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ABSTRACT

Non-covalent, weakly bound clusters have been and remain of significant interest to many

researchers. However, with computational studies, accurate description of these interactions

requires sophisticated electronic structure methods employing large basis sets. This method-

ology becomes extremely computationally demanding as the size of the system increases.

This work presents benchmark data and explores methods for obtaining highly accurate ab

initio results for larger systems at greatly reduced computational costs. CCSD(T) com-

plete basis set limit interaction energies are presented for a variety of parallel-slipped π · · ·π

dimers and low-lying isomers of (H2O)6. The calibration of a 2-body:Many-body fragmen-

tation method for computing interaction energies of several (H2O)n clusters with n ranging

from 3-10 is performed. As a result, 2-body:Many-body QM:QM approach is extended to a

3-body:Many-body technique. In addition to calculating the energetics, the 2-body:Many-

body fragmentation method, which is cast within the ONIOM framework, is used for the

determination of Cartesian analytic gradients for the purpose of geometry optimizations.
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Chapter 1

Introduction

1.1 Non-covalent Interactions

It is hard to grasp how much of an impact non-covalent interactions have in supramolecular

chemistry. Life, as we know it, would not exist without non-covalent interactions. The

structure and function of biomolecules such as DNA, RNA and proteins, which are essential

for life, are all governed by non-covalent interactions. For example, the first step in HIV

infection is the formation of a non-covalent interaction between a viral envelope and cellular

receptor of a protein.1, 2 In additon to the biological impact, non-covalent interactions impact

solvation, condenstation, catalysis, assembly of nanomaterials, molecular recognition and

absorption, distribution, metabolism, and excretion of pharmaceuticals in the body.

Understanding and characterizing non-covalent interactions, in particular hydrogen bond-

ing and stacking interactions for weakly bound clusters, is the purpose for the research pre-

sented in this dissertation. Both of these motifs are found within DNA, RNA and protein-

ligand interactions. Though both interactions can simultaneously exist in a single complex,

the origins of hydrogen bonding and stacking interactions are different. Hydrogen bonding

is dominated by electrostatic and charge-transfer interactions whereas stacking interactions

are a result of London dispersion forces. Although electrostatic interactions are the largest
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attractive force for non-covalent interactions, correct description of London dispersion is still

necessary for highly accurate results. Unfortunately, dispersion is also a direct result of

electron correlation and therefore is a challenge for computational chemists.3–6

Because of the importance of including electron correlation for non-covalent interactions,

it is essential to determine an electronic structure method that routinely produces accurate

results for these interactions. Coupled-cluster (CC) theory, in particular the coupled-cluster

method which includes single and double electron excitations iteratively along with a pertu-

bative approximation of connected triple excitations, CCSD(T), is the “gold standard” for

computational methods.7–9

Besides choosing the correct electronic structure method for studying non-covalent clus-

ters, it is equally important to employ an appropriate basis set. An ideal basis set would

include an infinite number of basis functions. However, an infinite number of basis functions

is not a realistic option for computational chemist. Therefore, within quantum chemistry it

is a daunting and ongoing task to determine the best basis set for a given situation. Intuti-

tively, one would think the larger of a basis set, the better. However, this is only the case

for basis sets which are designed to systematically converge to the CBS limit. For example,

Dunning developed a family of basis sets unknown as correlation-consistent basis sets.10–12

1.1.1 Scaling Problem: Basis Sets and Electronic Structure Methods

Seeking the best result the obvious approach is to use the best method available (gener-

ally, CCSD(T)) in the largest basis set possible. The problem of polynomial scaling makes

this approach impossible. The computational cost (memory, disk space, and CPU time) of

2



CCSD(T) scale with the size of the system to the 7th power. In the context of intermolecular

interactions, this means that if a CCSD(T) calculation on a single molecule takes an hour,

a similar calculation on tow molecules would take 1 hour × 27 = 128 hours, and a similar

calculation on 6 molecules would take 1 hour × 67 = 32 years.

1.1.2 Basis Set Incompleteness Error and Basis Set Superposition Error

There is, of course, no way to truly employ a basis set containing an inifinite number of

basis functions. The error associated with not using an inifinite number of basis functions

is referred to as basis set incompleteness error (BSIE). BSIE is present in every calculation.

Various extrapolation techniques outlined in the next section are used to measure and correct

for BSIE.

Another error that arises from the use of incomplete basis sets is basis set superposition

error (BSSE).13, 14 BSSE arises from inconsistencies in a basis sets. One form of BSSE can

be explained by considering the different stereoisomers of the ethene molecule. Take for

example the gauche and eclipsed isomers. Because the functions are centered on the nuclei,

the location of basis functions varies between the eclipsed and gauche conformations of

ethene. This leads to an inconsistency. Another example is comparing a molecule optimized

with two different methods that employed the same basis set. The nuclei for both optimized

geometries will differ and therefore the position of basis functions will also differ between

both geometries.

A second form of BSSE arises from comparing the energy of a cluster to the energies of

the fragments (e. g., whenever computing dissociation or interaction energies). Some basis
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functions present in the cluster computation are missing for the isolated fragments causing

an inconsistency in basis sets. The counterpoise correction introduced by Boys and Bernardi

is a technique to remedy BSSE.15 Readers interested in a more detailed treatment of the

performance of CP corrections for weakly bound systems are directed to Reference 16 and

References within.

1.1.3 Basis Set Extrapolation Techniques and Explicitly Correlated Meth-

ods

Because the use of a basis set with an infintie number of basis functions is impossible, many

researchers attempt to approach the same result, the complete basis set (CBS) limit, by

various techniques. Again, because correlation-consistent basis sets are constructed in a way

to systematically converge to the CBS limit, it is possible to extrapolate to the CBS limit.

Feller developed a three-parameter exponential function that accurately predicts the Hartree-

Fock (HF) energy at the CBS limit.17, 18 Additional techniques were developed to obtain

CBS limits for correlation energy. Hartree-Fock energy is defined as the difference between

the total energy and the correlation energy. Therefore, extrapolation techniques designed

for correlation energy should not be applied to the total energy. A simple two-parameter

formula introduced by Hekgaker and coworkers is one of the most popular techniques.19

Besides extrapolation techniques, other more recent approaches have been introduced to

obtain the CBS limit. Explicitly correlated R12 and F12 methods are one way to expedite

the convergence to the CBS limit.20–27 Because of the slow convergence with respect to the

Coulomb hole around an electron, interelectronic distances (explicit distance between two

4



electrons) are included in the wavefunction for explicitly correlated methods. This idea was

first introduced by Hylleraas in 1929.28 However, due to the increase in computational cost

associated with these methods their routine application to large systems is unrealistic.

1.1.4 Methods for Studying Large Non-Covalent Clusters

In a response to the scaling problem, a number of techniques have been developed for studying

non-covalent clusters. One family of methods works by introducing approximations into

coupled cluster methods. Fragment molecular orbital29–32 (FMO) and divide-and-conquer

methods33–35 achieve near linear scaling. These methods either perform the actual calculation

on fragments while embedded in an electrostatic field of the entire system (FMO) or are

based on a simple sampling algorithm (divide-and-conquer). In 2005, Hirata and coworkers

improved on the FMO idea and obtained errors less the 0.0001% for total energies of water

clusters.36

Another approach to obtaining accurate interaction energies is to improve the overall

performance of less demanding methods such as MP2. For stacking interactions such as

π · · ·π interactions, MP2 is known for its large overestimation of the interaction energy.

For example, in the parallel-displaced configuration of the benzene dimer the correction for

higher-order correlation is (i. e. that part not captured by MP2) 2.18 kcal mol−1. This is

58% of the total CCSD(T)/CBS limit interaction energy! Because of this large discrepancy,

Spin-Component Scaled methods have been developed in an attempt to improve the accu-

racy of MP2 for π · · ·π interactions.37 Because Hartree-Fock (HF) contains no correlation

of electrons with opposite spin, Grimme determined scaling factors for the MP2 correlation
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energy to compensate for the lacking correlation within HF. Others have attempted to opti-

mize these scaling factors for different types of interactions such as Spin-Component Scaled

method for weak and stacking interactions38 and Scaled Opposite-Spin.39

The N-body decomposition approach introduced by Jordan and Christie permits calcula-

tion of accurate interaction energies for water clusters containing as many as 50 monomers.40

With this method, the N-body expansion is truncated to contain up to 4-body terms. For

the 1- and 2-body terms large basis sets are used; however, additional speed up is reached

when small basis sets are applied to the 3- and 4-body terms.

Similarly, Truhlar’s group developed a method based on a many-body expansion.41 The

Electrostatic Embedded Many-Body Expansion (EE-MB) method divides a cluster into frag-

ments composed of monomers, dimers and trimers. Each fragment is computed with an

accurate electronic structure method while embedded in a field of point charges acting as

the electrostatic field of the other fragments in the cluster. This method yields interaction

energies with an error 0.4% of the high-level calculation on the entire cluster for a low-lying

water pentamer structure.

The effective fragment potential method (EFP1 and EFP2) was developed by Gor-

don and coworkers.42–46 Here the interaction energy is composed into five terms. These

terms can be defined as either short- or long-range interactions. Short-range interactions

(exchange-replusion and charge transfer) decay exponentially, V 1
R
whereas long-range inter-

actions (coulomb, induction and dispersion) are dependent on distance and decay as (1/R)n,

where n is 2 for charge-charge interaction, 4 for charge-induced dipole interaction, 5 dipole-

6



induced dipole interaction and 6 for induced dipole-induced dipole interaction. Within the

EFP2 method, the coulomb and induction terms are treated by classical approximations

at long range, while exponential damping functions are used to obtain correct behavior at

short-range. Exchange-repulsion interaction is expressed as a 2-body interaction and is de-

rived as an expansion. The overlap expansion then uses a frozen localized molecular orbital

treatment on each monomer. Results show the expansion can be truncated at the quadratic

term and can employ much larger basis sets with minimal cost. However, implementation

of the EFP2 method with quantum mechanical methods is still being developed. For more

information on EFP or FMO methods readers are directed to the outstanding review article

by Gordon et. al.46

Jiang, Ma, and Li developed a method for linearly scaled coupled-cluster calculations

named clusters in molecules.47, 48 This method employs localized molecular orbitals and

limits the double excitations with a spacial threshold; with both approximations made, this

method scales linearly and can be applied to large molecular systems. For a wide range of

molecules, this method recovers 98.5% of the total CCSD correlation energy. However, this

method has not been expanded to include triple excitations which are necessary to reproduce

the “gold standard”, CCSD(T).

Many-body decomposition schemes are an alternative to the previous approaches. For

a detailed explanation of the many-body approach see Chapters 4 and 5. Tschumper and

co-workers have shown that for weakly bound systems a 2-body:Many-body, can reproduce

CCSD(T) interactions energies within 1%. This accuracy is also achieved with a fraction of

7



the computational cost of the full CCSD(T) calculation.49 With this method, the largest

CCSD(T) calculation is a dimer. Because this approach is implemented within the ONIOM

formalism, (i. e. using a simple linear combination) it is extensible to first and second ana-

lytic derivatives.50 Additional information about the impletemation of analytic derivatives

within the 2-body:Many-body technique can be found in Chapter 5.

Gregory Beran has developed a similar technique to the 2-body:Many-body approach.51

With this method all 1- and 2-body terms are calculated quantum mechanically whereas

the higher-order terms are treated classically. A polarizable force field such as AMOEBA is

used to calculate higher-order n-body effects, where n≥3. In addition, the Bearn work also

examined the effects of embedding the quantum mechanical 1- and 2-body calculations in

a electrostatic field representing the other fragments. The results from embedding charges

were very dependent on the choice of basis set used to determine the charges. In 2010,

Beran improved his approach by parameterizing the force field used.52 Unfortunately, with

the hybrid many-body interaction approach the force field has to be reparametrized for every

different type of molecule.

8



Chapter 2

Probing the effects of heterogeneity on delocalized π · · ·π interaction

energies

2.1 Abstract

Dimers composed of benzene (Bz), 1,3,5-triazine (Tz), cyanogen (Cy) and diacetylene (Di)

are used to examine the effects of heterogeneity at the molecular level and at the cluster

level on π · · ·π stacking energies. The MP2 complete basis set (CBS) limits for the interac-

tion energies (Eint) of these model systems were determined with extrapolation techniques

designed for correlation consistent basis sets. CCSD(T) calculations were used to correct

for higher-order correlation effects (δE
CCSD(T)
MP2 ) which were as large as +2.81 kcal mol−1.

The introduction of nitrogen atoms into the parallel-slipped dimers of the aforementioned

molecules causes significant changes to Eint. The CCSD(T)/CBS Eint for Di/Cy is −2.47

kcal mol−1 which is substantially larger than either Cy/Cy (−1.69 kcal mol−1) or Di/Di

(−1.42 kcal mol−1). Similarly, the heteroaromatic Bz/Tz dimer has an Eint of −3.75 kcal

mol−1 which is much larger than either Tz/Tz (−3.03 kcal mol−1) or Bz/Bz (−2.78 kcal

mol−1). Symmetry-adapted perturbation theory calculations reveal a correlation between

the electrostatic component of Eint and the large increase in the interaction energy for the

mixed dimers. However, all components (exchange, inductions, dispersion) must be consid-
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ered to rationalize the observed trend. Another significant conclusion of this work is that

basis set superposition error has a negligible impact on the popular δE
CCSD(T)
MP2 correction,

which indicates that counterpoise corrections are not necessary when computing higher-order

correlation effects on Eint. Spin component scaled MP2 (SCS-MP2 and SCSN-MP2) calcu-

lations with a correlation consistent triple-ζ basis set reproduce the trends in the interaction

energies despite overestimating the CCSD(T)/CBS Eint of Bz/Tz by 20–30%.

