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ABSTRACT 
 

Ab initio computer aided design drastically increases candidate population for highly 

specified material discovery and selection. These simulations, carried out through a first-

principles computational approach, accurately extrapolate material properties and behavior. 

Titanium Dioxide (TiO2) is one such material that stands to gain a great deal from the use of 

these simulations. In its anatase form, titania (TiO2) has been found to exhibit a band gap nearing 

3.2 eV. If titania is to become a viable alternative to other contemporary photoactive materials 

exhibiting band gaps better suited for the solar spectrum, then the band gap must be subsequently 

reduced. To lower the energy needed for electronic excitation, both transition metals and non-

metals have been extensively researched and are currently viable candidates for the continued 

reduction of titania’s band gap.  The introduction of multicomponent atomic doping introduces 

new energy bands which tend to both reduce the band gap and recombination loss. Ta-N, Nb-N, 

V-N, Cr-N, Mo-N, and W-N substitutions were studied in titania and subsequent energy and 

band gap calculations show a favorable band gap reduction in the case of passivated systems.   
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CHAPTER 1 
 

INTRODUCTION 

 

1.1 Introduction 

The introduction of titanium dioxide as a photocatalytic material began in 1972 when the 

Honda-Fujishima team showed that under solar irradiation TiO2 induced photolysis of water [1]. 

Since that time, there has been a dramatic increase in research into the various capacities of 

titanium dioxide as a functional material. Titanium dioxide today is used in biomedicine [2], 

paint [3], photolysis [1] [4], sunscreen [5], dye sensitized solar cells [6], and gas sensing 

technologies [7] [8]. TiO2 both alone and in conjunction with other materials stands to 

dramatically improve energy, environmental, and safety issues facing the consumers today.  

The appeal of titanium dioxide (titania) as it pertains to immediate research value is the 

cost and tenability of the metal in the world marketplace. Titanium products are advantageous in 

that cost is relatively cheap, they’re easily obtainable, chemically stable, and thoroughly market 

tested. As an added benefit, titania is a robust metal oxide with total non-toxicity to consumers. 

As a result, research into the improvement and fundamental understanding of this material is 

inherently worthwhile in any respect. 

Of the many uses of titania, its potential as a photovoltaic material is extremely 

compelling. Its benefits are compounding in fields such as energy and environmental engineering 

as they face challenges which require immediate yet effective solutions at low costs. In this 

respect, titania stands to replace currently used systems which require costly manufacturing and 



2 

 

materials costs. If titania is to become a viable candidate for replacement of traditional solar cell 

technology, there first must be a drastic improvement of its electrical activity under the solar 

spectrum. As it currently stands, titania is most electrically active under ultraviolet light.   

Titania has 3 distinct polymorphs which exist within nature. The first mineral phase, 

rutile, has a band gap of 3.0 eV which is the lowest of the three. Anatase and brookite both have 

higher band gap values of 3.2 eV and 3.4 eV respectively. Of the three, anatase is considered to 

be the prominent candidate for photocatalytic activity [9]. The reason for this discrepancy 

between increased photocatalytic activity and higher band gap is not yet universally agreed upon 

by scientists.   

1.2 Anatase vs Rutile Electrical Properties 

There are multiple explanations as to why the photocatalytic activity is higher for anatase 

titania. The earliest contentions hold that charge transport considerably differs between the 3 

polymorphs. Materials similar in nature to TiO2 have been previously found to exhibit 

anisotropic electron excitation along different crystallographic planes [10]. This anisotropic 

reactivity was an initial explanation as to why rutile performed poorly in solar cells utilizing 

photosensitizing dyes in initial investigations. Reactivity notwithstanding, electron diffusion 

along different planes is a significant factor explaining the photocatalytic difference between 

mineral crystal structures. Reported packing densities of 3.8-3.9 g/cm3 for anatase and 4.2-4.3 

g/cm3 for rutile also help to explain electron mobility differences [11].  Large differences in 

electron diffusion and reactivity together illuminate as to why rutile performs poorly when 

compared to anatase.  

Researchers also contend that electron-hole recombination is more prevalent in materials 

exhibiting a direct band gap as opposed to an indirect band gap. Indirect band gaps are 
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characterized by the maximum of the valence band and the minimum of the conduction band 

being dissimilar in k-vectors. This dissimilarity in k-vectors alludes to ‘misaligned’ bands which 

requires phonon assistance for excited electron to be absorbed into the conduction band. 

However, for those materials with direct band gaps, the crystal momentum need not change and 

no phonon assistance is required. It is believed that it is these momenta changes which 

discourage subsequent electron-hole recombination in materials exhibiting indirect band gaps. 

Figure 1 demonstrates the recombination process by which an electron is reabsorbed into the 

valence band. Preliminary investigations have theoretically indicated that the rutile phase 

contains preferential direct band gap differences [12]. The characteristic direct band gap of rutile 

and the theorized longer exciton lifetime of indirect band gaps explains the better photocatalytic 

activity of anatase [13].  

For systems working in conjunction with titania, there is a predicted oxidative effect for 

materials exhibiting higher valence bands. Titania is thought to have photocatalytic activity via 

its higher valence band relative to the redox potential of an absorbed molecule. This higher 

Figure 1: Direct and indirect band gaps [71] 
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valence band implies an increased oxidative power of those electrons ejected from the valence 

band and an overall increase in electron transfer to the absorptive matrix [9].  

