyl)-4,4-dihexyl-4H-cyclopenta[2,1-b:3,4-b']dithiophene-2-carbaldehyde (11a) (40 mg, 

0.04 mmol, 1.0 equiv.) and CHCl3 (0.17 ml). The mixture was degassed with N2 for 30 minutes, 

then cyanoacetic acid (11 mg, 0.13 mmol, 3.0 equiv.) and piperidine (0.03 mL, 0.29 mmol, 7.0 

equiv.) were added into the flask. The flask was sealed with a plastic stopper and electrical tape 

and stirred at 90oC for 10 hours. To the reaction mixture was added acetic acid, then the mixture 

was directly purified through a silica gel plug using first 100% dichloromethane, followed by 10% 

methanol:90% dichloromethane, and finally 10% methanol:2% acetic acid:88% dichloromethane. 
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Then the dye was again extracted with hexane and water to remove acetic acid and trace silica gel 

particles. The organic layer was concentrated under reduced pressure to give a purple solid. The 

product was suspended in hexane solvent then centrifuged five times to give the pure product (43 

mg, 97%). 1H NMR (400 MHz, CDCl3/d6-DMSO, 85oC)  = 8.14 (s, 1H), 7.82 (d, J = 8.4 Hz, 

2H), 7.77 (d, J = 8.4 Hz, 2H), 7.69 (s, 1H), 7.65 (d, J = 8.4 Hz, 1H), 7.60-7.55 (m, 2H), 7.44 (d, J 

= 6.4 Hz, 2H), 7.22 (s, 2H), 7.18-7.10 (m, 4H), 4.11 (ap dt, J = 6.4, 2.0 Hz, 4H), 1.95-1.90 (m, 

4H), 1.81 (ap pent, J = 7.2 Hz, 4H), 1.55-1.46 (m, 4H), 1.40-1.36 (m, 8H), 1.18-1.13 (m, 12H), 

0.95-0.90 (m, 10H), 0.81 (t, J = 6.8 Hz, 6H). 13C NMR spectrum could not be obtained due to the 

sparing solubility of this dye. IR (neat, cm−1): 3413, 2923, 2854, 2361, 2335, 1600, 1560, 1505, 

1366, 1295, 1249, 1174, 1086, 1028, 799. HRMS (ESI) m/z calc’d (negative mode) for 

C65H69O4N2S2 [M-H]- 1005.4699, found 1005.3744. UV-Vis (CH2Cl2): λmax = 532 nm (ε = 29,000 

M−1 cm−1), λonset = 650 nm. CV (0.1 M Bu4NPF6 in CH2Cl2, sweep width 2.0-(-1.2.0), 0.1 Vs-1 

scan rate) versus NHE: E(S+/S) = 0.90 V; Eg
opt = 1.88 eV. E (S+/S*) = –0.98 V [vs NHE, calculated 

from E(S+/S*) = (E(S+/S) – Eg
opt)]. 

(E)-3-(6-((3,9-bis(4-(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinolin-4-yl)ethynyl)-4,4-

dihexyl-4H-cyclopenta[2,1-b:3,4-b']dithiophen-2-yl)-2-cyanoacrylic acid (YZ12): The 

synthesis follows the same procedure as (E)-3-(6-((3,9-bis(4-

(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinolin-5-yl)ethynyl)-4,4-dihexyl-4H-cyclopenta[2,1-

b:3,4-b']dithiophen-2-yl)-2-cyanoacrylic acid (YZ7) except 6-((3,9-bis(4-

(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinolin-4-yl)ethynyl)-4,4-dihexyl-4H-cyclopenta[2,1-

b:3,4-b']dithiophene-2-carbaldehyde (12a, 20.2 mg) was used in place of 6-((3,9-bis(4-

(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinolin-5-yl)ethynyl)-4,4-dihexyl-4H-cyclopenta[2,1-

b:3,4-b']dithiophene-2-carbaldehyde (11a). Also, after the silica gel plug filtration, the crude 
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product was further purified by silica gel column chromatography with 60% DCM:10% 

methanol:30% hexane to give a pure purple solid (6.5 mg, 30%). 1H NMR (400 MHz, d6-DMSO, 

85oC)  = 8.00 (s, 1H), 7.91 (d, J = 7.2 Hz, 1H), 7.80-7.72 (m, 4H), 7.66 (t, J = 7.6 Hz, 1H), 7.61 

(s, 1H), 7.48 (s, 1H), 7.31 (s, 1H), 7.19 (d, J = 8.4 Hz, 2H), 7.16-7.11 (m, 3H), 6.95 (d, J = 4.4 Hz, 

1H), 6.09 (s, 1H), 4.15 (t, J = 6.8 Hz, 2H), 4.11-4.09 (t, J = 6.8 Hz, 2H), 1.94-1.76 (m, 8H), 1.54-

1.48 (m, 4H), 1.48-1.13 (m, 20H), 0.95-0.77 (m, 16H) 13C NMR spectrum could not be obtained 

due to the sparing solubility of this dye. IR (neat, cm−1): 3400, 2955, 2921, 2852, 2335, 1729, 1580, 

1569, 1509, 1461, 1360, 1290, 1254, 1170, 1087, 1019, 797. HRMS (ESI) m/z calc’d (negative 

mode) for C65H69O4N2S2 [M-H]- 1005.4699, found 1005.4708. UV-Vis (CH2Cl 2): λmax = 543 nm 

(ε = 28,000 M−1 cm−1), λonset = 690 nm. CV (0.1 M Bu 4 NPF 6 in CH2Cl2, sweep width 2.0-(-1.2.0), 

0.1 Vs-1 scan rate) versus NHE: E (S+/S) = 0.90 V; Eg
opt = 1.84 eV. E (S+/S*) = –0.94 V [vs NHE, 

calculated from E (S+/S*) = (E (S+/S) – E g
opt )]. 

(E)-3-(6-((3,9-bis(2,6-bis(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinolin-5-yl)ethynyl)-4,4-

dihexyl-4H-cyclopenta[2,1-b:3,4-b']dithiophen-2-yl)-2-cyanoacrylic acid (YZ14): The 

synthesis follows the same procedure as (E)-3-(6-((3,9-bis(4-

(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinolin-5-yl)ethynyl)-4,4-dihexyl-4H-cyclopenta[2,1-

b:3,4-b']dithiophen-2-yl)-2-cyanoacrylic acid (YZ7) except 6-((3,9-bis(2,6-

bis(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinolin-5-yl)ethynyl)-4,4-dihexyl-4H-

cyclopenta[2,1-b:3,4-b']dithiophene-2-carbaldehyde (11b, 17.0 mg) was used in place of 6-((3,9-

bis(4-(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinolin-5-yl)ethynyl)-4,4-dihexyl-4H-

cyclopenta[2,1-b:3,4-b']dithiophene-2-carbaldehyde (11a). Also, after the silica gel plug filtration, 

the crude product was further purified by reverse phase column (C18 silica) with 80% 

MeOH:acetonitrile to give a red solid (11 mg, 61%). 1H NMR (300 MHz, d6-DMSO, 40oC)  = 



 
 

63 

8.02 (s, 1H), 7.69-7.62 (m, 2H), 7.53 (d, J = 7.8 Hz, 1H), 7.49-7.35 (m, 3H), 7.25 (s, 1H), 7.11-

7.08 (m, 1H), 6.83 (ap t, J = 7.8 Hz, 4H), 6.61-6.50 (m, 2H), 4.00-3.90 (m, 8H), 1.90-1.85 (m, 4H), 

1.50-0.50 (m, 66H). 13C NMR spectrum could not be obtained due to the sparing solubility of this 

dye. IR (neat, cm−1): 3050, 2922, 2854, 1732, 1605, 1458, 1361, 1254, 1099, 843. HRMS (ESI) 

m/z calc’d (negative mode) for C77H93O6N2S2 [M-H]+ 1205.6475, found 1205.6469. UV-Vis 

(CH2Cl2): λmax = 537 nm (ε = 28,000 M−1 cm−1), λonset = 700 nm. CV (0.1 M Bu4 NPF6 in CH2Cl2, 

sweep width 2.0-(-1.2.0), 0.1 Vs-1 scan rate) versus NHE: E (S+/S) = 0.71 V; Eg
opt = 1.79 eV; E 

(S+/S*) = -1.08 V [vs NHE, calculated from E(S+/S*) = (E(S+/S) – Eg
opt )]. 

(E)-3-(6-((3,9-bis(2,6-bis(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinolin-4-yl)ethynyl)-4,4-

dihexyl-4H-cyclopenta[2,1-b:3,4-b']dithiophen-2-yl)-2-cyanoacrylic acid (YZ15): The 

synthesis follows the same procedure as (E)-3-(6-((3,9-bis(4-

(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinolin-5-yl)ethynyl)-4,4-dihexyl-4H-cyclopenta[2,1-

b:3,4-b']dithiophen-2-yl)-2-cyanoacrylic acid (YZ7) except 6-((3,9-bis(2,6-

bis(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinolin-4-yl)ethynyl)-4,4-dihexyl-4H-

cyclopenta[2,1-b:3,4-b']dithiophene-2-carbaldehyde (12b, 18.9 mg) was used in place of 6-((3,9-

bis(4-(hexyloxy)phenyl)indolizino[6,5,4,3-ija]quinolin-5-yl)ethynyl)-4,4-dihexyl-4H-

cyclopenta[2,1-b:3,4-b']dithiophene-2-carbaldehyde (11a). Also, after the silica gel plug filtration, 

the crude product was further purified by silica gel chromatography with 5% MeOH:35% 

dichloromethane:60% hexanes to give a red solid (6.2 mg, 31%). 1H NMR (300 MHz, d6-DMSO, 

40 oC)  = 7.64-7.35 (m, 5H), 7.18 (s, 2H), 6.85-6.74 (m, 5H), 6.66 (s, 1H), 6.52 (s, 1H), 6.43 (s, 

1H), 3.94 (br s, 8H), 1.90-1.75 (m, 4H), 1.50-0.50 (m, 66H).  13C NMR spectrum could not be 

obtained due to the sparing solubility of this dye. IR (neat, cm−1): 3025, 2926, 2856, 1588, 1458, 

1373, 1290, 1251, 1098, 1019, 869. HRMS (ESI) m/z calc’d (negative mode) for C77H93O6N2S2 
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[M - H]+ 1205.6475, found 1205.7507. UV-Vis (CH2Cl 2): λmax = 549 nm (ε = 26,000 M−1 cm−1), 

λonset = 690 nm. CV (0.1 M Bu4 NPF6 in CH2Cl2, sweep width 2.0-(-1.2.0), 0.1 Vs-1 scan rate) 

versus NHE: E (S+/S) = 0.84 V; Eg
opt = 1.89 eV; E(S+/S*) = –1.05 V [vs NHE, calculated from E (S+/S*) 

= (E(S+/S) – Eg
opt 

)
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CHAPTER 4 

4.1 PANCROMATIC CROSS-CONJUGATED -BRIDGE NIR DYES FOR DSCS 

 

Adapted from Yanbing Zhang,; Hammad Cheema,; Alexander E. London,; Amber 

Morales,; Jason D. Azoulay,; Delcamp, J. H.; Phys. Chem. Chem. Phys. 2018, 20, 2438. 

Reproduced by permission of The ROYAL SOCEITY OF CHEMISTRY.  

(See appendix for permission license) 

 

This project was a collaboration with Dr. Azoulay’s group at the University of Southern 

Mississippi. Dr. Hammad Cheema contributed equally for making all the device and analyzing all 

the device data, Alexander London contributed to the project by synthesizing C=CPhCPDT 

building blocks and Amber Morales was a REU student who worked with me in synthesizing dyes. 

 

ABSTRACT 

Four organic sensitizers incorporating a cross-conjugated cyclopenta[2,1-b:3,4-

b']dithiophene (CPDT) π-bridge have been synthesized. As a result of molecular engineering, 

broad high energy bands and red shifted absorption maxima and onset is observed relative to a 

benchmark analogue (C218) using a non-cross-conjugated CPDT π-bridge. The use of a cross-

conjugated bridge allows a new strategy for tuning dye energetics and introduction of increased 

absorption uniformity by adding additional high-energy absorption bands. These dyes show solar-
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to-electric conversion up to 800 nm with one derivative exceeding the performance of C218 under 

identical conditions. 

INTRODUCTION 

Developing renewable energy conversion systems is important since worldwide 

power consumption is increasing dramatically. Research on dye-sensitized solar cells 

(DSCs) has been fuelled with the potential for affordable production, excellent tunability 

of device components and relatively high power conversion efficiencies (PCEs) from 

organic light absorbing materials.63–65,93,94 DSCs operate by light absorption of a sensitizer 

which then transfers an electron to an inorganic semiconductor. The electron then traverses 

an external circuit before being collected at the counter electrode by a redox shuttle, which 

returns the electron back to the oxidized sensitizer. The sensitizer or dye plays several 

critical roles in this process concerning efficiency of electron transfers and the breadth of 

the absorption spectrum used. Recently, SM315 and ADEKA-1/LEG-4 based devices 

have achieved record PCEs of 13.0% and 14.3% for single-dye and co-sensitized DSC 

device efficiencies, respectively.4–6 These exceptionally efficient dyes are designed based 

on three conjugated structural elements: a donor, a π-bridge and an acceptor (D-π-A).  The 

π-bridge plays the critical role of both allowing the donor and acceptor regions to undergo 

intramolecular charge transfer (ICT) and to define the initial energy levels of the molecule 

prior to substituent addition. An appropriate π-bridge should: (1) ensure a minimal optical 

gap to extend the region where sunlight is converted to electricity,95–99 (2) allow for 

properly positioned dye energetics for rapid electron transfers to TiO2 and from the redox 

shuttle,100,101 (3) suppress aggregation which lowers PCEs,102 and (4) reduce non-

productive electron transfers (recombination).70,103 
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 Thiophene-based building blocks are ubiquitous π-bridges due to excellent ICT 

properties and synthetic accessability.1,73,104–106 A thiophene-based π-bridge 4,4-dihexyl-

4H-cyclopenta[2,1-b:3,4-b’] dithiophene (Hx2CPDT) was employed in the design of an 

exceptionally successful organic dye (C218) with a triphenyl amine donor (TPA) and 

cyanoacrylic acid acceptor (CAA) with a high molar absorptivity, low recombination rate 

and wide absorption range.8,107 The dialkylated CPDT bridge has now been incorporated 

into >125 dyes according to a SciFinder search, yet no conjugated alkene analogues have 

been evaluated. Herein, we have designed a new series of sensitizers with identical donor 

and acceptor to C218 that include a solubilizing cross-conjugated bridgehead olefin 

substituent (C=CPh) substituent replacing the dialkyl chains on the CPDT π-bridge of C218 

to give C=CPhCPDT (Figure 18).  We hypothesized that by introducing the extended 

conjugated system of C=CPhCPDT an increase in spectral response into the NIR region 

would be observed.108  

RESULTS AND DISCUSSION 

Two target dyes YZ11 and YZ13 directly replace the hexyl chains of Hx2CPDT 

with a simple phenyl-alkene. These dyes differ in orientation of the phenyl group either 

toward the acceptor (YZ11) or toward the donor (YZ13). Since alkyl chains often 

contribute to DSC device photovoltage increases, we also prepared two 3,5- or meta-

dialkylated phenyl derivatives, YZ16 and YZ17, which differ at the alkene conformation.  

The synthesis of YZ11, YZ13, YZ16 and YZ17 proceeded in 5-7 steps from commercial 

materials (Scheme 3). The cross-conjugated aryl group was synthesized via a Negishi coupling of 

dibromide 1. Alcohol 2 was converted to the benzyl bromide 4 in high yield with the use of PBr3. 
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Next, either commercial benzyl bromide 3 or 4 was converted to a phosphonium salt and a Wittig 

reaction with 4H -cyclopenta[2,1-b :3,4-b′ ]dithiophen-4-one 5 gave the C=CPhCPDT substituted 

intermediates 6 and 7, respectively. Vilsmeier–Haack reaction on 6 or 7 gave two silica gel column 

separable E/Z alkene isomers in equal ratios. The isomers were assigned via 1H NMR NOE 

(nuclear Overhauser effect) experiments (Figure 19). By irradiation of the proton on the CPDT 

ring adjacent to the aldehyde for isomers 8 and 10, the two isomers could be differentiated. 10 

shows a response from both the alkene proton and the aldehyde proton signaling that these protons 

are close enough for a through space interaction to be observed. This gave four separate 

C=CPhCPDT π-bridges, which smoothly underwent an NBS bromination, Suzuki coupling with 

TPABpin, and a Knoevenagel reaction to give YZ11, YZ13, YZ16, and YZ17.  

UV-Vis absorption spectroscopy was performed with YZ11, YZ13, YZ16, YZ17 and 

C218 in dichloromethane to compare changing the π-bridge from Hx2CPDT to C=CPhCPDT 

(Figure 20, right). The absorption maxima (λmax) and absorption onsets (λonset) for all of the 

C=CPhCPDT dyes were red-shifted relative to C218. The molar absorptivities at λmax for the 

C=CPhCPDT based dyes were measured to be very similar at 15,000 to 16,000 M-1cm-1; however, 

a high-energy band near 440 nm for the cross-conjugated π-bridge based dyes reached molar 

absorptivities substantially higher than C218 in this region. The C=CPhCPDT based panchromatic 

dyes show a much more even molar absorptivity across the full 
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Figure 18. Cross-conjugated C=CPhCPDT π-bridge based D-π-A dyes and C218. 

spectrum in solution than C218. Among the C=CPhCPDT based dyes, the octyl 

substituents on YZ16 and YZ17 led to slightly higher molar absorptivities than YZ11 and 

YZ13. Interestingly, the dyes with the aryl groups oriented toward the donor region of the 

dye (YZ13 and YZ17) have similar absorption spectrum with the high energy region being 

higher in molar absorptivity than the dyes with the aryl groups oriented toward the 

acceptor. Dye-TiO2 film UV-Vis absorption spectrum were also measured and are 

compared with the solution measurements as well as correlated to device performances 

below (Figure 20, left). 