2.2 Introduction

Weak intermolecular forces play a significant role in biological systems. Specifically, π · · ·π

stacking interactions of aromatic systems are of particular importance. They largely con-

tribute to essential biological systems such as DNA base pair stacking,53–56 protein-ligand

interactions,57–61 and adenosine 5’-triphosphate (ATP) recognition.62, 63 These π · · ·π stack-

ing interactions are difficult to isolate and study since they generally consist of a small

aromatic system interacting with the side chain of a much larger molecular system (con-

taining many atoms) which are currently too large for study of high accuracy quantum

chemical levels of theory. Instead, many smaller prototypes have been studied in order to

learn more about the nature of π · · ·π stacking interactions.61, 64–66 By far the most widely

studied molecule for modeling π · · ·π interactions is the benzene dimer (Bz/Bz).67–83 It was

recently noted that the delocalized π · · ·π dimer consisting of two diacetylene molecules,

(H− C ≡ C− C ≡ C− H)2 or Di/Di, behaves very much like the benzene dimer and can

also serve as a useful prototype for π-type interactions.84

10



While Bz/Bz and Di/Di are extremely useful models, π-type interactions in real systems

such as biomolecules and nanomaterials tend to be more intricate due to substituent ef-

fects (e.g., aromatic amino acids) and the presence of heteroatoms (e.g., nucleic acid bases).

Substituent effects have already been examined in detail.85–88 One of the most significant

outcomes of these studies is that simple electrostatic arguments based on Hunter-Sanders

rules cannot account for the relative stability of monosubstituted benzene dimers where “Dis-

persion and exchange-repulsion are more important that electrostatics in determining the

total binding energies”.86 A few studies of heteroaromatic π · · ·π systems have appeared in

the literature.9, 89–91 Unfortunately, the effect of heteroatoms on π · · ·π stacking interactions

was not the focus of these investigations.

Unlike the Bz/Bz dimer, relatively few studies have examined the Tz/Tz or Bz/Tz dimers.

Eleven arrangements of the Bz/Tz dimer have been studied by Massera et al. including T-

shaped, stacked and parallel-slipped structures in an effort to obtain a description of the

Bz/Tz potential energy surface.92 They found the parallel-slipped structure to be the most

stable Bz/Tz configuration with an interaction energy of −5.28 kcal mol−1 at the MP2/6-

311++G(3df ,p) level of theory. Šponer and Hobza provided one of the earliest studies of the

Tz/Tz dimer with correlated ab initio methods.93, 94 Dispersion-corrected density functional

theory (DFT-D) and quantum Monte Carlo (QMC) calculations confirm that the “anti”

Tz/Tz structure used by Šponer and Hobza is the most stable configuration95 .

To examine the effects of heteroatoms on π · · ·π stacking within heterogenous dimers,

the interaction energies of 3 parallel slipped dimers composed of 1,3,5-triazine and benzene
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(Tz/Tz, Bz/Bz and Bz/Tz, bottom of Figure 1) are compared at the CCSD(T) complete

basis set (CBS) limit. For a study of this nature, Tz has an advantage over other N-

substituted benzenes because it is a highly symmetric and non-polar molecule (similar to

Bz). The analogous structures for the smaller π · · ·π prototypes composed of diacetylene

and cyanogen, N ≡ C− C ≡ N, are also examined (Cy/Cy, Di/Di and Di/Cy, top of Figure

1). Spin component scaled MP2 (SCS-MP2 and SCSN-MP2) interaction energies are also

computed in an effort to identify a less demanding computational approach that can be used

to more thoroughly characterize the Tz/Tz and Bz/Tz systems as well as dimers composed

other N-substituted benzenes.

2.3 Computational Details

The Di/Cy, Tz/Tz, and Bz/Tz parallel-slipped dimers shown in Figure 1 were optimized

with Cs symmetry using second-order Møller-Plesset perturbation theory (MP2) in con-

junction with a double-ζ basis set including diffuse and polarization functions on all atoms

(DZP++).96–98 The corresponding Bz and Tz monomers were optimized at this same level

of theory with D6h and D3h symmetry, respectively. The geometries of the Di/Di and Cy/Cy

dimers as well as the Di and Cy monomers were obtained from literature.84 Bz/Bz inter-

action energies were taken from References 76 and 88. All computations were carried out

with the Gaussian 03,99 PSI3,100 MPQC 2.3.1101–105 and SAPT2006106, 107 quantum chemistry

software packages.

Single point energy calculations were obtained for the structures at various levels of
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Di/Di (C2h symmetry) Cy/Cy (C2h symmetry) Di/Cy (Cs symmetry)

Bz/Bz (Cs symmetry) Tz/Tz (Cs symmetry) Bz/Tz (Cs symmetry)

Figure 2.1: Parallel-slipped structures of the six dimers used to study the effects of hetero-
geneity on π · · ·π stacking interactions.
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theory. MP2 energies were computed with a series of Dunning’s correlation consistent basis

sets where diffuse functions have been added to C and N but not to H (i.e., cc-pVXZ for H

and aug-cc-pVXZ for C and N, where X = D,T,Q,5). Hereafter, this basis set is denoted

haXZ. All MP2 calculations (including geometry optimizations) were performed with the

frozen core approximation. The MP2 CBS limit is obtained by using the haQZ and ha5Z

energies in the two-parameter extrapolation scheme suggested by Helgaker et al.108

The effect of higher-order excitations was investigated with CCSD(T)/haDZ single point

energy calculations, again employing the frozen core approximation. Basis set superposition

error (BSSE),13 is known to cause discrepancies in interaction energies computed with small

basis sets and, therefore, is addressed here by performing Boys and Bernardi counterpoise

(CP) corrections.109, 110 In particular, the effect of CP corrections on the difference between

MP2 and CCSD(T) interaction energies (δE
CCSD(T)
MP2 ) is examined. The CCSD(T) CBS limit

of Eint is obtained by combining the MP2 CBS interaction energy with this correction for

higher-order correlation effects.16, 59, 83, 111, 112

E
CCSD(T)/CBS
int = E

MP2/CBS
int + δE

CCSD(T)
MP2 (2.1)

The spin-component-scaled (SCS) method developed by Grimme allows for separate scaling

of the parallel and antiparallel contributions to the MP2 energy.37 Later, Hill and Platts

introduced the SCSN-MP2 method by reoptimizing the scaling parameters for nucleobase

interactions.38 The SCSN parameters were designed for aug-cc-pVTZ basis set. Both meth-

ods provide improved results for π · · ·π interactions.38 SCS-MP2 and SCSN-MP2 interaction
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energies have also been evaluated here. Note that the efficient parallel MPQC program that

was used to perform the largest MP2 calculations does not currently provide these contri-

butions to the correlation energy. The parallel and antiparallel components were obtained

with a different software package that could not perform the larger MP2 calculations on the

same computational resources.

To gain some insight into why Eint changes as heteroatoms are introduced, a series of

second-order symmetry-adapted perturbation theory (SAPT2)113 computations have been

performed on the dimers with the haDZ and haTZ basis set. (SAPT2 calculations with

the haTZ basis set are feasible only for the smaller dimers: Di/Di, Cy/Cy, Di/Cy.) The

electrostatic, exchange, induction and dispersion contributions to the interaction energy are

reported. As in recent work on substituted benzene dimers, the exchange-induction and

exchange-dispersion terms are included as part of the induction and dispersion energies,

respectively.

2.4 Results

Table 2.1 displays the MP2 interaction energies computed with the haXZ basis sets. When

considering this data along with comparable values for Bz/Bz (E
MP2/CBS
int =−4.79 kcal mol−188)

one sees that the mixed dimers (Di/Cy and Bz/Tz) are substantially more stable than their

homogeneous counterparts (Di/Di, Cy/Cy, Bz/Bz and Tz/Tz).
Table 2.2 shows the differences between the MP2/haDZ and CCSD(T)/haDZ interaction

energies (δE
CCSD(T)
MP2 ) both with and without CP corrections. As expected, MP2 substantially

overbinds relative to CCSD(T) (by as much as 2.35 kcal mol−1). It was somewhat surprising
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Table 2.1: MP2 interaction energies in kcal mol−1 without CP corrections.

Basis Set Di/Di Cy/Cy Di/Cy Tz/Tz Bz/Tz

haDZ −3.12 −2.89 −4.02 −6.79 −8.71

haTZ −2.82 −2.84 −3.81 −5.51 −7.10

haQZ −2.65 −2.67 −3.65 −4.92 −6.41

ha5Z −2.58 −2.59 −3.58 −4.71 −6.17

Table 2.2: Corrections to Eint from higher-order correlation effects obtained from CCSD(T)

and MP2 calculations (δE
CCSD(T)
MP2 ) with the haDZ basis set. All values are in kcal mol−1 .

Di/Di Cy/Cy Di/Cy Tz/Tz Bz/Tz

CP Uncorrected +1.10 +0.83 +1.04 +1.43 +2.18

CP corrected +1.15 +0.87 +1.10 +1.58 +2.35

to see that the δE
CCSD(T)
MP2 corrections are so insensitive to BSSE. To our knowledge, this is

the first time this interesting and very useful result has been reported in the literature.

The MP2 CBS limit interaction energies are shown in Table 2.3 along with the non-CP

corrected δE
CCSD(T)
MP2 values. These two pieces of data are combined via Equation 1 to give the

CCSD(T) CBS limits shown in the last column. The MP2/6-311++G(3df ,p) Eint of −5.28

kcal mol−1 for the parallel-slipped configuration of the Bz/Tz dimer reported by Massera et

al. is very similar to our calculated MP2 CBS limit of −5.93 kcal mol−1.92 However, the

importance of higher-order correlation effects is reflected in the +2.18 kcal mol−1 change (or

58% of E
CCSD(T)/CBS
int ) from the δE

CCSD(T)
MP2 correction.

At both the MP2 and CCSD(T) CBS limits, the mixed dimers (Di/Cy and Bz/Tz) are

far more strongly bound than the other dimers. For example, the magnitude of E
CCSD(T)/CBS
int

for Di/Cy is roughly 1.7 times larger than for Di/Di and 1.4 times larger than for Cy/Cy.
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Table 2.3: MP2 and CCSD(T) CBS interaction energies in kcal mol−1. The

δE
CCSD(T)
MP2 corrections are the CP uncorrected values from Table 2.2

Structure MP2 CBS δE
CCSD(T)
MP2 CCSD(T) CBS Limit

Di/Di −2.52 +1.10 −1.42

Cy/Cy −2.52 +0.83 −1.69

Di/Cy −3.51 +1.04 −2.47

Bz/Bz −4.95a +2.18b −2.78c

Tz/Tz −4.46 +1.43 −3.03

Bz/Tz −5.93 +2.18 −3.75

a From CP corrected MP2R12/A values in Table 2 of Ref.76

b From CP corrected δCCSD(T)/aug-cc-pVDZ values in Table 2 of Ref.76

c Similar values of −5.03, +2.25 and −2.78 kcal mol−1 were reported in Ref.88

The same trend is evident for the aromatic ring systems studied. At the CCSD(T) CBS

limit, Bz/Tz has an estimated π · · ·π-stacking interaction energy of −3.75 kcal mol−1, which

is larger than the corresponding values for Bz/Bz (−2.78 kcal mol−176, 88) and Tz/Tz (−3.03

kcal mol−1).

The SCS-MP2 and SCSN-MP2 interaction energies can be found in Table 2.4. Both

methods give very similar results that are much closer to the CCSD(T) CBS limit than the

MP2 data in Table 2.1. The spin component scaled interaction energies obtained with the

haQZ basis set for Di/Di, Cy/Cy and Di/Cy lie within 0.3 kcal mol−1 of the CCSD(T) CBS

limits. When the haTZ basis set is used, this deviation increases (to more than 1 kcal mol−1

for Bz/Tz), and the SCSN-MP2 method slightly outperforms the SCS-MP2 method. De-

spite overbinding by as much as 20–30% for Bz/Tz with the haTZ basis set, the SCSN-MP2

and SCS-MP2 methods yield a qualitatively correct description of Eint and reproduce the

CCSD(T)/CBS trends. The improved performance with the haQZ basis set is encourag-
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Table 2.4: SCS-MP2 and SCSN-MP2 interaction energies in kcal mol−1.

haDZ haTZ haQZ

Di/Di

SCS-MP2 −2.16 −1.78 −1.57

SCSN-MP2 −1.72 −1.62 −1.58

Cy/Cy

SCS-MP2 −2.27 −2.19 −1.99

SCSN-MP2 −1.97 −1.98 −1.93

Di/Cy

SCS-MP2 −3.12 −2.84 −2.64

SCSN-MP2 −2.81 −2.77 −2.73

Tz/Tz

SCS-MP2 −5.02 −3.68 −

SCSN-MP2 −4.11 −3.44 −

Bz/Tz

SCS-MP2 −6.49 −4.82 −

SCSN-MP2 −5.38 −4.40 −

ing given that these methods were designed for use with the aug-cc-pVTZ basis set. This

observation is consistent with the results of Antony and Grimme.114

The SAPT2 results are shown in Table 2.5. It is interesting to note that although Di/Di

and Cy/Cy have very similar interaction energies, the components of Eint are very different.