1.3 Surface Morphology 

Surface properties are also a mitigating factor at play with the reduction in photocatalytic 

capacity of rutile titania. Investigations into surface effects outlining differences in polymorph 

performance proved themselves extremely valuable. Wilson J. et al. found that different surface 

morphologies and orientations could be playing an important role in reactivity [14]. It was found 

that the {011} faceted surface was much more reactive than the compared {014} surface. Luttrell 

et al. reviewed studies and outlined the effect of defects and well-ordered surface morphologies 

on molecule absorptive differences, electronic structure (charge trapping), potential differences 

with interacting surfaces, and electrochemical reactivity [9]. These surface effects and the 

different surface morphologies existent between anatase and rutile structures help to explain 

increased electronic performance in the anatase polymorph. 

The determination of photosensitivity and conduction via surface structure was a 

considerable factor in the rise of titania as a candidate material in electronic property studies. 

And with the growth of nanomaterial study and use, titania gained another avenue through which 

it could be employed. Nanomaterials, as defined by the European Commission, are “particles, in 

an unbound state or as an aggregate or as an agglomerate and where, for 50% or more of the 

particles in the number size distribution, one or more external dimensions is in the size range 1 

nm – 100 nm” [15]. And with relation to titania specifically, the majority of its uses stem from its 

ability to be synthesized with extremely small particle dimensions. The properties derived from 

unique nanostructures allow for significantly superior performance in a variety of contemporary 

uses. In 2004, it was found that TiO2 nanotube array gas sensors at room temperature exhibit a 
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1,000,000,000% change in electrical resistance compared to similarly designed sensors [16]. The 

drastic electrical enhancement in gas sensing ability was reported to be a direct result of the 

structural morphology of the titania generated. 

1.4 Doped titania nanomaterials synthetic methods 

Unlike traditional photocatalytic materials, titania nanomaterials can be synthesized 

rapidly [7]. When considering photocatalysis, increasing the active area of exposure lends itself 

to be essential for consideration in materials processing moving forward. Change in active 

exposure area changes the total flux, photon power density, which consequently increases 

photolysis. Nano-rods, fibers, tubes, clusters, and similar structures are all employed to increase 

the active surface area of a substance. Nanotube growth has been theoretically predicted to 

improve the structural and electrochemical behavior of titania’s photocatalytic effects [17].  

The introduction of nanoscale surface purposing therefore has the capacity to drastically 

improve the photosensitivity of titania. Surface purposing is carried out through the introduction 

of structures and electrochemical bonds specifically tailored to produce maximal photocatalytic 

behavior. Bulk chemical doping through the introduction of foreign elemental constituents is yet 

another means through which red shifting of band gaps is achieved. Doped titania nanomaterials 

working in conjunction with nanoscale purposing is fabricated through a variety of methods. For 

doped titania systems, current popular methods include: 

1. Wet Chemistry Synthesis 

2. Mechanical & High Temperature Treatments 

3. Ion Implantation 

 Synthesis of doped titania nanomaterials via wet chemistry is accomplished through a 

variety of means. A widespread selection among these is the sol-gel method; where a titanium 
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precursor is hydrolyzed into a colloidal solution with subsequent precipitation of the oxide 

through heating or redox reactions. This method allows for controlled particle size and ion 

dopant concentration. For titania nanomaterials, titanium(IV) alkoxide and titanium isopropoxide 

(TTIP) are commonly used with metal ion doping in their synthesis. Such doping in sol-gel 

systems has been experimentally shown to significantly affect the characteristic photocatalytic 

activity [18].  

 High temperature treatments synthesizing doped titania nanomaterials are extremely 

popular and comprise the vast majority of experimental synthesis. Among these, the solution 

combustion method persists as it rapidly generates highly controlled doped titanium oxides. 

Unlike sol-gel, ion implantation, and liquid phase deposition methods, solution combustion 

doesn’t require reagents or post-treatment time therefore reducing both cost and total generation 

time. A fuel like glycerin or urea is hydrolyzed with the addition of a precursor. In the case of 

titanium dioxide, these precursors often include titanyl nitrate with the inclusion of a controlled 

dopant nitrate [19]. The resulting solution is then dehydrated and combusted which results in the 

final nanomaterial synthesis.  

Ion-implantation is another means through which doped nanoparticles are synthesized. In 

this method, an ionizing chamber releases ions which are accelerated through a magnetic field to 

speeds capable of depositing them into the subject material. The depth and breadth of beam 

penetration is controlled so as to control dosing of ions. However, the exact crystal composition 

and structure is difficult to control. The structural damage associated with ion doping historically 

limited it in its use for photocatalytic use. It was found that through that the introduction of 

thermal annealing the amorphous structure of titania as a result of ion-implantation can be 

reversed back to its anatase crystallinity [20].  
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Chemical vapor deposition (CVD) remains a popular alternative method for the 

generation of thin films of doped nanomaterials. In this process a gaseous chemical precursor is 

electrochemically deposited onto a substrate, often glass, at thicknesses capable of being below 

10nm. In the case of titania, titanium isopropoxide is often the subject of pyrolysis in an 

oxygen/helium environment. The heated gas then deposits amorphous TiO2 onto the reactor at 

temperatures below 90℃ [7]. Mills et al. reports that a photoactive TiO2 nanofilm was 

successfully achieved through CVD at ambient pressures [21]. Titania’s success in the CVD 

technique at atmospheric pressures further demonstrates its suitability for large scale production. 

Studies like those from Mills et al. provide insight onto the various means of development 

available to titania as it progresses as a nanomaterial and photosensitive material. 

 1.5 Conclusion 

With 81% of U.S. energy generation sourced from fossil fuel technology [22] , it 

becomes infeasible to focus on continued development into a fuel source with known short term 

limitations. Considerations for greenhouse gas emissions further demonstrate the changing need 

for diversified energy sourcing. 

