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ABSTRACT 

Sigma receptors are a well-defined unique class of receptors and are highly expressed in 

the central nervous system and also widely distributed in peripheral organs and tissues. There are 

two subtypes of sigma receptors: sigma-1 and sigma-2. These receptors are thought to be 

associated with functions and disorders such as inflammation, depression, anxiety, Alzheimer’s 

disease, epilepsy and drug abuse. The sigma-1 receptor has been demonstrated to be involved in 

acute and chronic effects of cocaine and methamphetamine toxicities. However, the role of 

sigma-2 receptors is less clear due to the lack of availability of detailed protein structural 

information and truly selective sigma-2 ligands, which hindered the pharmacological 

characterization of the sigma-2 subtype. In fact, the sigma-2 receptor has not yet been cloned. 

Several reports indicated that the activation of sigma-2 receptor also induces growth arrest and 

cell death in various tumor cell lines. This gives sigma-2 ligands possible application as effective 

agents for the treatment of cancer. In this regard, searching for selective, high affinity sigma-2 

ligands led to the design and synthesis a series of isothiocyanate compounds derived from a 

selective sigma-2 compounds developed in our laboratory as selective irreversible sigma-2 

ligands. Also, in the search for an effective drug for the treatment of cocaine abuse and 

addiction, and based on our previous work on CM699 that showed its ability to attenuate the 

cocaine self-administration. We have found that stimulant self-administration (cocaine or 

methamphetamine) was blocked by dual inhibition of the DAT and sigma-receptors However, 

CM699 had short half lives in Human and Rat liver microsomes assays (in vitro), and in rat in 
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vivo assay. Although CM699 had a half-life of 4.4 hr in rat, a compound with utility as a 

treatment for stimulant abuse will need a longer half-life, achieved either by structural change or 

by formulation. In this regard, we have made more analogs of CM699 in order to enhance 

blockade of cocaine self-administration and metabolic stability. Additionally, in an effort to 

continue to develop highly selective sigma ligands, we have synthesized a novel series of 

benzofuran-based ligands, and more analogs of the highly selective sigma-1, CM304. 
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1. Sigma receptors 
 
1.1 History 

Sigma receptors are a well-defined unique class of receptors, distinct from opioid 

receptors and phencyclidine binding sites. These receptors are thought to be associated with 

functions and disorders such as inflammation, depression, anxiety, Alzheimer’s disease, 

epilepsy, drug abuse and cancer.  In the beginning, Martin and colleagues1 described sigma 

receptors as a subtype of opioid receptors.  This classification was based on the psychotomimetic 

effects of various opioid agonists, including the prototype agonist, (±)-SKF 10,047 (N-

allylnormetazocine) and related benzomorphans [Table 1.1]. However, in a later study, the (+)-

isomer was found to produce actions that were insensitive to opiate antagonists,2, 3 while the 

observed pharmacology with the (-)-isomer was blocked by opiate antagonists such as 

naltrexone.4, 5 The name sigma was originated from the first letter ‘S’ of  the SKF 10,047, which 

was later found to be a nonselective ligand that binds to multiple receptor proteins.1  

TABLE 1.1: SELECTIVITY OF DIFFERENT ENANTIOMERS OF SKF-10,047 TO RECEPTOR SITES.  

Characteristics (±)-SKF-10,047 (-)-SKF-10,047 (+)-SKF-10,047 

Structure 

   

Affects 
Opioid (µ, κ) 
receptor,  NMDA 
receptor (PCP site), 
σ receptors 

Opioid (µ, κ) 
receptor 

NMDA receptor 
(PCP site), σ 
receptor 

  
  

Despite the early blurring history of sigma receptors, they have long been known to be 

involved in schizophrenia, seizures, anxiety, neuropsychiatric disorders and the psycho-stimulant 

N

HO

N

HO

N

HO



 3 

effects of drugs of abuse. Based on ligand selectivity in receptor-binding assays and tissue 

distribution of compound accumulation [Table 1.2], sigma receptors are hypothesized to exist in 

at least two subtypes, described as the sigma-1 and sigma-2 receptors.6-9  

 
TABLE 1.2. CLASSIFICATION OF SIGMA RECEPTORS. 
Feature  SR1 receptor  SR2 receptor 
Size  
 25–29 kDa  18–22 kDa 

High tissue 
expression 

Brain, heart, liver, spleen, 
gastrointestinal tract 

Brain, liver, 
gastrointestinal tract 

Relative affinity of 
(+) -
benzomorphans  

High to moderate  Low 

 

1.2. Subtypes of sigma receptors 

The sigma-1 receptor was first cloned in 199610 since then, it has been studied in greater 

detail because of the defined amino acid sequence and availability of selective sigma-1 ligands. 

The sigma-2 receptor has not yet been cloned due to the unavailability of detailed protein 

structural information and truly selective sigma-2 ligands.11,12  As a matter of fact,  sigma-2 

receptors are localized in the lipid rafts that hindered the detergent-extraction process without 

affecting the structural and functional integrity of this protein.13 Also, the amount of sigma-2 

protein available in the prepared membranes from mammalian tissues is immensely low 

compared to the other proteins, which is about 0.1 µg/mg, as indicated by Ruoho et al.in the 

recent publication.14 

Nevertheless, recently the sigma-2 receptor has been identified as a putative progesterone 

receptor membrane component 1 (PGRMC1) although there is still a debate in the field that this 

is the sigma-2 receptor.15   
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 Most recently, Ruoho et al. published a work that refuting the idea of that sigma-2 

receptor and progesterone receptor membrane component 1 (PGRMC1) are co-localized and 

have the same binding site.14 The results presented in their study, concluded that both sigma-2 

and PGRMC1 proteins are derived from different genes as well as the PGRMC1 has no high 

affinity for DTG and haloperidol binding sites, indicating that both proteins are not identical.14 

1.2.1. Sigma-1 Subtype 
 

The sigma-1 subtype is well characterized and cloned from a number of different species 

including human, pig, rat, and mouse.10,16,17 It is comprised of 223 amino acids that share more 

than 90% identity across rodents and humans and less than 30% homology with other 

mammalian proteins. However, it is homologous in structure to fungal proteins involved in sterol 

biosynthesis, including yeast sterol isomerase. However, sigma-1 receptors do not possess sterol 

isomerase activity.10 They are hypothesized to be composed of two transmembrane (TM) -

spanning regions with a C-terminal region enhanced alpha helices and beta sheets, which are 

believed to be essential for protein-protein interactions.16,17 The sigma-1 receptor ligand binding 

domain has also been identified with the help of protein purification18 and photoaffinity labeling 

studies.19-23 Sigma-1 receptor (SR1) protein consists of three hydrophobic domains and two of 

these appear to be transmembrane domains. The steroid binding domain like I (SBDLI), steroid 

binding domain like II (SBDLII) and N-terminal region of transmembrane domain I (TM1) form 

a portion of the ligand binding site [Fig. 1.1].24-27 
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Figure 1.1. Sigma-1 receptor structural representation of the transmembrane domains (TMDI and TMDII) and 
steroid binding domain-like regions (SBDL-I and SBDL-II). [Adapted from ref. 27] 

 
 

The sigma-1 receptor has been recognized as a chaperon protein located at the 

endoplasmic reticulum (ER) that modulates calcium signaling through inositol trisphosphate 

(IP3). A direct protein-protein interaction with another ER chaperone regulates the chaperone 

activity of sigma-1 receptor binding immunoglobulin protein/78 kDa glucose-regulated protein 

(BiP/GRP-78).29  Sigma-1 receptors appear to translocate to the proximity of post-synaptic 

density and regulate various proteins through protein-protein interactions, for example; with 

GPCRs (e.g., µ opioid and dopamine D1), and ion channels (e.g., potassium, sodium, and 

NMDA).29 To date, no endogenous ligands for either subtype have been identified with certainty. 

Nevertheless, some neurosteroids, such as progesterone, pregnenolone, and testosterone 

displayed low affinities toward sigma-1 receptor, there has been no evidence to indicate that 

these neurosteroids play any physiological roles through interaction with this receptor.22,31,2 

Recently, it was proposed that the N,N-dimethyltryptamine (DMT), (1) [Tab. 1.3][Fig. 1.2] acts 

as an endogenous ligand that binds to sigma-1 receptors and inhibits voltage-gated sodium ion 

[Na+] channels in both heterologous cells and native cardiac myocytes that express sigma-1 
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N
H

N CH3
H3C

receptors. Moreover, it was found that DMT has affinity for the sigma-1 receptors falls in the µM 

range and it is comparable to the affinity of progesterone for the same sigma receptors subtype.31 

TABLE 1.3. BINDING AFFINITIES OF SOME SR ENDOGENOUS LIGANDS. 

Endogenous Ligands Affinity [Ki, nM] 
Sigma-1 receptors Sigma-2 receptors 

DMT 14750 21710 

Progesterone 130 NA 

 

Several studies indicate that sigma-1 receptors have numerous implications in CNS 

functions and conditions including learning and memory (such as depression, anxiety, 

schizophrenia, psychosis, drug addiction, pain, Alzheimer’s disease, Parkinson’s disease, 

amyotrophic lateral sclerosis (ALS), retinal diseases, and stroke)32-34  in addition to their role in 

cancer,35,36 cardiovascular diseases,18 inflammatory and autoimmune diseases.19-21  

 

 

 

   

Figure 1.2: The proposed endogenous sigma-1 ligand N,N-dimethyltryptamine. 

1.2.2. Sigma-2 Subtype 
 
Not much is known about sigma-2 receptors structurally and pharmacologically due to 

the lack of availability of detailed protein structural information and a truly selective ligand for 

this subtype. Early photoaffinity-labeling studies have confirmed that the sigma-2 receptor (18–

22 kDa) is smaller in size than the sigma-1 subtype (25–29 kDa).22,23 Although sigma-2 receptors 

have been found both in the CNS and in some periphery tissues, such as liver, GI tract, the exact 

1, DMT (N,N-dimethyltryptamine)  
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distribution of sigma-2 receptor is not very clear.6  A very recent study has suggested that sigma-

2 receptors are a progesterone receptor membrane component 1 (PGRMC1) or localized within 

it; however, this protein (22 to 28 kDa) is larger than the 18-22 kDa protein mentioned above.15 

Moreover, several studies indicated that sigma-2 receptors are enriched in lipid rafts where they 

are involved in cholesterol synthesis and calcium signaling through sphingolipid products.37,38 

Sigma-2 receptors have been located in the various components of the cell such as plasma 

membrane, mitochondria, lysosomes, and ER, in addition to their association with cytochrome 

P450 proteins and their interactions, which are still unclear and under investigation. The sigma-2 

receptor is highly expressed in various rapidly proliferating cancer cells and regarded as a cancer 

cell biomarker. Selective sigma-2 ligands have been demonstrated to particularly label the tumor 

locations, inhibit tumor growth, and induce cancer cells to promote apoptosis39. In addition to the 

above mention facts, several reported studies have demonstrated that the sigma-2 receptors have 

many implications in CNS disorders such as depression and drug addiction as well as cancer, and 

inflammatory and autoimmune diseases.19,40,42  However, the lack of structural information of 

sigma-2 receptor has severely hindered the understanding of its signaling pathways, its 

physiological roles, and the development of truly selective sigma-2 ligands.  

1.3. Anatomical distribution of sigma receptors  

Sigma receptors are widely distributed throughout the body. They are highly expressed in 

the central nervous system and also widely distributed in peripheral organs and tissues. 

1.3.1 Nervous system 
 

Sigma receptors are highly concentrated in the central nervous system, where their 

actions have been extensively studied.43 The highest concentrations of sigma receptors in the 

brain are found in brainstem motor regions, with significant densities also in limbic structures, 
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sensory areas, and areas associated with endocrine functions.44-46 Early functional studies was 

confirmed the role of sigma receptors in motor functions consistent with the enrichment of 

sigma-2 receptors in the substantia nigra.48 Subsequent anatomical and functional studies have 

confirmed the involvement of both sigma-1 and sigma-2 subtypes in motor function.44,45,47 

Sigma-1 receptors are predominantly distributed in the areas that are involved in memory, 

emotions, sensory and motor functions. They are concentrated in the hippocampus, 

hypothalamus, cerebral cortex, and various motor and cranial nuclei as well as dorsal horn in the 

spinal cord.43-52  

In a collaborative work with McCurdy’s lab, James and collogues radiolabelled the 

highly selective sgma-1 ligand, CM304, with  fluorine-18 to trace the radiotracer [18F]-CM304 in 

living subjects.53  The in vivo kinetics of [18F]-CM304 were evaluated in mice using  small 

animal PET. In which, brain PET scanning began 1 min prior to administration  of [18F]-CM304 

and stopped 60 min later. It was found that the [18F]-CM304 reached it’s maximum uptake in 

mouse brain within the first few minutes of imaging and gradually washed out to 65% of its 

maximum at 60 minutes after the administration as can be seen in the baseline time-activity 

curve illustrated in
 
Figure 1.3.  

 

Figure 1.3: Time-activity curves (TACs) from mouse positron emission tomography studies. TACs represent 

accumulation of [18F]CM304 in whole mouse brain as a function of time for baseline, preblock with haloperidol, 

preblock with CM304, and preblock with [18F]CM304.53 
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Subsequently, PET imaging in mice provided visual evidence that [18F]CM304 was able 

to pass easily through blood brain barrier (BBB) and indicated to accumulate in the regions that 

well known for being rich of sigma-1 receptors. In order to get better and accurate interpretation 

of radioligand localization in particular brain regions, an ex vivo autoradiography was 

conducted, and the results from this study revealed that [18F]CM304 accumulated in the 

midbrain, hippocampus, cortex, facial nucleus, and to a lesser extent in the cerebellum and 

thalamus as can be seen in Figure 1.4.53 

 

Figure 1.4: PET images and ex vivo autoradiography of sagittal brain sections (12 µm) obtained 60 minutes 
after administration of [18F]CM304. Sections used for autoradiography were stained with Nissl for anatomical 
correlation. PET images were acquired just before to perfusing mice and harvesting brain tissue for autoradiography. 
White dotted lines designate location of mouse brain in sagittal PET images: Cb = cerebellum, Ctx = cortex, FN = 
facial nucleus, H = hippocampus, Mb = midbrain, Ob = olfactory bulb.53 

 

Further studies by James and colleagues evaluated the distribution, kinetics and stability 

of [18F]CM304, in rats and squirrel monkeys brains using PET.54 In these studies, rats were 

administered [18F]CM304 intravenously, and static PET scans were measured after 50 minutes. 

For blocking studies, rats were pretreated with SR1 selective ligand BD1047 10 min prior to 

tracer administration. A CT image was acquired after each PET scan to provide an anatomic 

reference frame for the respective PET data. After PET imaging, the rats were sacrificed and the 

brains were removed that allowed for autoradiography to be achieved. The baseline PET/CT 
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images shown in (Figure 1.5) again illustrated [18F]CM304’s ability to cross the blood-brain 

barrier  (BBB) and accumulate in brain tissue. Furthermore, the PET/CT images disclosed some 

accumulation of radioactivity in the rat skull. Also, accumulation of [18F]CM304  was located in 

the brain stem, cortex, cerebellum, hippocampus hypothalamus, thalamus, nucleus oculomotor, 

red nucleus, and caudate putamen. There was little uptake of [18F]CM304 in the corpus callosum 

and muscle. The ratio of brain-to-skull uptake at 60 min was found 3.1 ± 0.2.  Both blocking 

studies showed a reduction in the uptake of [18F]CM304.54 

Consequently, preliminary brain PET imaging of squirrel monkeys was conducted to 

assess the regional distribution and brain permeability of [18F]CM304 in a nonhuman primate.54 

A total of four brain PET images were attained. The monkeys were administered intravenously 

with [18F]CM304 in 500 microliters of sterile heparinized saline, followed by 500 microliters of 

sterile heparinized saline to flush the catheter. Seventy-five frames of dynamic PET data were 

yielded over a 120-minute period. 

 

Figure 1.5: Rat brain PET/CT and ex vivo autoradiography. (A) Baseline coronal PET/CT images 50-
60 minutes after intravenous administration of [18F]CM304. (B) PET/CT images from blocking study. (C) 
Autoradiography and nissl/H&E staining of coronal brain and muscle sections from baseline study. (D) 
Autoradiography and nissl/H&E staining of coronal brain and muscle sections from blocking studies. Bst = 
brain stem; CC = corpus callosum; Cer = cerebellum; CP = caudate-putamen; Ctx = cortex; H = 
hippocampus; HTh = hypothalamus; NO = nucleus oculomotor; RN = red nucleus; Th = thalamus.54 
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Blocking studies involved pretreating monkeys with haloperidol 10 minutes prior to 

radioligand administration.  Baseline brain PET/MR images in [Figure 1.6] indicate that [18F]-

CM304 was able to penetrate the monkey blood brain barrier (BBB) and accumulate in the 

cingulate, frontal cortex, occipital cortex, parietal cortex, temporal cortex, vermis, hippocampus, 

striatum, and cerebellum. PET images also showed some accumulation of radioactivity in the 

monkey skull [Figure 1.6]. It was found also the brain-to-skull ratio at 60 min after injection was 

1.2 ± 0.1.54 

 

 

 

 

 

 

 

Figure 1.6: Monkey brain PET/MR images from baseline dynamic imaging. Summed axial images are 
shown for different time intervals after administration of [18F]CM304. Brain regions of interest are shown 
in MR images and are labeled as (1) cingulate cortex, (2) frontal cortex, (3) striatum, (4) parietal cortex, (5) 
occipital cortex, (6) temporal cortex, (7) hippocampus, (8) cerebellum, and (9) vermis.54 

 

In detailed study, Bouchard and Quirion were able to discriminate between the two 

subtypes of sigma receptors and showed that sigma-1 and sigma-2 receptors are differentially 

distributed in the brain.44 They conducted autoradiographic studies using [3H]-DTG (2) (with the 
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presence of (+)-pentazocine, (3)) [Fig. 1.7], and showed the sigma-2 distribution in the rat brain, 

where only few areas in the brain are specifically enriched with sigma-2 receptors such as the 

substantia nigra pars reticulata, central gray, occulomotor nucleus, nucleus accumbens, 

cerebellum, and motor cortex area.44 

 

  

 

 

Figure 1.7: Structures of selective sigma ligands 

 

1.3.2. Peripheral organs  
 

In addition to the central nervous system, sigma receptors are also widely distributed in 

peripheral organs. A number of autoradiographic and binding assays studies showed that sigma 

receptors are enhanced in the mucosal and submucosal regions (GI tract), with less labeling in 

the muscular regions.55 Furthermore, numerous studies showed sigma-1 receptors are also 

present in the liver23,29,56, kidney25, heart57,58, spleen59 and sexual organs.57 Sigma-2 receptors are 

similar to sigma-1 receptors, have been found in various organs, including liver and kidney.23  

However, the actions of sigma-1 are believed to dominate over those of the sigma-2 subtype. It 

has been reported that the highest levels of both sigma receptor subtypes in the body are present 

in the liver.23 Likewise, it was found the heart contains significant levels of sigma receptors, over 

80% of these receptors are of the σ1 subtype.60 Similarly, the lung, the spleen and the eye are 

enriched in sigma-1 receptors, 61 while gastrointestinal tract and kidney contain both sigma-1 and 

sigma-2 receptors.58,60,61 

3, (+)-Pentazocine 2, [3H]-DTG (1,3-di(2-tolyl)guanidine) 
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1.4. Subcellular distribution and functions of sigma receptors  

Early studies on subcellular distribution of sigma-1 receptors with radioligand binding 

experiments using sigma-1 radioligands [3H](+)-pentazocine (4), [3H](+)-SKF-10,047 (5), and 

[3H](+)-3-PPP (6)[Fig. 1.8] confirmed the existence of sigma-1 receptors in mouse, rat and 

guinea pig brain membranes.10,62 It was found to be abundant in the microsomal membranes of 

the endoplasmic reticulum (ER) as well as in nuclear, mitochondrial and synaptic membranes.63-

65 

 

 

 

    

                 

 

Figure 1.8. Tritiated sigma receptor radioligands. 

 

Further immunohistochemical studies showed that sigma-1 receptors in the endoplasmic 

reticulum in neurons 66 besides several other cells such as oligodendrocytes 67 lymphocytes 68, 

retinal cells 69 and particular cancer cells.70 Furthermore, electron microscopy studies in neurons 

from the rat hypothalamus and hippocampus, evidenced that sigma-1 receptors localize with the 

membrane of mitochondria, neuronal perikarya, some cisternae of the endoplasmic reticulum 

(ER) and dendrites.62 A recent study demonstrated that sigma-1 receptors are chaperon proteins  

clustered at the mitochondria-associated ER membrane (MAM).28 The activity of this chaperon 

protein is regulated through a direct protein-protein interaction with another ER chaperone 

named binding immunoglobulin protein/78 kDa glucose-regulated protein (BiP/GRP-78).28,71 

  4, [3H](+)-Pentazocine 5, [3H](+)-SKF10,047 6, [3H](+)-PPP 
[(+)-3-(3-hydroxyphenyl)- 

N propylpiperidine] 
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Under normal conditions, sigma-1 receptors bind to BiP and upon sigma-1 receptor agonists 

binding or Ca2+ depletion in the ER, sigma-1 receptors dissociate from BiP, and shifting to the 

active state as a result of this dissociation. Alternatively, sigma-1 receptor antagonists enhance 

the binding of BiP with sigma-1 receptors and inhibit the agonists action as a result. 28,33,71 

Under resting conditions, sigma-1 receptors regulate inositol triphosphate (IP3) receptors 

via direct influx of calcium (Ca2+) from MAM to mitochondria that activates the ATP generation 

through the tricarboxylic acid cycle (TCA) as well as production of the reactive oxygen species 

(ROS).28 A study by Hayashi et al. showed that sigma-1 receptors mobilize at ER from MAM to 

more peripheral subcellular locations under cellular stress or ligand activation.72 Upon ligand 

activation, sigma-1 receptors translocate to the proximity of the cell membrane to participate in 

protein–protein interactions and modulate the activity of GPCRs such as µ opioid and dopamine 

D1, ion channels such as potassium, sodium, and NMDA, or signaling molecules such as 

calcium, protein kinases, and inositol phosphates.16,73-76 Similarly, numerous studies suggest that 

neuroactive steroids bind with moderate affinity to sigma-1 receptors that may modulate the 

activity of  GABA and NMDA receptors in the CNS.77,78 These findings indicate the potential 

role of sigma-1 receptors in several neurological diseases, pain, amnesia, schizophrenia, 

depression, and neuroprotection.32,79,80 

Numerous pharmacological studies indicated that sigma-2 receptors might be lipid raft 

proteins that affect calcium signaling through sphingolipid products.37,38 Contrasting sigma-1 

receptors, sigma-2 receptors do not seem to translocate and much less is known about sigma-2 

receptor. For instance, the lack of structural information of sigma-2 receptor has severely 

hindered the understanding of its regulatory roles, its function, and its signaling pathways. 

Although, sigma receptors are widely distributed in the body and bind to a vast range of normal 
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tissues, both subtypes are highly expressed on tumor cell lines from human and rat tumor tissues. 

Nevertheless, there is evidence in the literature that sigma-2 receptors show a higher expression 

in malignant tumor cells than quiscent tumor cells.81-83 Further studies showed increased 

expression of both sigma receptors in a variety of human and rodent cell lines can be used as a 

biomarker of tumor cell proliferation, which is making them a useful tool for imaging of 

cancers.84 Recently, a photoaffinity binding study with a novel sigma-2 ligand (WC-21, (7)) 

compared with the PGRMC1 ligand (AG-205, (8))[Fig. 1.9], identified PGRMC1 as the putative 

sigma-2 receptor binding site.85 

 

 

 

 

 

Figure 1.9: Structures of the selective sigma-2 ligand (WC-21) and PGRMC1 ligand (AG-205) 

PGRMC1 protein has been shown previously to be implicated in regulation of steroid 

signaling, activation of cytochrome P450 (CYP450), anti-apoptosis, stimulation of tumor growth, 

pro-invasion, and metastasis.86,87 These findings suggest that PGRMC1 and sigma-2 receptors as 

a complex may couple with EGFR (epidermal growth factor receptor), mTOR (mammalian 

target of rapamycin), caspases, and ion channels.88 Based on some recent published data, Huang 

et al. hypothesized that sigma-2 receptor stimulates EGFR signaling that may be the main 

carcinogenic pathway for this receptor. Furthermore, it may also activate CYP450 and promote 

sterol signaling, which may also be pro-oncogenic. Consequently, the inhibition of sigma-2 

7, WC-21 8, AG-205 
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receptor by sigma-2 ligands may activate the caspase pathway and block the EGFR signaling 

pathway.88 

1.5. The Role of Sigma Receptors in Diseases  

Since the discovery of the sigma receptors, multiple preclinical studies have implicated 

the receptor in several diseases. Through a variety of ways, sigma receptors strongly modulate 

the intracellular calcium concentration in both neuronal and non-neuronal cells.7,28,63,69,89,90. 

However, it is not clear whether this calcium regulation is mediated by sigma-1, or sigma-2, or 

both. By contrast, most of these effects seem to be mediated through indirect pathways.  

Several studies have shown that sigma-1 receptors can translocate from the mitochondria 

associated membrane (MAM) at endoplasmic reticulum (ER) to other areas of the cell where 

they can interact with a variety of membrane proteins.72 89 These proteins include voltage-gated 

ion channels, glutamate and GABA ionotropic receptors, the dopamine D1 receptor (D1R), 

muscarinic and nicotinic acetylcholine receptors, neurotrophic tyrosine kinase receptor type 2 

(TrkB), and intracellular targets, such as inositol triphosphate (IP3) receptors and kinases.89,91 

Therefore, sigma-1 receptors have been implicated in many CNS disorders, including alcohol 

and cocaine addiction Alzheimer’s disease, amnesia, depression, age-related cognitive 

impairments, neuropathic pain, and stroke. 

1.5.1. Sigma receptors potential role in addiction and drug abuse 
 

Number of studies has demonstrated the crucial roles that sigma-1 receptors activation 

may play in addiction since it’s well known for their involvement in serotoninergic and 

dopaminergic systems. Cocaine and methamphetamine are the most common abused drugs that 

perform their psychostimulant actions by interacting with sigma receptors and mostly sigma-1 

receptors.92-95 
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i) Cocaine 
 

Cocaine (9)[Fig. 1.10] is one of the most highly consumed illicit drugs in the world, 

especially in United States. The use and abuse of cocaine is well known as a leading cause to 

many social and economic problems with an increased risk of HIV, hepatitis B, and C infections, 

and an increased incidence of crime, violence and psychosocial problems. Furthermore, there are 

no approved medications to treat cocaine abuse or addiction, which urges the need to develop 

novel and effective agents to battle this serious issue.96  

Nevertheless, opioid receptors have been investigated actively for their role in treatment 

of drug addiction. For instance, Kappa opioid receptors have been demonstrated to impact stress-

induced drug and alcohol seeking behavior.97,98  It has been reported that stress is able to enhance 

drug and alcohol self-administration, and stimulation of the kappa receptor potentiates this effect. 

Conversely, blocking the kappa receptor with an antagonist inhibits stress-induced increases in 

cocaine self-administration and alcohol intake. It was also reported that kappa receptors and it’s 

endogenous ligand (dynorphin) are increased in the brains of cocaine abusers who died from 

cocaine toxicity.99,100 There has been great interest in developing a kappa antagonist for the 

treatment of addiction, however, clinical development of several kappa antagonists was halted as 

a result of vital side effects. For example, Pfizer has terminated the clinical studies with the 

developed kappa antagonist PF4455242 for toxicity reasons.101 Likewise, the National Institute 

on Drug Abuse ceased the translation of a kappa antagonist to human studies due to heart 

rhythms problems.101,102  

Cocaine is well known for its inhibition effect on dopamine transporters that results in a 

dopamine increase in the synapse, which plays a significant role in the behavioral effects of 

cocaine. Similarly, cocaine can bind to sigma receptors and activate them to produce their 
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stimulant effects. In actual fact, selective sigma receptor drugs modulate monoaminergic, and 

particularly dopaminergic and serotoninergic, systems.87,88,90  

 

Figure 1.10: Chemical structure of cocaine 

Several studies have demonstrated the ability of sigma receptor antagonists to attenuate a 

variety of behaviors that are elicited by acute administration of cocaine.6,92,93 Both sigma 

receptor subtypes appear to regulate the actions of cocaine; however, the role of sigma-2 

receptors in these effects is less clear due to the lack of truly selective sigma-2 receptor ligands. 

Cocaine preferentially binds to sigma-1 receptors with a 10-fold higher affinity over sigma-2 

receptors (Ki 2-7 mM and 29–31 mM, respectively).  Cocaine is believed to activate sigma 

receptors and recent studies demonstrate that sigma-1 receptor activation plays an important role 

in reinforcement and addictive processes.6,92,93,95,103 Furthermore, several studies showed that co- 

or pre-administration of sigma-1 antagonists blocked the hyper-locomotion, sensitization, or the 

appetitive effect of cocaine using the conditioned place preference paradigm.104 It is documented 

that sigma-1 receptor antagonism attenuates cocaine-induced stimulant effects and toxicities. For 

instance, many studies have reported that sigma-1 receptor antagonists such as haloperidol, 

rimcazole, BD1008 (10)[Fig. 1.11], BMY14802 (11)[Fig. 1.11] as well as anti-sense 

oligonucleotides mitigate the acute locomotor stimulatory effects, sensitization and convulsions 

induced by cocaine in rats.104-106 A recent behavioral studies performed in mice, intraperitoneal 
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or oral dosing with SN79 (12)[Fig. 1.11]  before a convulsive or locomotor stimulant dose of 

cocaine resulted in a substantial mitigation of cocaine-induced convulsions and locomotor 

activity. In the same study, it has been also shown a significant attenuation in the development 

and expression of the sensitized response to repeated cocaine exposures.107 Similarly, 

pretreatment of male mice with CM156 (13)[Fig. 1.11], prior to administering either a 

convulsive or locomotor stimulant dose of cocaine, resulted in a significant attenuation of these 

acute effects. CM156 also significantly reduced the expression of behavioral sensitization and 

place conditioning induced by sub-chronic exposure to cocaine.108 In a separate study, CM156 a 

novel antagonist with high selectivity and affinity for sigma receptors was used to attenuate the 

expression of cocaine-induced conditioned place preference in mice. After microarray data 

analysis, four genes were found to be up-regulated and changes by cocaine when compared with 

controls.109 This study suggests that the sigma receptor antagonist CM156 reverses alterations in 

gene expression that are associated with cocaine-induced reward, which provides another 

evidence for the potential use of sigma receptor antagonists in treatment of drug abuse.109 

 

 

 

 

 

 

 

 

Figure 1.11: Structures of some selective sigma-1 antagonists 

11, BMY14802 10, BD1008 

12, SN79 13, CM156 
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Alternatively, selective sigma-1 receptor agonists often mimic the actions of cocaine or 

shift the dose–response curve for cocaine to the left.92,106,110 
 
Due to the fact that cocaine appears 

to act as an agonist at sigma receptors, several findings suggest that sigma receptor antagonists 

could alter the reinforcing effects of cocaine. A study by Martin-Fardon et al. (2007)111 

demonstrated the effect of sigma-1 receptor antagonist (BD1047 (14))[Fig. 1.12] on cocaine self-

administration. In this study, BD1047 did not block the self-administration of cocaine, but did 

attenuate the cocaine reinstatement, demonstrating that sigma-1 receptors may play a role in the 

reinstatement induced by cocaine priming manipulations.111 More recently, Hiranita et al., 

provided a proof-of-concept showing that dual sigma receptor/DAT inhibitors effect  cocaine 

self-administration in a dose-dependent manner to decrease cocaine self administration.112 

 

 

Figure 1.12: Structure of the selective sigma-1 antagonist, BD1047. 

ii) Methamphetamine 
 
Similar to cocaine, methamphetamine (15)[Fig. 1.13] is a psychostimulant, which is 

considered to be among the most abused substances worldwide. To date, there are no FDA 

approved medications to treat the harmful health consequences resulting from either cocaine or 

methamphetamine abuse.113 Like cocaine, methamphetamine binds to sigma receptors with a 

slight preference for sigma-1 receptors (2 µM) over sigma-2 receptors (47 µM).  

The ability of BD1063 (16)[Fig. 1.14] and BD1047 (14)[Fig. 1.12] to significantly 

attenuate the locomotor stimulatory effects of methamphetamine suggested that antagonizing 
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sigma-1 receptors is enough to prevent the stimulant actions of methamphetamine.114  

                                                                                      

 

 

Figure 1.13: Chemical structure of methamphetamine 
  

Additionally, a number of studies reported that sigma-1 receptor selective antagonists 

block the behavioral sensitization caused by methamphetamine in rats.115-117 Matsumoto et al. 

showed that AC927 (17)[Fig. 1.14], a highly selective sigma receptor ligand, attenuated a 

number of methamphetamine-induced effects, including hyperthermia, cytotoxicity in a 

neuronally-derived cell line, hyperlocomotion, and dopamine damage in the brain.117 Prior to this 

work,  the selective sigma-1 ligand MS-377 (18)[Fig. 1.14] was reported to attenuate the 

development of behavioral sensitization induced by sub-chronic treatment with 

methamphetamine.116 In house work, the highly selective sigma receptors ligand CM156 

(13)[Fig. 1.14] evaluated against methamphetamine-induced stimulant, hyperthermic, and 

neurotoxic effects. In this study, the highly selective sigma ligand CM156 was able to attenuate 

the effects of methamphetamine.118 Subsequently, the sigma receptor antagonist SN79 (12)[Fig. 

1.14], that was developed in our laboratory was able to block methamphetamine-induced 

microglial activation and cytokine production, which has potential to mitigate the neurotoxic 

effects of methamphetamine.119 A more recent study conducted by Seminerio et al. showed 

AZ66 (19)[Fig. 1.14], a selective sigma receptors ligand, not only blocked the development of 

behavioral sensitization, but also significantly reversed the expression of methamphetamine-

induced sensitization.120 AZ66, a mixed SR1/SR2 antagonist derived from CM156 and improved 
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for metabolic stability, was found to significantly attenuate dopaminergic neurotoxicity and 

memory impairment produced by frequent exposure to methamphetamine.120,121 

Thus, sigma receptors are a valid and novel target for developing effective therapeutics 

for the treatment of methamphetamine and cocaine induced effects and could possibly be 

involved in the effects of other psychostimulant drugs. 

 

                
 

 

 

       

 

 

 

 

 

 

 

 

 

Figure 1,14: Structures of various sigma ligands 

iii) Alcohol 
 

According to SAMHSA’s National Survey on Drug Use and Health (NSDUH), more 
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than half of all adults drink alcohol, with 6.6% meeting criteria for an alcohol use disorder 

[outlined in the Diagnostic and Statistical Manual of Mental Disorders (DSM)].122 Among 

Americans aged 12 or older, the use of illicit drugs has increased over the last decade from 8.3% 

of the population using illicit drugs in the past month in 2002 to 9.4% (24.6 million people) in 

2013.123 Accumulating data indicate that sigma receptor antagonism could mitigate the actions of 

alcohol even though alcohol does not have significant affinity for sigma receptors.  Sigma 

receptor antagonists have been shown to attenuate ethanol-induced effects such as; locomotor 

activity, place conditioning, taste conditioning, and self-administration in excessive ethanol 

drinking models.  Moreover, sigma receptor antagonists have been reported to attenuate these 

same behaviors in NMDA independent, long-term potentiation in early adolescent exposed 

animals.124,125 The effect of ethanol on sigma-1 receptors was first, studied by Maurice et al., 

2003 in the conditioned place preference test.124 In this study, the sigma-1 receptor agonist, PRE-

084 (20)[Fig. 1.15], increased the ethanol-induced conditioned place preference in a dose-

dependent manner whereas the sigma-1 receptor antagonist, BD1047, dose dependently 

attenuated ethanol-induced locomotion and blocked ethanol-induced place and taste 

conditioning.124 In another study, the sigma-1 receptor antagonist, BD1063, was found to 

decrease ethanol self-administration and reinforcing effects of ethanol in two different models of 

excessive ethanol intake.125 

 

 

 

 

Figure 1.15: Structure of sigma-1 agonist, PRE084. 

A gene expression study, Miyatake et al., linked sigma-1 receptor polymorphisms to 

20, PRE084 
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alcoholism.  Analysis of 307 alcoholic and 302 control subjects, found polymorphisms in the 5'- 

upstream region: T-485A and TT-241-240.126 Additionally, it was realized that the 

transcriptional activities of the A-485 and TT-241-240 alleles were significantly reduced, 

indicating a higher expression of sigma receptors. The gathered data in this study, suggested that 

a lower expression of sigma-1 receptors, supposedly seen in control subjects as implicated by the 

gene reporter assay, protect those people from alcoholism.126 Ethanol does not seem to interact 

with sigma receptors; however, based on the above studies it has been hypothesized that sigma-1 

receptor might be involved in neuroadaptive mechanisms that lead to chronic ethanol abuse. 

Thus, sigma-1 receptors are correlated to the drug abuse behaviors in a similar way to those seen 

with methamphetamine and cocaine. 

1.5.2. Sigma receptors and analgesia 
 

Sigma receptors are highly distributed in areas of great importance in pain control in the 

central nervous system. These areas include the superficial layers of the spinal cord dorsal horn, 

the locus ceruleus, the periaqueductal gray matter, and rostroventral medulla.127,128 The 

involvement of sigma receptors in opioid analgesia was first reported in the 1990s.129 Shortly 

thereafter, a study by Mei & Pasternak, showed that sigma-1 receptors were involved in the 

analgesia mediated by mu-, delta-, and kappa (1&3) opioid receptors.130 In earlier studies they 

found that the sigma receptor antagonist, haloperidol (21)[Fig. 1.16], potentiates opioid-induced 

analgesia while the sigma receptor agonist (+)-pentazocine attenuates opioid analgesia.131,132 

Consequently, another study by Cendan et al., showed that pain resulting form formalin-

induction was decreased in sigma-1 receptor knockout mice.133 Furthermore, intrathecal (i.t.) 

administration of the sigma-1 receptor antagonist BD1047, in mice reduced formalin-induced 

pain and attenuated the phosphorylation of N-methyl-D-aspartate (NMDA) receptor subunit 1 
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induced by formalin.134 The neurosteroid sigma-1 receptor agonist, DHEA (22)[Fig. 1.16], 

induced a rapid pronociceptive action in sciatic-neuropathic rats. Furthermore, the sigma-1 

receptor antagonist, BD1047, blocked the transient pronociceptive effect provoked by DHEA.135 

  

 

 

 

 

 

 

 

 

 

 

Figure 1.16. Sigma-1 receptor ligands and analgesia. 

 

It has been demonstrated that the sigma-1 receptor facilitates (+)-morphine induced anti-

analgesia via actions at supra-spinal and spinal sites.135-137 Also, some other reports showed that 

opioid ligand-induced antinociception is mitigated by sigma-1 agonists and potentiated by 

sigma-1 antagonists.138-141 Although results from the above mentioned studies have demonstrated 

strong evidence that sigma-1 receptors affect opioid analgesia, the exact molecular mechanism 

needs to be definitively established and certainly warrants further investigation. 

In different studies, it was indicated that sigma-1 antagonists were able to attenuate 

painful behavior in inflammatory pain and neuropathic models efficiently.142-145 There is an 

21, Haloperidol 22, Dehydroepiandrosterone (DHEA) 
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accumulated evidence in literature demonstrated that peripheral pain injury initiates multiple 

structural and functional changes in peripheral, spinal cord, and supraspinal sites that contribute 

to the development of neuropathic pain. Moreover, it was found that injured sensory neurons 

have reduced voltage-gated Ca2+ influx and decreased intracellular Ca2+ stores, which can be 

related to a potential role of sigma-1 receptor  in neuropathic pain since store depletion triggers 

sigma-1 receptor, and consequently, stimulation of sigma-1 receptors decreases intracellular 

Ca2+.146-149 Recently, the highly selective sigma-1 radioligand, 18F-CM304 (18F-

FTC146)(23,24)[Fig. 1.16] was studied by PET/MRI a neuropathic pain in animal model  that 

showed  a high accumulation  of the radioligand at the site of the nerve injury. This finding 

provides a strong evidence for involvement of sigma-1 receptor in peripheral neuropathic pain, 

which can be very useful in diagnosis and treatment of nerve injury-induced neuropathic pain. 

Also, it’s noteworthy to mention that the 18F-CM304 (18F-FTC146)  has been approved by the 

FDA in May 2015 to initiate first human studies on peripheral neuropathic pain. 

1.5.3. Sigma receptors and depression 
 

Some neurotransmitter systems such as serotonergic and glutamatergic systems are 

involved in the pathophysiology of depression. Likewise, sigma-1 receptor ligands play a 

modulatory role in several neurotransmitter systems. A number of behavioral studies have 

demonstrated the effect of sigma-1 ligands on the antidepressant activity of the existing 

antidepressant drugs.  Several available antidepressant drugs, such as tricyclic antidepressants, 

monoamine oxidase inhibitors, selective serotonin reuptake inhibitors (SSRIs), and latest 

generations of antidepressant drugs, bind to sigma receptors.150 Numerous sigma-1 agonists 

decreased immobility in the forced swimming test, which was blocked by several sigma-1 

antagonists. These sigma-1 agonists include the following; (+)-pentazocine (3), SA4503 (25), 
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JO-1784 (26), DHEAS (27), donepezil (28), pregnenolone sulfate (29), UMB23 (30), and others 

[Fig 1.17].91,151-155 Moreover, the selective sigma-1 agonists (+)-pentazocine and SA4503 

reduced immobility time in the tail suspension test, and this effect was antagonized by NE-100 

(31)[Fig. 1.17] a sigma-1 antagonist.156 The sigma-1 receptor agonist igmesine (JO-1784) has 

shown antidepressant activity in the olfactory bulbectomy (OBX) depression model.156 On the 

other hand, the selective sigma-2 receptor ligand siramesine (32)[Fig. 1.17] demonstrates   

antidepressant activity in the chronic mild stress model of depression.157 
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Figure 1.17: Sigma receptors ligands and depression. 

 

Based on the above-mentioned studies, there are three lines of evidence confirmed that sigma-1 

receptor agonists can employ an effective antidepressant activity:  

• Sigma-1 agonists can potentiate NMDA or cholinergic neurotransmission as they 

improved cognitive activity in various amnesia models.158  

• Sigma-1 agonists can behave as antidepressants as demonstrated in a study utilizing low 

doses of the antidepressant sertraline, a selective serotonin reuptake inhibitor (SSRI).  

Also clorgyline, a monoamine oxidase inhibitor, selectively potentiated the effect of N-

Methyl-D-aspartate receptor (NMDAR).159 

• Selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCAs) 

showed discrepancy in binding affinity to sigma-1 receptors. For instance, fluvoxamine 

and sertraline have a Ki values lower than 100 nM at sigma-1 receptors.160 

1.5.4. Sigma receptors and Alzheimer’s disease 
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A number of accumulated reports have indicated that sigma receptors play a part in 

complex biological processes of the central nervous system, which can be implicated in 

neurodegenerative disorders such as Alzheimer’s disease.161,162  Alzheimer’s disease is an 

irreversible progressive neurodegenerative disorder damaging the brain structure and 

characterized by: 

1) Presence of extracellular senile plaques composed of insoluble extracellular aggregates of 

amyloid-β (Aβ) proteins derived by proteolytic cleavage of the amyloid precursor 

protein, and/or  

2) Presence of neurofibrillary tangles composed of intracellular deposits of paired helical 

filaments of hyperphosphorylated Tau proteins.163,164 

 
Some selective sigma-1 ligands, such as (+)-pentazocine, PRE-084, or SA4503 

attenuated, in a dose dependent and bell-shaped manner, the memory deficits observed in mice 

seven days after β25–35 peptide injection.165 Similarly, when the selective sigma-1 ligand, 

PRE084, or the non-selective ligands which act also as sigma-1 agonists, like donepezil 

(cholinesterase inhibitor) and ANAVEX1-41 (33)[Fig. 1.18] (muscarinic receptor ligand), were 

injected together with β25–35 peptide into mice, blocked the β25–35 peptide-induced toxicity in 

the hippocampus and also attenuated the learning and memory deficits in mice.164,165  

Nevertheless, an in vitro study by Marrazzo et al., in 2005 showed the first evidence that sigma-1 

receptor ligands could display some neuroprotective activity against amyloid toxicity, and 

interestingly enough the neuroprotective effects of these compounds were blocked by the sigma-

1 receptor antagonist, NE-100.166 In a recent study, Li et al. group167, 2010 demonstrated that the 

neurosteroid dehydroepiandrosterone (DHEA) dose-dependently attenuated the Aβ25–35-

induced neuronal loss by activating sigma-1 receptor. They also indicated that the DHEA effect 
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could be produced by the sigma-1 receptor agonist, PRE-084 and that the DHEA effect was 

blocked by the sigma-1 receptor antagonist NE-100.167 The above observations indicate that the 

sigma receptor ligands might have therapeutic potential in Alzheimer’s disease and potentially, 

other neurodegenerative disorders. 

 

 

 

 

Figure 1.18: Non-selective sigma ligands and Alzheimer’s disease. 

1.5.5. Sigma receptors and schizophrenia  
 

The dopamine hypothesis remains the dominant hypothesis for the pathophysiology of 

schizophrenia, which involves enhanced mesolimbic dopamine and glutamate functions as well 

as the intricate relationship between dopamine, glutamate, and sigma receptors in this 

disorder.168 As a matter of fact, the blockade of NMDA receptors by phencyclidine (PCP) 

induces schizophrenia-like psychosis in humans. Schizophrenia is characterized by positive 

symptoms such as delusions and hallucinations, negative symptoms such as “flat affect”, and 

cognitive impairments.169,170 However, antipsychotic drug development in schizophrenia has 

focused mainly on agents that reduce the positive symptoms of schizophrenia.171 Although 

several antipsychotics possess high affinities for sigma receptors (e.g. haloperidol), the 

involvement of sigma receptors in schizophrenia has not been clearly demonstrated.20 The 

nonselective sigma-1 receptor antagonist BMY14802 (11), panamesine, E5842 (34)[Fig. 1.19] 

and MS377 (18) [Fig. 1.14]  inhibit apomorphine-induced climbing.172-175 Furthermore, DTG 

(35) [Fig. 1.19], SR31742A (36) [Fig. 1.19], panamesine (37) [Fig. 1.19], rimcazole and E5842 

33, ANAVEX1-41 
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inhibit amphetamine-induced locomotor activity.172,173,176,177 However, rimcazole (38) [Fig. 1.19]  

and BD1047 had little effect on apomorphine-induced climbing, furthermore this latter 

compound had little effect on acute amphetamine-induced hyperlocomotion. Although rimcazole 

has a substantial affinity for sigma receptor and was proposed as a treatment for schizophrenia, 

research was halted due to initiation of seizures.178,179 Moreover, a number of post-mortem 

studies have exhibited abnormalities in glutamate concentrations and glutamate receptor 

densities in schizophrenic brains, in addition to some biochemical and behavioral studies have 

suggested that antipsychotic drugs may alter NMDA receptor functions. 

  

 

 

 

  

 

 

 

 

Figure 1.19: Sigma receptors ligands cited for their role in Schizophrenia. 

1.5.6. Sigma receptors and cancer  
 

The role of sigma receptors in cancer has received much attention from researchers since 

the discovery of the presence of these receptors in several human and rodent cancer cell 

lines.180,181 In 2004, Spruce et al., showed that sigma receptor ligands including: rimcazole, 
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haloperidol, BD1047, and BD1063, caused a dose and time dependent decline in cell viability in 

tumor cell lines.181 Subsequently, Wang et al. in the same year (2004) found that sigma-1 

receptors were expressed in those cells and that the sigma-1 receptor antagonists, haloperidol, 

and progesterone produced a dose-dependent inhibition of the growth of those cells at high 

concentrations.182 Subsequently, a study conducted by Aydar et al. , in 2006 found that human 

breast cancer cell lines expressed much higher levels of sigma-1 receptors, which significantly 

reduced the cancer cell line's proliferation by siRNA compared to that of control cells.183 

Likewise, sigma-2 receptors and their role in cancer are much more important and active area of 

the cancer research than sigma-1 receptors. A number of studies have identified the sigma-2 

receptor as a biomarker for proliferating tumor cells.83,184 Furthermore, several studies by Bowen 

and coworkers found that sigma-2 agonists are able to mediate a novel caspase-independent 

apoptotic pathway containing ceramide in numerous breast tumor cell lines.38,185,186 Subsequent 

studies by Vilner et al. have shown that there was a high density of sigma-2 and sigma-1 

receptors in a wide variety of human and murine tumor cells.180 Similarly, a study by Ostenfeld 

et al.,187 (2005) found that the selective sigma-2 ligand, siramesine, was able to cause tumor cell 

death through a caspase-independent mechanism.  Further work identified this activity could be 

related to or involve autophagosomes and lysosomes.188,189 More recently, Haller et al., (2012)190 

reported that sigma-2 receptors have a 10-fold higher density in proliferating tumor cells than in 

quiescent tumor cells and because of this observation, sigma-2 receptor agonists are able to kill 

tumor cells via apoptotic and  non-apoptotic mechanisms. Subsequently, Mach et al. reported a 

MicroPET imaging study of the benzamide 76Br- labeled radiotracer analog (39)[1.20] in an 

EMT-6 tumor-bearing mouse showed high uptake of the radiotracer in the tumors and low 

uptake in the surrounding normal tissues [Fig. 1.20].189,190 
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Figure 1.20. MicroPET imaging study of [76Br] radiotracer in an EMT-6 tumor-bearing mouse. Structure and in 
vitro binding affinities (Ki values) of the 76Br-labeled benzamide analog.190 

1.6. Endogenous and exogenous sigma receptors ligands 

1.6.1 Endogenous ligands 
  

To date, no endogenous ligands have been identified for either sigma receptor subtype. 