The dispersion contribution for Cy/Cy is approximately 1.8 kcal mol−1 less attractive than

for Di/Di with both the haDZ and haTZ basis sets. This large change is offset by an equally

large change in the exchange repulsion which is approximately 1.8 kcal mol−1 less repulsive for

Cy/Cy than for Di/Di. The SAPT2 calculations also reveal that the electrostatic component

is largely responsible for the increased interaction energy in the Di/Di → Cy/Cy → Di/Cy

series. Di/Cy has an electrostatic contribution that exceeds 2.5 kcal mol−1, whereas Cy/Cy
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Table 2.5: Contributions to the interaction energies (Eint) from SAPT2 calculations with
the haDZ basis set. Values given in parenthases are Eint obtained with haTZ basis set. All
values are in kcal mol −1.

Di/Di Cy/Cy Di/Cy Bz/Bza Tz/Tz Bz/Tz

Electrostatic −1.80 −1.95 −2.64 −1.85 −2.95 −5.46

(−1.63) (−1.85) (−2.52)

Exchange +4.94 +3.07 +4.67 +2.93 +8.72 +12.77

(+4.72) (+2.93) (+4.46)

Induction −0.63 −0.38 −0.72 −0.37 −0.86 −1.39

(−0.61) (−0.37) (−0.70)

Dispersion −4.67 −2.96 −4.39 −3.23 −8.58 −10.97

(−5.10) (−3.23) (−4.81)

Eint −2.16 −2.22 −3.07 −2.52 −3.67 −5.05

(−2.62) (−2.52) (−3.58)

a CCSD(T)/aug-cc-pVQZ* parallel-displaced equilibrium geometry taken from Ref.79

and Di/Di have values less than 2.0 kcal mol−1.

In light of the results obtained for the smaller, linear π · · ·π stacking prototypes, it is

tempting to correlate Eint with the quadrupole moment of the monomers. However, the

SAPT2 data for the larger, cyclic prototypes (Bz/Bz, Tz/Tz, Bz/Tz) reiterate that simple

electrostatic arguments, such as Hunter-Sanders rules, are not always sufficient to rationalize

trends in π · · ·π stacking interactions. The absolute values for all four components of Eint

increase steadily in the Bz/Bz → Tz/Tz → Bz/Tz progression. In each case, both exchange

and dispersion provide the largest contributions to Eint (in excess of 10 kcal mol−1 in the case

of Bz/Tz). Although there is substantial cancellation between the large repulsive exchange
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component and the large attractive dispersion component, the absolute value of the former

is 1.80 kcal mol−1 larger than the latter in the Bz/Tz dimer. Only after considering the

smaller attactive components (electrostatic and induction), does one get a clear picture of

energetics for the cyclic dimers. To our knowledge, this is the first time SAPT2 results have

been reported for the parallel-splipped Bz/Bz dimer.

2.5 Conclusions

Estimates of the π · · ·π stacking interaction energies for a variety of parallel-slipped proto-

types at the CCSD(T) CBS limit have been obtained. As expected, MP2 overbinds relative

to CCSD(T) energies. The SCS-MP2 and SCSN-MP2 methods yield better results and re-

produce trends in CCSD(T)/CBS interaction energies despite overbinding by as much as

20–30% with the haTZ basis set. The introduction of heteroatoms into π · · ·π stacking

systems can cause significant changes to Eint. The mixed dimers (Di/Cy and Bz/Tz) have

appreciably larger interaction energies compared to their homogeneous counterparts. For

the smaller π · · ·π-type prototypes, the interaction energies increase in the following man-

ner Di/Di < Cy/Cy << Di/Cy. Similarly, for the larger aromatic systems, the interaction

energy from weakest to the strongest is Bz/Bz < Tz/Tz << Bz/Tz. SAPT2 calculations

demonstrate that this trend in the interaction energies correlates rather well with the elec-

trostatic component of Eint. However, closer inspection of the SAPT2 data for the cyclic

dimers reveals that the contributions from exchange, induction and dispersion must also be

considered to understand the observed trends. Another significant outcome of this work is
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that the δE
CCSD(T)
MP2 correction is very insensitive to BSSE. As a result, CP corrections are

not required to determine the higher-order correlation effects on Eint.
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Chapter 3

CCSD(T) Complete Basis Set Limit Relative Energies for Low-lying Water

Hexamer Structures

3.1 Abstract

MP2 and CCSD(T) complete basis set (CBS) limit relative electronic energies (∆Ee) have

been determined for 8 low-lying structures of the water hexamer by combining explicitly

correlated MP2-R12 computations with higher-order correlation corrections from CCSD(T)

calculations. Higher-order correlation effects are quite substantial and increases ∆Ee by

at least +0.19 kcal mol−1 and as much as +0.59 kcal mol−1. The effects from zero-point

vibrational energy (ZPVE) have been assessed from unscaled harmonic vibrational frequen-

cies computed at the MP2 level with a correlation consistent triple-ζ basis set (cc-pVTZ

for H and aug-cc-pVTZ for O). ZPVE effects are even more significant than higher-order

correlation effects and are uniformly negative, decreasing the relative energies by −0.16 to

−1.61 kcal mol−1. Although it has been widely accepted that the cage becomes the lowest-

energy structure after ZPVE effects are included [Nature, 1996, 381, 501–503], the prism is

consistently the most stable structure in this work, lying 0.06 kcal mol−1 below the nearly

isoenergetic cage isomer at the electronic MP2 CBS limit, 0.25 kcal mol−1 below at the

electronic CCSD(T) CBS limit, and 0.09 kcal mol−1 below at the harmonic ZPVE corrected
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CCSD(T) CBS limit. Moreover, application of any uniform scaling factor less than unity to

correct for anharmonicity further stabilizes the prism and increases the relative energies of

the other structures.

3.2 Introduction

The water hexamer is an important and widely studied water cluster because it represents

the crossover point from 2-dimensional to 3-dimensional hydrogen bonding networks.115–122

Even with only 6 water molecules, there is a staggering number of possible hydrogen bonding

patterns for (H2O)6.
123 Fortunately, only few fundamental motifs give rise to the most stable

structures, and they are labeled with descriptive monikers such as “bag”, “book”, “cage”,

“cyclic” and “prism”. Some examples of these structures are shown in Figure 3.1. Note that

different isomers can be obtained through subtle changes in the relative orientations of the

H atoms not involved in hydrogen bonding. This distinction is particularly important for

the book [Figures 3.1(e) and 3.1(f)] and cyclic-boat structures [Figures 3.1(g) and 3.1(h)]

where the same name is sometimes used to describe different (H2O)6 structures. In this

work, book-1 and cyclic-boat-1 are used to denote the conformation of these isomers with

the lower electronic energy while the number 2 is appended to the higher-energy structure.

Electronic structure computations indicate that most of the low-lying (H2O)6 isomers

depicted in Figure 3.1 have very similar electronic energies,115, 120 and several forms of the

water hexamer have been observed experimentally under various conditions.116, 121, 124–130 In

some cases, however, definitive assignment of the observed spectra to a particular structure
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was not possible, potentially due to the presences of multiple isomers.

In recent years, rather sophisticated and demanding electronic structure computations

have been performed on these water hexamer isomers to help resolve their relative electronic

energies. For example, in 2002, MP2 complete basis set (CBS) limit relative electronic

energies were reported for the book, cage, prism and cyclic-chair isomers of (H2O)6.
131 Elec-

tronically, the prism and cage

structures [Figures 3.1(a) and 3.1(b)] were found to be isoenergetic with the cage only 0.07

kcal mol−1 above the prism. The book and cyclic structures were only slightly higher in

energy at the MP2 CBS limit, 0.25 and 1.00 kcal mol−1, respectively, above the prism isomer.

More recently, two groups have examined higher-order correlation effects in this system

by computing CCSD(T) relative electronic energies for water hexamer isomers132, 133 with

correlation consistent triple-ζ basis sets augmented with diffuse functions. The CCSD(T)

results are in qualitative agreement with the MP2 CBS data, but there are slight quantitative

differences in the relative electronic energies on the order of a few tenths of a kcal mol−1,

which is not unexpected given the differences in optimized structures and basis sets. (See the

Computational Details section for more detail about the structures examined in References

131, 132 and 133.)

The effects of zero-point vibrational energy (ZPVE)133–136 and temperature (thermal

energy)137 on the relative energies of the water hexamer isomers have also been examined.

The ZPVE represents a large fraction of the total binding energy and significantly changes

the relative energies of the isomers. Temperature can also have a significant effect on the
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(a) prism (b) cage (c) bag

(d) cyclic-chair (e) book-1 (f) book-2

(g) cyclic-boat-1 (h) cyclic-boat-2

Figure 3.1: Structures of 8 low-lying (H2O)6 isomers.
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energetics of the (H2O)6 system. For example, in a study of small water clusters that included

the prism, cage and cyclic-chair water hexamers, a variety of popular model chemistries (e.g.,

G2, G3, CBS-APNO) revealed that, while the cage and prism forms of the hexamer are

the lowest energy structures at very low temperatures, the cyclic-chair structure structure

becomes more favored at higher temperatures.

This work builds on recent high-accuracy electronic structure studies.131–133 Explicitly

correlated MP2-R12 energies are combined with higher-order correlation corrections from

CCSD(T) calculations to estimate the CBS limit CCSD(T) relative electronic energies (∆Ee)

for the eight water hexamer structures shown in Figure 3.1. Harmonic vibrational frequencies

are computed with the MP2 method and a correlation consistent triple-ζ basis set (with

diffuse functions on O atoms) and used to examine ZPVE effects on the relative energies

(∆E0).

3.3 Computational Details

The authors of References 131, 132 and 133 graciously provided the Cartesian coordinates

for their (H2O)6 structures which enabled us to correlate them with those shown in Figure

3.1. The book and ring hexamers of Reference 131 correspond to book-1 and cyclic-chair

in this work. The book and boat structures of Reference 133 are identical to the book-1

and cyclic-boat-1 isomers in Figure 3.1 while the book and boat structures of Reference 132

correspond to book-2 and cyclic-boat-2 here. The prism, cage and cyclic-chair structures

were consistent throughout the studies. This work examines these seven unique structures
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as well as the bag isomer from Reference 133.

All structures in this study have been fully optimized at the MP2 level with a correlation

consistent triple-ζ basis set (cc-pVTZ basis set for H and the aug-cc-pVTZ for O). This basis

set will, hereafter, be denoted haTZ. Cartesian coordinates for the MP2/haTZ optimized

structures of the prism, cage, bag, cyclic-chair, book-1 and boat-1 were obtained from the

supporting information for Reference 133. The other structures were optimized in this work.

It is worth noting that both cyclic-boat structures deviate only slightly from C2 symmetry.

However, if the boat structures are re-optimized at the MP2/haTZ level in C2 symmetry, the

electronic energies increase by approximately 24 µEh (0.015 kcal mol−1). Residual Cartesian

gradients of the optimized structures reported here are less than 1× 10−4 Eh bohr−1.

Previous studies have shown that the correlation energy converges to the CBS limit

slowly when using correlation consistent basis sets.27 However, dramatic progress in the

field of explicity correlated R12 methods now allows one to “bypass the slow convergence

of the conventional methods, by augmenting the traditional orbital expansions with small

number of terms that depend explicity on the inter-electronic distance r12.”27 In this work,

the MP2 CBS limit relative electronic energies (∆E
MP2/CBS
e ) of the 8 structures are deter-

mined with explicitly correlated MP2-R12 computations22 employing the massive K2−−

basis set138, 139 (222 basis functions per monomer, compared to 74 for the haTZ basis set).

This procedure provides MP2 CBS limit interaction energies comparable to those obtained

with extrapolation schemes for correlation consistent basis sets.7, 8, 76, 138, 140–142 A correc-

tion for higher-order correlation effects was calculated from the difference between the MP2
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and CCSD(T) relative energies with the haTZ basis set (δ
CCSD(T)
MP2 ). Reliable estimates of

CCSD(T) CBS limit relative energies (∆E
CCSD(T)/CBS
e ) are routinely obtained by combining

terms.7, 8, 59, 76, 83, 143–147

∆ECCSD(T)/CBS
e = ∆EMP2/CBS

e + δ
CCSD(T)
MP2 (3.1)

In all MP2, MP2-R12 and CCSD(T) computations, the 1s-like core orbitals of O were

excluded from the correlation procedure (i.e., the frozen core approximation). The geome-

try optimizations and MP2-R12 calculations were performed with the MPQC software pack-

age,26, 105 and the latter employed the A′ resolution of the identity approximation.24 Har-

monic vibrational frequencies were obtained with the analytical MP2 Hessians available in

Gaussian 03.148 Finally, the CCSD(T) computations were performed with the MOLPRO149

and PSI3150 programs. Electronic energies were converged to at least 1 × 10−7 Eh in all

single point energy computations. Counterpoise (CP) corrections15, 151 for basis set super-

position error (BSSE)14, 152 were not applied because (i) the MP2-R12/K2−− energies are

essentially at the CBS limit where BSSE is zero by definition, and (ii) the δ
CCSD(T)
MP2 correction

for higher-order correlation effects in weakly bound non-covalent clusters is rather insensitive

to BSSE.7, 8, 153
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3.4 Results

3.4.1 Relative Electronic Energies

The MP2 CBS limit relative electronic energies (∆E
MP2/CBS
e ) of the 8 water hexamer struc-

ture are given in the second column of Table 3.1. The ∆E
MP2/CBS
e values for the cage, book-1,

cyclic-chair and 6 isolated monomers (i.e., the electronic dissociation energy, De) are virtu-

ally identical to the MP2 CBS limits of 0.1, 0.3, 1.1 and 45.9 kcal mol−1, respectively,

obtained in an earlier study by Xantheas, Burnham and Harrison who applied a customized

extrapolation procedure to both CP corrected and un-corrected MP2/aug-cc-pVXZ energies

(X=D,T,Q,5).131 The two sets of results not only suggest that the MP2 CBS results are

converged to 0.1 kcal mol−1, but they also confirm that CP corrections need not be applied

to the MP2-R12/K2−− relative energies.