As such, much of the industry focus has been directed towards silicon based 

photovoltaics thereby leaving much of the other viable technologies lagging. Figure 2 shown 

below outlines photovoltaic conversion efficiencies for current photo-conversion methods. It’s 

evident that those technologies lowest in efficiency are those technologies existing outside of 

Silicon and Gallium Arsenide. Long term solutions to meet energy demands of a growing market 

necessitate diversified sources for solar power. To meet future power demands and engineering 

specifications, titania and materials like it provide a means for alternative solar power 

production.   
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Figure 2: Cell efficiency development over time [69] 
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CHAPTER 2 
 

BACKGROUND 

 

2.1 Grätzel Cell 

In 1991 the concept for a low cost photovoltaic cell was developed and titania was thrust 

into the forefront of novel photovoltaic materials [6]. This technology, known as the Dye 

sensitized solar cell (DSSC), was developed by Michael Grätzel and Brian O’Reagan with an 

energy conversion efficiency near 7%. For his pioneering work in the field of energy and 

electron transfer, Grätzel received numerous technological prizes and commendations including 

the 2010 Millennium Technology prize.   

The design of DSSC construction relies on principles analogous of traditional silicon 

based structures. Instead of photo-conversion utilizing a traditional p-n junction where both p 

and n-type semiconductors are of similar base material, DSSC design relies on the integration of 

a photosensitizing dye into a mesoporous titania substrate. This photosensitive dye, capable of 

being either organic or inorganic, injects an excited electron into the anodic titania surface. The 

electron is then conducted away thereby generating a circuit current. At the same time, the 

photosensitive dye is returned to its ground state via a redox reaction with a mediator and 

subsequently the mediator with the cathode. This process of excitation, reduction and oxidation 

of the photosensitive dye is carried out billions of times per second to generate a current [23]. 
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Figure 3 outlines the principle electrochemical mechanisms allowing for DSSC operation. At this 

juncture, the peak for laboratory grade DSSC efficiency stands at 15%. 

 

The advantage of using titanium dioxide systems within DSSC systems stems from its 

long lifespan before eventual decomposition and mechanical failure. The robust mechanical and 

electrochemical structure of titania with respect to its inexpensive cost reduces waste and 

increases viability for competition in energy markets. 

Challenges facing dye sensitized nanostructured materials today relate specifically to the 

wide band gap and thermal sensitivity of titania’s electro-structure. To reduce thermal 

degradation, electron-hole pair recombination, and fermi levels to suitable values it becomes 

obvious that a photocatalytic purposing of titania is needed. Doping is the means through which 

this purposing of metallic materials is often achieved. This process introduces impurities into the 

lattice thereby deforming the structure, modifying orbital hybridization, and introducing 

Figure 3: DSSC operation principles [70] 
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additional available electrons for conduction. Crystal deformations and orbital hybridization are 

predicted to be provide significant impact on the bulk electronic response in semiconducting 

materials. Characteristic bond forces and their angles are additionally well known to be directly 

responsible for thermal nature bulk materials.  

2.2 Quantum Dot Solar Cell 

As it stands today, titania could potentially exhibit a band gap well within the range 

needed for traditional photovoltaic technology existent today. Modern photovoltaic material 

operates on the principle of the two biased semiconducting materials and their interaction with 

one another. After a photon with sufficient energy has created an exciton from the valence band 

of the p-type semiconductor the electron is conducted via an intrinsic junction potential to the n-

type semiconductor.  

Recently, there has been a rapid development into the improvement of mesoscale 

semiconducting materials further broadening the scope of photo-catalytically purposed titania. 

Known as Quantum Dot Solar Cells (QDSC), this technology provides the ability to tune 

mesoscopic materials’ band gaps into the visible region. This is accomplished through the 

introduction of quantum dots. Through a change in their respective size, these dots are able to 

adjust their band gaps. Through the introduction of an additionally photo-catalytically tuned 

Titania bulk material, QDSC technology has been shown to improve a great deal [24] [25]. 

Ultimately, this improvement is still severely lacking when considering the pronounced changes 

needed in structure for market viability.   

2.2 Band Gap Tuning 

To gain substantial viability for consumer energy production, it became necessary to tune 

band gaps to better suit photo activity and current generation. Dürr et al. used mixed Ti-Zr oxides 
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to tune conduction and valence bands to better suit a DSSC system. It was found that for small 

values of Zirconium doping increased the open circuit potential and increased overall power 

generation [26]. This increase in power generation was attributed to the mixed oxide system 

having a blue-shifted conduction band allowing for absorption of high energy electrons. 

Additionally, the blue shift in the conduction band is thought to decrease recombination rates via 

increased band differences. However, higher values of zirconium doping prevented electron 

absorption and decreased overall power conversion. Dürr concluded that dye excitation tuning 

and semiconductor optimization are necessary for complete use of the solar spectrum.  

 Kılıç et al. introduced Fe2O3 as an oxide dopant in nanostructures to improve 

photocatalytic conversion in DSSC electrodes. Introducing both nanostructures and dopant 

mixing were thought to increase the efficiency in electrical conversion. Kılıç et al. reports that 

these nanostructures in conjunction with Fe2O3 increased solar conversion to 7.27% from 5.25% 

from pure anatase [27]. It becomes obvious that nanoscale studies with mixed oxide 

concentrations are necessary for improving the performance of DSSC. Such studies stand to 

improve performance; however, they are limited by the scale at which these cells perform. These 

studies, though essential for candidate validation, are extremely time consuming and intensive 

for candidate viability.  

 Titania doping explorations are often characterized by the dopant material class, as 

particular classes tend to exhibit unique properties. Metal-ion doping remains extremely popular 

and numerous studies showed early on that their introduction causes significant band gap shift 

into the visible spectrum [28]. However, recombination losses and minimal band structure 

change have been persistent issues facing many of the transition metal doped systems purposed 

for photo-activity. Consequently, another dopant candidate class grew which consisted of non-
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metals [29] [30] [31]. These dopants prove themselves to be promising candidates for both 

increasing photo-activity in the visible spectrum and reducing recombination losses. Even more 

crucial is that their insertion into the crystal lattice does not cause a shift into an amorphous 

structure like many of the metal-ion dopants.  