However, certain neurosteroids, such as progesterone (40) [Fig. 1.21], testosterone (41) [Fig. 

1.21], and pregnenolone (42) [Fig. 1.21], displayed low affinities for sigma-1 receptor. There is 

no evidence to indicate that these neurosteroids play any physiological roles through interaction 

with this receptor.20 Therefore, it has been hypothesized that sigma receptors are remotely linked 

to enzymes of steroid biosynthesis.191 In recent study N, N-Dimethyltryptamine (DMT) (1) has 

been identified as a potential endogenous ligand for sigma-1 receptors while the physiological 

concentration in the brain tissues is very low and thus its role as a sigma-1 modulator needs to be 

confirmed.192 Furthermore, neuropeptide Y and peptide YY have been proposed as endogenous 

ligands for sigma receptors.193 Due to the lack of availability of detailed protein structural 

information and truly selective sigma-2 ligands, much less is known about sigma-2 receptor, its 

function, and its regulatory roles. 

 

 

 
 
 

Figure 1.21: Structures of neurosteroids that proposed to act as endogenous ligands for sigma receptors. 
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1.6.2. Exogenous ligands 
 

Due to the fact that sigma receptors bind to compounds with diverse structures, initial 

studies with early sigma ligands were limited. It was assumed that sigma receptors might have 

good flexibility at the active site, or these diverse agents might be sharing some common 

features. Apparently, the lack of selective compounds that do not interact with other biological 

systems, urges the need for developing such selective compounds to explore the unknown 

biological functions displayed by sigma receptors. It was noticed that the importance of basic 

nitrogen for a compound to have sigma receptors affinity.195 The initial efforts started by 

evaluation of structural determinants from various drug classes.196 The early observation was that 

three drug classes, opioids, morphinans and benzomorphans with more bulky compounds had 

lower affinity [Fig. 1.22]. Hence, the smaller benzomorphans, which lack the C ring, had better 

affinity than the other two classes. It appears that lipophilic substituents are preferred for high 

affinity agents. The fourth early-identified class is phenylpiperidine that includes fentanyl and 

meperidine. Also, these compounds showed higher affinity for sigma receptors than bulky 

opioids and morphinans as can be seen in [Figure 1.22]. 

i) Opioids 
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iii) Benzomorphans 
 
 

           

 

 

 

 

 

 

 

 

    iv)      Phenylpiperidines 

 

 

 

 

 

 

 

Figure 1.22: Diverse structural classes of sigma ligands and their affinities. 
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Sigma receptors are an interesting group of receptors because of their broad 

accommodation of diverse structural groups.197-199  Therefore, they have been presented to bind a 

variety of drug classes including, for example, anxiolytics, antipsychotic agents (eg. 

butyrophenones, phenothiazines, thioxanthenes), tricyclic antidepressants (TCAs), monoamine 

oxidase inhibitors (MAOIs), antineoplastic agents, anticholinergics, inhibitors of cytochrome 

oxidase, steroids such as progesterone (40) [Fig. 1.23], DHEA (22) [Fig. 1.23]  and pregnenolone 

(41) [Fig. 1.23], drugs of abuse such as cocaine (9) [Fig. 1.23] , methamphetamine (13) [Fig. 

1.23], methylenedioxymethamphetamine (MDMA)(53) [Fig. 1.23]  , and phencyclidine.197,199 

 

 

 

 

 

     

     

 

Figure 1.23: Variety of structural classes of sigma ligands. 

 

Consequently, a variety of compounds with different structural and pharmacological 
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benzomorphans like (+)-pentazocine (3), alkylamines like NE100 (31),200 

phenylalkylpiperidine201 (54), phenylalkylpiperazine201 (55), and octahydro[f] benzoquinolone 

(56), [Fig. 1.24].202 

 

 

 

 

 

 

 

 
 
 
 

 
 
 
 

 
Figure 1.24:  Various sigma ligands with different structural entities. 

 
 

Prior to the identification of sigma receptors, there were two main issues hindered the 

development of pharmacophore models for sigma receptors: 

1) Till 1992 sigma receptor ligands were assumed to bind to a lone homogenous receptor. 

2) Structural diversity of compounds were found to bind sigma receptors with high affinity. 
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Thus, over the last four decades, tremendous efforts were put forth to find a universal 

pharmacophore model to explain the diversity of binding ligands.  Gilligan et al.,202 in 1992 

identified a lead compound with selectivity for sigma receptors ( Ki = 6 nM). In this model they 

divided the lead molecule to four regions consistent with four pharmacophore elements as 

follow[Fig. 1.25]:202  

a) A distal aromatic ring (Region A) 

b) A nitrogen heterocycle (Region C) 

c) A space between the heterocycle and the distal aromatic ring (Region B) 

d) A substituent on the nitrogen heterocycle (Region D). 

 

 

 

 

 

 

 
Figure 1.25: The four regions proposed by Gilligan et al. for the binding of lead molecule.202 

 

After testing a variety of structural compounds, they came up with the conclusion that 

four specific pharmacophore elements important to optimal sigma binding and oral activity in 

antimescaline or anti-aggression tests.  For sigma-1 receptor binding, the ligand should have: a) a 

basic nitrogen atom, b) two hydrophobic groups with different distances from the basic N atom, 

and c) a H-bonding center midway between the basic N and the distal hydrophobic site [Fig. 

1.26]. 
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Figure 1.26: The Proposed Gilligan Model for sigma-1 receptor binding.[Adapted from ref. 202] 

   

In this model, Gilligan et al. illustrated the preference of the aromatic rings at the distal 

hydrophobic site for optimal in vivo activity. Moreover, they found that the chemical nature of 

the N-substituent and the distance and orientation between the basic nitrogen and the proximal 

hydrophobic moiety play a significant role in selectivity between sigma receptors binding and 

dopamine D1 and serotonin 5HT2 receptors binding.202 

Later, Glennon and Ablordeppy identified a pharmacophore model for binding of 

benzomorphan analogs at sigma receptors as a result of continued studies that begun in late 

1980s. It was found that the non-rigid substructure phenylethylamine (58) [Fig. 1.27]  of 

benzomorphan (57) [Fig. 1.27],  still has affinity for sigma	   receptors and that affinity varied, 

depending upon stereochemistry and the nature of R and X.203 Compound 58 was one of the 

highest affinity with 165-fold higher affinity than N-allylnormetazocine derivative (if R= -CH2-

C3H5). Subsequently, it was obvious that the rigid benzomorphan structure was not critical for 

high-affinity binding. Further study of SAR discovered that a phenylpentylamine moiety, not 

phenylethylamine moiety, in compound (59) [Fig. 1.27].  was significant for high affinity.203,204 
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Figure 1.27: The non-rigid sigma benzomorphan substructures 

  

Also, it was found both secondary and tertiary amines able to bind; however, with tertiary 

amines, one of the amine substituents could not be much larger than a methyl group [Fig. 1.28]. 

 

 

 

Figure 1.28 Structures of phenylpentylamines 

Furthermore, when phenyl rings are replaced with cyclohexyl rings, the affinity was 

retained indicating that the interaction with sigma receptors involves a hydrophobic interaction 

rather than aromatic interaction; thus, phenyl rings had no significance for affinity with sigma 

receptors and they could be removed without loss in affinity, for example compound 60 (Ki = 

2.6 nM) and compound 61 (Ki = 2.4 nM) [Fig. 1.29]. This finding, denoting the existence of a 

hydrophobic pocket in the sigma receptors.205,206 

 

 

 

Figure 1.29: Structures of other phenylpentylamines and the effect of aromaticity on affinity 
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removal of the piperdine nitrogen of compound (62)[Fig. 1.30] reduced the affinity toward sigma 

receptors (Ki, σ1 > 36,000 nM) compared to compound (63)[Fig. 1.30] (Ki, σ-1= 38 nM), 

demonstrating the importance of the basic nitrogen for sigma-1 receptor binding. 

 

 

 

Figure 1.30: Structures of compounds 62 and 63 and importance of basic nitrogen. 

Next, researchers examined the phenylpiperidine and phenylpiperazine derivatives since 

they possess the approximate dimensions of phenylethylamine.206 For instance, in haloperidol, 

which is a piperidine-containing butyrophenone, if the phenylpentylamine moiety is an important 

pharmacophoric contributor, it should be possible to extend the butyrophenone chain of 

haloperidol to a valerophenone (64)[Fig. 1.31] (σ Ki = 2.3 nM), which were found to bind with 

several-fold higher affinity than haloperidol (21) (σ Ki = 10 nM). Moreover, it was found 

removal of polar substituents, to give phenylpentylamine (65)[Fig. 1.31], resulted in 

improvement of affinity, which was one of the highest affinities to sigma receptors at that time. 

Also, replacement of the phenyl-A ring, piperidinyl phenyl ring of (65) by hydrogen retained the 

affinity (66; σ Ki = 1.9 nM)[Fig. 1.31].207 

 

 

 

 

 

Figure 1.31: Phenylpiperidines sigma receptor ligands 
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Further examination investigated the importance of the basic nitrogen of compound (67) 

[Fig. 1.32] with quaternary nitrogen, which showed decreased affinity (Ki, σ -1= 242 nM) 

compared to the non-quarternized compound (68) [Fig. 1.32] (Ki, σ -1= 5.1 nM).209 Likewise, 

quaternization of haloperidol to 69 [Fig. 1.32] (Ki, σ1 = 274 nM, σ2 = 23 nM) resulted in a >50-

fold reduction in sigma-‐1 affinity, but in little change in sigma-‐2	  affinity.209 Therefore, it’s clear 

that the quaternization of the basic nitrogen can effect selectivity as well as affinity.  

 
 

 

 

              

                        

 

 

 

 

 

Figure 1.32: Importance of basic nitrogen. 

 

In another study which examined the importance of both nitrogen atoms of piperazine, it 

was observed that basic nitrogen attached to the alkyl chain was substantial for sigma receptor 

binding.  In comparison between the affinities of piperazine (70) with piperidines (71) and (72) 

showed that compounds (70) and (71) have nearly the same affinity (Ki, σ1= 1.4 nM and 1.3 nM 

respectively), but piperidine (72) (Ki, σ1 = 0.07 nM), binds with 20-fold higher affinity implying 

that (70), (71) and (72) are binding in a different manner [Fig. 29].6 
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Figure 1.33 Chemical structures of some piperidine and piperazine derivatives 

 

Consequently, it was found the disubstitution of the piperazine ring is crucial for activity. 

For example, compounds (73) and (75) did not show any affinity for σ	  receptors; however, upon 

the introduction of phenylbutyl moiety in compounds (74) and (76), the affinity was increased by 

>50,000-fold. Surprisingly, compound (74) (Ki = 0.2 nM) had a higher affinity than compound 

(76) (Ki = 125 nM). One explanation is that the presence of the carbonyl group in compound 

(76) decreased the basicity of the benzylic nitrogen atom of (74) which is thought to be required 

for high-affinity binding. On the other hand, the carbonyl group of (76) may just not be tolerated 

by the receptor [Fig. 1.34].210 

 

 

 

 

 

 

Figure 1.34: Chemical structures of some other piperazine derivatives. 
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respectively	  despite of lacking the basic nitrogen.20 Further investigation of the steroids revealed 

that they possess embedded within their structure a hydrophobic or aryl ring and a carbon chain 

of at least five atoms.  

The cyclopentanoperhydrophenanthrene (77) [Fig. 1.35] steroid nucleus was found to 

embed an aryl ring and a carbon chain of five atoms in the rigid structure. Also, the introduction 

of basic nitrogen in the form of a piperidine ring led to compound 1.67 with high affinity for 

both the subtypes (Ki, σ-1 = 66 nM, Ki, σ-2 = 24 nM).6 

 

 

 

 

 

Figure 1.35. Cyclopentanoperhydrophenanthrene steroid nucleus 

Consequently, it was evidenced that the Ar-X5-N moiety, where Ar is either a 

hydrophobic group such as cyclohexyl or an aromatic moiety, is a common pharmacophoric 

feature of many high-affinity sigma-1 ligands. Several agents that bind at sigma receptors share 

the Ar-X5-N pharmacophore: an aryl or some other hydrophobic group separated from an amine 

by a five-membered chain.  The spacer group “X” can be linear or branched including 

unsaturation and cyclic structures, and can contain functionalities such as a ketone, amino, or 

ester group. Also, it was found that the highest affinity is usually correlated with an alkyl chain, 

and the chain length contributes to sigma-1 affinity and the optimum affinity was obtained with a 

five atoms length. In regard to the terminal amine “N”, it can be secondary, tertiary, or 

quaternary but might be only limited bulk tolerated with tertiary and quaternary amines. For a 

typical binding affinity, at least one hydrophobic substituent is required to be attached to the 

77 
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amine, and bulk tolerance might also allow the “X” group to be slightly longer or shorter than 

five atoms. Also, these findings emphasized that “Ar” is not required to be an aromatic ring and 

that its interaction with sigma receptor is more likely to be a hydrophobic interaction.6 

Accordingly, Glennon and Ablordeppy summarized the above-mentioned findings by proposing 

the Ar-C5-N pharmacophore model for high affinity sigma-‐1 binding as fellow [Fig. 1.36]:6 

 

 
Figure 1.36. Glennon/Ablordeppey“Ar-X5-N” pharmacophore model for high binding affinity at sigma-‐1 

receptor.[Adapted from ref. 6] 
 

It is noteworthy to mention that some other pharmacophore models have been proposed 

for both sigma receptors; however, they cannot be used for database mining since they only 

explain the binding characteristic of one class of compounds.211,212 

  
1.7. Selective sigma ligands  

The initial interest that followed sigma receptors discovery was renewed in the early 

1990s when two subtypes, sigma-1 and sigma-2 were identified. This discovery urged intense 

efforts into the search for compounds with selectivity for each sigma receptor subtype. (+)-

Pentazocine exhibited selectivity for sigma receptors that showed 500-fold selectivity over 

sigma-2 receptors, and undeniably the tritiated (+)-pentazocine (4) [Fig. 1.37] is used in sigma-1 

receptor binding assays.212,213 On the other hand, the non-selective ligand, [3H]DTG (2) [Fig. 

1.37] has been accepted as a radioligand to label sigma-2 receptors in presence of  the unlabeled 
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(+)-pentazocine to mask sigma-1 site. Subsequently, researchers have been made huge efforts to 

find selective sigma ligands for both subtypes.212,213 

  

 

 

 

Figure 1.37: Tritiated sigma receptors ligands 

1.7.1 Selective sigma-1 ligands 

i) Haloperidol derivatives 
 
 Haloperidol (21) [Fig. 1.38] and its related compounds have been displayed to possess 

high affinity for sigma-receptors, with a slight preference for sigma-1 over sigma-2.214 Further 

studies showed the reduction of the ketone in haloperidol resulted in decreasing the dopamine D2 

affinity that gives this compound (78) [Fig. 1.38]  relative selectivity for sigma receptors over the 

other off targets. A haloperidol derivative, E-5842 (34) [Fig. 1.38], showed an affinity of 4 nM 

for sigma-1 receptors and 55 fold selectivity over sigma-2 receptors. It has also showed moderate 

affinity for α1A adrenergic (Ki = 119 nM), α1B adrenergic (Ki = 116 nM), and α2B adrenergic 

(Ki = 89 nM), receptors and displayed low affinity for dopamine D2 (Ki >1000 nM), D3 (Ki = 

418 nM) receptors and 5-HT1A (Ki = 460 nM) and 5-HT2 (Ki = 817 nM) receptors. Interestingly, 

E-5842 has been shown to hold potential as an antipsychotic agent.172,215,216 
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Figure 1.38. Structures of haloperidol and its derivatives 

ii) Phenylacetamides 
 

A similar compound to E-5842, N-(1-benzylpiperidin-4-yl)phenylacetamide (79) [Fig. 

1.39] showed a selectivity of 187 fold over sigma-2 receptors with no affinity for dopamine D2 

(Ki >1000 nM), D3 (Ki >1000 nM) receptors.217 Subsequent studies, showed that the introduction 

of a halogen on both aromatic rings led to an increase in selectivity for sigma-‐1 over sigma-‐2	  

receptor.218 

 

 

 

Figure 1.39. Structure of the phenylacetamide derivative. 

iii) Dipropylamines  
 

NE-100 (31)[Fig. 1.40], is a dipropylamine class of compound that showed high affinity 

for sigma-1 receptors with an IC50 of 1.54 nM, and moderate selectivity of 55 fold over sigma-2 

receptors.219 In a subsequent study, it was found that both propyl groups are not necessary for 

affinity at sigma receptors, and that the mono-propyl analog 80 possesses a significant affinity. It 

was also found that the introduction of alkyl groups alpha to such a secondary amine in 

compound (81)[Fig. 1.40] actually led to increases in affinity and selectivity for sigma-‐1 

receptors.200 
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                   Figure 1.40. Structures of some propylamine compounds. 

iv) Spirocyclic pyranopyrazoles 
 

A series of spirocyclic pyranopyrazoles was synthesized by Schläger and colleagues 

resulting in the potent and selective sigma-1 receptor ligand (82)[Fig. 1.41] (Ki = 0.94 nM, 730-

fold selectivity for sigma-1 over sigma-2 receptors).221 Subsequent modification and introduction 

of a methyl group as can be seen in compound (83)[ Fig. 1.41] displayed low affinity and 

selectivity for sigma-1 receptors (Ki= 18.9 nM, > 56-fold selectivity for sigma-1 over sigma-2 

receptors). However, introducing a phenyl group at the pyrazole heterocycle (84)[ Fig. 1.41] 

restored the affinity with Ki = 0.97 nM, and 326-fold selectivity for sigma-1 over sigma-2 

receptors. Similarly, replacement of the pyrazole heterocycle of the spirocyclic derivatives with a 

thiophene ring gave high affinity selective sigma-1 ligands. Furthermore, benzene (85) [Fig. 

1.41] substitution at the piperidine ring showed higher affinity and selectivity for sigma-1 

receptors than cyclohexylmethyl (86) [Fig. 1.41] substitutions with Ki, σ1= 1.1 nM, and 900-fold 

selectivity for sigma-1 receptors. Conversely, the introduction of basic or polar groups reduced 

the affinity as can be seen in compound (87) and (88)[ Fig. 1.41] 222 Additionally, 1′-benzyl-3,4-

31, NE-100 80 

81 
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dihydrospiro[2H-1-benzothiopyran-2, 4′-piperidine] (Spipethane) (89)[ Fig. 1.41] has been 

shown to possess 832 fold selectivity for sigma-‐1 receptors with low affinities for other 

receptors such as dopamine D2 (Ki = 10,400	   nM),	   α1A adrenergic (Ki >10,000	   nM),	   α1B 

adrenergic (Ki >10,000 nM), 5-HT2 (Ki = 7,600 nM), M2 (Ki = 10,800 nM), M3 (Ki >10,000 

nM), opioid (Ki >10,000 nM) and PCP (Ki >10,000 nM) receptors.223,224 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.41: Selective sigma-1 of spirocyclic pyranopyrazoles. 
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v) Various Selective sigma-1 ligands 
 

A simple achiral monoamine, AC915 (90) [Fig. 1.42], showed high affinity for sigma-1 

receptors (Ki = 4.89 nM) and excellent selectivity of  > 2040 fold over sigma-2 receptors.222  

 

 

 

 

Figure 1.42. Selective sigma-1 ligand with high affinity. 

Furthermore, numerous tetrahydronaphthalene derivatives have been synthesized and 

evaluated for their affinity toward sigma receptors. These derivatives showed high affinity for 

sigma receptors, as exemplified in compounds (91) and (92) [Fig. 1.43] (IC50 = 0.016 nM and 

0.008 nM respectively) and both compounds showed high selectivity by more than 100,000 fold 

for sigma-‐1	  over sigma-‐2.224 Subsequent structure activity relationship study revealed that upon 

replacement of the cyclohexyl ring with aromatic ring in compound (93) [Fig. 1.43]  resulted in 

decreasing the sigma-‐1	   selectivity to 680 fold.225 Further replacement of piperidine with 

cyclohexylpiperazine in compound (94) [Fig. 1.43], sigma-‐1	   selectivity was 406 fold over 

sigma-‐2.226  

 

 

 

 

 

 

Figure 1.43: Selective sigma-1 of tetrahydronaphthalene derivatives. 

90, AC915 
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The benzo[d]thiazol-2(3H)-one derivative, SN56, (95)[Fig. 1.44] has shown high affinity 

(Ki = 0.56 nM) and over 1000 fold selectivity for sigma-1 receptor. This compound was also 

tested against a panel of receptors including dopamine (D1 and D2), 5-HT, α1, α2, β1, β2, H1, H2 

and was found to have only moderate affinity for a 2 (Ki = 205 nM) and H1 (Ki = 311 nM) 

receptors.227 Further structural features investigation of benzo[d]thiazol-2(3H)one derivatives 

that was performed in our laboratory identified compound (96) [Fig. 1.44]  as a high affinity 

ligand for sigma-1 receptors, with sigma-1 Ki = 4.5nM, and a 484-fold selectivity over sigma-2 

receptors.228 

 

 

 

 

 

 

Figure 1.44: Selective sigma-1 of benzo[d]thiazol-2(3H)one derivatives. 

1.7.2 Selective sigma-2 ligands 
 

i) Morphans 
 

Compound CB-64D (99) and compound CB-184 (101) [Tab. 1.4]  were the first reported 

highly selective sigma-2 receptor ligands that belonging to the (E)-8-benzylidene-5 

phenylmorphan- 7-ones class.229 These compounds developed in 1990s from 2-methyl-5-(3-

hydroxyphenyl) morphan 97[Tab. 1.4], were also found to have high affinity for µ opioid 

receptors. Subsequent introduction of the benzylidene moiety at the C-8 position (98-101) [Tab. 

1.4] led to decrease of µ receptors affinity whereas the affinity at the sigma-2 subtype 

95, SN56 96 
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improved.230 Interestingly, both sigma subtypes demonstrated opposite enantioselectivity with 

sigma-1 binding the (–)-isomers with a 300-fold higher affinity than the (+)-isomers, and the 

sigma-2 binding the (+)-isomers with 3- to 10-fold higher affinity than the (–)-isomers. Hence, 

(+)-isomers of CB64D and CB184 exhibited the highest sigma-2 over sigma-1 receptor 

selectivity with 185-fold and 554-fold, respectively [Table 3]. In addition, these (+)-morphans 

showed very low affinities for the muscarinic receptors, PCP binding sites and the other opioid 

receptors such as κ and δ.230, 231 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Table 1.4: Affinities of (E)-8-benzylidene-5-(3-hydroxyphenyl)-2-methylmorphan-7-ones at sigma receptors. 
[Adapted from ref. 231] 

 

 

ii) Ibogaine 
 

 Ibogaine or 12-methoxyibogamine (102) [Fig. 1.45] is a hallucinogen indole alkaloid 

derived from the root of the African shrub Tabernanthe iboga, which displayed a moderate 

Compound Configuration R Ki (nM) Ratio 
selectivity 

σ1 σ2 σ1/σ2 
 98, CB-64L (–)-1S,5S H 10.5±1.6 153±3 0.07 
99, CB-64D (+)-1R,5R H 3063 ±78 16.5±2.7 185 

 100, CB-182 (–)-1S,5S Cl 27.3±2.8 35.5±8.8 0.77 
 101, CB-184 (+)-1R,5R Cl 7436±308 13.4±2.0 554 

HO

O

N CH3

HO

O

N CH3
R

R

97 
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sigma-2 (Ki = 201 nM) over sigma-1 selectivity with 40-fold.231 However, it has a downside that 

it interacts with a range of biological systems including sigma-2 receptors and thus it is not 

suitable to use to explore the actions of sigma-2 receptors in vivo assays.231,232,233 

 
 

 
 

 
 

 
 

 

 
 

 
 

Figure 1.45: Structure of 12-methoxyibogamine or ibogaine and its binding affinity. 
 

iii) Spirocyclic ligands 
 
Siramesine (31)[Fig. 1.46] is another recently reported selective sigma-2 ligand discovered 

shortly after CB184 and CB64D were published. It was developed from studies on low efficacy 

5-HT1A agonists.234 

                                                      
 

 
Figure 1.46:. Structure and binding affinity of Siramesine 
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32, Siramesine 
(Lu-28-179) 

 
IC50 

σ-1 = 17 nM 
σ-2 = 0.12 nM 
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102, Ibogaine 
Ki, σ-1 = 9310 nM 
σ-2 = 90.4 nM 
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Besides siramesine, several other piperazine derivatives displayed high affinity for 5-

HT1A and moderate affinity at sigma receptors, in particular, the 1-(2-methoxyphenyl) piperazine 

derivative (103)[Fig. 1.47].235 

 
 

 
 

 
  
 

 
 
 
 
 
 
 
 

Figure 1.47: Piperazine derivatives with moderate sigma affinity. 
 
It was clear that replacement of the piperazine by a piperidine ring enhanced affinity at 

both sigma subtypes to the same extent as when a 4-fluorobenzene was used in spite of the 2-

methoxybenzene. However, the highest sigma-2 receptor affinity was obtained from the 

unsubstituted, 4-phenylpiperidine derivative (104) [Fig. 1.47]. It was also found that introduction 

of 4-fluorophenyl at the indole N-atom removed the affinity for 5-HT1A receptors and reduced 

the affinity at 5-HT2A, sigma-1 and D2 sites. Both 4-phenylpiperidine and 4-(4 fluorophenyl) 

piperidine derivatives within this series of compounds exhibited subnanomolar affinities at 

sigma-2 receptor, with valuable selectivity versus the sigma-1 subtype (up to 100-fold for the 4-

phenylpiperidine). Alternatively, the N-(4-fluorophenyl) piperazine derivatives exhibited a 10-

fold lower affinity at both sigma subtypes as compared to their piperidine analogs. Therefore, the 

piperidine derivatives were investigated further and the phenyl ring connected to the piperidine 

ring via spiro fusion as can be seen in siramesine and its analogs.231, 234 

104 
 
σ1 = 1.5 nM 
σ2 = 0.48 nM 
5-HT1A= 110 nM 
5-HT2A = 25 nM 
D2= 45 nM 
α1= 14 nM 

103 
 
σ1 = 14 nM 
σ2 = 21 nM 
5-HT1A= 17 nM 
5-HT2A = 150 nM 
D2= 15 nM 
α1 = 2.7 nM 
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Based on the above mention studies, there are structural requirements for siramesine and related 

molecules to have unique sigma-2 selectivity: 

1) Substituents at the piperidine N-atom (105)[Fig. 1.48] are important for sigma-2 affinity and 

selectivity. For instance, small alkyl substituents such as methyl or ethyl resulted in loss of 

affinity at both sigma sites, whereas an increase of chain length led to an increase of sigma 

affinity with a consistent change towards sigma-2 selectivity.231,234 

 
 

 
 
 

 
 
 

 
Figure 1.48: Spiro-fusion with various alkyl substituents. 

 
Compound (106) [Fig. 1.49]. (high lipophilic) and (107) [Fig. 1.49]. (less lipophilic) showed a 

direct correlation between the affinity at sigma-2 receptors and the lipophilicity of the structures 

as can be seen in [Fig. 1.49]. 

 

 
 
 
 
 
 

Figure 1.49. Spiro-fusion with high and low lipophilic substituents. 
 
 
2) Introducing groups such as a fluorine atom or a CF3 group on the benzene ring of the 

spiropiperidine benzene moiety resulted in decrease of affinity or loss of selectivity [Fig. 46].  
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σ1 = 1.5 nM 
σ2 = 0.07 nM 

107, IC50 
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σ2 = 430 nM 

105 



 56 

3) Modification of the O- atom position by inserting a methylene ring to enlarge the ring size 

resulted in a decrease of affinity and selectivity towards sigma−2 receptors. Also, replacement of 

oxygen with sulfur displayed high affinity and selectivity toward sigma-2 receptors with a 250-

fold sigma-2 versus sigma-1 selectivity [Fig. 1.50].231,234 

 

 
 

Figure 1.50: Spiropiperidines structure activity relationships.231 

iv) Arylpropylamines 
 

It has been observed that ibogaine and CB-184 contain arylpropyl amines and show 

sigma-2 selectivity, while the selective sigma-1 compound, NE-100 possesses a 

phenylethylamine moiety. This finding opened the way to investigate a variety of phenethyl and 

phenylpropyl amines. The phenylpropylpiperidine (108) [Fig.1.51] demonstrated a four-fold 

preference toward sigma-2 receptors, which could be improved with other substituents as can be 

seen in compound (109) [Fig.1.51].6,200 

 
 
 
 

 
 

Figure 1.51:  Simple Phenylalkylamines. 
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v) Tropane analogs 
 

A novel tropane-based ligand (110)[Fig. 1.52] has been reported by Mach et al. was 

found to display high affinity for sigma-‐2 receptors (Ki = 5 nM) with 500 fold greater selectivity 

over sigma-‐1 receptors.236 The para-amine substitution improved the selectivity, compared to the 

unsubstituted phenyl analog that demonstrated much lower selectivity for sigma-2 receptors. On 

the other hand, the related tropane-containing ligand (+)-SM-21 (111)[Fig. 1.52] has been 

reported to have substantial affinity for sigma-2 receptors, and is currently used as a sigma-2 

antagonist in behavioral assays.237,238 

 

 
 

 
 
 

                
 

 
Figure 1.52: Tropane analogs 

vi) Benzamides 
 

Benzamides are another class of compounds that were developed from dopamine D3 

receptor ligands, which also displayed high affinity for sigma receptors. Further modification led 

to substituted benzamides connected to the N-atom of 6,7 dimethoxytetrahydroisoquinoline 

motif by a 4-methylene chain, characterized by high sigma-2 selectivity (112) [Fig 1.53].239 

 
 

 
 
 
 

 
Figure 1.53: General structure of flexible benzamides. 
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Compounds such as 5-methyl-2-methoxy-N-[4-(6,7-dimethoxy-3,4-dihydro-1H 

isoquinolin- 2-yl)butyl]benzamide (RHM-1;113) [Fig. 1.54] and N-[4-(6,7- dimethoxy-3,4 

dihydro-1H-isoquinolin-2-yl)butyl]-2-(2-fluoroethoxy)-5-iodo-3-methoxybenzamide (ISO-1; 114 

) [Fig. 1.54] are highly sigma-2 selective flexible benzamides.239 

 

 
 

 
 

Figure 1.54: Two of the most selective σ2 flexible benzamides. 

Subsequent modification on RHM-1 led to the development of high affinity sigma-2 

ligands, the N-[4-6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)butyl]-5-bromo-2,3-

dimethoxybenzamide (115) (sigma-1, Ki = 12.900 nM; sigm-2, Ki = 8.2 nM)[Fig.  1.55].240,241 

 

 

 

 

Figure 1.55: RHM-1 analog. 

Further studies confirmed that the 6,7-dimethoxy substitutions were significant for 

achieving high sigma-2 affinity, whereas substitution with methylene-dioxy, ethylene-dioxy and 

propylene-dioxy proved to decrease sigma-2 receptor affinity. Once the N-atom containing ring 

was opened, a dramatic decline in sigma affinity was observed. The effect of the conformational 

freedom of the 6,7-dimethoxytetrahydroisoquinoline on sigma receptor interactions was 
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investigated where the five-membered and seven-membered rings containing the N-atom fused 

to the benzene ring to mimic the 6,7 dimethoxytetrahydroisoquinoline structure. The five-

membered fused ring provided a 10-fold higher sigma-2 affinity than the tetrahydroisoquinoline 

lead compound while the seven-membered ring reduced sigma-2 affinity by a 40-fold suggesting 

that a higher conformational freedom of the basic nucleus has a negative effect on sigma-2 

binding. Moreover, varied changes to the position of the N-atom within the ring were explored 

and the optimum results obtained with the tetrahydroisoquinoline position and that was explained 

to the basic character alteration of the N-atom [Fig. 1.56].231,241 

 

            Figure 1.56: SAR of the 6,7-dimethoxytetrahydroisoquinoline for sigma-2 binding. [Adapted from ref. 231] 
  

1.8. Dual probes for sigma-1 receptors and the dopamine transporters  

(Rimcazole analogs): 

 
A number of studies provided evidence that sigma receptors and cocaine are associated. 

For instance, it was reported that cocaine binds with a moderate affinity to sigma receptors in 

concentrations similar to those were achieved by cocaine in the brain (in vivo).103 Consequently, 

a number of sigma ligands such as BMY 14802 (11) and rimcazole (33) [Fig. 1.57] have been 

displayed to attenuate locomotor and rewarding effects of cocaine.242,243 Moreover, the sigma-1 

receptor antagonists CM156, NE-100 and BD1047 displayed significant attenuation of cocaine-

induced place preference.108,109,243 Additionally, several other studies showed that sigma-1 
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receptor antagonists block the development of sensitization to cocaine in rats.242,243  Although, 

there is no similarity in the homology between sigma receptors and dopamine transporters 

proteins, intriguingly, it seems that there is a linkage to the cocaine binding site on the dopamine 

transporter (DAT) and the sigma-1 antagonist binding site. For example, the potent DAT 

inhibitor GBR 12909 (119) [Fig. 1.57] was described to effectively displace [3H](+)-3-(3-

hydroxyphenyl)-N-(1-propyl)piperidine ([3H] 3-PPP) from sigma receptors in rat brain (IC50 = 48 

nM)244, and isothiocyanate analog of the sigma antagonist rimcazole has been exhibited to bind 

irreversibly to the DAT, in rat caudate-putamen.245,246 

 

 
 

 

 

 

 

 

 
 

 
 

 
 

 
 
 
 

 
 
 

 
 

Figure 1.57: Rimcazole and its analogs. 
 

38, Rimcazole; R=H 
116, SH 1-73; R=CH3 
117, SH 3-28; R=propylphenyl 
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        R=propylphenyl 
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        R=benzyl 
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        R=propylphenyl 
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123, GBR 12909 11, BMY-14802 
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Based on these findings, a series of rimcazole analogs was synthesized as potential 

dopamine uptake inhibitors, and their structure-activity relationships at dopamine transporter 

DAT, serotonin transporter (SERT), norepinephrine transporter (NET), and sigma-1 receptors 

were extensively studied. In this study, it was found substitutions on the carbazole ring of 

rimcazole led to decrease binding affinities at both sigma-1 receptors and the DAT.247,248 

Furthemore, N-methylation of the terminal piperazine nitrogen (SH 1-73, (116)) resulted in a 

small increase in binding affinity at sigma-1 receptors (Ki = 552 nM) but in a slightly less active 

DAT compound (Ki = 436 nM).248 Conversely, introducing a propylphenyl group, on the 

terminal piperazine nitrogen (SH 3-28, (117)), as seen with GBR 12909 (123), led to increase 

and retention in sigma receptor and DAT binding affinities, respectively.  Similarly, replacement 

of carbazole ring with a diphenylamine connected with the N-propylphenyl substituent resulted 

in a potent rimcazole analog SH 3-24 (118) [Fig. 1.57]  (Ki = 97 nM at sigma-1and 61 nM at 

DAT).248 Also, placing a fluorine atom at para-position of the diphenylamine moiety (JJC 1-

059)(119) [Fig. 1.57]  led to appreciably increase in both sigma-1 receptor and DAT binding  (Ki 

=11.1 nM and 22.8 nM, respectively).247,248 Reducing the lipophilicity by removing the methyl 

groups from the piperazine ring (JJC 2-008)(121) [Fig. 1.57]  also reduced sigma-1 receptor 

binding affinity (Ki = 66.2 nM) while retaining high affinity for DAT (Ki = 18 nM). Remarkably, 

the N-benzyl analog (JJC 2-006)(120) [Fig. 1.57]  displayed the highest affinity for sigma-1 

receptors in the demethylated analogs (Ki = 13.1 nM). [Data is shown in Table. 4].247,248 These 

findings, suggested that compounds with the dual actions at both sigma-1 receptors and the 

dopamine transporter DAT may prove to be a novel strategy for the development of a cocaine-

abuse medication and is being investigated toward this goal. 
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       Table 1.5: Binding affinities at sigma-1 and DAT 

a: [246]; b:[248] These experiments evaluated nine structurally diverse sigma ligands for displacement of [3H]WIN 
35,428 binding at DAT in rat caudate-putamen and displacement of [3H](+)-pentazocine binding at sigma-1 
receptors. 

1.9. Sigma receptor radioligands and PET imaging agents 

These radioligands are tools derived from ligands with a high affinity and selectivity and 

they are mostly useful for characterizing the functions of receptor systems as well as mapping 

their distributions.   

1.9.1. Sigma-1 receptor radioligand 
 

The highly selective sigma-‐1	   receptor ligand, (+)-pentazocine (3)[Fig. 1.58], (Ki, σ1 = 

3.1 nM; σ2 =1542 nM; σ2/σ1 = 500), was developed by De Costa et al. into an optically pure 

radioligand, which currently used	  in	  sigma-‐1 binding assays. However, [3H](+)- pentazocine (4) 

[Fig. 1.58], has significant limitations; it is difficult to synthesize, has limited chemical stability, 

and can be problematic to obtain.249  

 

 

 

Figure 1.58: The highly selective sigma-1 receptor radioligand. 

Compound  
[3H](+)-

Pentazocine(σ1) Ki 
(nM)a 

[3H]WIN 35,428 
(DAT) Ki (nM) σ 1/DAT 

Cocaine 8830 ± 860b 187 ± 19a 47 
GBR 12909 318 ± 18a 11.9 ± 1.9a 27 
Rimcazole 908 ± 99a 224 ± 16a 4.1 
SH 3-24 97.2 ± 14.0a 61.0 ± 6.1 a 1.6 
SH 1-73 552 ± 110a 436 ± 44 a 1.3 
SH 3-28 104 ± 0.4a 263 ± 34 a 0.4 

JJC 1-059 11.1 ± 0.8 b 22.8 ± 2.0 b 0.5 
JJC 2-008 66.2 ± 3.6b 18.1 ± 2.7 b 3.7 
JJC 2-006 13.1 ± 1.2 b 27.6 ± 3.9 b 0.5 
JJC 2-010 372 ± 21 b 8.5 ± 0.8 b 44 

4, [3H](+)-Pentazocine 3, (+)-Pentazocine 
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The implication of sigma receptors in several CNS disorders, as well as cancer, has 

inspired the development of many carbon-11 labelled and fluorine-18-labelled ligands for non-

invasively imaging these sites using positron emission tomography (PET). However, fluorine-18 

(t1/2 = 109.8 min) has a longer half-life compared to carbon-11 (t1/2 = 20.4 min), which allows 

multi-step synthetic sequences that can be extended over hours.250 Positron imaging tomography 

(PET) is a noninvasive technique that is widely used to study sigma-1 receptor expression in 

mammalian brain as well as to enumerate receptor occupancy and physiological response. As of 

the higher densities of sigma-1 receptors in the CNS, radiotracers targeting this subtype are 

important for PET imaging of the brain. SA4503 (124)[Fig. 1.59] is a relatively selective sigma-

1 receptor agonist (Ki = 4.4 nM, σ1/σ2 = 55), which is the most widely used 11C labeled 

radiotracer.61 It has been used in the PET imaging of sigma-1 receptors in monkey251,252 and 

human brain.253 

 
 
 
 
 

 
Figure 1.59:  The widely used selective sigma-1 [11C labeled] radiotracer. 

 
On the other hand, a sigma-1 receptor selective fluorine-18-labeled SA4503 (125) [Fig. 

1.60] analog was synthesized by Ishiwata et al. to perform the biodistribution, kinetic and 

metabolism studies of this radioligand in rodents and rhesus monkeys.254 

 

 

 
 

 
 
 

Figure 1.60:  The widely used selective sigma-1 [18F labeled] radiotracer. 

125, [18F]FM-SA4503 

124, [11C]SA4503 
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Moreover, the 18F-1-(3-Fluoropropyl)-4-(4-cyanophenoxymethyl)piperidine, [18F]FPS 

(126) [Fig. 1.61]  has shown subnanomolar affinity and moderate selectivity for sigma-1 

receptors. This radioligand has been evaluated in rat brain and tumor bearing animal models.190 

Spirocyclic sigma-1 receptors ligand WMS-1813 (127) [Fig. 1.61]  with high affinity (Ki = 1.4 

nM) and exceptional selectivity was labelled with 18F and evaluated in experimental animals, 

which showed high uptake in the brain.255 

 

          
 
 
 

 
Figure 1.61: Selective sigma-1 [18F labeled] radiotracers. 

 
 

In our laboratory, several 2(3H)-benzoxazolones and 2(3H)-benzothiazolones have been 

synthesized and evaluated for their binding affinity toward sigma receptors.228,256 Some of these 

have demonstrated high selectivity toward sigma-1 receptors, such as SN56 (95) [Fig. 1.62], with 

more than 1000 ratio selectivity for sigma-1 over sigma-2 (σ1 Ki=0.56nM, σ1/σ2 >1000), and 

CM304 (23) [Fig. 1.62]  with more than 145,000 ratio selectivity for sigma-1 over sigma-2 (σ1 

Ki=0.0025nM, σ1/σ2 >45,000).228 CM304 was obtained from SN56 by terminal fluorine-for-

hydrogen substitution of the propyl chain. [18F]FTC-146 (24) [Fig. 1.62] is a radiolabeled analog 

of CM304 that showed good correlation between [18F]FTC-146 accumulation and sigma-1 

receptor expression.256 
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Figure 1.62: In house developed selective sigma-1 radiotracers. 

Based on the studies of [18F]CM304/ [18F]FTC-146 in mice, rats, and squirrel monkeys, 

the radioligand accumulated in regions known to include high levels of sigma-1 receptors, which 

suggests that the PET signal specifically binds to sigma-1 receptors in vivo.53,54 Further study in 

our laboratory indicated that the [3H]-SN56 (128) [Fig. 1.62]  possesses high affinity and 

selectivity for the σ1 receptor, and appears to be a feasible alternative for [3H](+)-pentazocine in 

radioligand binding assays since the [3H]-SN56 has  more than 70 fold higher affinity for the 

sigma-1 receptor than [3H](+)-pentazocine.258 

1.9.2. Sigma-2 receptor radioligands 
 

[3H]-DTG (1,3-di(2-tolyl)guanidine) (2) [Fig. 1.63]   is a non selective ligand which has 

mixed affinity for both sigma-‐1 and sigma-‐2 receptors (Ki, σ1 = 41 nM; σ2 = 49 nM); however, 
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it is being accepted as a radioligand in the presence of (+)-pentazocine to mask sigma-1 sites.257 

 

 

 

 

 
 

Figure 1.63: Generally accepted sigma-2 radioligand for binding assays. 
 

Several studies have reported that sigma-2 receptors are over expressed on malignant 

tissues therefore sigma-2 selective radiotracers may be clinically useful in tumor imaging. For 

instance, the selective sigma-2 radioligand, 5-76Br-bromo-N-(4-(3,4-dihydro-6,7-dimethoxy-

isoquinolin-2(1H)yl)butyl)-2,3-dimethoxy-benzamide (32) [Fig. 1.64] (Ki, σ-1 = 12,900 nM; σ-2 

= 8.2 nM; σ-1/σ-2 = 1573), has been studied in the mice EMT-6 tumor models, and showed high 

uptake of the radiotracer in the tumors and low uptake in the surrounding normal tissues.190,258 

RHM-1 (112) is one of the first flexible benzamides with a 300-fold higher affinity for 

sigma-2 versus sigma-1 receptors (Ki, σ-1 = 3078 nM; σ-2 = 10.3 nM) that was developed by 

Mach and coworkers.259 It has been radiolabeled with tritium (129)[Fig. 1.64], and it is routinely 

used for sigma-2 binding assays.224 Similarly, IS0-1 (130)[Fig. 1.64], a benzamide selective 

sigma-2 ligand, has been examined in ETM-6 tumor mouse models as potential PET probe as 18F 

radiolabeled compound (Ki, σ -1 = 2150 nM; σ -2 = 0.26 nM; σ -1/σ-2 = 8190), which is also 

radiolabeled with 125I of the same molecule provides a sigma-2 radioligand that has been recently 

used for binding assays, ISO-2 (131)[Fig. 1.64]   ( Ki, σ-1 = 2150 nM; σ-2 = 0.26 nM; σ-1/σ-2 = 

8190).260,261  However, none of these ligands have replaced the standard of using DTG in binding 

assays. 

2, [3H]DTG 
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Figure 1.64. Selective sigma-2 radiotracers used for tumors and binding assays.

129, [3H]RHM-1 

130, [18F]ISO-1 131, [125I]ISO-2 

32, [78Br] Analog of RHM-1  
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CHAPTER II: SIGMA-2 RECEPTORS AND THEIR POTENTIAL ROLE IN 
ONCOLOGY 
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2.1. Introduction 
 

Cancer is a state of cellular growth, which occurs when some normal cells 

become abnormal and continue to grow and subdivide abnormally and out of control. 

According to the World Health Organization (WHO), in 2012 there were 14.1 million 

new cancer cases, 8.2 million cancer deaths and 32.6 million people living with cancer 

(within 5 years of diagnosis) worldwide.262  

Conventional chemotherapeutic agents are cytotoxic, which act by killing cells 

that divide rapidly under both cancerous conditions and normal conditions, including 

cells in the bone marrow, digestive tract, and hair follicles.263 Consequently, these agents 

results in the well-known and serious side effects of chemotherapy, for example, 

decreased production of blood cells (Myelosuppression),263,264  inflammation of the lining 

of the digestive tract (Mucositis)264-266 and hair loss (Alopecia)266.   

In the search for novel and selective cancer therapies that can be used alone or in 

combination with existing chemotherapies to achieve maximum efficacy and safety to the 

surrounding normal tissues and reduce the toxic side effects that associated with the 

nonselective classical chemotherapies, a tremendous amount of effort invested in 

research, and this can be evidenced from the amount of recent publications highlighting 

the overexpression of sigma-2 receptor in numerous cancer tissues.263,265 These results 

strongly support the potential implications of sigma-2 ligands in cancer diagnosis and 

therapy. Therefore, this chapter focuses on the involvement of sigma-2 receptor in cancer 

biology and the potential therapeutic contributions of the sigma-2 receptor ligands in 

oncology. 

As previously mentioned, sigma receptors represent a unique class of proteins, 
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and it has been accepted that there are two subtypes of sigma receptors, denoted sigma-1 

and sigma-2 based on pharmacological and molecular studies. Sigma-1 receptor has been 

cloned and characterized as a 24 kDa single polypeptide having no homology with any 

other known mammalian proteins whereas the sigma-2 subtype is a 18-21 kDa protein 

that has not yet been cloned. Consequently, much less is known about the sigma-2 than 

the sigma-1 due to the absence of detailed structural information of the protein and the 

lack of truly selective sigma-2 ligands hampered the isolation and characterization of this 

protein. However, recent studies led to identify sigma-2 receptor protein as the 

progesterone receptor membrane component 1 (PGRMC1).85 

Since the discovery of sigma receptors by Martin and colleagues1 in 1976, 

extensive studies have been conducted on sigma receptors and their functions in the 

central nervous, motor, endocrine, immune systems, addiction, and cancer.1-4 These 

studies demonstrated that sigma receptors are involved in several pathologies of the 

central nervous system, including depression, anxiety, schizophrenia, and Alzheimer’s 

disease, and they are now considered as therapeutic targets for the treatment of these 

diseases.267-269 Furthermore, sigma receptors have been shown to be overexpressed in 

many cancer tissues from both neural and non-neural origins.35 However, malignant 

tumor cells display a higher expression of sigma-2 receptors than quiescent tumor cells.  

It was reported that sigma-2 receptor is expressed about 10-fold more in proliferating 

tumor cells compared with quiescent tumor cells and because ligand binding to this 

receptor can result in tumor cell death both via apoptotic and non-apoptotic 

mechanisms.36 Furthermore, activation of sigma-2 receptors with sigma-2 ligands induces 

antiproliferative and cytotoxic effects in tumor cells in vitro as well as in in vivo 
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preclinical models.231 Therefore, sigma-2 receptors are promising targets for tumor 

diagnosis and treatment. 

2.2. Sigma-2 receptor and PGRMC1 
 

It has been known for years now that sigma-2 ligands inhibit progesterone binding 

to a microsomal fraction of porcine liver, proposing that the high-affinity toward 

progesterone binding sites are part of a sigma receptors complex.270 However, a 

significant study by Xu et al., in 2011 provided the proof of concept that sigma-2 receptor 

and PGRMC1 are correlated and co-located.85 

PGRMC1 (progesterone receptor membrane component 1) is a protein that has 

been reported recently as a valid biomarker of cancer 37,87,271,272 due to its upregulation in 

numerous types of cancers, such as ovary, breast, thyroid, lung, and colon,86 as well as its 

necessity for cancer formation, growth, proliferation, and metastasis.87 Therefore, 

PGRMC1  represents a vital biomarker for cancer progression and a potential target for 

anticancer drug discovery and development.86,273,274 More recently, proteomic studies 

also showed that PGRMC1 is expressed in high levels in the proliferative cells of human 

endometrium.275 PGRMC1 regulates cell growth and proliferation through interactions 

between its Cytochrome b5 binding domain and other potential binding partners, which 

include Insig-1, PAIR-BP1, and P450 proteins.273, 275-280 It’s also stimulating P450 and its 

activity that promote cholesterol synthesis.86 In addition, it was found that cancer cell 

proliferation and invasion was inhibited by the PGRMC1 inhibitor, AG205 (8) [Fig. 2.1], 

and this is mostly by inhibition of ERK1/2 phosphorylation.85-87 

On the other hand, several other studies have shown that the sigma-2 receptor 

density in proliferative breast cancer cells is about 10-fold higher than in quiescent breast 
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cancer cells.83 Consequently, sigma-2 receptor has been validated as a biomarker for 

tumor cell proliferation both in vitro and in vivo, and as a target for chemotherapy83 

Sigma-2 receptor expression is upregulated during the transition from quiescence to 

proliferation and down-regulated during the transition from proliferation to quiescence.247 

Based on the above mentioned findings, PGRMC1 protein and sigma-2 receptor 

share some common features, and due to this similarity, Mach and colleagues conducted 

a series of experiments and have concluded that sigma-2 receptor is likely to be the 

PGRMC1 protein or located within PGRMC1 protein complex based on the following 

facts:85 

a) The selective sigma-2 ligand binding, [125I]RHM-4 (132) [Fig. 2.1], was blocked 

not only by other sigma-2 ligands, such as DTG, siramesine, WC26 (133) [Fig. 