Corrections for higher-order correlation effects from MP2 and CCSD(T) computations

(δ
CCSD(T)
MP2 ) with the haTZ basis set are presented in the third column of Table 3.1. Note

that these corrections significantly increase the energies of the (H2O)6 isomers relative to

the prism. This stabilization of the prism isomer by the CCSD(T) method with respect to

MP2 relative energies is consistent with other studies of the water hexamer at the CCSD(T)

level.132, 133 All of the δ
CCSD(T)
MP2 values are positive, increasing ∆Ee in an absolute sense by

+0.19 kcal mol−1 to +0.59 kcal mol−1 and in a relative sense by 25% to 316% but having

almost no effect onDe (+0.06 kcal mol−1 or <0.02%). Although other studies of other weakly

bound complexes have observed that the δ
CCSD(T)
MP2 term is quite insensitive to BSSE,7, 8, 153

the CP corrected De of the prism isomer was computed to demonstrate this trend holds
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Table 3.1: Higher-order correlation effects, δ
CCSD(T)
MP2 , and relative electronic energies, ∆Ee,

at the MP2 and CCSD(T) CBS limits for the eight (H2O)6 structures.a

Structure ∆E
MP2/CBS
e δ

CCSD(T)
MP2 ∆E

CCSD(T)/CBS
e ∆E

CCSD(T)/haTZ
e

b
∆E

CCSD(T)/haTZ
e

c

prism 0.00 +0.00 0.00 0.00 0.00

cage 0.06 +0.19 0.25 0.21 0.28

bag 1.23 +0.39 1.62 1.57 · · ·

cyclic-chair 1.21 +0.59 1.80 1.83 1.81

book-1 0.33 +0.39 0.72 0.71 · · ·

book-2 0.64 +0.39 1.02 · · · 1.06

cyclic-boat-1 2.20 +0.59 2.79 2.84 · · ·

cyclic-boat-2 2.28 +0.57 2.85 · · · 2.99

6 monomers 45.86d +0.06 45.92d 46.71d 46.6d

a All values in kcal mol−1

b Reference 132
c Reference 133
d De of the prism

true for the water hexamer. When a CP correction is applied, the higher-order correlation

correction changes by 0.01 kcal mol−1 from +0.06 to +0.07 kcal mol−1 with the haTZ basis

set.

The CCSD(T) CBS limit relative electronic energies were obtained by applying Equation

3.1 to the data in the 2nd and 3rd columns of Table 3.1, and these results are given in the

4th column. One of the most interesting features of these data is that the near degeneracy

of the prism and cage structures at the MP2 CBS limit is lifted at the CCSD(T) CBS limit.

Although they are virtually isoenergetic at the former limit, the prism is 0.25 kcal mol−1

more stable than the cage at the CCSD(T) CBS limit.

The ∆E
CCSD(T)/CBS
e data are in nearly perfect agreement with the CCSD(T)/haTZ rel-
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ative electronic binding energies reported in References 132 and 133 (shown in the last two

columns of Table 3.1). Only for the cyclic-boat-2 structure do results differ by more than

0.05 kcal mol−1, and in that case, the deviation still does not exceed 0.14 kcal mol−1. Even

the CCSD(T) dissociation energies of the prism reported in the table differ by less than 0.8

kcal mol−1, which corresponds to a relative difference of less than 2%.

3.4.2 ZPVE Inclusive Relative Energies

As mentioned in the Introduction, the zero-point vibrational energy (ZPVE) can significantly

affect the relative energies of these isomers. The first column of data in Table 3.2 lists the

effect of ZPVE (to 2 decimal places for consistency) on the relative energies of the isomers

obtained from unscaled MP2/haTZ harmonic vibrational frequencies. These MP2/haTZ

δZPVE terms are added to the ∆E
CCSD(T)/CBS
e values from Table 3.1 to obtain ZPVE corrected

relative energies at the CCSD(T) CBS limit (∆E0), which are listed in the last column of

Table 3.2.

The δZPVE corrections are all negative, decreasing the energies of the isomers relative to

the prism structure by as little as −0.16 kcal mol−1 for the cage and by as much as −1.61 kcal

mol−1 for the cyclic-boat-2 structure. The ZPVE has a much larger absolute effect on the

dissociation energy, −13.71 kcal mol−1. Despite these significant negative corrections, the

prism remains the lowest energy isomer at the ZPVE corrected CCSD(T) CBS limit. In a

sense, the δZPVE shifts essentially reverse the effects of the δ
CCSD(T)
MP2 corrections. For example,

δ
CCSD(T)
MP2 increases the relative energy of the cage by +0.19 kcal mol−1, while δZPVE pushes it

back down by −0.16 kcal mol−1. As a result, the cage is, once again, virtually isoenergetic
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with the prism at the harmonic ZPVE corrected CCSD(T) CBS limit (∆E0 = +0.09 kcal

mol−1). The ZPVE corrections to the relative energies of the other isomers are even more

pronounced, which effectively compresses the energetic spectrum of (H2O)6 structures. The

electronic energies of the 8 isomers are separated by 2.85 kcal mol−1 at the CCSD(T) CBS

limit but only by 1.28 kcal mol−1 after MP2/haTZ harmonic ZPVE effects are included.

Table 3.2: Harmonic ZPVE corrections, δZPVE, and ZPVE corrected CCSD(T) CBS limit
relative energies, ∆E0, for the eight (H2O)6 structures.a

Structure δZPVE ∆E
CCSD(T)/CBS
0 δZPVE

b δZPVE
c δZPVE

d

prism +0.00 0.00 +0.00 +0.00 +0.00

cage −0.16 0.09 −0.35 −0.20 +1.10

bag −0.78 0.84 · · · · · · +0.49

cyclic-chair −1.29 0.51 −1.59 −1.18 +1.25

book-1 −0.51 0.21 · · · · · · +0.76

book-2 −0.54 0.48 · · · −0.58 · · ·

cyclic-boat-1 −1.51 1.28 −1.89 · · · −0.23

cyclic-boat-2 −1.61 1.24 · · · −1.49 · · ·

6 monomers −13.71 32.21e · · · −13.85 · · ·

a All values in kcal mol−1

b HF/6-311G(d, p) values from Reference 134
c MP2/aug-cc-pVDZ values from Reference 135
d MP2/haTZ values from Reference 133
e D0 of the prism

While the large amplitude vibrational motions in weakly bound, non-covalent clusters

tend to be highly anharmonic, this anharmonicity will not likely lead to qualitative changes

in relative energetics of the (H2O)6 structures examined here. Appropriate empirical scaling

factors are a popular and straightforward means to estimate the anharmonic ZPVE.154, 155 In
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this particular case, all of the harmonic δZPVE terms in Table 3.2 are negative. Consequently,

any scaling factor less than unity will stabilize the prism and increase ∆E0 of the other

isomers. Only with frequency scaling factors greater than unity could another isomer end

up with a ZPVE inclusive energy lower than that of the prism. In fact, a scaling factor

> 1.39 is required to produce an isomer with an energy that is lower than that of the prism.

(See figure in Appendix 7.2) Typical ZPVE scaling factors for MP2 harmonic vibrational

frequencies are slightly less than unity (≈ 0.95). Consequently, corrections for anharmonicity

are not likely to change the overall conclusions drawn from the ∆E0 values reported in Table

3.2. While diffusion quantum Monte Carlo (DQMC) calculations with the VRT(ASP-W)III

potential also predict that ZPVE stabilizes the cage isomer,156 the effect is an order of

magnitude larger (−1.6 kcal mol−1) than the harmonic value reported here. However, the

DQMC ZPVE corrections were obtained utilizing a 2-body (with many-body polarization

components), rigid monomer potential fit to experimental microwave and far-IR transitions

for (D2O)2, and direct comparison to our harmonic ZPVE data for fully flexible monomers

is not entirely rigorous.

The MP2/haTZ ZPVE corrections reported in the 2nd column of Table 3.2 are very

similar to those in the 4th and 5th columns from HF/6-311G(d, p) and MP2/aug-cc-pVDZ

computations, respectively.134, 135 All three sets of δZPVE data are uniformly negative, which

indicates the same overall effects from ZPVE and leads to consistent conclusions (i.e., ∆E0 <

∆Ee). These results are in stark contrast to a recent study of the (H2O)6 system where

the corresponding ∆E0 values were almost always larger ∆Ee when computed with a va-
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riety of density functional theory (DFT) techniques methods as well as the MP2 method

with the haTZ basis set.133 In attempt to resolve this discrepancy, we have also computed

ZPVE corrections to the relative energies of the (H2O)6 isomers using five of the same DFT

method/basis set combinations. These DFT δZPVE results are reported in Appendix 7.2 and

are consistent with the MP2 data from this work as well as the δZPVE values from References

134 and 135. Although scaling factors were used Reference 133 to determine the ZPVE cor-

rected relative binding energies, they cannot account for discrepancies in the sign of δZPVE

in situations where the same method and basis set have been used to compute the harmonic

vibrational frequencies (vida supra). While we can readily reproduce the electronic energies

reported in Reference 133, we have, as yet, not been able to reproduce their ZPVE corrected

data. Therefore, raw electronic and ZPVE inclusive energies are provided in the Appendix

7.2 to support the data reported here.

3.5 Conclusions

The MP2 and CCSD(T) CBS limit relative energies for 8 low-lying structures of the water

hexamer have been presented. Although the prism is the lowest-energy structure at both

limits, the energies of the other structures relative to the prism (∆Ee) increase significantly

when higher-order correlation effects are included. The δ
CCSD(T)
MP2 correction increases ∆Ee

by at least +0.19 kcal mol−1 for the cage isomer and by as much as +0.59 kcal mol−1 for the

cyclic-chair and cyclic-boat-1 structures. Only when computing De of the prism do higher-

order correlation effects have a negligible effect. The CCSD(T) electronic dissociation energy
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of the prism differs from the MP2 value by only +0.06 kcal mol−1.

Corrections for ZPVE (δZPVE) from MP2/haTZ harmonic vibrational frequencies have the

opposite sign of those for higher-order correlation effects (δ
CCSD(T)
MP2 ) and tend to be somewhat

larger. The δZPVE terms decrease ∆Ee by at least −0.16 kcal mol−1 for the cage structure

and as much as −1.61 kcal mol−1 for the cyclic-boat-2 isomer. Thus, the ZPVE effectively

compresses the energetic separation between the 8 isomers. At the CCSD(T) CBS limit, the

largest ∆Ee = +2.85 kcal mol−1 while the maximum ∆E0 = +1.28 kcal mol−1.

Despite the significant corrections from higher-order correlation effects and ZPVE, the

relative energetics of these (H2O)6 isomers are qualitatively similar at the electronic and

ZPVE corrected CCSD(T) CBS limits. The prism is consistently the lowest energy structure,

and the cage is nearly isoenergetic with the prism (∆Ee =+0.25 kcal mol−1 and ∆E0 = +0.09

kcal mol−1). The book isomers are slightly higher in energy. The bag and cyclic-chair

structures are a bit further up the energetic spectrum while the cyclic-boats are consistently

the highest-energy structures examined in this work.

Since the 1996 Nature paper by Liu, et al., it has been widely accepted that the cage

becomes the most stable structure after ZPVE effects are included.117 In contrast, this work

indicates that ZPVE corrections do not change the energetic ordering of the minima as long

as sufficiently sophisticated electronic structure techniques are employed to capture higher-

order correlation effects. In light of the data presented here, it is certainly reasonable to

expect that the prism and cage structures (and even the book-1 isomer) would be observed

in very low temperature experiments. However, one must hesitate from concluding that the
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prism, for example, is the most “stable” structure given the fleeting nature of these (H2O)6

species.157
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3.7 Note Added in Proof

During the review process, a closely related work158 was published that reports benchmark

electronic energies from diffusion Monte Carlo (DMC) computations. The DMC relative

energies of +0.84 kcal mol−1, +1.43 kcal mol−1 and +3.88 kcal mol−1 for the cage, book-1 and

cyclic-chair structures, respectively, are approximately 2 times larger than the corresponding

the ∆E
CCSD(T)/CBS
e values reported in Table 3.1. Yet, both sets of relative energies are

consistent to within the statistical errors of the DMC computations. Combining the DMC

electronic energies with our harmonic ZPVE corrections from Table 3.2 leads to the prism

being significantly more stable than the cage (0.68 kcal mol−1 versus our ∆E
CCSD(T)/CBS
0

value of 0.09 kcal mol−1).
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Chapter 4

Development of a 3-body:Many-body Integrated Fragmentation Method

for Weakly Bound Clusters and Application to Water Clusters (H2O)n

n=3-9

4.1 Abstract

A 3-body:Many-body integrated QM:QM fragmentation method for non-covalent clusters

is introduced within the ONIOM formalism. The technique captures all 1-, 2- and 3-body

interactions with a high-level electronic structure method while a less demanding low-level

method is employed to recover 4-body and higher-order interactions. When applied to more

than 40 low-lying (H2O)n isomers ranging in size from n= 3 to 10, the CCSD(T):MP2 3-

body:many-body fragmentation scheme deviates from the full CCSD(T) interaction energy

by no more than 0.07 kcal mol−1 (or 0.007 kcal mol−1 per water). The CCSD(T):MP2

procedure is also very efficient because the CCSD(T) computations only need to be performed

on subsets of the cluster containing 1, 2 or 3 fragments, which in the current context means

the largest CCSD(T) calculations are for 3 water molecules regardless of the cluster size.
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4.2 Introduction

Non-covalent, weakly interacting clusters have been and continue to be of significant inter-

est to many researchers. Because of the vast influence weak non-covalent interactions have

many phenomena, it is highly desirable to find a way to accurately predict structures, ener-

getics and chemical properties for such interactions. These interactions, which are generally

weaker than a typical chemical bond, influence many important processes such as solvation,

crystallization, absorption, bulk-phase properties. For example, hydrogen-bonding and π-

stacking interactions are responsible for the structure of the double-helix structure of DNA

and RNA.159

Water is arguably the most important solvent because of its significant role in Nature,

and water clusters are the standard model for understanding hydrogen bonding. An accurate

computational description of hydrogen bonding often requires sophisticated electronic struc-

tures methods for which computational demands scale steeply with system size and prohibit

their routine application to larger systems. In recent years, several groups have extended

the size of water clusters that can now be analyzed with these demanding model chemistries.