Quantum level studies aim to understand governing relationships and predict results from 

such studies. The introduction of quantum scale calculations with software packages like 

CASTEP allows insight into the fundamental concepts governing photocatalytic performance in 

materials. By altering the stoichiometry and associated wave functions governing a given crystal, 

scientists are able to theoretically derive these band gap results without ever having generated a 

physical material.  

2.3 Ab Initio Modeling 

Ab initio studies use what is known as a first principles approach to sort through 

candidates and develop sophisticated predictions as to ideal atomic compositions. This approach 

relies on knowledge of known quantum mechanical interactions to yield an overall prediction for 

a particular crystal system’s properties. Atomic interactions govern the entirety of the material 

properties; therefore, calculating the probabilistic result of a given system’s wave function 

reliably describes its physical characteristics. Every quantum mechanical calculation aims to 

appropriately account for electron interactive forces, electron-nucleus and intra-nucleus 

attraction. As it stands, the fundamental equations surrounding these energetic relationships are 

intractable. To that effect, it is extremely computationally expensive to simply estimate these 

interactions to a high degree of accuracy using traditional Schrödinger equation established 

methods. Approximations are made to lessen this computational load through the use of a variety 

of functionals which describe the electronic nature of the given solid [32]. By describing the 
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series of interactive forces governing a system as a series of functionals which are formulated by 

DFT, scientists are able to computationally sidestep solving the Schrödinger equation and its 

many-body wave problem.  

There exist numerous computational approaches created to predict user created crystal 

systems. One such method, CASTEP, employs the use of Density Functional Theory (DFT) to 

evaluate properties of a user defined crystal structure. It is now possible through the use of 

modules like CASTAP to characterize optical and electronic behavior of a theoretically defined 

crystal. Early ab initio studies into titanium dioxide immediately concerned themselves with the 

electronic properties and structure of the compound as decades of promising research had shown 

its capacity as a photocatalyst [33] [34] [35]. Early DFT research into crystal structure [36] and 

chemisorption [37] provided insight onto titania’s intrinsic value as a potential photovoltaic 

material.   

As its popularity grew, studies began to emerge concerning themselves with theoretically 

altering the band gap of the material through the introduction of crystal defects. Vacancy, 

interstitial, and substitutional defects are commonly studied in theoretical titania crystals in 

hopes of generating a material with an ideal band gap. Common early defects consisted of metal 

ion dopants which were found to effectively tune the band gap to a range bridging the visible 

spectrum [38] [39]. As candidate population and studies concerning them increased, it became 

worthwhile to use ab initio studies as a means to direct future experimental candidate studies. 

Asahi et al. was the earliest report from a research group introducing computer aided design in 

this directive capacity [40]. It is this novel aspect of research which began an influx of studies 

concerning themselves with theoretical band gap modification and characterization. Asahi et al. 
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shifted much of the research focus entirely from metal ion substitution to substitutions and 

interstitial doping comprised of nitrogen. 

Asahi et al. contends that the narrowed band gap of the nitrogen doped titania system was 

the result of band hybridization of O 2P states with N 2P states resulting in a raised valence band 

energy state. This contention holds today although there exist alternative explanations as to why 

non-metal doping remains the effective method of band gap modification. One explanation holds 

that the introduction of nitrogen introduces a narrow band slightly above the valence band of 

TiO2 [41]. This proposed band suggests that the characteristic energy levels associated with TiO2 

are not changed through nitrogen substitution. Rather, nitrogen itself introduces its own localized 

band into the material band structure. The alternative proposition holds that an oxygen deficiency 

from nitrogen presence within the crystal results in a lowered CB state of the remaining oxygen 

[42] [43].  

Today it remains unclear as to which explanation is definitively true. However, it remains 

that the introduction of a dopant species into the crystal structure has tremendous power in 

shaping the electronic behavior of titania. Further discussion of the effects of theoretical doping 

can be found in Chapter 3.  

2.4 Conclusion 

 The increase in solar cell technologies and methodology spurred an examination into the 

various materials capable of photocatalysis. Titania, through decades of peer-reviewed research, 

proves itself to be an extremely viable photoactive material. It endures as a material incredibly 

robust in processing yet is economical for large scale fabrication. These qualities, as well as its 

non-toxicity, compound to identify titania as worthy of continued study. Its experimental proof 
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of concept from the development of the Grätzel Cell further realized its capacity as a 

photosensitive material.  

An effective alternative material suited for photovoltaics like titania provides the 

diversification necessary for a sustainable long term solution to world energy needs. Band gap 

tuning follows naturally to purpose titania to meet specialized conversion needs. The 

introduction of dopants introduces intermediary energy states which further reduces the band gap 

and shifts the fermi energy. 