61], SV119 (134)[Fig. 2.1], but also by the PGRMC1 protein inhibitor, AG-

205.82,83 

b) The selective fluorescent sigma-2 ligand, WC-21 (7) [Fig. 2.1], cross-linked a 

protein that shares similar sequence as that of PGRMC1 protein. 

c) Both the anti-PGRMC1 antibody and the fluorescent sigma-2 ligand, SW120 

(135)[Fig. 2.1], labeled the same intracellular sites under confocal microscopy. 

d) Cells with a decreased PGRMC1 protein (PGRMC1 knockdown) level also 

exhibited reduced sigma-2 receptor binding, likewise cells with a higher 

PGRMC1 protein expression (PGRMC1 transfection) showed higher sigma-2 

receptor binding.88 

However, these findings need to be confirmed since numerous questions have 

been raised and urged the search for answers; for example, the molecular mass of sigma-
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2 receptor is about 21.5 kDa while the PGRMC1 protein is from 22 to 28 kDa 

range.6,185,273,281-283 Also, the tumor cell proliferation, growth, and metastasis were 

inhibited by PGRMC1 protein inhibitors, whereas sigma-2 antagonists stimulate tumor 

cell proliferation and sigma-2 agonists induce apoptosis according to many published 

reports. Further, PGRMC1 is reported to bind to P450 resulting in the stimulation of its 

activity and increased cholesterol synthesis,86 which has not been reported for the sigma-

2 receptor. Moreover, none of the sigma-2 ligands have been reported to bind to 

PGRMC1 protein or even PGRMC1 protein ligands to bind to sigma-2 receptors.36,284 

Therefore, a controversy still exists as to the validity of PGRMC1 as the actual sigma-2 

receptor protein.  Most recently, Rouho and coworkers showed evidence for a smaller 

molecular weight protein as the sigma-2 receptor in stark contrast to the results shown for 

the PGRMC1 protein. 
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Figure 2.1. Chemical structures of sigma-2 receptor ligands and PGRMC1 inhibitor, AG205. 

 
 
2.3. The most recent hypothetical sigma-2 receptor signaling pathways 
 

A number of studies have shown that sigma-2 receptor over-expressed in 

proliferative cells, which is in agreement with the well-known PGRMC1 protein. In 

addition, the recent finding that sigma-2 receptors and PGRMC1 proteins are co-located 

and competed for the same PGRMC1 ligands or sigma-2 ligands.85 From one hand, 

several studies have demonstrated that the PGRMC1 protein interacts with epidermal 

growth factor receptor (EGFR),271 plasminogen activator inhibitor RNA-binding protein 

1 (PAIR-BP1),273 insulin-induced gene/SREBP cleavage activating protein/sterol 

regulatory element binding protein (Insig-1/Scap/SREBP) complex,37 and neutrophil 

gelatinase-associated lipocalin (NGAL).272 Further, it has been reported that PGRMC1 

protein involved in activation of P450, antiapoptosis, cell invasion, metastasis, 

stimulation of tumor growth, and regulation of steroid signaling.86,87 

On the other hand, sigma-2 receptor ligands have been reported in some studies 

for their ability to reduce the expression of downstream effectors of mTOR pathway 

7, WC-21 

135, SW-120 
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signaling (p70S6K and 4EBP1), trigger caspase-3, activate PARP-1 (poly [ADP-ribose] 

polymerase 1) cleavage and DNA fragmentation, and suppress the expression of cyclin 

D1.285 Consequently, it was found that sigma-2 receptor ligands mobilize intracellular 

calcium ion,286-288 facilitate potassium channel,289 and induce oxidative stress.290 

Based on the published hypothetic models on sigma-2/ PGRMC1 proteins functions such 

as S2RPgrmc1 to NGAL signaling,272 and S2RPgrmc1 to diverse effectors’ paths.34 In addition 

to the above-mentioned studies, Huang and co-workers88 proposed four signaling 

pathways for sigma-2/ PGRMC1 proteins to employ their regulatory roles in cancer as 

fellow:  

1) Stimulation of EGFR signaling promotes cell proliferation, and inhibition of 

EGFR signaling promotes apoptosis.  

2) Sigma-2/PGRMC1 proteins interact with PAIR-BP1 and Insig-1/Scap/SREBP 

and regulate sterol synthesis and progesterone signaling.  

3) Sigma-2/PGRMC1 proteins activate P450 and regulate lipid metabolism. 

4) Sigma-2/PGRMC1 proteins inhibit ER stress, which instigates calcium ions 

release, subsequent caspases activation, and promote cancer cell death. 

When sigma-2 receptor over-expressed (in cancerous situations), it stimulates the 

signaling pathways of EGFR such as RAS/RAF/ERK pathway, PLC/PKC/NF-κB 

pathway, and PI3K/Akt/mTOR pathway that promote cell proliferation and invasion. 

Additionally, sigma-2 receptor can stimulate P450 metabolism pathway, initiating the 

Insig-1/Scap/SREBP pathway, and blocking the caspase pathway. Upon sigma-2 receptor 

/ligand binding, the interaction between sigma-2 receptors and their effectors will be 

interrupted/inhibited, developing a reversion in its proliferative action and induction of 
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apoptosis as a result.88 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2: Huang’s hypothetical scheme of sigma-2 receptor/PGRMC1 signaling pathways in cancer cells 
[Adapted from ref. 88] 

 
2.4. Sigma-2 receptor as a biomarker  
 
Potential Use as an Imaging Target for Cancer Diagnosis: 
 

The importance of sigma-2 receptors in oncology is well reported in literature 

since it has proven to be over-expressed in a higher density in human cancer cells as 

compared to most normal tissues.290 Hellewell and Bowen were the first to identify 

sigma-2 receptor through receptor binding studies in rat PC12 adrenal 

pheochromocytoma cells.22 There are two types of cell populations in each solid tumor; 
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proliferative cells and quiescent cells. The tumor cell proliferation is generally measured 

by the ratio of the proliferative cells to the quiescent cells. Similarly, the growth fraction 

is measured by the ratio of the number of proliferative cells in a solid tumor to the total 

number of proliferative cells and quiescent cells.292 It has been reported the usefulness of 

sigma-2 receptor as a biomarker in determining the proliferative cells and quiescent cells 

of solid tumors using positron emission tomography (PET), and single photon emission 

computed tomography (SPECT).36 For instance, Mach and co-workers showed that the 

density of sigma-2 receptors in proliferating cells was 10-fold greater than the density 

observed in quiescent cells.83,281 Moreover, using PET technology, Mach and co-workers 

used a [11C] labeled sigma-2 ligand to image EMT-6 breast tumor location in female 

BALB/C mice.293 Also, Hawkins and co-workers used a radiolabeled sigma-2 ligand, 

[18F]-RHM-4, to visualize the tumor site using Micro-PET imaging technique.294 

 Furthermore, it was observed that the up-regulation and down-regulation of 

sigma-2 receptors in the transition state between the proliferative and quiescent states in 

mammary mouse cells.185 Consequently, these results suggested that the sigma-2 receptor 

is a biomarker of cell proliferation in breast tumors, and likewise, this can be used to 

study the other tumors that have high density of sigma-2 receptors.181 

2.5. Sigma-2 receptor ligands inducing apoptosis 
 

It has been suggested that both Ca+2 release from the endoplasmic reticulum (ER) 

and the resulting capacitive Ca+2 influx are apoptogenic.269,295 Sigma-2 receptor agonists 

have been believed to inhibit tumor cell proliferation, and induce apoptosis while sigma-2 

receptor antagonists promote tumor cell survival.36 Some studies have shown that the 

selective sigma-2 receptor agonist, CB-64D (99) [Fig. 2.3] or selective sigma-1 

antagonist ligands cause a rapid transient release of Ca+2 from the ER to the cytosol in 
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various cancer cells, including neuroblastoma, breast adenocarcinoma, and colon 

carcinoma.286,296 In the same studies they have suggested that this intracellular Ca+2 

affects protein kinase C activity and induces cancer cell apoptosis. 286,296  An additional 

study examined the effect of the sigma ligands (+)-SKF10,047, (-)-SKF10,047, (+)-

pentazocine, (-)-pentazocine, DTG (35) [Fig. 2.3], haloperidol (21) [Fig. 2.3], rimcazole, 

and RHAL (78) [Fig. 2.3] on proliferation of  human mammary adenocarcinoma (MCF-

7, MDA), melanoma (Chinnery), and cells colon carcinoma (LIM1215, WIDr).263 Dose-

dependent rounding, detachment and cell death were observed in all cell lines, and the 

most potent inhibitors of cellular proliferation were obtained from Rimcazole and 

RHAL.297 It was found that the inositol 1,4,5-triphosphate (IP3) receptor is involved in 

the sigma-2-agonist induced intracellular calcium release.288 The escalation of cytosolic 

Ca2+ is associated with a prompt drop of metabolic activity and cellular ATP 

concentrations that results in cell death.288 In a different study by Kashiwagi and co-

workers, was found that sigma-2 receptor ligands stimulate caspase-3 activity and exhibit 

concentration and time-dependent induction of tumor cell apoptosis, whereas a sigma-1 

receptor ligand, pentazocine, does not have such effect.294 Further, the most selective 

sigma-2 ligands, siramesine, showed potent anticancer activity against several tumor cell 

lines deriving from lung, breast, cervix, and prostate. Consequently, in a recent study, 

siramesine was found to induce caspase-3 dependent apoptosis in lens epithelial cells 

suggesting its potential use to treat posterior capsular opacification.188,284,294,298 

Stimulation of sigma-2 receptors induces anti-proliferative and cytotoxic effects in tumor 

cells in vitro as well as in in vivo preclinical models.292 Thus, sigma-2 receptors are valid 

targets for tumor diagnosis and treatment. 
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Figure 2.3: Chemical structures of some sigma-2 receptor ligands 

2.6. Sigma-2 receptor ligands as antitumor agents  
 
 

The idea of targeting sigma-2 receptors is supported by increasing the number of 

publications that demonstrated the importance of sigma-2 receptor in curing several 

cancer cell types.36, 299,300  Numerous sigma-2 ligands have been shown to induce in vitro 

and in vivo, cancer cell death by activation of multiple pathways to exert such effect, 

including caspases activation, reactive oxygen species, lysosomal leakage, autophagy and 

modulation of Ca2+ release by intracellular stores. However, activation of the pathways 

depends on tumor cell type and on the structure of the sigma-2 ligands.188,285,301 Sigma-2 

receptors significantly enhance the pharmacological effects of other anticancer drugs 

such as paclitaxel, gemcitabine synergistically in a combination treatment by increasing 

caspase-3 activity, and inducing apoptosis. For instance, a study conducted by Mach and 

colleagues in mice with pancreatic adenocarcinoma showed that the sigma-2 selective 

ligand, SV119, gemcitabine, and paclitaxel alone caused approximately 3%, 6%, 5% 
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escalation in caspase-3 activity, respectively while SV119 combined with gemcitabine, or 

SV119 combined with paclitaxel caused around 20% and 30% escalation in caspase-3 

activity, respectively. The synergistic effects of sigma-2 receptor ligands and anticancer 

agents were observed in both in vitro and in vivo animal studies.186,302,303 Recent in vivo 

studies combining the anticancer agent, doxorubicin, with sigma-2 ligands in several in 

vitro cancer cell lines display an additive effect in the inhibiting of tumor growth.304-207 

Therefore, combination of traditional anticancer agents with sigma-2 ligands appears to 

have a favorable synergistic effect in inhibiting the tumor growth, and hence a very 

promising area of research.  

2.7. Sigma-2 receptor ligands as drug delivery vehicles 
 
 

The major limitation of traditional cancer chemotherapies is the severe toxicity to 

normal tissues developing from a lack of selectivity of these agents. Accordingly, new 

selective targeting for cancer cells has been suggested as an urging need to develop new 

treatments.308 

There are two approaches have been reported for targeting sigma ligands as drug 

delivery agents. One approach was nanoparticle technique in which the sigma ligands 

were conjugated with various nanoparticles, such as polyethylene glycol or through direct 

linking at the end of an alkyl chain of the sigma-2 receptor ligand covalently. Prior to 

injecting the newly formed ligands into experimental animals, the nanoparticles were 

filled with appropriate cytostatic or cytotoxic agents. The second technique is to use 

antitumor peptides or antisense oligonucleotides to conjugate with sigma-2 receptor 

ligands also by direct covalent linking that can be administered systemically.309 Mach and 

colleagues proposed and synthesized five SV119-anticancer drug conjugates, and they 
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indicated that these SV119 conjugates provided high affinities for sigma-2 receptor and 

high activities of inhibiting Akt and enhanced induction of caspase-3 activity.306 In a 

different study, Zhang and colleagues used the same sigma-2 ligand, SV119, to design 

SV119-liposomes conjugates and accordingly to evaluate the uptake of these conjugates 

by tumor cells compared to normal cells and they found the high uptake of SV119-

liposomes by tumor cells but not by normal cells.310 Therefore, sigma-2 receptors are a 

promising anticancer target and the selective sigma-2 ligands are a valid target for 

developing new anticancer drug delivery vehicles. 

2.8. Sigma-2 receptor ligands and low potential of toxicity to normal tissues 
 

 
Multiple sigma-2 ligands seem to cause the inhibition of tumor growth and cell 

death after their administration by affecting various signaling pathways. Consequently, 

several other studies have proven that sigma-2 receptor ligands are potent anti-

proliferative and pro-apoptotic against many cancer cells; however, they did not develop 

any kind of toxicities and appear to be safe in normal cells.36 A study by Kashiwagi and 

colleagues conducted on the sigma-2 selective ligand, WC26, it was found that this 

sigma-2 ligand was mainly toxic for tumor cells with no or very minimal toxicity in 

normal cells.303 In another study by Hornick and colleagues found that the selective 

sigma-2 ligands SW43, SV119, and siramesine displaying exceptional proapoptotic 

activities, potentiation of gemcitabine anticancer activity without noticeable toxicities in 

normal tissues.302 Recently, Spitzer and his colleagues discovered that the sigma-2 ligand, 

SV119-Bim, had very minimal and transient toxicities as determined by slightly 

increased levels of amylase, caspase-3, and lipase activities in pancreas, which vanished 

after 2 weeks of treatment without any noticeable organ damages.306 More recently, in a 
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Micro-PET imaging study of a radiolabeled sigma-2 ligand in an EMT-6 tumor-bearing 

mouse by Mach and his colleagues, it was noticed the high uptake of radiotracer in the 

EMT-6 tumors and low uptake in the surrounding normal tissues indicating the low 

potential of toxicity in normal tissues.191 Since selective sigma-2 ligands can kill tumors 

cells by both apoptotic and non-apoptotic pathways with no or minimal toxicities in 

normal tissues, it suggests that this receptor is a new target for the development of safer 

chemotherapeutic agents. Recently, Hilary et al. investigated the effect of CM572 

(136)[Fig. 2.5], a potent and selective partial agonist at sigma-2 receptors, on breast and 

pancreatic tumor cell lines in addition to the neuroblastoma line. In this study, CM572 

was able to induce dose-dependent cell death these cell lines.311 

 

 

 

 

 

Figure 2.4: Chemical structures of the sigma-2 receptor ligand, CM572
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CHAPTER III: SIGMA RECEPTORS AND PSYCHOSTIMULANTS ABUSE
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3.1 Introduction 
 
3.1.1 Background 

Psychostimulants or central nervous system (CNS) stimulants are psychoactive 

substances that produce transitory enhancements in either mental or physical functions or both. 

As the name suggests a CNS stimulant is any agent that activates, enhances, or increases 

stimulatory neuronal activity. The resultant effects may include increases in attention, alertness, 

locomotion and energy as well as elevation of blood pressure, heart rate, and respiration. 

Stimulants are also sometimes referred to as "uppers" due to their “up” feeling effect in opposite 

to depressants which usually called “downers” owing to their “down” effect and decreases in 

mental and/or physical function.312,313 As stimulants are capable of improving mood and 

mitigating anxiety, depression, lethargy, fatigue, and some can even induce feelings of euphoria, 

they are extensively used throughout the world as prescription medicines and licit or illicit 

substances of entertaining use or abuse. For long time, stimulants were used to lessen asthma and 

other respiratory problems, neurological conditions, obesity and a variety of other disorders. 

However, as their liability of abuse and addiction became evident, the medical use of stimulants 

started to diminish. Stimulants are now being prescribed to treat only limited health problems, 

including attention deficit hyperactivity disorder (ADHD), narcolepsy, and depression in certain 

cases that non-responded to other medications. Most stimulants exert their effects by facilitating 

the activity of certain neurotransmitters in central and synaptic nervous system such as dopamine 

and norepinephrine.312-314 Improper use of stimulants (other than when used as prescribed by a 

doctor) can lead to hostility, paranoia, and even psychotic symptoms. Improper stimulant use 

(abuse) can also result in harmfully elevated body temperature, irregular heartbeat, heart failure, 

and seizures.96,123,313,314 
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3.1.2 Prevalence of Psychostimulants Abuse 

According to the 2012 World Drug Report issued from the United Nations Office on 

Drugs and Crimes,315 about 230 million people, or 5 percent of the world’s adult population, are 

estimated to have used an illicit drug at least once in 2010. Problem drug users number about 27 

million, which is 0.6 percent of the world adult population.  According to the same report, 

cocaine and other drugs are directly linked to the deaths of around 0.2 million people each year, 

destroying families and bringing despair to many people in their community. Illicit drugs 

undermine economic and social development and contribute to crime, instability, insecurity and 

the spread of serious diseases such as HIV, hepatitis B, and hepatitis C.315 Additionally, in 2013, 

the National Survey on Drug Use and Health (NSDUH),96 reported that an estimated 24.6 million 

Americans (9.4 percent of the population) aged 12 or older were current illicit drug users. There 

were 1.5 million current cocaine users aged 12 or older, or 0.6 percent of the population, and the 

number and percentage of past month methamphetamine users in 2013 (595,000 or 0.2 percent). 

Illicit drugs include marijuana, cocaine, heroin, hallucinogens, inhalants, or prescription-type 

psychotherapeutics (pain relievers, tranquilizers, stimulants, and sedatives) used non-

medically.96,123 These numbers indicate the serious negative health consequences on drug abusers 

besides the heavy financial burden on society to treat such outcomes. 

3.1.3 Psychostimulants mechanism of actions 

For stimulants to exert their actions they must first get to the brain.  This can through one 

of the four most usual routes of administering psychoactive substances: 

1) Oral consumption.  

2) Inhalation of smokes into lungs. 
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3) Intranasal consumption through snorting. 

4) Intravenously by using a syringe.  

In oral consumption, the swallowed substance goes to stomach and gastrointestinal tract 

(GIT) where some of these substances are absorbed through the digestive tract into the 

bloodstream while the rest are broken down by metabolism. Substance inhaled by snorting will 

be absorbed by nasal mucosa and entered directly the bloodstream.  Similarly, smoked 

substances will be absorbed by the large surface area of the lung as in a gaseous stage and 

entered easily into the bloodstream. Once the psychoactive substance gets into the bloodstream, 

it will be distributed through out the body.  However, before entering the brain, the substance has 

to pass the blood brain barrier (BBB), which is a layer of cells that surround blood vessels with 

tight cell wall junctions that prevent the large or charged molecules from passing the blood brain 

barrier (BBB) into the brain. In the same time, it does let the small (such as cocaine and 

methamphetamine)  and neutral molecules to enter the brain.96,314,316 

Generally, stimulants are a variety of compounds that excite the central nervous system 

or make a change in body’s metabolic activities. There are two ways for a stimulant to function, 

one-way is to enhance or mimic the effects of neurotransmitters that prepare our bodies to “fight 

or flight” during threatening situations in which increase heart rate, blood pressure, and 

respiration.  Catecholamines that include epinephrine, norepinephrine, and dopamine are the best 

examples of such neurotransmitters. The second way for a stimulant to exert its effect is by 

blocking transmission of the signals from one nerve to another and inhibiting the propagation 

system of that signal as a result. Neurotransmitters are molecules released in the gap between the 

two nerves called a “synapse”, where these neurochemicals are responsible for transmitting the 

signals from one neuronal cell to another.  After each signal, the synapse needs to be cleaned to 
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prepare for the next signal through degradation or re-uptake. Stimulants such as cocaine block 

the reuptake mechanism and increase the dopamine/epinephrine availability in the synapse and 

intensify the signal that may result in euphoria or hallucinations.316,317 

3.1.4 Examples of psychostimulants:  

1. Cocaine 

2. Amphetamines (dextroamphetamine and methamphetamine)  

3. Amphetamine derivatives used to treat ADHD (methylphenidate; Pemoline; 

Cylert)  

4. Variety of drugs formerly used to treat obesity (fenfluramine; Pondimin, 

phentermine; under trade names as lonamin, Obe-Nix, Adipex-P, Oby-Trim, and 

Fastin, and phenmetrazine; Preludin)  

5. Caffeine and theophylline (psychoactive drug in coffee and other caffeinated 

beverages) and nicotine (ingredient in tobacco).  

This chapter will focus on cocaine and methamphetamine since they are the most 

common abused drugs that perform their psychostimulant actions by interacting with sigma 

receptors and mostly sigma-1 receptors. 

3.2. Cocaine 

Cocaine (3)[Fig. 3.1] is one of the most highly consumed illicit drugs in the world and 

especially in United States. The use and abuse of cocaine is well known to be a leading cause of 

many social and economic problems including an increased risk of HIV, hepatitis B, and C 

infections, and an increased incidence of crime, violence and psychosocial problems. 

Furthermore, there are no approved medications to treat cocaine abuse or addiction, which urges 
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the need to develop novel and effective agents to battle this serious issue.96,123 

 

 
 

 

Figure 3.1: Chemical structure of cocaine. 

 

3.2.1 History 

 
Cocaine is one of the oldest known psychoactive substances. The historical use and abuse 

of cocaine has started at the end of 6th century. Coca leaves, have been the source of chewed and 

ingested cocaine for thousands of years and the purified cocaine has been an abused substance 

for more than 100 years.318,319 

 It’s generally agreed upon, the chewing of the coca plant leaves, Erythroxylum coca, 

began the sixth century A.D. As a matter of fact, learning the full story of coca’s uses by the 

Incas is hindered by their lack of a written language. However, archeological evidence of this 

habit was found in Indian mummies, which were discovered to be buried with supplies of coca 

leaves as well as in a variety of pottery portraying the characteristic cheek bulge of the coca 

chewer. Although coca use predated the Incan civilization, it is most commonly associated with 

this empire, which became the dominant influence in what is now Bolivia, Peru, Ecuador and 

Columbia during the 11th century. Later under the rule of Topa Inca, coca plantations had 

become a state control and coca use was quite restricted by the end of the 15th century.318-320 
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In 16th and 17th centuries, the Spanish colonists noticed how the Indians of what now 

Chile, Bolivia, Peru and Columbia were able to ease fatigue, stomach disorders, skin ulcerations, 

venereal diseases, headache and muscular pains by chewing the leaves of the coca shrub 

Erythroxylum coca. Spanish physicians also began promoting its therapeutic use for skin 

disorders, colds, laryngitis, asthma, rheumatism, and toothaches. Antonio Julian, a former Jesuit, 

in the 18th century urged the use of coca by the laboring classes of Spain, believing that it would 

improve both their health and productivity.318-320 

In 1860, Albert Niemann, a German chemist, extracted pure cocaine from the leaves of 

Erythroxylum coca, and he was the first to synthesize cocaine in pure form. Later, cocaine was 

used as a mild stimulant much like caffeine in tea and was added to several proprietary beverages 

such as Coca-cola for the next 25 years.319 In 1914, United States regulated the distribution of 

non-medical use of cocaine through the Harrison Narcotic Act.318,320,321 In 1970, when the use 

and abuse of cocaine increased again, the Controlled Substances Act, consequently made cocaine 

illegal in the United States.322 The cheap freebase form of cocaine, known as “crack”, became 

available and caused a higher incidence of cocaine abuse in the society. Consequently, due to its 

extensive abuse and popularity during 1980s and 1990s, it was labeled “the drug of the 1980s 

and 1990s”.  Cocaine was classified as a Schedule II drug, considered to have strong potential for 

abuse or addiction but also to have legitimate medical use.317 Even today it is a Schedule II drug, 

meaning it is associated with a significant abuse liability and can only be prescribed by 

physicians for sensible medical uses like local anesthesia.322 

3.2.2 Physiological and psychological effects of cocaine 

Cocaine can be obtained from the coca leaves using a relatively simple method by 

extracting it with an organic solvent resulting in a coca paste containing nearly 80% cocaine. It is 
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generally sold on the street as a fine, white, crystalline powder (HCl salt) and is also known as 

“coke”, “C”, “flake” and “blow” or as a free base which known as “crack”.318-320 Cocaine, 

chemically, is the methyl ester of benzoylecgonine or [1R, 2R, 3S, 5S]-3-(benzoyloxy)-8-methyl-

8- azabicyclo-[3.2.1]octane-2-carboxylic acid methyl ester.  The cocaine displays effects that 

vary with its plasma concentrations in accordance to the routes of administration.  Patterns of its 

effects and plasma concentrations vary with different routes of administration. The primary 

routes of administration are oral, intranasal, intravenous and inhalation. In a single dose, both 

smoking and intravenous injections produce extremely high rate of absorption (500-1000µg/ml) 

compared with snorting (100-500µg/ml).323,324  

Cocaine has been shown to exclusively interrupt the dopamine neurotransmitter system 

by overstimulating the receptors on the postsynaptic neuron, either by increasing the amount of 

dopamine in the synapse through excessive presynaptic release or by inhibiting dopamine's 

pattern of reuptake or chemical breakdown.325 Cocaine use increases the amount of dopamine 

(DA) in the CNS, which elevates the mood and the motor activity. Consequently, when the level 

of cocaine subside in the brain, the dopamine (DA) amount decreases to normal and the euphoric 

feeling diminish as well.  

There are numerous psychological as well as physiological effects correlated with 

cocaine abuse. Cocaine has two main pharmacological applications. Cocaine is the only drug 

known to have local anesthetic and central nervous system (CNS) stimulant properties. Cocaine 

exerts its local anesthetic actions by blocking the transmission of sensory impulses within nerve 

cells by preventing the influx of Na+ into the cell. This effect is most noticeable when cocaine is 

applied to the skin or to mucous membranes. Moreover, cocaine hydrochloride has been 

approved for use as a local anesthetic in surgery of the larynx, throat, and nose.326  
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 The psychological manifestations range from euphoria to anxiety, depression and severe drug 

dependence.327 Prolonged use of cocaine affects the cardiovascular system (CVS), the respiratory 

system as well as the central nervous system (CNS). It puts an individual at the risk of angina 

pectoris, hypertension, myocardial infarctions and hemorrhages.328 Cocaine abuse can disrupt the 

normal neuronal circuitry and may even lead to severe seizures in case of overdose.329 

Comparably, chronic use can lead to respiratory failure and death. Cocaine’s effects on the 

central nervous system include cerebral infarction, cerebral blood loss, and stroke. Cocaine can 

also produce seizures or convulsions. Eventually, heavy consumption and overdose of cocaine 

can actually result in death for some cases.330 

Accumulating reports, based on animal studies and brain imaging studies in humans, 

have shown that chronic use of cocaine can affect the dopaminergic neurons in the reward 

system of the brain.  These areas of the limbic system include the nucleus accumbens and ventral 

tagmental area (VTA), which could account for the possible mechanistic reasons behind 

addiction to cocaine.331 Numerous animal studies have demonstrated that high doses of 

stimulants can lead to neurotoxicity by damaging nerve endings.  As a matter of fact, more 

studies need to be conducted to expand our knowledge of the stimulants effects on the human 

brain as brain imaging techniques are developing rapidly.332 

3.2.3. The dopamine reward system 

Also called the brain reward system or the limbic reward system, which is the brain 

circuit that necessary for the neurological reinforcement system. This circuit has been traced 

between the nucleus accumbens and the ventral tegmental area (VTA)[Fig. 3.2].333 Psychoactive 

substances affect the limbic reward system as well as the nucleus accumbens by increasing the 

release of the dopamine that controls the feeling of pleasure such as euphoria and satisfaction in 
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addition to  having roles in motivation, cognition, and movement.333-335 Consuming high doses of 

stimulants will lead to release higher levels of dopamine in the brain that boost mood and motor 

activity; however, too much cocaine can produce irritability, nervousness, aggressiveness, and 

paranoia that approaches schizophrenia, as well as hallucinations and weird thoughts. 

Alternatively, too little dopamine in the brain results in the tremors and paralysis of Parkinson's 

disease.334-336 There is an increasing amount of evidence suggesting that the nucleus accumbens 

is the critical site for dopamine elevation among drug abusers, and dopamine has been linked to 

all substances abuse and addiction and even labeled as the master molecule of addiction.337 

Normally, nucleus accumbens neurons function in predictable manner as follow: 

1- An electrical signal reaches the target point at the pre-synapse 

2- The presynaptic neuron triggers the dopamine release into the synapse 

3- The dopamine transmits through the synapse toward the postsynaptic neuron target and 

exerts its excitatory effect to generate internal electrical signal in the neuron. 

4- The extra dopamine in the synapse will be enzymatically deactivated or reabsorbed by 

dopamine reuptake transporters (DAT).338 

 

Cocaine interacts with the dopamine and the limbic reward systems to exert its major 

effects including the reinforcing effects. Similarly, cocaine has the ability to block the 

reuptake of dopamine by synapse via dopamine reuptake transporters (DAT) blockade that 

will increase the availability of dopamine in the synapse and prolong the postsynaptic 

neurons firing.339 
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Figure 3.2: Brain. Certain areas of brain are known to be involved in reward/reinforcement due to drugs. These 
include the nucleus accumbens (NA), ventral tegmental (VT), and frontal cortex (FC). Other abbreviations are 
cerebellar (CB), putamen (PT), and caudate nucleus (CN).333 

 

3.2.4. Approaches to potential treatment for cocaine abuse  

A significant increase in the dopamine concentration in the brain has been observed in a 

microdialysis study on the brain after cocaine administration.340 Likewise, considerable evidence 

has accumulated, from animal studies over the recent years, suggesting that the dopamine 

transporter is a vital target for reinforcing effects of cocaine.341,342 For years the dopamine 

hypothesis received much attention from researchers as one of the most valid strategies to target 

cocaine abuse and addiction. The hypothesis proposes that cocaine acts as an indirect dopamine 

agonist by inhibiting the reuptake of dopamine from the synapse via the dopamine reuptake 

transporters (DAT).343-345 Consequently, several analogues were designed and analyzed that 

would block the access of cocaine to DAT, but the majority of them suffered from the limitation 

of having abuse liabilities similar to or greater than cocaine.346 Correspondingly, a number of 

medications have disclosed promising results in preclinical and early clinical trials, but no 

medication with proven efficacy is available for the treatment of cocaine addiction.347-350 

3.2.4.1. Dopamine receptor agonists and antagonists 
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Since dopamine exerts its function through direct binding to and activating dopamine 

receptors, they are a logical target for cocaine abuse. Also, it has been suggested that a partial 

dopamine receptor agonist should suppress the cocaine effect, acting as a functional 

antagonist.351 There are five subtypes of dopamine receptors that have been identified (D1, D2, 

D3, D4, and D5), and all of these belong to the G protein-coupled receptor superfamily. However, 

only three subtypes (D1, D2, and D3) are thought to be involved in the cocaine reinforcing 

effects.352  

Numerous animal studies have indicated that dopamine receptor agonists such as 

bromocriptine (137)[Fig. 3.3] and apomorphine (138)[Fig. 3.3]  retain self-administration in 

monkeys,353,354 and in rodents355,356 respectively. The full-efficacy D1 agonist, SKF82958 

(142)[Fig. 3.3], was able to maintain self-administration in monkeys; nevertheless, the D1-

selective partial agonist, SKF38393 (141)[Fig. 3.3], failed to maintain self-

administration.354,357,358 The D3 agonist, BP897 (143)[Fig. 3.3], has shown to attenuate the 

physical dependence behavior of cocaine without inducing any reinforcement by itself.358 A 

powerful decrease in cocaine self-administration has been observed when rats pretreated with 

dopamine agonists selective for the D3 receptor 7-OH DPAT (140)[Fig. 3.3]  and 

quinpirole(139)[Fig. 3.3] at doses that were not reinforcing by themselves. These results suggest 

that D3 receptor may be involved in the reinforcing effects of cocaine and may be a useful target 

for developing a pharmacotherapy for cocaine abuse.359 It is interesting to note that no sigma 

receptor affinities have been reported for the D3 receptor ligands.  Furthermore, numerous 

studies on the behavioral effects of cocaine was found that some dopamine uptake inhibitors and 

dopamine agonists substitute for cocaine.360-362 
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Figure 3.3: Chemical structure of dopamine agonists  

 

As cocaine results in elevated dopamine levels in the synapse and results in excessive 

stimulation of dopamine receptors, inhibitors of the dopamine receptors have also been 

considered for antagonist medications. Conversely, dopamine D2 antagonists such as raclopride 

(144)[Fig. 3.4], haloperidol (21)[Fig. 3.4]   and spiperone(145)[Fig. 3.4]   decreased the 

behavioral effects of cocaine.363-367 Similarly, the D1 antagonists SCH 23390 (146)[Fig. 3.4]   

and SCH 39166 (147)[Fig. 3.4]  , and D2 antagonists such as YM 09151-2 (148)[Fig. 

3.4]   attenuated reinforcing effects of cocaine.359,368 
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Figure 3.4: Chemical structure of dopamine antagonists  

3.2.4.2. Dopamine reuptake inhibitors 
 
             A growing number of studies have revealed that the primary target for cocaine in human 

body is dopamine transporter (DAT), and it has been proposed that the rewarding and reinforcing 

effects of cocaine are facilitated predominantly by its inhibition of DAT.341,364,369,370 Therefore, 

rigorous studies and research focused on the development of cocaine analogs and other 

dopamine transporter inhibitors including analogs of methylphenidate (149)[Fig. 3.5], WIN 

35,065-2 (150)[Fig. 3.5], mazindol (151)[Fig. 3.5], GBR12909 (152)[Fig. 3.5], benztropine 

(153)[Fig. 3.5], and nomifensine (154)[Fig. 3.5], in order to find an effective treatment for 

cocaine abuse. These compounds have known to be potent and selective for the dopamine 

transporter and have been considered as viable substitute medications.351-382 However, preclinical 

studies of these agents in nonhuman primates have shown the potential for abuse in humans, 

which may be a problem with all substitute medications.383-384 
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Figure 3.5: Structures of dopamine uptake inhibitors 

 3.2.4.3. Opioid receptor system 
 

Since cocaine acts as an indirect dopamine receptor agonist, by inhibiting the dopamine 

transporter and enhancing extracellular dopamine, opioids indirectly modulate extracellular 

dopamine level in the mesolimbic and dopaminergic system.385,386 Opioid receptors are classified 

into four subtypes, mu (MOR), delta (DOR), kappa (KOR), and the opioid like receptor-1 or 

nociception receptor (ORL-1/NOR). Among of these receptors, MOR and DOR increase 

dopamine release in the mesolimbic areas upon activation while activation of KOR suppresses 

dopamine release.387 

Over the last several years, multiple studies have been conducted to explore the effect of 

opioid ligands on cocaine self-administration in animals; however, the results have not been 

consistent. For example, the opioid antagonist, naltrexone (155)[Fig. 3.6], has shown confusing 

results on cocaine self-administration in rats where was either no change, decrease or increase in 

its effect on cocaine self-administration.388 Similarly, mixed opioid agonist−antagonists are 

reported to antagonize the reinforcing effect of cocaine during self-administration. For instance, 

buprenorphine,  non-selective opioid agonist, decreases the cocaine self-administration in 

humans, Rhesus monkeys and rats.389-391 Moreover, the kappa-selective agonists U50,488 

F

O

F

N
N

NH3C

O

N
H3C

H2N

152, GBR12909 153, Nomifensine 154, Benzotropine 



 98 

(156)[Fig. 3.6] and spiradoline (157)[Fig. 3.6] attenuated cocaine self-administration in rats 

while the kappa opioid receptor antagonist norbinaltorphimine (nor-BNI) (158)[Fig. 3.6]  failed 

to produce any effect on cocaine self-administration but fully antagonized the effect of U50,488 

(159)[Fig. 3.6].82  Therefore, opioid receptors suggested to have a modulatory role in cocaine 

self-administration system.83  As a matter of fact, several κ opioid (KOP) receptors agonists such 

as U50,488H (160)[Fig. 3.6], U69,593 (161)[Fig. 3.6]  and the novel neoclerodane diterpene 

salvinorin A (162)[Fig. 3.6]  have been demonstrated to have anti-addiction effects in preclinical 

models of addiction; however, side effects such as depression, sedation, dysphoria, and aversion 

rendered them from further clinical studies.392 Salvinorin A (163)[Fig. 3.6], a novel kappa-opioid 

receptor agonist that obtained from a plant named “Salvia divinorum”, has been pursued as a 

potential treatment for drug abuse and addiction for years.392 However, the rapid metabolism of 

Salvinorin A halted it from further clinical development. Several other attempts have been 

performed to make more derivatives of Salvinorine A in order to overcome the metabolic and 

side effect issues, and the results were very promising in developing anti-addictive therapy with 

longer duration of action.392 For instance, β tetrahydropyran (Salvinorin B) (162)[Fig. 3.6], 

Salvinorine A analog, was revealed to have anti-addiction effects in preclinical studies similar to 

those reported for Salvinorin A with a better pharmacokinetic profile and different side effect.393 
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Figure 3.6: Structures of opioid ligands 

Alternatively, anti-drug vaccine is another promising approach to treat drug overdose or 

addiction by dropping the drug level in the brain through anti-drug antibodies binding before 

passing to the brain.394 As drugs of abuse are small molecules and readily cross the blood brain 

barrier, their binding to anti-drug antibodies will prevent them from crossing blood brain barrier 

and thus minimizing the drug level in the brain.394 Numerous reports in literature of anti-drug 

antibodies/vaccines tested for opioids, phencyclidine, nicotine, methamphetamine, and cocaine 

addiction. Some of these anti-drug antibodies/vaccines have been assessed in clinical trials and 

have displayed favorable effects.395.396 Currently, clinical studies are being performed for 

vaccines against cocaine and nicotine in addition to anti-methamphetamine monoclonal 

antibody.396 So far, these approaches seem to be very exciting and promising as potential 

therapies for drug overdose and addiction. 

   

O

OO

O

O

O

O
S

O

O H

H
O

OO

O

O

O

OO
H

H
O

N

O

N

O

OH

OH
N

O

OH

HO
N

N
H

O

N

Cl
Cl

CH3

N
O

158, Spiradolin 159, nor-BNI 

160, U69,593 161, Salvinorin A 162, Salvinorin B 



 100 

3.2.5. Sigma receptors and cocaine abuse 

 
As mentioned above, sigma receptors bind a variety of drugs that are abused, and can 

modulate the behavioral effects of these drugs. The involvement of sigma receptors in cocaine 

and methamphetamine has been extensively studied and reported.  

Cocaine is well known for its inhibition effect on dopamine transporters. This inhibition 

results in an increase in dopaminergic neurotransmission that plays a significant role in the 

behavioral effects of cocaine. In actual fact, selective sigma receptor ligands modulate 

monoaminergic, and particularly dopaminergic, and serotoninergic systems. Additionally, a 

number of recent studies demonstrated that sigma-1 receptor activation plays an important role in 

reinforcement and addictive processes.92,93,95 Several studies have demonstrated the ability of 

sigma receptor antagonists to attenuate a variety of behaviors that are stimulated by the acute 

administration of cocaine. Similarly, cocaine can bind to sigma receptors and activate them to 

produce its stimulant effects. The interaction between cocaine and sigma receptors was first 

reported in 1988.103 Cocaine preferentially binds to sigma-1 receptors with an affinity of about 2 

µM, and thus activates the sigma-1 receptor to induce its effect [Table 1].103 Cocaine has about a 

10 fold higher affinity toward sigma-1 receptors over sigma-2 receptors in mouse brain.106,397 

Table 3.1: Affinity of cocaine for σ receptors in mouse (Brain & Heart)  
Tissue Sigma-1 Sigma-2 
Brain 2±0.2 31±4 

Heart 5±1 n.d.1 

1= The affinities of the cocaine for σ 2 receptors in the heart were not determined because this subtype comprises less than 20% of σ 
receptors in cardiac tissue, making it difficult to reliably detect specific binding across a wide range of competing ligand concentrations.88 

 
 

 Furthermore, Several studies showed that co- or pre-administration of sigma-1 antagonists 

blocked the hyperlocomotion, sensitization, or the appetitive effect of cocaine using the 

conditioned place preference paradigm.104-106 It is also documented that sigma-1 receptor 

antagonism attenuates cocaine-induced toxicities and stimulant effects, however the role of 
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sigma-2 receptors in these effects is less clear.92,110 

3.2.5.1. Cocaine and behaviors 
 

For years, cocaine has been known to interact with sigma receptors at concentrations that 

are achievable in vivo.103 However, pharmacological and molecular biological tools to selectively 

manipulate these targets have demonstrated that selective antagonists and antisense 

oligodeoxynucleotides against sigma receptors attenuate the convulsive, lethal, locomotor 

stimulatory, and rewarding effects of cocaine.106,110 Both sigma receptor subtypes appear to play 

a significant role on mitigating many behavioral effects of cocaine.397 These effects are assumed 

to involve modulation of typical neurotransmitter systems such as dopamine and glutamate and 

modifications in drug-induced neuroadaptations including changes in gene and protein 

expression. Hence providing another feasible target for the development of anti-cocaine 

agents.92,93,95,103-106 

3.2.5.2. Cocaine induced convulsions 
 

Convulsions are a measure of behavioral toxicity with clinical significance of cocaine 

intoxication, which are not responsive to common antiepileptic medications and can be difficult 

to treat in overdose situations.398 A number of studies that have been conducted to date 

demonstrating that antagonism of sigma receptors using either pharmacological antagonists or 

molecular knockdown of the sigma-1 subtype sufficient to attenuate cocaine-induced 

convulsions.106,110 Several momentous sigma receptor antagonists, such as BMY-14802 and 

haloperidol, have been reported to significantly attenuate cocaine-induced convulsions in 

mice.399,400 The later developed sigma receptor antagonists, such as BD1008 and its analogs 

(BD1018, BD1047, BD1060, BD1063, BD1067, LR132, LR172, LR176, YZ-011, YZ-027, and 

YZ-032) have significantly attenuated the convulsive effects of cocaine.93 [Tab. 3.2 & 3.3] 
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Table.3.2: Structures of BD1008 analogs and their sigma receptors affinities 
Compound R σ1 σ2 

BD1008,(10) -CH3 2±1 8±2 
BD1060,(163) H 3±0.1 156±45 
BD1067,(164) -CH2CH3 2±0.5 39±1 
BD1052,(165) -CH2CH=CH2 2±0.5 60±3 
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Table 3.3: Structures of BD1008 analogs (LR series) and their sigma receptors affinities93 

Compound σ1 σ2 

BD1047 (14) 0.9±0.1 47±0.6 
BD1063(167) 9±1 449±11 
LR132(168) 2±0.1 701±375 

                                                          [Rae Matsumoto, 2003] 

 Consequently, recent studies suggest that selective antagonism of the sigma-2 subtype, 

using newly developed subtype selective ligands, similarly decreases the convulsive effects of 

cocaine.401 Alternatively, sigma receptor agonists induced the convulsive effects of cocaine with 

a shift to the left in the cocaine dose–response curve.106,110,402 [Tab. 3.4] 

 

 

 

 

 
 
 
 

Table 3.4: Structures of BD1008 analogs (YZ series), and their sigma receptors affinities.88 
 

 

 

 

However, the sigma−1 -preferring agonist (+)-pentazocine and the sigma-2-preferring 

agonist CM398 (172)[Fig. 3.7] do not significantly shift the cocaine dose–response curve for 

convulsions indicating the dual influence at the two subtypes is required to induce optimal 

Compound R σ1 σ2 
YZ-

011(169) 
m-

methoxy 24±2 209±22 

YZ-
027(170) m-nitro 6±2 95±0.7 

YZ-
032(171) o-amine 291±38 640±25 
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behavioral effects.403 

 

 

 
 
 

Figure 3.7. Chemical structure of selective sigma-2 ligand, CM398 that was developed in McCurdy’s laboratory 
 
 

AC927, one of the ethylamine class derivatives, was evaluated for their sigma receptor 

affinity and anticocaine activity. The results revealed that AC927 has high affinity for sigma 

receptors (Ki, σ1 = 30 nM; σ2 = 138 nM) and selectivity over a set of other receptors. At the 

same time, it was found that this compound attenuated cocaine-induced convulsions, locomotor 

activity, lethality and conditioned place preference in mice.397,404 

 

 

 

Figure 3.8. Chemical structure of the highly selective sigma ligand, AC927. 

3.2.5.3. Cocaine induced lethality  
 

It is noteworthy that sigma receptor antagonists can reduce the lethal effects of cocaine 

overdose, since death is the ultimate toxic endpoint of overdose situations.  Respiratory 

depression and cardiovascular collapse are the primary causes of deaths from cocaine overdose, 

due to the existence of sigma receptors in heart and lung as well as the brain that makes them 

visible targets for pharmacotherapeutic intervention.106,405,407 Numerous studies indicated that 

pre-treatment of mice with the sigma receptor antagonists (BD1008, BD1018, BD1047, BD1060, 
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BD1063, BD1067, BMY-14802, haloperidol, LR132, LR172, LR176, reduced haloperidol, YZ-

011, YZ-027, YZ-032) have been reported to attenuate cocaine-induced lethality.106,403,407 Also, 

post-treatment of mice with the sigma receptor antagonists (LR132, YZ-011) significantly 

attenuates cocaine-induced lethality.106,402 

3.2.5.4. Cocaine induced locomotors stimulation 
 

Cocaine, beside its toxic effects that are operational in overdose situations, also possesses 

psychomotor stimulant effects that contribute to its addiction potential. Several sigma receptor 

antagonists are capable of attenuating the acute locomotor stimulant effects of cocaine. Thus, 

locomotor activity is a convenient experimental measure of the stimulant actions of 

cocaine.106,401,406,108 A number of sigma receptor compounds have been reported to attenuate the 

locomotor stimulatory effects of cocaine in rodents such as BD1008, BD1018, BD1047, 

BD1063, LR132, LR172, YZ-011, YZ-027, and YZ-032.242,402,407 The involvement of sigma 

receptors was confirmed by antisense oligos that knock down the levels of brain sigma-1 

receptor in mice, which produces a similar effect.105 Alternately, it has been reported that the 

sigma receptor agonist DTG enhances the locomotor stimulatory effects of cocaine in rats.408 

Behavioral sensitization or reverse tolerance can result from repeated administration of cocaine 

to animals over time. In this regard, several sigma receptor compounds remarkably reduce the 

development of cocaine-induced locomotor sensitization such as SR 31742A, NPC 16377, 

rimcazole, and BMY-14802.243,409 
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Figure 3.9: Sigma receptor ligands that attenuate cocaine-induced locomotor sensitization. 

3.2.5.5. Cocaine induced conditioned place preference 
 

The conditioned place preference is an experimental method to measure the rewarding 

properties of drugs. It is a model of drug seeking based on the fact that when given a choice, 

animals will return to and spend more time in an environment in which they previously 

experienced a drug that was rewarding or avoid an environment in which they previously 

experienced an aversive drug. Numerous sigma receptor antagonists have been shown to block 

place conditioning produced by stimulant drugs, mainly cocaine. Cocaine produces strong place 

conditioning, and introducing sigma receptor antagonists drastically attenuates the cocaine 

induced place conditioning.104,105,406 It was first reported by Romieu et al. in 2000,104 in this 

study, the sigma receptor antagonists, NE-100 (31)[Fig. 3.10] and BD 1047 (14)[Fig. 3.10], 

dose-dependently blocked the place conditioning produced by cocaine in mice. Moreover, 

progesterone, a neurosteroid that acts as a sigma-1 receptor antagonist under a variety of 

conditions, produces similar effects as other sigma receptor antagonists and antisense 

knockdown.410 Recently it has been reported that the sigma-1 receptor agonist (+)-pentazocine 

has no substantial effects on the development of cocaine-induced place conditioning, while 
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SA4503 (25)[Fig. 3.10] attenuates it.411 The sigma	   receptor antagonists were effective in 

blocking both locomotor stimulation and place conditioning produced by stimulant drugs. On the 

other hand, sigma	  receptor agonists by themselves were inactive in inducing the effect that their 

antagonists were effective in blocking. Hence, sigma receptor antagonists appear capable of 

preventing the response to frequent administration of cocaine.  