Cyclic voltammetry was performed on YZ11, YZ13, YZ16, and YZ17 to estimate 

the driving forces for electron transfer from the redox shuttle to the dye (Greg) and from 

the dye to the TiO2 conduction band (Ginj, Figure 21). The ground-state oxidation 

potentials (0.87-0.93 V versus NHE) of these dyes were more positive than the I- /I3
- redox 
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shuttle (0.35 V versus NHE), which favors electron transfer from I- to the oxidized 

dye.109,110 YZ11, YZ13, YZ16, YZ17, and C218 have very similar E(S+/S) values, which 

indicate that the C=CPhCPDT bridge has minimal effects on ground-state state oxidation 

potential when compared with Hx2CPDT.  The excited-state oxidation potentials (E(S+/S*)) 

for YZ11, YZ13, YZ16, and YZ17 were calculated from the equation 

 
 

Scheme 3. Synthetic route to YZ11, YZ13, YZ16 and YZ17. 

(a) Pd-PEPPSI-IPr (cat.), n-octylzinc bromide, 62%. (b) PBr3, 73% (c) PPh3, 5, NaOEt, 6: 

76%, 7: 60%. (d) POCl3, DMF, 8: 40%, 10: 41%, 9: 50%, 11: 59%. (e) NBS, 12: 96%, 14: 

100%, 13: 95%, 15: 91%. (f) TPA-Bpin, Pd(PPh3)4 (cat.), 16: 91%, 18: 69%, 17: 100%, 

19: 83%. (g) cyanoacetic acid, piperdine, YZ11: 87%, YZ13: 64%, YZ16: 20%, YZ17: 

20%. 
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Figure 19. NOE responses for C=CPhCPDTCHO of Z (8) and E(10). Irradiated proton is 

highlighted in red. 

E(S+/S*) = E(S+/S) – Eg
opt and were found to range from -0.87 to -0.97 V versus NHE which 

is suitable for efficient electron injection to the TiO2 CB.111 This is significantly lower in 

energy than the -1.08 V value measured for C218. The energetically lower E(S+/S*)
 values 

for the cross-conjugated C=CPhCPDT bridge when compared to the Hx2CPDT suggested 

that the excited-state is stabilized to a greater extent with the extended conjugation bridge 

with minimal effect on the ground-state oxidation potentials. This provides a valuable 

method for independently tuning dye redox potentials. 

Having established YZ11, YZ13, YZ16, and YZ17 have suitable energetics to work 

efficiently in solar cell devices, we next evaluated the orbital position and involvement/electronic 

structure via density functional theory (DFT) and time-dependent density functional theory (TD-

DFT) at the B3LYP/6-311G(d,p) level. For efficient DSC devices, the highest occupied molecular 

orbital (HOMO) of the dye should be oriented far from the TiO2 surface to reduce the rate of back 

electron transfer from TiO2 to the oxidized dye after an electron is injected. Also, the lowest 

unoccupied molecular orbital (LUMO) should be positioned near the TiO2 surface to promote 

electron transfer upon photoexcitation. The HOMO and LUMO of YZ17 are illustrated in Figure 
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22 with the remaining dye orbitals available in the SI (Figure 46, Appendix). The HOMO is 

primarily located on the donor and CPDT portion of the π-bridge with some contribution on the 

CAA (cyanoacrylic acid) acceptor and no contribution on the cross-conjugated phenyl substituent. 

This is consistent with the CV data which suggests that there is minimal effect on the ground state 

oxidation potential by introducing the cross-conjugated phenyl substituent onto CPDT. The 

LUMO is positioned primarily on the CPDT-CAA region with some delocalized to some extent 

on the cross-conjugated phenyl substituent. The HOMO and LUMO of YZ17 are well positioned 

for devices based on YZ7 to operate 

 

Figure 20. UV-Vis absorption spectra collected for YZ11, YZ13, YZ16, YZ17 and C218 

in CH2Cl2 at 25oC (right) and on TiO2 (left). 
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Figure 21. Cyclic voltammograms for YZ11, YZ13, YZ16, and YZ17 in CH2Cl2 with 

0.1 M tetrabutylammonium hexafluorphosphate electrolyte, glassy carbon working 

electrode, platinum counter electrode and Ag/AgCl reference electrode. 

 

efficiently. TD-DFT was performed for each dye to better understand the broad charge 

transfer bands observed in the absorption spectra and the broad high energy bands (Table 

16, Appendix). In each case, the HOMO-LUMO transition dominates the low-energy 

vertical transitions (96%), while both the HOMO-1 to LUMO (44%) and HOMO to 

LUMO+1 (51%) primarily contribute to the high-energy vertical transition. The HOMO-1 

is delocalized across the entire dye with the exception of the cross-conjugated phenyl 

substituent, and the LUMO+1 is entirely localized on the cross-conjugated phenyl 

substituent and cyanoacrylic acid regions. This result shows that the cross-conjugated 

phenyl substituent plays a critical role in influencing in the LUMO and LUMO+1 resulting 

in strengthened high and low-energy charge transfer bands. 
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Table 6. Optical and electrochemical properties of YZ11, YZ 13, YZ16, YZ17 and C218 in 

CH2Cl2 at 25 °Ca 

dye 
λonset 

 

(nm) 
λmax  
(nm) 

ε 
(M -1cm -1) 

E(S+/S)  (V) E(S+/S*) 
(V) 

Eg
opt 

(eV) 

YZ11 675 546 15,000 0.87 -0.97 1.84 

YZ13 690 553 15,000 0.89 -0.91 1.80 

YZ16 690 572 16,000 0.89 -0.91 1.80 

YZ17 690 557 16,000 0.93 -0.87 1.80 

C218 630 550 20,000 0.89 -1.08 1.97 

aSee for Appendix 11 detailed energy measurements and calculations. 

 Solar cells were assembled and characterized according to the equation, PCE = 

(Jsc*Voc*FF)/I0 where PCE is power conversion efficiency, Jsc is the short circuit current, Voc is the 

open circuit voltage, FF is the fill factor, and I0 is the sun intensity. A range of PCE’s were observed 

for devices prepared with YZ11, YZ13, YZ16 and YZ17 from 4.2% to 6.7% using the I- /I3
- redox 

couple (Table 7, Figure 23). The dialkylated C=CPhCPDT bridged dyes YZ16 and YZ17 gave 

higher open circuit voltages (622 and 671 mV, respectively) than the non-alkylated C=CPhCPDT 

bridged dyes YZ11 and YZ13. For the dyes with the phenyl substituent oriented toward the 

acceptor (YZ11 and YZ16), similar overall PCE values of 5.4% versus 5.1% were obtained, 

respectively, with a higher photocurrent observed for YZ11. A significant 



 
 

75 

 

 

Figure 22. HOMO, LUMO, HOMO-1, LUMO+1 orbitals for dye YZ17 as calculated by 

DFT at B3LYP/6-311G (d,p) level. 

difference in PCE was observed for devices prepared with YZ13 and YZ17, which have 

the phenyl substituent oriented toward the donor (4.2% versus 6.7%). This performance 

enhancement was the result of significant gains to both photocurrent and photovoltage for 

YZ17 to give the highest performing dye of the series.  Under identical device conditions, 

YZ17 has a higher PCE than benchmark dye C218 due to the panchromatic absorption of 

YZ17 with a peak incident photon-to-current conversion efficiency (IPCE) of 67% and an 

IPCE onset of 800 nm (Figure 23). This broadened IPCE response translates into a high Jsc 

of 13.6 mA/cm2 for YZ17 compared to 13.2 mA/cm2 for C218. Through the use of N2 

bubbling during electrode sensitization to accelerate dye infiltration throughout the TiO2 
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film, the Voc and Jsc of YZ17 could be enhanced to give a 7.6% PCE device. The peak IPCE 

for this device reaches 77%, with a higher Jsc value of 14.7 mA/cm2 although the IPCE 

spectrum onset is blue-shifted by approximately 20 nm relative to the YZ17-based 

electrodes prepared without gas flow.  

Comparing phenyl group orientation with device performance, the non-alkylated 

phenyl group oriented toward the acceptor (E-isomer, dye YZ11) is higher performing by 

1.2% PCE. However, for the heavily alkylated phenyls the phenyl group pointed toward 

the donor (Z-isomer, dye YZ17) is higher performing by 1.6% PCE. We reasoned the bulky 

chain alkylated phenyl group of E-isomer YZ16 could result in a lower dye loading due to 

sterics near the surface. Dye loading studies reveal this is the case as YZ17 has a nearly 2x 

higher dye loading on the TiO2 surface (2.1 x 10-8 versus 3.7 x 10-8 mol/cm2, (Table 17, 

Appendix). YZ13 with the smaller phenyl group oriented away from the surface only shows 

a modestly higher dye loading than YZ11 (4.6 x 10-8 versus 3.9 x 10-8 mol/cm2). This 

suggests that if the dye loadings are similar, the phenyl group  

Table 7. Photovoltaic parameters of devices for YZ11, YZ13, YZ16, YZ17 and C218.a  

dye Voc (mV) 
Jsc (mA/cm2) 
[IPCE Jsc]

b FF PCE (%) 

YZ11 599 12.9 [12.5] 0.67 5.4 
YZ13 577 9.8 [9.4] 0.72 4.2 
YZ16 622 12.3 [11.8] 0.65 5.1 
YZ17 671 13.6 [13.4] 0.71 6.7 
YZ17c 683 14.7 [13.5] 0.74 7.6 
C218 654 13.2 [12.6] 0.70 6.3 
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aThe electrolyte is composed of guanadinium thiocyanate (GuNCS, 0.1 M), 1,3-

dimethylimidazolium iodide (DMII, 1.0 M), I2 (0.03 M), 4-tert-butyl pyridine (TBP, 0.5 M), LiI 

(1.0 M), and MeCN:valeronitrile (85:15) as solvent unless otherwise noted. The electrodes were 

dipped in 0.3 mM acetonitrile:tert-butanol:THF (1:1:1) with 20x CDCA overnight. bCalculated by 

integrating the area under the IPCE curves in Figure 22.  cYZ17 dipping in acetonitrile:tert-

butanol:chlorobenzene (2.5:2.5:1) dye solution with N2 passed over the dye solution for 30 

minutes. Measurements were carried out under simulated 1 sun illumination (100 mW/cm2), with 

active area of 0.15 cm2 for the cells.  

 

Figure 23. J-V curves (top) and IPCE (bottom) for DSC devices of YZ11, YZ13, YZ16, 

YZ17, and C218. * Dye deposition through bubbling N2 through dye solution during 

electrode sensitization. 

oriented toward the surface is higher performing (E-isomer YZ11>Z-isomer YZ13 in terms 

of PCE); however, if the phenyl group near the surface has significant steric bulk, the dye 

loading is significantly diminished and the phenyl group oriented away from the surface 

will be higher performing (Z-isomer YZ17> E-isomer YZ16 in terms of PCE). Analysis of 

the film absorption compared to solution absorption reveals a substantial increase in the 
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high energy absorption band of the film (relative to solution) for the donor oriented phenyl 

groups (Z-isomer dyes YZ13 and YZ17). This significant change could suggest either the 

dye planarity has changed at the surface significantly or the Z-isomers are more prone to 

aggregation. For the smaller non-alkylated phenyl group, we observe a correlation between 

keeping the solution curve shape with film measurements and high performance.  However, 

this gain in performance is offset if the dye loadings are not similar as observed for the 

alkylated phenyl group dyes. 

 Electron lifetime studies were undertaken to better understand the higher Voc values 

observed for the alkylated C=CPhCPDT bridged dyes versus the non-alkylated dyes and 

the higher Voc values observed for YZ17 relative to C218 for devices prepared under 

identical conditions (Figure 24). A decrease in electron lifetimes was observed across the 

series in the following order: YZ17 > C218 > YZ16 > YZ11 > YZ13, which is identical to 

the order observed for the device Voc values. This 
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Figure 24. Electron lifetime versus open-circuit voltage plot. 

suggests the long alkyl chains of YZ17 oriented away from the surface are most effective 

at reducing the rate of recombination of electrons in TiO2 with the redox shuttle. The 

broadened absorption and longer lifetime of electrons in TiO2 of YZ17 illustrate the utility 

of a cross-conjugated CPDT bridge relative to the commonly used Hx2CPDT building 

block.   

CONCLUSION 

Four cross-conjugated CPDT-based organic sensitizers were designed and 

synthesized. Dye isomers were assigned based on 1H NMR NOE studies, and the dyes were 

characterized via UV, CV, and computational studies to probe the effect of a cross-

conjugated π-bridge on dye energetics. The C=CPhCPDT bridge leads to a red-shift of the 

absorption spectrum and an increase in the high-energy absorption to give a series of 

panchromatic dyes. The red-shift in the absorption spectrum was found to be due to a 

stabilization of the dye excited-state oxidation potential. The addition of long alkyl chains 

onto the cross-conjugated CPDT bridge oriented away from the TiO2 surface was found to 

reduce recombination of electrons in TiO2 with the oxidized redox shuttle. A peak PCE of 

7.6% was observed for YZ17, which surpasses the benchmark C218 under identical device 

conditions. This performance enhancement was in part due to an extended IPCE range 

reaching an 800 nm onset for YZ17. The cross-conjugated CPDT bridge approach offers a 

new strategy for tuning dye energetics to increase light absorption and increase device 

performance relative to the ubiquitous Hx2CPDT bridge used in C218.
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CHAPTER 5 

5.1 IODINE BINDING WITH THIOPHENE AND FURAN BASED DYES FOR DSCS 

Adapted with permission from Alexandra Baumann,; Hammad Cheema,; Md Abdus Sabuj,; 

Louis E. McNamara,; Yanbing Zhang,; Adithya Peddapuram,; Suong T. Nguyen,; Davita L. 

Watkins,; Nathan I Hammer,; Neeraj Rai,; Delcamp, J. H.; Phys. Chem. Chem.Phys.  2018, 20, 

17895. Reproduced by permission of The ROYAL SOCEITY OF CHEMISTRY. 

(See appendix for permission license.) 

 

 This is a collaborative project with Dr. Watkins, Dr. Delcamp, Dr. Hammer and Dr. Rai’s 

group. Alexandra Baumann synthesized and characterized the dyes. Hammad Cheema and 

Yanbing Zhang fabricate and measured the data of the device. Adithya Paddapuram synthesized 

LD03 and LD04 two dyes.  LouisE.Mc Namara measured Raman spectroscopy data. Md Abdus 

Sabuji performed computational studies. Suong T.Nguyen synthesized the Br-TF-COH 

intermediate. 

 

ABSTRACT 

Iodine binding to thiophene rings in dyes for dye-sensitized solar cells (DSCs) has been 

hypothesized to be performance degrading in a number of literature cases. Binding of iodine to 

dyes near the semiconductor surface can promote undesirable electron transfers and lower the 

overall efficiency of devices. Six thiophene or furan containing dye analogs were synthesized to 

analyze iodine binding to the dyes via Raman spectroscopy, UV-Vis studies, device performance 
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metrics and density functional theory (DFT) based computations. Evidence suggests I2 binds 

thiophene-based dyes stronger than furan-based dyes. This leads to higher DSC device currents 

and voltages from furan analogues, and longer electron lifetimes in DSC devices using furan based 

dyes. Raman spectra of the TiO2 surface-bound dyes reveals additional and more instense peaks 

for thiophene dyes in the presense of I2 relative to no I2. Additionally, broader and shifted UV-Vis 

peaks are observed for thiophene dyes in the presence of I2 on TiO2 films suggesting significant 

interaction between the dye molecules and I2. These observations are also supported by DFT and 

TD-DFT calculations which indicate the absence of a key geometric energy minimum in the dye-

I2 ground state for furan dyes which are readily observed for the thiophene based analogues. 

INTRODUCTION 

The need for an energy source that is both sustainable and renewable is apparent. 

One viable option that is cost-effective and potentially aesthetically appealing are dye-

sensitized solar cells (DSCs).1,63 DSC devices operate by: (1) photoexcitation of a dye 

molecule, (2) injection of excited electrons into a semiconductor conduction band (e.g. 

TiO2 CB), (3) an electron traversing an external circuit to the counter electrode, (4) 

collection of the electron at the counter electrode by a redox shuttle, and finally (5) transfer 

of the electron from the redox shuttle to the oxidized dye molecule.6 Organic dye based 

DSCs have been able to reach power conversion efficiencies (PCEs) for this process in 

excess of 14%, but there is still room for improvement by minimizing non-productive 

electron transfers such as from TiO2 to the dye (back electron transfer) or from TiO2 to the 

redox shuttle (recombination).6,103,111 Undesirable charge recombinations are thought to 

increase when the iodine (I2) redox shuttle binds with a dye near the TiO2 surface (Figure 
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25).112–115 Minimizing recombination events which prevent electrons from completing an 

external circuit is critical to developing higher efficiency DSC devices. 