The N-body decomposition (NBD) method, developed by Jordan in 2005, decomposes the

interaction energy into 1, 2, · · · , N-body components and truncates the expansion to reduce

the computational costs for application to larger systems.40 In addition to a many-body

expansion, the fragment molecular orbital (FMO) method also embeds each fragment in

an electrostatic field from the whole system.30, 31, 36, 160, 161 Ab initio integrated multi-center

molecular orbital method developed by Sakai and Morita in 2005 can be used to calcu-
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late geometrical parameters, total energies, relative energies and vibrational frequencies for

large water clusters that deviate only slightly from results obtained with the full ab initio

method.162 Several other methods have also been developed for studying weakly interact-

ing (non-covalent) clusters, such as Truhlar’s electrostatically embedded many-body (EE-

MB) expansion,41, 163, 164 the elongation method,165 the systematic fragmentation method

(SFM),166 molecular fragmentation with conjugated caps (MFCC),167, 168 molecular tailoring

approach169 and many more.35, 47, 48, 170–172 Readers interested in a more detailed overview

of methods for studying large molecular systems and a thorough explanation of SFM, FMO

and EFP methods are directed to Ref. 46 and references therein.

In this paper, we first review the development of our fragmentation method for clus-

ters49, 50, 173 within the ONIOM framework of Maseras and Morokuma.174 Then we outline

the extension of this approach to a very accurate and efficient 3-body:Many-body QM:QM

implementation. Finally, the procedure is applied to a series of water clusters ranging in size

from 3 − 10 water molecules. We examine more than 40 different isomers for the clusters

some of which are separated by less than 0.2 kcal mol−1 electronically.

4.3 Theoretical Methods

For size-consistent methods, the interaction energy of a weakly bound cluster, denoted ∆E in

this work, is the energy of the complex, E[f1f2 . . . fn], relative to the energy of the isolated

fragments, f ∗
i , where n is the total number of monomers within the cluster.(An asterisk
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denotes a fragment at its optimal geometry in isolation.)

∆E = E[f1f2 . . . fn]−

n
∑

i=1

E[f ∗
i ] (4.1)

Because of the unfavorable scaling of high-level ab initio methods, which are often necessary

to reliably determine ∆E for weakly bound clusters, routine application to large clusters is

unfeasible. However, Xantheas and coworkers demonstrated for large water clusters, (up to

n = 24), CCSD(T)/aug-cc-pVTZ calculations are possible with highly scalable software and

massively parallel architectures.175 In an attempt to overcome this obstacle, approximations

are sometimes invoked. For example, the 2-body approximation (∆E2b) for weakly bound

clusters is a simple summation of all the interaction energies of each unique pair of fragments

within a cluster that is corrected for redundant 1-body terms.

∆E2b =

n
∑

i=1

n
∑

j>i

E[fifj]

−(n− 2)

n
∑

i=1

E[fi]

−

n
∑

i=1

E[f ∗
i ] (4.2)

A 2-body approximation can be very accurate when cooperative effects are relatively small

∆E. In 2005, for example, Tauer and Sherrill demonstrated that a simple 2-body approxi-

mation recovers 98% total interaction energy when applied to the the benzene tetramer.176

In this case, the 2% error arises from the neglect of 3- and 4-body effects. In general, this
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deviation from pairwise additivity is known as the non-addivity or cooperativity, which will

hereafter be denoted as δE≥3b.

∆E = ∆E2b + δE≥3b (4.3)

An analogous 3-body approximation to ∆E can be obtained from the interaction energies

of each unique triad of fragments within the cluster after correcting for redundant 1- and

2-body contributions.

∆E3b =

n
∑

i=1

n
∑

j>i

n
∑

k>j

E[fifjfk]

−(n− 3)

n
∑

i=1

n
∑

j>i

E[fifj]

+
(n− 3)(n− 2)

2

n
∑

i=1

E[fi]

−

n
∑

i=1

E[f ∗
i ] (4.4)

The multicentered (MC) approach177, 178 developed by our group for integrated computa-

tional methods allows one to recast this many-body approximation within the ONIOM for-

malism.49, 50, 173 In the initial 2-body:Many-body implementation of this integrated fragmen-

tation for non-covalent clusters a high-level electronic structure method is used to compute

up through the 2-body interactions while a low-level method recovers the higher-order inter-

actions. In practice, a low-level calculation is applied to the entire system (ELo[f1f2 . . . fn])

while high-level calculations only need to be performed for all the unique pairs and the frag-
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ments (EHi[fifj ] and EHi[fi]) within the cluster. The resulting 2-body:Many-body interaction

energy is:

∆E2bHi:Lo = ELo[f1f2 . . . fn]

+
n

∑

i=1

n
∑

j>i

[EHi[fifj]− ELo[fifj ]]

− (n− 2)

n
∑

i=1

[EHi[fi]−ELo[fi]]

−

n
∑

i=1

EHi[f
∗
i ] (4.5)

where an inclusion-exclusion principle has been applied to remove redundant contribu-

tions. More details can be found in Refs.,17349 and.50 Note that unlike the 2-body approach

(Eq. 4.2), the 2-body:many-body expression in Eq. 4.5 recovers the higher-order effects

(δE≥3b) at the low-level. Consequently, the error associated with a particular 2-body:Many-

body QM:QM procedure is the difference between the high-level and low-level non-additivity.

When a 2-body:many-body QM:QM fragmentation approach was applied to weakly bound

clusters of He, Ne, HF, and water, results showed only a 1% error when comparing interaction

energies to the high-level calculation.49

The 2-body:Many-body fragmentation method offers an accurate and efficient approach

for extending sophisciated electronic structure theory methods to larger clusters and intro-

duces errors on order of a few tenths of a kcal mol−1.49 However, greater accuracy can be

required in certain pathological cases where nearly isoenergetic isomers of a cluster may only

be separated by 0.1 kcal mol−1. Take, for example, the water hexamer where the prism and
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cage isomers are only separated electronically by 0.06 kcal mol−1 at the MP2 CBS limit.131, 179

To improve the accuracy of our QM:QM fragmentation method, we have extended the

2-body:many-body approach to a 3-body:Many-body procedure. Here the high-level method

captures the 1-, 2- and 3-body interactions with the low-level method is used to describe the

interactions of 4th order and higher.

∆E3bHi:Lo = ELo[f1f2 . . . fn]

+
n

∑

i=1

n
∑

j>i

n
∑

k>j

[EHi[fifjfk]− ELo[fifjfk]]

− (n− 3)
n

∑

i=1

n
∑

j>i

[EHi[fifj ]− ELo[fifj]]

+
(n− 2)(n− 3)

2

n
∑

i=1

[EHi[fi]− ELo[fi]]

−

n
∑

i=1

EHi[f
∗
i ] (4.6)

Again an inclusion-exclusion principle is applied to correct for redundancies from over-

lapping subsets of fragments. The resulting procedure effectively reduces the high-level

calculation on the entire cluster to a series of computations on the unique triads, pairs and

fragments in the cluster i.e., EHi[fifjfk], EHi[fifj] and EHi[fi].

4.4 Computational Methods

All structures have been optimized at the MP2 level of theory with a triple-ζ basis set, aug-

cc-pVTZ for O and cc-pVTZ for H (henceforth denoted as haTZ). Cartesian coordinates

for all (H2O)n structures were taken from Refs.,180179 and.133 Cartesian coordinates for all
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structures are provided in the Supporting Information.181 Residual Cartesian gradients of

the optimized structures reported here are less than 1 × 10−4 Eh bohr−1.

Electronic energies of all clusters and components associated with Eqs. 4.5 and 4.6

(triads, pairs and fragments) have been computed with Hartree-Fock (HF) method, second-

order Møller-Plesset perturbation theory (MP2) and the coupled cluster method CCSD(T).

All single-point energy calculations also employed the haTZ basis set. The electronic energies

have then been combined to compute QM:QM interaction energies according to both Eqs.

4.5 and 4.6 (CCSD(T):HF and CCSD(T):MP2). All coupled cluster energies were converged

at least 1 × 10 −7 Eh. The 1s-like core orbitals of the oxygen atoms were frozen for all MP2

and CCSD(T) calculations. All computations were performed with Gaussian03, Molpro,

PQS and MPQC software packages.105, 148, 149

Counterpoise (CP) corrections15, 151 for basis set superposition error (BSSE)152 were not

performed in this study. Previous studies have shown that CP corrections dramatically

increase the basis set incompleteless error (BSIE) associated with the haTZ basis set for

hydrogen bonding systems.182, 183 Furthermore, the QM:QM schemes that provide the most

accurate interaction energies without CP corrections tend to also provide the most accurate

CP corrected interaction energies.184, 185
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4.5 Results and Discussion

4.5.1 2-body:Many-body Approximation

For comparison, MP2 and CCSD(T) interaction energies computed for all water clusters

with the haTZ basis set are reported in Table 1. The last column of Table 1 reports MP2

deviations from the CCSD(T) ∆E values. In a relative sense the MP2 method is quite

accurate and never differs from the ∆E at the CCSD(T) level by more the 1% . However,

the absolute errors can exceed 0.5 kcal mol−1 which can be quite significant when the isomers

are separated by less than a few tenths of a kcal mol−1.

Table 2 reports deviations relative to the CCSD(T) interaction energies from Table 1 for

all QM:QM approaches used in this study, as well as the 2-body and 3-body approximations

with the CCSD(T) method. As expected, the performance of the 2-body approximation

(first column of data) is abysmal due to the significant cooperative effects in these systems.

The 2-body errors (i.e., δE≥3b in Eq. 4.2) grows as large 23.33 kcal mol−1 in an absolute

sense (for the Global Min isomer of the decamer) or 30% in a relative sense (for isomer C5

of the pentamer). These results are consistent with the work of Xantheas who demonstrated

that the inclusion of 3-body terms are imperative for predicting accurate interaction energies

for water clusters.186

The δE≥3b errors for the 2-body:Many-body approaches are reported in the second and

third columns of data in Table 2. With HF as a low-level calculation, the largest absolute

error is 0.15 kcal mol−1 (for isomer D2d of the octamer) and 0.5% in a relative sense (for

isomer C4h of the tetramer). The largest absoulte error for the 2-body:Many-body approach
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with MP2 as the low-level is 0.23 kcal mol−1 (for isomer S4 of the octamer and D of the water

nonamer) or in a relative sense <1% of the total interaction energy for the prism structure

of the water hexamer.

It is interesting to note that within the 2-body:Many-body fragementation scheme where

CCSD(T) is the high-level method, the low-level MP2 errors are often larger than the low-

level HF errors for the larger, 3-dimensional clusters. This result indicates that HF repro-

duces the CCSD(T) non-additivity (δE≥3b) better than MP2 for some of these systems.

Nevertheless, both the HF and MP2 errors associated with the 2-body:Many-body approach

are significantly smaller than the 2-body approximation with CCSD(T) method.
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Table 4.1: MP2 and CCSD(T) interaction energies (∆E
in kcal mol−1) obtained with the haTZ basis set for var-
ious water clusters, as well as the deviation of ∆E MP2
from ∆E CCSD(T).