 Ab initio studies provide a platform for significant population growth. Through effective 

modeling, fundamental aspects governing a crystal system are better understood and explained. It 

follows naturally that through modules like CASTEP candidate preselection circumvents a large 

majority of superfluous study. Ab initio study into a material such as titania stands to drastically 

reduce production time.  
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CHAPTER 3 
 

CONCEPTUAL BACKGROUND 

 

3.1 Group Theory 

 Central to the ideas surrounding band structure engineering and modeling are the 

fundamental aspects comprising crystal structures and lattices. Electronic behavior of materials is 

an important aspect followed from their principal crystal symmetry. Building a complete model 

within CASTEP requires an associated space group to define the particular geometric and crystal 

characteristics. There exist 230 space groups comprised from 32 point groups and 14 Bravais 

lattices. Crystal generation is initiated through a basis combination into the lattice via a process 

known as convolution. Convolution is the method through which a copy of a basis is made in 

agreement with a series of mathematical operations. The operations constraining this new basis 

location can result in inversion, rotation, and reflection. The 32 crystallographic point groups 

result from the various configurations generated from these operations. After an individual unit 

cell is represented, an infinite array is generated through a set of translation vectors to achieve a 

unique crystalline arrangement. These infinite arrays, named Bravais Lattices, exist in 14 

uniquely defined arrays. Anatase titania exists in a tetragonal I41/amd spacegroup with lattice 

parameters a=b≠c.  
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3.2 Band theory 

Critical to understanding band gap modification remains the band theory which describes 

electron behavior of a solid state system. Electrons as fermions, due to the Pauli-Exclusion 

principle, can only exist in one of two states in an orbital. As the population of constituent atoms 

is increased, the atomic energies vary slightly to obey the Pauli-Exclusion principle. The result of 

these interacting orbitals, known as molecular orbitals, represent the split energy levels of all 

atomic orbitals populated within a crystal [44]. As the constituent molecular orbitals are 

increased to large values (N > 1022) the molecular orbitals begin to form a continuum known as a 

band. The electron concentration in band theory in a material is found through the use of the 

Fermi-Dirac distribution �(�) defined: 

1 

�(�) =  1
1 + 	
��

��
 

For intrinsic semiconductors, the Fermi-Dirac distribution is combined through the 

density of states �(�) to achieve a carrier concentration equation:   

2 

� = � �(�)�(�)��
�

��
 

The application of band theory to the subject of crystal structures (esp. transition metals) 

forms a field of study known as Ligand Field Theory (LFT) whose scope extends beyond the 

focus of this thesis [45]. Ultimately, the result of these interactions as described by LFT make up 

the fundamental nature of known band structure relationships.   
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A semiconductor is a material whose valence and conduction bands, two distinct 

molecular orbital energy ranges, are separated by a what is commonly known as a forbidden 

band or band gap. This band gap, commonly represented as Eg, is formally characterized as the 

difference from CBM to VBM at a given point within the Brillouin zone. Within the study of 

band structures, the center of the Brillouin zone (Г) is of important consideration and is 

commonly the reference point for band gap study. This is a result of a number of factors. 

Reduced and periodic zone schemes are the two predominant plotting methods providing 

simplified representations of a demonstrated band gap. Both of these representations esthetically 

are centered on the center of the cell. Most importantly, it is also known that the first Brillouin 

zones centered at � = 0 (Г) is representative of the primitive lattice cell [46]. Consequently, the 

Г point is the center from which a band structure plot is constructed.   

 

Characterizing semiconductors requires formal knowledge of what is known as the Fermi 

level.  Born from Fermi-Dirac statistics, this level is formally known as the highest occupied 

electron energy level of a system’s ground state. The significance born from this definition is that 

it indirectly describes the chemical potential for electrons in a given system. With the 

Figure 4: Body centered tetragonal Brillouin zone [73] 
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introduction of doping, predicted shifts in the Fermi level describe the nature of the bond and the 

chemical potential shift born from its introduction into the lattice.  

3.4 Doping 

Doping with respect to traditional semiconductors has the capacity to increase electron or 

electron hole concentration within the crystal lattice. The introduction of substitutional or 

interstitial defects allows for the electronic structure of atomic impurities to permeate throughout 

the lattice. Atoms with similar electronic orbital structure containing auxiliary electrons injects 

these extra electrons into a band state thus biasing the material to become an electron donor. 

Those doping constituents providing less electrons for the crystal lattice are known as electron 

receptors. They provide receptor states which reverse bias electron mobility. These two dopant 

types, combined together with the intrinsic semiconducting material are known as n and p-type 

semiconductors, respectively. N and p-type semiconducting materials acting in conjunction are 

what serve as the basis for modern photovoltaic materials [47] [48].  

In ab-initio studies, doping has been continually shown to have an effect in shaping large 

scale band structure changes [49] [50] [51] [52] [53]. Explaining energy state changes 

historically has been thought to be a result of orbital hybridization. In band theory, hybridization 

holds that the resultant energy of a hybrid orbital is approximated as the linear average of the 

contributing orbitals. It is therefore postulated that the orbitals generated from titania-TM d-

orbital hybridization possibly contributes to a reduced CBM energy state. It follows that an 

additional oxygen-nitrogen 2p-orbital hybridization mentioned previously could also potentially 

contribute to a lowered VBM.  

Aside from hybridization effects, there exist multiple alternate explanations concerning 

the introduction of non-metal doping with regard to structural energy changes. One of these 
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explanations involves doping introducing what are known as local states. These states are 

defined as quantum states which do not overlap significantly with those already established, 

essentially preventing the hybridization of orbital energies [54]. The resultant localized 2P 

energy states from nitrogen provides a theorized intermediary state above the previously un-

doped valence band maximum thus reducing the overall band gap. 

Vacancy defects also play a significant role in explaining the reduced band gap of TiO2 

upon nitrogen doping. It has been experimentally shown by groups like Di Valentin et al. that 

both nitrogen and carbon substitutional doping incurs a significant reduction in band gap [43] 

[55]. And subsequent DFT calculations have additionally shown the introduction of these species 

results in a lowered formation energy for oxygen vacancies. It naturally followed that these 

vacancy defects result in a lowered band gap. Vacancy band structure effects are a direct result 

of interacting wave functions of nearest neighbors. The removal of an oxygen atom within the 

titania crystal structure results in directly interacting orbitals of titanium. This indirect method of 

hybridization is thought to be another contributing factor behind non-metal doping in titania.  