Isothiocyanates (NCS) bound to transition metals, amine, cyano, halide and 

thioether groups have been demonstrated to bind iodine and iodide through prior 

spectroscopic, computational and device studies.107,114,116–126 Despite good evidence of 

sulfur-based NCS groups and aromatic 5-member heterocycle selenophenes113 interacting 

with iodine, experimental evidence of thiophenes binding I2 is lacking. However, thiophene 

is commonly implicated in promoting recombination by binding I2 near the semiconductor 

surface.127,128  Several computational reports suggest thiophene-based dyes binding I2 may 

be favorable and likely has device performance implications.126,129–132 The possibility of 

thiophene binding I2 is concerning since thiophenes have become ubiquitous in DSC 

organic-dye design. To probe the ongoing hypothesis that I2 in DCSs is binding to the sulfur 

atom present in thiophene stronger than the oxygen atom present in furan rings, we have 

systematically studied a series of six thiophene or furan based-dye analogs experimentally 

via Raman spectroscopy, UV-Vis absorption, and DSC device performance properties, as 

well as computationally via geometry analysis, binding strength comparisons, and analysis 

of vertical transition events. The results put forward in this manuscript offer strong evidence 

of thiophenes binding I2 which leads to lower DSC device performances. 

We hypothesized sulfur would bind I2 stronger than oxygen due to the higher 

polarizability of sulfur which is more similar to iodine.133 Additionally, the widened C-S-

C angle of thiophene relative to the C-O-C angle of furan could play an important role in 

accessibility of the S atom to I2. To test this, we employed dyes in our studies which replace 

a thiophene ring with a furan ring to give a single atom change within the larger dye 



 
 

84 

structure. Donor and π-bridge functionality was examined for three sets of dyes which all 

employ the ubiquitous cyanoacrylic acid acceptor within the donor-π bridge-acceptor (D-

π-A) framework. Specifically, LD03 (thiophene) and LD04 (furan) have a simple alkyl 

ether donor group as part of the D-π-A conjugated system (Figure 26). This limits the 

heteroatom (non-carbon or hydrogen) binding positions relative to more complex dye 

systems. Hagfeldt’s triarylamine donor was used to compare dyes varying π-bridges from 

one thiophene (D35), one furan (AB3), two thiophenes (AB1), and one thiophene with one 

furan (AB2) (Figure 25). This donor was selected as D35 has been extensively studied and 

allows for a  

 

Figure 25. Example of a D-π-A dye binding a redox shuttle “R” near the TiO2 surface (left) 

and a dye with no redox shuttle binding (right). 
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Figure 26. Target structures of AB1, AB2, AB3, D35, LD03 and LD04 dyes. 

comparison to an established dye. The target dyes were known (AB1, LD03 and 

LD04),134,135 commercially available (D35 via Dyenamo), or prepared through analogous 

routes to the thiophene analogues134,136 for the unknown furan dyes (AB2 and AB3, see 

Figure 47 in Appendix for synthetic route). 

RESULTS AND DISCUSSION 

Raman Spectroscopy. First, we examined the vibrational spectrum of the dyes with 

and without I2 present on TiO2 films in acetonitrile (MeCN) via Raman spectroscopy. 

Raman spectroscopy provides a sensitive spectroscopic method for evaluation of dye 

vibrational modes under conditions similar to those in devices for the neutral ground-state 

dye at a surface in the presence of MeCN with and without I2. If iodine binding were to 

occur to the sulfur atom stronger than oxygen, we reasoned a change in the vibrational 

spectra of the dye molecules would be expected due to new vibrational peaks resulting from 

new vibrational modes associated with a S-I2 binding or a change in the relative intensity 

of already existing peaks by perturbation of ring breathing/stretching modes of thiophene 

through introduction of an S-I2 bond.137,138 To compare thiophene versus furan dyes binding 

I2, TiO2-dye films were prepared with D35 (thiophene), AB3 (furan), LD03 (thiophene) 

and LD04 (furan). AB1 (thiophene) and AB2 (furan) were not studied via Raman 

spectroscopy since they suffer from decomposition on films in the presence of I2 alone. 

Notably, AB1 and AB2 were stable in operational DSC devices presumably due to the full 

electrolyte stabilizing the dyes. For the other 4 dyes, Raman spectra were collected on the 

TiO2-dye films with and without I2 in the common DSC device electrolyte solvent MeCN. 
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D35 (thiophene) and AB3 (furan) both show an increase in the relative intensity of the 

peaks seen between 1000-1600 cm-1 when compared with the 300-1000 cm-1 region; 

however, the increase is substantially greater for D35 (thiophene) (Figure 27a and 27b). 

Initial pure dye peaks and new peaks associated with I2 addition can be seen around 950 

cm-1, 1025 cm-1, 1060 cm-1, and 1400-1600 cm-1 for AB3 (furan) (Figure 27b), but D35 

(thiophene) shows few original dye peaks after I2 addition with numerous intense signals 

being added from 1000-1600 cm-1 (Figure 27a). This points to the presence of iodine 

binding in both dyes, however the presence of the sulfur atom in D35 (thiophene) has 

resulted in a larger change in the Raman spectrum relative to AB3 (furan). This larger 

change in the D35 (thiophene) Raman spectrum is the result of a single atom change from 

oxygen in AB3 (furan) to a sulfur. Given that the experimental conditions were held 

constant, this single atom is responsible for the large change in the Raman spectrum when 

I2 is present. The changes are consistent with a sulfur-halogen bonding event to I2 as 

discussed in the computational section below.  

To reduce the possible influence of the nitrogen atom of the amine donor during 

these studies, the simple alkoxy donor-based dyes, LD03 (thiophene) and LD04 (furan), 

were examined in an identical study. Changes in the Raman spectra were subtler for these 

two derivatives which could be due to the absence of nitrogen-I2 interactions or due to a 

less electron rich thiophene binding weaker to I2 when only a relatively weak ether donor 

is used. A larger difference in the relative intensity of the peaks between 1000-1600 cm-1 

with and without I2 present is observed for LD03 (thiophene, Figure 27c) when compared 

with the 300-1000 cm-1 region, while the change for LD04 (furan, Figure 27d) is less 

dramatic when these regions are compared. These results indicate a difference in the 
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influence of I2 on the Raman spectrum of LD03 (thiophene) when compared to LD04 

(furan) which may be attributed to the stronger binding of I2 by thiophene. This observation 

is consistent with Raman spectroscopy studies performance on films of D35 (thiophene) 

and AB3 (furan). 

 

Figure 27. Raman spectra for (a) D35, (b) AB3, (c) LD03 and (d) LD04 on TiO2 films 

under acetonitrile with and without I2 present. Background spectrum were subtracted in 

each case without the dye present but all other components were present. 

Computational Analysis. To gain insight into the changes observed experimentally in the 

Raman spectra, the interactions of AB1 (thiophene), AB2 (furan), D35 (thiophene) and 

AB3 (furan) with I2 were probed computationally to examine the hypothesis of thiophene 

interacting non-covalently with I2 more strongly than furan. AB1 (thiophene) and AB2 

(furan) were also of interest since spectroscopic film studies in the presence of I2 could not 

be conducted. Since LD03 (thiophene) and LD04 (furan) displayed similar Raman spectra 

trends to D35 (thiophene) and AB3 (furan), the more common benchmark dye D35 
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(thiophene) was chosen for computational studies to compare with analogue AB3 (furan). 

First, geometries of the dyes were optimized in two different conformations (referred to as 

cis and trans based on the orientation of the CN group of the cyanoacrylic acid relative to 

the thiophene sulfur or furan oxygen atoms, Figure 28) in isolation without I2 present at the 

wB97XD/6-31+G* level of theory. On TiO2 film surfaces the exact dye geometry is 

challenging to predict, thus two geometries were analyzed for the four dyes examined. 

Calculations were conducted in the absence of solvent and the TiO2 surface to reduce the 

complexity in trying to evaluate vibrational changes induced by non-covalent bonding with 

a large number of atoms present. 

To examine the dye interactions of I2 at the thiophene or furan rings, I2 was 

positioned near the heterocycles of the geometry optimized dyes in space with a linear 

orientation of I2 and the S/O atom all in the same plane as the heterocycle. The geometries 

were then optimized to the lowest energy conformation. It is noteworthy that a number of 

binding sites are evident on each dye with stronger binding at the nitrogen atoms of the 

triarylamine and cyanoacrylic acid; however, these binding events are present in all dyes. 

We have focused on the heterocycles as these binding events differentiate the thiophene and 

furan dyes. A close interaction for sulfur and iodine of ~3.45 Å is observed for cis- or trans-

AB1 (thiophene) with an end-on binding to I2 at the presumed sigma-hole location (Figure 

29, Table 8).  When comparing these results to AB2 (furan) it is interesting that only one 

conformer (trans) binds I2 to give a linear O-I2 geometry orientation. The cis-AB2 (furan) 

conformer does not show an energy minimum with a linear geometry, but instead the I2 

shifts to above the π-face of the system as the nearest energy minimum (Table 8, Figure 

29). This result supports our experimental finding that sulfur of thiophene the oxygen
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of furan, since one of the potential binding sites for furan is non-active in the cis 

conformation.  For the cases where I2 adopts a linear orientation relative to the sulfur and 

oxygen atoms, the I2 molecule adopts a 65o to 81o dihedral angle with the π-system of the 

heterocycle (Figure 29, Table 8). Similar results are observed when the trans and cis 

isomers of D35 (thiophene) and AB3 (furan) are compared. For the comparable trans 

isomers, the location of the highest occupied molecular orbital (HOMO) and the lowest 

unoccupied molecular orbital (LUMO) offer some insight into the nature of this binding 

event. The HOMO of trans-D35 (thiophene) and trans-AB3 (furan) is delocalized  

 

Figure 28. Illustration of the trans and cis conformer of D35, AB1, AB2, and AB3 

assignments 

 

Figure 29. Illustration of the closest I2 binding energy minima at the heterocycle near that 

CAA acceptor for cis-AB1, trans-AB1, cis-AB2, trans-AB2, cis-D35, trans-D35, cis-AB3, 

and trans-AB3. Calculations were done at wB97XD/6-31+G* level of theory and basis set. 
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onto the heterocycles (Figure 30, see Figure 48-51in Appendix for AB1 and AB2 orbitals). 

In both cases the LUMO is heavily localized on the I2 molecule suggesting an 

intermolecular charge transfer event may be possible. This interaction is indicative of a 

halogen bonding event in a conformation that would be predicted by a first principle 

approximation. 

Binding energies were analyzed for these dyes to I2 by summing the energies of the dye 

and I2 separately optimized in isolation, then comparing with the system energy having both the 

dye and I2 present. Again, only the trans isomers could be compared as no cis-AB2 (furan)-I2 

optimized geometry could be located which was comparable to thiophene analogue (Table 8). The 

trans-AB1 (thiophene)-I2 binding energy was found to be stronger than that of the trans-AB2 

(furan)-I2 binding energy by a 0.11 kcal difference. A very similar analysis can be made comparing 

D35 (thiophene) and AB3 (furan), with AB3 (furan) again showing no binding in a linear 

orientation to I2 for the cis conformer and the trans conformer showing weaker binding relative to 

the trans-D35 (thiophene) analogue (Figure 30, Table 8). When the cis and trans isomers are 

compared for the thiophene based dyes AB1 and D35, a 0.42-0.44 kcal/mol greater binding energy 

is present for the cis isomers. Thus, not only do thiophene-based dyes have a stronger analogue 

binding mode than the furans in the trans conformation, but they also bind even stronger in the cis 

conformation which is exclusive to thiophene. These results suggest that an I2 binding event may 

not be completely absent from furan heterocycles, but thiophene analogues exhibit much stronger 

halogen bonding interactions in multiple conformations. 

Having found optimized geometries for D35 (thiophene) and AB3 (furan) with and 

without I2, we simulated Raman spectra from DFT calculations at the wB97XD/6-31+G* 

level of theory to better understand the vibrational modes in the 1400-1800 cm-1 range of  
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Table 8. Computational results of AB1, AB2, D35 and AB3 for I2 binding distance, binding 

energies and dihedral angles at wB97XD/6-31+G* level.  

dye S/O-I2 
distance 

(Å) 

Binding 
energy 

(kcal/mol) 

S/O-I2 
dihedral 

(°) 
cis-AB1 (thiophene) 3.45 -4.59 81 

trans-AB1 (thiophene) 3.46 -4.17 71 
cis-AB2 (furan) no 

minimum 
no 

minimum 
--- 

trans-AB2 (furan) 3.17 -4.06 65 
cis-D35 (thiophene) 3.45 -4.84 81 

trans-D35 (thiophene) 3.46 -4.40 70 
cis-AB3 (furan) no 

minimum 
no 

minimum 
--- 

trans-AB3 (furan) 3.17 -4.36 70 

 

 

Figure 30. HOMO and LUMO orbitals of trans D35 and AB3. Calculations were done at 

wB97XD/6-31+G* level of theory and basis set. Iso values are set to 0.2. 

the experimental Raman spectrum which were changing much more dramatically for D35 

(thiophene) in the presence of I2 relative to AB3 (furan, Figures 27 and Figure 52 in 
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Appendix). Two different geometries for each dye were analyzed with and without I2 

present. While the simulated spectra can be used to help understand the experimental 

spectra, a direct comparison cannot be made since the simulated Raman spectra is obtained 

in the gas phase with only one I2 molecule present and under harmonic approximations 

while the experimental data was collected on the surface with acetonitrile solvent present 

with a large excess of I2 molecules. Thus, the comparison of the data is restricted to broad 

wavenumber ranges rather than to wavenumber peaks. It could be seen that in both the cis 

and trans conformations for AB3 (furan) no shift or emergence of new peaks can be seen 

when I2 is present and only a slight change in intensities for 2-3 peaks between 1500-1700 

cm-1 is observed (Figure 52 in Appendix). However, in terms of D35 (thiophene), the cis 

conformation shows a slight change in intensity along with a shifting of peaks between 

1500-1600 cm-1 by 3-5 cm-1 toward higher energy, while the trans conformation shows 

intensity changes and some shifting of peaks near 1100 and 1600 cm-1 with a new peak at 

~1250 cm-1 evident (Figure 52 in Appendix). For the DFT Raman spectra, the 1500-1600 

cm-1 region where the most significant changes are occurring corresponds to ring breathing 

and stretching modes for both thiophene and furan. Experimentally, the largest changes in 

the Raman spectrum are occurring near this region as well. Given that the experimental 

changes when I2 is present were significantly more pronounced for the thiophene based 

dyes, this suggests that I2 is interacting stronger with thiophene resulting in significant 

changes in ring breathing/stretching modes for this heterocycle but to a lesser extent for 

furan. It is reasonable that the presence of this interaction for thiophene is due to halogen 

bonding from the sulfur atom to I2. 
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UV-Vis Absorption Spectroscopy. To further evaluate our hypothesis that the sulfur 

of thiophene binds I2 more strongly than the oxygen of furan, we measured film UV-Vis absorption 

spectra for D35 (thiophene), AB3 (furan), LD03 (thiophene) and LD04 (furan). We reasoned that 

if I2 binding were occurring with thiophene effects should also be visible in the UV-Vis spectrum. 

A S-I2 halogen bond would be predicted to red-shift the dye absorption spectrum since the I2 serves 

as an electron acceptor which would lower the LUMO energy based on first approximations. 

Therefore, we predict significant observable changes in dye absorption transition energies for the 

thiophene-based dyes D35 and LD03 due to S-I2 binding and relatively minor changes for the 

furan-based dyes AB3 and LD04 due to a weaker O-I2 interaction. To probe this prediction, we 

prepared TiO2 films of each of the dyes and submerged them in solutions of acetonitrile with and 

without I2 present. The UV-Vis spectra were analyzed by comparing the shift in the max and shape 

of the normalized absorption curves. On TiO2 films submerged in acetonitrile with and without I2, 

the max of D35 (thiophene) shifts about 10 nm, while the max of AB3 (furan) shows no shift 

(Figure 31). For the simple alkoxy donor dyes, LD03 (thiophene) shows a 7 nm shift in the max 

value, while LD04 (furan) shows a smaller 3 nm shift (Figure 31). The larger shift in max for the 

thiophene based dyes can be attributed to a halogen bonding event due to the presence of I2 binding 

stronger with the sulfur atom in thiophene than the oxygen of furan. Additionally, the shift toward 

lower energy photon absorption (red-shift) in the presence of I2 occurs as predicted. This is 

consistent with the hypothesis that halogen bonding with thiophene and I2 is occurring by donation 

of electron density from the sulfur to I2.  

To computationally probe the experimentally observed changes in the UV-Vis spectrum in 

the presence of I2, time dependent-density functional theory (TD-DFT) calculations were 

undertaken to evaluate which orbitals were contributing to the observed red-shift and to identify 
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the position of these orbitals. If I2 binding is causing the red-shift, a low energy transition of 

electron density from the dye to I2 is predicted. To evaluate this prediction, the first 10 states were 

examined using the previously optimized geometries (both cis and trans for each dye) for AB1 

(thiophene), AB2 (furan), D35 (thiophene), and AB3 (furan) with TD-DFT calculations at the 

wB97XD/6-31+G* level of theory. For all of the dyes, in the presence of I2 the first two states 

have very low oscillator strengths (f of ~0.0005) ranging from 0.3 to 0.5 eV lower in energy than  

 

Figure 31. UV-Vis absorption spectra for dyes D35, AB3, LD03, and LD04 in acetonitrile 

with and without I2 present on films. Background spectrum were subtracted in each case 

without the dye present but all other components were present. the first major transition (Table 

18-25 in Appendix). The transitions for the first two states also involve a large number of orbitals 

(up to five occupied to unoccupied transitions). The first strong transition (state 3, f of 0.99) for 

cis AB1 (thiophene) is made up of several transitions from occupied orbitals centered on the dye 

with no significant concentration on I2 to unoccupied orbitals localized on I2. Among the 

transitions involved in this state, the HOMO-LUMO transition is the strongest contributor at 27% 
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followed by the HOMO-1 to LUMO at 15% with 9 total transitions (Table 18 and Figure 48 in 

Appendix). Compared to the first state (f = 1.7, primarily HOMO to LUMO and HOMO-1 to 

LUMO) of cis AB1 (thiophene) in the absence of I2, state 3 of cis AB1 (thiophene) with I2 is 

 

Figure 32. Orbitals contributing to the first strong oscillator strength state for trans AB3 and D35. 