∆E CCSD(T) ∆E MP2 ∆∆E MP2
(H2O)3

C1 −15.86 − 15.93 −0.07
C3 −15.04 − 15.16 −0.12
C3h −14.39 − 14.57 −0.18

(H2O)4
S4 −27.75 − 28.00 −0.26
Ci −26.82 − 27.08 −0.26
C4 −25.52 − 25.83 −0.31
C4h −24.61 − 24.97 −0.37

(H2O)5
C1 −36.38 − 36.79 −0.41
C5 −33.61 − 34.04 −0.43
C5h −32.95 − 33.43 −0.48

(H2O)6
Prism −46.71 −46.65 0.06
Cage −46.50 −46.64 −0.13
Book1 −46.00 −46.34 −0.33
Book2 −45.70 −46.04 −0.34
Bag −45.14 −45.47 −0.33
Boat1 −43.87 −44.40 −0.53
Boat2 −43.81 −44.32 −0.51
Cyclic −44.88 −45.40 −0.53

(H2O)7
A −58.23 −58.40 −0.17
B −56.49 −56.81 −0.33
C −54.43 −54.92 −0.49
D −54.39 −54.82 −0.43
E −51.77 −52.37 −0.60

(H2O)8
D2d −73.85 −74.08 −0.23
S4 −73.80 −74.05 −0.25
Ci −70.90 −71.09 −0.18
Cs −70.02 −70.21 −0.19
C2 −70.97 −71.14 −0.17
B −69.91 −70.06 −0.15
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– continued from previous page
A −69.83 −69.94 −0.12
C −69.76 −69.89 −0.13

Noncubic1 −68.98 −69.23 −0.25
Noncubic2 −68.60 −68.83 −0.24

(H2O)9
A −83.16 −83.56 −0.40
C −78.17 −78.39 −0.22
D −76.69 −76.69 0.00

(H2O)10
Global Min −94.64 −95.06 −0.42
Prism1 −94.77 −95.16 −0.23
Chair −92.82 −93.05 −0.39

Butterfly −88.62 −89.00 −0.37

4.5.2 3-body:Many-body Approximation

The performance of the CCSD(T) 3-body approximation (fourth column of data in Table

2) is dramatically better than the CCSD(T) 2-body approximation. Although, the errors

for the former are typically an order of magnitude smaller than those for the latter, the

3-body CCSD(T) errors still grow as large as 2.36 kcal mol−1 and are generally too large

to reliably discern between the most stable configurations of a cluster. The errors for the

3-body:Many-body approaches are given in the last two columns of Table 2. When HF is

employed as the low-level calculation, the largest absolute error is 0.35 kcal mol−1 for isomer

E of the water heptamer. In a relative sense, the deviations are less than 1% of the total

interaction energy. When MP2 is used as the low-level calculation, the largest absolute error

is 0.07 kcal mol−1 for the Chair isomer of the water decamer, and in a relative sense the error

is always less than 0.1% of the total interaction energy for all clusters studied. Unlike the
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2-body:Many-Body approach, MP2 consistently outperforms HF as a low-level method for

the 3-body:Many-body fragmentation techinque when CCSD(T) is the high-level method.

Errors for the CCSD(T):MP2 method are typically on the order of a few hundredths of a

kcal mol−1 while those for the CCSD(T):HF approach are on the order of a few tenths of a

kcal mol−1.

Table 4.2: Errors (in kcal mol−1 ) relative to ∆E
CCSD(T) for various 2-body and 3-body methods ob-
tained with the haTZ basis set.

2-body CCSD(T):Low 3-body CCSD(T):Low
Nonea HFb MP2c Noned HFe MP2f

(H2O)3
C1 −2.47 0.02 0.04 · · · · · · · · ·

C3 −2.33 0.06 0.03 · · · · · · · · ·

C3h −1.93 0.11 0.03 · · · · · · · · ·

(H2O)4
S4 −6.80 −0.03 0.02 −0.58 −0.09 −0.02
Ci −6.57 −0.03 0.02 −0.57 −0.09 −0.02
C4 −6.32 0.01 0.01 −0.55 −0.08 −0.02
C4h −5.64 0.12 0.01 −0.49 −0.07 −0.01

(H2O)5
C1 −10.38 −0.07 −0.03 −1.33 −0.21 −0.02
C5 −9.77 0.00 −0.03 −1.25 −0.19 −0.02
C5h −9.20 0.11 −0.02 −1.15 −0.17 −0.02

(H2O)6
Prism −9.39 0.11 0.21 −0.56 −0.05 0.00
Cage −9.60 0.10 0.18 −0.50 −0.06 0.01
Book1 −11.50 −0.07 0.03 −1.14 −0.18 −0.01
Book2 −11.14 −0.11 0.04 −1.02 −0.16 −0.01
Bag −11.55 −0.03 0.07 −1.20 −0.19 −0.01
Boat1 −13.03 −0.09 −0.05 −1.82 −0.29 −0.02
Boat2 −13.00 −0.04 −0.04 −1.80 −0.27 −0.02
Cyclic −13.62 −0.07 −0.06 −2.00 −0.31 −0.02

(H2O)7
A −12.86 0.07 0.19 −0.90 −0.11 0.01
B −13.12 0.03 0.11 −1.05 −0.15 0.01
C −14.77 −0.13 −0.02 −1.86 −0.30 −0.02
D −13.12 −0.11 0.00 −0.97 −0.13 −0.01
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E −15.83 −0.08 −0.08 −2.36 −0.35 −0.02

(H2O)8
D2d −16.01 0.15 0.21 −0.60 0.09 0.03
S4 −16.48 0.04 0.23 −0.78 −0.02 0.02
Ci −15.63 −0.04 0.21 −0.82 −0.02 0.01
Cs −15.74 −0.05 0.20 −0.86 −0.02 0.01
C2 −15.20 0.05 0.19 −0.67 0.07 0.02
B −14.89 0.01 0.19 −0.71 0.03 0.02
A −14.20 0.06 0.18 −0.56 0.09 0.02
C −14.59 −0.03 0.20 −0.69 0.00 0.02

Noncubic1 −14.88 0.13 0.19 −0.88 −0.04 0.04
Noncubic2 −14.68 0.13 0.20 −0.84 −0.03 0.04

(H2O)9
A −19.83 0.10 0.15 −1.50 −0.11 0.02
C −17.09 0.12 0.15 −0.90 −0.08 0.00
D −15.06 0.14 0.23 −0.42 0.12 0.03

(H2O)10
Global Min −23.33 −0.04 0.15 −1.99 −0.24 0.06
Prism1 −22.64 0.07 0.14 −1.72 −0.11 0.03
Chair −19.81 0.11 0.17 −0.62 0.13 0.07

Butterfly −20.54 −0.05 0.22 −1.14 −0.19 0.05
aCCSD(T) δE≥3b dCCSD(T) δE≥4b

bHF δE≥3b − CCSD(T) δE≥3b eHF δE≥4b − CCSD(T) δE≥4b

cMP2 δE≥3b − CCSD(T) δE≥3b fMP2 δE≥4b − CCSD(T) δE≥4b

4.6 Conclusions

The 2-body:Many-body integrated QM:QM fragmentation method for non-covalent clusters

has been extended to a 3-body:Many-body technique that captures the 1-, 2- and 3-body

interactions at the high-level while recovering all 4-body and higher-order interactions with

the low-level method. This new 3-body:Many-body fragmentation method improves on the

accuracy of the 2-body:Many-body approach. For the (H2O)n clusters examined in this work,
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where n= 3 − 10, the CCSD(T):MP2 3-body:Many-body fragmentation method provides

interaction energies that are nearly identical to the CCSD(T) method. Interaction energies

computed with these two approaches never differ by more than a total of 0.07 kcal mol−1

regardless of the value of n.

Comparison of the 2-body:Many-body and 3-body:Many-body approaches reveals that

HF frequently reproduces the CCSD(T) non-additivity (δE≥3b) better than MP2. The situa-

tion, however, reverses for higher-order (4-body and beyond) interactions. MP2 consistently

reproduces the CCSD(T) δE≥4b values to within a few hundredths of a kcal mol−1.

While the computational demands of the 3-body:Many-body CCSD(T):MP2 fragmenta-

tion method are more significant than the analogous 2-body:Many-body scheme, they are still

usually orders of magnitude less than the full CCSD(T) computation. Because the high-level

method is only used to compute the 1-, 2- and 3-body interactions, high-level computations

only need to be performed on subsets of the cluster that contain 1, 2 or 3 fragments. Con-

sequently, for the (H2O)n clusters examined here, the extremely accurate CCSD(T):MP2

3-body:Many-body fragmentation method does not require CCSD(T) computations on any

system larger than (H2O)3 regardless of the size of the cluster.

Analytic derviatives are being developed and implemented for these fragmentation meth-

ods to enable the calculation of excited states, optimized geometries, vibrational frequencies

and NMR chemical shifts. We are also investigating the use of spatial and energetic thresh-

olds to further improve the performance of these integrated QM:QM fragmentation methods

for non-covalent clusters.

51



4.7 Acknowledgements

We would like to acknowledge the Mississippi Center for Super Computing Research for

CPU time. We would like to thank Dr. Brian Hopkins for his helpful discussions. This work

was financially supported by the National Science Foundation (CHE-0957317 and EPS-

0903787). TJ was also supported by the National Science Foundation under award number

CHE-0911541, and by the Mildred B. Cooper Chair at the University of Arkansas. Acquisi-

tion of the Star of Arkansas supercomputer was supported in part by the National Science

Foundation under award number MRI-0722625.

52



Chapter 5

Efficient and Accurate Methods for the Geometry Optimization of Water

Clusters: Application of Analytic Gradients for the 2-body:Many-Body

QM:QM Fragmentation Method to (H2O)n, n = 3− 10

5.1 Abstract

The structures of more than 70 low-lying water clusters ranging in size from (H2O)3 to

(H2O)10 have been fully optimized with several different quantum mechanical electronic

structure methods, including second-order Møller-Plesset perturbation theory (MP2) in con-

juction with correlation consistent triple-ζ basis sets (aug-cc-pVTZ for O and cc-pVTZ for H,

abbreviated haTZ). Optimized structures obtained with less demanding computational pro-

cedures were compared to the MP2/haTZ ones using both MP2/haTZ single point energies

and the root mean square (RMS) deviations of unweighted Cartesian coordinates. Based on

these criteria, B3LYP/6-31+G(d, 2p) substantially outperforms both HF/haTZ and MP2/6-

31G*. B3LYP/6-31+G(d, 2p) structures never deviate from the MP2/haTZ geometries by

more than 0.44 kcal mol−1 on the MP2/haTZ potential energy surface, whereas the errors

associated with the HF/haTZ and MP2/6-31G* structures grow as large as 12.20 kcal mol−1

and 2.98 kcal mol−1, respectively. The most accurate results, however, were obtained with

the 2-body:Many-body QM:QM fragmentation method for weakly bound clusters, in which
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all 1- and 2-body interactions are calculated at the high-level while a low-level calculation is

performed on the entire cluster to capture the cooperative effects (non-additivity). With the

haTZ basis set, the MP2:HF 2-body:Many-body fragmentation method generates structures

that deviate from the MP2/haTZ ones by 0.01 kcal mol−1 on average and not by more than

0.03 kcal mol−1.

5.2 Introduction

Hydrogen bonding is widely studied, particularly in water, because of its key role in biological

phenomena as well as a plethora of important chemical and physical processes.122, 145, 187–191

The characterization of molecular clusters with sophisticated quantum mechanical (QM)

electronic structure techniques is often highly desirable.7–9, 59, 76, 131, 141, 142, 179, 192–196 High-

accuracy computational procedures are frequently necessary to reliably describe the proper-

ties (e.g., structures and energetics) of weakly-bound clusters. Such computations can also

help unravel the chemical physics of the non-covalent interactions that hold the clusters to-

gether. Unfortunately, the computational demands of the most reliable QM methods scale

steeply with the size of the cluster, thereby prohibiting their routine application to large

systems.

A wide variety of computational techniques have been introduced that partition a cluster

into fragments (not necessarily monomers) in an attempt to extend high-accuracy computa-

tional methods to previously inaccessible size regimes.30, 31, 35, 36, 40, 41, 46–48, 160–165, 167–172 The

integrated QM:QM fragmentation methods being developed by our group fall into this cat-
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egory, and they facilitate the computation of not only energies but also properties. In this

paper, we review the 2-body:Many-body fragmentation method and its analytic gradients.

The technique is then used to optimize the geometries of more than 70 (H2O)n clusters

where n = 3− 10. The errors associated with these 2-body:Many-body optimized structures

are assessed and compared to those obtained with 3 other relatively inexpensive electronic

structure methods.

5.3 Theoretical Background

Through careful application of the inclusion-exclusion principle, integrated computational

chemistry methods (QM:QM, QM:MM, ONIOM, etc.) have been extended from systems

with a single chemically important subset (or reaction center) to systems with an arbitrary

number of subsets that can overlap.177, 178 With this “multicentered” approach to integrated

computations, the traditional many-body energy decomposition for weakly bound clusters

has been recast49, 173 in the ONIOM formalism of Morokuma and co-workers.174 The result

is effectively a QM:QM fragmentation scheme for non-covalent clusters.

In the original 2-body:Many-body implementation,49, 173 an accurate but computation-

ally demanding high-level QM method is employed to compute the 1- and 2-body interac-

tions within a cluster while a less demanding low-level QM method is used to recover the

higher-order (≥3-body) interactions, which are also commonly referred to as the cooperative

effects or non-additive effects. Consequently, a high-level calculation on the entire cluster

[f1f2 . . . fn] can be avoided, and high-level computations only need to be performed on the
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fragments [fi] or unique pairs of fragments [fifj] in the cluster. An expression for the total

energy of the cluster can then be obtained by combining the high-level electronic energies

with low-level computations on the entire cluster as well as the fragments and pairs.

E2bHi:Lo = ELo[f1f2 . . . fn]

+

n
∑

i=1

n
∑

j>i

(EHi[fifj ]−ELo[fifj])

− (n− 2)
n

∑

i=1

(EHi[fi]− ELo[fi]) (5.1)

When an appropriate low-level method is used (i.e., one that accurately reproduced the

high-level ≥3-body effects), the method is quite accurate, and errors typically do not exceed

0.2 kcal mol−1. It is also quite efficient because the demands of the high-level computations

only increase quadratically with the size of the cluster, and the high-level computations are

ideally suited for coarse-grained parallelization. An analogous 3-body:Many-body procedure

has also been developed to examine the convergence of the series.197

∆E3bHi:Lo = ELo[f1f2 . . . fn]

+

n
∑

i=1

n
∑

j>i

n
∑

k>j

(EHi[fifjfk]−ELo[fifjfk])

− (n− 3)

n
∑

i=1

n
∑

j>i

(EHi[fifj]−ELo[fifj ])

+
(n− 2)(n− 3)

2

n
∑

i=1

(EHi[fi]− ELo[fi]) (5.2)

For the 3-body:Many-body CCSD(T):MP2 approach, errors tend to decrease by an order
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of magnitude relative to the 2-body:Many-body method, suggesting that the series quickly

converges and the error can be systematically controlled.