 

 

 

 

 

 

 

Figure 3.10: Chemical structures of the sigma-1 antagonists, NE100, SA4503, and BD1047. 

3.2.5.6. Cocaine induced self-administration 
 

Drug self-administration paradigm is an important experimental procedure in drug abuse 

research. Also, it’s well known that laboratory animals are capable of self-administer of cocaine 

similar to humans. An early study by Slifer and Balster412 compared the reinforcing effects of the 

stereoisomers of the 6,7-benzomorphans, SKF 10,047 and cyclazocine, to those of PCP in rhesus 

monkeys trained to self administer cocaine.  None of the racemic forms, (-) enantiomers of SKF 

10,047, or cyclazocine were self-administered while both (+)-SKF 10,047 and (+)-cyclazocine 

were self-administered. Since the cocaine appears to act as an agonist at sigma receptors, it was 

suggested that sigma receptor antagonists could alter the reinforcing effect of cocaine.412  

Recently Martin-Fardon et al.111 examined the effect of BD 1047 on cocaine self-

administration in rats. In that study, BD 1047 pretreatment did not affect cocaine self-
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administration. In the same study, they found that pretreatment of rats with sigma receptor 

antagonists had no effect on cocaine self-administration. However, pretreatment with sigma 

receptor agonists produced a leftward shift in the cocaine dose-effect curve.111 A later study that 

examined a wide range of doses of BD 1047 and its analogs (BD 1008 and BD 1063) similarly 

found a lack of effects on self-administration of a broad range of cocaine doses.413 

A study by Matsumoto et al. in 2001, suggested that the interaction between cocaine and 

sigma receptor ligands is a competitive antagonism of effects of cocaine mediated by sigma 

receptors.110 However, in a subsequent study by Izenwasser et al.,1993,414 found that numerous 

sigma receptor ligands, including rimcazole, blocked dopamine uptake and had micromolar 

affinity for the DAT. Therefore, some sigma receptor ligands may alter the effects of cocaine 

through an action at the DAT.414 In this regard, a recent finding415 revealed that rimcazole 

analogs bind to the DAT in a way favoring a DAT conformation that renders it less accessible to 

the extracellular space. In contrast, cocaine analogs bind to the DAT in a way that favors an 

outwardfacing conformation.415,416 

Consequently, the interaction of rimcazole and its analogs with cocaine may diverge from 

that of other sigma receptor antagonists because of their dual actions, and this may more 

effective in blocking cocaine self-administration.  Based on these findings, Hiranita et al.,112 in 

2011 conducted a series of experiments to assess whether dual actions at these sites contributes 

to the blockade of cocaine self-administration through combinations of compounds selective for 

these sites [Table 3.5]. Rimcazole (38)[Fig. 3.11] and its analogs [Fig. 3.12][Tab. 3.5] have 

exhibited dose dependent decrease of cocaine self-administration with no affect on food 

reinforcement.112 
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Figure 3.11: Chemical structures of rimcazole and its derivatives. 
 

 

Figure 3.12: Effects of pre-treatment with rimcazole and its analogs on cocaine self-administration. [Adapted from 
ref. 112] 

 
 
 

Table3.5: Binding affinities of various compounds to the DAT, σ1, or σ2 receptors 

Compound 
Ki Value (mM) 

DAT σ1 σ2  
WIN 35,428 5.24 (4.92–5.57)a 5700 (4060–8020) 4160 (3120–5550) 

SH 3-24 12.2 (10.8–13.8) 22.9 (18.5–28.2) 20.0 (15.7–25.6) 
Nomifensine 21.0 (18.9–23.3) 8240 (5360–12,700) 65,200 (54,300–78,300) 

Methylphenidate 65.8 (61.2–70.8) 6780 (4520–10,200) 37,400 (21,200–66,100) 
Cocaine 76.6 (72.6–80.5) 5190 (3800–7060) 19,300 (16,000–23,300) 

Rimcazole 96.6 (77.3–121) 883 (661–1180) 238 (171–329) 
SH 3-28 188 (166–213) 19.0 (15.3–23.6) 47.2 (40.4–55.2) 
AC927 1,930 (1610–2320) 53.1 (45.6–61.8) 78.9 (48.2–129) 

BD 1008 2,510 (2250–2790) 2.13 (1.77–2.56) 16.6 (13.0–21.1) 
BD 1047 3,220 (2820–3670) 3.13 (2.68–3.65) 47.5 (36.7–61.4) 
NE-100 3,590 (3,210–4,000) 2.48 (2.13–2.88) 121 (91.9–159) 
BD 1063 8,020 (7100–9060) 8.81 (7.15–10.9) 625 (447–877) 

 
The values listed are Ki values ± S.E.M. (95% confidence limits), with the exception of the value for WIN 35,428 at the DAT, which is a Kd 
value obtained from a homologous competition study. See Materials and Methods for details of the assay procedures and derivation of Ki 

values.112,413,417 
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A series of other sigma antagonists (lacking DAT affinity) do not seem to show this 

effect across the range that did not alter rates of food reinforcement.112 DAT inhibitors like WIN 

35,428 (174)[Fig.3.13], methylphenidate(149)[Fig.3.13], and nomifensine(153)[Fig.3.13],  

themselves show self-administration by shifting the cocaine dose response curve leftward.112,413 

 
 

 

 
 
 
 

 
 

Figure 3.13: Chemical structures of selective DAT inhibitors. 
 
 
 
 

 

 

 

 

 

 

Figure 3.14: Effects of pre-treatment with DAT inhibitors on cocaine self-administration. [Adapted from ref. 112] 

 

When studied alone, selective DAT inhibitors and sigma receptor antagonists do not 

possess rimcazole like blockade of self-administration. In contrast to the effects of rimcazole and 

its analogs, the selective sigma receptor antagonists, AC927 (17) and NE-100(31) (Table 3.5), 

generally had no significant effects on the self-administration of cocaine [Fig. 3.15].112 
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Figure 3.15. Effects of pre-treatment with sigma receptor antagonists on cocaine self-administration[Adapted from 
ref. 112] 

 
On the other hand, combinations of WIN 35,428 (174)[Fig. 3.13] and other sigma 

antagonists BD 1008 (10)[Fig. 3.16] and BD 1047 (14)[Fig. 3.16] decreased self-administration 

without effects on food maintained responding.112 

Thus, the dual effect on both DAT and sigma receptors will decrease the cocaine self-

administration and this can serve as potential treatment for stimulant abuse with low liability of 

abuse as suggested in the above-mentioned studies.[Fig. 3.16] 

NO

O

NE100

N

AC927

17 31 



 112 

 

 

 

 

 

 

Figure 3.16. Effects of pre-treatment with WIN 35,428 combined with sigma receptor antagonists on cocaine self-
administration.[ Adapted from ref. 112] 

 
 

Although, rimcazole showed dose dependent inhibition of cocaine self-administration, it 

is not an ideal candidate for development a treatment for cocaine addiction since clinical trials 

with rimcazole as a potential antipsychotic agent showed a lack of efficacy and an incidence of 

seizures that terminated its further development.418 

3.3. Methamphetamine 
 

Methamphetamine (METH) (15)[Fig. 3.17] is a substance that stimulates the central 

nervous system, and it can be injected, snorted, smoked, or ingested orally. The term 

‘amphetamines’ is often used to refer to a group of amphetamine-related drugs, including 

amphetamine (AMP) (175)[Fig. 3.17]  and METH.419 [Fig. 3.17] 
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Figure 3.17: Chemical structure of methamphetamine and amphetamine. 

 
3.3.1. Background 

Methamphetamine is one of the most abused substances worldwide, and in United States 

in particular. Commonly known on the street as speed, crank, crystal, ice, glass, or meth. Similar 

to cocaine, pharmaceutically manufactured methamphetamine is classified as a Schedule II drug 

reflecting its high abuse potential and limited medical usefulness.320,326,419 A Japanese 

pharmacologist, Nagayoshi Nagai, first synthesized methamphetamine in 1893 from its parent 

drug, amphetamine. In 1919, Akira Ogata synthesized crystallized methamphetamine through 

reduction of ephedrine using red phosphorus and iodine. Near 1932 pharmaceutically 

manufactured amphetamine was being used medically in nasal spray for the treatment of asthma 

and in 1937 it was available for the treatment of narcolepsy by prescription.320,420,421 

Afterwards, more potent forms of the drug were developed including dextroamphetamine 

and methamphetamine, which were extensively used in the military during the World War II. In 

the same time, amphetamines were widely used by American and Japanese military pilots to 

keep them awake on long exploration and bombing operations. After World War II, a large 

supply of amphetamine stored by the Japanese military became available in Japan under the 

street name shabu. Consequently, the Japanese Ministry of Health banned it in 1951. In the 

United States, Abbott Laboratories took the approval from FDA in 1944 for the treatment of 

narcolepsy, chronic alcoholism, mild depression, Parkinsonism, hay fever, and cerebral 

arteriosclerosis.420,421  
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Intravenous and oral use of methamphetamine became widespread as an emerging drug 

subculture of the late 1950s and throughout the 1960s. However, oral amphetamines became 

exclusively popular as diet pills to suppress appetite and enhance weight loss. As it became 

increasingly obvious that the dangers of amphetamine use overshadowed the therapeutic 

benefits, many pharmaceutical amphetamines were taken off the market. Later, in 1970, the legal 

production of stimulant drugs was severely restricted by the 1970 Controlled Substance Act in 

the United States. However, this resulted in increased illicit production, mainly of 

methamphetamine, during the 1980s. In the 1990’s, use of methamphetamine, mainly 

concentrated on the west coast of the U.S. and in Hawaii, spread to the Midwest, South, and later 

the problem spread across the country.320,420-422  

 
3.3.2. Physiological and psychological effects of methamphetamine 

Similar to cocaine, methamphetamine accumulates the neurotransmitter dopamine in 

certain brain areas leading to intense stimulation and feelings of euphoria. However, in contrast 

to cocaine, which is rapidly removed and metabolized in the body, methamphetamine is 

metabolized more slowly and a larger proportion of the drug remains unchanged in the body 

hence extending its pharmacologic effects. While 50 percent of cocaine is metabolically removed 

from the body within 1 to 2 hour, 50 percent of methamphetamine is removed within 8 to 12 

hours. This also allows more time for methamphetamine to exert its neurotoxicological 

effects.320,326 

The physiological effects of methamphetamine, generally similar to those of cocaine, include 

increased heart rate, elevated blood pressure, elevated body temperature, increased respiratory 

rate, and pupillary dilation. In addition to other acute effects such as rapid heart rate, irregular 

heart rate, and irreversible, stroke-producing damage to small blood vessels in the brain.326,419 
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The psychological effects of methamphetamine, like those of cocaine, include feelings of 

euphoria, increased alertness, increased vigor, decreased food intake, and decreased sleep time. 

High doses of methamphetamine may produce irritability, aggressive behavior, excitement, 

auditory hallucinations, and paranoia (delusions and psychosis). Similarly, methamphetamine 

overdose severely elevated body temperature and caused convulsions, which can result in death 

if it’s not treated immediately. Continued use of methamphetamine can develop tolerance to the 

behavioral effects, and repeated exposure may produce sensitization. Methamphetamine users 

mood changes are common among methamphetamine users, and they easily tend to engage in 

violent behavior.320,326,419 

Addiction to methamphetamine is believed to be as same as that of cocaine since the 

neurological effects of methamphetamine are similar to the effects produced by cocaine, which 

increased levels of dopamine in the limbic reward system. The withdrawal syndrome of 

methamphetamine is more intense and prolonged than that of cocaine due to the longer effects of 

methamphetamine. There are three major differences between cocaine and methamphetamine: 

1) Methamphetamine enhances CNS neurotransmission by increasing the presynaptic 

release of dopamine within the limbic reward system. 

2) In contrast to cocaine, methamphetamine does cross-neuronal cell membranes and enters 

into the vesicles where neurons store dopamine, which can cause neurotoxicity indirectly 

by mobilizing dopamine out of the safe storage vesicles within the neuron and into the 

neuron's cytoplasm where it is converted to toxic and reactive chemicals.423 

3) Methamphetamine is metabolized at a much slower rate than that of cocaine, which 

results in a longer duration of action, and allows more time to exert its neurotoxicological 
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effects.326,423,424 

 
3.3.3. Approaches to potential treatment for methamphetamine abuse  

Methamphetamine addiction is a serious public health problem and concern worldwide 

for which there are no approved pharmacological treatments and its growing use has generated 

an urgent need to address this concern. Several potential therapeutic targets for the treatment of 

methamphetamine addiction have been identified, and they are currently being studied for 

treatment of methamphetamine dependence. 

A number of studies have shown that serotonergic medications may attenuate the 

reinforcing effects of amphetamine.425,426 Similarly, blockade of serotonergic and noradrenergic 

reuptake may lessen the depressive methamphetamine withdrawal symptoms.427 Therefore, 

antidepressants, including selective serotonin reuptake inhibitors (SSRIs) and tricyclic 

antidepressants (TCAs), have been studied as potential treatments for methamphetamine 

dependence.  Imipramine (176)[Fig. 3.18], a selective serotonin reuptake inhibitor (SSRI), has 

been shown to improve treatment retention but not urine drug screen results, depression scores, 

or craving in an outpatient setting.428 Recently, a study by Elkashef and colleagues showed that 

bupropion (177)[Fig. 3.18], a dopamine and norepinephrine reuptake inhibitor maybe effective 

as a treatment for methamphetamine dependence.429 Furthermore, amineptine (178)[Fig. 3.18], a 

dopamine reuptake inhibitor with mild stimulant properties and mirtazapine (179)[Fig. 3.18], a 

serotonin 5HT2 inhibitor, have presented promise as treatments for methamphetamine 

withdrawal symptoms.430-433 However, paroxetine (180)[Fig. 3.18], fluoxetine (181)[Fig. 3.18], 

and sertraline (182)[Fig. 3.18]  failed to attenuate methamphetamine withdrawal symptoms.434-436 

Moreover, because of the effects of dopamine and 5HT on amphetamines, antipsychotics have 

also been considered as well for methamphetamine dependence treatment. For instance, 
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treatment with risperidone (184)[Fig. 3.18], a D2 and 5HT2A antagonist, has resulted in 

substantial decrease in methamphetamine withdrawal symptoms.437  Modafinil (183)[Fig. 3.18]  

is a mild stimulant with effects similar to those of amphetamines, was approved as a medication 

for narcolepsy. Several studies have confirmed that its use does not cause elation or euphoria like 

amphetamine and methamphetamine, indicating its low potential of abuse.438 Treatment with 

modafinil (183)[Fig. 3.18] resulted in decreased withdrawal symptoms such as hypersomnia, 

nighttime awakenings, poor concentration and low mood.438 

  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

             Figure3.18: Several compounds cited for their potential treatment for methamphetamine abuse. 
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the treatment of attention deficit hyperactive disorder (ADHD) in children as well as narcolepsy 

and epilepsy, has been used to treat methamphetamine addiction aiming to substitute the 

methamphetamine use with a safer medication, which avoids withdrawal, reduces cravings, and 

regulates dose and mode of administration.439 

 
3.3.4. Sigma receptors and methamphetamine 

It is not unpredicted that sigma-1 ligands regulate some effects of methamphetamine 

since this psychostimulant interacts with sigma-1 receptors in a micromolar range affinity, and 

with a 20-fold higher affinity over sigma-2 receptors.114 Earlier studies have showed that 

methamphetamine interacts with sigma receptors and the antagonism of these receptors can 

attenuate methamphetamine induced locomotor stimulation and neurotoxicity.114 In these studies 

found that the sigma-1 antagonists, BMY10802 (11)[Fig. 3.19], NE100 (31)[Fig. 3.19], and MS-

377 (18)[Fig. 3.19]  weakly modulated the acute motor effects of methamphetamine.115,440,441 

Later it was found that the selective sigma-1 antagonists BD 1063 (167)[Fig. 3.19]  and BD 1047 

(14)[Fig. 3.19], as well as sigma-1 antisense oligodeoxynucleotide, blocked methamphetamine-

induced locomotor activity.114 Furthermore, BMY 14802 and MS-377 sigma-1 antagonists, 

inhibited the behavioral sensitization induced by the repeated administration of 

methamphetamine.115,441,442 Subsequent studies have confirmed that sigma receptor antagonists 

mitigate the neurotoxic effects of methamphetamine. Interestingly, some selective sigma receptor 

antagonists prevented methamphetamine induced depletions in striatal dopamine and serotonin 

levels, striatal dopamine transporter expression and hyperthermia.117 However, the exact role of 

the sigma-2 receptors in methamphetamine-induced effects is still undetermined.  
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Figure 3.19: Chemical structure of sigma receptor ligands for methamphetamine abuse treatment. 

 

Similar to cocaine, laboratory animals self-administer methamphetamine, which can lead 

to addiction related behaviors. Consequently, some studies have shown the ability of 

methamphetamine self-administration to alter sigma-1 systems.443 There is evidence that sigma-1 

receptors are up-regulated in several brain regions in rodents that self-administer 

methamphetamine, and these changes are specific to self-administering animals, as compared to 

yoked controls who passively receive the same amount of methamphetamine.443,444 In another 

previous study, it was found a down regulation of DA D2 autoreceptors with methamphetamine 

self administration, would increase adenylate cyclase, and thus protein kinase A (PKA) activity. 

Therefore, the results suggest that sigma-1 up-regulation, induced by methamphetamine self-

administration is mediated by increased PKA activity due to DA D2 autoreceptor down-
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regulation.445 Furthermore, several other studies have indicated that the alterations in sigma-1 

receptor expression are linked to frequent psychostimulant exposure under different conditions 

and that these changes may explain a functional module that needs to be fully understood.446-448 

 

3.3.4.1. Sigma ligands as potential treatment for methamphetamine abuse 
 
 
The first selective sigma ligand that was used to investigate its effect on 

methamphetamine abuse is (±)-BMY14802 (11)[Fig. 3.20].449 This compound was able to 

attenuate methamphetamine induced dopaminergic neuropathology and prevented the decrease 

in D1 and D2 dopamine receptor number in mice pretreated with (±)-BMY14802. Similarly, its 

ketone metabolite, BMY14786 (185)[Fig. 3.20]., attenuated the methamphetamine-induced 

effects. Moreover, in a different study, the well-known selective sigma-1 receptor ligand, MS-

377 attenuated the behavioral sensitization induced by methamphetamine treatment in rats.441 

Also, it has been reported that the highly selective sigma receptor ligand, AC927 (17)[Fig. 3.20]., 

decreased some of the methamphetamine-induced effects.  Due to the high selectivity of AC927 

toward sigma receptors compared to other 29 targets, suggested that its action mainly was 

conducted through sigma receptors effect.117 

 

 

Figure 3.20: Chemical structure of sigma receptor ligands for methamphetamine abuse treatment 
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Furthermore, the two sigma-1 antagonists, BD1047 and BD1063 [Fig. 3.19] attenuated 

the locomotor stimulatory effects of methamphetamine. Consequently, the antisense 

oligodeoxynucleotide was also able to attenuate the response to methamphetamine through 

down-regulation of the brain sigma-1 receptors.141 More recently, a study by Kushal et al.,34 

2013 on the SN79 (12) [Fig. 3.20], a putative sigma receptor antagonist with nanomolar affinity 

and selectivity for sigma receptors over 57 other binding sites, and its effect on the hyperthermia 

and neurotoxicity induced by methamphetamine at high doses. In this study, they found 

pretreatment with SN79 provided protection against methamphetamine-induced hyperthermia 

and striatal dopaminergic and serotonergic neurotoxicity in male, Swiss Webster mice. 

Conversely, the di-o-tolylguanidine (DTG) (35), a sigma receptor agonist, enhanced the lethal 

effects of methamphetamine, while it did not aggravate methamphetamine-induced 

hyperthermia. Interestingly, these results were very consistent with the effects of other sigma 

receptor antagonists, including AC927 (17) [Fig. 3.20] and CM156 (13) [Fig. 3.20], and these 

results concluded that the SN79 (12) [Fig. 3.20]  is a potentially promising drug candidate to 

mitigate many effects of methamphetamine [Fig. 3.21].34,117,118 Moreover, in a recent study 

conducted by Seminerio et al. indicated that  AZ66 (19)[Fig. 3.20], a selective sigma receptors 

ligand, not only blocked the development of behavioral sensitization, but also significantly 

reversed the expression of methamphetamine-induced sensitization.120 AZ66, was found to 

remarkably attenuate dopaminergic neurotoxicity and memory impairment produced by frequent 

exposure to methamphetamine.120,121 
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Figure 3.21:. Chemical structures of sigma receptor ligands (SN79, CM156, and AZ66) that were developed in 
McCurdy’s laboratory and pursued for potential methamphetamine abuse treatment 
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CHAPTER IV: IRREVERSIBLE SIGMA RECEPTORS LIGANDS AND 
PHOTOAFFINITY LABELING 
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4. Irreversible sigma ligands  

 
Irreversible ligands are tools that are mostly useful for isolating a specific protein and 

characterizing the functions associated with that protein. These ligands should be made from 

compounds that possess high affinity and selectivity to the targeted protein. Most importantly, 

the modified molecules should not obstruct binding with the same receptor site and allow an 

additional covalent bond to be formed with the same protein. Similarly, these compounds also 

have to possess reactive groups on their structures to form an electrophilic center that can bind to 

the targeted receptor irreversibly with a covalent bond such as the nitrogen mustards, 

haloacetamides, aldol esters, Michael acceptors, or the isothiocyanates.450 The well-designed 

irreversible ligand first needs to bind to the receptor site as a first recognition step, and then 

irreversibly by forming a strong covalent bond as a second recognition step. It is important to re-

evaluate the selectivity/specificity for the binding of the irreversible ligand to avoid probability 

of a non-specific covalent bond or the cross reaction with other physiological enzymes.451 

4.1 Irreversible ligands derived from different structural classes of sigma ligands 
 

The use of selective irreversible probes has showed to be extremely useful in the 

isolation, purification, and characterization of many receptor systems. Selectivity and high 

affinity of a ligand are important attributes for designing successful irreversible probes as well as 

an understanding of structure activity relationships to incorporate the electrophilic moiety on the 

molecule where it will not affect these. 451 

4.1.1 Analogues of phencyclidine 
 

In an effort to gain a better understanding of phencyclidine (PCP) receptors, the 

irreversible ligand, meta-isothiocyanate derivative of 1-[1-(3-isothiocyanatophenyl) cyclohexyl] 
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piperidine (Metaphit) (187)[Fig. 4.1], was synthesized and used to study such important 

receptors. It was found the metaphit able to alter the binding sites that already labeled with 

[3H]PCP in rat brain, and antagonize several effects produced by phencyclidine.452-456 Also, 

metaphit binds reversibly at high concentrations to µ opioid receptors labeled with 

[3H]dihydromorphine and to muscarinic receptors labeled with [3H]QNB (quinuclidinyl 

benzilate); however, it does not exhibit affinity toward benzodiazepine receptors labeled with 

[3H]diazepam.452  Moreover, it was found that metaphit antagonizes the motor stimulation 

induced by cocaine, and reduces the capacity of 5-HT2 receptors labeled with 

[3H]ketanserin.457,458 

 
 
 
  
 
 
 

 
 
 

 
Figure 4.1: Structure of phencyclidine and its derivative, metaphit. 

 
 

Studies on phencyclidine and some sigma receptor ligands with a similar structure to 

benzomorphan showed a clear connection between them since they display psychotomimetic 

actions.459-461 Furthermore,  (+)-N-Allyl-normetazocine [(+)-SKF-10,047] and cyclazocine 

appear to share several pharmacologic properties of phencyclidine.462,463 Interestingly, (–)-SKF-

10,047, displays an affinity for µ opioid receptors (Ki = 3.6 ± 0.05 nM), whereas the (+)-isomer 

shows an affinity for both sigma and phencyclidine receptors. However, sigma receptors 

demonstrate preference for the (+)-cis-isomer of the N-substituted N-normetazocines, 

particularly when they bear bulky nitrogen substituents compared to the other derivatives of 

phencyclidine.464-466 
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Accordingly, Bluth et al. examined the cross reactivity between sigma receptors and PCP 

recognition sites and whether the metaphit is able to acylate sigma sites.467 It was found that 

metaphit displaces both [3H]DTG and [3H]3-PPP from sites in guinea pig brain membranes in a 

competitive and irreversible manner. It is important to note that metaphit produces an irreversible 

inhibition of the sigma receptor sites, which depends on the ligand that was used in the 

experiment. The order of sensitivity is [3H]DTG > [3H](+)-3PPP >> [3H](+)-SKF-10,047, the 

values of IC50 correspond respectively to 2, 10, and 50 mM, which reflects the different manner 

of interactions of benzomorphan and non-benzomorphan structure with the sigma sites.467 These 

results were explained by a theory of Bowen et al. that proposed a multi- site model for the 

sigma receptors, allosteric model or multiple sigma receptor types.468  Based on this theory, 

metaphit interacts in a different manner with these different sites and therefore have a different 

ability in inhibiting the binding of these ligands.   

Therefore, the acylating metaphit binds irreversibly to an adjacent nucleophilic site and 

not targeted directly the binding site of sigma receptors. This may give a chance to the 

competing ligands to replace metaphit from the ligand-binding site while it still binds covalently 

to the receptor, which appears as a competitive inhibition. Another explanation suggested that 

metaphit acts as a competitive inhibitor of [3H]DTG and [3H](+)-3-PPP, whereas the high 

concentrations of competing ligands as is the case for PCP receptors should not overcome the 

acylation of sigma sites by metaphit. A subsequent study by Reid et al. in 1990,469 showed that 

metaphit and several other phencyclidine-based ligands bind to both sigma and PCP sites and 

produce a wash-resistant inhibition.469 In the same study, they found the most potent sigma 

receptor inhibitor was cinnamoyl-PCP (188)[Fig. 4.2], and next to it, was the isothiocyanate 

derivative of phencyclidine, ETOX-NCS (189)[Fig. 4.2]. These two compounds were able to 
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inhibit  [3H]DTG binding at low concentration (1 µM ) whereas the other compounds inhibited 

the binding at a higher concentration (10 µM ), and a better inhibition was obtained at 100 µM; 

however,  (±)-MK-801-NCS (190)[Fig. 4.2] showed an equivalent effect at all concentrations.470  

 
 

 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
Figure 4.2: Structures of phencyclidine based ligands. 

 
 

A recent study by Zhang and coworkers showed that metaphit inhibited the DTG-induced 

inhibition of calcium channels by more than 95% indicating the irreversible sigma receptor 

antagonist activity of metaphit.470 

 

4.1.2 Analogs of guanidine 
 

DTG, di-o-tolyl-guanidine, is one of the most selective sigma ligands with a guanidine structure that 

was first demonstrated as a sigma ligand by Weber and coworkers.471  It has no substantial affinity toward 

the other receptor systems even though it cannot differentiate between both sigma receptor subtypes, (Ki , σ1 

= 12 nM and σ2=38 nM).471,472 The structure of DTG (35)[Fig. 4.3], was modified to the isothiocyanate 

derivative, 1-(2-methyl-4-isothiocyanatophenyl)-3-(2-methylphenyl)guanidine (DIGIT) (191)[Fig. 4.3], 

without affecting the sigma receptors affinity, and has the ability to inhibit sigma sites labeled with 
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[3H]DTG.473 In contrast to metaphit, DIGIT does not show substantial affinity for PCP receptors labeled 

with [3H]TCP. Furthermore, it does not have an effect on the binding of dopaminergic receptors labeled 

with [3H]spiperone, opioid receptors labeled with [3H]dihydromorphine or benzodiazepine receptors labeled 

with [3H]flunitrazepa. However, it does inhibit the binding of [3H](+)-3-PPP. To study the irreversible 

binding of DIGIT, membranes were pretreated with 50 nM DIGIT resulted in 50% binding inhibition of 

[3H]DTG , and the binding of [3H]DTG to the membranes pretreated with DIGIT did not take place even 

after several wash out procedures indicating the irreversible binding of DIGIT.  However, the DTG ligand 

that has no isothiocyanate group was easily washed out, indicating that the wash-resistant binding is mainly 

due to the covalent bond that was made by the isothiocyanate group.473 

 
 
 
 
 
 
 

 
Figure 4.3: Chemical structures of DTG and its isothiocyanate analog, DIGIT. 

 
 

4.1.3 Analogs of 3-phenylpiperidine 
 

Among of the two isomers of the 3-hydroxyphenyl-N-propyl piperidine (3-PPP), the 

R-(+)-3-PPP  isomer shows a preference for sigma-1 receptor (σ1 Ki = 5 nM; σ2 Ki = 442 nM).  

These results guided the synthesis of irreversible sigma ligand derivatives from the 

3-hydroxyphenyl-N-propyl piperidine (3-PPP), for example R-(+)-3-(4-isothiocyanato-3-

methoxyphenyl)-1-propyl piperidine (192) [Fig. 4.4] and R-(+)-1-(2-isothiocyanatoethyl)-3-(3-

methoxyphenyl)piperidine (193) (Fig. 4.4).474 It was found that the newly synthesized ligands are 

able to inhibit the binding of [3H](+)-3-PPP in a variable manners with an IC50= 40 nM, and 

12,000 nM, respectively. Also, the radioligand binding is not recoverable even after several 
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washout procedures demonstrating the irreversible binding of the isothiocyanate through a 

covalent bond.474 

 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

Figure 4.4: Chemical structures of possible irreversible sigma ligands 
 

4.1.4 Analogs of benzomorphans 
 
           (+)-Pentazocine and (+)-SKF-10,047 are benzomorphan derivatives with a high selectivity 

for sigma-1 sites that have been used in a tritiated form as selective sigma-1 receptor probes.  In 

the early 1990s, Carroll et al. synthesized a series of N-substituted derivatives of (+)- and (-)-cis-

N-normetazocine to evaluate their affinity against three different receptor systems, sigma-1, 

phencyclidine, and µ opioid receptors.466 Among the synthesized compounds, (+)-cis-N-benzyl-

N-normetazocine, a compound with a high affinity for sigma-1 receptor with Ki = 0.67 nM and a 

low affinity for sigma-2 receptor with Ki = 1710 nM. Some modifications have been made on 

this compound resulted in making the irreversible ligand, (+)-cis-N-(4-isothiocyanatobenzyl)-N-

normetazocine (BNIT) (194) [Fig. 4.5] for sigma-1 receptors.475,476  Membranes pretreated with 

BNIT at a concentration of 0.1 µM resulted in a decrease in the Bmax of [3H](+)-pentazocine 

binding by about 40% with respect to the control, and greater effect was obtained with 1µM 

concentration. Also, the binding of [3H](+)-pentazocine is not recoverable, even after several 

washout procedures of the pretreated membranes with BNIT.476 Similarly, and in the same study, 
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several saturation experiments conducted with [3H]DTG in the presence of (+)-pentazocine to 

block sigma-1 receptors, have indicated how the values of Bmax are the same as those obtained 

when the membranes were pretreated with BNIT  at 1 and 5 µM concentrations, as were the Kd 

values.476  Interestingly, BINT does not cause a loss of sigma-2 sites labeled by [3H]DTG; on the 

other hand, the binding of [3H](+)-pentazocine is not recoverable, even after several washout 

procedures of the membranes pretreated with BNIT. Therefore, it is clear that BNIT is only able 

to block sigma-1 sites selectively and irreversibly.476 

 

 
 
 
 
 
 
 
 

 
Figure 4.5: Chemical structure of BNIT 

 

4.2 Photoaffinity labels 
 

Photoaffinity labels are also irreversible ligands but unlike the affinity labels, they are 

bearing a reactive group in a dormant form that becomes an electrophile only when it is 

irradiated. These reactive groups can be, an epoxide, a Michael acceptor, or a reactive alkyl 

halide in the photoaffinity probe structures. Westheimer was the first who introduced the 

photoaffinity compounds in the early 1960, as a concept of photoaffinity labeling.477 Later, it was 

proven that the photoaffinity technique to be an efficient approach to identify various target 

proteins that can be useful in the fields of chemical biology and medicinal chemistry.478  

Photoaffinity probes can be utilized in various biological and medicinal applications, for 

example: 479 

1) Characterization of the structure and function of biological molecules. 
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2) Identification of the targets of biological active compounds. 

3) Determination of the selectivity and affinity of ligand-target complexes. 

4) Isolation and characterization of the unidentified enzymes or receptors. 

5) Exploration of ligand-receptor interactions. 

6) Identification of amino acid residues at protein-protein, and proteins-lipid interfaces. 

However, there are also some limitations:  

1) Photolabeling is a low efficiency process. 

2) Photolabeling has some stability issues. 

3) It has a selectivity issue due to its ability to react with any types of bond or residue 

without any preference. 

4) UV-irradiation damages the targeted proteins. 

5) In general, in vivo work is difficult to be performed. 

There are three major types of photoreactive groups that are commonly used in 

photoaffinity labeling; arylazides (195), diazirines (196), and benzophenones (197). [Fig. 

4.6] 

 
   
 
 

 
 
 

 
 
 

Figure 4.6: Structures of commonly used photo-reactive groups. 
 
Amongst all the photoreactive groups, aryl azides [Fig. 4.7] are the most used group that 

forms an extremely reactive nitrogen molecule upon UV activation. The photoactivation of an 

aryl azide creates the wanted singlet nitrene, which can produce a triplet nitrene through 
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intersystem crossing. [Fig. 4.7] 

 

 
 

Figure 4.7:  Aryl azide photoactivation. 
 

However, the 1,2-azacycloheptatetraene can be generated as a result of singlet nitrene 

rearrangement and a bicyclic benzazirine formation at particular temperature. The formed 1,2-

azacycloheptatetraene can interact with the other distance nucleophilic groups and reduce the 

photolabeling specificity.[Fig. 4.8] 477,480-483 

 

 
 

Figure 4.8:  Possible side reactions of aryl azides. 
 
 

Diazirine group is highly reactive upon photoactivation and relatively inactive towards 

nucleophilic attack, alkaline and acidic conditions. It generates a reactive carbene that binds 

covalently with the closest target molecule through C–C, C–H, O–H, or X–H incorporation.[Fig. 
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4.9] However, the diazirine derivatives synthesis involves long and complicated synthetic 

procedures.481 

 

                                     
 

 
Figure 4.9: Diazirine derivatives photoactivation. 

 
 

Several building blocks constructed on benzophenone are commercially available. 

Therefore, the benzophenone photoaffinity probes can easily be synthesized by linking 

commercially available benzophenone derivatives to the probe.484 Benzophenones are stable in 

most organic solvents and compatible with several synthetic routes. Upon photoactivation, 

benzophenone generates reactive triplet carbonyl states that can react with inactive C–H 

bonds.[Fig. 4.10] However, benzophenone has a major drawbacks are that their requirement for 

long irradiation times that can lead to low specificity, and their bulkiness that can obstruct the 

binding with the target proteins. 477,485,486 
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Figure 4.10: Benzophenoe derivatives photoactivation. 

 

4.2.1 Photoaffinity labels built on variety of sigma ligands 
 

4.2.1.1 Iodo-azidococaine 
 

Based on the moderate affinity of (-)-cocaine toward sigma receptors (Ki = 6.7 ± 0.3 

µM), several subsequent studies have been conducted in attempts to develop better sigma ligands 

and led to the synthesis of (–)-3-iodo-4-azidococaine (198) [Fig. 4.11].103 This compound shows 

a substantial increase in the affinity for sigma receptors regardless to the added substitutions to 

the original molecule, (-)-cocaine.487 In order to obtain the photoaffinity label [125I]N3-cocaine, 

(–)-3-iodo-4-azidococaine was radiolabeled with 125I. This photoaffinity probe was able to label 

a Mr 26,000 protein in various tissues including rat liver, and brain in addition to human placenta 

that was blocked by numerous sigma ligands, such as haloperidol, DTG, (+)- and (-)-3-PPP, 

carbetapentane, and dextromethorphan.487 
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                                            Figure 4.11 Chemical structure of [125I]Azidococaine 
 

4.2.1.2 Azido-phenazocine 
 

Many studies have been conducted in effort to develop selective sigma-1 ligands, and 

some of these studies demonstrated the enantiospecificity of the (±)-benzomorphans in which 

they found the specificity of (+)-benzomorphans for sigma-1 receptors, while the (-)-enantiomers 

show some preference for sigma-2 receptors with less discrimination between both subtypes.450 

Also, some of the earlier efforts led to synthesize [3H](+)-azidophenazocine (199) [Fig. 4.12], the 

photoactive benzomorphan derivative, which was able to label sigma-1 receptors with a high 

affinity similar to that of its related compound (+)-pentazocine (σ1 Ki = 1.34 ± 0.21 nM) when 

incubated in the dark with guinea pig brain membranes.488 Furthermore, the (+)-

azidophenazocine was able to compete with other sigma ligands and blocked the binding to 

lymphocyte binding sites when incubated under reversible conditions.489 Upon photoactivation, 

(+)-azidophenazocine labeled four proteins in lymphocyte membranes:  Mr 57,000, Mr 33,000, 

Mr 27,000, and Mr 22,000. However, further studies showed that only Mr 57,000 protein is 

blocked by sigma ligands, indicating that Mr 57,000 is a sigma receptor protein.489,466 
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Figure 4.12. Chemical structure of [3H](+)-Azidophenazocine 

 
 

4.2.1.3 Azido-DTG 
 

Several reports have been published showing the tremendous amount of effort put into 

identification and characterization of the molecular properties of sigma receptors, and some of 

this work demonstrated the use of radiolabeled photoaffinity ligands bearing an azide group. 

Consequently, the synthesis of [3H]N3DTG, 1-(4-azido-2-methyl[6-3H]phenyl)-3-(2-methyl[4,6-

3H]phenyl)guanidine (200) [Fig. 4.13], was first reported by Kavanaugh et al.  in 1988,490 and 

the binding studies of this ligand showed that it has high affinity for sigma receptors as same as 

[3H]DTG.490 A protein with a molecular mass of 29 kDa was irreversibly labeled after guinea pig 

brain membranes were photoactivated in the presence of [3H]N3DTG, and labeling of this protein 

was completely blocked by many putative sigma ligands.490 In a subsequent study by Hellewell 

and Bowen,8 a polypeptide of Mr 25,000 in guinea pig brain membranes was photolabeled by 

[3H]N3DTG.8,451 However, the differences between the two polypeptides in this study and that of 

Kavanaugh et al.490 was reasoned to the difference in the experimental conditions that were used.  

In contrast to guinea pig brain, two polypeptides of Mr 18,000 and Mr 21,000 were photolabeled 

in PC12 cells, and based on these findings, Bowen and colleagues proposed the two subtypes of 

sigma receptors with different molecular size; sigma-1 and sigma-2.8 
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Figure 4.13: Chemical structure of  [3H]N3DTG. 

 
From the above mentioned studies, proteins photolabeled by [125I]N3-cocaine, [3H](+)-

azidophenazocine, and [3H]N3DTG with a molecular size 25–29 kDa range are described as the 

sigma receptor, and the photolabeled proteins of 18–21.5 kDa range are described as sigma-2 

receptor. However, sigma-2 receptor has not yet been cloned. Thus, Photoaffinity probes will 

play an important role in further molecular and pharmacological studies of sigma receptors. 
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5.1 Introduction 

For more than three decades, studying metabolism and other pharmacokinetic properties 

of a drug candidate have tremendously helped in improving bioavailability and metabolic 

stability of new drugs and increased the overall success rate. For the most part, progress in 

automated molecular biology, high-throughput pharmacological screens and combinatorial 

synthesis has led to an accelerated process of drug discovery and development, especially in the 

pharmaceutical industry. Also, a number of studies have indicated that metabolism of a new drug 

candidate by the host organism is one of the most significant elements of the pharmacokinetic 

properties of a drug.  

Today, more than ever, bringing new molecules to market that will have not only the 

required activity, but also reasonable potency and duration of action, is the major concern of 

medicinal chemists. Accordingly, both bioavailability and half-life are essential contributors to 

the concept of metabolic stability. A drug candidate with a poor pharmacological activity, low 

bioavailability and high toxicity most likely will have a low success rate. In addition, the high 

expense, long time of development, and high risk of failure have also influenced the drug 

discovery process and bringing new drugs to market. Absorption, distribution, metabolism and 

excretion (ADME) are the four major determinants of pharmacokinetics. Therefore, an ideal drug 

candidate should possess both good pharmacological activities as well as good pharmacokinetic 

properties. The importance of early in vitro and in vivo pharmacokinetic studies has become well 

recognized in the drug discovery process, and are usually employed in an attempt to optimize 

both the pharmacokinetic properties and potency of a drug candidate at the same time. High 

clearance rates and high metabolic liabilities of candidates usually leads to poor bioavailability 

and/or the formation of active or toxic metabolites. Therefore, understanding the metabolism and 
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other pharmacokinetic parameters of a new drug candidate is needed in the early stage of drug 

discovery process. In most cases, metabolism can generate active, inactive, and reactive/toxic 

metabolites of drugs. Knowing such information can be very helpful as a basis for judging 

whether or not a drug candidate is worth further development. 491-493 

In drug discovery process, preliminary pharmacokinetic studies are generally performed 

in rodents or the other species used for the evaluation of in vivo efficacy. Subsequently, 

experiments are conducted in a large animal species such as dog or monkey for better description 

and to generate useful data in predicting human pharmacokinetic parameters.491-493 

  
5.2 Pharmacokinetic parameters and drug behavior 

5.2.1. Cmax  and tmax 
 

Cmax  is the maximum observed concentration in the concentration-time profile (Cmax ) 

and the time to reach that concentration (tmax , which equals 0 for i.v. bolus dosing), after 

intravenous (i.v.) or extravascular drug administration.492 

 

5.2.2. Area under the curve (AUC) 
 

The AUC is the initial measure of overall exposure following i.v or extravascular 

administration of a drug, once blood, plasma or serum drug concentrations are plotted versus 

time. However, the linear trapezoidal method is the most commonly used method to determine 

AUC. 
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AUC is expressed in units of concentration X time (e.g. ng X h/mL) 

AUC is the most important initial pharmacokinetic parameter used to calculate clearance 

and bioavailability. However, t1/2 or AUC have received more attention in practical work.492 

 

5.2.3. Clearance (CL) 
 

Clearance (CL) is a proportionality factor that relates the rate of drug elimination (in 

mass/time) to blood or plasma concentrations. 

Rate of elimination = CL x C. 
 

Clearance is expressed in units of volume/time and can be described as the volume of 

blood or plasma that must be cleared of drug per unit time to produce the observed rate of 

elimination.492 

 

5.2.4. Bioavailability (F) 
 

Bioavailability is one of the principal pharmacokinetic properties of drugs, and can be 

defined as the fraction of an administered dose of unchanged drug that reaches the systemic 

circulation. 

(C2 + C1)

2
X (t2   t1).=AUC t1----> t2

AUC tlast---->∞"= Clast / λz (λz = terminal rate constant)

AUC 0---> ∞

AUC 0---> ∞"="AUC0     tlast + AUCtlast----->∞".

equal the sum of these areas:

The extrapolated area from tlast is estimated as;

The area of each trapezoid is calculated as:

Total AUC or



 142 

Absolute bioavailability is the amount of drug from a formulation that reaches the 

systemic circulation relative to an intravenous (IV) dose. 

Bioavailability is calculated as the ratio of area under the curve (AUC) for the test and 

reference formulation/route of administration, and absolute bioavailability calculated as: 

 
 

Whereas, relative bioavailability is the amount of drug from a formulation that reaches 

the systemic circulation relative to a different formulation (non-IV) such as oral solution, and 

calculated as: 

 
 

5.2.5. Volume of distribution (VD) 
 

The volume of distribution (V) is a proportionality factor that relates the amount of drug 

in the body to the concentration of drug measured in a biological fluid. 

Amount of drug in body = V x C. 
 
V at t = 0 is known as Vc 
 
Volume of distribution is a function of plasma protein and tissue binding, 

 
 

 
Where, 
 

 VD  = the apparent volume of distribution. 

 fu  = the fraction unbound in plasma. 

 Vp = the volume of plasma. 

F =
AUC oral

AUC iv

Frel =
AUC formulation 1

AUC formulation 2

V = V p + Vt  X
fu
fuT
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 fuT = the fraction unbound in tissue. 

 Vt = the apparent volume of tissue. 

5.2.6. Half-life (t1/2) 
 

The half-life of a drug is the time it takes for its concentration in blood or plasma to 

decrease by half. By examining the ln drug concentration versus time profile, one can determine 

how many half-lives best describe drug loss. There is a single elimination rate constant kelim 

when only one phase is observed, and half-life is calculated as: 

 
 

Half-life is a secondary pharmacokinetic parameter, which is a function of clearance and 

distribution of the drug, and that reasoned to as CL increases, t1/2 decreases, and as VD increases, 

t1/2 increases.492 

 
5.3. Metabolic stability enhancement 

In the past, several approaches have been applied to optimize metabolic stability of drug 

candidates. For many years, optimizing the pharmacokinetic properties of new chemical entities 

in drug discovery has been by trial and error. Numerous drugs have been optimized by using 

traditional methods, such as empirical methods and experience for structural modification in 

drug discovery and development. On the other hand, a lot of effort has been applied recently to 

improve metabolic stability using knowledge-based systems, rapid chemical synthetic methods, 

pharmacophore models, and X-ray crystallography. 491-493 

Converting a lipophilic drug molecule to a water-soluble form in vivo, which can be 

readily excreted, usually knows as metabolism or biotransformation. Enzymes in the liver and 

other body tissues catalyze the chemical process of drug metabolism in organism system. There 

t1/2 =
0.693
kelim

= V
CL

X 0.693.
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are two categories of drug metabolism reactions: Phase I and Phase II reactions. Phase I 

metabolism involves introduction of polar functional groups (OH, COOH, NH2, SH etc.) into the 

drug molecule, which results in a small increase in their hydrophilicity. Cytochrome P450, 

flavin-containing monooxygenases, esterases, and amidases are the most significant enzymes 

involved in Phase I metabolism. Phase II biotransformation reactions include glucoronidation, 

acetylation, methylation, conjugation with glutathione, glycine or glutamic acid. Phase II 

biotransformation leads to significant increase in the hydrophilicity of drug molecule enhancing 

rapid excretion in urine.491-493 

In successful drug design and development, it is important to determine, and then 

improve the exposure–activity-toxicity relationship, which is also known as “the rule of three”, 

for drug candidates, and hence their suitability for improvement and development. There are two 

approaches that evaluate the metabolism of a compound in vitro and in vivo investigation. But, 

since in vitro studies generally allow for higher throughput at less cost than in vivo studies, they 

have now become an essential part of modern drug discovery. Numerous in vitro methods are 

available to evaluate metabolic stability; however, liver microsomes are the most common and 

widely used method. Generally, in vitro studies can be used along with in vivo experiments to 

select the animal model with a metabolism that is most similar to human.491 

 
5.4. Metabolic stability and intrinsic metabolic clearance 

 
Rane et al. was reported the first practical attempt to relate in vivo pharmacokinetics to in 

vitro drug metabolism.494 In the same study, using the concept of intrinsic metabolic clearance 

(CLint ), they demonstrate the in vitro metabolism rates correlated well with hepatic extraction 

ratios determined from isolated perfused rat livers. Later, the concept of in vitro-in vivo 

correlations has been steadily reviewed.495-499 
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Intrinsic clearance (Clint) as defined by Houston, is the proportionality factor between 

drug concentration at the enzyme site (Ce) and rate of metabolism.495,496 

Clint = Rate of metabolism/Ce 
 

 

 

From the Michaelis-Menten relationship for enzyme catalyzed reactions, rate of 

metabolism is related to concentration at the catalytic site, maximum velocity of reaction (Vmax ) 

and a constant known as the Michaelis constant (Km ) which in practical terms is defined as the 

substrate concentration at half maximal velocity.499,500 

 

 

 
Km and Vmax can easily be measured in vitro. 

 

Subsequent work by Obach et al. in which they reviewed the above principals and made 

prediction of human clearance from CLint data determined from in vitro metabolism experiments. 

They use in vitro half-life method to determine CLint, which is shown in the equation below.501 

 

 
 

 
Where,  
            t1/2  = half-life of the in vitro incubation  

            fu = fraction unbound to microsomal protein. 

Incubating a given drug with liver subcellular preparations for an appropriate period and 

measuring the disappearance of parent drug determined the in vitro half-life. Plotting ln % 

remaining vs time, then measuring the slope of this plot determined half-life: 

t1/2 = 0.693/ slope 

 

CLint =
Vmax
Km

CLint =
0.693

in vitro t1/2   x  amount liver incubation x Fu
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5.5. Advantages of enhancing metabolic stability 

Enhancement of metabolic stability generally allows for better control of 

pharmacokinetics as well as reduces reactive intermediates formation such as electrophilic, 

alkylating metabolites. Below there are some other advantages of optimizing metabolic stability 

of drug candidates:502 

1. Enhanced resemblance between dose and plasma concentration, which in turn reduce or 

even eliminate the need for expensive therapeutic monitoring. 

2. Improved bioavailability and half-life that allow lower and less frequent dosing, which in 

turn leads to improve in patient compliance. 

3. Decreased clearance that will result in a lower overall dose. 

4. Decrease in metabolic turnover rates from different species that allows a better 

extrapolation of animal data to humans.  

5. Irregularity in drug levels from patient-to-patient and intra-patient can be reduced, since 

it is mainly based on differences in drug metabolic capacity. 