Calculations were done at wB97XD/6-31+G* level of theory and basis set. 

0.14 eV lower in energy. Analysis of trans AB1 (thiophene) with and without I2 reveals a very 

similar set of observations (Figures 31, Table 19 and Figure 49 in Appendix). As noted previously, 

the geometry minima for cis AB2 (furan) is significantly different. However, for both cis and trans 

isomers of AB2 (furan), the first two states show very weak oscillator strengths, and the first major 

oscillator strength observed is for state 3 when I2 is present. State 3 for cis AB2 (furan) is still 

comprised of the same dominate orbital transitions as cis AB1 (thiophene) (HOMO to LUMO and 

HOMO-1 to LUMO, Table 20, Figure 50 in Appendix) and a similar magnitude red-shift, but with 
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fewer transition (5 versus 9). Interestingly, the oscillator strength for this third state is significantly 

lower in strength for cis AB2 (furan) than for cis AB1 (thiophene) (0.15 versus 0.99). This again 

suggests a significantly stronger interaction of I2 with thiophene than furan and supports a S-I2 

halogen bonding hypothesis. Trans AB2 (furan) follows the same analysis as cis AB2 (furan) only 

with a dramatically lower oscillator strength for state 3 (f = 0.02, Table S5, Figure 8 and S5). This 

data suggests a very weak interaction between the furan heterocycle and I2 presumably due to the 

lack of a significant halogen bonding event between O and I2. These weak red-shifted transition 

oscillator strengths for AB2 (furan) in the presence of I2 are consistent with the relatively minor 

changes observed by experimental UV-Vis spectroscopy for the furan-based dyes (AB3 and 

LD04). Computationally, AB1 (thiophene) shows a much stronger red-shifted transition oscillator 

strength in the presence of I2 which is consistent with the experimental data for the thiophene dyes 

(D35 and LD03) showing a significant red-shift of the UV-Vis spectrum in the presence of I2. 

Computationally, both cis and trans isomers of D35 (thiophene) and AB3 (furan) follow a similar 

trend to that described above for AB1 (thiophene) and AB2 (furan) (Tables S6-S9). The 

experimental and computational data is again consistent with a stronger S-I2 halogen bonding event 

than O-I2. 

Device Data. Given the spectroscopic observations from the surface Raman studies and 

film UV-Vis studies, several predictions about the performance of the furan-based and thiophene-

based dyes in DSC devices can be made based on the cascade of electron transfer events after 

photoexcitation of the dye. After the injection of an electron from the photoexcited dye into the 

TiO2 CB (equation 1), the ground-state dye can be regenerated with iodide (equation 2). Although 

a number of possible electron transfer pathways exist concerning the iodide redox shuttle,34 a 

commonly cited pathway suggests the I2
- product from equation 2 can then undergo 
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disproportionation to give I3
- and I- via equation 3. I3

- represents the fully oxidized redox shuttle 

species in DSC devices and is involved with an equilibrium reaction to give I2 and I- via equation 

4. Thus, I2 is both continuously being generated within the DSC cell under operational conditions 

and is explicitly added to the electrolyte to generate a concentration of the triiodide species in 

solution needed for rapid electron collection at the counter electrode. The electrons injected into 

the TiO2 CB can either traverse an external circuit to the counter electrode as desired before 

following the reverse reactions equation 3 and the reduction of I2
- via equation 5 to give the original 

iodide reductant, or these electrons can be transferred to an oxidizing species directly from the 

TiO2 CB undesirably (equation 6). Specifically, the recombination rate of electrons in the TiO2 

semiconductor conduction band (CB) with the redox shuttle should be slower for the furan-based 

dyes compared with the thiophene-based analogues if the sulfur of thiophene is halogen bonding 

to I2 near the TiO2 surface. The rate of this recombination is a function of distance for the through-

space electron transfer, and sulfur halogen bonding with I2 will increase the local concentration of 

I2 near the TiO2 surface to promote the undesirable electron transfer shown in equation 6: 

 

dye* + TiO2     dye+ + TiO2(e
—)                 (1) 

 

dye+ + 2 I—        dye + I2
—     (2) 

 

2 I2
—      I3

— + I—       (3) 

 

I3
—  ⇌   I2 + I—       (4) 
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I2
— + e—    2 I—                  (5)  

 

I2 + TiO2(e
—)      I2

— + TiO2      (6) 

Since equation 6 represents a non-productive DSC device electron transfer pathway, it will 

lower photocurrent because fewer electrons are traveling the external circuit. Additionally, the 

electron transfer event represented by equation 6 will also lower photovoltage since electrons are 

being transferred out of TiO2 more rapidly leading to a depletion of the number of electrons in the 

TiO2 CB and lowering the TiO2 fermi level. These predictions can all be tested through a series of 

DSC device measurements including current-voltage (J-V) curve, incident photon-to-current 

conversion efficiency (IPCE), and small modulation photovoltage transient measurements.  

First device performances were analyzed for all of the dyes via J-V curve measurements 

(Figure 33, Table 9). In all cases, the furan-based dyes (AB2, AB3, LD04) gave both higher current 

and voltage than the thiophene analogues (AB1, D35, LD03) as is predicted if a S-I2 halogen 

bonding event were occurring. The open-circuit voltage (Voc) values averaged 28 mV higher and 

the short-circuit current density (Jsc) values averaged 0.5 mA/cm2 higher for the furan derivatives. 

Via the equation PCE = (Voc x Jsc x FF)/I0, where FF is fill-factor and I0 is the sun intensity (set to 

1 for this study), the furan-based dyes were found to average 0.6 % higher in PCE. This equates to 

a >10% overall gain in performance for the furan-based dyes when compared with the thiophene-

based dyes. Upon analysis of the IPCE spectrum, thiophene based dyes AB1 and D35 are 

significantly red-shifted relative to the furan analogues (AB2 and AB3, respectively); however, 

the peak IPCE value for the furan analogues is significantly higher which explains the observed 

photocurrents via the J-V curve measurements (Figure 34). The red-shift of the IPCE spectrum 

is similar to that observed in the UV-Vis measurements for D35 (thiophene) when I2 was 
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added. It is noteworthy, that there is little change in the dye-film absorption spectrum under 

pure acetonitrile when D35 (thiophene) and AB3 (furan) absorption spectrum are compared 

(Figure 31). As hypothesized for the UV- Vis data explanation, the IPCE red-shift for the  

 

Figure 33. J-V curve comparison for AB1, AB2, AB3, D35, LD03 and LD04. 

furan dyes can be rationalized as I2 binding to the thiophene containing dyes to remove 

electron density from the π-system and lowering the LUMO energy of the system. Having 

I2 coordinate to the sulfur in thiophene results in electron density being pulled out of the 

system, effectively lowering the LUMO of the dye and shrinking the HOMO-LUMO gap 

as was shown via TD-DFT above. This causes the thiophene-based dyes IPCE’s to be 

Table 9. Device parameters for AB1, AB2, AB3, D35, LD03 and LD04. 

dye Voc 
(mV) 

Jsc 
(mA/cm2) 

FF PCE 
(%) 

dye 
loading 

(mol/cm2) 
AB1 (T) 631 11.0 0.65 4.6 2.49 x 10-

7 

AB2 (F) 659 11.4 0.71 5.5 2.50 x 10-

7 

D35 (T) 675 8.9 0.64 3.9 3.53 x 10-

8 
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AB3 (F) 696 9.4 0.67 4.5 4.62 x 10-

8 

LD03 
(T) 

630 4.8 0.77 2.4 1.87 x 10-

7 

LD04 
(F) 

664 5.5 0.76 2.8 1.20 x 10-

7 

See device fabrication section for TiO2 thicknesses and compositions. Dyes were deposited 

from a THF:EtOH (1:4) solution with a dye concentration of 0.3 mM and a 40:1 CDCA:dye 

ratio overnight in the dark at room temperature.  The electrolyte was composed of 0.1 M 

GuCNS, 1.0 M DMII, 0.03 M I2, 0.5 M TBP and 0.05 M LiI in 85:15 MeCN:valeronitrile. 

T = thiophene. F = furan. 

selectively red-shifted relative to the film absorption spectrum. For the LD03 

(thiophene)/LD04 (furan) comparison, the IPCE onset values are similar, but the furan derivative 

again shows a higher peak performance. The relative increased peak IPCE performance is 

consistent with the S of thiophene halogen bonding to I2 to promote unwanted recombination, 

while a significantly weaker interaction (if any) is present for the O of furan with I2 which does 

not promote recombination. 

To better understand the rate of recombination of electrons in the TiO2 CB with I2 (equation 

6), electron lifetime measurements were made via small modulated photovoltage transient studies 

(Figure 35). Given the larger Voc and Jsc values for the furan-based dyes, longer electron lifetimes 

are expected for AB2 (furan), AB3 (furan), and LD04 (furan) than the thiophene analogues. This 

is indeed the case, with AB2 (furan) and LD04 (furan) showing dramatically longer electron 

lifetimes than AB1 (thiophene) and LD03 (thiophene) (Figure 35). Even for the case of the 

exceptionally long electron lifetime benchmark dye D35 (thiophene), the furan analogue AB3  
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Figure 34. IPCE curves for AB1, AB2, D35, AB3, LD03, and LD04. 

 

Figure 35. Electron lifetime measurements for dyes AB1, AB2, AB3, D35, LD03 and 

LD04 using small modulation photovoltage transient measurements. 

shows a longer electron lifetime. These results add further evidence that the sulfur of thiophene is 

halogen bonding with I2 near the TiO2 surface to promote a faster electron recombination event.  

Since Voc and Jsc device performance metrics are often correlated to dye loadings, dye 

desorption studies were conducted to probe if dye loading could have had a significant influence 

in the device data results in addition to the stronger halogen bonding of thiophene relative to furan 

(Table 9). While the dye analogues only differ by a single atom, the atom used in the heterocycle 

has a significant influence on the geometry of the substituents at the 2 and 5 positions of furan or 
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thiophene. The O-C bond lengths are shorter for furan which leads to more of a “U” shape, while 

the S-C bonds are longer in the case of thiophene which leads to more of a linear geometry. The 

variation in geometry could result in a difference in dye loading despite the seemingly subtle 

change of a single atom. However, the dye loadings were all found to be similar between the 

analogues. Specifically, the dye loadings for AB1 (thiophene) and AB2 (furan) were found to be 

near identical at 2.5 x 10-7 mol/cm2, and D35 (thiophene) was found to have a dye loading within 

25% of the value of AB3 (furan). Interestingly, the dye loading varied the most between LD03 

(thiophene) and LD04 (furan) with about 55% more LD03 (thiophene) in the devices, yet despite 

the higher dye loadings for the thiophene based dye, the furan-based dye still has a higher 

photocurrent, photovoltage, and electron lifetime within DSC devices. This highlights that the 

factors controlling the recombination rate for these systems is certainly more than just a simple 

surface blocking model dominated by dye loadings. These observations further suggest that the 

halogen bonding of S to I2 is a primary factor in the uniformly lower Voc and Jsc values of thiophene 

dyes relative to furan. 

CONCLUSION 

Overall, evidence for stronger binding of I2 to thiophene containing dyes versus 

furan containing dyes is observed. Raman spectroscopy on TiO2 surface bound dyes shows 

a much more dramatic change in the intensity and shifting of vibrational peaks in the 

presence of iodine for thiophene-based dyes LD03 and D35 relative to the furan-based 

analogues LD04 and AB3, respectively. UV-Vis analysis again lends evidence of I2 binding 

LD03 (thiophene) and D35 (thiophene) on TiO2 showing a red shift in the max. Indirect 

evidence of I2 binding could be seen for AB1 (thiophene) and AB2 (furan) where device 

Voc and Jsc measurements show a higher value for the furan-based dye despite identical dye 



 
 

103 

loadings. This suggests a lower recombination rate which was confirmed via electron 

lifetime studies through small modulated photovoltage transient measurements for AB1 

and AB2. IPCE measurements also showed a red-shift and decrease in IPCE for thiophene 

based dyes AB1 and D35 similar to the addition of an electron withdrawing group, hinting 

toward the coordination of I2 to sulfur lowering the LUMO energy. Computational studies 

lend further evidence to these experimental observations as the thiophene based dyes AB1 

and D35 were both found to have a stronger influence from an I2 binding mode at the sulfur 

atom of thiophene than at the oxygen atom of furan for AB2 and AB3, respectively. TD-

DFT results reveal that the thiophene based dyes more readily transfer electron density 

(have a higher oscillator strength) from the dye to I2 via the HOMO centered on the dye 

and LUMO centered on I2. The oscillator strengths were significantly lower for the 

analogues charge transfer event with furan-based dyes. This study shows substantial 

evidence for I2 binding to the sulfur atoms of thiophene which means dyes should be 

carefully designed to reduce S and I2 interactions near the TiO2 surface for higher device 

performances. 

EXPERIMENTAL 

General Experimental Details. All commercially obtained regents were used as 

received. 2’,4’-dibutoxy-N-(2’,4’-dibutoxy-[1,1’-biphenyl]-4-yl)-N-(4-(4,4,5,5-

tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-[1,1’-biphenyl]-4-amine and (E)-3-(5-(4-

(bis(2',4'-dibutoxy-[1,1'-biphenyl]-4-yl)amino)phenyl)thiophen-2-yl)-2-cyanoacrylic acid 

(D35) were purchased from Dyenamo. 5-bromofuran-2-carbaldehyde was purchased from 

ArkPharm. Thin-layer chromatography (TLC) was conducted with Sorbtech silica XHL 

TLC plates and visualized with UV. Flash column chromatography was performed with 
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Sorbent Tech P60, 40-63 um (230-400 mesh). Reverse phase column chromatography was 

performed with Sorbent Tech C18 P60, 40-63 um (230-400 mesh). 1H and 13C NMR spectra 

were recorded on a Bruker Avance-300 (300 MHz) spectrometer and a Bruker Avance-500 

(500 MHz) spectrometer and are reported in ppm using solvent as an internal standard 

(CDCl3 at 7.26 and Acetone-d6 at 2.09). Data reported as s = singlet, d = doublet, t = triplet, 

q = quartet, p = pentet, m = multiplet, br = broad, ap = apparent, dd = doublet of doublets; 

coupling constant(s) in Hz. UV spectra were measured with a Cary 5000 UV-Vis-NIR 

spectrometer with either dichloromethane or 0.1 M Bu4NOH in DMF solution. Cyclic 

voltammetry curves were measured with a C-H Instruments electrochemical analyzer 

CHI600E. (E)-3-(5'-(4-(bis(2',4'-dibutoxy-[1,1'-biphenyl]-4-yl)amino)phenyl)-[2,2'-

bithiophen]-5-yl)-2-cyanoacrylic acid (AB1), (E)-2-cyano-3-(5-(4-

(hexyloxy)phenyl)thiophen-2-yl)acrylic acid (LD03) and (E)-2-cyano-3-(5-(4-

(hexyloxy)phenyl)furan-2-yl)acrylic acid (LD04) were synthesized according to literature 

procedures.134,135  

Raman Experimental Details. A Horiba Scientific LabRAM HR Evolution Raman 

Spectroscopy system was used for the acquisition of Raman spectra. The 633 nm line from 

a HeNe laser was focused onto solid samples using a 100x objective with a 0.9 NA and a 

1800 grooves/mm grating and CCD camera were used for detection.  

Computational Details. All geometry optimization and binding energy calculations 

were completed with Gaussian 16 package.139 wB97XD functional140 was used to include 

long-range corrections with D2 dispersion model.141 Tight optimization criteria were used 

for both force and density matrix convergence along with ultrafine grid for numerical 

integration. We used a 6-31+G* basis set for all atoms except for I, where we used 
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LANL2DZdp142,143 basis set and associated effective core potential. Each dye molecules 

consists of two different configurations; cis- and trans-, which are defined as whether the 

S (for thiophene ring) and O (for furan ring) were on the same or on the different side of N 

(for nitrile functional group). For the binding energy calculations, 5 (five) different sites 

were considered for AB1 and AB2; however, in case of AB3 and D35, 4 (four) different 

sites were considered. In each of these sites, the I2 molecule was placed at 4 different 

locations around the considered sites to account for the variations in binding energy. 

Frequency calculations indicate all geometries are in their corresponding local minima’s.  