These QM:QM fragmentation schemes have been developed within the ONIOM frame-

work to facilitate the computation of properties, not just energies. An extremely important

feature of the expression for cluster energies in Equations 5.1 and 5.2 is that they are linear

with respect to the computed energies. Consequently for a linear operator like the gradient,

one obtains analogous expressions for the gradient by taking linear combinations of the ap-

propriate components from a series of high- and low-level gradient calculations. For example,

the 2-body:Many-body gradient can be expressed in the following manner.

∇E2bHi:Lo = ∇ELo[f1f2 . . . fn]

+
n

∑

i=1

n
∑

j>i

(∇EHi[fifj]−∇ELo[fifj ])

− (n− 2)

n
∑

i=1

(∇EHi[fi]−∇ELo[fi]) (5.3)

Evaluation of these 2-body:Many-body Cartesian gradients is fairly straightforward as

long as all gradients are rotated into the same reference frame. The high- and low-level

gradients for the fragments [fi] and pairs [fifj] in Equation 5.3 only contribute to a few

components of the composite Cartesian gradient. If atom a is contained in fragment j, then

the only non-zero contributions to the component of the Cartesian gradient along the R

57



coordinate (R = x, y, z) of atom a can be obtained with the following expression.

∂E2bHi:Lo

∂Ra
=

∂ELo[f1f2 . . . fn]

∂Ra

+
n

∑

i 6=j

(

∂EHi[fifj ]

∂Ra

−
∂ELo[fifj]

∂Ra

)

+ (n− 2)

(

∂ELo[fj]

∂Ra

−
∂EHi[fj ]

∂Ra

)

(5.4)

These analytic gradients were originally implemented in a stand-alone interface to the

MPQC ab initio software package105 and applied to the geometry optimization of 15 different

hydrogen-bonded clusters of hydrogen fluoride, water and methanol.50 In the current imple-

mentation, Cartesian gradients are computed with MPQC, rotated into a common reference

frame and combined to form a composite 2-body:Many-body gradient that is then passed to

the Gaussian03 optimizer via the “external” keyword.

5.4 Computational Methods

All water clusters were optimized with the HF and MP2 methods, the MP2:HF QM:QM

fragmentation method and the B3LYP density functional. Residual Cartesian gradients of

all optimized structures were smaller than 4.5 × 10−4 Eh bohr−1. The 6-31+G(d, 2p) basis

set was used with the B3LYP optimizations because it has been shown that this methodology

provides quite accurate structures for (H2O)6 isomers.133 All B3LYP computations used a

pruned grid, composed of 99 radial shells and 590 angular points per shell. Both HF and

MP2 optimizations were performed with a triple-ζ correlation consistent basis set, aug-cc-
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pVTZ for O and cc-pVTZ for H (henceforth denoted haTZ). MP2 optimizations were also

performed with the 6-31G* basis set, a prescription that has been used to accurately predict

the energetics of cluster formation for the same range of water clusters that are the focus

of this study.198 The QM:QM fragmentation optimizations employed MP2/haTZ as the

high-level method and HF/haTZ for the low-level calculations.

For all computations, the change in the root mean square (RMS) density between SCF

iterations was converged to at least 1 × 10−8, yielding energies to converged approximately 1

× 10−10 Eh. The 1s like core orbitals of the oxygen atoms were frozen in all MP2 calculations.

All atomic orbital basis sets employed in this work utilized spherical harmonic functions (5d,

7f ) rather than their Cartesian counterparts (6d, 10f ). MP2/haTZ single point energy

calculations were performed on all optimized structures to compare the relative energies

on the MP2/haTZ potential energy surface (PES). All calculations were performed with

Gaussian03,148 Gaussian09199 and MPQC105 software packages.

5.5 Results and discussion

Two independent means were used to compare the optimized structures obtained with the

various computational methods. The first and more straight forward comparison utilized

the minimal RMS deviation of the unweighted Cartesian coordinates optimized with the

superpose program in TINKER.200 The second metric is based on energetics. MP2/haTZ sin-

gle point energies were computed for all optimized structures. By definition, the MP2/haTZ

optimized structure corresponds to the lowest point associated with a particular minimum
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on the MP2/haTZ PES. All other optimized structures lie above that minimum. Optimiza-

tion procedures that most accurately reproduce the MP2/haTZ optimized structure will lie

closest to the bottom of the well and, therefore, also have the smallest deviation from the

MP2/haTZ//MP2/haTZ cluster energy.

All trimer, tetramer and pentamer structures are commonly studied low-lying stationary

points. Hexamer structures were taken from Reference 179. Heptamer, octamer, nonamer

and decamer structures were taken from Reference 198 with a few additional structures

taken from Reference 180. The BI2, BI3 and CH3 isomers of (H2O)7 along with DP9 of the

(H2O)10 have been omitted because they could not be located on the MP2/haTZ PES. We

note, however, that exhaustive searches were not performed because they collapse to other

structures on the PES. Because the number of possible configurations grows very quickly

with n, only structures within 5 kcal mol−1 of the lowest lying isomer were examined in this

study.

Table 5.1 contains the minimal RMS deviations of the unweighted Cartesian coordinates

for various optimized structures compared to MP2/haTZ optimized structures. The first

column of data shows the deviations associated with the HF/haTZ structures. As expected,

HF/haTZ structures have large deviations from the MP2/haTZ structures. The second

column of data in Table 5.1 reports the RMS deviations for the MP2/6-31G* optimized

structures. Overall, MP2/6-31G* has improved accuracy compared to HF/haTZ methodol-

ogy. Occassionally however, the MP2/6-31G* RMS values exceed those for the HF/haTZ

structures. The values in the last two columns of Table 5.1 are appreciably smaller, indicating
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that the B3LYP/6-31+G(d, 2p) and MP2/haTZ:HF/haTZ optimized structures deviate only

slightly from the MP2/haTZ ones. The 2-body:Many-body approach consistently reproduces

the MP2/haTZ structures more accurately than any other procedure.
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Table 5.1: RMS deviations (in Å) for optimized struc-
tures relative to the MP2/haTZ optimized structures.

Method HF MP2 B3LYP MP2:HF
Basis Set haTZ 6-31G* 6-31+G(d, 2p) haTZ
(H2O)3
C1 0.121 0.127 0.010 0.004
C3 0.160 0.186 0.012 0.004
C3h 0.083 0.014 0.009 0.002
(H2O)4
S4 0.131 0.059 0.017 0.006
Ci 0.146 0.093 0.010 0.007
C4 0.204 0.150 0.010 0.007
C4h 0.095 0.019 0.012 0.003
(H2O)5
C1 0.160 0.126 0.041 0.013
C5 0.243 0.136 0.014 0.011
C5h 0.113 0.025 0.018 0.006
(H2O)6
prism 0.147 0.081 0.031 0.011
cage 0.180 0.115 0.040 0.008
Book 1 0.203 0.076 0.020 0.008
Book 2 0.262 a 0.081 0.017
Bag 0.192 b 0.055 0.010
Boat 1 0.297 0.332 0.078 0.038
Boat 2 0.304 0.280 0.080 0.015
Cyclic 0.154 0.134 0.017 0.012
(H2O)7
A 0.173 0.103 0.036 0.007
B 0.196 0.399 0.039 0.009
C 0.274 0.330 0.046 0.012
D 0.328 0.255 0.048 0.024
PR2 0.178 0.131 0.047 0.009
PR3 0.217 0.145 0.036 0.038
CA1 0.242 0.010 0.029 0.010
CA2 0.386 0.174 0.025 0.011
CH1 0.292 0.320 0.101 0.019
BI1 0.465 0.280 0.020 0.015
CH2 0.235 0.294 0.043 0.015
(H2O)8
C1 a 0.166 0.073 0.029 0.010
C1 b 0.167 0.068 0.030 0.009
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C1 c 0.173 0.070 0.029 0.007
C2 0.186 0.021 0.050 0.006
Ci 0.200 0.050 0.031 0.004
Cs 0.179 0.076 0.032 0.007
D2d 0.164 0.068 0.024 0.009
Noncubic 1 0.272 0.308 0.184 0.013
S4 0.165 0.069 0.026 0.008
(H2O)9
D2dDDh 0.184 0.091 0.025 0.009
S4Dah 1 0.185 0.092 0.024 0.008
S4Dah 2 0.192 0.107 0.025 0.010
S4DDh 1 0.184 0.103 0.026 0.010
S4DDh 2 0.187 0.101 0.025 0.008
D2dDah 0.183 0.102 0.022 0.007
S4Danh 1 0.185 0.125 0.023 0.008
S4Danh 2 0.187 0.089 0.024 0.010
(H2O)10
PP1 c 0.073 0.029 0.013
PP2 0.185 0.076 0.026 0.007
PP3 0.186 0.087 0.027 0.021
PP4 0.191 0.084 0.028 0.007
PP5 0.185 0.086 0.026 0.009
OB1 0.200 0.096 0.026 0.011
OB2 0.202 0.094 0.028 0.008
OB3 0.201 0.089 0.028 0.010
DP1 d 0.102 0.028 0.008
OB4 0.202 0.083 0.034 0.015
OB5 0.200 0.203 0.023 0.012
DP2 0.190 0.109 0.033 0.008
OB6 0.204 0.106 0.037 0.017
OB7 0.205 0.070 0.033 0.016
OB8 0.205 0.073 0.032 0.014
DP3 0.204 0.203 0.060 0.010
DP4 0.210 0.081 0.102 0.205
DP5 0.204 0.089 0.050 0.014
DP6 0.198 0.199 0.022 0.009
OB9 0.220 0.221 0.031 0.012
DP7 0.225 0.143 0.032 0.011
DP8 0.208 0.120 0.052 0.013
OB10 0.199 0.318 0.030 0.006
OB11 0.284 0.279 0.043 0.018
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DP10 0.210 0.103 0.065 0.022
DP11 0.212 0.118 0.026 0.014
C1 0.233 0.100 0.035 0.012
C2 0.199 0.101 0.033 0.024
C3 0.222 0.122 0.039 0.020

a Collapsed to prism structure.
b Not located on the MP2/6-31G* PES.
c Not located on the HF/haTZ PES.
d Collapsed to DP2 structure.
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Table 5.2 summarizes the results of Table 5.1 with the average and maximum RMS

deviations associated with each method for each value of n. The second column lists the

number of isomers used to compute the average (unless otherwise noted) . For example,

the largest RMS deviation between the HF/haTZ and MP2/haTZ structures is 0.465 Å (for

isomer BI1 of the water heptamer). In general, the average and maxium RMS deviations

of the HF/haTZ and MP2/6-31G* approaches are comparable, with the later exhibiting

slightly better performance overall. The average values are roughly 1 order of magnitude

smaller for the B3LYP/6-31+G(d, 2p) optimized structures. The last two columns of Table

5.2 list the average and maximum RMS deviations associated with the 2-body:Many-body

fragmentation method employing MP2/haTZ for the high-level calculation and HF/haTZ for

the low-level calculations. Regardless of the size of the cluster, this QM:QM fragmentation

procedure yields the smallest average errors relative to the MP2/haTZ optimized structures.

In fact the RMS deviations never exceed 0.038 Å.
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Table 5.2: Average and maximum RMS deviations (in Å) for various optimized structures
relative to the MP2/haTZ optimized structures for various (H2O)n clusters with n=3-10.

n # HF/haTZ MP2/6-31G* B3LYP/6-31+G(d, 2p) MP2:HF/haTZ

Avg Max Avg Max Avg Max Avg Max

3 3 0.121 0.160 0.109 0.186 0.011 0.012 0.003 0.004

4 4 0.144 0.204 0.080 0.150 0.012 0.017 0.006 0.007

5 3 0.137 0.243 0.096 0.136 0.024 0.041 0.010 0.013

6 8 0.218 0.304 0.170a 0.332a 0.050 0.081 0.015 0.038

7 11 0.272 0.465 0.230 0.399 0.043 0.101 0.015 0.038

8 9 0.186 0.272 0.089 0.308 0.048 0.184 0.008 0.013

9 8 0.186 0.192 0.101 0.125 0.024 0.026 0.009 0.010

10 29 0.207b 0.284 0.125 0.318 0.037 0.102 0.013 0.025

aExcludes the bag and book 2 isomers.
bExcludes the PP1 and DP1 isomers.

Table 5.3 is similar to Table 5.1, but it reports energetic, rather than structural, devi-

ations from the MP2/haTZ optimized structures (i.e., from the MP2/haTZ//MP2/haTZ

energies). For example, the first column of data reports the MP2/haTZ//HF/haTZ errors

associated with the total cluster energy compared to the MP2/haTZ//MP2/haTZ energies.