6. Decrease in metabolism reduces the risk of drug-drug interactions. 

7. Decrease in metabolism reduces the risk of food-drug interaction due to the reduced dose. 

8. Reducing the number and significance of active metabolites and hence cutting the need 

for further studies on drug metabolites in animals and humans. 

 
5.6. Strategies to enhance metabolic stability 

Optimization of microsomal stability of a chemical entity can be performed by in vitro 

metabolism studies to confirm formation of metabolites, as well as to provide quantitative 

analysis of major metabolites. Similarly, understanding the route through which a compound is 

metabolized and the pharmacokinetics of its metabolites is essential for the successful 
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optimization of a drug candidate. Decades of study in drug metabolism have generated a plenty 

of qualitative observations on how to design metabolic stability into molecules. Recently, the 

advance in synthetic, analytical, and computational chemistry tools has accelerated the drug 

discovery and development process with high success rate. Therefore, numerous modifications 

can be used to improve metabolic stability, after recognizing moieties that contribute to activity 

and other functional groups necessary for activity. In general, metabolism can be reduced by 

incorporation of stable functional groups as blocking groups at metabolically susceptible sites or 

by decreasing the lipophilicity of the compound. Accordingly, numerous strategies have been 

applied to modify the molecular structure of a candidate compound to improve its metabolic 

stability:503,504 

 
• Deactivation of aromatic rings to facilitate oxidation through substitution with strongly 

electron-withdrawing groups (e.g. F, CF3, SO2NH2, SO3
−). 

• Incorporation of a steric bulk N-t-butyl group to prevent N-dealkylation. 

• Substitution of a susceptible ester linkage with an amide group. 

• Constraining the molecule in a conformation that is unfavorable to the metabolic 

pathway, more typically, protecting the labile moiety by steric shielding. 

• Avoidance of phenolic function, which have consistently been shown to be rapidly 

glucuronidated.  

• Avoidance of other conjugation reactions as primary clearance pathways would also be 

advised in the design stage in any drug that is to be administered orally. 

• The optimum strategy is to anticipate the probable route of metabolism and prepare the 

expected metabolite if it has adequate intrinsic activity. For example, N-oxides are 

frequently as active as the parent amine but do not undergo further N-oxidation. 
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5.6.1. Reducing lipophilicity 
 

Reducing the overall lipophilicity of a drug candidate is one of the most successful 

strategies for optimizing the metabolic stability of that candidate. However, lipophilic groups are 

usually involved in the binding to the biological target and they are vital for membrane 

permeability, which limits the application of this strategy. It has been reported that the binding 

site of metabolizing enzymes is mostly lipophilic in nature and thus these enzymes more readily 

accept lipophilic molecules.504 There are two approaches have been used successfully to reduce 

the lipophilicity of compounds, one is to remove lipophilic groups or moieties from the structure 

without compromising activity, and the other approach is accomplished through introduction of 

polar isosteres into molecules. For better understanding, literature based examples will be 

presented below to help in explanation of metabolic stability optimization approaches. 

In a study by Dragovich et al. on the human rhinovirus 3C protease inhibitor (201) [Fig. 

5.1] that displayed poor oral bioavailability in vivo in monkey, they found replacement of the 

benzyl group with substituents that possess low lipophilicity to obtain the propargyl analog (202) 

[Fig. 5.1] and the ethyl analog (203) [Fig. 5.1], led to reduction in calculated logP values in both 

analogs, improved oral bioavailability and retained the same activity when compared to the 

parent molecule.504 
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Figure 5.1: Chemical structure of rhinovirus 3C protease lead inhibitors 
 

Alternatively, reduction of the lipophilicity by introducing isosteric atoms or polar 

functional groups into the molecule to increase the overall polarity is another approach that has 

been applied to enhance the pharmacokinetic profile of a chemokine receptor antagonist lead as 

HIV-1 inhibitor (204) [Fig. 5.2]. It was found that introduction of polar moieties such as the 

salicylamide (205) [Fig. 5.2], the anthranilamide (206) [Fig. 5.2], and the nicotinamide (207) 

[Fig. 5.2]  afforded significant improvement in oral blood levels and area under curve of these 

ligands. In addition, the pyridine N-oxide (208) [Fig. 5.2] gave the optimum results in terms of 

potency and oral bioavailability in rat, dog and monkey.505 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

N
H

O
N

O

O

O N

NHO

O

O N
H

O
N

O

O

O N

NHO

O

O

N

F

F F N

N

O

N

F

F F N

N

O OH

N

F

F F N

N

O

Cl

NH2

202 
EC50 = 0.058 µM 
clogP =0.180 
C 7 h = 0.057 µM 

203 
EC50 = 0.047 µM 
clogP =0.660 
C 7 h = 0.896 µM 

204 
Ki = 1.000 nM 
AUC 0–6h = 0.922 µg ml−1 h−1 

205 
Ki = 5.000 nM 
AUC 0–6h = 2.543 µg ml−1 h−1 

206 
Ki = 5.000 nM 
AUC 0–6h = 1.872 µg ml−1 h−1 



 150 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 5.2: Chemical structures of chemokine receptor  (CCR5) antagonists. 
 

 
Another work by Imamura et al.506 presents another example to confirm the strategy of 

reducing lipophilicity to optimize metabolic stability of drug candidates. They incorporated 

various polar groups into a previously described piperidine-4-carboxamide CCR5 antagonist 

(209) [Fig. 5.3]  , which suffered from rapid oxidative metabolism in human hepatic microsomes 

and the human metabolic liability hampered further development.506 Insertion a carboxamide 

group into the phenyl ring of the 4- benzylpiperidine moiety gave the less lipophilic compound 

(210) [Fig. 5.3]  , which had both high metabolic stability and good inhibitory activity of HIV-1. 

Moreover, replacing the methylsulfonyl group with an acetyl group and one chloro atom with a 

methyl group to afford compound (211) [Fig. 5.3]   that displayed a 5-fold increase in potency in 

the membrane fusion assay and also was found to be metabolically stable in human hepatic 

microsomes.506 
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Figure 5.3:. Chemical structures of some piperidine-4-carboxamide CCR5 antagonists 
 

5.6.2. Blocking metabolically labile groups 
 
 

Blocking vulnerable sites through incorporation of stable groups or by removing the 

possibly labile groups from the molecule can enhance the metabolic stability of a drug candidate. 

Sites that are susceptible to oxidation can be blocked by introducing a halogen atom such as 

fluorine or by replacing the benzylic CH2 with an isostere such as oxygen.  

Stratford and co-workers reported an example of blocking the potential metabolic sites by 

introducing fluorine atom on an aromatic ring in order to block the aromatic oxidation. They 

found introduction of fluorine atom on the aromatic ring of compound 153186 (212) [Fig. 5.4]  

resulted in 18-fold enhancement in metabolic stability of the di-fluoro analog 368227 (213) [Fig. 

5.4], and more than 2-fold of the di-fluoro analog 366094 (214) [Fig. 5.4] compared with the 

unsubstituted phenyl ring of parent molecule.507 
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Figure 5.4: Chemical structure of fluorinated compounds  

 
Another work by Victor and co-workers provides an example of blocking sites of 

potential oxidative metabolism to optimize metabolic stability.508 The replacement of a methyl 

group susceptible to allylic oxidation (215) [Fig. 5.5]  with a hydrogen resulted in analog (216) 

[Fig. 5.5]   with five-fold improvement. An additional improvement of about two-fold was 

obtained in analog (218) [Fig. 5.5] by the introduction of an acetylenyl moiety and a 4-fluoro 

substitution on the phenyl ring of (217) [Fig. 5.5]   to block a potential oxidation on the aromatic 

ring.508 

 

  
 

 

  

 

 

 

 

Figure 5.5: Examples of blocking sites of potential oxidative metabolism 
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Another example of blocking the metabolic sites was provided by Childers et al.509 to 

improve the metabolic stability of quinolyl-piperazinyl piperidine analog (219) [Fig. 5.6]   , 

which exhibited potent and selective 5-HT1A antagonism; however, suffered from poor metabolic 

stability as a result of aromatic oxidation. Introducing a fluorine atom on position 5 of quinoline 

ring afforded compound (220) [Fig. 5.6]  with retained activity and marginal improve in 

metabolic stability in human microsomal assay. Subsequent substitutions in both the 2- and 4-

positions of the quinoline ring gave compound (221) [Fig. 5.6]  with enhanced metabolic 

stability in rat and human microsomal assays, and with loss of its potency.509 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.6:  Chemical structure of compounds with fluorine atoms 
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Rohde and co-workers synthesized a series of E-5-hydroxy-2-adamantane inhibitors 

beginning from a rapidly metabolized adamantine 11β-hydroxysteroid dehydrogenase type 1 

inhibitor (11β-HSDI) (222) [Fig. 5.7] in attempt to improve potency and metabolic stability.510 

Metabolic profile study of adamantanes showed that there are three potential metabolic labile 

sites, aryl ring oxidation, adamantine oxidation and N-piperazine dealkylation. Introducing a 

hydroxyl group on the adamantane ring afforded compound (223) [Fig. 5.7] with improved 

metabolic stability. Also, to block the aryl oxidation on the pyridine ring, trifluoromethyl was 

introduced to obtain compound (224) [Fig. 5.7] that showed greater metabolic stability than 

(223) [Fig. 5.7]. Additionally, to block N-dealkylation, a bulk steric group (methyl group) was 

incorporated onto the methylene ring adjacent to the nitrogen heteroatom of the piperazine ring 

resulted in even better metabolic stability (225) [Fig. 5.7].510 Interestingly, it was found that the 

mono-methyl substitution compound has better potency with improved metabolic stability profile 

in both mouse and human experiments than the di-substituted analog. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.7: Chemical modification of a series of adamantane inhibitors 
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Another example was reported by Lin, N. H. et al. showing the removal of a 

metabolically soft spot to enhance the metabolic stability and bioavailability.496 A 50-fold 

increase in potency at nicotinic receptors was observed when the N-demethyl analog (227) [Fig. 

5.8] was used instead of the N-methyl analog (226) [Fig. 5.8]. This can be explained as that the 

N-methyl is more liable to metabolism by N-demethylation.511 

 
 
 
 
 

 
 

 
Figure 5.8: Chemical structures and half-lives of compounds 266, 227. 

 
 

The work by Genin and co-workers on developing BHAP reverse transcriptase inhibitors 

with an effort to improve the metabolic stability, they achieved an approximate 4-fold 

enhancement in metabolic stability when they replaced a metabolically vulnerable 3-

isopropylamino moiety on the parent molecule (228) [Fig. 5.9] with an ethoxy group to obtain 

compound (229) [Fig. 5.9], which proved to be more stable when compared with the stability of 

the lead compound.520 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.9: Chemical structures and half-lives of BHAP reverse transcriptase inhibitors. 
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5.6.3.  Modification of metabolically labile groups 
 
 

In addition to oxidation, it’s well documented that amidases and esterases in the liver can 

hydrolyze amides and esters, respectively. Also, as a part of Phase II reactions, introduction of 

polar groups such as glucuronides and sulfates to the drug molecule makes them more water-

soluble, and easily excreted; therefore, it can be targeted as a suitable strategy to improve the 

overall metabolic stability. 

 
A work conducted by Blanchard et al. illustrates the above-mentioned approach with an 

effort to improve the bioavailability of phospholipase A2 inhibitors. They observed a 22-fold 

improvement in bioavailability for an amide (231) [Fig. 5.10] as well as increase in the metabolic 

stability when compared with the corresponding ester (230) [Fig. 5.10].513 

 
  
 
 
 
 
 
 
 
 
 
 
 

Figure 5.10: Chemical structures and half-lives of phospholipase A2 inhibitors. 
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5.11].414 

 

 

 
 
 
 
 
 
 
 
 

 
Figure 5.11: An example of improving metabolic stability by cyclization. 

 
 

An extensive SAR study on N-hydroxyurea inhibitors of 5-lipoxygenase revealed that 

glucuronidation of the N-hydroxyl moiety was an activity-limiting step and thus became a vital 

key to improve metabolic stability of such compounds.515 

The N-hydroxyurea compounds related to zileuton were divided into three areas for 

structural modification; the template, the linking group and the pharmacophore.  

 

 
 

Figure 5.12: Structure of zileuton showing the three groups used to define the structure–metabolism relationships of 
the N-hydroxyureas. 

 
The N-hydroxyurea moiety was recognized as an optimal pharmacophore for potency and 

selectivity; therefore, it was not touched for metabolic stability studies. However, the template 

and link modules attracted most of the attention to optimize zileuton derivatives in vivo, in 

S N NH2

O

OH

Link

Template Pharmacophore

S N NH2

O

O
Glucuronide

Glucuronyltransferase
UDPGA

232 
Ki = 0.200 nM 
40% and >60% degradation 
in human liver cytosol and  
microsomes, respectively 

233 
Ki = 0.069 nM 
10% and <5% degradation in 
human liver cytosol and 
microsomes, respectively 

NN

O
N

O

N

I NN

O
N

O
I



 158 

monkey.  

Alternatively, the linker group links the template with the N-hydroxyurea pharmacophore 

was modified, and then the process was repeated with the benzthiophene template. Every 

compound was evaluated for its stability to glucuronidation of N-hydroxyurea. Among the tested 

molecules, compounds with acetylene linker groups were mostly found to have lower uridine 5′-

diphosphoglucuronic acid (UDPGA) rates than any of the other tested links. This lower UDPGA 

rate results in the longest in vivo duration in monkey. Obviously, the rigid conformation structure 

of the acetylene group interrupts binding in the active site of uridine 5′-diphosphate-

glucuronosyltransferase and hence reduces conjugation as can be seen in Figure 5.13.515 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 5.13: Chemical structures of 5-lipoxygenase inhibitors. 
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CHAPTER VI: RESEARCH DESIGN AND METHODS 
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6.1 Rationale for design and synthesis selective sigma receptors ligands 

 
Several lines of evidence support the idea of targeting sigma receptors for development 

of therapeutics that could treat numerous diseases and their manifestation as well as for 

designing imaging agents to understand the pathophysiology associated with sigma receptors. An 

increase number of reports confirmed the validity of sigma receptors in treatment of cancer and 

drug addiction as reviewed in the previous chapters. 

 Consequently, the main focus of our laboratory is to design novel selective ligands for 

both sigma subtypes to get better structural and pharmacological understanding, which can 

contribute to developing treatments for cancer and drug abuse. Several reports over the years 

have indicated the involvement of sigma receptors in modulating the physiological actions of 

drugs of abuse such as cocaine and methamphetamine besides their role in apoptosis and cell 

death. Also, a number of the recent publications have confirmed the over-expression of sigma 

receptors in tumor cells to up 10 folds compared to the normal cells, which makes sigma 

receptors a valid target for cancer treatment. 

 Our research involves the design and synthesis of novel sigma receptor ligands as 

potential medications for cancer and drug addiction. Also, our research is contributing to the 

effort of identification of structural features necessary to develop ligands with high affinity and 

selectivity for both sigma receptor subtypes. 

 
 

The specific aims of my dissertation are:  

1) Design and synthesis of original benzofuran-based ligands for both sigma-1 and sigma-2 

receptors;  

2) Design and synthesis of irreversible selective sigma-2 ligands that may serve as 
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pharmacological tools to isolate and characterize sigma-2 receptor;  

3) Development and synthesis of novel agents with a dual inhibition effect on DAT and sigma 

receptors, also with an attempt to improve the metabolic stability of the less stable CM699 ligand 

(240) [Fig. 6.1] as potential stimulant abuse (cocaine & methamphetamine) pharmacotherapy; 

4) Synthesis and development of new analogs of the highly selective sigma-1 receptor ligand 

CM304 (23) [Fig. 6.1]. 

 

                                             
 
 

Figure 6.1: CM699 and CM304 structures. 
 
Before proceeding further, it is important to 

understand the nature of sigma receptors as shallow proteins that can accept a variety of ligands. 

It is assumed that there is some flexibility at the active sites of sigma receptors, since 

sigma receptors are able to interact with variety of ligands. Consequently, these diverse ligands 

might share some common features allowing them to interact with the same target. Subsequent 

studies and structural determinations of various sigma ligand classes proved the importance of 

the basic nitrogen for a compound to have sigma receptor affinity as well as the two hydrophobic 

groups (distal & proximal) with different distances from the basic nitrogen [Fig. 6.2].194 
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Figure 6.2: Glennon/Ablordeppey“Ar-X5-N” pharmacophore model for high binding affinity at sigma-‐1  

receptor. [Adapted from ref.  6] 
 
 

6.1.1 Benzofuran-based ligands 
 

Previous work in our laboratory, reported a series of indoles, benzoxazolinones, 

benzothiazolinones, and benzoimidazolones with high mixed selectivity for both sigma receptor 

subtypes. Among the synthesized compounds, the 3-(4-(4-cyclohexylpiperazin-1-yl) 

butyl)benzo[d]thiazol-2(3H)-one (241)[Fig. 6.4], was found to have subnanomolar preference 

toward sigma-2 over sigma-1 receptors.516 A subsequent study carried out in our laboratory, 

identified the 2-(4-(3-(4-fluorophenyl)indol-1-yl)butyl)-6,7-dimethoxy-1,2,3,4-

tetrahydroisoquinoline, as a selective sigma-2 receptor ligand with a favorable selectivity ratio 

(σ1/σ2 = 395) (242)[Fig. 6.4].517 Consequently, 1-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-

2(1H)-yl)butyl)-3-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one was found to have preference 

for sigma-2 receptor over sigma-1 receptor with selectivity ratio (σ1/σ2 = 1302) (242)[Fig. 6.3]. 
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Figure 6.3: Selective benzothiazolone, benzoimidazolone and indol-based sigma receptor ligands. 
 

Therefore, it is noteworthy to synthesize and examine a new series of benzofuran-based 

compounds since the benzofuran is a typical isostere for indole, benzoxazole and benzothiazole 

rings (244-246) [Fig. 6.4].   

 

 

Figure 6.4: Bioisosteric heterocycle rings 

Furthermore, it was obsorved in our laboratory that the optimal number of methylenes for 

the link between the amine and heterocyclic ring was found to be two for better sigma-1 

receptors affinity, and four for substantial affinity toward sigma-2 receptors. 

Thus, in a search for novel selective sigma receptor ligands and based on our previous 

findings, we designed a series of novel benzofuran derivatives in which we explored the two 

N
O

O

N
N

O

S

H
N

O
O

H
N

O

H
N

244 245

246

O

247

benzo[d]thiazol-2(3H)-one benzo[d]oxazol-2(3H)-one

benzofuran1H-indole

243, CM398 
Κi, σ1=560 
Κi, σ2= 0.47 
 



 164 

carbon linker and four carbon linker between the heterocyclic ring and the basic nitrogen to 

determine the σ1/2 receptors selectivity as well as exploring different substituents on a basic 

nitrogen of the heterocycle ring (secondary hydrophobic site) in attempt to build our structure 

affinity relationship (SAffiR) as can be seen in Figure 6.5. 

 

 
 

Figure 6.5: The Proposed Benzofuran-based Sigma Ligands Pharmacophore. 
 
 

 
The newly synthesized compounds are summarized in the following table: [Tab. 6.1] 
 

 

 
 

Table 6.1: The newly synthesized benzofuran-based sigma receptor ligands. 

Compound No Notebook Entry 
n 

“Number of 
methylenes” 

R 
“Different substituents on basic 

nitrogen” 

O
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Primary Hydrophobic Site
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            n=1 or n=3n

O

R

n
R= A substituent on the nitrogen
      heterocycle

n= Number of methylenes, which
      could be one or three.
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253 WA101 1 

 

254 WA102 1 
 

255 WA104 1 

 

256 WA106 1 

 

257 
 

WA107/182 1 
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 1 
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265 WA184 1 

 

266 WA193 1 

 

267 WA196 1 

 

268 WA199 1 
 

269 WA204 1 

 

270 WA205 1 

 

271 WA207 1 

 

272 WA210 1 
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285 WA173 3 
 

 

286 WA174 3 

 

287 WA175 3 
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297 WA216 3 

 

298 WA217 3 

 

299 WA218 3 
 

300 WA220 3 
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WA221 
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309 

 
 

WA230 3 

 

310 WA231 3 
 

311 
 

WA232 
 

3 

 

312 
 

WA240 
 

3 
 

313 WA254 3 

 

314 WA496 3 

 
 

 

6.1.2 Developing irreversible selective sigma-2 ligands 
 

Selective-irreversible binding of ligands to a protein is one of the most useful techniques 

to characterize and understand functions associated to that protein. Irreversible ligands are 

usually agents derived from ligands with high affinity and selectivity to the same-targeted 

protein. Slight chemical modification on these ligands can allow for a covalent bond to be 

formed with the same receptor. These modifications are generally conducted by introducing a 

reactive group such as the isothiocyanate, azide, nitrogen mustards, Michael acceptors, 

haloacetamides, and aldol esters that can bind irreversibly to the protein. The resulting ligands 

contain an electrophilic center that can bind covalently to a nucleophilic site in the receptor, 

which in turn will block the receptor if the compound is an antagonist or act as a functional 

antagonist if the compound is an agonist.450,518  
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To accomplish this goal, high affinity sigma-2 ligands developed in our laboratory were 

utilized in the design and synthesis a novel series of isothiocyanate compounds [Table 6.2]. 

 

 
 
 

 
Table 6.2: Sigma-2 selective ligands previously synthesized in our laboratory. 
 

Comp. 
No: 

Compound R X               Affinity (Ki, nM) σ1/σ2  
 ratio  

selectivity 

            

           σ1       σ2  

      243 CM398 B NCH3  560.4± 8.7 0.43± 0.02 1303 

240 CM699 A NCH3  16.6± 1.1 0.014±0.0003 1143 

315 CM777 C N(CH2)2CH3  752.4±51.4 0.66± 0.01 1140 

316 CM775 C N(CH3)4CH3  2274± 187 4.27± 0.29 533 

317 CM778 C NPh  543±8.8 6.69±0.51 81 

318 CM322 C NPh-4-F  118.46±48.37 1.67±0.16 71 

 
 
 
 
In this regard, we have incorporated an isothiocyanate moiety on our previous selective sigma-2 

compounds and their analogs [Table 6.3]. 
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Table 6.3: The synthesized isothiocyanate derivatives and their precursors. 

Compound 
No 

NB 
Entry 

R1 R2 X R3 

319 WA248 NO2 H NCH3 B 
320 WA256 NO2 H NCH3 A 
321 WA262 NO2 H N(CH2)2CH3 C 
322 WA266 NO2 H N(CH2)4CH3 B 
323 WA267 NO2 H N(CH2)4CH3 A 
324 WA303 NO2 H N(CH2)2CH3 A 
325 WA334 NO2 H N(CH2)2CH3 B 
326 WA336 NO2 H N(CH2)4CH3 C 

327(472b) WA402 H NO2 NCH3 C 
328(472b) WA420 H NO2 N(CH2)4CH3 C 

329 WA249 NH2 H NCH3 B 
330 WA257 NH2 H NCH3 A 
331 WA263 NH2 H N(CH2)2CH3 C 
332 WA268 NH2 H N(CH2)4CH3 A 
333 WA300 NH2 H N(CH2)4CH3 B 
334 WA304 NH2 H N(CH2)2CH3 A 
335 WA337 NH2 H N(CH2)2CH3 B 
336 WA338 NH2 H N(CH2)2CH3 C 

337(473a) WA403 H NH2 NCH3 C 
338(473b) WA421 H NH2 N(CH2)4CH3 C 

339 WA250 NCS H NCH3 B 
340 WA258 NCS H NCH3 A 
341 WA264 NCS H N(CH2)2CH3 C 
342 WA269 NCS H N(CH2)4CH3 B 
343 WA306 NCS H N(CH2)2CH3 B 
344 WA349 NCS H N(CH2)4CH3 C 
345 WA350 NCS H N(CH2)4CH3 B 
346 WA352 NCS H N(CH2)2CH3 B 

347(474a) WA404 H NCS NCH3 C 
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348(474b) WA422 H NCS N(CH2)4CH3 C 
349 WA255 --- --- --- -- 
356 WA365 H H NH C 
357 WA367 H H NPh-NO2 C 
359 WA371 H H NPh-NH2 C 
360 WA372 H H NPh-NCS C 
364 WA394 NO2 H O C 
365 WA409 NO2 H O A 
366 WA410 NO2 H O B 
367 WA396 NH2 H O C 
368 WA411 NH2 H O B 
369 WA412 NH2 H O A 
370 WA397 NCS H O C 
371 WA433 NCS H O B 
372 WA434 NCS H O A 
376 WA413 H NO2 S C 
377 WA414 H NO2 S B 
378 WA415 H NO2 S A 
379 WA416 H NH2 S C 
380 WA417 H NH2 S B 
381 WA418 H NH2 S A 
382 WA423 H NCS S B 
383 WA435 H NCS S C 
384 WA436 H NCS S A 

6.1.3 Development of dual sigma receptors and DAT inhibitors and CM699 metabolic 
stability enhancement 
 

There are no approved medications to treat stimulant (cocaine & methamphetamine) 

abuse or addiction, which urges the need to develop novel and effective agents to battle this 

serious issue. Recently, a dual targeting approach of inhibiting sigma-1 receptors and dopamine 

transporters demonstrated blockade of cocaine self-administration in rats.112 Having years of 

experience in the synthesis of high affinity sigma receptor ligands, we have retrospectively 

analyzed our library of compounds and discovered a ligand with these properties (CM699). 

Indeed, this lead compound was able to inhibit cocaine self-administration in rats without 

substituting for cocaine [Fig. 6.6].  
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Figure 6.6: a) When substituted for cocaine, CM699 failed to maintain self-administration. Rates of responding obtained with 
CM699 substitution for cocaine were no different from those obtained with saline substituted for cocaine (compare open circles 
to triangles). b) When administered before opportunities to self-administer cocaine, CM699 produced a dose-dependent 
insurmountable antagonism of cocaine self-administration. c) CM699 exhibited specificity in producing decreases in cocaine 
self-administration, producing those decreases at doses that had no effects of responding maintained by non-drug food 
reinforcement.112 

 
 

           However, CM699 has a short half-life in human and rat liver microsome stability assays 

(in vitro), 12.7 and 4.4 min respectively.  In the whole rat (in vivo), CM699 has a 4.4 hr half-life 

indicating a less than desirable profile to move forward into pre-clinical development [Fig. 6.7]. 

Although CM699 had a half-life of 4.4 hr in rat, it had a less than 1% oral bioavailability and 

was determined to be a lead for optimization studies. In this regard, we have decided to make 

analogs of CM699 in order to maintain or enhance blockade of cocaine self-administration and 

importantly, improve the pharmacokinetic profile.  

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.7: Plasma concentrations after administration of a single i.v. dose of 5 mg/kg produced a Cmax of 1.84 
µg/mL of CM699 at 5 min after injection.  Concentrations declined exponentially with an overall T½ of 4.4 hr (Fig. 
6.7) indicating a rapid distribution of the novel σR ligand in to the tissues. The distribution of CM699 was found to 
be extensive, which may be a desirable property for a compound acting on central nervous system. The elimination 
of CM699 from the systemic circulation was rapid as evidenced by its high clearance. 
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Our approach towards improving metabolic stability is to block the vulnerable sites of 

metabolism. As a first step of the research, we are targeting the two vulnerable sites, C6/C5 on 

the aromatic ring of the benzimidazolone ring and the carbon adjacent to the piperidine moiety, 

which are potentially labile towards metabolic oxidation and N-dealkylation, respectively by the 

microsomal enzymes.  

To do so, first, we thought that blocking these sites by more stable functional groups, 

would be able to enhance the metabolic stability and protect the ligand from quick degradation, 

as seen in [Figure 6.7].  

The second object was the selection of functional groups to block these sites. These 

groups should have minor effects on the physicochemical and conformational properties of the 

compound and in turn should not alter the affinity and selectivity. Fluorine atom is one of the 

most popular and widely used groups to block aromatic oxidation for several reasons: 

1) It has the high electronegativity and therefore it is possible that the electron withdrawing 

character deactivates the aromatic ring towards metabolic oxidation. 

2)  The fluorine can exert a minor steric demand at receptor sites as its van der Waal radius 

is between hydrogen and oxygen atom. 

3)  The C-F bond is highly non-polarized and can participate in hydrogen bonding and 

electrostatic interaction suggesting the enhanced binding affinity for the protein active 

site. 

4)  Furthermore, fluorine increases lipophilicity and this can improve the bioavailability of 

the fluorinated compounds.  

      On the other hand, to prevent the N-dealkylation, our approach was to incorporate a 

methyl group on one of the carbons adjacent to the basic nitrogen in the piperidine core to 
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increase steric hindrance around the tertiary amine whereby the microsomal enzymes cannot 

perform their function. The selection of a methyl group for protecting molecules from 

metabolism is well documented and frequently used in the design and discovery of drug 

candidates.  Based on the aforementioned concepts, we have synthesized new analogs of 

CM699 and incorporated the fluorine on the aromatic ring and methyl group on the carbon 

adjacent to the piperidine ring or both functionalities as well as making more derivatives 

using appropriate heterocyclic substituents that showed good preference for sigma receptors 

in previous work in our laboratory. Our approach towards improving metabolic stability is to 

block the vulnerable sites of metabolism as can be seen in Figure 6.8.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8: CM699 metabolic degradation and possible protection strategy. 
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for its affinity for sigma receptors and its anticocaine potency. The results disclosed that it has a 

high affinity and selectivity for both σ1 and σ2 receptors (Ki, σ1= 1.28 nM, σ2 = 0.64 nM) over 

a set of none-sigma binding sites. In addition, it significantly attenuated the cocaine-induced 

convulsions; however, this compound showed a very short half-life profile. Subsequent work in 

our laboratory, two approaches was followed to improve the metabolic stability, by blocking the 

two vulnerable sites, C-6 on the aromatic ring (aromatic oxidation) and the carbon adjacent to the 

nitrogen of piperazine heterocyclic ring (N-dealkylation)[Fig. 6.9]. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9: Sigma ligands developed in our laboratory and optimized for their metabolic stability. 
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metabolic stability chapter (Chapter IV), I have synthesized a novel series of CM699 analogs in 

which I tried to explore different heterocyclic rings in addition to blocking the possible metabolic 

sites using fluorine and methyl groups to prevent both the aromatic oxidation on the proximal 

heterocyclic ring and N-dealkylation on the carbon adjacent to the basic nitrogen of piperidine 

ring, respectively. The newly synthesized molecules are summarized in Table 6.6. 

 
Table 6.4: The newly synthesized CM699 analogs.  
 

Compd 
No 

NB 
Entry 

R1 R2 R3 R4 X 

240 CM699 H H H C NCH3 
394 WA153 H F H E S 
395 WA157 H F CH3 E S 
396 WA241 H F H C S 
397 WA242 H F CH3 C S 
398 WA478 H F H D S 
399 WA483 H H H D O 
400 WA484 H H H D S 
401 WA497 H F H F S 
403 WA294 H H H C NH 
423 WA378 H F H C NCH3 
424 WA379 H F H A NCH3 
425 WA380 H F H B NCH3 
426 WA428 F H H A NCH3 
427 WA429 F H H C NCH3 
428 WA430 F H H B NCH3 
429 WA475 H H H D NCH3 
430 WA476 H F H D NCH3 
431 WA481 H H CH3 C NCH3 
432 WA486 F H H D NCH3 
433 WA490 H F CH3 C NCH3 
434 WA491 F H CH3 C NCH3 
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435 WA514 H H H F NCH3 
436 WA515 H H H F O 
437 WA516 H F H F NCH3 
438 WA517 F H H F NCH3 
439 WA518 H H CH3 F NCH3 
440 WA519 F H CH3 F NCH3 
441 WA520 H H H F S 
442 WA522 H F CH3 F NCH3 

 

6.1.4 Development of new analogs of CM304 (Selective sigma-1 receptor ligand) 
 
          CM304, a highly selective sigma-1 receptor ligand, was developed in our laboratory, and 

was found to have high affinity (0.0025 nM) for sigma-1 receptors and high selectivity (> 

145,000 fold) over sigma-2 receptors. Furthermore, the compound was tested by NovaScreen 

profile, and the results confirmed the great selectivity of CM304 for sigma-1 receptors over the 

other off-target receptors.53 Such incredible selectivity has the potential to serve as a novel 

diagnostic tool and could be useful in finding effective treatment as sigma-1 receptors have been 

correlated with several human cancers, psychiatric conditions, and neurodegenerative diseases. 

However, preliminary studies have shown that the CM304 has low bioavailability (<1%) and a 

short half-life (4.2 min in mouse liver microsomes assay and 12.6 minutes in rat liver 

microsomes assay). This urges the need to develop more analogs by introducing little 

modifications on the original compound with maintaining the important features for such 

selectivity. Previous work by Saïd et al.227 with a subsequent extensive SAR studies in our 

laboratory showed four significant features to maintain the favorable selectivity: 

1) Azepane ring. 

2) A two carbon chain linker between benzo[d]thiazol-2(3H)-one and azepane ring. 

3) A benzo[d]thiazol-2(3H)-one heterocycle. 

4) Alkyl chain at the sixth position of benzo[d]thiazol-2(3H)-one ring, and the optimum 

results were obtained from propyl derivatives. 
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Therefore, based on the aforementioned information and analysis, we synthesized novel 

derivatives by introducing proton acceptor or donor groups on propyl or ethyl side chain that 

may enhance the selectivity and overcome the pharmacokinetic issues [Fig. 6.8; 6.9][Tab. 6.7]. 

 

 

 
 
 
 

Figure 6.10:. The novel CM304 
 

 
 

Table 6.5: The newly synthesized CM304 derivatives. 
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Figure 6.11: More novel CM304 derivatives. 
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CHAPTER VII: BIOLOGICAL SCREENING, RESULTS AND DISCUSSION 
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7.1 Biological screening methods 

7.1.1 Binding affinity assays  

7.1.1.1 Sigma 1 receptor binding (benzofuran series and CM699 analogs) 
 
 

Frozen whole guinea pig brains (minus cerebellum) were thawed on ice, weighed and 

homogenized (with a glass and teflon apparatus) in 10 mM Tris-HCl with 0.32 M sucrose pH 7.4 

(10 ml/gm tissue). The homogenate was centrifuged at 800 x g for 10 min at 4° C. The 

supernatant was collected into a clean centrifuge tube the remaining pellet was re-suspended by 

vortex in 10 ml buffer (tissue) and re-spun at 12,500 x g for 10 min at 4° C. The supernatants 

were pooled and spun at 28,000 x g for 15 min at 4° C. The supernatant was discarded and the 

remaining pellet was resuspended at 3ml/gram (original wet weight; O.W.W.) in 10 mM Tris-

HCl with 0.32 M sucrose, pH 7.4 and mixed by vortexing. The tissue suspension was incubated 

at 25° C (water bath) for 15 minutes. The tissue was then re-spun at 28,000 x g for 15 minutes. 

The supernatant was poured off and the pellet was gently re-suspended in experimental buffer to 

80 mg/ml (O.W.W). 

Ligand binding experiments were conducted in polypropylene assay tubes containing 0.5 

ml of 50 mM Tris-HCl buffer,  pH 8.0 for 120 minutes at room temperature. Each tube contained 

3 nM [3H] Pentazocine (specific activity 28 Ci/mmol, Perkin Elmer Life Science) and 8.0 mg 

tissue (O.W.W.).  Nonspecific binding was determined using 10 µM haloperidol. Incubations 

were terminated by rapid filtration through Whatman GF/B filters, presoaked in 0.3% PEI 

(polyethylenimine), using a Brandel R48 filtering manifold (Brandel Instruments Gaithersburg, 

Maryland). The filters were washed twice with 5ml cold buffer (10 mM Tris-HCl, pH 8.0) and 

transferred to scintillation vials. Cytoscint (MP Biomedicals, OH)  (3.0ml) was added and the 
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vials were counted the next day using a Tri Carb 2910 liquid scintillation counter (Perkin Elmer 

Life Sciences, MA) . Data were analyzed by using GraphPad Prism software (San Diego, CA).  

7.1.1.2 Sigma 2 receptor binding (Benzofuran series and CM699 analogs) 
 

Frozen whole guinea pig brains (minus cerebellum) were thawed on ice weighed and 

homogenized (with a glass and teflon apparatus) in 10 mM Tris-HCl with 0.32 M sucrose pH 7.4 

(10 ml/gm tissue). The homogenate was centrifuged at 800 x g for 10 min at 4° C. The 

supernatant was collected into a clean centrifuge tube the remaining pellet was re-suspended by 

vortex in 10 ml buffer (tissue) and re-spun at 12,500 x g for 10 min at 4° C. The supernatants 

were pooled and spun at 28,000 x g for 15 min at 4° C. The supernatant was discarded and the 

remaining pellet was resuspended at 3ml/gram (original wet weight; O.W.W.) in 10 mM Tris-

HCl with 0.32 M sucrose, pH 7.4 and mixed by vortexing. The tissue suspension was incubated 

at 25° C (water bath) for 15 minutes. The tissue was then re-spun at 28,000 x g for 15 minutes. 

The supernatant was poured off and the pellet was gently re-suspended in experimental buffer to 

80 mg/ml (O.W.W). 

Ligand binding experiments were conducted in polypropylene assay tubes containing 0.5 

ml of 50 mM Tris-HCl  buffer,  pH 8.0 for 120 minutes at room temperature. Each tube 

contained 3 nM [3H] DTG (specific activity 48 Ci/mmol, Perkin Elmer Life Science, MA), 200 

nM (+)-pentazocine (Sigma Aldrich, MO) and 8.0 mg tissue (O.W.W.).  Nonspecific binding 

was determined using 100 µM haloperidol. Incubations were terminated by rapid filtration 

through Whatman GF/B filters, presoaked in 0.3% PEI (polyethylenimine), using a Brandel R48 

filtering manifold (Brandel Instruments Gaithersburg, Maryland). The filters were washed twice 

with 5ml cold buffer (10 mM Tris-HCl, pH 8.0) and transferred to scintillation vials. Cytoscint 

(MP Biomedicals, OH)  (3.0ml) was added and the vials were counted the next day using a Tri 
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Carb 2910 liquid scintillation counter (Perkin Elmer Life Sciences, MA). Data were analyzed by 

using GraphPad Prism software (San Diego, CA).  

7.1.1.3 Dopamine transporter binding (CM699 analogs) 
 

Brains from male Sprague-Dawley rats weighing 200-225 g (Bioreclamation) were 

removed, striatum dissected and quickly frozen. Membranes were prepared by homogenizing 

tissues in 20 volumes (w/v) of ice cold modified sucrose phosphate buffer (0.32M sucrose, 7.74 

mM Na2HPO4, 2.26 mM NaH2PO4,  pH adjusted to 7.4) using a Brinkman Polytron (setting 6 for 

20 sec.) and centrifuged at 50,000 x g for 10 min at 4°C.  The resulting pellet was resuspended in 

buffer, recentrifuged and resuspended in buffer to a concentration of 10 mg/ml.  

Ligand binding experiments were conducted in assay tubes containing 0.5 ml sucrose 

phosphate buffer for 120 min on ice. Each tube contained 0.5nM [3H] WIN-35428 (specific 

activity 76 Ci/mmol, PerkinElmer Life Sciences, MA) and 1.0 mg striatal tissue (original wet 

weight).  Nonspecific binding was determined using 0.1 mM cocaine HCl (Sigma).  Incubations 

were terminated by rapid filtration through Whatman GF/B filters, presoaked in 0.05% PEI 

(polyethyleneimine), using a Brandel R48 filtering manifold (Brandel Instruments Gaithersburg, 

Maryland). The filters were washed twice with 5ml cold buffer and transferred to scintillation 

vials. Cytoscint (MP Biomedicals, OH) (3.0ml) was added and the vials were counted the next 

day using a Perkin Elmer Tri-Carb 2910 liquid scintillation counter (Perkin Elmer Life Sciences, 

MA). Data were analyzed by using GraphPad Prism software (San Diego, CA).  

7.1.1.4 Radioligand binding assays. (For isothiocyanate derivatives) 
 

The assays were performed using rat liver homogenates using previously published 

procedures.23 Sigma-1 receptors were labeled with 5 nM [3H](+)-pentazocine. Sigma-2 receptors 

were labeled with 3 nM [3H]DTG in the presence of 100 nM (+)-pentazocine to block sigma-1 
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receptors. Nonspecific binding was determined in the presence of 10 µM Haloperidol. Ki values 

were determined using GraphPad Prism software (San Diego, CA).  

7.1.2. Irreversible binding assays (Treatment of membranes with isothiocyanates) 
 

Membranes were incubated with the various isothiocyanates at concentrations of 100nM 

or 1µM for 60 min at R.T. in 20 mM Hepes, pH 7.4 at a protein concentration of 0.30 mg/ml. 

The preparation was then diluted to a protein concentration of 0.018 mg/ml with buffer and 

centrifuged at 37,000 ×  g for 10 min. The pellet was resuspended to the original volume with 

buffer and centrifuged again. Following resuspension to the original volume with 20 mM Hepes 

pH 7.4 the preparation was allowed to incubate for 60 min at R.T. to allow for dissociation of 

noncovalently bound isothiocyanate. The protein preparation was then subjected to 

centrifugation at 37,000 × g for 10 min and resuspended to a protein concentration of 0.6 mg/ml 

and used directly in the radioligand assay described above. The control membranes were treated 

in the identical manner without exposure to the isothiocyanate. This washout method was shown 

to effect complete dissociation of 500 nM SN-79 from sigma receptors.  

7.1.3. Metabolic stability study (CM699 analogs) 
 

Metabolic stability of the synthesized molecules (5 µM) was performed in Tris buffer (50 

mM, pH 7.4) with Human, Rat and Mouse liver microsomes at 37 ºC in 1 mL of incubation 

mixture. The incubation mixture composed of Tris buffer (50 mM, pH 7.4), liver microsomes (1 

mg/mL) and regenerating system. The reactions were started by the addition of regenerating 

system and were terminated at predetermined time points by the addition of equal volume of 

acetonitrile. Zero time incubations served as a 100% value. The samples were then centrifuged 

and the supernatant was injected on to UPLC. 
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7.2 SAR Study results and discussion 

7.2.1 Benzofuran series 
 

The binding affinities of benzofuran analogs towards sigma receptors are illustrated in 

Tab. 7.1. Interestingly, most of the compounds have displayed good affinity for both sigma 

subtypes. 

Compd. 
No 

Notebook 
Entry 

n 
“Number of 
methylenes” 

R 
“Different substituents 

on basic nitrogen” 

σ1  

Ki ± SEM (nM) 
σ2 

Ki ± SEM (nM) 

256 WA184 1 

 

 
28.7 

(25.5-32.3) 

 
121 

(90.2-163) 

257 WA193 1 

 

167 
(147-190) 

1070 
(790-1,450) 

269 WA196 1 

 

87.6 
(77.1-99.5) 

593 
(452-779) 

270 WA199 1 

 

17,000 
(12,600-22,900) 

34,400 
(20,700-57,200) 

272 WA205 1 

 

0.739 
(0.645-0.846) 

 
6.95 

(4.33-11.1) 
 

273 WA207 1 

 

5.47 
(4.86-6.16) 

 
8.11 

(4.11-16.0) 
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n
R= A substituent on the nitrogen
      heterocycle

n= Number of methylenes, which
      could be one or three.

Table 7.1. Sigma receptors binding affinities. 
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[Inhibition of the binding of radioligands labeling sigma-1 and sigma-2 receptors]. Sigma receptors affinities (Ki in 
nM) were determined in guinea pig brain homogenates. Sigma-1 receptors were labeled with [3H](+)-pentazocine. 

274 WA210 1 

 

2,990 
(2,510-3,550) 

2,456 
(1,870-3,230) 

278 WA214 3 

 

2.15 
(1.85-2.49) 

 
6.71 

(4.32-10.4) 
 

280 WA216 3 

 

48.5 
(41.8-56.1) 

514 
(412-640) 

284 WA221 3 

 

58.9 
(52.9-65.6) 

872 
(732-1,040) 

285 WA222 3 
 

0.485 
(0.426-0.554) 

 
8.22 

(5.17-13.1) 
 

286 WA223 3 
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(22.8-27.5) 

398 
(323-491) 

287 WA224 3 

 

49.1 
(43.2-55.8) 

3,590 
(2,560-5,040) 

288 WA225 3 

 

3.90 
(3.39-4.50) 

 
32.9 

(23.9-45.2) 
 

293 WA231 3 
 

17.1 
(15.1-19.3) 

494 
(327-745) 
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Sigma-2 receptors were labeled with [3H]DTG in the presence of (+)-pentazocine to block sigma-1 receptors. 
Nonspecific binding was determined in the presence of haloperidol.  
 
 

The un-substituted piperazine ring in 1-(4-(benzofuran-3-yl)butyl)piperazine (287), 

showed the best affinity and selectivity towards sigma-1 receptor, among the other tested 

piperazine derivatives illustrated in [Tab. 7.2] ,with 73 σ-2/ σ -1 selectivity ratio. The 3,5-

dimethyl piperazine derivative (284) showed the least selectivity with 15 σ-2/ σ -1 selectivity 

ratio as can be seen in [Tab. 7.2]. 

 

 
 
 

Table 7.2: Sigma receptors binding affinities for the piperazine derivatives 
 
 

A 

 

 

Also, the ring size expansion in the homopiperazine derivative (286) showed preference 

for sigma-1 over sigma-2; however, increasing the size of the ring has reduced the selectivity 

from 73 to 16 σ-2/ σ -1 selectivity ratio compared to the piperazine motif in compound (287). 

Replacing the homopiperazine in compound (286) with azepane ring (285) gave better affinity 

with the same σ-2/ σ-1 selectivity ratio, 17 [Tab. 7.3].  

O

N

H
NR1

R2

3

Compound R1 R2 σ1 σ2 σ2/σ1 
ratio 

selectivity 
284 CH3 CH3 58.9   (52.9-65.6) 872  (732-1,040) 14.8 
287 H H 49.1 (43.2-55.8) 3,590  (2,560-5,040) 73 
293 H CH3 17.1  (15.1-19.3) 494  (327-745) 29 
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Table 7.3. Sigma receptors binding affinities for the piperazine derivatives 
 

 

 
 

Surprisingly, introducing a ketone group on position 3 or 5 of the piperazine ring in 

derivative (270) with two-carbon space linker significantly reduced the affinity for both sigma 

receptors subtypes. [Tab. 7.4] 

 

Table 7.4. Sigma receptors binding affinity for the piperazine-2-one derivatives 
 

 

 

The spiro-substituted compounds (273) and (297) showed good affinity towards both 

sigma subtypes, and the carbon space linker between the two heterocycle rings seems to has no 

effect on the selectivity [Tab. 7.5].   

O

N

3

O

N

3

NH

O

N

H
N O

Compound σ1 σ2 σ2/σ1 
ratio 

selectivity 
285 0.485 

(0.426-0.554) 
8.22 

(5.17-13.1) 
17 

286 25.1 
(22.8-27.5) 

398 
(323-491) 

16 

Compound σ1 σ2 
270 17,000 

(12,600-22,900) 
34,400 

(20,700-57,200) 



 190 

 

Table 7.5. Sigma receptors binding affinities for the spiro-derivatives 
 

 

 

The phenylpiperazine derivatives showed good affinity with some preference for sigma-1 

over sigma-2. So far, most of the tested ligands have exhibited good affinity for both sigma 

receptors. Unfortunately, the binding affinities for the rest of the series toward sigma receptor 

subtypes have not been completed. Therefore, to build a clear structure affinity relationship 

(SAfiR), we have to get all the designed molecules tested for their affinity against sigma 

receptors. 

 

7.2.2 1,3-dihydro-2H-benzo[d]imidazol-2-one and benzo[d]oxazol-2(3H)-one derivatives 
 

This series of compounds was derived from the previously developed sigma-2 

compounds that showed preference for sigma-2 over sigma-1.  Surprisingly, all of the 

synthesized molecules retained comparable affinity and preference/selectivity toward sigma-2 

receptors. The best results were obtained from compounds (335), and (322) that exhibited good 

affinity and selectivity towards sigma-2 with σ-1/ σ -2 selectivity ratio of 734 and 472, 

respectively as described in [Tab. 7.6]. 