SYNTHETIC PROTOCOLS  

5-(5-(4-(bis(2’,4'-dibutoxy-[1,1'-biphenyl]-4-yl)amino)phenyl)thiophen-2-yl)furan-3-

carbaldehyde: In a 8.0 mL glass vial, 2’,4’-dibutoxy-N-(2’,4’-dibutoxy-[1,1’-biphenyl]-4-

yl)-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-[1,1’-biphenyl]-4-amine 

(75 mg, 0.092 mmol), 5-(5-bromothiophen-2-yl)furan-2-carbaldehyde144 (22 mg, 0.084 

mmol) and potassium phosphate (53 mg, 0.25 mmol) were dissolved in 1.68 mL of toluene 

and 0.073 mL of water. The solution was then degassed for about 10 minutes under 

nitrogen, after which Pd2(dba)3 (3.0 mg, 0.003 mmol) and XPhos (6.0 mg, 0.013 mmol) 

were added together. The reaction was then sealed, and brought to 80 oC for 15 hours. The 

reaction was then removed from heat and cooled to room temperature. The mixture was 

then extracted with ethyl acetate and water and dried with magnesium sulfate. The crude 

product was purified with silica gel chromatography with a gradient from 10% ethyl 

acetate/hexanes to 20% ethyl acetate/hexanes (0.076 g; 95% yield). 1H NMR (500 MHz, 

Acetone-d6)  9.66 (s, 1H), 7.71 (d, J = 8.7 Hz, 2H), 7.66 (d, J = 3.9 Hz, 1H), 7.60-7.55 (m, 

5H), 7.51 (d, J = 3.9 Hz, 1H), 7.32 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.6 Hz, 4H), 7.18 (d, J 
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= 8.7 Hz, 2H), 7.03 (d, J = 3.8 Hz, 1H), 6.68 (d, J = 2.3 Hz, 2H), 6.64 (dd, J = 2.4, 2.4 Hz, 

2H), 4.13-4.04 (m, 8H), 1.85-1.73 (m, 8H), 1.62-1.46 (m, 8H), and 1.05-0.95 (m, 12H) 

ppm. 13C NMR (500 MHz, CDCl3)  176.9, 159.7, 157.1, 155.2, 151.5, 148.4, 147.1, 145.5, 

133.7, 131.0, 130.4, 129.4, 127.5 (appears broad, assumed 2 signals), 126.9, 126.7, 124.3, 

123.3, 123.1, 123.0, 107.3, 105.4, 100.6, 68.3, 67.9, 31.5, 31.3, 19.5, 19.4, 14.0, and 14.0 

ppm. IR (neat) 3190, 3073, 3030, 2955, 2926, 2868, 2330, 2117, 1730, 1670, 1599 cm-

1. HRMS m/z calc’d for C55H59NO6SCs [M + Cs]+: calculated 994.3118, found 994.3125. 

(E)-3-(5-(5-(4-(bis(2',4'-dibutoxy-[1,1'-biphenyl]-4 yl)amino)phenyl)thiophen-2-

yl)furan-3-yl)-2-cyanoacrylic acid (AB2): In a 8 mL vial, compound 5-(5-(4-(bis(2’,4'-

dibutoxy-[1,1'-biphenyl]-4-yl)amino)phenyl)thiophen-2-yl)furan-3-carbaldehyde (0.040 g, 

0.047 mmol) was dissolved in 0.94 mL chloroform. The mixture was then degassed with 

N2 for approximately 30 minutes. Cyanoacetic acid (0.012 g, 0.14 mmol) and piperidine 

(0.032 mL, 0.33 mmol) were added to vial, which was then sealed, heated to 90 oC and 

allowed to stir for 16 hours. The reaction mixture was diluted with dichloromethane and 

purified through a plug of silica gel with 100% dichloromethane to 10% 

methanol/dichloromethane to 12% methanol/3% acetic acid/dichloromethane. The solvent 

of the third fraction was evaporated under reduced pressure. The dye was then extracted 

with hexanes and water to give the final dye (AB2, 0.040 g, 91% yield). 1H NMR (500 

MHz, Acetone-d6)  8.07 (s, 1H), 7.73-7.69 (m, 4H), 7.57 (d, J = 8.6 Hz, 4H), 7.55 (d, J = 

3.9 Hz, 1H), 7.32 (d, J = 8.4 Hz, 2H), 7.22-7.17 (m, 6H), 7.11 (d, J = 3.7 Hz, 1H), 6.69 (d, 

J = 2.3 Hz, 2H), 6.64 (dd, J = 2.4, 2.4 Hz, 2H), 4.11-4.00 (m, 8H), 1.85-1.70 (m, 8H), 1.60-

1.46 (m, 8H), and 1.05-0.95 (m, 12H) ppm. IR (neat) 3050, 2952, 2924, 2854, 2360, 
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2340, 1699, 1602 cm-1. ESI HRMS m/z calc’d for C58H59N2O7S [M - H]-: calculated 

927.4043, found 927.4072. 

5-(4-(bis(2',4'-dibutoxy-[1,1'-biphenyl]-4-yl)amino)phenyl)furan-2-carbaldehyde: In 

a 8.0 mL glass vial, 2’,4’-dibutoxy-N-(2’,4’-dibutoxy-[1,1’-biphenyl]-4-yl)-N-(4-(4,4,5,5-

tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-[1,1’-biphenyl]-4-amine (100 mg, 0.12 

mmol), 5-bromofuran-2-carbaldehyde (20 mg, 0.11 mmol) and potassium phosphate (71 

mg, 0.34 mmol) were dissolved in 2.24 mL of toluene and 0.097 mL of water. The solution 

was then degassed for about 10 minutes under nitrogen, after which Pd2(dba)3 (4.0 mg, 

0.005 mmol) and XPhos (8.5 mg, 0.018 mmol) were added together. The reaction was then 

sealed, and brought to 80oC for 15 hours. The reaction was then removed from heat and 

cooled to room temperature. The mixture was then extracted with ethyl acetate and water 

and dried with magnesium sulfate. The crude product was purified with silica gel 

chromatography with 10% ethyl acetate/hexanes (0.092 g; 96% yield). 1H NMR (500 MHz, 

CDCl3)  9.59 (s, 1H), 7.67 (d, J = 8.9 Hz, 2H), 7.47 (d, J = 8.6 Hz, 4H), 7.30 (d, J = 3.8 

Hz, 1H), 7.28 (s, 2H), 7.20-7.10 (m, 6H), 6.71 (d, J = 3.7 Hz, 1H), 6.65-6,45 (m, 4H), 4.05-

3.85 (m, 8H), 1.85-1.70 (m, 8H), 1.50-1.45 (m, 8H), 1.05-0.90 (m, 12H) ppm.13C NMR 

(500 MHz, CDCl3)  177.1, 160.4, 160.0, 157.3, 151.9, 149.8, 145.3, 134.4, 131.2 (signal 

appears larger than expected, assumed 2 signals), 130.7, 126.7, 124.9, 123.1, 122.4, 122.1, 

106.6, 105.7, 100.8, 68.5, 68.1, 31.7, 31.5, 19.7, 19.6, 14.2, 14.2 ppm. IR (neat) 3200, 

3037, 2957, 2931, 2870, 2360, 2333, 2115, 1672, 1602, 1600 cm-1. ESI HRMS m/z calc’d 

for C51H57NO6Cs [M + Cs]+: calculated 912.3240, found 912.3235.  

(E)-3-(5-(4-(bis(2',4'-dibutoxy-[1,1'-biphenyl]-4-yl)amino)phenyl)furan-2-yl)-2-

cyanoacrylic acid (AB3): In a 8.0 mL vial, 5-(4-(bis(2',4'-dibutoxy-[1,1'-biphenyl]-4-
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yl)amino)phenyl)furan-2-carbaldehyde (0.056 g, 0.072 mmol) was dissolved in 1.50 mL 

chloroform. The mixture was then degassed with N2 for approximately 30 minutes. 

Cyanoacetic acid (0.018 g, 0.217 mmol) and piperidine (0.050 mL, 0.507 mmol) were 

added to vial, which was then sealed, heated to 90oC and allowed to stir for 16 hours. The 

reaction mixture was diluted with dichloromethane and purified through a plug of silica gel 

with 100% dichloromethane to 10% methanol/dichloromethane to 12% methanol/3% acetic 

acid/dichloromethane. The solvent of the third fraction was evaporated under reduced 

pressure. The dye was then extracted with hexanes and water to give AB3 with trace 

impurities. The product was then purified using reverse phase column chromatography with 

a gradient from 10% methanol/acetonitrile to 50% methanol/acetonitrile, then with a 

CombiFlash Rf
+

 chromatography system (RediSep Rf Gold high performance silica gel, 0% 

methanol/dichloromethane  10% methanol/dichloromethane) to give the final pure dye 

(0.014 g, 23%). 1H NMR (500 MHz, CDCl3) 7.94 (s, 1H), 7.72 (d, J = 8.8 Hz, 2H), 7.47 

(d, J = 8.7 Hz, 4H), 7.28-7.25 (m, 3H), 7.21-7.16 (m, 6H), 6.81 (d, J = 3.8 Hz, 1H), 6.60-

6.52 (m, 4H), 4.05-3.95 (m, 8H), 1.85-1.70 (m, 8H), 1.50-1.45 (m, 8H), 1.05-0.90 (m, 12H) 

ppm. IR (neat)3340, 2944, 2923, 2854, 2333, 2114, 1602, 1593 cm-1. ESI HRMS m/z 

calc’d for C54H59N2O7 [M + H]+: calculated 847.4323, found 847.4347. 

Photovoltaic Device Characterization. Photovoltaic characteristics were 

measured using a 150 W xenon lamp (Model SF150B, SCIENCETECH Inc. Class ABA) 

solar simulator equipped with an AM 1.5 G filter for a less than 2% spectral mismatch. 

Prior to each measurement, the solar simulator output was calibrated with a KG5 filtered 

mono-crystalline silicon NREL calibrated reference cell from ABET Technologies (Model 

15150-KG5). The current density-voltage characteristic of each cell was obtained with a 
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Keithley digital source-meter (Model 2400). The incident photon-to-current conversion 

efficiency was measured with an IPCE instrument manufactured by Dyenamo comprised 

of a 175 W xenon lamp (CERMAX, Model LX175F), monochromator (Spectral Products, 

Model CM110, Czerny-Turner, dual-grating), filter wheel (Spectral Products, Model 

AB301T, fitted with filter AB3044 [440 nm high pass] and filter AB3051 [510 nm high 

pass]), a calibrated UV-enhanced silicon photodiode reference and Dyenamo issued 

software.  

Photovoltaic Device Fabrication. For the photoanode, TEC 10 glass was purchased 

from Hartford Glass. Once cut into 2x2 cm squares, the substrate was submerged in a 0.2% 

Deconex 21 aqueous solution and sonicated for 15 minutes at room temperature. The 

electrodes were rinsed with water and sonicated in acetone 10 minutes followed by 

sonication in ethanol for 10 minutes. Finally, the electrodes were placed under UV/ozone 

for 15 minutes (UV-Ozone Cleaning System, Model ProCleaner by UVFAB Systems). A 

compact TiO2 underlayer is then applied by treatment of the substrate submerged in a 40 

mM TiCl4 solution in water (prepared from 99.9% TiCl4 between 0-5oC). The submerged 

substrates (conductive side up) were heated for 30 minutes at 70oC. After heating, the 

substrates were rinsed first with water then with ethanol. The photoanode consists of thin 

TiO2 electrodes comprised of a 10 μm mesoporous TiO2 layer (particle size: 20 nm, Dyesol, 

DSL 18NR-T) for iodine cells with a 5 μm TiO2 scattering layer (particle size: >100 nm, 

Solaronix R/SP). Both layers were screen printed from a Sefar screen (54/137–64W) 

resulting in 5 μm thickness for each print. Between each print, the substrate was heated for 

7 minutes at 125oC and the thickness was measured with a profilometer (Alpha-Step D-500 

KLA Tencor). The substrate was then sintered with progressive heating from 125oC (5 
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minute ramp from r.t., 5 minute hold) to 325oC (15 minute ramp from 125oC, 5 minute 

hold) to 375oC (5 minute ramp from 325oC, 5 minute hold) to 450oC (5 minute ramp from 

375oC, 15 minute hold) to 500oC (5 minute ramp from 450oC, 15 minute hold) using a 

programmable furnace (Vulcan® 3-Series Model 3-550). The cooled, sintered photoanode 

was soaked 30 minutes at 70oC in a 40 mM TiCl4 water solution and heated again at 500oC 

for 30 minutes prior to sensitization. The complete working electrode was prepared by 

immersing the TiO2 film into the dye solution for 16 hours. The solution for all the dyes 

consists of 0.3 mM dye, with 40x of CDCA (chenodeoxycholic acid) (i.e. 40:1, CDCA:dye 

ratio) in (4:1) EtOH:THF. For preparing the counter electrode, 2x2 cm squares of TEC 7 

FTO glass were drilled using Dremel-4000 with a Dremel 7134 Diamond Taper Point Bit 

from the back side to a taped FTO side. After the tape was removed, the electrodes were 

washed with water followed by a 0.1 M HCl in EtOH wash and sonication in acetone bath 

for 10 minutes. The washed electrodes were then dried at 400oC for 15 minutes. A thin 

layer of Pt-paste (Solaronix, Platisol T/SP) on TCO was slot printed though a punched tape 

and the printed electrodes were then cured at 450oC for 10 minutes. After allowing them to 

cool to room temperature, the working electrodes were then sealed with a 25 μm thick hot 

melt film (Meltonix 1170-25, Solaronix) by heating the system at 130oC under 0.2 psi 

pressure for 1 minute. Devices were completed by filling the electrolyte through the pre-

drilled holes in the counter electrodes and finally the holes were sealed with a Meltonix 

1170-25 circle and a thin glass cover slip by heating at 130oC  under pressure 0.1psi for 25 

seconds. Finally, soldered contacts were added with a MBR Ultrasonic soldering machine 

(model USS-9210) with solder alloy (Cerasolzer wire dia 1.6mm item # CS186-150). A 
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circular black mask (active area 0.15 cm2) punched from black tape was used in the 

subsequent photovoltaic studies. 

Electron Lifetime Measurements. Electron lifetime measurements via small 

modulated photovoltage transient measurements, were carried out with a Dyenamo 

Toolbox (DN-AE01) instrument and software. The intensity of the LED light source (Seoul 

Semiconductors, Natural White, S42182H, 450 to 750 nm emission) is varied to modulate 

the device open-circuit voltage. The biased light intensity was modulated by applied 

voltages of 2.80, 2.85, 2.90, 2.95, and 3.00 V applied to the LED with the 3.0 V bias 

approaching 1 sun intensity (97%). The direction of illumination was from the photoanode 

to the counter electrode, and the device was positioned 5 cm from the LED light source. 

The voltage rise and decay times are fitted with a Levenberg-Marquardt fitting algorithm 

via LabView, and the electron lifetime was obtained from the averaging of rise and decay 

time.
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CHAPTER 6 

6.1 QUINOXALINE-BASED DUAL DONOR, DUAL ACCEPTOR ORGANIC DYES FOR 

DYE-SENSITIZED SOLAR CELSS 

 

Adithya Peddapuram,; Hammad Cheema,; Louis E. McNamara,; Yanbing Zhang,; Nathan I. 

Hammer,; Delcamp, J. H. Appl. Sci. 2018, 8, 1421. Adapted from permission of the MDPI 

 

(See appendix for permission license.) 

 

 

 This is a collaborative project with Dr. Hammer group. Adithya Paddapuram is in charge 

of the synthesis and characterizing of all the dyes, Hammad Chemma and Yanbing Zhang 

measured all the photovoltaic data from Dr.Delcamp’s group.  Louis E. McNamara performed all 

excited-state fluorescence lifetime measurements and calculated electron injection efficiencies for 

all target molecules from Dr. Hammer’s group. 

ABSTRACT 

A novel metal-free quinoxaline-based molecular framework with a dual donor and dual 

acceptor (DD-π-AA) motif has been introduced. Four sensitizers (AP6, AP8, AP9, and AP12) 

have been synthesized and fully characterized via UV–Vis absorption, cyclic voltammetry, density 

functional theory (DFT) calculations, time-correlated single photon counting (TCSPC), and in dye-

sensitized solar cell (DSC) devices. Structural modifications to both the donor and acceptor/anchor 
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regions were evaluated via structure–property relationships without altering the quinoxaline π-

bridge. Through careful dye design, a broadly absorbing near-infrared (NIR) sensitizer extending 

electricity production to 800 nm is realized in DSC devices. Ground- and excited-state oxidation 

potentials were measured to show energetically favorable charge transfer events. Importantly, the 

dye structure was found to have a strong influence on dye energetics in different environments 

with structural elements allowing for either similar or dramatically different solution versus film 

measurements. The DSC device electrolyte was also found to have a significant influence on dye 

energetics as well. Electron transfer events were probed for each dye with DSC device 

measurements and with TCSPC studies. The results are correlated to the dye structures. 