Titania co-doping, led by groups like Gai et al. and Long et al., drastically changed the 

method by which titania was engineered for a narrowed band gap [56]. Co-doping relies on the 

presence of multiple constituent dopants whose individual modifications to band structure 

complement to an overall dramatic increase in photocatalytic performance. In the case of titania, 

transition metal and non-metal co-doping remains the promising method by which co-doping is 

utilized in band tuning. The presence of both atomic elements increases the VBM and reduces 

the CBM as those elements achieved before in mono-doping. However, the orbital hybridization 

of the transition metal and non-metal dopant species is currently of particular interest. Multiple 
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studies contend that the presence of this hybrid orbital state mitigates possible isolated localized 

states and recombination loss.   

3.5 Density Functional Theory 

Computationally deriving the electronic behavior of solids becomes irresolvable with the 

use of traditional Hamiltonian methods derived from the wave functions of the Schrödinger 

equation. The many-body problem persistent when constructing a condensed-matter system 

prevents viable energy calculations to be performed on crystal systems. Density Functional 

Theory (DFT) radically changed the method by which the energy of a many-body system could 

be calculated at its ground state. DFT forgoes the wave function method through the introduction 

of functionals for electron density and the assumption that the variational minimum energy level 

is equal to the ground state energy [57]. Kohn and Sham showed it is indeed possible to replicate 

a many-body electronic system with a series of single-body electronic systems [58]. Instead of 

the Hamiltonian, total energy is expressed by way of: 

3 

� = ���(�)� = � ������(�)�(�) + ���(�)� 

Here the energy is expressed as the sum of the external potential energy present due to 

nuclei interaction and some energy functional dependent on the electron density F[ρ(r)]. This 

functional is defined as the sum of the Hartree Coulomb and electron kinetic energies with the 

addition of an exchange and correlation correction term.  

4 

���(�)� = � ��(�)� + �!��(�)� + ��"��(�)� 
The Hartree Coulomb term is simply the potential energy present due to interacting 

electron clouds at radial spaces r and r’ within the system: 
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5 

�!��(�)� =  	#
2 % �(�)�(�′)

|� ( �′| ����′ 

The kinetic energy of the system is defined as: 

6 

� ��(�)� = )#
2* 2 + � ,-∗(/)0#,-(/)�/

-
 

Energy within DFT’s formalism relies only on a radial variable in lieu of multiple 

positional coordinates representative of each electron’s individual position relative to one 

another and the nucleus. The replacement of multiple positional vectors with a single radial 

vector drastically reduces the computational load necessary for calculations. Figure 5: Many-body 

versus DFT perspective, shown below, highlights the perspective of DFT in its aim to eliminate the 

multiple positional vector calculations.  

 

Figure 5: Many-body versus DFT perspective [59] 

 

The density of a given system is given as the sum of the normalized wavefunctions of 

non-interacting electrons probed at some distance �.  
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7 
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 To resolve the reintroduction of wave functions into the formalism of DFT, Bloch’s 

theorem is applied. Relying on plane wave methods, pseudopotentials and crystal periodicities, 

Bloch’s theorem constructs wave functions for each electron in DFT as: 

8 

,2,(/) =  + 62,(7)	-(89)∗:
9

 

Where 62, is the periodic function representative of the periodicity of the crystal, k is the 

crystal plane wave number within the first Brillouin zone, and r is again the positional vector. 

The variable G included in the summation ensures such that the plane waves are in agreement 

with boundary conditions. This transition from traditional quantum mechanical descriptions of 

waves to Bloch’s wave equation allows for tractable calculations of the electrons kinetic energy 

at certain points in crystal wave space [60]. 

Despite the Bloch’s theorem providing an alternative route for the production of tractable 

wave functions, the plane-wave method is difficult to reproduce characteristic wave function 

nature. To resolve this difficulty a pseudopotential is applied to replicate the core electrons and 

their interaction with the electrons in the valence orbital. By doing so, calculations characterizing 

the associated orbital energy levels of atoms are feasible. 

The remaining constituent, ��"��(�)�, is the corrective term which allows for accuracy in 

these calculations. Both the Hartree Coulomb and the kinetic energy term rely on the wave 

functions of non-interacting electrons. Obviously, electrons are always interacting with each 

other within a crystal system so a corrective term is therefore added to account for these 
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differences. Coulombic electron-core interactions changes when in the presence of additional 

electrons as does the overall kinetic energy. The exchange-correlation energy correction exists so 

as to more accurately describe the associated electron energies of these interacting systems. 

There exist a variety of mathematical approaches available to generate this corrective term, 

however LDA and GGA remain the two most widely used within academic research. 

The sum total of these energies result in describing the overall energy of a given atomic 

system. This eloquent side step for solving of the Schrödinger equation allows for calculations of 

large electronic systems.  
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CHAPTER 4 
 

METHODOLOGY 

 

4.1 Relaxation Initialization 

 Doped anatase TiO2 crystal systems with I41/amd space groups were extensively studied. 

Simulations were carried out to calculate electronic band structures and subsequent density of 

states. Relaxation simulations were first carried out to reflect equilibria values. The Perdew-

Burke-Ernzerhof functional of the Generalized Gradient Approximation [61] (GGA) was used in 

these calculations. The Vanderbilt ultrasoft pseudopotential [62] was applied. A 2 × 2 × 1 

anatase supercell (48 atoms) was generated and an initial geometry optimization was carried out 

to confirm the viability of the experiment using methods previously used. It is well documented 

that the experimentally held crystallographic lattice parameters are a = 3.7845 and c = 9.5143. 

Therefore, it is important that computational relaxation reflects these values in simulation. 