 

O

N

O

O
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O

nn

273 297

Compound n σ1 σ2 
273 1 5.47 

(4.86-6.16) 
8.11 

(4.11-16.0) 

297 3 3.40 
(3.07-3.78) 

6.25 
(5.07-7.71) 
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Compd. 
No 

Notebook 
Entry R1 R2 X R3 σ1  

Ki(nM) 

 
σ2  

Ki(nM) 

σ1/σ2 
ratio 

selectivity 

319 WA248 NO2 H NCH3 B 149 
(135-164) 

5.32 
(3.86-7.34) 

28 

321 WA262 NO2 H N(CH2)2CH3 C 18.3 
(16.5-20.3) 

4.22 
(3.21-5.56) 

4.33 

322 WA266 NO2 H N(CH2)4CH3 B 1,410 
(1,250-1,600) 

2.99 
(2.08-4.24) 

471.6 

323 WA267 NO2 H N(CH2)4CH3 A 24.7 
(21.4-28.5) 

5.67 
(4.32-7.45) 

4.4 

324 WA303 NO2 H N(CH2)2CH3 A 13.3 
(12.2-14.6) 

3.81 
(2.95-4.92) 

3.5 

325 WA334 NO2 H N(CH2)2CH3 B 85.1 
(76.8-94.4 

3.40 
(2.43-4.78 

25 

326 WA336 NO2 H N(CH2)4CH3 C 447 
(402-497) 

4.16 
(2.98-5.80) 

107.5 

329 WA249 NH2 H NCH3 B 9,360 
(6,960-12,600 

61.9 
(42.6-90.0) 

151.2 

330 WA257 NH2 H NCH3 A 257 
(229-288) 

15.0 
(12.0-18.9) 

17 

331 WA263 NH2 H N(CH2)2CH3 C 147 
(130-165) 

81.3 
(63.6-104) 

2 

332 WA268 NH2 H N(CH2)4CH3 A 280 
(241-325) 

11.5 
(9.28-14.3) 

24.4 

333 WA300 NH2 H N(CH2)4CH3 B 2,710 
(2,170-3,390) 

15.3 
(12.1-19.4) 

177 

334 WA304 NH2 H N(CH2)2CH3 A 252 
(223-284) 

11.8 
(9.66-14.3) 

21.3 

335 WA337 NH2 H N(CH2)2CH3 B 21,200 
(10,500-42,600) 

28.9 
(23.1-36.0) 

733.6 

336 WA338 NH2 H N(CH2)2CH3 C 1,880 
(1,560-2,250) 

34.2 
(28.1-41.6) 

55 

356 WA365 H H NH C 65.8 
(59.3-73.0) 

22.7 
(17.3-29.7) 

3 

357 WA367 H H NPh4-NO2 C 246 
(205-295) 

5.67 
(4.32-7.45) 

43.4 

359 WA371 H H NPh4-NH2 C 4,010 
(3,410-4,710) 

38.4 
(30.6-48.3) 

104.5 

364 WA394 NO2 H O C 44.0 
(38.3-50.5) 

11.9 
(9.78-14.5) 

3.7 

X

N
O

R1

R3

R2

R3 =
N

O

O

N
N

F

O

N

or

A B C

,

Table 7.6: Sigma receptors binding affinities for 1,3-dihydro-2H-benzo[d]imidazol-2-one and 
benzo[d]oxazol-2(3H)-one derivatives. 
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Sigma receptors binding affinities. [Inhibition of the binding of radioligands labeling sigma-1 and sigma-2 
receptors]. Sigma receptors affinities (Ki in nM) were determined in guinea pig brain homogenates. Sigma-1 
receptors were labeled with [3H](+)-pentazocine. Sigma-2 receptors were labeled with [3H]DTG in the presence of 
(+)-pentazocine to block sigma-1 receptors. Nonspecific binding was determined in the presence of haloperidol. 

 

From the above illustrated results, it is important to notice that compounds with the 6,7-

dimethoxy-1,2,3,4-tetrahydroisoquinoline motif have the best affinity toward sigma-2 receptors, 

and compounds with the 1-(4-fluorophenyl)piperazine motif come next to the isoquinoline 

derivatives in their preference towards sigma-2 receptors. Alternatively, compounds that bearing 

the 3H-spiro[isobenzofuran-1,4'-piperidine] motif displayed an excellent affinity towards both 

subtypes. 

Additionally, the length of the substitutions (propyl, pentyl, or para-substituted phenyl) 

on the nitrogen number one of benzoimidazolone moiety, appears to play a part of sigma-2 

receptor preference. 

 

7.3. Binding affinity and irreversible binding of isothiocyanate derivatives  

 
Irreversible binding is one of the most useful approaches that has been developed for 

receptor antagonists that may bind covalently to a receptor. We have found incorporation of 

isothiocyanate moiety to our previous selective sigma-2 compounds resulted in producing 

electrophilic center that can bind covalently to the sigma-2 receptor’s nucleophilic site, which in 

turn will block the receptor if the compound is an antagonist or act as functional antagonism if 

the compound is an agonist. To accomplish this goal, high affinity sigma-2 ligands developed in 

our laboratory were utilized in the design and synthesis a novel series of isothiocyanate 

compounds [table 7.7] 
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       Table 7.7: Sigma receptor binding affinities and selectivity ratios. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Affinities (Ki in nM) were determined in rat liver homogenates. Sigma-1 receptors were labeled with [3H](+)-
pentazocine. Sigma-2 receptors were labeled with [3H]DTG in the presence of (+)-pentazocine to block sigma-1 
receptors. Nonspecific binding was determined in the presence of haloperidol. The values in this table represent the 
mean ± SEM from replicate assays. 
 

In order to perform the irreversible binding assays, the isothiocyanate derivatives have 

been evaluated first for their binding affinity against both sigma subtypes, as illustrated in  [Tab. 

7.7]. Some of these compounds showed good preference for sigma-2 receptors and mainly (342), 

(344), (345), and (346). For a ligand to have a good irreversible binding it must dominstrate good 

binding affinity so it must have the opportunity to bind covalently at the targeted protein, which 

is sigma-2 receptor in this case. However, we have conducted the irreversible binding assays for 

Compd. 
No 

Notebook 
Entry R` R`` X R σ 1 

Ki(nM) 

σ 2 

Ki(nM) 
σ1/σ2 
ratio 

selectivity 

339 WA250 NCS H NCH3 B 1225±145 322± 6 3.8 
340 WA258 NCS H NCH3 A 1502±86 1548±60 0.97 
341 WA264 NCS H N(CH2)2CH3 C 373±37 320± 34 1.2 
342 WA269 NCS H N(CH2)4CH3 B 794±44 90± 4 8.8 
343 WA306 NCS H N(CH2)2CH3 B 542±18 377 ±41 1.4 
344 WA349 NCS H N(CH2)4CH3 C 795643±4843 314.2±7.8 2533 
345 WA350 NCS H N(CH2)4CH3 B 2231±202 111± 9 20.1 
346 WA352 NCS H N(CH2)2CH3 B 1170±116 216± 12 5.4 
349 WA255 ----- --- ----- --- 125± 51 176 ± 22 0.7 
360 WA372 H H NPh4-NCS C 434±119 349 ± 2 1.2 
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all the isothiocyanate molecules listed in [Tab. 7.7]. The results of the irreversible binding assays 

described in the following figures. Fig. 7.1 shows the irreversible binding at sigma-1 receptors, 

and Fig. 7.2 demonstrates the irreversible binding at sigma-2 receptors. 

 

Figure 7.1: Irreversible binding at sigma-1. σ-1 binding remaining after pretreatment of membranes with 
isothiocyanates at 100 nM and 1 µM and subsequent washout procedure. Binding is compared to control membranes 
with no exposure to isothiocyanate but subjected to same washout procedure. Values are expressed as the percent 
binding remaining relative to control not treated with irreversible ligand but subjected to identical conditions. 
Control binding for [3H](+)-pentazocine was 1,633 ± 127 dpm.  
 

 

Figure 7.2: Irreversible binding at sigma-2. σ-2 binding remaining after pretreatment of membranes with 
isothiocyanates at 100 nM and 1 µM and subsequent washout procedure. Binding is compared to control membrane 
with no exposure to isothiocyanate but subjected to same washout procedure. Values are expressed as the percent 
binding remaining relative to control not treated with irreversible ligand but subjected to identical conditions. 
Control binding for [3H]DTG was 7,138 ± 301 dpm. WA-350 & WA-352 bind irreversibly to σ-2 receptor while the 
others do not show statistically significant results. 
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It is obvious from the above figures that the isothiocyanate compounds have little effect 

on sigma-1 receptors compared to their binding at sigma-2 receptors; however, here we were 

interested in those compounds that have the most selectivity ones towards sigma-2 receptors. 

Among the tested compounds, 345 (WA350), and 346 (WA352) showed a significant binding 

(covalently) at sigma-2 receptors with no or a little binding (Covalently) at sigma-1 receptors. 

Interestingly, compound 345 (WA350), showed higher affinity and selectivity for sigma-2 over 

sigma-1(covalently). 

 Compound 344 (WA349) showed excellent binding affinity towards sigma-2 over sigma-

1 with 2533 σ-1/ σ-2 selectivity ratio. We are currently awaiting the completion of this series of 

compounds in irreversible binding assays, a long with the others, and will include them in a 

future publication. 

 

7.4 The novel CM699 analogs 

 
 The CM699 derivatives were synthesized and their affinities toward sigma receptors and 

dopamine transporters were measured using radioligand binding assays as previously described 

in Tab. 7.8. Several compounds retained comparable affinity towards sigma receptors and 

dopamine transporters (DAT). These compounds screened include: 362 (WA241), 365 

(WA378), 369 (WA429), 371 (WA475), 372 (WA476), 373 (WA478), 376 (WA484), and 377 

(WA486). Among these compounds, 365 (WA378) had affinities of 5.70, 0.967, and 203 nM at 

sigma-1 receptors, sigma-2 receptors, and DAT, respectively, and 373 (WA478) had affinities of 

7.96, 10.4, and 328 nM at sigma-1 receptors, sigma-2 receptors, and DAT, respectively while 

CM699 had affinities of 14.0, 2.30 and 318 nM at the same respective sites.  
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Table7.8: The newly synthesized CM699 analogs. 
  
Comp 

No 
NB 

Entry 
R1 R2 R3 R4 X DAT 

Ki ± SEM (nM) 
Sigma-1 

Ki ± SEM 
(nM) 

Sigma-2 
Ki ± SEM (nM) 

240 CM699 H H H C NCH3 318 (290-350) 14.0   (11.1-17.7) 2.30 (1.37-3.88) 
360 WA153 H F H E S NA NA NA 
361 WA157 H F CH3 E S NA NA NA 
362 WA241 H F H C S 301 (242-375) 2.18  (1.58-3.01) 0.667  (0.415-1.07) 
363 WA242 H F CH3 C S 1,250 (1030-1520) 3.92 (3.16-4.85) 2.58  (1.16-5.76) 
364 WA294 H H H C NH 1570  (1,390-1,770) 18.0 (16.4-19.8) 10.9  (7.66-15.5) 
365 WA378 H F H C NCH3 203  (187-221) 5.70 (4.98-6.52) 0.967   (0.7491.25) 
366 WA379 H F H A NCH3 38.7  (33.9-44.2) 2.33 (1.83-2.95) 5,770  (4,780-6,960) 
367 WA380 H F H B NCH3 10,500 (8,550-12,900) 339  (307-375) 1.69  (1.35-2.11) 
368 WA428 F H H A NCH3 3,940 (2980-5210) 46.1 (31.8-66.8) 2.90  (1.78-4.72) 
369 WA429 F H H C NCH3 336(266-424) 7.28 (5.97-8.87) 1.48  (0.759-2.84) 
370 WA430 F H H B NCH3 4,810 (3490-6630) 243  (216-273) 5.44   (3.56-8.32) 
371 WA475 H H H D NCH3 342 ± 42.8 51.0 ± 0.738 8.01  (5.56-11.5) 
372 WA476 H F H D NCH3 414   (370-464) 24.3  (22.8-26.9) 4.93   (3.41-7.12) 
373 WA478 H F H D S 328 ± 24.9 7.96 ± 1.18 10.4   (8.01-13.6) 
374 WA481 H H CH3 C NCH3 2,610 ± 90.5 17.9 ± 1.48 2.02   (1.42-2.88) 
375 WA483 H H H D O 1,210 ± 144 7.88 ± 0.532 9.19   (4.17-20.3) 
376 WA484 H H H D S 390 ± 52.6 10.0 ± 0.792 5.26   (3.86-7.17) 
377 WA486 F H H D NCH3 475 ± 37.3 22.8 ± 0.831 6.26   (4.31-9.08) 
378 WA490 H F CH3 C NCH3 1,460 ± 177 12.1 ± 1.62 1.83   (1.35-2.48) 
379 WA491 F H CH3 C NCH3 1,590 (1,390-1,810) 8.31   (7.55-9.15) 0.781  (0.500-1.22) 
297 WA496 --- --- --- F --- 873   (749-1020) 3.4 (3.07-3.78)  6.25  (5.07-7.71) 
380 WA497 H F H F S NA NA NA 

 

Table 7.8: Sigma receptors and dopamine transporter binding affinities. [Inhibition of the binding of radioligands 
labeling dopamine transporter, sigma-1 and sigma-2 receptors]. 
Sigma receptors affinities (Ki in nM) were determined in guinea pig brain homogenates. Sigma-1 receptors were 
labeled with [3H](+)-pentazocine. Sigma-2 receptors were labeled with [3H]DTG in the presence of (+)-pentazocine 
to block sigma-1 receptors. Nonspecific binding was determined in the presence of haloperidol. DAT affinities (Ki 
in nM) were determined in rat brain homogenates. DAT were labeled with [3H] WIN 35428. Nonspecific binding 
was determined in the presence of cocaine HCl. [ Values in parentheses are 95% confidence limits]. 
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From the obtained results, we can conclude that: 

1. Introducing the methyl group adjacent to the piperidine ring on the carbon of butyl linker 

significantly decreased the DAT affinity. 

2. However; introduction of the methyl group on the carbon of the piperidine ring and 

adjacent to basic nitrogen has retained the affinity toward sigma receptors and DAT. 

3. Also, insertion of the fluorine atom at position 6 of the heterocyclic ring showed some 

preference towards sigma receptors and DAT, while insertion it at position 5 decreased 

the affinity towards DAT, and with a little effect on sigma receptors. 

4. Both benzothiazolone and benzoimidazolone rings have shown good affinity towards 

sigma receptors and DAT. 

The next step was to screen the compounds that retained the affinity towards sigma 

receptors and DAT, for their stability in liver microsome assays.  So far, we have tested three of 

these compounds in human, rat, and mouse liver microsomes. All of the three analogs showed 

superior metabolic stability to CM699 as described in Fig. 7.3, and Fig. 7.4.  

In vitro half-life and CLint: The percent of the parent compound remaining was plotted 

versus time. The slope of the line gave the rate constant k for the disappearance of parent 

compound, from which an in vitro t1/2 can be calculated. CLint can be calculated using 

the following formula:  

CLint = k (min-1) x [V]/[P] = (L/mg x min) 

[V] is the incubation volume in µl and [P] is the amount of microsomal protein in mg in the 

incubation. 
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Figure 7.3: Metabolic stability results of some CM699 analogs (362, 363, and 365) in human, rat, and mouse liver 
microsomes 
 

 

 

 

 

 

 

 

 

Figure 7.4: Metabolic stability results of CM699 in human, and rat liver microsomes 
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benzothiazolone ring and also from the N-dealkylation at the carbon adjacent to the piperidine 

ring, showed the longest half-life among the tested analogs, which was 78 minutes in human 

liver microsomes.  

These results validate our approach towards improving the metabolic stability by 

blocking the vulnerable sites on CM699. Subsequently, the revealed results suggest that the 

developed compounds may be useful as a pharmacological tool in developing new treatments for 

stimulant abuse (cocaine or methamphetamine), and this approach could be a turning point in the 

development of medications to treat drug addiction. 

 

7.5 Novel CM304 analogs 

 
A series of CM304 analogs have been synthesized and characterized and their affinities 

toward sigma receptor subtypes have not been completed. However, the overall design was to 

reduce the lipophilicity of CM304 in order to enhance its pharmacokinetic profile. 
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CHAPTER VIII. CHEMICAL SYNTHESIS OF SIGMA RECEPTOR ANALOGUES 
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8.1 Synthesis of a Benzofuran-3-yl Series 

 
The approach that I followed in the synthesis of these compounds includes two groups of 

compounds. One group has two-space linker, and the other one has four-space linker between the 

benzofuran heterocyclic ring and other appropriate heterocyclic moieties. The space linker length 

was chosen based on previous work in our laboratory that indicated the preference of two carbon 

linkers for sigma-1 receptors, and the four-carbon linkers for sigma-2 receptors.   

The commercially available 3-coumaranone (248) was subjected to a Horner–

Wadsworth– Emmons reaction, using sodium hydide and trimethylphosphoacetate in THF at 0 

oC to afford the methyl acetate (249), which in turn reduced to the primary alcohol (250) using 

lithium aluminium hydride in THF at 0 oC. Compound (250) was either treated with 

methanesulfonyl chloride to obtain the mesylate (251) or subjected to Appel reaction to give 

compound (252) 3-(2-bromoethyl)benzofuran.  Both compounds (251) & (252) were reacted 

with various heterocyclic molecules in presence of anhydrous potassium carbonate in DMF to 

give the two carbon linker derivatives (253-266) and (267-272) respectively [Scheme 1].  

Compound (252) was subjected to alkyl elongation process to get the four carbon linker, 

first was treated with sodium cyanide to obtain the nitrile intermediate (273) that was subjected 

to hydrolysis with aqueous sodium hydroxide afforded the acid derivative (274) [Scheme 2]. A 

subsequent reduction to compound (274) using LiAlH4 in THF afforded alcoholic compound 

(275) with three carbon linker that was subjected to the same previous reactions to obtain the 

four carbon linker compound (280) as shown in Scheme 2. Finally, compound (280) was reacted 

with various and appropriate heterocyclic derivatives to obtain (281-314) compounds as can be 

seen in Scheme 2.  
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Scheme 1: Synthetic routes of the 3-ethylbenzofuran derivatives synthetic routes 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
     
Reagents and conditions:(i) NaH, THF, trimethylphosphoacetate, 0 oC, 30min, r.t., 2 h; (ii) LiAlH4, THF, 0 oC , 
30min, r.t. , 1h; (iii) CH3SO2Cl, DCM, Et3N, 0 oC-r.t. 4h; (iv)  CBr4, CH2Cl2, triphenylphosphine, 0 oC - r.t., 
overnight; (v) Corresponding cyclic amine, K2CO3, DMF, 65 oC, 1-3h. 
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Scheme 2: Synthetic routes of the 3-butylbenzofuran derivatives 
 
 

 

 
 
 
 
 
Reagents and conditions: (i) NaCN, DMF, overnight, H2O; (ii) KOH, H2O, EtOH, reflux, 1h; (iii) LiAlH4, THF, 0 
oC-r.t., overnight, 0 oC, H2O, 1N HCl (pH 4); (iv) 1-(4-nitrrophenyl)piperazine or corresponding cyclic amine, 
K2CO3, DMF, 60 oC, 1-3h.  
 
 
 
8.2  Synthesis of isothiocyanate derivatives: 
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and 348-350) were prepared as described in scheme 3, from the commercially available 2-fluoro-

4 or 5-nitroaniline, which were reacted with the appropriate akylamine derivatives, to give the 

alkylamine intermediates (304-308) followed by ring closure using carbonyldiimidazole (CDI) in 

THF to obtain 5 or 6-nitrbenziimidazolone derivatives (309-313). N-alkylation of the 

heterocyclic nitrogen atom with 1,4-dibromobutane in presence of anhydrous K2CO3 in DMF, 

followed by coupling with different heterocyclic substituents as simple N-alkylation reactions to 

afford the nitro derivatives (319-328) that were then subjected to hydrogenation (30 psi) in 

presence of 10% palladium activated charcoal and methanol as a solvent to form the aniline 

precursors (329-338). Finally the isothiocyanate compounds (339-348) were obtained from the 

aniline precursors using thiophosegene or thiocarbonyldiimidazole in presence of triethylamine 

in DCM or DMF. 

Alternatively, compounds 474a (WA404) and 474b (WA422) were obtained as can be 

seen in [Scheme 3b] by subjecting the synthesized, 5-nitro-1,3-dihydro-2H-benzo[d]imidazol-2-

one 466 (WA313) to N-alkylation reactions using methyl iodide in acetone and pentyl iodide in 

DMF to get mixtures of 1-alkyl-6-nitro-1,3-dihydro-2H-benzo[d]imidazol-2-one 468 & 470 

(minor products) and 1-alkyl-5-nitro-1,3-dihydro-2H-benzo[d] imidazol-2-one 467 & 469 (major 

products). These compounds were separated by column chromatography and compared with the 

synthesized ones on the thin layer chromatography to distinguish between the two isomers. Also, 

the 15N-NMR and 15N-HMBC-NMR were conducted for (469) and (470) to see the N-H 

correlations and to confirm which is which. 
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Scheme 3a: Synthetic routes of isothiocyanate derivatives of benzoimidazolone heterocycle ring 
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Compd No: R1 R2 X 
304 H NO2 NCH3 
305 NO2 H NCH3 
306 NO2 H N(CH2)2CH3 
307 H NO2 N(CH2)4CH3 
308 NO2 H N(CH2)4CH3 

Compd No: R1 R2 X 
309 H NO2 NCH3 
310 NO2 H NCH3 
311 NO2 H N(CH2)2CH3 
312 H NO2 N(CH2)4CH3 
313 NO2 H N(CH2)4CH3 

Compd No: R1 R2 X 
314 H NO2 NCH3 
315 NO2 H NCH3 
316 NO2 H N(CH2)2CH3 
317 H NO2 N(CH2)4CH3 
318 NO2 H N(CH2)4CH3 
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Reagents and conditions: (i) H2N-R, K2CO3, DMF, r.t or 80 oC, 18hr; H2N-CH3, H2O, overnight, 95 oC; (ii) CDI, 
THF, 65 oC, 18hr,; (iii) 1,4-dibromobutane , K2CO3, DMF, 45-60 oC, 2-4hr,; (iv) 6,7-dimethoxy-1,2,3,4-
tetrahydroisoquinolin,/1-(4-fluorophenyl)piperazine,/3H-spiro[isobenzofuran-1,4'-piperidine] (56%, 65%, and 58%), 
K2CO3, DMF, 60 oC, 3-6hr; (v) 10%Pd/C,H2 (20psi), MeOH, 2hr; (vi)Thiophosegene, TEA, DCM, 0 oC - r.t., 2 hr or 
thiocarbonyldiimidazole, TEA, DMF, r.t, 30 min. 
 
 

Subsequent N-alkylation to 468 & 470 with 1,4-dibromobutane in presence of anhydrous 

potassium carbonate in anhydrous DMF afforded the 4-bromobutyl intermediates 471a & 471b.  

Followed by coupling reaction with 1-(4-fluorophenyl) piperazine in a simple N-alkylation 

reaction to afford compounds (472a) and (472b) in a good yield. 

 

 

Compd. 
No 

Notebook 
Entry R1 R2 X R3 

319 WA248 NO2 H NCH3 B 
320 WA256 NO2 H NCH3 A 
321 WA262 NO2 H N(CH2)2CH3 C 
322 WA266 NO2 H N(CH2)4CH3 B 
323 WA267 NO2 H N(CH2)4CH3 A 
324 WA303 NO2 H N(CH2)2CH3 A 
325 WA334 NO2 H N(CH2)2CH3 B 
326 WA336 NO2 H N(CH2)4CH3 C 

327(472b) WA402 H NO2 NCH3 C 
328(472b) WA420 H NO2 N(CH2)4CH3 C 

329 WA249 NH2 H NCH3 B 
330 WA257 NH2 H NCH3 A 
331 WA263 NH2 H N(CH2)2CH3 C 
332 WA268 NH2 H N(CH2)4CH3 A 
333 WA300 NH2 H N(CH2)4CH3 B 
334 WA304 NH2 H N(CH2)2CH3 A 
335 WA337 NH2 H N(CH2)2CH3 B 
336 WA338 NH2 H N(CH2)2CH3 C 

337(473a) WA403 H NH2 NCH3 C 
338(473b) WA421 H NH2 N(CH2)4CH3 C 

339 WA250 NCS H NCH3 B 
340 WA258 NCS H NCH3 A 
341 WA264 NCS H N(CH2)2CH3 C 
342 WA269 NCS H N(CH2)4CH3 B 
343 WA306 NCS H N(CH2)2CH3 B 
344 WA349 NCS H N(CH2)4CH3 C 
345 WA350 NCS H N(CH2)4CH3 B 
346 WA352 NCS H N(CH2)2CH3 B 

347(474a) WA404 H NCS NCH3 C 
348(474b) WA422 H NCS N(CH2)4CH3 C 
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Scheme 3b: N-alhylation of 6-nitrobenzo[d]thiazol-2(3H)-one. 
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Reagents and conditions: (i) CDI, THF, 65 oC, 2hr; (ii) CH3I, KOH (powdered), Acetone, r.t., 24hr; or 
CH3(CH2)3CH2I, K2CO3, DMF, r.t., overnight; (iii) 1,4-dibromobutane , K2CO3, DMF, 60 oC, 2hr; (iv) 1-(4-
fluorophenyl)piperazine, K2CO3, DMF, 60 oC, 3 hr; (v) 10% Pd/C, H2 (20 psi), MeOH, 2hr; (vi) 2 hr or 
thiocarbonyldiimidazole, TEA, DMF, r.t, 30 min. 
 

The later compounds, (472a) and (472b) were treated with palladium (10%) over 

activated charcoal in methanol and under hydrogen pressure (20 psi) in Parr apparatus to obtain 

the aniline precorsors (473a) and (473b). The final isothiocyanate compounds (474a, 474b) were 

obtained from isothianation reactions using thiocarbonyldiimidazole (TCDI) in presence of TEA 

in DMF at room temperature.[Scheme 3b]  

 

8.2.2 Synthesis of 1,3-dihydro-2H-benzo[d]imidazol-2-one derivatives (356-360) 
 
 

The 1,3-dihydro-2H-benzo[d]imidazol-2-one derivatives (356-360)[Scheme 5] were 

synthesized starting from the commercially available molecule, 1,2-phenylenediamine (350), 

which was subjected to ring closure using CDI in freshly distilled THF at 65 oC for 18 h to 

obtain 1,3-dihydro-2H-benzo[d]imidazol-2-one (351) as a white precipitate. A subsequent 

protection using di-tert-butyl dicarbonate for one of the heterocyclic nitrogen atoms (352) to 

allow the N-alkylation on the other side with 1,4-dibromobutane in presence of anhydrous 

K2CO3 in dry DMF to give compound (353). N-alkylation with the appropriate heterocyclic 

motifs to afford compounds (354) and (355), followed by Boc deprotection to afford (356), and 

(358). Compound (356) was reacted with 1-fluoro-4-nitrobenzene in presence of anhydrous 

K2CO3 in dry dimethyl sulfoxide (DMSO) to give compound (357) in a good yield.  

Subsequently, compound (357) was subjected to hydrogenation (30 psi) in presence of 10% 

palladium activated charcoal to give the aniline derivative (359). Treatment of compound (330) 

with thiophosegene and triethylamine in DCM led to the isothiocyanate (360) [Scheme 4].  
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Scheme 4: Synthetic route of 1,3-dihydro-2H- benzo[d]imidazol-2-one derivatives 
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Reagents and conditions: (i) CDI, THF, 65 oC, 18h; (ii) Di-tert-butyl dicarbonate, NaH, DMF, 0oC-r.t., 3hr; (iii)1,4-
dibromobutane, K2CO3, DMF, 45-60 oC, 2hr; (iv)1-(4-fluorophenyl)piperazine, K2CO3, DMF, 60 oC, 3hr; 
(v)Trifluoroacetic acid(TFA), CH2Cl2, r.t., 3hr; (vi)1-fluoro-4-nitrobenzene, K2CO3, DMSO, 100 oC, overnight; 
(vii)10% Pd/C, H2 (20 psi), MeOH, 2hr; (viii)Thiophosegene, TEA, DCM, 0 oC - r.t., 2hr or 
thiocarbonyldiimidazole, TEA, DMF, r.t, 30 min. 

8.3 Synthesis of benzofuran derivative 

 
The compound 349 (WA255) was obtained as described in [Scheme 4], in which the 296 

(WA254), was treated with thiophosegene and TEA in methylene chloride (DCM) as a solvent at 

0 oC. Then the reaction mixture was stirred at room temperature for 2 hours to afford the final 

isothiocyanate compound 349 (WA255).[Scheme 5] 

Scheme 5: Synthetic route of the isothiocyanate derivative of benzofuran. 349 (WA255) 

 

Reagents and conditions: (i) Thiophosegene, TEA, DCM, 0 oC - r.t., 2h. 
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closure by carbonyldiimidazole (CDI) treatment in freshly distilled tetrahydrofuran (THF) and 

stirred at 65 oC to obtain 5-nitrobenzo[d]oxazol-2(3H)-one (362) [Scheme 6]. Compound (362) 
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was treated with 2,4-dibromobutane in anhydrous dimethylformamide (DMF) as a simple N-

alkylation reaction to afford compound (363), 3-(4-bromobutyl)-5-nitrobenzo[d]oxazol-2(3H)-

one, in a good yield. This compound was coupled with the appropriate heterocycle motifs (A, B, 

and C)[Scheme 6] in presence of anhydrous potassium carbonate in anhydrous 

dimethylformamide (DMF) and heated at 65oC to get the three nitro compounds (364), (365), 

and (366)[Scheme 6]. The later compounds were treated with 10% palladium activated charcoal 

under 20 psi hydrogen pressure in Parr apparatus for two hours to afford the aniline precursors 

(367), (368), and (369) [Scheme 6]. Finally, the isothiocyanate derivatives were obtained in a 

reasonable yield from subjecting the anilines precursors (370), (371), and (372) to 

thiocarbonyldiimidazole (TCDI) and triethylamine (TEA) in anhydrous dimethylformamide 

(DMF) at room temperature for 30 minutes. [Scheme 6] 

Scheme 6: Synthesis of benzo[d]oxazol-2(3H)-one derivatives 
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Reagents and conditions: (i) CDI, THF, 65 oC, 18h; (ii) 1,4-dibromobutane , K2CO3, DMF, 60 oC, 2h;  (iii) 3H-
spiro[isobenzofuran-1,4'-piperidine], 1-(4-fluorophenyl)piperazine, or 6,7-dimethoxy-1,2,3,4-
tetrahydroisoquinoline,  K2CO3, DMF, 60 oC, 3-6 h; (iv) 10%Pd/C, H2 (20 psi), MeOH, 2h; (v) 
Thiocarbonyldiimidazole, TEA, DMF, rt. 

 

8.5 Synthesis of benzo[d]thiazol-2(3H)-one derivatives 

 
Similarly, the isothiocyanate derivatives of benzo[d]thiazol-2(3H)-one were synthesized 

starting from the commercially available benzo[d]thiazol-2-ol (373) [Scheme 7] that was treated 

with nitric acid (68%) for half an hour at room temperature to obtain 6-nitrobenzo[d]thiazol-

2(3H)-one (374)[Scheme 7], which was subjected to N-alkylation reaction with 1,4-

dibromobutane in presence of anhydrous potassium carbonate in anhydrous dimethylformamide 

(DMF) to afford compound (375) [Scheme 7]. Compound (375) was subjected to coupling 

reactions with the appropriate heterocyclic substituents to give the nitro precursors (376), (377), 

and (378) [Scheme 7], which were treated with 10% palladium activated charcoal under 20 psi 

hydrogen pressure in Parr apparatus for two hours to afford the aniline precursors  (379), (380), 

and (381) [Scheme 7]. The final isothiocyanate compounds (382), (383), and (384) [Scheme 7] 

were synthesized by treating the aniline precursors with thiocarbonyldiimidazole (TCDI) in 

presence of triethylamine TEA in anhydrous DMF at room temperature. [Scheme 7] 
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Scheme 7: Synthetic routes of benzo[d]thiazol-2(3H)-one 
 

 

Reagents and conditions: (i) HNO3 (68%) , 50 oC, 0.5h- rt, 2h; (ii) 1,4-dibromobutane , K2CO3, DMF, 60 oC, 2h ;  
(iii) 3H-spiro[isobenzofuran-1,4'-piperidine], 1-(4-fluorophenyl)piperazine, or 6,7-dimethoxy-1,2,3,4-
tetrahydroisoquinoline,  K2CO3, DMF, 60 oC, 3-6 h; (iv) 10%Pd/C, H2 (20psi), MeOH, 2h; (v) 
Thiocarbonyldiimidazole, TEA, DMF, rt. 
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with ammonium thiocyanate in water afforded 4-fluorophenylthiourea (386), which in turn was 

cyclized through bromination reaction resulting in 6-fluoro-2-aminobenzothiazole (387).  2-

Amino-5-fluoro-benzenethiol (389) was obtained by hydrolytic cleavage using potassium 

hydroxide then neutralization using acetic acid to afford the free base (389). The thiol (389) was 

recyclized by treating it with carbonyldiimidazole (CDI) to afford the final compound (390). 

 

Scheme 8:  Synthetic route of 6-fluorobenzo[d]thiazol-2(3H)-one (390) 

 

Reagents and conditions: (i) NH4SCN, H2O, reflux, 3 h; (ii) Br2, CHCl3, 50 min at 0 oC, reflux, 2 h; (iii) KOH; (iv) 
Glacial acetic acid (v) CDI, THF, reflux, 2 h. 
 

8.6.2 Synthesis of more analogs CM699  
 

Subjecting the corresponding heterocycle ring to N-alkylation reaction with 1, 4-

dibromobutane or 1,4-dibromopentane afforded the 4-bromoalkyl intermediates (391a, 391b), 

(392a, 392b), and (393a, 393b), followed by coupling with the appropriate heterocycle 

substituents (A, B, C, and D) to afford the targeted compounds (394-401) in good yields. 

[Scheme 9] 
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Scheme 9: Synthetic routes of CM699 analogs 
 

 
 
Reagents and conditions: (i) NH4SCN, H2O, reflux, 3 h; (ii) Br2, CHCl3, 50 min at 0 oC, reflux, 2 h; (iii) KOH; (iv) 
Glacial acetic acid (v) CDI, THF, reflux, 2 h; (vi) Dibromoalkane, K2CO3, DMF at 60 oC, 2 h; (vii) 3H-
spiro[isobenzofuran-1,4'-piperidine], K2CO3, DMF, 3 h at 60 oC. 
 

8.7 Synthesis of 3H-spiro[isobenzofuran-1,4'-piperidine]  

There are two routes have been  followed to synthesize the  3H-spiro[isobenzofuran-1,4'-

piperidine].  

8.7.1 The first synthetic route of  3H-spiro[isobenzofuran-1,4'-piperidine] 
 

The first route was started with the commercially available 4,4-dimethyl-2-phenyl-4,5-

dihydrooxazole as can be seen in [Scheme 10]. 

The commercially available 4,4-dimethyl-2-phenyl-4,5-dihydrooxazole (475) in freshly 

distilled THF was cooled down to -70 °C under argon and added dropwise n-butyllithium. Then 

was treated with N-benzyl-4-piperidone (476) to afford the intermediate, compound (477), which 

in turn was acidified with 3 N HC1 and refluxed for 5 hours to afford 1'-benzyl-3H-
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spiro[isobenzofuran-1,4'-piperidin]-3-one (478). Subsequent reduction of the ketone group in 

compound (478) by 1M Borane-THF gave compound (479), 1'-benzyl-3H-spiro [isobenzofuran-

1,4'-piperidine], followed by the de-benzylation (deprotection) by subjecting to hydrogenation 

over Parr apparatus (45 psi)  in presence of palladium 10% over activated charcoal for 5 hr to 

give compound (480). [Scheme 10] 

Scheme 10: Synthesis of 3H-spiro[isobenzofuran-1,4'-piperidine] 

 

 
 
 
 
 
 
 
 
 
 
Reagents and conditions: (i) n-BuLi 2.5M, THF, -78°C; N-benzyl-piperidine-4-one, 30 min, -78oC to  rt; overnight. (ii) H2O, 3N 
HCl, reflux, 5 h, pH 2.5 (iii) 1.8 M Borane-THF, 0 °C to reflux overnight, 0 °C, 6 N HCl, pH 10 (iv) H2 (45 psi), 10 % Pd/C, 
HCl: H2O: Acetic acid (2mL, 60mL, 40mL), 5 h.  
 

8.7.2 The second synthetic route of  3H-spiro[isobenzofuran-1,4'-piperidine] 

  
Unfortunately, the yield from the previous [Scheme 10] was not good. So, it was 

interesting for us to follow different synthetic route to get better yield of the targeted compound. 

2-Bromo-benzoic acid with N-benzyl piperidone when used as starting material gave the final 

product (480) with 83 % yield. The second synthetic route is outlined in [Scheme 11]. 

Scheme 11: Synthesis of 3H-spiro[isobenzofuran-1,4'-piperidine] [Different route] 
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Reagents and conditions: (i) n-BuLi 2.5M, THF, -78°C; N-benzyl-piperidine-4-one, 30 min, -78oC to  rt; overnight. (ii) H2O, 
reflux, 1h, pH 2.5 (iii) (CH3)2S * BH3, THF, 0 °C to reflux (iv) 1-chloroethyl chloroformate, r.t, 5h, CH3OH; reflux, 30 min. 
 

8.8 Synthesis of 2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidine] (489, WA469) 

 
The synthetic route that used to synthesize the 2'-methyl-3H-spiro[isobenzofuran-1,4'-

piperidine] (489) is similar to the one outlined in the previous scheme; however, in this scheme 

the starting material was tert-butyl 2-methyl-4-oxopiperidine-1-carboxylate instead of 1-benzyl-

2-methylpiperidin-4-one, which is too expensive.  It was much cheaper to start with the Boc 

protected 2-methylpiperidin-4-one. The 2-bromobenzoic acid was treated with tert-butyl 2-

methyl-4-oxopiperidine-1-carboxylate (483) to get the intermediate (484) followed by pH 

adjustment to 2.5 with 3N HCl and then was refluxed for an hour to obtain compound (485).  

The de-protection of Boc (486) and re-protection with benzyl (486) were performed in order to 

obtain better and clean reaction in the next step.  The reduction of the ketone group in compound 

(487) using borane-methylsulfide in THF helped make the ketone more susceptible to 

nucleophilic attack by the H- from another molecule of borane, which led to formation of 

compound (488). The later compound (488) treated with the reducing agent, 1-chloroethyl 

chloroformate, to afford the targeted compound (489). [Scheme 12] 

 
Scheme 12: synthesis of 2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidine], 489 (WA469) 

 

 

              

 

 

 
481 483 484 485 



 218 

 

 

 

 

 

Reagents and conditions: (i) BuMgCl, n-BuLi 2.5M, THF, -78°C, 30 min; (ii) Acetic acid, H2O, reflux,1h, pH 2.5 
(iii) TFA, DCM, 2h, r.t.; (iv) Benzylbromide, K2CO3, DMF; (v) (CH3)2S * BH3, THF, 0 °C to reflux (vi) 1-
chloroethyl chloroformate, r.t, 5h, CH3OH; reflux, 30 min. 

 

8.9  Synthesis of spiro[isochromane-1,4'-piperidine] 

 
Compound (491) was obtained from treating 2-bromopheyl ethyl alcohol with 1-benzyl-

4-piperidone in dry THF at -60° C in presence of n-butyl lithium, followed by ring closure using 

methanesulfonyl chloride. Then the reaction mixture was refluxed for 5 hr and bacified to obtain 

the cyclic compound (492). Subsequent hydrogenation in the Parr apparatus (45 psi) in the 

presence of 10% palladium on charcoal afforded the targeted molecule (493) in a good yield. 

Scheme 13: Synthesis of spiro[isochromane-1,4'-piperidine]. (493) 

 

 

 

 

 

 

 

Reagents and conditions: (i)n-BuLi, hexane 2.5M, THF, -78°C, N-benzyl-piperidine-4-one, 30 min, -60oC to rt, 
72h, NH4Cl, Na2CO3 2M aq. solution to pH 11; (ii) Et3N, THF, MeSO2Cl, 4h, reflux, Quenching with  H2O, 1M aq. 
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NaOH; (iii) H2, 10%  Pd/C, EtOH, 18h. 

 

8.10  Synthesis of benzimidazolone derivatives of CM699 

8.10.1 Synthesis of the de-methylated CM699 analog, 358 (WA294) 
 
 

The demethylated analog of CM699, 358 (WA294) was obtained by subjecting 

compound (355) to coupling with 3H-spiro[isobenzofuran-1,4'-piperidine]-HCl in presence of 

anhydrous potassium carbonate in anhydrous DMF and heated at 160 oC in microwave reactor 

for 30 minutes to obtain the de-protected analog of CM699, 358 (WA294) [Scheme 14].     

 Scheme 14: Synthesis of the de-methylated CM699 analog 

 
 

Reagents and conditions: (i) 3H-spiro[isobenzofuran-1,4'-piperidine], K2CO3, DMF, 160 ºC 30 min. in 
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described in [Scheme 15] from the commercially available difluoronitrobenzene or 2-
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fluoronitrobenzene building blocks (404-406), which were reacted with methylamine in 40% 

water solution to afford (407,408, and 409). The methylamine derivatives (407,408, and 409) 

were subjected to hydrogenation at 30 psi of hydrogen pressure on a Parr apparatus to afford 

compound (410, 411, and 412) followed by ring closure using CDI in freshly distilled THF gave 

the desired (413, 414, and 415) derivatives. The bromoalkyl precursors (416-422) obtained from 

the N-alkylation on the heterocyclic nitrogen with 1,4-dibromobutane or 1,4-dibromopentane in 

presence of anhydrous potassium carbonate in anhydrous DMF. A subsequent coupling with the 

appropriate heterocyclic motifs [A, B, C, or D] in presence of anhydrous K2CO3 in dry DMF 

gave the targeted compounds (423-434) [Scheme 15]. 

 

Scheme 15: Synthesis of 1-methyl-benzo[d]imidazol-2-one derivatives of CM699 
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Reagents and conditions: (a) H2N-CH3, H2O, overnight, 95 oC; (b) 10%Pd/C, H2 (20 psi), MeOH, 2hr; (c) CDI, 
THF, 65 oC, 18hr; (d) 1,4-dibromopentane/1,4-dibromobutane , K2CO3, DMF, 60 oC, 2hr; (e) 3H-
spiro[isobenzofuran-1,4'-piperidine], 1-(4-fluorophenyl)piperazine, and  6,7-dimethoxy-1,2,3,4-
tetrahydroisoquinoline,  K2CO3, DMF, 60 oC, 3-6 hr. 
 
8.11  Synthesis of spiro[isochromane-1,4'-piperidine] derivatives 

The spiro[isochromane-1,4'-piperidine] compounds were obtained from the previous 

prepared bromoalkyls of corresponding heterocycle rings (392a, 393a, and 416-422), which were 

subjected to coupling with spiro[isochromane-1,4'-piperidine] in a simple  N-akylation reactions 

in presence of anhydrous potassium carbonate in anhydrous DMF to afford the final desired 

molecules (435-442)[Scheme 16]. 

 
Scheme 16: Synthetic routes of spiro[isochromane-1,4'-piperidine] derivatives 

 

 

Reagents and conditions: (i) Spiro[isochromane-1,4'-piperidine],  K2CO3, DMF, 60 oC, 3-6 h.  
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8.12 Synthesis of CM304 derivatives 

8.12.1 Synthesis of the first series of CM304 derivatives 
 

The CM304 analogs were prepared according to [Scheme 17]. The first step in the 

synthesis was a Friedel-Crafts acylation in which the commercially available 2-

hydroxybenzothiazole (244) was reacted with the acyl halides, 2-chloroacetyl chloride or 3-

chloroprionyl chloride in presence of AlCl3, a Lewis acid catalyst to afford (443), and (444) 

compounds. Subsequent selective reduction of the ketone group using triethylsilane and 

trifluoroacetic acid to get the both compounds (445), and (446). The resulting compounds were 

reacted with 2-(hexamethyleneimino)ethyl chloride hydrochloride to add an azepane functional 

group to the existing nitrogen, as a simple N-alkylation reaction to give both (447), and (448) 

compounds. The later compounds were subjected to several subsequent reactions to obtain the 

final eight targeted molecules (449-456) as illustrated in [Scheme 17].  

 
Scheme 17: Synthetic route of CM304 derivatives 
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Reagents and Conditions: (i) 3-Chloropropionyl chloride or 2-chloroacetyl chloride, AlCl3-DMF, 450C to 800C, 4h; 
(ii) TES, TFA, rt, 4h; (iii) 2-(Hexamethyleneimino)ethyl chloride-HCl, KHCO3, DMF, 950C, 30min; (iv) CH3SNa, 
EtOH, r.t., overnight; (v) Thiourea, H2O, reflux, 48 hr, aq. NaOH 40%, 2hr; (vi) NaN3, acetonitrile, KI, 70 oC, 
overnight; (vii) 10% Pd/C,H2 (30 psi), MeOH, r.t., overnight.  
 
 

8.12.2 Synthesis of the second series of CM304 derivatives 
 

The other derivatives of CM304 were prepared according to [Scheme 18] by subjecting 

the commercially available building block 2-hydroxybenzothiazole (244) to Friedel-Crafts 

acylation to afford (457), followed by a selective reduction to the ketone group using 

triethylsilane in TFA to obtain (458). The resulting compound (458) was subjected to 

esterification reaction with benzoic acid to form the benzoate ester (459) followed by coupling 

with 1-(2-chloroethyl)azepane using anhydrous potassium carbonate in dry DMF to afford 

compound (460). After the hydrolysis of (460) using sodium hydroxide and water, two 

compounds were obtained due to the elimination process that resulted in alkene formation (461) 
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in addition to the targeted alcoholic compound (462).  Compound (462) was subjected to 

fluorination reaction using the fluorinating reagent, DeoxoFluor in DCM, to obtain the desired 

fluorinated molecule (463). Since compound (461) was formed in enough amount as a byproduct 

of the hydrolysis reaction, I decided to convert the alkene (461) to alcohol (462)  through the 

hydroboration oxidation (regioselective addition on alkene) in two subsequent steps to end up by 

the net addition of water across the double bond using 9-BBN as a hydroboration reagent. 

However, the oxidative cleavage step in the reaction didn’t take place and ended up with epoxide 

formation, compound (464) as illustrated in [Scheme 18]. 

 
Scheme 18: Synthetic routes of the second series of CM304 derivatives 
 
 
 
 

 
 
 
 

Reagents and Conditions: (i) 2-Bromopropionyl chloride, AlCl3-DMF, 450C to 800C, 2h; (ii) TES, TFA, rt, 4h; (iii) 
Benzoic acid, DMF, K2CO3, 720C, 6h; (iv) 2-(Hexamethyleneimino)ethyl chloride-HCl, K2CO3, DMF, 650C, 2h 
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Reagents and Conditions: (v) NaOH, MeOH/H2O, reflux, 6h; (vi) Deoxofluor, DCM, -780C to rt, 2h; (vii) 9-BBN-
THF, 3 N aq. NaOH, 50% H2O2 solution in water, 1hr. 
 
 

7.12.3 Synthesis of 494 (WA444a) and 461 (WA444b) 
 
Compound (494) was obtained from treating the previously synthesized compound (458) with 

excess amount (6-8 eq.) of 2-(hexamethyleneimino)ethyl chloride hydrochloride to afford a 

mixture of compounds (494) and (461)[Scheme 19]. Compound (461) was formed as a result of 

bromine elimination, which very expected in such kind of reactions. 
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Scheme 19: Synthetic route of 494 (WA444a) and 461 (WA444b) 

 

 

 

Reagents and Conditions: (i)  2-(Hexamethyleneimino)ethyl chloride-HCl (6 eq.), sodium bicarbonate, DMF, 500C 
-120 0C, 30 min. 
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9.1 General consideration: Reagents and starting materials were obtained from commercial 

suppliers and were used without purification. Precoated silica gel 60 F254 aluminium backed 

plates from EMD were used for thin-layer chromatography (TLC). Column chromatography was 

performed on silica gel 60 (Sorbent Technologies). 1H and 13C NMR spectra were obtained on a 

Bruker APX400 at 400 and 100 MHz, respectively. The mass spectra (MS) were recorded on a 

Waters Aquity Ultra Performance LC with ZQ detector in ESI mode. Analytical HPLC was 

performed on an automated Waters Alliance system equipped with a XBridge® C18 2.5mm (4.6 x 

75 mm i.d., 2.5 µm), column or XBridge® C18 5mm (4.6 x 75 mm i.d., 5µm), with a flow rate of 

1 ml/min.; λ max = 254 nm; mobile phase A: CH3CN and mobile phase B: H2O (0.2% 

triethylamine) linear gradient in 12 min. Chemical names were generated using ChemDraw Ultra 

(CambridgeSoft, version 13.0 or 14.0). The overall yields, 1H and 13C NMR data for final 

compounds are reported in its free base form. 

 

9.2 Synthesis of a benzofuran-3-yl Series 

 
Methyl 2-(benzofuran-3-yl) acetate. 249 (WA94) To a stirred suspension of NaH (60% wt in 

mineral oil, 1.25 g, 52 mmol, 1.4 equiv.) in anhydrous THF (20 mL)  at 0 °C under argon was 

added dropwise a solution of trimethyl phosphonoacetate (7 mL, 48.3 mmol, 1.3 equiv.) in 

anhydrous THF (20 mL). The reaction mixture was stirred 30 min. at 0 °C, then was added 

slowly a solution of 3-coumaranone (5 g, 37.27 mmol, 1 equiv.) in anhydrous THF (100 mL), 

and the mixture was stirred for 2h at room temperature. After reaction completion, the mixture 

was poured into ammonium chloride solution, extracted with ethyl acetate, and the organic layer 

was washed with brine, dried over anhydrous magnesium sulphate, filtered and concentrated. 

After evaporation, the residue was purified by chromatography on a silica gel column using ethyl 
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acetate/hexanes (5:5) as the eluent to give 4.3 g (60.5%) of methyl 2-(benzofuran-3-yl) acetate as 

colorless oil. MS (ESI) m/z 191 [M+1]+. 1H NMR (400 MHz, Chloroform-d) δ 7.65 (d, J = 1.3 

Hz, 1H), 7.59 (dd, J = 7.3, 1.5 Hz, 1H), 7.53 – 7.48 (m, 1H), 7.36 – 7.25 (m, 2H), 3.74 (d, J = 7.5 

Hz, 5H). 13C NMR (101 MHz, CDCl3) δ 171.11, 155.21, 142.89, 127.60, 124.48, 122.66, 119.65, 

113.06, 111.53, 52.14, 29.51. 