The MP2/haTZ//HF/haTZ errors are always the largest, which is entirely consistent with

the RMS deviations. In contrast, the MP2/haTZ//MP2/6-31G* errors are much smaller de-

spite having RMS deviations comparable to the HF/haTZ optimized structures. The errors

associated with the B3LYP/6-31+G(d, 2p) structures are listed in the penultimate column,

and they are significantly smaller than the errors associated with the HF/haTZ and MP2/6-

31G* optimized structures. The last column of data shows the energetic errors associated

with the 2-body:Many-body scheme. Structures optimized with the MP2:HF QM:QM frag-
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mentation method and the haTZ basis set are typically one or two hundredths of a kcal

mol−1 above the MP2/haTZ optimized structures.
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Table 5.3: Errors associated with MP2/haTZ energies (in
kcal mol−1) performed on various optimized structures
relative to the MP2/haTZ//MP2/haTZ values.

Method HF MP2 B3LYP MP2:HF
Basis Set haTZ 6-31G* 6-31+G(d, 2p) haTZ
(H2O)3
C1 2.57 0.74 0.10 0.00
C3 2.59 0.97 0.11 0.00
C3h 2.27 0.25 0.10 0.00
(H2O)4
S4 3.82 0.71 0.14 0.01
Ci 3.83 0.78 0.15 0.01
C4 3.83 1.05 0.16 0.00
C4h 3.25 0.37 0.16 0.00
(H2O)5
C1 4.81 0.87 0.19 0.01
C5 4.69 1.07 0.21 0.01
C5h 4.16 0.51 0.22 0.00
(H2O)6
Prism 6.47 0.79 0.25 0.01
Cage 6.50 0.98 0.26 0.01
Book 1 6.18 1.15 0.23 0.01
Book 2 6.25 a 0.25 0.01
Bag 6.32 b 0.24 0.01
Boat 1 5.72 1.34 0.25 0.01
Boat 2 5.64 1.22 0.25 0.01
Cyclic 5.67 1.12 0.23 0.01
(H2O)7
A 7.77 1.14 0.30 0.01
B 7.64 2.36 0.29 0.01
C 7.21 0.28 0.28 0.01
D 6.89 1.58 0.25 0.01
PR2 7.82 1.02 0.31 0.01
PR3 7.21 1.07 0.30 0.01
CA1 7.07 1.09 0.28 0.01
CA2 6.53 1.26 0.28 0.01
CH1 7.20 1.21 0.28 0.01
BI1 6.82 1.44 0.25 0.01
CH2 7.20 2.20 0.27 0.01
(H2O)8
C1 a 9.29 1.05 0.34 0.01
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C1 b 9.36 1.03 0.35 0.02
C1 c 9.32 1.03 0.35 0.01
C2 9.65 0.78 0.39 0.01
Ci 9.73 0.86 0.35 0.01
Cs 9.53 1.01 0.35 0.02
D2d 9.47 1.17 0.35 0.02
Noncubic 1 9.13 1.83 0.41 0.02
S4 9.50 1.19 0.36 0.02
(H2O)9
D2dDDh 10.57 1.31 0.38 0.02
S4Dah 1 10.69 1.30 0.38 0.02
S4Dah 2 10.66 1.35 0.38 0.02
S4DDh 1 10.61 1.35 0.39 0.02
S4DDh 2 10.60 1.36 0.39 0.02
D2dDah 10.65 1.34 0.37 0.02
S4Danh 1 10.68 1.39 0.38 0.02
S4Danh 2 10.66 1.35 0.38 0.02
(H2O)10
PP1 c 1.30 0.38 0.00
PP2 11.99 1.35 0.43 0.02
PP3 12.03 1.37 0.41 0.01
PP4 12.20 1.36 0.40 0.02
PP5 12.03 1.41 0.43 0.02
OB1 11.91 1.45 0.43 0.02
OB2 11.94 1.47 0.44 0.01
OB3 11.94 1.48 0.44 0.02
DP1 d 1.42 0.41 0.02
OB4 11.93 1.42 0.42 0.02
OB5 11.94 1.98 0.43 0.02
DP2 11.81 1.50 0.43 0.02
OB6 11.95 1.51 0.43 0.02
OB7 11.95 1.36 0.43 0.02
OB8 11.94 1.38 0.42 0.02
DP3 11.85 1.48 0.37 0.02
DP4 11.72 1.44 0.29 0.01
DP5 11.69 1.53 0.37 0.02
OB9 12.03 1.90 0.43 0.02
DP6 11.87 1.71 0.41 0.02
DP7 11.33 1.65 0.41 0.02
DP8 11.74 1.82 0.07 0.02
OB10 11.92 2.98 0.42 0.01
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OB11 11.55 1.92 0.33 0.02
DP10 11.75 1.63 0.41 0.01
DP11 11.83 1.59 0.41 0.03
C1 11.84 1.48 0.40 0.02
C2 11.49 1.55 0.41 0.02
C3 11.63 1.42 0.41 0.02

a Collapsed to prism structure.
b Not located on the MP2/6-31G* PES.
c Not located on the HF/haTZ PES.
d Collapsed to DP2 structure.

Again, average and maximum errors are tabulated to help summarize all of the data in

Table 5.3. For example, the data in Table 5.4 shows that the errors associated with the

HF/haTZ structures optimized structures increase with the size of the cluster and grow

as large as 12.20 kcal mol−1 (for the PP4 isomer of the water decamer). The energetic

errors associated with the MP2/6-31G* optimized structures also tend to increase with the

value of n, but do not exceed 2.98 kcal mol−1 (for isomer OB10 of the water decamer).

The combination of the B3LYP density functional with the 6-31+G(d, 2p) basis set appears

to be a good way to quickly and reliably identify low-lying structures of (H2O)n clusters.

The largest MP2/haTZ//B3LYP/6-31+G(d, 2p) error is only 0.44 kcal mol−1 (for both OB2

and OB3 structures of the water decamer). The 2-body:Many-body integrated fragmentation

technique for non-covalent clusters provides even more accurate results. The errors associated

with the structures optimized with the MP2:HF method and the haTZ basis set never exceed

0.03 kcal mol−1 (for DP11 isomer of the water decamer). The average error for the MP2:HF

fragmentation method is 0.01 kcal mol−1 for all of 75 water clusters examined. These 2-

body:Many-body results are particularly encouraging for certain pathological cases where
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water clusters are virtually isoenergetic and separated by less than 0.10 kcal mol−1. For

example, the MP2 complete basis set limit interaction energies for the prism and cage isomers

of the water hexamer are separated electronically by only 0.06 kcal mol−1.131, 179
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Table 5.4: Average and maximum errors for MP2/haTZ energies (in kcal mol−1) performed
on various structures relative to MP2/haTZ//MP2/haTZ values for (H2O)n clusters with
n=3-10.

n # HF/haTZ MP2/6-31G* B3LYP/6-31+G(d, 2p) MP2:HF/haTZ

Avg Max Avg Max Avg Max Avg Max

3 3 2.48 2.59 0.65 0.97 0.10 0.11 0.00 0.00

4 4 3.68 3.83 0.73 1.05 0.15 0.16 0.00 0.01

5 3 4.49 4.81 0.81 1.07 0.21 0.21 0.01 0.01

6 8 6.09 6.50 1.10a 1.34a 0.24 0.26 0.01 0.01

7 11 7.23 7.82 1.47 2.36 0.28 0.31 0.01 0.02

8 9 9.44 9.73 1.11 1.83 0.36 0.41 0.01 0.02

9 8 10.64 10.69 1.34 1.39 0.38 0.39 0.02 0.02

10 29 11.84b 12.20 1.58 2.98 0.40 0.44 0.02 0.03

aExcludes the bag and book 2 isomers.
bExcludes the PP1 and DP1 isomers.

5.6 Conclusions

Analytic gradient techniques for the 2-body:Many-body fragmentation method for weakly

bound clusters were used to optimize the geometries of more than 70 water clusters ranging

in size from (H2O)3 to (H2O)10. In this application, MP2/haTZ was used as the high-level

method to compute the 1- and 2- body interactions while HF/haTZ was employed as the

low-level method to recover the higher-order (≥3-body) interactions. This procedure proved

to be quite efficient because the largest MP2 computations associated with the MP2:HF cal-

culations involve a pair water of molecules (i.e., a dimer), regardless of the size of the cluster.

Consequently, the HF/haTZ computation on the entire cluster was always the rate deter-

mining step in these 2-body:Many-body fragmentation calculations. Structures optimized

with this QM:QM fragmentation procedure were compared to those obtained from conven-
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tional MP2/haTZ optimizations using two different metrics, the minimum RMS deviation

of unweighted Cartesian coordinates and the MP2/haTZ energy. The 2-body:Many-body

optimized structures were virtually identical to those from the MP2/haTZ optimizations.

On average, the structures optimized with these two methods were within 0.01 kcal mol−1

of each other on the MP2/haTZ PES, and they never differed by more than 0.03 kcal mol−1.

For comparison, HF/haTZ and MP2/6-31G* optimized structures deviated by as much as

12.20 and 2.98 kcal mol−1, respectively, from the MP2/haTZ structures. This work also

demonstrated that the B3LYP/6-31+G(d, 2p) structures did not differ from the MP2/haTZ

ones by more than 0.44 kcal mol−1 on the MP2/haTZ PES.
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Chapter 6

Conclusions

Detailed conclusions for all of this work are presented in the previous chapters. However,

some key results are worth repeating here. The research presented here has:

1. investigated the effect of the inclusion of heteroatoms within parallel-slipped π · · ·π

dimers and showed that the addition of nitrogen atoms to aromatic systems dramati-

cally increases the interaction energy;

2. showed that mixed dimers have appreciably larger interaction energies when compared

to their homogenous counterparts;

3. generated CCSD(T) complete basis set limit interaction energies for low-lying struc-

tures of the water hexamer and concluded that the inclusion of zero point vibrational

energy does not change the relative stabilities of the cage and prism isomers as previ-

ously thought;

4. introduced and calibrated a 3-body:Many-body fragmentation approach for determin-

ing CCSD(T) quality interaction energies for weakly bound clusters;

5. demonstrated that with proper selections of a high- and low-level method, the 3-

body:Many-body fragmentation method can reliably and efficiently reproduce CCSD(T)
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benchmark interaction energies within a few kcal mol−1; and,

6. applied the 2-body:Many-body fragementation method to computing Cartesian gra-

dients for low-lying structures of water clusters n=3-10 which produced structures

viturally identical to the target MP2/haTZ structures.
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7.1 Structure of various water clusters (H2O)n n=3-10

(H2O)n Clusters, n=3-10]

(a) (H2O)3 isomers

(b) (H2O)4 isomers

(c) (H2O)5 isomers
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(d) (H2O)6 isomers

99



(e) (H2O)7 isomers
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(f) (H2O)7 isomers continued

(g) (H2O)8 isomers
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(h) (H2O)8 isomers continued
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(i) (H2O)9 isomers
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(j) (H2O)10 isomers
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(k) (H2O)10 isomers continued
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(l) (H2O)10 isomers continued
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7.2 Supporting Information for CCSD(T) Complete Basis Set Limit Rela-

tive Energies for Low-Lying Water Hexamer Structures
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Figure S0: Effect of scaling factors for MP2/haTZ harmonic vibrational frequencies on the
relative energies of the water hexamer isomers. All relative energies increase with respect to
the prism for scaling factors less than 1. Only with a scaling factor larger than 1.39 does
another structure (cyclic-chair) become more stable than the prism. The relative stability
cyclic-chair and book-2 structures inverts at a value of 1.04.

108



Table S1: Harmonic ZPVE corrections (δZPVE in kcal mol−1) computed with various methods
and basis sets.

Method MP2 BLYP B3LYP BLYP B3LYP PBE

Basis haTZ 6-31+G(d, p) 6-31+G(d, 2p) MG3S MG3S MG3S

prism +0.00 +0.00 +0.00 +0.00 +0.00 +0.00

cage −0.16 −0.13 −0.14 −0.02 −0.16 −0.08

bag −0.78 −0.67 −0.62 −0.60 −0.69 −0.60

cyclic-ring −1.29 −1.11 −1.04 −0.92 −1.14 −0.93

book-1 −0.51 −0.40 −0.38 −0.32 −0.45 −0.34

book-2 −0.54 −0.37 −0.30 −0.33 −0.47 −0.32

cyclic-boat-1 −1.51 −1.27 −1.29 −1.10 −1.28 −1.10

cyclic-boat-2 −1.61 −1.36 −1.41 −1.18 −1.46 −1.11

6 monomers −13.71 −14.21 −14.07 −13.35 −13.82 −13.42
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Table S2: Total electronic energies and sum of electronic and zero-point vibrational energies
(Ee and E+ZPVE, respectively, in Eh) from the MP2/haTZ computations as well as the
corresponding relative energies (∆Ee and ∆E+ZPVE in kcal mol−1).

Structure E
MP2/haTZ
e ∆E

MP2/haTZ
e E

MP2/haTZ
+ZPVE ∆E

MP2/haTZ
+ZPVE δZPVE

prism −458.042669 +0.00 −457.892242 +0.00 +0.00

cage −458.042650 −0.15 −457.892475 +0.01 −0.16

bag −458.040790 +0.40 −457.891601 +1.18 −0.78

cyclic-ring −458.040683 −0.05 −457.892314 +1.25 −1.29

book-1 −458.042171 −0.19 −457.892550 +0.31 −0.51

book-2 −458.041693 +0.07 −457.892123 +0.61 −0.54

cyclic-boat-1 −458.039088 +0.74 −457.891068 +2.25 −1.51

6yclic-boat-2 −458.038958 +0.72 −457.891092 +2.33 −1.61

6 monomers −457.968327 +32.94 −457.839750 +46.65 −13.71
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