Additionally, reproduction of the experimentally held band gap of 3.20 eV is of additional 

importance.  Computationally reflecting these results has been proven successful by a variety of 

research groups. Table 1 reflects the findings of some of these groups and reports the lattice 

parameters and respective band gaps simulated.  
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Table 1: Previous findings for anatase titania 

Authorship a = b c Eg Ref # 

Li et al. 3.782 9.564 3.18 [49] 

Long et al.  3.893 9.529 3.14 [51] 

Yang et al.  3.776 9.485 3.58 [63] 

Yu et al. 3.785 9.514 2.46* [64] 

Lichao et al. 3.818 9.480 3.08 [65] 

  

 Relaxation convergence criteria can be found in Table 2. It is well known that 48 atoms 

are more than sufficient for band structure simulations. However, convergence calculations were 

conducted to validate these system parameters for accuracy. Relaxation calculations for doped 

systems were only carried out for a 48 atom system as band structure simulations were the 

ultimate goal of this research.  

Table 2: Convergence criteria for relaxation 

Convergence Criteria Value 

Convergence Energy Tolerance 1×10-6 eV/atm 

k-point 5×5×4 

Max Force .01 eV/ Å 

Max Stress .01 GPa 

Max Displacement .01 Å 

 
 

Thermal stabilities of the doped systems were neglected as previous studies have shown 

negligible substitutional energy differences between doped systems and pure titania [49]. The 

total enthalpy of the doped systems can be found in Appendix A.   
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4.2 Band Structure Initialization 

 Band Structure calculations directly followed relaxation. Criteria remained the same for 

convergence with the exception of an inclusion of a U-correction for localized electrons. Six 

different initial nitrogen-transition metal co-doped systems were calculated to systematically 

confirm and compare their respective effect on the crystal titania system. Doped systems were 

constructed via atomic substitution. Transition metals and nitrogen were substituted into the 

crystal through replacement of titanium and oxygen, respectively. It is predicted that the 

presence of such nitrogen doping increases the VBM and the transition metal lowers the CBM as 

previous studies mentioned have shown. However, novel systems are also included which do not 

conform to the passivation methodology outlined by Gai et al. [56].  

 These non-passivated systems are included so as to determine the potential of titania as 

an extrinsic semiconductor for use within traditional solar cell technology. The unmatched 

electron is predicted to introduce localized states within the band gap and increase potential 

recombination sites. This study also aims to compare the effect of passivation on valence band 

and conduction band shifts within the crystal systems.  

 Energy calculation pathing within CASTEP was self-determined and confirmed to be 

consistent between doped systems. Figure 6 and 7 show the calculated pathing used within this 

thesis.  
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Figure 6: Un-doped anatase system pathing Figure 7: Doped anatase system pathing 
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4.3 Validation of Configuration 

A system size convergence study was conducted for various atomic populations and it 

was confirmed that the crystal system’s structure was well converged as the band gap and lattice 

parameters changed very little. Table 3, shown below, outlines the lattices parameters and band 

gap energy calculated from various system sizes. It becomes apparent that at 48 atoms the 

electronic energetic behavior of the crystal system is well converged.  

The result achieved from GGA calculations without the Hubbard U-correction is in 

agreement with similar studies previously conducted [12] [66].  

Figure 8: 48 atom un-doped anatase band structure plot 
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Table 3: system size convergence 

System Size (atm) a (Å) b (Å) c (Å) Eg (eV) 

6 3.7891728 3.7891728 9.7839948 2.160 

12 3.7932575 3.7932575 9.7638949 2.160 

24 3.79317585 3.7932119 9.7626368 2.183 

48 3.79360535 3.79360525 9.7614638 2.179 

 

4.4 GGA & GGA+U 

It is extensively documented that the results of ab-initio band structure calculations 

drastically underestimate the band gap energy, specifically for those systems containing 

transition metals [67]. It has been shown that this consistent thematic undervaluation of transition 

metal band gaps is a result of over-binding on the part of the oxygen molecule within the 

transition metal oxide [68]. Localized electronic orbitals present within oxidation reaction result 

in consistent error in binding energy. This consequently results in an energy state less negative 

value than what is experimentally shown.  

To correct for this binding energy error in transition metal oxides, the GGA+U method is 

introduced in electrical property simulations. This U-correction rectifies the difference in binding 

energies which are not cancelled out within the GGA formulism. The U-correction itself is an 

intra-atomic electron-electron term which more accurately formulates quantitative descriptions 

of the localized 3d orbitals of the titania crystal.  

It is worth noting that there remains a sizeable difference in the lattice parameters when 

relaxation simulations are carried out with the additional U correction. Other research groups like 

Long et al. have come to the same conclusion that geometry optimization better reflects held 
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bond lengths and the GGA+U method is better suited solely for band-structure calculations [51]. 

Simulations were carried out to compare the two methods to confirm this assertion. It was 

confirmed that GGA exists as a better relaxation method.  

 

Additionally, GGA calculations were conducted on systems to confirm their inability to 

accurately formulate accurate energy and band structure calculations. It was confirmed that the 

GGA+U energy calculative method was several times more accurate than GGA alone.  

Figure 9: 48 atom anatase band structure plot with 8eV Hubbard correction 
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Selection of U values is based on experimental findings from band gap studies of TiO2. 

As it stands currently, 3.20 eV is the experimentally held band gap value for anatase titania. 