 

2-(benzofuran-3-yl)ethan-1-ol. 250 (WA95) To a stirred suspension of LiAlH4 (1.717 g, 45 

mmol, 2 equiv.) in anhydrous THF (100 mL) at 0 °C under argon was added dropwise a solution 

of methyl 2-(benzofuran-3-yl) acetate (4.3 g, 22.6 mmol, 1 equiv.) in anhydrous THF (20 mL). 

The reaction mixture was stirred 30 min. at 0 °C, and for 5 h at room temperature. The mixture 

was then cooled with an ice bath and 1.8 mL of water was added, followed by 1.8 mL of 15% 

NaOH aqueous solution and 3.6 mL of water. The solid was filtered and the filtrate was 

evaporated. The residue was purified by chromatography on a silica gel column using a gradient 

of ethyl ether/methanol (100:0 to 95:5) as the eluent to give 3 g (81.7%) of 2-(benzofuran-3-

yl)ethan-1-ol as yellow oil. MS (ESI) m/z 201.35 [M+39]+.  1H NMR (400 MHz, Chloroform-d) 

δ 7.75 – 6.99 (m, 5H), 3.90 (t, J = 6.5 Hz, 2H), 2.93 (t, J = 6.4 Hz, 2H), 2.03 (s, 1H). 13C NMR 

(101 MHz, CDCl3) δ 155.38, 142.16, 127.99, 124.37, 122.46, 119.55, 116.80, 111.56, 61.71, 

27.06. 

 

2-(benzofuran-3-yl)ethyl methanesulfonate. 251 (WA96/WA103) To a solution of 2-(l-

benzofuran-3-yl)ethanol (1 g, 6.16 mmol) in anhydrous methylene chloride (30 ml), under argon 

at 0 ºC, was added triethylamine (1.5 mL, 11.11 mmol), and followed by methanesulfonyl 

chloride (0.98g, 8.6 mmol) under argon at 0 ºC for 40 min. Then, the reaction mixture warmed 
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up to room temperature and left for 4 h.  After reaction completion, the reaction mixture washed 

with 5% NaHCO3 (25 mL), and brine solution. The organic layer was dried over anhydrous 

magnesium sulfate, filtered, and concentrated. The residue was purified by chromatography on a 

silica gel column using ethyl acetate/hexane (5:5) as eluent to afford 1 g (67.5%) of 2-

(benzofuran-3-yl)ethyl methanesulfonate, as a yellow solid. MS (ESI) m/z 241.43 [M+1]+.  1H 

NMR (400 MHz, Chloroform-d) δ 7.66 – 7.42 (m, 3H), 7.40 – 7.18 (m, 2H), 4.49 (t, J = 6.7 Hz, 

2H), 3.16 (t, J = 7.1 Hz, 2H), 2.92 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 194.66, 155.26, 

142.41, 127.47, 124.61, 122.71, 119.28, 115.14, 111.67, 68.50, 37.44, 24.00. 

 

3-(2-bromoethyl)benzofuran. 252 (WA136/141/189) To a solution of 2-(l-benzofuran-3-

yl)ethanol (8.50 g, 52.5 mmol) in anhydrous methylene chloride (100 ml), under argon at 0 ºC, 

was added carbon tetrabromide (43 g, 129 mmol). To the reaction mixture was then added 

triphenylphosphine (41.24 g, 157 mmol) dropwise over a 30 min. period. The reaction mixture 

was warmed up to room temperature and left overnight. After evaporation, the residue was purified by 

chromatography on a silica gel column using ethyl acetate/hexane (3:7) as eluent to afford 9.5 g (80.5%) 

of 3-(2-bromoethyl)-l-benzofuran as colorless oil. MS (ESI) m/z 225.48 [M+1]+.  1H NMR (400 

MHz, Chloroform-d) δ 7.59 – 7.54 (m, 2H), 7.54 – 7.49 (m, 1H), 7.37 – 7.25 (m, 2H), 3.67 (t, J 

= 7.4 Hz, 2H), 3.29 (td, J = 7.3, 1.0 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 155.28, 142.08, 

127.42, 124.49, 122.58, 119.19, 117.52, 111.68, 77.36, 77.04, 76.72, 31.20, 27.58. 

 

3-(benzofuran-3-yl)propanenitrile. 273 (WA147/160/191) To a solution of 3-(2-bromoethyl)-l-

benzofuran (1.52 g, 6.75 mmol) in anhydrous dimethylformamide (DMF) (5 mL), under argon at 

room temperature, was added sodium cyanide (0.66 g, 13.5 mmol). The reaction mixture stirred 



 231 

at room temperature, and left overnight. The reaction mixture was then poured into water (20 

mL) and extracted with ethyl acetate (3x). The organic layer was washed with brine, dried over 

anhydrous magnesium sulfate, filtered and concentrated. The residue was purified by chromatography on 

a silica gel column using ethyl acetate/hexane (3:7) as eluent to afford 0.93 g (80 %) of 3-

(benzofuran-3-yl)propanenitrile, as colorless oil. MS (ESI) m/z 194.41 [M+23]+.   1H NMR (400 

MHz, Chloroform-d) δ 7.58 (s, 1H), 7.53 (dd, J = 9.5, 7.8 Hz, 2H), 7.37 – 7.29 (m, 2H), 3.07 (t, J 

= 7.3 Hz, 2H), 2.72 (t, J = 7.3 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 155.40, 141.95, 126.98, 

124.77, 122.76, 119.06, 119.00, 116.96, 111.81, 20.18, 17.71. 

 

3-(benzofuran-3-yl)propanoic acid. 274 (WA148/161/191)  To a solution of ethanol (20 ml) 

and H2O (35 ml) cooled to 0°C and treated with KOH, 85% (14 g, 0.3 mol) was added 3-(l-

benzofuran-3-yl)propanenitrile (0.93 g, 5.4 mmol) and the reaction mixture refluxed for 18 h. 

The reaction mixture was cooled down to room temperature and poured over ice water. It was 

then neutralized with concentrated HCl, and extracted with ethyl acetate (3x). The combined 

organic layer was treated with brine, dried over anhydrous magnesium sulfate, filtered and 

concentrated. The residue was purified by chromatography on a silica gel column using 

dichloromethane/methanol (9.5:0.5) as eluent to afford 0.87 g (84.5%) of 3-(l-benzofuran-3-

yl)propanoic acid as a white solid. MS (ESI) m/z 213.42 [M+23]+.   1H NMR (400 MHz, 

Chloroform-d) δ 10.74 (d, J = 329.3 Hz, 1H), 7.64 – 7.43 (m, 3H), 7.39 – 7.21 (m, 2H), 3.05 (t, J 

= 7.5 Hz, 2H), 2.80 (t, J = 7.5 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 179.09, 155.34, 141.41, 

127.67, 124.39, 122.46, 119.30, 118.63, 111.56, 33.56, 18.76. 
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3-(benzofuran-3-yl)propan-1-ol. WA275 (WA149/162/192) To a suspension of LiAlH4 (0.2 g, 

5.2 mmol) in anhydrous THF (25 mL) at 0 °C under argon was added dropwise a solution of  3-

(l-benzofuran-3-yl)propanoic acid (0.87 g, 4.6 mmol) in anhydrous THF (5 mL). The reaction 

mixture was stirred 30 min. at 0 °C, and left overnight at room temperature. The mixture was 

then cooled with an ice bath and quenched with 2 mL, followed by acidification to 4 pH with 1N 

HCl. The THF was evaporated, and the residue was extracted with ethyl acetate (3x), treated 

with brine, dried over anhydrous magnesium sulfate, filtered, and concentrated. The remaining 

residue was purified by chromatography on a silica gel column using a gradient of 

dichloromethane/methanol (9.5:0.5) as eluent to give 3 g (70%) of 3- (l-benzofuran-3-yl)propan-

l-ol as colorless oil. MS (ESI) m/z 176.32 [M]+.  1H NMR (400 MHz, Chloroform-d) δ 7.39 (dd, 

J = 11.3, 7.9 Hz, 2H), 7.30 (s, 1H), 7.21 (t, J = 7.4 Hz, 1H), 7.11 (t, J = 7.4 Hz, 1H), 6.88 (s, 1H), 

3.47 (s, 2H), 2.87 (t, J = 7.7 Hz, 2H), 2.61 (t, J = 7.9 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 

155.21, 141.13, 127.70, 124.24, 122.30, 119.23, 119.04, 111.40, 50.68, 34.68, 19.16. 

 

3-(3-bromopropyl)benzofuran. 276 (WA154/164/197) To a solution of 3- (l-benzofuran-3-

yl)propan-l-ol (0.55 g, 3.12 mmol) in anhydrous methylene chloride (15 ml), under argon at 0 ºC, 

was added carbon tetrabromide (1.55 g, 4.7 mmol). To the reaction mixture was then added 

triphenylphosphine (0.9 g, 3.43 mmol) dropwise over a 30 min. period. The reaction mixture was 

warmed up to room temperature and left overnight. After evaporation, the residue was purified by 

chromatography on a silica gel column using ethyl acetate/hexane (3:7) as eluent to afford 0.46 g 

(61.6%) of 3-(3-bromopropyl)benzofuran, as yellow oil. MS (ESI) m/z 240 [M+1]+. 1H NMR 

(400 MHz, Chloroform-d) δ 7.63 – 7.58 (m, 1H), 7.55 – 7.48 (m, 2H), 7.40 – 7.26 (m, 2H), 3.48 
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(td, J = 6.4, 1.2 Hz, 2H), 2.98 – 2.85 (m, 2H), 2.38 – 2.22 (m, 2H). 13C NMR (101 MHz, CDCl3) 

δ 155.45, 141.59, 127.93, 124.34, 122.42, 119.51, 118.60, 111.58, 33.18, 31.81, 21.85. 

 

4-(benzofuran-3-yl)butanenitrile. 277 (WA156/165/200) To a solution of 3-(3-

bromopropyl)benzofuran (0.46 g, 1.9 mmol) in anhydrous dimethylformamide (DMF) (2 mL), 

under argon at room temperature, was added sodium cyanide (0.19 g, 3.9 mmol). The reaction 

mixture stirred at room temperature, and left overnight. The reaction mixture was then poured 

into water (20 mL) and extracted with ethyl acetate (3x). The organic layer was washed with 

brine, dried over anhydrous magnesium sulfate, filtered and concentrated. The residue was 

purified by chromatography on a silica gel column using ethyl acetate/hexane (2:8) as eluent to 

afford 0.316 g (89 %) of 4-(benzofuran-3-yl)butanenitrile, as colorless oil that was used in the 

next step without further characterization.  

 

4-(benzofuran-3-yl)butanoic acid. 278 (WA166/158/202) To a solution of ethanol (5 ml) and 

H2O (10 ml) cooled to 0°C and treated with KOH, 85% (4.36 g, 92.7 mmol) was added 4-

(benzofuran-3-yl)butanenitrile (0.316 g, 1.7 mmol) and the reaction mixture refluxed for 18 h. 

The reaction mixture was cooled down to room temperature and poured over ice water. It was 

then neutralized with concentrated HCl, and extracted with ethyl acetate (3x). The combined 

organic layer was treated with brine, dried over anhydrous magnesium sulfate, filtered and 

concentrated. The residue was purified by chromatography on a silica gel column using 

dichloromethane/methanol (9.5:0.5) as eluent to afford 0.316 g (91.8%) of 4-(benzofuran-3-

yl)butanoic acid as a yellow solid. MS (ESI) m/z 227.42 [M+23]+. H NMR (400 MHz, 

Chloroform-d) δ 10.08 (s, 1H), 7.58 (dd, J = 7.4, 1.5 Hz, 1H), 7.52 – 7.42 (m, 2H), 7.35 – 7.22 
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(m, 2H), 2.78 (t, J = 7.5 Hz, 2H), 2.48 (t, J = 7.3 Hz, 2H), 2.13 – 2.04 (m, 2H). 13C NMR (101 

MHz, CDCl3) δ 179.91, 155.41, 141.37, 127.96, 124.25, 122.35, 119.55, 119.30, 111.51, 33.47, 

23.97, 22.83. 

 

4-(benzofuran-3-yl) butan-1-ol. 279 (WA159/167) To a suspension of LiAlH4 (0.1 g, 2.63 

mmol) in anhydrous THF (25 mL) at 0 °C under argon was added dropwise a solution of 4-

(benzofuran-3-yl)butanoic acid (0.5 g, 2.45 mmol) in anhydrous THF (5 mL). The reaction 

mixture was stirred 30 min. at 0 °C, and left overnight at room temperature. The mixture was 

then cooled with an ice bath and quenched with 2 mL, followed by acidification to 4 pH with 1N 

HCl. The THF was evaporated; the residue was extracted with ethyl acetate (3x), treated with 

brine, dried over anhydrous magnesium sulfate, filtered, and concentrated. The remaining 

residue was purified by chromatography on a silica gel column using a gradient of 

dichloromethane/methanol (9.5:0.5) as eluent to give 0.417 g (90%) of 4-(benzofuran-3-yl) 

butan-1-ol as colorless oil. MS (ESI) m/z 189.36 [M-1]+. 1H NMR (400 MHz, Chloroform-d) δ 

7.57 (dd, J = 7.6, 1.4 Hz, 1H), 7.48 (d, J = 8.0 Hz, 1H), 7.43 (d, J = 4.1 Hz, 1H), 7.32 – 7.22 (m, 

2H), 3.69 (t, J = 6.4 Hz, 2H), 2.77 – 2.69 (m, 2H), 1.85 – 1.77 (m, 3H), 1.72 – 1.64 (m, 2H). 13C 

NMR (101 MHz, CDCl3) δ 155.36, 141.09, 128.21, 124.09, 122.19, 120.25, 119.58, 111.42, 

77.36, 77.04, 76.73, 62.64, 32.44, 25.24, 23.33. 

 

3-(4-bromobutyl)benzofuran. 280 (WA163/168/208) To a solution of 4-(benzofuran-3-yl) 

butan-1-ol (0.41 g, 2.27 mmol) in anhydrous methylene chloride (15 ml), under argon at 0 ºC, 

was added carbon tetrabromide (3.7 g, 11 mmol). To the reaction mixture was then added 

triphenylphosphine (1.78 g, 6.8 mmol) dropwise over a 30 min. period. The reaction mixture was 
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warmed up to room temperature and left overnight. After evaporation, the residue was purified 

by chromatography on a silica gel column using ethyl acetate/hexane (3:7) as eluent to afford 

0.55 g (83%) of 3-(4-bromobutyl)benzofuran, as yellow oil.1H NMR (400 MHz, Chloroform-d) 

δ 7.57 (dd, J = 7.5, 1.4 Hz, 1H), 7.51 – 7.43 (m, 2H), 7.29 (dtd, J = 20.9, 7.4, 1.2 Hz, 2H), 3.47 

(t, J = 6.5 Hz, 2H), 2.74 (t, J = 7.0 Hz, 2H), 2.01 – 1.88 (m, 4H). 13C NMR (101 MHz, CDCl3) δ 

155.39, 141.15, 128.08, 124.20, 122.29, 119.81, 119.54, 111.49, 77.36, 77.05, 76.73, 33.50, 

32.34, 27.52, 22.75. 

9.2.1 General Procedure for the preparation of (253-266) and (267-272). 
 
2-(benzofuran-3-yl)ethyl methanesulfonate or 3-(2-bromoethyl)-l-benzofuran (1 equiv.) and 

K2CO3 (3 equiv.) was added to 5-10 ml of anhydrous DMF. The mixture was heated at 600C and 

an appropriate heterocyclic amine (1.3 equiv.) was added. The mixture was stirred and heated at 

600C for 2-6 h. After completion, the reaction mixture was cooled to room temperature and 

poured into water, and extracted (3x) with ethyl acetate. The organic layer was washed with 

brine, dried over sodium sulfate, and concentrated under reduced pressure. The product was 

purified by column chromatography over silica gel using ethyl acetate/hexanes as an eluent 

(20:80 to 50:50) to obtain the final compounds in good yields. 

 

1-(2-(benzofuran-3-yl)ethyl)-4-(4-fluorobenzyl)piperazine. (253, WA101) (64%) 1H NMR 

(400 MHz, Chloroform-d) δ 7.57 (d, J = 7.3 Hz, 1H), 7.52 – 7.42 (m, 2H), 7.38 – 7.19 (m, 4H), 

7.02 (t, J = 8.7 Hz, 2H), 3.49 (d, J = 13.4 Hz, 2H), 2.96 – 2.85 (m, 2H), 2.77 – 2.70 (m, 2H), 2.57 

(d, J = 27.7 Hz, 8H).13C NMR (101 MHz, CDCl3) δ 163.22, 160.79, 155.21, 141.42, 133.78, 

130.67, 128.17, 124.16, 122.27, 119.51, 118.39, 115.11, 114.90, 111.45, 62.21, 57.89, 53.13, 

21.41. MS (ESI) m/z 339.71 [M+1]+. 
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1-(2-(benzofuran-3-yl)ethyl)piperazine. 254 (WA102) (73%) 1H NMR (400 MHz, 

Chloroform-d) δ 7.56 (d, J = 7.3 Hz, 1H), 7.51 – 7.42 (m, 2H), 7.33 – 7.20 (m, 2H), 2.95 (t, J = 

4.8 Hz, 3H), 2.92 – 2.83 (m, 2H), 2.69 (dd, J = 9.1, 6.7 Hz, 2H), 2.54 (s, 4H), 2.21 (s, 2H).13C 

NMR (101 MHz, CDCl3) δ 155.19, 141.41, 128.15, 124.15, 122.26, 119.49, 118.38, 111.44, 

77.37, 77.05, 76.73, 58.47, 54.32, 45.97, 21.17. MS (ESI) m/z 231.57 [M+1]+. 

 

1-(2-(benzofuran-3-yl)ethyl)-4-(4-methoxyphenyl)piperazine. 255 (WA104)(76%) 1H NMR 

(400 MHz, DMSO-d6) δ 8.07 – 8.00 (m, 2H), 7.93 (d, J = 3.4 Hz, 1H), 7.80 (d, J = 7.8 Hz, 1H), 

7.59 (d, J = 8.0 Hz, 1H), 7.38 – 7.27 (m, 2H), 7.22 – 7.14 (m, 2H), 4.77 (t, J = 12.1 Hz, 2H), 4.59 

(t, J = 12.1 Hz, 2H), 4.41 (d, J = 13.2 Hz, 2H), 4.27 (t, J = 12.5 Hz, 4H), 3.85 (s, 3H), 3.46 – 

3.27 (m, 2H). 13C NMR (101 MHz, DMSO) δ 155.12, 143.60, 141.04, 127.47, 125.23, 123.10, 

122.66, 120.38, 115.19, 115.00, 111.92, 66.60, 60.27, 57.67, 56.32, 16.41. MS (ESI) m/z 337.61 

[M+1]+. 

 

1-(2-(benzofuran-3-yl)ethyl)-4-(2-fluorophenyl)piperazine. 256 (WA106) (67%) 1H NMR 

(400 MHz, Methanol-d4) δ 7.61 (td, J = 5.0, 4.3, 2.7 Hz, 2H), 7.48 – 7.40 (m, 1H), 7.25 (dtd, J = 

18.3, 7.3, 1.3 Hz, 2H), 7.11 – 6.99 (m, 2H), 6.96 (tdd, J = 9.5, 6.0, 2.9 Hz, 2H), 4.38 (t, J = 6.6 

Hz, 2H), 3.60 – 3.46 (m, 4H), 3.09 – 3.00 (m, 2H), 2.93 (s, 2H), 2.87 (s, 2H). 13C NMR (101 

MHz, MeOD) δ 156.96, 155.47, 155.34, 154.53, 142.12, 139.76, 139.68, 127.95, 124.36, 124.32, 

123.99, 122.91, 122.83, 122.15, 119.22, 119.19, 116.62, 115.67, 115.47, 110.88, 64.63, 50.20, 

50.17, 43.60, 22.98. MS (ESI) m/z 325.61 [M+1]+. 
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1-(2-(benzofuran-3-yl)ethyl)-4-(3-methoxyphenyl)piperazine. 257 (WA107)(54%) 1H NMR 

(400 MHz, DMSO-d6) δ 8.03 (d, J = 9.2 Hz, 2H), 7.92 (s, 1H), 7.80 (d, J = 7.6 Hz, 1H), 7.59 (d, 

J = 8.0 Hz, 1H), 7.46 – 7.05 (m, 4H), 4.76 (t, J = 9.7 Hz, 2H), 4.59 (t, J = 12.7 Hz, 2H), 4.41 (d, 

J = 13.2 Hz, 2H), 4.27 (t, J = 12.5 Hz, 3H), 3.85 (s, 3H), 3.58 – 3.18 (m, 2H), 2.49 (s, 1H). 13C 

NMR (101 MHz, DMSO) δ 171.82, 161.20, 155.12, 143.59, 141.04, 136.37, 127.47, 125.22, 

123.09, 122.66, 120.38, 115.19, 111.92, 66.60, 60.27, 57.67, 56.32, 16.41. MS (ESI) m/z 337.61 

[M+1]+. 

 

1-(2-(benzofuran-3-yl)ethyl)-4-(cyclohexylmethyl)piperazine. 258 (WA111)(65%) 1H NMR 

(400 MHz, Chloroform-d) δ 7.56 (d, J = 7.5 Hz, 1H), 7.51 – 7.43 (m, 2H), 7.31 – 7.21 (m, 2H), 

2.93 – 2.84 (m, 2H), 2.71 (dd, J = 9.4, 6.5 Hz, 2H), 2.60 (s, 2H), 2.49 (s, 2H), 2.16 (d, J = 7.1 

Hz, 2H), 1.83 – 1.63 (m, 6H), 1.50 (ddp, J = 11.1, 7.3, 3.8 Hz, 1H), 1.24 – 1.11 (m, 4H), 0.89 (tt, 

J = 12.3, 6.2 Hz, 4H). 13C NMR (101 MHz, CDCl3) δ 155.20, 141.40, 128.18, 124.12, 122.24, 

119.52, 118.42, 111.42, 65.67, 57.96, 53.62, 53.19, 35.02, 31.95, 26.81, 26.17, 21.39. MS (ESI) 

m/z 327.55 [M+1]+. 

 

1-(2-(benzofuran-3-yl)ethyl)azepane-HCl. 259 (WA123) (89%) 1H NMR (400 MHz, 

Chloroform-d) δ 7.58 (d, J = 7.4 Hz, 1H), 7.54 – 7.41 (m, 2H), 7.26 (dq, J = 14.8, 7.1 Hz, 2H), 

6.31 (s, 1H), 2.90 (s, 4H), 2.87 – 2.70 (m, 4H), 1.68 (d, J = 33.4 Hz, 8H). 13C NMR (101 MHz, 

CDCl3) δ 155.19, 141.46, 128.18, 124.12, 122.25, 119.53, 118.36, 111.42, 57.52, 55.35, 27.60, 

27.00, 21.68. MS (ESI) m/z 244.61 [M+1]+. 

1-(2-(benzofuran-3-yl)ethyl)-4-(4-chlorophenyl)-1,2,3,4-tetrahydropyridine. 260 (WA124) 

(71%) 1H NMR (400 MHz, Chloroform-d) δ 7.60 (d, J = 7.0 Hz, 1H), 7.55 – 7.45 (m, 2H), 7.41 
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– 7.22 (m, 6H), 6.10 (s, 1H), 3.50 – 3.20 (m, 2H), 3.20 – 2.77 (m, 6H).13C NMR (101 MHz, 

CDCl3) δ 155.25, 141.42, 139.16, 136.38, 134.13, 132.75, 128.42, 128.13, 126.20, 124.21, 

122.31, 119.49, 118.30, 111.49, 57.66, 53.11, 50.30, 28.03, 21.82. . MS (ESI) m/z 338.64 

[M+1]+. 

 

1-(2-(benzofuran-3-yl)ethyl)-4-(4-fluorophenyl)piperazine. 261 (WA137) (65%) 1H NMR 

(400 MHz, Chloroform-d) δ 7.60 (d, J = 7.2 Hz, 1H), 7.58 – 7.43 (m, 2H), 7.43 – 7.17 (m, 2H), 

7.15 – 6.73 (m, 4H), 3.43 – 2.47 (m, 11H), 2.02 (d, J = 29.8 Hz, 1H). 13C NMR (101 MHz, 

CDCl3) δ 155.22, 141.50, 128.13, 124.21, 122.31, 119.49, 117.83, 115.63, 115.41, 111.49, 57.85, 

53.19, 50.16, 21.40. MS (ESI) m/z 325.74 [M+1]+. 

 

1-(2-(benzofuran-3-yl)ethyl)-4-cyclohexylpiperazine. 262 (WA144) (58%) 1H NMR (400 

MHz, Chloroform-d) δ 7.80 – 7.09 (m, 5H), 3.12 – 2.63 (m, 10H), 2.31 – 1.58 (m, 6H), 1.56 – 

1.01 (m, 8H).13C NMR (101 MHz, CDCl3) δ 155.19, 141.42, 128.04, 124.21, 122.31, 119.44, 

118.10, 111.46, 64.26, 57.47, 52.10, 48.65, 28.17, 25.59, 21.33. MS (ESI) m/z 313.74 [M+1]+. 

 

2-(2-(benzofuran-3-yl)ethyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline. 263 (WA181) 

(55%) 1H NMR (400 MHz, Methanol-d4) δ 7.67 – 7.59 (m, 2H), 7.51 – 7.39 (m, 1H), 7.33 – 

7.19 (m, 2H), 6.69 (d, J = 14.0 Hz, 2H), 3.79 (d, J = 1.6 Hz, 6H), 3.69 (s, 2H), 3.10 – 2.96 (m, 

2H), 2.94 – 2.80 (m, 6H). 13C NMR (101 MHz, MeOD) δ 155.41, 147.89, 147.51, 141.55, 

127.87, 125.92, 125.86, 123.93, 122.05, 119.13, 117.96, 111.57, 110.83, 109.81, 57.28, 55.10, 

55.04, 50.63, 27.73, 20.67. MS (ESI) m/z 338.70 [M+1]+. 
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1-(2-(benzofuran-3-yl)ethyl)-4-(2,3-dichlorophenyl)piperazine. 264 (WA183) (72%) 1H 

NMR (400 MHz, Methanol-d4) δ 7.68 – 7.58 (m, 2H), 7.48 – 7.41 (m, 1H), 7.29 – 7.19 (m, 4H), 

7.14 – 7.04 (m, 1H), 3.11 (d, J = 5.2 Hz, 4H), 3.02 – 2.92 (m, 2H), 2.89 – 2.70 (m, 6H).13C NMR 

(101 MHz, MeOD) δ 155.39, 151.04, 141.63, 133.50, 127.85, 127.64, 126.99, 124.48, 123.94, 

122.07, 119.11, 118.77, 117.81, 110.84, 57.47, 52.83, 50.56, 20.34. MS (ESI) m/z 413.68 

[M+39]+. 

 

1-(2-(benzofuran-3-yl)ethyl)-4-(4-chlorophenyl)piperazine. 165 (WA184) (66%) 1H NMR 

(400 MHz, Chloroform-d) δ 7.72 – 7.57 (m, 1H), 7.58 – 7.45 (m, 2H), 7.37 – 7.20 (m, 4H), 6.87 

(d, J = 8.9 Hz, 2H), 3.23 (dd, J = 6.2, 3.7 Hz, 4H), 3.02 – 2.88 (m, 2H), 2.88 – 2.61 (m, 6H). 1H 

NMR (400 MHz, Chloroform-d) δ 7.64 – 7.56 (m, 1H), 7.56 – 7.46 (m, 2H), 7.35 – 7.21 (m, 

4H), 6.87 (d, J = 8.9 Hz, 2H), 3.23 (dd, J = 6.2, 3.7 Hz, 4H), 2.99 – 2.90 (m, 2H), 2.85 – 2.66 (m, 

6H). MS (ESI) m/z 341.64 [M+1]+. 

 

 1-(2-(benzofuran-3-yl)ethyl)-4-(pyridin-2-yl)piperazine. 266 (WA193) (69%) 1H NMR (400 

MHz, Chloroform-d) δ 8.20 (d, J = 5.0 Hz, 1H), 7.60 – 7.41 (m, 4H), 7.31 – 7.19 (m, 2H), 6.61 

(dt, J = 15.7, 8.9 Hz, 2H), 3.59 (t, J = 5.2 Hz, 4H), 2.93 – 2.87 (m, 2H), 2.76 – 2.69 (m, 2H), 

2.65 (t, J = 5.1 Hz, 4H). 13C NMR (101 MHz, CDCl3) δ 159.50, 155.20, 147.94, 141.48, 137.44, 

128.16, 124.19, 122.31, 119.53, 118.33, 113.33, 111.46, 107.08, 57.93, 52.98, 45.22, 21.40. MS 

(ESI) m/z 308.62 [M+1]+. 

 

 1-(2-(benzofuran-3-yl)ethyl)-4-(4-(trifluoromethyl)phenyl)piperazine. 267 (WA196) (55%) 

1H NMR (400 MHz, Chloroform-d) δ 7.75 – 7.43 (m, 5H), 7.30 (dt, J = 19.8, 7.1 Hz, 2H), 6.94 
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(p, J = 10.3, 9.0 Hz, 2H), 3.93 – 3.54 (m, 2H), 3.39 – 3.34 (m, 2H), 3.14 – 2.89 (m, 2H), 2.85 – 

2.73 (m, 3H), 1.28 (s, 2H). 13C NMR (101 MHz, CDCl3) δ 155.25, 153.17, 141.51, 128.04, 

126.38, 124.28, 122.37, 119.47, 118.05, 115.08, 114.59, 111.52, 57.66, 52.69, 47.77, 21.15. MS 

(ESI) m/z 375.61 [M+1]+. 

 

 4-(2-(benzofuran-3-yl)ethyl)piperazin-2-one. 268 (WA199) (88%) 1H NMR (400 MHz, 

DMSO-d6) δ 7.80 (s, 1H), 7.65 (dd, J = 7.5, 1.4 Hz, 1H), 7.52 (d, J = 8.0 Hz, 1H), 7.26 (dtd, J = 

20.4, 7.3, 1.3 Hz, 2H), 3.15 (dd, J = 6.3, 4.5 Hz, 2H), 3.01 (s, 2H), 2.88 – 2.79 (m, 2H), 2.72 – 

2.60 (m, 4H), 1.98 (s, 1H). 13C NMR (101 MHz, DMSO) δ 168.12, 154.96, 142.65, 128.35, 

124.64, 122.83, 120.30, 118.59, 111.68, 57.15, 56.54, 49.12, 40.71, 21.03. MS (ESI) m/z 245.52 

[M+1]+. 

 

 1-(2-(benzofuran-3-yl)ethyl)-4-(pyridin-4-yl)piperazine. 269 (WA204) (73%) 1H NMR (400 

MHz, Methanol-d4) δ 8.14 (s, 1H), 7.68 – 7.57 (m, 2H), 7.44 (d, J = 8.1 Hz, 1H), 7.32 – 7.19 (m, 

2H), 6.91 – 6.81 (m, 2H), 3.50 – 3.39 (m, 4H), 2.98 – 2.88 (m, 2H), 2.80 – 2.71 (m, 2H), 2.67 

(dd, J = 6.6, 3.3 Hz, 4H). 13C NMR (101 MHz, MeOD) δ 155.55, 155.36, 148.03, 141.63, 

127.92, 123.93, 122.06, 119.13, 117.99, 110.84, 57.43, 52.22, 45.20, 20.55. MS (ESI) m/z 

308.61 [M+1]+. 

 

 1-(2-(benzofuran-3-yl)ethyl)-4-phenethylpiperazine. 270 (WA205) (74%) 1H NMR (400 

MHz, Chloroform-d) δ 7.58 (d, J = 7.5 Hz, 1H), 7.55 – 7.44 (m, 2H), 7.34 – 7.20 (m, 7H), 2.98 – 

2.88 (m, 2H), 2.88 – 2.82 (m, 2H), 2.81 – 2.47 (m, 12H). 13C NMR (101 MHz, CDCl3) δ 155.22, 

141.44, 140.29, 128.70, 128.40, 128.18, 126.06, 124.16, 122.28, 119.52, 118.40, 111.46, 60.53, 
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57.92, 53.21, 53.17, 33.62, 21.42. MS (ESI) m/z 335.67 [M+1]+. 

 

 1'-(2-(benzofuran-3-yl)ethyl)-3H-spiro[isobenzofuran-1,4'-piperidine]. 271(WA207) (77%) 

1H NMR (400 MHz, Chloroform-d) δ 7.67 – 7.56 (m, 1H), 7.56 – 7.44 (m, 2H), 7.36 – 7.15 (m, 

6H), 5.10 (s, 2H), 3.07 – 2.92 (m, 4H), 2.89 – 2.79 (m, 2H), 2.58 (td, J = 12.1, 11.5, 2.6 Hz, 2H), 

2.09 (td, J = 13.3, 4.5 Hz, 2H), 1.89 – 1.81 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 155.26, 

145.50, 141.42, 138.90, 128.17, 127.65, 127.41, 124.19, 122.31, 121.08, 120.83, 119.55, 118.39, 

111.47, 84.57, 70.79, 58.22, 50.17, 36.58, 21.47.  MS (ESI) m/z 334.65 [M+1]+. 

 

 1-(2-(benzofuran-3-yl)ethyl)-4-(4-nitrophenyl)piperazine. 272 (WA210) (83%) 1H NMR 

(400 MHz, DMSO-d6) δ 8.11 – 8.00 (m, 2H), 7.84 (s, 1H), 7.72 – 7.62 (m, 1H), 7.54 (d, J = 7.9 

Hz, 1H), 7.34 – 7.22 (m, 2H), 6.98 (dd, J = 10.0, 3.4 Hz, 2H), 4.31 (t, J = 6.6 Hz, 2H), 3.45 (d, J 

= 12.5 Hz, 8H), 3.00 (t, J = 6.6 Hz, 2H). 13C NMR (101 MHz, DMSO) δ 154.98, 154.83, 143.14, 

137.47, 128.22, 126.15, 124.79, 122.96, 120.20, 117.00, 113.08, 111.75, 64.55, 46.26, 43.04, 

23.41. MS (ESI) m/z 353.72;355.77 [M+2, M+4]+. 

9.2.2 General Procedure for the preparation of (281-314). 
 
3-(4-bromobutyl)-l-benzofuran (280) (1 equiv.) and anhydrous potassium carbonate (3 equiv.) 

was added to 5-10 ml of anhydrous DMF. The mixture was heated at 600C and an appropriate 

heterocyclic amine (1.3 equiv.) was added. The mixture was stirred and heated at 600C for 2-6 h. 

After completion, the reaction mixture was cooled to room temperature and poured into water, 

and extracted (3x) with ethyl acetate. The organic layer was washed with brine, dried over 

sodium sulfate, and concentrated under reduced pressure. The product was purified by column 

chromatography over silica gel using ethyl acetate/hexanes as the eluent (20:80 to 50:50) to 
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obtain the final compounds in good yields. 

 

2-(4-(benzofuran-3-yl)butyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline. (281, WA169) 

(66%) 1H NMR (400 MHz, Chloroform-d) δ 7.56 (d, J = 7.4 Hz, 1H), 7.52 – 7.40 (m, 2H), 7.35 

– 7.17 (m, 2H), 6.63 – 6.50 (m, 2H), 3.86 (s, 6H), 3.55 (s, 2H), 2.86 – 2.80 (m, 2H), 2.72 (dt, J = 

11.4, 6.5 Hz, 4H), 2.56 (d, J = 7.0 Hz, 2H), 1.76 (dt, J = 32.2, 6.9 Hz, 4H). 13C NMR (101 MHz, 

CDCl3) δ 155.36, 147.48, 147.17, 141.08, 136.38, 128.26, 126.62, 126.20, 124.04, 122.15, 

120.31, 119.62, 111.39, 109.49, 58.07, 55.92, 55.81, 51.09, 28.67, 27.04, 26.92, 23.50. MS (ESI) 

m/z 366.72 [M+1]+. 

 

1-(4-(benzofuran-3-yl)butyl)-4-cyclohexylpiperazine. 282 (WA170) (66%) 1H NMR (400 

MHz, Chloroform-d) δ 7.55 (d, J = 7.6 Hz, 1H), 7.46 (d, J = 8.0 Hz, 1H), 7.40 (s, 1H), 7.32 – 

7.18 (m, 2H), 2.80 – 2.26 (m, 12H), 2.02 – 1.55 (m, 9H), 1.39 – 1.21 (m, 4H), 1.22 – 1.02 (m, 

2H). 13C NMR (101 MHz, CDCl3) δ 155.35, 141.05, 136.38, 124.04, 122.14, 120.24, 119.58, 

111.40, 63.76, 58.25, 53.11, 48.71, 28.66, 26.93, 26.56, 26.13, 25.77, 23.45. MS (ESI) m/z 

341.76 [M+1]+. 

 

1-(4-(benzofuran-3-yl)butyl)-4-(4-fluorophenyl)piperazine. 283 (WA171) (68%) 1H NMR 

(400 MHz, Chloroform-d) δ 7.57 (d, J = 7.5 Hz, 1H), 7.53 – 7.40 (m, 2H), 7.40 – 7.20 (m, 2H), 

7.15 – 6.74 (m, 4H), 3.34 – 3.03 (m, 4H), 2.73 (t, J = 7.4 Hz, 2H), 2.72 – 2.54 (m, 4H), 2.57 – 

2.34 (m, 2H), 1.78 (dt, J = 15.1, 7.4 Hz, 2H), 1.74 – 1.59 (m, 2H). 13C NMR (101 MHz, CDCl3) 

δ 158.31, 155.37, 148.01, 141.06, 128.23, 124.07, 122.16, 120.28, 119.59, 117.78, 117.71, 

115.58, 115.36, 111.43, 58.32, 53.28, 50.15, 26.92, 26.66, 23.48. MS (ESI) m/z 353.62 [M+1]+. 
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1-(4-(benzofuran-3-yl)butyl)-4-(4-methoxyphenyl)piperazine. 284 (WA172) (64%) 1H NMR 

(400 MHz, DMSO-d6) δ 7.82 (s, 1H), 7.65 (d, J = 7.4 Hz, 1H), 7.53 (d, J = 8.0 Hz, 1H), 7.27 (dt, 

J = 21.6, 7.3 Hz, 2H), 7.10 (d, J = 8.5 Hz, 2H), 6.90 (d, J = 8.6 Hz, 2H), 3.70 (s, 3H), 3.61 (dd, J 

= 28.4, 12.2 Hz, 4H), 3.43 – 3.27 (m, 2H), 3.27 – 3.02 (m, 4H), 2.70 (t, J = 7.4 Hz, 2H), 1.83 

(dd, J = 10.2, 5.8 Hz, 2H), 1.72 (q, J = 7.4 Hz, 2H). 13C NMR (101 MHz, DMSO) δ 155.12, 

142.49, 128.21, 124.70, 122.86, 120.24, 119.90, 119.37, 115.03, 111.75, 55.77, 55.42, 50.60, 

47.87, 26.10, 23.17, 22.73. MS (ESI) m/z 365.66 [M+1]+. 

 

2-(4-(benzofuran-3-yl)butyl)-1,2,3,4-tetrahydroisoquinoline. 285 (WA173) (69%) 1H NMR 

(400 MHz, Chloroform-d) δ 7.59 (d, J = 7.5 Hz, 1H), 7.53 – 7.41 (m, 2H), 7.28 (dt, J = 24.0, 7.2 

Hz, 2H), 7.18 – 7.08 (m, 3H), 7.06 – 6.99 (m, 1H), 3.65 (s, 2H), 2.93 (t, J = 5.5 Hz, 2H), 2.74 (s, 

4H), 2.61 – 2.51 (m, 2H), 1.87 – 1.68 (m, 4H). 13C NMR (101 MHz, CDCl3) δ 155.39, 141.09, 

134.86, 134.35, 128.64, 128.28, 126.59, 126.07, 125.56, 124.06, 122.17, 120.36, 119.64, 111.42, 

58.18, 56.26, 51.03, 29.14, 27.04, 26.96, 23.52. MS (ESI) m/z 306.61 [M+1]+. 

 

1-(4-(benzofuran-3-yl)butyl)-4-(2,4-difluorophenyl)piperazine. 286 (WA174) (45%) 1H 

NMR (400 MHz, Chloroform-d) δ 7.57 (d, J = 7.3 Hz, 1H), 7.54 – 7.38 (m, 2H), 7.38 – 7.17 (m, 

2H), 7.09 – 6.72 (m, 3H), 3.20 – 2.96 (m, 4H), 2.73 (t, J = 7.4 Hz, 2H), 2.63 (s, 4H), 2.55 – 2.38 

(m, 2H), 1.78 (dt, J = 15.2, 7.5 Hz, 2H), 1.65 (q, J = 14.6, 11.2 Hz, 2H). 13C NMR (101 MHz, 

CDCl3) δ 159.11, 156.70, 155.38, 154.31, 141.07, 136.71, 128.24, 124.07, 122.17, 120.29, 

119.60, 119.34, 110.76, 110.55, 110.52, 104.90, 104.64, 104.39, 58.34, 53.30, 50.93, 50.90, 

26.92, 26.66, 23.48. MS (ESI) m/z 371.59 [M+1]+. 
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1-(4-(benzofuran-3-yl)butyl)-6-methoxy-1,2,3,4-tetrahydroquinoline. 287 (WA175) (57%) 

1H NMR (400 MHz, Chloroform-d) δ 7.59 (dd, J = 7.3, 1.6 Hz, 1H), 7.55 – 7.47 (m, 1H), 7.44 (t, 

J = 1.3 Hz, 1H), 7.37 – 7.21 (m, 2H), 6.68 (dd, J = 8.9, 3.1 Hz, 1H), 6.62 (d, J = 3.0 Hz, 1H), 

6.55 (d, J = 8.9 Hz, 1H), 3.77 (s, 3H), 3.44 – 3.10 (m, 4H), 2.76 (q, J = 7.5, 7.0 Hz, 4H), 2.04 – 

1.90 (m, 2H), 1.88 – 1.62 (m, 4H). 13C NMR (101 MHz, CDCl3) δ 155.40, 150.61, 141.10, 

140.03, 128.24, 124.10, 123.89, 122.21, 120.32, 119.61, 115.35, 112.47, 111.89, 111.46, 55.84, 

51.90, 49.46, 28.39, 26.81, 26.11, 23.56, 22.49. MS (ESI) m/z 336.68 [M+1]+. 

 

1-(4-(benzofuran-3-yl)butyl)-1,2,3,4-tetrahydroquinoline-HCl. 288 (WA176) (68%) 1H 

NMR (400 MHz, Chloroform-d) δ 14.22 (s, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.49 (d, J = 7.7 Hz, 

1H), 7.44 (d, J = 8.1 Hz, 1H), 7.40 (s, 1H), 7.34 – 7.25 (m, 3H), 7.25 – 7.16 (m, 2H), 3.64 – 3.45 

(m, 2H), 3.45 – 3.20 (m, 2H), 2.91 (t, J = 6.6 Hz, 2H), 2.73 (t, J = 7.4 Hz, 2H), 2.27 – 2.10 (m, 

2H), 2.11 – 1.88 (m, 2H), 1.86 – 1.68 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 155.33, 141.29, 

136.00, 130.59, 130.38, 129.31, 127.80, 124.28, 124.06, 122.36, 119.41, 119.28, 111.51, 58.29, 

48.07, 26.27, 24.65, 24.18, 23.03, 16.23.  MS (ESI) m/z 306.54 [M+1]+. 

 

1-(4-(benzofuran-3-yl)butyl)-4-(4-(trifluoromethyl)phenyl)piperazine. 289 (WA177) (51%) 

1H NMR (400 MHz, Chloroform-d) δ 7.54 – 7.40 (m, 5H), 7.34 – 7.20 (m, 2H), 6.90 (d, J = 8.4 

Hz, 2H), 3.69 (s, 4H), 3.51 – 3.33 (m, 2H), 3.06 (s, 2H), 2.89 (s, 2H), 2.73 (t, J = 6.7 Hz, 2H), 

1.88 (s, 2H), 1.29 (d, J = 11.4 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 155.38, 151.60, 141.32, 

127.77, 126.73, 126.69, 124.37, 122.43, 119.39, 119.14, 115.81, 111.56, 56.86, 51.26, 45.80, 

25.94, 23.25, 22.93. MS (ESI) m/z 403.56 [M+1]+. 
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1-(4-(benzofuran-3-yl)butyl)-4-(4-fluorophenyl)-1,2,3,4-tetrahydropyrazine. 290 (WA178) 

(79%) 1H NMR (400 MHz, Chloroform-d) δ 7.56 (t, J = 12.1 Hz, 1H), 7.45 (q, J = 15.2, 11.6 

Hz, 2H), 7.39 – 7.21 (m, 4H), 7.01 (t, J = 8.5 Hz, 2H), 6.00 (d, J = 3.8 Hz, 1H), 3.15 (q, J = 3.1 

Hz, 1H), 2.90 – 2.59 (m, 4H), 2.60 – 2.40 (m, 4H), 1.78 (dq, J = 19.3, 11.8, 9.6 Hz, 2H), 1.67 (dt, 

J = 18.2, 9.4 Hz, 2H).  13C NMR (101 MHz, CDCl3) δ 155.37, 141.08, 136.37, 134.11, 128.26, 

126.47, 126.39, 124.06, 122.16, 121.75, 120.31, 119.61, 115.13, 114.92, 111.41, 58.14, 53.27, 

50.37, 28.26, 27.00, 23.51. MS (ESI) m/z 350.68; 350.55 [M, M+1]+. 

 

1-(4-(benzofuran-3-yl)butyl)-4-(pyridin-2-yl)piperazine. 291 (WA179) (61%) 1H NMR (400 

MHz, Chloroform-d) δ 8.21 (d, J = 4.9 Hz, 1H), 7.56 (d, J = 7.5 Hz, 1H), 7.52 – 7.39 (m, 3H), 

7.32 – 7.20 (m, 2H), 6.63 (t, J = 8.1 Hz, 2H), 3.57 (t, J = 4.9 Hz, 4H), 2.72 (t, J = 7.4 Hz, 2H), 

2.58 (t, J = 5.0 Hz, 4H), 2.46 (t, J = 7.6 Hz, 2H), 1.77 (p, J = 7.4 Hz, 2H), 1.66 (q, J = 8.0 Hz, 

2H). 13C NMR (101 MHz, CDCl3) δ 159.51, 155.38, 147.91, 141.08, 137.48, 128.23, 124.09, 

122.20, 120.26, 119.61, 113.34, 111.43, 107.12, 58.53, 58.38, 53.03, 46.13, 45.14, 26.92, 26.52, 

24.70, 23.47, 1.06. MS (ESI) m/z 336.57 [M+1]+. 

 

1-(4-(benzofuran-3-yl)butyl)-4-(pyridin-4-yl)piperazine. 292 (WA211) (76%) 1H NMR (400 

MHz, Methanol-d4) δ 8.12 (d, J = 6.7 Hz, 2H), 7.63 – 7.49 (m, 2H), 7.42 (d, J = 7.8 Hz, 1H), 

7.32 – 7.16 (m, 2H), 7.00 (d, J = 6.7 Hz, 2H), 3.64 – 3.48 (m, 4H), 2.71 (t, J = 7.4 Hz, 2H), 2.66 

– 2.51 (m, 4H), 2.46 (dd, J = 8.7, 6.4 Hz, 2H), 1.75 (p, J = 7.4 Hz, 2H), 1.68 – 1.56 (m, 2H). 13C 

NMR (101 MHz, MeOD) δ 156.43, 155.44, 142.76, 141.28, 128.07, 123.85, 121.99, 120.10, 

119.31, 110.84, 107.64, 57.50, 52.04, 45.30, 26.52, 25.69, 22.77. MS (ESI) m/z 336.63 [M+1]+. 
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1-(4-(benzofuran-3-yl)butyl)-4-(3-fluorophenyl)piperazine. 293 (WA212) (76%) 1H NMR 

(400 MHz, Methanol-d4) δ 7.56 (dd, J = 7.2, 1.6 Hz, 1H), 7.51 (s, 1H), 7.42 (d, J = 8.0 Hz, 1H), 

7.30 – 7.11 (m, 3H), 6.73 – 6.57 (m, 2H), 6.50 (td, J = 8.3, 2.5 Hz, 1H), 3.12 (dd, J = 6.4, 3.8 Hz, 

4H), 2.70 (t, J = 7.4 Hz, 2H), 2.60 – 2.46 (m, 4H), 2.44 – 2.31 (m, 2H), 1.72 (p, J = 7.3 Hz, 2H), 

1.59 (tt, J = 10.1, 5.8 Hz, 2H). 13C NMR (101 MHz, MeOD) δ 165.02, 162.62, 155.47, 153.04, 

152.94, 141.20, 129.92, 129.82, 128.08, 123.81, 121.95, 120.10, 119.28, 110.98, 110.96, 110.83, 

105.34, 105.12, 102.23, 101.98, 57.95, 52.64, 47.90, 26.70, 25.78, 22.83. MS (ESI) m/z 353.72 

[M+1]+. 

 

1-(4-(benzofuran-3-yl)butyl)-4-(2-fluorophenyl)piperazine-2HCl. 294 (WA213) (68%) 1H 

NMR (400 MHz, DMSO-d6) δ 11.32 (s, 1H), 7.83 (s, 1H), 7.68 – 7.61 (m, 1H), 7.53 (d, J = 8.0 

Hz, 1H), 7.34 – 7.20 (m, 2H), 7.20 – 7.10 (m, 2H), 7.05 (ddt, J = 15.3, 7.6, 6.0 Hz, 2H), 5.38 (s, 

1H), 3.52 (d, J = 11.6 Hz, 2H), 3.45 (d, J = 12.2 Hz, 2H), 3.24 (t, J = 12.2 Hz, 2H), 3.15 (td, J = 

13.9, 11.9, 7.6 Hz, 4H), 2.70 (t, J = 7.3 Hz, 2H), 1.90 – 1.77 (m, 2H), 1.72 (q, J = 7.3 Hz, 2H). 