INTRODUCTION 

Dye-sensitized solar cells (DSCs) remain a promising and intensely studied area of 

research after two decades of exploration.1,62-63,71,102–104,107,142–146 In typical n-type DSC devices, 

dye molecules are first photoexcited followed by the transfer of electrons to the conduction band 

(CB) of TiO2. The electrons then traverse an external circuit before travelling back to the oxidized 

dye via a redox shuttle after collection at a counter electrode. The dye is one of the most important 

components of DSC devices for determining which photon energies are useable. Broad UV–Vis–

near-infrared (NIR) absorption properties are crucial for realizing the highest efficiency DSC 

devices possible.87 A DSC device employing organic dyes surpassing 14% power conversion 

efficiency (PCE) has been reported owing to well-positioned energy levels, high extinction 

coefficients, and strong binding properties.6 However, in order to further improve DSC device 

performances, dyes with NIR absorption (>750 nm) are required. In this work, structure–property 

relationships of quinoxaline-based dual donor and dual acceptor (DD-π-AA) dyes are explored 

with absorptions extending to 800 nm. 
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Donor-π bridge-acceptor (D-π-A) and D-A′-π-A (where A′ is an auxiliary acceptor) dye 

constructs have become increasingly popular in DSC research.1,73,104,150,151 Fueled by PCEs in 

excess of 13%, this direction remains heavily pursued.4,6,152 Additionally, tightly bound anchors 

are crucial in achieving higher efficiencies, because they allow co-sensitization and co-deposition 

of insulators to facilitate panchromatic absorption and to protect against the transfer of electrons 

from the TiO2 CB to the oxidized redox shuttle (recombination), respectively. As a key example, 

ADEKA-1-based devices have used these strategies to set the current record for DSC device 

efficiency at 14.3%.6  

The silanol anchoring group is regarded as both one of the strongest anchoring groups, with 

efficient electron transfers to TiO2, and as a very challenging functional group to synthesize and 

employ in devices.153 In this regard, sensitizers with panchromatic absorption and strong binding 

through multiple carboxylic acid anchors, such as with the DD-π-AA design, are highly 

attractive.154 Quinoxaline-based dyes employing the DD-π-AA molecular framework have 

demonstrated broad absorptions and TiO2 dissociation rates up to 180 times slower than dyes 

employing a traditional D-π-A structure.155 Thienopyrazine (TPz)-based DD-π-AA dye, AP3, has 

shown a PCE of 5.5% (>10% under low light when co-sensitized) with panchromatic 

absorption.72,156 Energetically, the PCE of devices made with AP3 could be increased by 

destabilizing the low-energy excited-state to facilitate faster electron injection into the TiO2 CB 

by forgoing the need for excessive lithium iodide (LiI), which is known to lower DSC device 

photovoltages.156 We reasoned that the use of a benzene in place of the thiophene group of TPz 

could broaden the dye optical energy gap enough to raise the dye excited-state energy without fully 

sacrificing panchromatic absorption properties.157–159 Dyes AP6, AP8, AP9, and AP12 were 

selected as target dyes, which vary at the donor and acceptor regions. AP6 and AP8 have been 
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previously reported to have strong binding to TiO2 and only differ at the dual carboxylic acid 

anchors, with AP6 having a phenyl space between the anchors and the quinoxaline group (Figure 

36).155 Both AP6 and AP8 had yet to be evaluated in DSC devices prior to this study, and both 

dyes require photons higher in energy than are present in the NIR region. Dye designs strategies 

for overcoming this limited absorption focus on extending conjugation, planarization of the π-

conjugated system, and the increasing of the electron-donating/accepting group strengths. AP9 

directly compares to AP8 with the addition of a thiophene spacer between the triphenyl amine 

(TPA) donors and the quinoxaline π-bridge. The added thiophene groups are selected to increase 

conjugation and to minimize the dihedral angle between the quinoxaline and donor region for 

efficient electron transfer from donor to acceptor upon photoexcitation. AP12 compares to AP6 

with the same number of π-electrons in the conjugated dye system, but AP12 differs in the 

planarization of the spacer groups between the carboxylic acids and at the quinoxaline π-bridge 

with the introduction of two nitrogen atoms in place of two C–H groups to reduce sterics at the 

TiO2 surface. The planarization and introduction of two electron-accepting nitrogen groups is 

expected to broaden the absorption of AP6. 

 

Figure 36. Target structures of AP6, AP8, AP9, and AP12. 
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Materials and Methods 

Known Synthetic Intermediates 

Diethyl 5,8-dibromo-4a,8a-dihydroquinoxaline-2,3-dicarboxylate (1),155 4-(hexyloxy)-N-

(4-(hexyloxy)phenyl)-N-(4-(5-(tributylstannyl)thiophen-2-yl)phenyl)aniline (2),160 4,7-

dibromobenzo[c][1,2,5]thiadiazole (4),161 4-(hexyloxy)-N-(4-(hexyloxy)phenyl)-N-(4-(4,4,5,5-

tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)aniline (5),162 and diethyl 5,6-dioxo-5,6-dihydro-

1,10-phenanthroline-2,9-dicarboxylate (8)163 were synthesized according to literature procedures 

(Scheme 4). 

 

Scheme 4. Synthetic route to target dyes AP9 and AP12. 
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RESULT AND DISCUSSION 

3.1. AP9 and AP12 Synthesis Discussion 

AP6 and AP8 were synthesized according to the literature.155 AP9 was synthesized 

beginning with a Stille coupling of diester intermediate 1 with TPA-thiophene tin reagent 2 to give 

the diester precursor to AP9 in 46% yield (Scheme 4, Figure 53 and 54 in Appendix). Basic 

hydrolysis of 3 with LiOH afforded AP9 in high yield in two steps from known materials (Figure 

55 in Appendix). The synthesis of AP12 began with a Suzuki coupling of a TPA-boronic ester 

derivative (5) with dibromobenzothiadiazole 4 to give a bisTPA substituted benzothiadiazole 

derivative 6 in good yield (Figure 56 and 57 in Appendix). A sodium borohydride reduction of 6 

yielded bisTPA-substituted phenyl diamine 7 in excellent yield (Figure 58 in Appendix). Upon 

condensation of 7 with known dione diester intermediate 8, the diester precursor to AP12 was 

synthesized (Figure 59 and 60 in Appendix). This diester intermediate 9 underwent basic 

hydrolysis to give the desired AP12 dye (Figure 61 in Appendix). 

3.2. UV–Vis Absorption Properties 

After synthesis, the dyes were first evaluated by UV–Vis absorption spectroscopy to 

analyze the effects each structural modification had on the dye optical energy gaps (Figure 36, 

Table 10). All four dyes showed a single, broad charge transfer absorption band as the lowest 

energy transition in solution. Absorption maxima values were observed in the following order AP6 

< AP8 < AP9 ≈ AP12 in dichloromethane (479, 531, 590, and 588 nm, respectively). While the 

absorption maxima of AP9 and AP12 were similar in energy, the absorption onset values varied 

significantly due to a broader absorption from AP9 in solution. Because DSC devices typically 

produce electricity until a dye onset, these values are more representative of the energies relevant 
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to DSC devices. The dye λonset values were estimated from both solution measurements in 

dichloromethane (DCM) and on TiO2 films. The comparison with TiO2 films is critical for dual 

anchor dyes, because the carboxylic acid is part of the charge transfer system, and the carboxylic 

acid conformation relative to the dye π-system can be dramatically affected by surface binding 

orientations.72 AP6 showed an absorption onset of 560 nm in DCM and only a slight red-shift on 

TiO2 to 585 nm. The removal of the π-spacer phenyl groups between the quinoxaline and the 

carboxylic acids red-shifted the solution onset by 80 nm to give an onset of 640 nm for AP8 in 

DCM. This red-shift was rationalized by the phenyl groups having significant steric influence on 

the dye conformation, which prohibited the carboxylic acids of AP6 from being completely planar 

with the dye π-system as is needed for maximal influence on the charge transfer band. The 

carboxylic acid groups of AP8 can access a completely planar orientation leading to a red-shift in 

absorption despite AP8 having fewer π-electrons. Interestingly, AP8 showed a 70 nm λonset blue-

shift on TiO2. We attributed this to a significantly different film conformation being accessed 

relative to that observed in the DCM solution, which was potentially due to both anchors binding 

the TiO2 surface leading to a dye conformation with a reduced π-system overlap between the 

carboxylic acids and the quinoxaline group. This highlights the need for careful assessment of the 

dyes on TiO2 films rather than just from the solution when estimating dye energetics, as the change 

in the dye optical energy gap was 240 mV for the case of AP8. This was a substantial change, 

especially at longer wavelengths as there is little room in this spectral region for non-ideal 

energetics. 
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Figure 37. Molar absorptivities of AP6, AP8, AP9, and AP12 in DCM and normalized absorption 

on TiO2. 

Table 10. Optical and electrochemical data of AP6, AP8, AP9, and AP12. 

Absorbance Data [a] Electrochemical Data 

Dye 

λmax 

(nm

) 

λonset
DC

M (nm) 

λonset
TiO

2 (nm) 

IPCEonse

t (nm) 

 

(M−1 

cm−1) 

E(S+/S

) 

DC

M 

Eg
op

t 

(eV

) [b] 

E(S+/S*

) 

DCM 
[c] 

E(S+/S*

) TiO2 
[c] 

E(S+/S*

) 

IPCE 
[c] 

AP6 479 560 585 590 
12,00

0 
0.88 2.21 −1.33 −1.24 −1.22 

AP8 531 640 570 675 8,000 0.90 1.94 −1.04 −1.28 −0.94 

AP9 590 770 660 680 5,500 0.88 1.61 −0.73 −1.00 −0.94 

AP1

2 
588 720 720 800 5,600 0.89 1.72 −0.83 −0.83 −0.66 

[a] Onset values are taken as the x-intercept of a downward tangent line on the absorption curves 

on the low-energy side; [b] Calculated from the equation Eg
opt = 1240/λonset; 

[c] Calculated from the 

equation E(S+/S*) = E(S+/S) − Eg
opt. 

AP9 showed a dramatic shift in the absorption curve onset in solution to 770 nm when 

compared with AP8, where the only difference in the two dyes was a thiophene spacer between 

the quinoxaline and TPA groups. This could be due to both extending the conjugation of the dye 

π-system and to reducing the steric interactions between the quinoxaline π-bridge and donor region 
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by the introduction of a 5-member ring at the quinoxaline bridge. The anchor group spacing is 

identical to that of AP8, and a significant shift in the absorption onset would again be expected on 

TiO2. Indeed, a 110 nm blue-shift was observed for AP9 on TiO2. AP12 compares most directly 

to AP6, and AP12 had a solution absorption onset of 720 nm. This was a 160-nm red-shift in the 

absorption onset relative to AP6, where AP12 differed by only the linking of the phenyl π-spacers 

between the quinoxaline and carboxylic acid to force planarity of this group and the addition of 

two nitrogen atoms to reduce sterics at the TiO2 surface. Both changes likely influenced the 

absorption onset. Because the anchor spacing of AP12 is similar to AP6, which did not show a 

significant shift of absorption onset on TiO2 relative to in solution, no significant change was 

expected for AP12 on the TiO2 films. As predicted, the onset for AP12 on TiO2 was very similar 

to that in solution. Additionally, it is particularly noteworthy that all of these dyes suffered from 

poor molar absorptivities ranging from 12,000 to 5,500 M−1 cm−1. AP8, AP9, and AP12 all had 

molar absorptivities ≤8,000 M−1 cm−1. Low molar absorptivities can be problematic in DSC 

devices. 

 3.3 Electrochemical Properties 

For dyes to function efficiently in DSC devices, the dye energy levels should be 

thermodynamically well positioned relative to the TiO2 CB for efficient electron injection and the 

redox shuttle for efficient dye regeneration. Thus, electrochemical measurements were carried out 

in dichloromethane solutions and on TiO2 electrodes to evaluate the suitability of these dyes to 

work in DSC devices based on TiO2 and I−/I3
−. The ground-state oxidation potentials (E(S+/S)) of 

the dye should be lower in energy than the redox shuttle (0.35 V vs. normal hydrogen electrode 

(NHE)). All of the dyes had similar E(S+/S) values within 20 mV ranging from 0.88 to 0.90 V both 

in DCM and on TiO2 (Table 10, Figures 38, and Figure 53, Appendix). Thus, all the dyes can 
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undergo thermodynamically favorable electron transfers from I− to regenerate the neutral dye after 

electron injection into TiO2. This suggests that despite the dye conformation change when the 

solution and film absorption spectrum were compared, no significant effect was seen for any of 

the dyes via the E(S+/S) value measurements. Therefore, all of the energetic changes with regard to 

the narrowing or widening of the optical energy gap on film relative to solution is due to changes 

in the excited-state oxidation potentials (E(S+/S*)). This observation is somewhat intuitive, because 

the E(S+/S*) values are primarily controlled by the dye acceptor groups anchored to the TiO2 surface. 

 

Figure 38. Energy level diagram for AP6, AP8, AP9, and AP12 in DCM (solid bars) and on TiO2 

(dashed bars). The S+/S values change by <0.02 V on TiO2 when compared with the solution 

values shown in the figure. 

The E(S+/S*) values were estimated via the equation E(S+/S*) = E(S+/S) − Eg
opt for the AP dyes 

both on TiO2 and in solution. Because the dye structural modifications had little effect on the E(S+/S) 

values, and the dye Eg
opt values were found to vary broadly via UV–Vis spectroscopy in solution, 

a broad range of E(S+/S*) values are observed for this series ranging from −0.73 to −1.33 V vs. NHE. 

All of these values indicate a thermodynamically favorable electron transfer to the TiO2 CB from 

a photoexcited dye. AP9 with thiophene spacers extending conjugation between the quinoxaline 
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and TPA groups was found to have the lowest energy E(S+/S*) value of −0.73 V in DCM. The 

removal of the thiophene groups gave dye AP8 an E(S+/S*) value of −1.04 V. AP12 with the 

planarized acceptor region gave the second lowest energy E(S+/S*) value of −0.83 V, which was 

significantly lower than that of the non-planarized AP6 (−1.33 V). Because film energetic values 

are more relevant to DSC devices, each of the dyes were energetically analyzed on TiO2 films. On 

the TiO2 films, the E(S+/S*) values for AP8 and AP9 both upshifted significantly by ≥240 mV. This 

was likely due to the spacing of the dual anchors resulting in a dramatically different conformation 

on TiO2 than in solution. Based on the energetic changes, a significant twist angle was introduced 

between the carboxylic acid and quinoxaline groups for these dyes on film relative to in solution. 

After this change in AP9 energetics on TiO2 compared with the solution measurements, AP12 had 

the lowest energy excited-state on films, as no change was observed when solution and TiO2 

excited-states were compared. The modest-to-no change in excited-states for AP6 and AP12 on 

films compared with solution suggests a similar conformation in both environments indicating 

solution measurements were a reasonable approximation of energy levels for this dual anchor 

spacing in DSC devices. This observation has also been reported for thienopyrazine-based dual 

anchor DSC dyes with similar carboxylic acid anchor spacings, where the phenyl spacer-based 

systems showed similar solution and film energetics, while the dyes with no phenyl spacer showed 

significantly altered energetics on the TiO2 films.72 In all cases, the dye thermodynamics on film 

indicated that a facile electron transfer event to TiO2 is possible. 

3.4 Computational Analysis 

In addition to thermodynamically favorable energy levels, molecular orbital positions are 

critical for facile, productive electron transfers in DSC devices. Ideally, the highest occupied 

molecular orbital (HOMO) of the dye should be located away from the TiO2 surface to avoid back 
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electron transfers after electron injection, and the lowest unoccupied molecular orbital (LUMO) 

of the dye should be localized closer to the TiO2 surface for efficient electron injection to TiO2 

after photoinduced intramolecular charge transfer (ICT). Density functional theory (DFT) 

calculations at the B3LYP/6-311G(d,p) level were carried out in Gaussian09 to visualize the 

frontier orbital distribution of the target structures.164 The HOMO was found to be distributed 

across both donors on each dye with some presence on the quinoxaline benzene ring. This HOMO 

location is well positioned to be far from the TiO2 surface, as desired. The LUMO was localized 

on the quinoxaline bridge and carboxylic acid anchors at the TiO2 surface (Figure 38). The LUMO 

is ideally positioned for electron transfer to TiO2. Significant HOMO–LUMO overlap was 

observed at the quinoxaline (primarily at the benzene ring), which shows the role of this group as 

a π-bridge. Thus, efficient ICT from donor to acceptor in the DD-π-AA molecular framework is 

possible, which is critical to absorbing lower energy light with reasonable molar absorptivities. 

 

Figure 39. Frontier molecular orbital distributions of AP6, AP8, AP9, and AP12. 
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3.5 Photovoltaic Analysis 

Based on optical, electrochemical, and computational data, all of the dyes studied can 

perform well in I−/I3
−/TiO2-based DSCs. The devices were analyzed under AM 1.5 G incident solar 

simulation with PCEs calculated according to the equation, PCE = (JSC × VOC × FF)/I0, where JSC 

is the short-circuit current density, VOC is the open-circuit voltage, FF is the fill factor, and I0 is 

the incident light intensity equal to 1 sun in this study. The highest PCE of the series was measured 

for AP6 at 3.7% with a JSC value of 7.0 mA/cm2 (Figure 40 and Table 11). AP6 also had the 

highest observed Voc value of 694 mV, with the remaining dyes having very similar VOC values 

of 591–615 mV, which also contributed to AP6 showing the highest PCE of the series. AP6-based 

devices have the highest JSC value for the series followed by AP12 > AP9 > AP8. Interestingly, 

the JSC trend followed the same trend for absorption onsets on TiO2, with the longest wavelength 

absorbing dyes producing the highest JSC values except for AP6. AP6 had the narrowest absorption 

of the series yet had the highest photocurrent in DSC devices. This was likely the result of a 

significantly higher molar absorptivity for AP6 relative to the other dyes in the series. AP6 also 

showed the highest peak incident photon-to-current conversion efficiency (IPCE) value of the dyes 

in this series at >70%. AP8, AP9, and AP12 reached a peak IPCE of ~40%, which was roughly 

half that of AP6. This observation correlates to the observed molar absorptivities for AP8, AP9, 

and AP12 being roughly half that of AP6. The JSC values for AP8, AP9, and AP12 ranged from 

3.8 to 6.1 mA/cm2, which was significantly closer to the JSC value of AP6 due to the broader 

absorption of these dyes. It is noteworthy that the broadest IPCE spectrum was observed for AP12, 

which reached 800 nm. Very few organic dyes produce electricity from such a low-energy 

wavelength.66 Importantly, through this double donor, double anchor design strategy, the IPCE 

breadth can be increased relative to a more traditional D-A-π-A dye design using the same TPA 
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donor, quinoxaline auxiliary acceptor, thiophene π-bridge, and the stronger-accepting cyanoacrylic 

acid, and, for the case of AP12, the IPCE breadth exceeds that observed for even metal-based dyes 

such as N719.165 Given this improvement on DSC device electricity production wavelength range 

and the observed slow desorption from TiO2 surfaces for DD-π-AA structures (similar to dual 

anchors popularized with heteroleptic-Ru dyes), this organic design is attractive.166,167 Molecular 

engineering strategies to improve the molar absorptivity are important to improve the peak IPCE 

value, and the focus of future designs should be on maintaining or extending this exceptional IPCE 

breadth. Interestingly, both AP8 and AP12 showed a dramatic red-shift in the IPCE onset relative 

to the film absorption on TiO2 of ≥80 nm (Table 10). This change was likely due in part to the 

interaction of the dyes with the electrolyte, whereas if this were the result of a solid-state ordering 

on film (such as J-aggregates) this shift would have presented during the TiO2 film absorption 

studies.168 Accounting for these interactions energetically when rationally designing DSC dyes is 

not straightforward, but these interactions can have profound effects on dye energetics. Directly 

measuring how the electrolyte is affecting the dye energy levels is challenging; however, if the 

assumption that the dye E(S+/S) energy level remains unchanged, as it does when comparing 

solution and TiO2 film measurements for these dyes, then the excited state energy levels are 

shifting dramatically upon the addition of the electrolyte. For example, in the case of AP12, a 

driving force for electron injection (∆Ginj) into the TiO2 CB of 330 mV is estimated from both 

solution and film measurements when the TiO2 CB is taken as −0.50 V vs. NHE (Table 10). 