Consequently, electronic structural calculations must accurately reflect these values. It was found 

through successive calculations that a moderate correction of 8 eV best modeled the electronic 

structure of anatase titania. With an 8eV correction, a band gap of 3.204 eV was achieved. This 

experimentally determined value is in excellent agreement with experimentally verified systems.  
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CHAPTER 5 
 

RESULTS AND DISCUSSION 

 

5.1 Passivated System Results 

Figure 10, shown below, reports the band structure diagram for the vanadium nitrogen 

co-doped titania system. From the diagram, the presence of these co-doping elements produces a 

shift in the characteristic CBM. New localized states are created which serve to reduce the band 

gap. These shallow local states present within the crystal’s forbidden band gap remain the sole 

source for band gap reduction of about 1.2 eV.   
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Figure 10: V-N co-doped anatase band-structure plot 
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The niobium nitrogen co-doped titania system exhibited a shift in both the CBM and the 

VBM. Figure 11 displays this distinguishing conduction band reduction of about .9 eV. As can 

be seen, the valence band is also reduced by .5 eV. With no apparent localized states present, 

niobium nitrogen co-doping directly modified the continuum of band structure.  

 

Figure 11: Nb-N co-doped anatase band-structure plot 
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 Tantalum nitrogen co-doping presented band structure shifting in both valence and 

conduction bands. Additionally, shallow localized states become present in the forbidden band as 

possible trapping sites which can possibly reduce recombination. The conduction band 

continuum shifted by over .9 eV with the valence band continuum shifting again by about .5 eV.  

 

 

Figure 12: Ta-N co-doped anatase band-structure plot 
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5.2 Non-Passivated System Results 

 Non-passivated systems markedly changed the characteristic semiconducting behavior of 

the anatase crystal. Isolated impurity energy states became prevalent and persist deeper into the 

forbidden zone of the energy gap. A slight shift in the continuum of both valence and conduction 

bands can be seen in figure 13, which displays the band structure plot of chromium nitrogen co-

doped titania. However, despite this shift, the localized states significantly affect the calculated 

band gap and aren’t reflective of respective continuum energies.  

 

 
Figure 13:Cr-N co-doped anatase band-structure plot 
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The molybdenum nitrogen co-doped system distinctly changed in electronic structure 

from the previous system as localized systems become less frequent. However, there exists very 

little structural shifting of the valence and conduction bands. The resulting band gap of 1.272 eV 

as shown in figure 14 is representative of the impurity states still existent within the electronic 

structure.  

 

 

 

Figure 14: Mo-N co-doped anatase band-structure plot 
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Tungsten nitrogen co-doping presented an extremely large shift in the continuum of both 

valence and conduction bands. The conduction band was markedly reduced by roughly 1.6 eV. 

Concurrently, the valence band experienced a shift approaching 2.2 eV. Though reduced, the 

non-passivated system feature of impurity states prevalent within the forbidden band continues 

with this system. The resulting band gap of .742 is a result of these impurity states persistent 

within the electronic structure. The significant fermi level shift towards the conduction band 

alludes to probably n-type doping characteristics of tungsten nitrogen co-doping.  

 

Figure 15: W-N co-doped anatase band-structure plot 
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Table 4: Dopant Effects 

Dopant a (Å) b (Å) c (Å) Eg (eV) ∆Eg (eV) 

None 3.793606 3.793606 9.761464 3.204 0 

V - N 3.806719 3.776441 9.729913 2.03 1.17 

Nb - N 3.819588 3.790408 9.794828 2.85 .359 

Ta - N 3.801952 3.839441 9.810859 2.47 .726 

Cr - N 3.825896 3.774858 9.674787 .195 3.00 

Mo - N 3.830475 3.791032 9.729327 1.27 1.93 

W - N 3.8265465 3.799469 9.724496 .742 2.46 
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CHAPTER 6 
 

CONCLUSION 

 

6.1 Conclusion of Results 

 Chromium, molybdenum, tungsten, vanadium, niobium, and tantalum were individually 

co-doped with nitrogen into a 48 atom anatase titania crystal. Band structure analysis was used to 

compare those passivated and non-passivated systems. Fermi energy levels relative to the 

continuum of conduction and valence bands reveal characteristic shifts in semiconducting 

behavior in both systems.  

 Based on the results from the two disparate atomic substitutional types, passivated 

systems tend to produce fewer localized states and more effective narrowing of the electronic 

band gap. This shift in band structure suggests effective orbital hybridization and crystallinity in 

those passivated systems. The presence of shallow localized energy states in these systems 

suggest possible trapping sites which allude to possible reduced electronic recombination.  

 Passivated systems show this distinctive band gap narrowing through shifts in both 

conduction and valence bands. Additionally, this electronic structure shift is obtained with 

limited impact on crystal structure itself. However, as dopant levels were kept constant at 4.2%, 

it is uncertain to what extent these characteristics will continue with different doping 

percentages.  
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Non-passivated systems showed an erratic increase in localized states in the band 

structure which led to a misrepresentative decrease in band gap energy. These impurity states are 

thought to potentially significantly decrease photocatalytic performance in synthesized materials. 

These energy states are thought to provide recombination sites during excitation thereby 

mitigating band gap narrowing effects.  

 However, Tungsten-nitrogen co-doping presented an interesting feature within the 

simulations. A dramatic increase in the fermi level respective to band gap energy alludes to 

possible semiconducting behavior modification. Though unconfirmed, such behavior 

modification may prove to be of some use in future studies and materials development. Further 

studies are needed to confirm its potential viability. 

 These ab initio calculations conducted through the CASTEP package have ultimately 

shown to effectively describe the theoretical electronic structure of non-trivial atomic 

compositions.  

6.2 Future Work 

Future simulations with consideration to different passivated pair populations may prove 

to be useful in confirming the persistence of impurity states within the anatase band gap. 

Additionally, synthesis of these materials may further demonstrate the passivation methodology 

within the anatase electronic structure. Such synthesis further substantiates the reduction of band 

gap through the co-doping method. With additional time, further CASTEP analysis of the density 

of states and charge density differences may prove to be valuable.   
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