However, using the IPCE onset value to calculate the excited-state energy level of AP12 gives a 

Ginj value of only 160 mV. This lower Ginj value could have a dramatic influence on electron 

injection efficiencies and may also contribute to lower peak IPCE values. Methods to both predict 

and control dye energetics within a full DSC cell environment are critical to move toward rational 
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dye design and away from pseudo-empirical dye design protocols where the energetics within a 

DSC device only mirror that of the solution or film estimates on an unpredictable case-by-case 

basis. The inability to directly account for the dye–electrolyte energetic changes has rendered a 

very promising broad absorbing dye (AP12) as estimated energetically from the solution and film 

measurements, low performing in DSC devices (2.9% PCE). 

 

Figure 40. Left: J–V curves for DSC devices with AP6, AP8, AP9, and AP12. Right: IPCE curves 

for AP6, AP8, AP9, and AP12-based DSC devices. 

Table 11. Summary of photovoltaic parameters for AP dyes. 

Dye JSC (mA/cm2) VOC (mV) FF PCE (%) 

AP6 7.0 694 0.76 3.7 

AP8 3.8 615 0.71 1.7 

AP9 5.4 591 0.72 2.3 

AP12 6.1 599 0.74 2.8 

All devices were prepared with an I-/I3
- electrolyte comprised of 0.1 M guanidinium 

thiocyanate (GuNCS), 1.0 M 1,3-dimethylimidazolium iodide (DMII), 30 mM I2, 0.5 M 4-

tertbutylpyridine (TBP), and 0.05 M lithium iodide (LiI) in acetonitrile/valeronitrile (85:15). 
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3.6 Time-Correlated Single Photon Counting (TCSPC) Studies 

Electron injection efficiencies were estimated from time-correlated single photon counting 

(TCSPC) studies with AP9 and AP12 to compare with the reported values for AP6 and AP8.155 

The experiments were conducted for each dye in DCM solution, on TiO2, on TiO2 with 

chenodeoxycholic acid (CDCA) as a deaggregating agent, and on TiO2 with CDCA and LiI.2,68,72  

Due to the short excited-state lifetimes of the dyes in solution combined with instrument response 

function limitations (>150 ps timescale), injection efficiencies can only be reported as a lower limit 

and are likely faster than that reported. The equation ηeff = 1 − (τTiO2/τsol) is used to estimate the 

photoinduced dye electron injection efficiency to the TiO2 CB where the overall efficiency (ηeff) 

is calculated based on the fluorescence decay lifetime (τ) of the dye in different environments. The 

solution lifetimes of the dyes ranged from 0.34 to 0.79 ns in the following order: AP12 > AP9 > 

AP6 > AP8 (Figure 6 and Table 3). 

Table 12. Fluorescence lifetime and charge injection efficiencies of AP6, AP8, AP9, and AP12 

in different environments. 

Dye τsol (ns) a τTiO2 (ns) b ηeff (%) b τTiO2 (ns)c ηeff
 (%) c τTiO2 (ns) d ηeff (%) d 

AP6 0.38 0.30 29 0.29 24 <0.15 >61 

AP8 0.34 0.29 27 0.27 21 <0.15 >54 

AP9 0.77 0.44 42 0.32 58 <0.15 >80 

AP12 0.79 0.55 30 0.25 68 <0.15 >81 
a In dichloromethane (DCM); b On TiO2; 

c On TiO2 with chenodeoxycholic acid (CDCA); d On 

TiO2 with CDCA and LiI. 
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Figure 41. Fluorescence lifetimes of AP9 and AP12 in different environments. 

The lifetimes of the π-extended AP9 and the fused ring AP12 were significantly longer 

than that of derivatives AP8 and AP6, respectively (~0.78 ns vs. ~0.36 ns). On TiO2 with no 

additives, an emission can still be observed, but lifetimes were shorter than observed in solution 

ranging from 0.29–0.55 ns with ηeff values of 27–42%. In this environment, AP9 showed the 

highest injection efficiency, with AP6 and AP8 showing the lowest ηeff values of ~28%. The 

addition of the deaggregating agent CDCA to the dyeing solution resulted in significantly 

increased charge injection efficiencies for AP9 and AP12 from 42% to 58% and 30% to 68%, 

respectively. AP6 and AP8 remained relatively unchanged, which suggests these dyes have fewer 

dye–dye energy transfer pathways and excited-state deactivation pathways than AP9 and AP12. 

AP9 and AP12 inject best in isolation from other dye molecules when the CDCA insulator is 

added. The addition of LiI resulted in fluorescence lifetimes shorter than the response function of 

the instrument, leading to the highest injection efficiencies observable for each dye ranging from 

>54% (AP8) to >81% (AP12). Given that the dye excited-state lifetimes exceeded the response 

time of the instrument with the LiI additive, no further additives were evaluated. This does suggest 

that the low peak IPCE observed for AP12 was not due to electron injection into TiO2 and was 
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more likely a combination of results from a low molar absorptivity and possibly a relatively slow 

regeneration event, as has been previously observed for DD-π-AA dyes.72 However, the >81% 

electron injection efficiency from the novel AP12 anchor/acceptor group with a very low driving 

force for electron transfer (160 mV) strongly suggests this group is valuable for the future design 

of NIR organic dyes for DSCs. 

It is noteworthy that the excited-state lifetimes for the dyes evaluated in this series are short 

relative to typical D-π-A dye designs, which are often ≥1–2 ns. This may be an inherent limitation 

to the DD-π-AA design, as short lifetimes have also been observed for a thienopyrazine-based DD-

π-AA dye AP3 (0.36 ns in DCM).72 However, AP3 gave DSC devices with >10% PCE and >80% 

peak IPCE values in low light in the prior study. AP6 also showed a reasonable peak IPCE of 

~70% despite having one of the shortest excited-state lifetimes of the series. Thus, despite the short 

lifetimes, electron transfer to TiO2 may still be facile. 

CONCLUSIONS 

Quinoxaline was successfully employed and studied as a π-bridge for four dyes using the 

dual donor, dual acceptor (DD-π-AA) construct. The effect of structural modifications was studied 

via UV–Vis absorption spectroscopy, electrochemical analysis, computational DFT analysis, 

TCSPC spectroscopy, and DSC device analysis. With this design, dyes could be rationally 

designed, which absorb light beyond 750 nm in solution. The evaluation of the dye energetics on 

film showed that the dye anchor spacing plays a critical role in the validity of using solution 

measurements to approximate dye–TiO2 film energetics. The anchor group spacing using two 

benzoic acid groups ortho substituted on a 6-member ring provides a reliable group arrangement 

for rational dye energy level translation from solution to TiO2 films. Additionally, the IPCE 

spectrum onset shifts dramatically in some cases further exacerbating the challenge of trying to 
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reliably predict dye energetics within a working DSC device regardless of if the estimates for dye 

energetics were made on film or in solution. AP12 has the widest IPCE response reaching beyond 

800 nm. This is an exceptional IPCE onset for an organic dye and was presumably due in part to 

dye–electrolyte interaction as the dye–TiO2 absorption onset was 80 nm blue-shifted compared 

with the IPCE onset. TCSPC studies revealed short excited-states for all of the dyes in this series, 

but with the addition of Li ions, dye-emission became unobservable, indicating that electron 

transfer from the dye to TiO2 upon photoexcitation was facile. These results suggest that the 

primary drawback for this dye design is the poor molar absorptivities, such as 5,600 M−1 cm−1 for 

AP12. Future dye designs will focus on bolstering the dye molar absorptivities while retaining 

good electron transfer kinetics with properly spaced dual anchor groups.



 
 

131 

CHAPTER 7 

7.1 OVERALL CONCLUSION 

Dye-sensitized solar cells are being developed with the goal of replacing non-renewable 

energy sources such as coal or natural gas. The most intriguing parts of the DSCs are the tunable 

energy gap through optimizing the molecular structure and low cost of the application compared 

to the regular silicon solar cells. The research in this thesis is focused on the design and synthesis 

of organic molecules to extend the absorption range up to 800 nm or above while maintaining the 

desired energy level for the devices. YZ7, YZ12, YZ14 and YZ15 have been designed and 

synthesized based on the Ullazine structure which is a nitrogen containing peri-fused heterocyclic 

system with strong electron donating properties combined with a π-bridge and acceptor groups. 

All of these four dyes have a narrowed optical band by 140 mV to 240 mV compared to JD21, 

which has only donor-acceptor structure. The device data shows that YZ7 has reached 5.6% power 

conversion efficiency with an IPCE onset of 800 nm and the current has increased relative to a 

comparison dye with up to 14.1 mA/cm-2 observed. Increasing the electron density on the linking 

-bridge is another common strategy to extend the absorption range. YZ11, YZ13, YZ16 and 

YZ17 use a cross-conjugated phenyl group to optimize the optical gap instead of a linear 

conjugation method to increase the absorption range. The device data shows that these dyes have 

successfully red shifted UV-vis absorption 50 nm compared to a benchmark dye, C218, under the 

same condition. YZ17 shows the highest efficiency at 7.6 % which is better than C218 under the 

same condition. This project has opened a new strategy for organic dye design in extending the 

absorption range. Molecular recognition approaches are critical to low energy use systems, and
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this work has analyzed devices using iodide/iodine as the redox shuttle system to probe rates of 

electron transfers within solar cell devices, finding that sulfur functionality near the inorganic 

interface in solar cells should be avoided. Many of these dyes have applications as NIR dyes for 

biological imaging detectors. The TPzPh series and TTD series discussed herein have been 

designed, synthesized, and have successfully shown absorption and emission window in the 

therapeutic window (700-1000 nm) while maintaining reasonable quantum yields. The strategy of 

applying strong acceptor and strong electron rich donor to tune the absorption and emission range 

is successfully shown in this study. The stability of the dyes is better than the clinically used 

indocyanine green (ICG) when exposed to the air.
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APPENDIX A: FIGURES AND TABLES 

 

 

Figure 42. UV-vis absorption and emission spectra for TTD(T)2 in various solvent.
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Figure 43. HOMO, LUMO, HOMO-1 and LUMO+1 orbitals for dyes YZ12-YZ15 given by DFT 

calculations at the B3LYP/6- 311G(d,p) level with isovalues of 0.30. Long alkyl chains were 

truncated to methyls on the aryl amines and phenyl ring. 
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Table 13. Summary table of YZ7, YZ12, YZ14 and YZ15 for computational results: dihedral 

angles, orbital contributions to vertical transitions, vertical transition energies and oscillator 

strengths computed with DFT and TD-DFT analysis at the B3LYP/6-311(d,p) level 

dye transition contrib. 

(%) 

vert. 

trans. 

(nm/eV) 

oscillator 

strength 

energy 

(Hartrees) 

YZ7 H  L 99% 665/1.87 1.1337 -

2940.1266378 

H-1  L 62% 476/2.61 1.0546  

 H  L+1 36% 

YZ12    H  L 98% 670/1.85 0.8859 -

2940.1361627 
H-1  L 58% 480/2.58 0.7240 

H  L+1 40% 

YZ14    H  L 99% 689/1.80 1.0385 

1.1125 

-

3169.2360226 
H-1  L 66% 477/2.59 

H  L+1 33% 

YZ15 H  L 99% 707/1.75 0.8662 -

3169.2338538 
H-1  L 45% 480/2.58 0.7997 

H  L+1 53% 
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Table 14. YZ7 devices under different LiI concentration. 

Note: All the devices were applied E2I, with 20x CDCA inside, DMF as dipping solvent, and the 

film thickness is 10 µm active layer and 5 µm scattering layer. 

 

 

 

Figure 44. IPCE (right) and I-V (left) curves of YZ7 with different active layer thickness. Note: 

All the devices were applied E2I, with 10:1 CDCA:dye.  

 

 

 

 

 

 

 

 

Dye 

Concentration of LiI 

(mM) 

Voc (mV) 

Jsc 

(mA/cm2) 

FF PCE (%) 

YZ7 

 

1 
584 10.5 0.69 4.4 

0.05 609 8.0 0.74 3.7 
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Table 15. DSC devices of YZ7 under various deposition solvents conditions. 
 

 

Note: For the concentration of dipping solution, CB (0.2 mM), EtOH:THF (1.2:1, 0.18 mM),  

EtOH:DCM (1:1.3, 0.18 mM), tBuOH: MeCN: CB (1:1:1.2, 0.13 mM).  Note: All the devices 

were applied E2I, with no CDCA inside, and the film thickness is 10 µm active layer and 5 µm 

scattering layer. 

 

 

Figure 45. IPCE (right) and I-V (left) curves of YZ7 under different dipping solvents. Note: All 

the devices were applied E2I, with no CDCA inside, and the film thickness is 10 µm active layer 

and 5 µm scattering layer. 

 

Dye electrode variables Voc (mV) 
Jsc 

(mA/cm2) 
FF PCE (%) 

YZ7 

 

CB  531 12.9 0.70 4.9 

EtOH:THF  507 10.0 0.69 3.7 

EtOH:DCM  531 8.50 0.71 3.4 

tBuOH:MeCN:CB  563 11.5 0.70 4.8 
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Figure 46. Position for dihedral angles of YZ11, YZ13, YZ16 and YZ17. 

 

Table 16. Summary table of YZ11, YZ13, YZ16 and YZ17 for computational results: dihedral 

angles, orbital contributions to vertical transitions, vertical transition energies and oscillator 

strengths computed with DFT and TD-DFT analysis at the B3LYP/6-311(d,p) level. 

 

 

 

dye 

angl

e 1 

(o) 

angle 

2 (o) 
transition 

contrib. 

(%) 

vert. trans. 

(nm/eV) 

oscillator 

strength 

energy 

(Hartrees) 

YZ11 24.5 35.2 

H  L 96% 640/1.93 0.5506 

-

2748.362086

9 

H-1  L 44% 
458/2.71 0.5275  

H  L+1 51% 

YZ13 23.7 36.0 

H  L 96% 654/1.89 0.5146 
-

2748.361964

2 

H-1  L 45% 

462/2.68 0.6078 H-1  L+1 2% 

H  L+1 50% 

YZ16 25.8 38.5 

H  L 96% 631/1.97 
0.5895 

0.5264 

-

2827.017994

1 
H-1  L 45% 

453/2.74 
H  L+1 50% 

YZ17 24.7 35.6 

H  L 96% 642/1.93 0.5379 -

2827.017433

8 

H-1  L 44% 
455/2.72 0.6317 

H  L+1 51% 
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Table 17. Dye desorption study results for YZ11, YZ13, YZ16 and YZ17. All films were prepared 

according to the conditions for devices reported in Table 7 of the manuscript. 

dye film molar absorptivity 

(M-1cm-1) 
max (nm) dye loading density 

(mol/cm2) 

YZ11 25,000 503 3.9 x 10-8 

YZ13 28,000 509 4.6 x 10-8 

YZ16 24,000 504 2.1 x 10-8 

YZ17 23,000 505 3.7 x 10-8 

Molar absorptivity values and absorption maximum were measured in 0.1 M TBAOH 

(tetrabutylammonium hydroxide) DMF solutions. Dye was desorbed by submerging sensitized 

films in a 0.1 M TBAOH (tetrabutylammonium hydroxide) DMF solution until the film showed 

no more dye present. 

Appendix 11. Photovoltaic Measurements and Device Fabrication 

DSC Device Fabrication: For the photoanode, TEC 10 glass was purchased from Hartford 

Glass. Once cut into 2x2 cm squares, the substrate was submerged in a 0.2% Deconex 21 aqueous 

solution and sonicated for 15 minutes at room temperature. The electrodes were rinsed with water 

and sonicated in acetone for 10 minutes followed by sonication in ethanol for 10 minutes. Finally, 

the electrodes were placed under UV/ozone for 15 minutes (UV-Ozone Cleaning System, Model 

ProCleaner by UVFAB Systems). A compact TiO2 underlayer is then applied by pretreatment of 

the substrate submerged in a 40 mM TiCl4 solution in water (prepared from 99.9% TiCl4 between 

0-5 oC). The submerged substrates (conductive side up) were heated for 30 minutes at 70 oC. After 

heating, the substrates were rinsed first with water then with ethanol. The photoanode consists of 

thin TiO2 electrodes comprised of a 10 μm mesoporous TiO2 layer (particle size, 20 nm, Dyesol, 

DSL 18NR-T) for iodine cells and 5 μm mesoporous TiO2 layer (particle size, 30 nm, Dyenamo, 
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DN-GPS-30TS) for cobalt cells. All the photoanodes had 5.0 μm TiO2 scattering layer (particle 

size, 100 nm, Solaronix R/SP). All the layers were screen printed from a Sefar screen (54/137–

64W). Between each print, the substrate was heated for 7 minutes at 125 oC and the thickness was 

measured with a profilometer (Alpha-Step D-500 KLA Tencor). After all layers were deposited, 

the substrate was then sintered with progressive heating from 125oC (5-minute ramp from r.t., 5 

minute hold) to 325 oC (15 minute ramp from 125oC, 5 minute hold) to 375 oC (5 minute ramp 

from 325 oC, 5 minute hold) to 450 oC (5 minute ramp from 375 oC, 15 minute hold) to 500 oC (5 

minute ramp from 450 oC, 15 minute hold) using a programmable furnace (Vulcan® 3-Series 

Model 3-550). The cooled sintered photoanode was soaked 30 min at 70 oC in a 40 mM TiCl4 

water solution and heated again at 500 oC for 30 minutes prior to sensitization. The complete 

working electrode was prepared by immersing the TiO2 film into the dye solution overnight. The 

solution is 0.3 mM of dye in MeCN:t-BuOH:THF mixture (1:1:1) with a 20:1 CDCA:dye ratio 

unless otherwise indicated. For preparing counter electrodes, 2x2 cm squares TEC 7 FTO glasses 

were drilled using Dremel-4000 with Dremel 7134 Diamond Taper Point Bit from the conductive 

and taped FTO side. The electrodes were washed with water followed by 0.1 M HCl in EtOH rinse 

and sonication in acetone bath for 10 minutes. The washed FTO electrodes were then dried at 400 

oC for 15 minutes. A thin layer of Pt-paste (Solaronix, Platisol T/SP) was slot printed on the FTO 

and the printed electrodes were then cured at 450 oC for 10 minutes. After allowing them to cool 

to room temperature, the working electrodes were then sealed with a 25 μm thick hot melt film 

(Surlyn, Solaronix, “Meltonix 1170-25”) by heating the system at 130 oC under 0.2 psi pressure 

for 1 minute. Devices were completed by filling the electrolyte by pre-drilled holes in the counter 

electrodes and finally the holes were sealed with a Surlyn pre-cut circle and a thin glass cover by 

heating at 130 oC under pressure 0.1 psi for 25 seconds. Finally, soldered contacts were added with 
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a MBR Ultrasonic soldering machine (model USS-9210) with solder alloy (Cerasolzer wire dia 

1.6 mm item # CS186-150). A circular black mask (active area 0.15 cm2) punched from black tape 

was used in the subsequent photovoltaic studies. 

Photovoltaic Measurements: Current-Voltage Curves: Photovoltaic characteristics were 

measured using a 150 W Xenon lamp (Model SF150B, SCIENCETECH Inc. Class ABA) solar 

simulator equipped with an AM 1.5 G filter for a less than 2% spectral mismatch. Prior to each 

measurement, the solar simulator output was calibrated with a KG5 filtered mono-crystalline 

silicon NREL calibrated reference cell from ABET Technologies (Model 15150-KG5). The 

current density-voltage characteristic of each cell was obtained with Keithley digital source meter 

(Model 2400). Device performances under AM 1.5G irradiation were analyzed based on the 

equation PCE = (Jsc*Voc*FF)/I0. The incident photon-to-current conversion efficiency was 

measured with an IPCE instrument manufactured by Dyenamo comprised of a 175 W Xenon lamp 

(CERMAX, Model LX175F), monochromator (Spectral Products, Model CM110, Czerny-Turner, 

dual-grating), filter wheel (Spectral Products, Model AB301T, fitted with filter AB3044 [440 nm 

high pass] and filter AB3051 [510 nm high pass]), a calibrated UV-enhanced silicon photodiode 

reference and Dyenamo issued software.  

Electron lifetime measurements: Also known as small modulation photovoltage transient 

measurements, were carried out with a Dyenamo Toolbox (DN-AE01) instrument and software. 

The intensity of the LED light source (Seoul Semiconductors, Natural White, S42182H, 450 nm 

to 750 nm emission) is varied to modulate the device open-circuit voltage. The base light intensity 

was modulated by applied voltages of 2.80, 2.85, 2.90, 2.95 and 3.00 V applied to the LED with 

the 3.0 V bias approaching 1 sun intensity (97%). The direction of illumination was from the 

photoanode to the counter electrode, and the device was positioned 5 cm from the LED light source. 
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The voltage rise and decay times are fitted with a Levenberg-Marquardt fitting algorithm via 

LabView, and the electron lifetime was obtained from the averaging of rise and decay times. 

 

Figure 47. Synthetic route to AB2 and AB3. 

 

Figure 48. Orbitals contributing to TD-DFT predicted transitions for AB1. Calculations were done 

at wB97XD/6-31+g* level of theory and basis set. 
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Figure 49. Orbitals contributing to TD-DFT predicted transitions for trans AB1. Calculations were 

done at wB97XD/6-31+g* level of theory and basis set. 
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Figure 50. Orbitals contributing to TD-DFT predicted transitions for cis AB2. Calculations were 

done at wB97XD/6-31+g* level of theory and basis set. 
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Figure 51. Orbitals contributing to TD-DFT predicted transitions for AB2. Calculations were done 

at wB97XD/6-31+g* level of theory and basis set. 
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Figure 52. Simulated Raman spectra for cis and trans states of dyes AB3 and D35. Calculations 

were done at wB97XD/6-31+g* level of theory and basis set.  
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Table 18. Excited state orbital transitions for cis AB1. Calculations were done at wB97XD/6-

31+g* level of theory and basis set. 

dye Stat

e 

transition 

orbitals 

contributi

on 

(%) 

vert. 

trans. 

(nm | eV) 

oscillat

or 

strengt

h 

energy 

(Hatrees) 

AB1 cis 1 219 (I2)  227 (I2) 

219 (I2)  228 

(dye/I2) 

220 (dye/I2)  227 

(I2) 

66 

4 

27 

523 | 2.37 0.0004 -3310.9 

AB1 cis 2 216 (dye/I2)  227 

(I2) 

218 (I2)  227 (I2) 

218 (I2)  228 

(dye/I2) 

219 (I2)  227 (I2) 

220 (dye/I2)  227 

(I2) 

2 

77 

4 

2 

12 

518 | 2.39 0.0004 -3310.9 

AB1 cis 3 223 (dye)  227 (I2) 

223 (dye)  228 

(dye/I2) 

224 (dye)  227 (I2) 

224 (dye)  228 

(dye/I2) 

225 (dye)  227 (I2) 

225 (dye)  228 

(dye/I2) 

226 (dye)  227 (I2) 

226 (dye)  228 

(dye/I2) 

226 (dye)  229 

(dye) 

6 

3 

14 

7 

15 

7 

27 

12 

4 

423 | 2.93 0.9905 -3310.9 

AB1 cis 

(no I2) 

1 216 (dye)  220 

(dye) 

217 (dye)  220 

(dye) 

218 (dye)  220 

(dye) 

219 (dye)  220 

(dye) 

219 (dye)  221 

(dye) 

6 

9 

36 

35 

7 

404 | 3.07 1.6582 -3288.1 
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Table 19. Excited state orbital transitions for trans AB1. Calculations were done at wB97XD/6-

31+g* level of theory and basis set. 

dye Stat

e 

transition 

orbitals 

contributi

on 

(%) 

vert. 

trans. 

(nm | eV) 

oscillat

or 

strengt

h 

energy 

(Hatrees) 

AB1 trans 1 216 (dye/I2)  227 

(I2) 

217 (I2)  227 (I2) 

218 (I2)  227 

(dye/I2) 

219 (dye/I2)  227 

(I2) 

11 

19 

11 

53 

522 | 2.37 0.0005 -3310.9 

AB1 trans 2 216 (dye/I2)  227 

(I2) 

217 (I2)  227 (I2) 

217 (I2)  228 

(dye/I2) 

219 (dye/I2)  227 

(I2) 

4 

77 

3 

14 

520 | 2.38 0.0003 -3310.9 

AB1 trans 3 223 (dye)  227 (I2) 

223 (dye)  228 

(dye/I2) 

224 (dye)  227 (I2) 

224 (dye)  228 

(dye/I2) 

225 (dye)  227 (I2) 

225 (dye)  228 

(dye/I2) 

226 (dye)  227 (I2) 

226 (dye)  228 

(dye/I2) 

226 (dye)  229 

(dye) 

8 

2 

20 

6 

13 

4 

32 

7 

3 

426 | 2.91 0.7251 -3310.9 

AB1 trans 

(no I2) 

1 216 (dye)  220 

(dye) 

217 (dye)  220 

(dye) 

218 (dye)  220 

(dye) 

219 (dye)  220 

(dye) 

219 (dye)  221 

(dye) 

8 

13 

31 

34 

8 

401 | 3.09 1.7475 -3288.1 
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Table 20. Excited state orbital transitions for cis AB2. Calculations were done at wB97XD/6-

31+g* level of theory and basis set. 

dye Stat

e 

transition 

orbitals 

contributi

on 

(%) 

vert. 

trans. 

(nm | eV) 

oscillator 

strength 

energy 

(Hatrees) 

AB2 cis 1 212 (dye/I2)  223 

(I2) 

213 (I2)  223 (I2) 

215 (dye/I2)  223 

(I2) 

216 (dye/I2)  223 

(I2) 

12 

5 

72 

8 

522 | 2.37 0.0003 -2987.9 

AB2 cis 2 214 (I2)  223 (I2) 98 519 | 2.39 0.0007 -2987.9 

AB2 cis 3 219 (dye)  223 

(I2) 

220 (dye)  223 

(I2) 

221 (dye)  223 

(I2) 

222 (dye)  223 

(I2) 

222 (dye)  224 

(dye) 

5 

10 

32 

44 

2 

429 | 2.89 0.1524 -2987.9 

AB2 cis 

(no I2) 

1 212 (dye)  216 

(dye) 

213 (dye)  216 

(dye) 

214 (dye)  216 

(dye) 

215 (dye)  216 

(dye) 

215 (dye)  217 

(dye) 

4 

3 

45 

35 

7 

407 | 3.07 1.4447 -2965.1 

 

 

 

 

 

 

 

 



 
 

161 

Table 21. Excited state orbital transitions for trans AB2. Calculations were done at wB97XD/6-

31+g* level of theory and basis set. 

 

dye State transition 

orbitals 

contribution 

(%) 

vert. 

trans. 

(nm | eV) 

oscillator 

strength 

energy 

(Hatrees) 

AB2 trans 1 209 (dye/I2)  

223 (I2) 

212 (dye/I2)  

223 (I2) 

214 (I2)  223 

(I2) 

215 (I2)  223 

(I2) 

3 

7 

57 

33 

522 | 2.38 0.0001 -2987.9 

AB2 trans 2 213 (I2)  223 

(I2) 

98 517 | 2.40 0.0003 -2987.9 

AB2 trans 3 219 (dye)  223 

(I2) 

220 (dye)  223 

(I2) 

221 (dye)  223 

(I2) 

222 (dye)  223 

(I2) 

6 

11 

35 

43 

430 | 2.88 0.0248 -2987.9 

AB2 trans 

(no I2) 

1 212 (dye)  216 

(dye) 

213 (dye)  216 

(dye) 

214 (dye)  216 

(dye) 

215 (dye)  216 

(dye) 

215 (dye)  217 

(dye) 

5 

4 

43 

34 

8 

400 | 3.10 1.8967 -2965.1 
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Table 22.  Excited state orbital transitions for cis D35. Calculations were done at wB97XD/6-

31+g* level of theory and basis set. 

dye Stat

e 

transition 

orbitals 

contributi

on 

(%) 

vert. 

trans. 

(nm | eV) 

oscillato

r 

strength 

energy 

(Hatrees) 

D35 cis 1 199 (I2)  206 (I2) 

199 (I2)  207 

(dye/I2) 

94 

3 

523 | 2.37 0.0004 -2759.2 

D35 cis 2 197 (I2)  206 (I2) 

198 (I2)  206 (I2) 

198 (I2)  207 

(dye/I2) 

9 

83 

3 

519 | 2.39 0.0007 -2759.2 

D35 cis 3 202 (dye)  206 (I2) 

203 (dye)  206 (I2) 

203 (dye)  207 

(dye/I2) 

205 (dye)  206 (I2) 

205 (dye)  207 

(dye/I2) 

205 (dye)  208 

(dye) 

4 

12 

2 

66 

8 

2 

431 | 2.88 0.4107 -2759.2 

D35 cis (no 

I2) 

1 195 (dye)  199 

(dye) 

196 (dye)  199 

(dye) 

198 (dye)  199 

(dye) 

198 (dye)  200 

(dye) 

8 

18 

61 

7 

393 | 3.16 1.2567 -2736.3 
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Table 23. Excited state orbital transitions for trans D35. Calculations were done at wB97XD/6-

31+g* level of theory and basis set. 

dye State transition 

orbitals 

contributi

on 

(%) 

vert. 

trans. 

(nm | eV) 

oscillato

r 

strength 

energy 

(Hatrees) 

D35 trans 1 196 (I2)  206 (I2) 

197 (I2)  206 (I2) 

198 (I2)  206 

(dye/I2) 

199 (dye/I2)  206 

(I2) 

13 

46 

30 

5 

521 | 2.38 0.0009 -2759.2 

D35 trans 2 197 (I2)  206 (I2) 

198 (I2)  206 (I2) 

32 

64 

520 | 2.38 0.0004 -2759.2 

D35 trans 3 202 (dye)  206 (I2) 

203 (dye)  206 (I2) 

205 (dye)  206 (I2) 

205 (dye)  207 

(dye/I2) 

4 

12 

74 

4 

437 | 2.84 0.2797 -2759.2 

D35 trans 

(no I2) 

1 195 (dye)  199 

(dye) 

196 (dye)  199 

(dye) 

198 (dye)  199 

(dye) 

198 (dye)  200 

(dye) 

9 

19 

59 

8 

390 | 3.18 1.4418 -2736.3 
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Table 24. Excited state orbital transitions for cis AB3. Calculations were done at wB97XD/6-

31+g* level of theory and basis set. 

dye Stat

e 

transition 

orbitals 

contributi

on 

(%) 

vert. 

trans. 

(nm | eV) 

oscillator 

strength 

energy 

(Hatrees) 

AB3 cis 1 192 (I2)  202 (I2) 

193 (I2)  202 (I2) 

2 

93 

528 | 2.35 0.0021 -2436.2 

AB3 cis 2 192 (I2)  202 (I2) 

193 (I2)  202 (I2) 

97 

3 

523 | 2.37 0.0003 -2436.2 

AB3 cis 3 193 (I2)  202 (I2) 

198 (dye)  202 

(I2) 

199 (dye)  202 

(I2) 

201 (dye)  202 

(I2)  

201 (dye)  203 

(dye) 

3 

5 

14 

67 

4 

447 | 2.77 0.1710 -2436.2 

AB3 cis 

(no I2) 

1 191 (dye)  195 

(dye) 

192 (dye)  195 

(dye) 

193 (dye)  195 

(dye) 

194 (dye)  195 

(dye) 

194 (dye)  196 

(dye) 

5 

15 

3 

66 

6 

407 | 3.04 1.0472 -2413.4 
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Table 25. Excited state orbital transitions for trans AB3. Calculations were done at wB97XD/6-

31+g* level of theory and basis set. 

dye State transition 

orbitals 

contribution 

(%) 

vert. 

trans. 

(nm | eV) 

oscillator 

strength 

energy 

(Hatrees) 

AB3 

trans 

1 190 (dye/I2)  

202 (I2) 

192 (I2)  202 (I2) 

193 (I2)  202 (I2) 

194 (I2)  202 (I2) 

195 (dye)  202 

(I2) 

3 

18 

3 

72 

4 

521 | 2.38 0.0004 -2436.2 

AB3 

trans 

2 192 (I2)  202 (I2) 

193 (I2)  202 (I2) 

3 

96 

516 | 2.40 0.0003 -2436.2 

AB3 

trans 

3 198 (dye)  202 

(I2) 

199 (dye)  202 

(I2) 

201 (dye)  202 

(I2) 

6 

11 

35 

458 | 2.71 0.0042 -2436.2 

AB3 

trans (no 

I2) 

1 191 (dye)  195 

(dye) 

192 (dye)  195 

(dye) 

194 (dye)  195 

(dye) 

194 (dye)  196 

(dye) 

6 

19 

64 

7 

397 | 3.12 1.5510 -2413.4 
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Figure 53. 1H NMR spectrum of  TPA-T-Q-T-TPA (3) (CDCl3, 500 MHz).  
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Figure 54. 13C NMR spectrum of TPA-T-Q-T-TPA (3)  (CDCl3, 75 MHz).  
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Figure 55. 1H NMR spectrum of compound AP9 (DMSO-d6, 500 MHz).  
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Figure 56. 1H NMR spectrum of TPA-BT-TPA (6) (CDCl3, 500 MHz).  
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Figure 57. 13C NMR spectrum of TPA-BT-TPA (6)  (CDCl3, 125 MHz).  
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Figure 58. 1H NMR spectrum of TPA-BA-TPA (7) (CDCl3, 300 MHz).  
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Figure 59. 1H NMR spectrum of TPA-DP-TPA (9) (CDCl3, 300 MHz).  
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Figure 60. 13C NMR spectrum of TPA-DP-TPA (9)  (CDCl3, 75 MHz).  
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Figure 61.  1H NMR spectrum of compound AP12 (DMSO-d6, 500 MHz, 80oC).  
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APPENDIX B: JOURNAL PERMISSION FOR REPRODUCED MANUSCRIPTS 

 

1.Journal permission for Chapter 2.1 
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2.Journal permission for Chapter 3.1 
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3.Journal permission for Chapter 4.1 
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4.Journal permission for Chapter 5.1 

 

 

5.Journal permission for Chapter 6.1 
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