13C NMR (101 MHz, DMSO) δ 156.49, 155.12, 154.06, 142.51, 138.80, 138.71, 128.21, 125.44, 

125.41, 124.70, 123.86, 123.78, 122.86, 120.23, 119.99, 119.97, 119.87, 116.69, 116.49, 111.75, 

55.58, 51.20, 47.33, 47.30, 26.12, 23.12, 22.73. MS (ESI) m/z 353.69 [M+1]+. 

 

1-(4-(benzofuran-3-yl)butyl)-4-(cyclohexylmethyl)piperazine. 295 (WA214) (82%) 1H NMR 

(400 MHz, Methanol-d4) δ 7.60 – 7.52 (m, 2H), 7.43 (d, J = 7.9 Hz, 1H), 7.29 – 7.19 (m, 2H), 

2.73 (t, J = 7.3 Hz, 2H), 2.58 (s, 3H), 2.50 – 2.41 (m, 4H), 2.18 (d, J = 6.9 Hz, 2H), 1.86 – 1.45 

(m, 12H), 1.38 – 1.13 (m, 4H), 0.91 (td, J = 11.8, 3.0 Hz, 2H). 13C NMR (101 MHz, MeOD) δ 
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155.48, 141.23, 128.02, 123.78, 121.91, 119.99, 119.22, 110.77, 65.14, 57.80, 52.52, 52.23, 

34.60, 31.56, 26.64, 26.32, 25.74, 25.49, 22.75. MS (ESI) m/z 355.77 [M+1]+. 

 

1-(4-(benzofuran-3-yl)butyl)-4-(3-methoxyphenyl)piperazine. 296 (WA215) (63%) 1H NMR 

(400 MHz, Methanol-d4) δ 7.60 – 7.49 (m, 2H), 7.47 – 7.39 (m, 1H), 7.23 (dtd, J = 19.2, 7.3, 1.3 

Hz, 2H), 7.11 (t, J = 8.1 Hz, 1H), 6.53 – 6.40 (m, 3H), 3.73 (d, J = 4.1 Hz, 3H), 3.15 – 3.09 (m, 

4H), 2.76 – 2.67 (m, 2H), 2.62 – 2.51 (m, 4H), 2.44 – 2.35 (m, 2H), 1.79 – 1.67 (m, 2H), 1.65 – 

1.54 (m, 2H).13C NMR (101 MHz, MeOD) δ 160.64, 155.47, 152.53, 141.22, 129.36, 128.07, 

123.81, 121.95, 120.09, 119.28, 110.81, 108.64, 104.61, 102.28, 57.98, 54.18, 52.78, 48.52, 

26.72, 25.75, 22.82. MS (ESI) m/z 365.62 [M+1]+. 

 

1-(4-(benzofuran-3-yl)butyl)-4-(2,3-dichlorophenyl)piperazine. 297 (WA216) (68%) 1H 

NMR (400 MHz, Methanol-d4) δ 7.62 – 7.51 (m, 2H), 7.46 – 7.40 (m, 1H), 7.28 – 7.18 (m, 4H), 

7.05 (td, J = 6.3, 3.1 Hz, 1H), 3.08 – 2.99 (m, 4H), 2.76 – 2.71 (m, 2H), 2.69 – 2.54 (m, 4H), 

2.49 – 2.41 (m, 2H), 1.76 (p, J = 7.3 Hz, 2H), 1.69 – 1.58 (m, 2H). 13C NMR (101 MHz, MeOD) 

δ 155.48, 151.11, 141.21, 133.47, 128.06, 127.60, 124.38, 123.77, 121.91, 120.08, 119.24, 

118.71, 110.78, 58.03, 52.93, 50.57, 26.75, 25.79, 22.82. MS (ESI) m/z 403.57 [M+1]+. 

 

1-(4-(benzofuran-3-yl)butyl)-4-phenethylpiperazine. 298 (WA217) (78%) 1H NMR (400 

MHz, Methanol-d4) δ 7.64 – 7.50 (m, 2H), 7.42 (d, J = 8.2 Hz, 1H), 7.30 – 7.17 (m, 7H), 2.85 – 

2.78 (m, 2H), 2.72 (t, J = 7.3 Hz, 2H), 2.58 (ddq, J = 24.6, 11.1, 6.1 Hz, 8H), 2.52 – 2.38 (m, 

4H), 1.74 (p, J = 7.4 Hz, 2H), 1.68 – 1.54 (m, 2H). 13C NMR (101 MHz, MeOD) δ 155.47, 

141.23, 139.69, 128.27, 128.10, 125.81, 123.79, 121.93, 120.04, 119.24, 110.79, 59.95, 57.85, 
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52.27, 52.15, 32.58, 26.68, 25.65, 22.77. MS (ESI) m/z 363.66 [M+1]+. 

 

 4-(4-(benzofuran-3-yl)butyl)piperazin-2-one. 299 (WA218) (70%) 1H NMR (400 MHz, 

DMSO-d6) δ 7.76 (s, 1H), 7.70 (s, 1H), 7.62 (dd, J = 7.5, 1.4 Hz, 1H), 7.52 (d, J = 8.1 Hz, 1H), 

7.33 – 7.19 (m, 2H), 3.11 (t, J = 5.3 Hz, 2H), 2.87 (s, 2H), 2.65 (t, J = 7.5 Hz, 2H), 2.48 (s, 2H), 

2.36 (t, J = 7.2 Hz, 2H), 1.66 (p, J = 7.5 Hz, 2H), 1.50 (p, J = 7.4 Hz, 2H). 13C NMR (101 MHz, 

DMSO) δ 168.21, 155.11, 142.24, 128.35, 124.61, 122.79, 120.46, 120.23, 111.70, 57.36, 56.85, 

49.19, 40.80, 26.70, 26.24, 23.04. MS (ESI) m/z 373.59 [M+1]+. 

 

1'-(4-(benzofuran-3-yl)butyl)-3H-spiro[isobenzofuran-1,4'-piperidine]. 300 (WA220) (91%) 

1H NMR (400 MHz, Methanol-d4) δ 7.64 – 7.55 (m, 2H), 7.44 (dd, J = 7.8, 1.3 Hz, 1H), 7.32 – 

7.18 (m, 6H), 4.87 (s, 2H), 3.21 – 3.10 (m, 2H), 2.88 – 2.72 (m, 6H), 2.10 (td, J = 13.7, 4.6 Hz, 

2H), 1.85 – 1.71 (m, 6H). 13C NMR (101 MHz, MeOD) δ 155.50, 144.15, 141.35, 138.69, 

127.97, 127.76, 127.23, 123.84, 121.97, 120.90, 120.30, 119.79, 119.22, 110.80, 83.15, 70.45, 

57.48, 49.56, 34.67, 26.41, 24.94, 22.64. MS (ESI) m/z 362.88 [M+1]+. 

 

1-(4-(benzofuran-3-yl)butyl)-3,5-dimethylpiperazine. 301 (WA221) (84%) 1H NMR (400 

MHz, Methanol-d4) δ 7.64 – 7.51 (m, 2H), 7.43 (d, J = 8.0 Hz, 1H), 7.33 – 7.18 (m, 2H), 3.16 – 

2.99 (m, 2H), 2.98 – 2.85 (m, 2H), 2.73 (dt, J = 14.4, 7.4 Hz, 2H), 2.55 – 2.38 (m, 2H), 1.97 – 

1.49 (m, 7H), 1.16 (t, J = 5.7 Hz, 6H). 1H NMR (400 MHz, DMSO-d6) δ 9.69 (s, 1H), 7.90 (d, J 

= 5.7 Hz, 1H), 7.78 (d, J = 7.5 Hz, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.30 (dt, J = 20.8, 7.4 Hz, 2H), 

3.78 (s, 2H), 3.76 – 3.53 (m, 6H), 3.43 (dd, J = 18.3, 10.3 Hz, 4H), 3.32 – 3.16 (m, 4H), 2.37 – 

2.08 (m, 2H). 13C NMR (101 MHz, MeOD) δ 155.48, 141.28, 128.05, 123.81, 121.95, 120.06, 
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119.29, 110.81, 57.59, 57.38, 50.72, 48.27, 48.06, 47.85, 47.63, 47.42, 47.21, 46.99, 26.39, 

25.50, 22.75, 16.55. MS (ESI) m/z 287.63 [M+1]+. 

 

1-(4-(benzofuran-3-yl)butyl)azepane. 302 (WA222) (65%) 1H NMR (400 MHz, Methanol-d4) 

δ 7.63 – 7.53 (m, 2H), 7.43 (dd, J = 7.8, 1.2 Hz, 1H), 7.25 (dtd, J = 20.5, 7.3, 1.3 Hz, 2H), 3.04 – 

2.96 (m, 4H), 2.87 (dd, J = 9.0, 6.3 Hz, 2H), 2.76 (t, J = 6.6 Hz, 2H), 1.85 – 1.71 (m, 8H), 1.67 

(p, J = 2.8 Hz, 4H). 13C NMR (101 MHz, MeOD) δ 155.51, 141.33, 127.95, 123.84, 121.95, 

119.74, 119.18, 110.78, 57.35, 54.79, 26.26, 26.23, 24.88, 24.76, 22.57. MS (ESI) m/z 272.64 

[M+1]+. 

 

1-(4-(benzofuran-3-yl)butyl)-1,4-diazepane. 303 (WA223) (87%) 1H NMR (400 MHz, 

Methanol-d4) δ 7.63 – 7.50 (m, 2H), 7.48 – 7.39 (m, 1H), 7.24 (dtd, J = 20.4, 7.3, 1.3 Hz, 2H), 

4.91 (s, 1H), 3.00 – 2.89 (m, 4H), 2.81 – 2.64 (m, 6H), 2.58 – 2.48 (m, 2H), 1.87 – 1.78 (m, 2H), 

1.78 – 1.66 (m, 2H), 1.64 – 1.52 (m, 2H). 13C NMR (101 MHz, MeOD) δ 155.47, 141.20, 

128.06, 123.77, 121.90, 120.12, 119.23, 110.77, 57.61, 55.41, 54.16, 46.37, 45.72, 27.51, 26.64, 

26.39, 22.80. MS (ESI) m/z 273.66 [M+1]+. 

 

1-(4-(benzofuran-3-yl)butyl)piperazine. 304 (WA224) (78%) 1H NMR (400 MHz, Methanol-

d4) δ 7.62 – 7.51 (m, 2H), 7.43 (d, J = 8.0 Hz, 1H), 7.30 – 7.18 (m, 2H), 2.84 (t, J = 5.0 Hz, 4H), 

2.71 (t, J = 7.4 Hz, 2H), 2.53 – 2.32 (m, 6H), 1.74 (q, J = 7.5 Hz, 2H), 1.60 (td, J = 8.5, 4.2 Hz, 

2H). 13C NMR (101 MHz, MeOD) δ 155.47, 141.20, 128.05, 123.76, 121.89, 120.07, 119.22, 

110.76, 58.53, 53.18, 48.02, 44.52, 26.71, 25.50, 22.78. MS (ESI) m/z 259.67 [M+1]+. 
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1-(4-(benzofuran-3-yl)butyl)-4-(4-fluorobenzyl)piperazine. 305 (WA225) (90%) 1H NMR 

(400 MHz, Methanol-d4) δ 7.62 – 7.52 (m, 2H), 7.42 (d, J = 7.9 Hz, 1H), 7.34 (ddd, J = 8.5, 5.5, 

2.7 Hz, 2H), 7.27 – 7.17 (m, 2H), 7.10 – 7.02 (m, 2H), 3.56 (s, 2H), 2.99 – 2.54 (m, 10H), 1.83 – 

1.61 (m, 4H). 13C NMR (101 MHz, MeOD) δ 155.46, 141.38, 132.56, 130.96, 130.88, 127.94, 

123.88, 122.01, 119.73, 119.26, 114.81, 114.59, 110.83, 60.82, 57.02, 51.98, 50.52, 26.16, 24.47, 

22.57. MS (ESI) m/z 367.61 [M+1]+. 

 

1-(4-(benzofuran-3-yl)butyl)-4-(4-chlorophenyl)piperazine. 306 (WA226) (75%) 1H NMR 

(400 MHz, Methanol-d4) δ 7.62 – 7.52 (m, 2H), 7.43 (d, J = 8.0 Hz, 1H), 7.29 – 7.16 (m, 4H), 

6.90 (td, J = 6.9, 2.9 Hz, 2H), 3.14 (q, J = 5.8, 5.0 Hz, 4H), 2.73 (t, J = 7.4 Hz, 2H), 2.63 – 2.53 

(m, 4H), 2.49 – 2.38 (m, 2H), 1.76 (p, J = 7.3 Hz, 2H), 1.62 (ddd, J = 15.4, 9.2, 5.9 Hz, 2H). 13C 

NMR (101 MHz, MeOD) δ 155.49, 149.94, 141.22, 128.43, 123.77, 121.91, 120.08, 119.23, 

117.07, 110.77, 57.99, 52.72, 48.39, 48.24, 48.03, 47.81, 47.60, 47.39, 47.18, 46.96, 26.73, 

25.76, 22.79. MS (ESI) m/z 369.56 [M+1]+. 

 

1-(4-(benzofuran-3-yl)butyl)-4-(4-nitrophenyl)piperazine. 307 (WA227) (80%) 1H NMR 

(400 MHz, Methanol-d4) δ 8.93 – 8.81 (m, 2H), 8.58 (d, J = 7.2 Hz, 1H), 8.44 (d, J = 7.6 Hz, 

1H), 8.33 (d, J = 8.0 Hz, 1H), 8.07 (dt, J = 22.3, 7.4 Hz, 2H), 7.81 (dd, J = 10.3, 3.1 Hz, 2H), 

4.31 – 4.14 (m, 4H), 3.50 (dt, J = 14.8, 7.2 Hz, 2H), 3.25 (t, J = 5.1 Hz, 4H), 3.16 (t, J = 7.3 Hz, 

2H), 2.50 (p, J = 7.5 Hz, 2H), 2.34 (p, J = 7.4 Hz, 2H). 13C NMR (101 MHz, MeOD) δ 155.93, 

143.05, 138.07, 136.38, 129.17, 126.95, 125.42, 123.60, 121.28, 121.05, 113.80, 112.52, 58.52, 

53.56, 47.58, 41.42, 41.21, 41.01, 40.80, 40.59, 40.38, 40.17, 27.62, 27.16, 23.92. MS (ESI) m/z 

380.58 [M+1]+. 



 251 

 

1-(4-(benzofuran-3-yl)butyl)-4-phenylpiperazine. 308 (WA228) (73%) 1H NMR (400 MHz, 

Methanol-d4) δ 7.55 (dd, J = 7.4, 1.5 Hz, 1H), 7.49 (s, 1H), 7.45 – 7.38 (m, 1H), 7.21 (dddd, J = 

11.1, 9.3, 5.9, 1.9 Hz, 4H), 6.89 (d, J = 8.1 Hz, 2H), 6.81 (t, J = 7.3 Hz, 1H), 3.21 – 3.05 (m, 

4H), 2.67 (t, J = 7.4 Hz, 2H), 2.51 (dd, J = 6.3, 3.9 Hz, 4H), 2.45 – 2.31 (m, 2H), 1.70 (p, J = 7.4 

Hz, 2H), 1.57 (ddt, J = 15.1, 10.2, 5.8 Hz, 2H). 13C NMR (101 MHz, MeOD) δ 155.50, 151.21, 

141.21, 128.69, 128.12, 123.84, 121.98, 120.16, 119.66, 119.30, 115.98, 110.87, 57.98, 52.80, 

48.66, 26.73, 25.79, 22.86. MS (ESI) m/z 335.31 [M+1]+. 

 

1-(4-(benzofuran-3-yl)butyl)-4-(4-chlorophenyl)-1,2,3,4-tetrahydropyridine. 309 (WA230) 

(69%) 1H NMR (400 MHz, Chloroform-d) δ 7.61 – 7.54 (m, 1H), 7.49 – 7.42 (m, 2H), 7.32 (d, J 

= 8.8 Hz, 2H), 7.29 – 7.21 (m, 3H), 6.06 (tt, J = 3.5, 1.6 Hz, 1H), 3.15 (q, J = 3.0 Hz, 2H), 2.78 – 

2.66 (m, 4H), 2.53 (tt, J = 9.0, 7.2, 5.1 Hz, 4H), 1.82 – 1.61 (m, 4H). 13C NMR (101 MHz, 

CDCl3) δ 155.37, 141.08, 139.30, 133.99, 132.62, 128.37, 128.26, 126.17, 124.06, 122.48, 

122.16, 120.31, 119.61, 111.41, 58.15, 53.31, 50.32, 28.06, 26.99, 23.51. MS (ESI) m/z 366.66 

[M+1]+. 

 

1-(4-(benzofuran-3-yl)butyl)-3-methylpiperazine. 310 (WA231) (84%) 1H NMR (400 MHz, 

Methanol-d4) δ 7.61 – 7.51 (m, 2H), 7.43 (d, J = 8.0 Hz, 1H), 7.30 – 7.18 (m, 2H), 2.97 – 2.70 

(m, 8H), 2.43 – 2.35 (m, 2H), 2.00 (td, J = 11.5, 11.0, 3.3 Hz, 1H), 1.79 – 1.56 (m, 5H), 1.04 (d, 

J = 6.4 Hz, 3H). 13C NMR (101 MHz, MeOD) δ 155.48, 141.21, 128.04, 123.75, 121.88, 120.06, 

119.22, 110.75, 59.92, 58.22, 52.24, 49.86, 46.95, 26.67, 25.51, 22.76, 17.88. MS (ESI) m/z 

273.76 [M+1]+. 
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1-(4-(benzofuran-3-yl)butyl)-4-phenylpiperidine-4-carbonitrile. 311 (WA232) (71%) 1H 

NMR (400 MHz, Methanol-d4) δ 7.63 – 7.17 (m, 10H), 3.05 (dt, J = 12.5, 3.6 Hz, 2H), 2.74 (q, J 

= 6.0, 4.6 Hz, 2H), 2.54 – 2.36 (m, 4H), 2.08 (dt, J = 12.6, 6.2 Hz, 4H), 1.77 (p, J = 7.3 Hz, 2H), 

1.64 (ddt, J = 15.2, 10.7, 5.8 Hz, 2H). 13C NMR (101 MHz, MeOD) δ 155.49, 141.23, 140.12, 

128.73, 128.06, 127.85, 125.24, 123.78, 121.91, 121.70, 120.08, 119.25, 110.78, 57.86, 50.45, 

42.28, 35.68, 26.67, 25.96, 22.79. MS (ESI) m/z 359.67 [M+1]+. 

 

2-(4-(benzofuran-3-yl)butyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole. 312 (WA240) 

(72%) 1H NMR (400 MHz, DMSO-d6) δ 10.65 (s, 1H), 7.76 (s, 1H), 7.63 (d, J = 7.7 Hz, 1H), 

7.52 (d, J = 8.1 Hz, 1H), 7.26 (tt, J = 19.3, 7.5 Hz, 4H), 6.95 (dt, J = 27.5, 7.3 Hz, 2H), 3.57 (s, 

2H), 3.16 (d, J = 3.0 Hz, 2H), 2.74 – 2.64 (m, 5H), 2.57 (t, J = 7.1 Hz, 2H), 1.78 – 1.57 (m, 4H). 

13C NMR (101 MHz, DMSO) δ 155.12, 142.22, 136.31, 133.39, 128.39, 127.13, 124.60, 122.78, 

120.66, 120.54, 120.25, 118.63, 117.72, 111.69, 111.28, 106.92, 57.35, 51.28, 50.58, 49.05, 

40.63, 40.42, 40.21, 40.00, 39.79, 39.58, 39.37, 26.89, 23.14, 21.71. MS (ESI) m/z 345.58 

[M+1]+. 

 

4-(4-(4-(benzofuran-3-yl)butyl)piperazin-1-yl)aniline. 313 (WA254) (65%) 1H NMR (400 

MHz, Methanol-d4) δ 7.61 – 7.53 (m, 2H), 7.46 – 7.41 (m, 1H), 7.24 (dtd, J = 19.8, 7.3, 1.3 Hz, 

2H), 6.85 – 6.80 (m, 2H), 6.74 – 6.67 (m, 2H), 3.36 (s, 2H), 3.05 – 2.99 (m, 4H), 2.77 – 2.71 (m, 

2H), 2.63 – 2.56 (m, 4H), 2.48 – 2.40 (m, 2H), 1.76 (p, J = 7.4 Hz, 2H), 1.63 (ddt, J = 15.2, 10.5, 

5.9 Hz, 2H). 13C NMR (101 MHz, MeOD) δ 155.48, 143.89, 141.24, 141.17, 128.05, 123.78, 

121.92, 120.07, 119.25, 118.51, 116.40, 110.77, 58.01, 52.87, 50.56, 26.74, 25.75, 22.80. MS 
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(ESI) m/z 350.64 [M+1]+. 

 

1'-(4-(benzofuran-3-yl)butyl)spiro[isochromane-1,4'-piperidine]. 314 (WA496) To a solution 

of 3-(4-bromobutyl)benzofuran (WA208) (0.05g, 0.1382 mmol) in 3 mL DMF were added 

(0.06g, 0.4347 mmol ) of potassium carbonate and (0.034g, 0.1674 mmol) of spiro[isochromane-

1,4'-piperidine]-HCl, and the reaction mixture heated at 65 oC for 3 h, then the mixture extracted 

with ethyl acetate and water, treated with brine, dried over magnesium sulfate and the solvent 

evaporated using vaccu then purified by column chromatography (EtOAc: Hexane) to afford 

0.034g of 1'-(4-(benzofuran-3-yl)butyl)spiro[isochromane-1,4'-piperidine] as yellow oil in 67% 

yield. MS (ESI) m/z 376.65 [M++1]. 1H NMR (400 MHz, Methanol-d4) δ 7.62 – 7.57 (m, 1H), 

7.55 (s, 1H), 7.46 – 7.41 (m, 1H), 7.31 – 7.19 (m, 2H), 7.19 – 7.05 (m, 4H), 3.87 (t, J = 5.5 Hz, 

2H), 2.77 (dt, J = 13.9, 6.4 Hz, 6H), 2.51 – 2.39 (m, 4H), 2.03 (td, J = 13.5, 4.4 Hz, 2H), 1.86 

(dd, J = 14.4, 2.6 Hz, 2H), 1.80 – 1.61 (m, 4H). 13C NMR (101 MHz, MeOD) δ 155.50, 141.41, 

141.23, 133.56, 128.44, 128.05, 125.87, 124.88, 123.75, 121.89, 120.05, 119.22, 110.75, 72.68, 

58.43, 58.30, 48.90, 35.88, 29.18, 26.90, 25.96, 22.82. 

 

9.3 Synthesis of isothiocyanate derivatives: 

9.3.1 Synthesis of isothiocyanate derivatives of 1,3-dihydro-2H-benzo[d]imidazol-2-one 
 
N -methyl-4-nitrobenzene-1,2-diamine. 305 (WA244) 2g (12.81 mmol) of 2-fluoro-5-

nitroaniline, and 5 mL (40% in water) of methylamine stirred and heated at 95 oC overnight. The 

reaction was evaporated and the residue was purified by silica gel (0 to 90 % ethyl acetate in 

hexanes) to give (2-amino-4-nitrophenyl)methylamine as a redish-orange solid. MS (ESI) m/z 

168.2 [M+1]+. 1H NMR (400 MHz, DMSO-d6) δ 7.54 (dd, J = 8.9, 2.7 Hz, 1H), 7.40 (d, J = 2.7 
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Hz, 1H), 6.41 (d, J = 8.9 Hz, 1H), 6.27 (d, J = 5.1 Hz, 1H), 5.15 (s, 2H), 2.84 (d, J = 4.6 Hz, 3H). 

13C NMR (101 MHz, DMSO) δ 144.09, 136.95, 134.94, 116.42, 107.30, 106.85, 30.06. 

1-methyl-5-nitro-1,3-dihydro-2H-benzo[d]imidazol-2-one. 310 (WA245) A solution of (2-

amino-4-nitrophenyl)methylamine (2 g, 11.96 mmol) and 1,1’-carbonyldiimidazole (CDI) (1.98 

g, 12.22 mmol) in tetrahydrofuran (50 mL) was stirred at 65°C for 20 hours. The reaction 

mixture was then cooled to 0°C. The resulting precipitate was filtered and dried to give (2 g, 

10.3541 mmol, 86.5 % yield) of 1-methyl-5-nitro-3-hydrobenzimidazol-2-one as beige solid. MS 

(ESI) m/z 194.5 [M+1]+. 1H NMR (400 MHz, DMSO-d6) δ 11.41 (s, 1H), 7.96 (dd, J = 8.7, 2.2 

Hz, 1H), 7.70 (d, J = 2.2 Hz, 1H), 7.24 (d, J = 8.7 Hz, 1H), 3.33 (s, 3H).13C NMR (101 MHz, 

DMSO) δ 155.10, 141.81, 136.89, 128.60, 118.07, 107.61, 104.13, 27.32. 

3-(4-bromobutyl)-1-methyl-5-nitro-1,3-dihydro-2H-benzo[d]imidazol-2-one. 315 (WA247) 

To a solution of 1-methyl-5-nitro-1,3-dihydro-2H-benzo[d]imidazol-2-one (WA245) (1.5g, 7.76 

mmol) in 5 mL DMF were added (3.2g, 23.2 mmol ) of potassium carbonate and (8,38g, 38,8 

mmol) of 1,4-dibromobutane, and the reaction mixture heated at 60 oC for 3 hr, then the mixture 

extracted with CH2Cl2 and water, dried over sodium sulfate and the solvent evaporated using 

vaccu then purified by column chromatography (EtOAc: Hexane) to get 2.2g of compound 4 as 

yellow oil in 86.4% yield. MS (ESI) m/z 350.45 [M+23]+. 1H NMR (400 MHz, DMSO-d6) δ 

8.13 (d, J = 2.2 Hz, 1H), 8.04 (dd, J = 8.7, 2.2 Hz, 1H), 7.34 (d, J = 8.7 Hz, 1H), 3.96 (t, J = 6.6 

Hz, 2H), 3.56 (t, J = 6.3 Hz, 2H), 3.41 (d, J = 5.2 Hz, 3H), 1.81 (dddd, J = 21.7, 15.0, 8.1, 3.7 

Hz, 4H).13C NMR (101 MHz, DMSO) δ 154.50, 142.18, 135.66, 129.36, 118.37, 107.93, 103.80, 

40.33, 35.00, 29.77, 27.87, 27.03. 
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3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-1-methyl-5-nitro-1,3-dihydro-

2H-benzo[d]imidazol-2-one. 319 (WA248) To a solution of compound 4 (0.4g, 1.22 mmol) in 5 

mL DMF were added (0.5g, 3.62 mmol ) of potassium carbonate and (0.336g, 1.46 mmol )  of 

6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline, and the reaction mixture heated at 60 oC for 5 hr, 

then the mixture extracted with CH2Cl2 and water, dried over sodium sulfate and the solvent 

evaporated using vaccu then purified by column chromatography (EtOAc: Hexane) to get 0.301g 

of compound 5 as brown residue in 56% yield. MS (ESI) m/z 439 [M-1]+. 1H NMR (400 MHz, 

DMSO-d6) δ 8.12 – 8.00 (m, 2H), 7.33 (d, J = 8.8 Hz, 1H), 6.58 (d, J = 20.0 Hz, 2H), 3.96 (t, J = 

7.2 Hz, 3H), 3.67 (s, 6H), 3.33 (s, 4H), 2.60 (dt, J = 41.6, 6.0 Hz, 4H), 2.42 (t, J = 7.1 Hz, 2H), 

1.71 (t, J = 7.5 Hz, 2H), 1.54 (q, J = 7.7, 7.3 Hz, 2H). 13C NMR (101 MHz, DMSO) δ 154.50, 

147.53, 147.28, 142.13, 135.65, 129.43, 127.02, 126.32, 118.31, 112.16, 110.34, 107.90, 103.77, 

57.45, 55.89, 55.53, 51.12, 41.12, 28.73, 27.86, 26.13, 24.00. 

 

3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-1-methyl-5-nitro-1,3-dihydro-2H-

benzo[d]imidazol-2-one. 320 (WA256) To a solution of compound 4 (0.3g, 0.91 mmol) in 3 mL 

DMF were added (0.4g, 2.9 mmol ) of potassium carbonate and (0.25g, 11.1 mmol )  of 6,7-

dimethoxy-1,2,3,4-tetrahydroisoquinoline-HCl, and the reaction mixture heated at 60 oC for 6 hr, 

then the mixture extracted with ethylacetate and water, washed with brine and dried over sodium 

sulfate and the solvent evaporated using vaccu then purified by column chromatography (EtOAc: 

Hexane) to get 0.2235g of compound 6 as yellow solid in 56% yield. MS (ESI) m/z 437 [M+1]+. 

1H NMR (400 MHz, Methanol-d4) δ 8.13 – 8.05 (m, 2H), 7.30 – 7.15 (m, 5H), 5.02 (s, 2H), 4.03 

(t, J = 7.0 Hz, 2H), 3.48 (s, 3H), 3.01 – 2.93 (m, 2H), 2.58 (dt, J = 12.2, 9.2 Hz, 4H), 2.05 – 1.96 

(m, 2H), 1.87 – 1.64 (m, 6H). 13C NMR (101 MHz, MeOD) δ 154.98, 144.71, 142.62, 138.68, 
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134.99, 129.03, 127.55, 127.14, 120.80, 120.32, 117.91, 107.11, 103.34, 83.77, 70.27, 57.44, 

49.63, 40.69, 35.27, 26.46, 25.79, 22.93. 

 

4-nitro-N1-propylbenzene-1,2-diamine. 306 (WA246) 3g (19.23 mmol) of 2-fluoro-5-

nitroaniline, and 1.7g (28.76 mmol) of propylamine dissolved in 15 mL DMF, stirred, and heated 

at 60oC overnight. The reaction mixture extracted with ethyl acetate and water three times, 

washed with brine, dried over sodium sulfate, the solvent evaporated using vaccu and the residue 

was purified by silica gel (0 to 75 % ethyl acetate in hexanes) to give 2.2g  of compound 2b as 

dark-red crystals in 58.6 % yield. MS (ESI) m/z 218.66 [M+1]+. 1H NMR (400 MHz, DMSO-d6) 

δ 7.51 (dd, J = 8.9, 2.7 Hz, 1H), 7.40 (d, J = 2.7 Hz, 1H), 6.45 (d, J = 8.9 Hz, 1H), 5.85 (d, J = 

5.0 Hz, 1H), 5.10 (d, J = 10.6 Hz, 1H), 3.26 (d, J = 9.2 Hz, 1H), 3.20 – 3.10 (m, 2H), 1.62 (h, J = 

7.3 Hz, 2H), 0.95 (t, J = 7.4 Hz, 3H). 13C NMR (101 MHz, DMSO) δ 143.12, 136.94, 134.77, 

116.34, 107.73, 107.26, 45.13, 22.02, 11.98. 

 

4-nitro-N1-pentylbenzene-1,2-diamine: 308 (WA252) 3g (19.23 mmol) of 2-fluoro-5-

nitroaniline, and 2.5g (28.68 mmol) of pentylamine dissolved in 15 mL DMF, stirred, and heated 

at 60 oC overnight. The reaction mixture extracted with ethyl acetate and water three times, 

washed with brine, dried over sodium sulfate, the solvent evaporated using vaccu and the residue 

was purified by silica gel (0 to 80 % ethyl acetate in hexanes) to give 3.3g  of compound 2b as 

dark-red crystals in 77 % yield. MS (ESI) m/z 222.69 [M-1]+/ 246.74 [M+23]+.  1H NMR (400 

MHz, Methanol-d4) δ 7.71 – 7.63 (m, 1H), 7.62 – 7.52 (m, 1H), 6.50 (t, J = 7.0 Hz, 1H), 4.90 (s, 

1H), 3.41 – 3.09 (m, 3H), 1.70 (dp, J = 14.6, 7.2 Hz, 2H), 1.49 – 1.28 (m, 4H), 0.95 (dt, J = 14.2, 
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7.1 Hz, 4H). 13C NMR (101 MHz, MeOD) δ 143.83, 137.07, 133.25, 117.31, 109.43, 106.86, 

43.08, 29.04, 28.31, 22.17, 12.99. 

 

5-nitro-1-propyl-1,3-dihydro-2H-benzo[d]imidazol-2-one: 309 (WA251) A solution of 4-

nitro-N1-propylbenzene-1,2-diamine (1.5 g, 7.7 mmol) and 1,1’-carbonyldiimidazole (CDI) (1.24 

g, 7.65 mmol) in tetrahydrofuran (40 mL) was stirred at 65°C for 18 hours. The reaction mixture 

was then cooled to 0°C. The resulting precipitate was filtered and dried to give (0.88g, 4mmol, 

51.6% yield) of 5-nitro-1-propyl-1,3-dihydro-2H-benzo[d]imidazol-2-one as brown solid. MS 

(ESI) m/z 220.61 [M-1]+. 1H NMR (400 MHz, DMSO-d6) δ 11.39 (s, 1H), 8.01 – 7.93 (m, 1H), 

7.75 – 7.70 (m, 1H), 7.33 (d, J = 8.7 Hz, 1H), 3.80 (t, J = 7.1 Hz, 2H), 1.65 (h, J = 7.2 Hz, 2H), 

0.85 (t, J = 7.4 Hz, 3H). 13C NMR (101 MHz, DMSO) δ 154.97, 141.78, 136.37, 128.64, 118.08, 

107.81, 104.27, 42.32, 21.60, 11.40. 

 

3-(4-bromobutyl)-5-nitro-1-propyl-1,3-dihydro-2H-benzo[d]imidazol-2-one. 316 (WA333) 

To a solution of 5-nitro-1-propyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (WA251/WA332) 

(0.85g, 3,84 mmol) in 3 mL DMF were added (1.6g, 11.6 mmol ) of potassium carbonate and 

(4.15g, 19.2 mmol) of 1,4-dibromobutane, and the reaction mixture heated at 60 oC for 3 hr, then 

the mixture extracted with CH2Cl2 and water, dried over sodium sulfate and the solvent 

evaporated using vaccu then purified by column chromatography (EtOAc: Hexane) to get 1.22g 

of 3-(4-bromobutyl)-5-nitro-1-propyl-1,3-dihydro-2H-benzo[d]imidazol-2-one as yellow oil in 

87% yield. MS (ESI) m/z 378.46 [M+23]+ . 1H NMR (500 MHz, Methanol-d4) δ 8.07 (s, 2H), 

7.32 (d, J = 8.5 Hz, 1H), 4.04 (t, J = 6.4 Hz, 2H), 3.95 (t, J = 7.0 Hz, 2H), 3.54 – 3.45 (m, 2H), 

1.98 – 1.89 (m, 4H), 1.81 (h, J = 7.3 Hz, 2H), 1.01 – 0.94 (m, 3H). 13C NMR (126 MHz, MeOD) 
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δ 154.88, 142.55, 134.45, 128.98, 117.89, 107.36, 103.41, 42.68, 40.06, 32.20, 29.48, 26.48, 

21.29, 10.04. 

 

5-nitro-1-pentyl-1,3-dihydro-2H-benzo[d]imidazol-2-one. 313 (WA259) A solution of 4-

nitro-N1-pentylbenzene-1,2-diamine (1.5 g, 6.7 mmol) and 1,1’-carbonyldiimidazole (CDI) 

(1.088 g, 6.716 mmol) in tetrahydrofuran (40 mL) was stirred at 65°C for 18 hours. The reaction 

mixture was then cooled to 0°C. The resulting precipitate was filtered and dried to give (1.4 g, 

5.62 mmol, 83.7 % yield) of 5-nitro-1-pentyl-1,3-dihydro-2H-benzo[d]imidazol-2-one as beige 

solid. MS (ESI) m/z 248.69 [M-1]+/ 272.73 [M+23]+. 1H NMR (400 MHz, Methanol-d4) δ 8.06 

(tt, J = 6.5, 2.4 Hz, 1H), 7.89 (s, 1H), 7.25 (dd, J = 9.1, 5.1 Hz, 1H), 3.93 (dd, J = 9.2, 5.2 Hz, 

2H), 3.35 (d, J = 6.5 Hz, 1H), 1.76 (p, J = 7.4 Hz, 2H), 1.36 (hd, J = 8.9, 8.2, 2.9 Hz, 4H), 0.94 – 

0.85 (m, 3H). 1H NMR (400 MHz, Methanol-d4) δ 8.06 (tt, J = 6.5, 2.4 Hz, 1H), 7.89 (s, 1H), 

7.25 (dd, J = 9.1, 5.1 Hz, 1H), 3.93 (dd, J = 9.2, 5.2 Hz, 2H), 3.35 (d, J = 6.5 Hz, 1H), 1.76 (p, J 

= 7.4 Hz, 2H), 1.36 (hd, J = 8.9, 8.2, 2.9 Hz, 4H), 0.94 – 0.85 (m, 3H). 

 

3-(4-bromobutyl)-5-nitro-1-pentyl-1,3-dihydro-2H-benzo[d]imidazol-2-one. 318 

(WA261/WA307) To a solution of compound 3c (2g, 8.0321 mmol) in 5 mL DMF were added 

(3.33g, 24.1 mmol ) of potassium carbonate and (8,67g, 40.14 mmol) of 1,4-dibromobutane, and 

the reaction mixture heated at 60 oC for 3 hr, then the mixture extracted with CH2Cl2 and water, 

dried over sodium sulfate and the solvent evaporated using vaccu then purified by column 

chromatography (EtOAc: Hexane) to get 3g of compound 4c as yellow oil in 97.5% yield. MS 

(ESI) m/z 406.48 [M+23]+.  1H NMR (400 MHz, Chloroform-d) δ 8.10 (dd, J = 8.6, 2.3 Hz, 1H), 

7.90 (d, J = 2.2 Hz, 1H), 7.04 (dd, J = 8.7, 4.0 Hz, 1H), 3.96 (dt, J = 26.6, 6.9 Hz, 4H), 3.47 (t, J 
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= 5.9 Hz, 2H), 2.02 – 1.92 (m, 4H), 1.83 – 1.71 (m, 2H), 1.36 (tq, J = 8.3, 4.3 Hz, 4H), 0.92 (dt, 

J = 13.8, 6.9 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 154.39, 142.37, 136.38, 134.64, 129.10, 

118.33, 106.79, 103.28, 41.65, 40.50, 32.67, 29.52, 28.83, 27.98, 26.81, 22.24, 13.89. 

 

3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-5-nitro-1-propyl-1,3-dihydro-

2H-benzo[d]imidazol-2-one.  325  (WA334)To a solution of 3-(4-bromobutyl)-5-nitro-1-

propyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (WA260) (0.4g, 1.22 mmol) in 5 mL DMF were 

added (0.5g, 3.62 mmol ) of potassium carbonate and (0.336g, 1.46 mmol )  of 6,7-dimethoxy-

1,2,3,4-tetrahydroisoquinoline, and the reaction mixture heated at 60 oC for 5 hr, then the 

mixture extracted with CH2Cl2 and water, dried over sodium sulfate and the solvent evaporated 

using vaccu then purified by column chromatography (EtOAc: Hexane) to get 0.301g of 3-(4-

(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-5-nitro-1-propyl-1,3-dihydro-2H-

benzo[d]imidazol-2-one as brown residue in 56% yield. MS (ESI) m/z 469.64 [M+1]+. 1H NMR 

(400 MHz, DMSO-d6) δ 8.09 (d, J = 2.3 Hz, 1H), 8.02 (dd, J = 8.6, 2.2 Hz, 1H), 7.40 (d, J = 8.6 

Hz, 1H), 6.61 (s, 1H), 6.55 (s, 1H), 3.97 (t, J = 7.1 Hz, 2H), 3.87 (t, J = 7.1 Hz, 2H), 3.37 (s, 2H), 

3.28 (s, 5H), 2.64 (d, J = 5.8 Hz, 2H), 2.54 (t, J = 5.8 Hz, 2H), 2.42 (t, J = 7.0 Hz, 2H), 1.70 (dh, 

J = 14.6, 7.4 Hz, 4H), 1.52 (p, J = 7.5 Hz, 2H), 1.19 (s, 1H), 0.85 (t, J = 7.4 Hz, 3H). 13C NMR 

(101 MHz, MeOD) δ 154.85, 147.77, 147.39, 142.49, 134.43, 129.05, 125.98, 125.86, 117.82, 

111.50, 109.69, 107.30, 103.46, 57.23, 55.08, 55.06, 55.01, 50.64, 42.64, 40.78, 27.69, 25.88, 

23.38, 21.31, 10.08. 

3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-5-nitro-1-propyl-1,3-dihydro-2H-

benzo[d]imidazol-2-one. 321 (WA262) To a solution of 3-(4-bromobutyl)-5-nitro-1-propyl-1,3-
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dihydro-2H-benzo[d]imidazol-2-one (WA260) (0.35g, 0.84 mmol) in 3 mL DMF were added 

(0.35g, 2.53 mmol ) of potassium carbonate and (0.182g, 1.01 mmol )  of 1-(4-

fluorophenyl)piperazine, and the reaction mixture heated at 60 oC for 5 hr, then the mixture 

extracted with CH2Cl2 and water, dried over sodium sulfate and the solvent evaporated using 

vaccu then purified by column chromatography (EtOAc: Hexane) to get 0.325g of 3-(4-(4-(4-

fluorophenyl)piperazin-1-yl)butyl)-5-nitro-1-propyl-1,3-dihydro-2H-benzo[d]imidazol-2-one as 

yellow residue in 84.7% yield. MS (ESI) m/z 456.97 [M+1]+.   1H NMR (400 MHz, Methanol-

d4) δ 8.13 – 8.04 (m, 2H), 7.35 – 7.27 (m, 1H), 6.94 (ddd, J = 7.1, 5.7, 3.3 Hz, 4H), 4.03 (t, J = 

7.1 Hz, 2H), 3.94 (t, J = 7.1 Hz, 2H), 3.35 (s, 2H), 3.11 – 3.07 (m, 3H), 2.63 (dd, J = 6.3, 3.8 Hz, 

3H), 2.53 – 2.46 (m, 2H), 1.81 (ddt, J = 14.5, 11.5, 7.2 Hz, 4H), 1.63 (td, J = 10.4, 9.2, 6.6 Hz, 

2H), 0.96 (t, J = 7.4 Hz, 3H). 13C NMR (101 MHz, MeOD) δ 154.85, 147.87, 142.53, 134.45, 

129.06, 117.86, 117.76, 114.99, 114.78, 107.35, 103.46, 57.35, 52.76, 49.44, 42.66, 40.71, 25.73, 

23.00, 21.31, 10.07. 

 

3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-nitro-1-propyl-1,3-dihydro-2H-

benzo[d]imidazol-2-one. 324 (WA303) To a solution of 3-(4-bromobutyl)-5-nitro-1-propyl-1,3-

dihydro-2H-benzo[d]imidazol-2-one (WA260) (0.5g, 1.4 mmol) in 5 mL DMF were added 

(0.58g, 4.20 mmol ) of potassium carbonate and (0.318g, 1.41 mmol )  of 3H-

spiro[isobenzofuran-1,4'-piperidine] HCl,, and the reaction mixture heated at 60 oC for 5 hr, then 

the mixture extracted with CH2Cl2 and water, dried over sodium sulfate and the solvent 

evaporated using vaccu then purified by column chromatography (EtOAc: Hexane) to get 0.42g 

of 3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-nitro-1-propyl-1,3-dihydro-2H-

benzo[d]imidazol-2-one as yellow oil in 65% yield. MS (ESI) m/z 465.71 [M+1]+. 1H NMR (400 
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MHz, Chloroform-d) δ 8.09 (dt, J = 8.7, 2.2 Hz, 1H), 7.97 – 7.88 (m, 1H), 7.28 (q, J = 2.9, 2.3 

Hz, 2H), 7.19 (dq, J = 8.9, 5.4, 4.7 Hz, 2H), 7.04 (dd, J = 8.8, 2.9 Hz, 1H), 5.06 (d, J = 3.6 Hz, 

2H), 3.98 (t, J = 6.9 Hz, 2H), 3.89 (t, J = 7.3 Hz, 2H), 3.46 (s, 2H), 3.23 – 3.14 (m, 2H), 2.84 – 

2.68 (m, 4H), 2.24 (td, J = 13.6, 4.4 Hz, 2H), 2.03 (s, 2H), 2.00 (s, 2H), 1.81 – 1.78 (m, 2H), 0.97 

(t, J = 7.3 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 154.50, 144.33, 142.42, 138.53, 134.66, 

129.10, 127.90, 127.58, 121.03, 120.97, 118.31, 106.79, 103.38, 83.50, 70.96, 56.89, 50.59, 

49.32, 43.20, 40.92, 34.85, 25.98, 21.68, 11.24. 

 

3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-5-nitro-1-pentyl-1,3-dihydro-

2H-benzo[d]imidazol-2-one. 322 (WA266/299/308) To a solution of 3-(4-bromobutyl)-5-nitro-

1-pentyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (WA261) (0.6g, 1.56 mmol) in 5 mL DMF 

were added (0.65g, 4.7 mmol ) of potassium carbonate and (0.43g, 1.87 mmol )  of 6,7-

dimethoxy-1,2,3,4-tetrahydroisoquinoline, and the reaction mixture heated at 60 oC for 3 hr, then 

the mixture extracted with CH2Cl2 and water, dried over sodium sulfate and the solvent 

evaporated using vaccu then purified by column chromatography (EtOAc: Hexane) to get 0.7g of 

3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-5-nitro-1-pentyl-1,3-dihydro-2H-

benzo[d]imidazol-2-one as yellow oil in 90% yield. MS (ESI) m/z 497.91 [M+1]+.  1H NMR 

(400 MHz, Methanol-d4) δ 8.12 – 8.04 (m, 2H), 7.33 – 7.26 (m, 1H), 6.65 (s, 1H), 6.58 (s, 1H), 

4.09 – 4.02 (m, 2H), 3.97 (t, J = 7.2 Hz, 2H), 3.80 – 3.75 (m, 6H), 3.00 (s, 1H), 2.87 (s, 1H), 2.79 

(t, J = 5.9 Hz, 2H), 2.69 (t, J = 5.9 Hz, 2H), 2.56 (t, J = 7.7 Hz, 2H), 1.90 – 1.63 (m, 6H), 1.36 

(dq, J = 7.8, 4.5, 3.6 Hz, 3H), 0.94 – 0.88 (m, 3H). 13C NMR (101 MHz, MeOD) δ 154.81, 

147.79, 147.41, 142.51, 134.37, 129.08, 125.98, 125.87, 117.84, 111.53, 109.72, 107.28, 103.49, 

57.23, 55.08, 50.63, 41.09, 40.79, 35.54, 30.25, 28.53, 27.70, 25.88, 23.36, 21.93, 12.91. 
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3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-5-nitro-1-pentyl-1,3-dihydro-2H-

benzo[d]imidazol-2-one. 326  (WA336/265) To a solution of 3-(4-bromobutyl)-5-nitro-1-

pentyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (WA261) (0.6g, 1.6 mmol) in 5 mL DMF were 

added (0.662g, 4.8 mmol ) of potassium carbonate and (0.35g, 1.94 mmol )  of 1-(4-

fluorophenyl)piperazine, and the reaction mixture heated at 60 oC for 6 hr, then the mixture 

extracted with CH2Cl2 and water, dried over sodium sulfate and the solvent evaporated using 

vaccu then purified by column chromatography (EtOAc: Hexane) to get 0.62g of 3-(4-(4-(4-

fluorophenyl)piperazin-1-yl)butyl)-5-nitro-1-pentyl-1,3-dihydro-2H-benzo[d]imidazol-2-one as 

brown residue in 80% yield. MS (ESI) m/z 484.98 [M+1]+. 1H NMR (400 MHz, Methanol-d4) δ 

8.08 (d, J = 7.4 Hz, 2H), 7.34 – 7.26 (m, 1H), 7.01 (td, J = 8.5, 4.5 Hz, 4H), 4.13 – 4.04 (m, 2H), 

3.97 (t, J = 7.2 Hz, 2H), 3.56 (q, J = 9.6, 8.2 Hz, 2H), 3.45 (d, J = 7.5 Hz, 5H), 3.32 (d, J = 13.0 

Hz, 2H), 2.08 – 1.83 (m, 5H), 1.76 (s, 1H), 1.46 – 1.22 (m, 5H), 1.00 – 0.85 (m, 4H). 13C NMR 

(101 MHz, MeOD) δ 158.76, 156.39, 154.82, 146.79, 142.54, 134.47, 129.00, 118.22, 118.15, 

118.00, 115.24, 115.02, 107.37, 103.46, 69.38, 63.17, 44.50, 41.18, 40.51, 28.55, 27.67, 25.23, 

21.95, 18.86, 12.95.  

 

3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-nitro-1-pentyl-1,3-dihydro-2H-

benzo[d]imidazol-2-one. 323 (WA267) To a solution of compound 3-(4-bromobutyl)-5-nitro-1-

pentyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (WA261) (0.2g, 0.52 mmol) in 3 mL DMF were 

added (0.216g, 1.565 mmol ) of potassium carbonate and (0.118g, 0.522 mmol )  of 3H-

spiro[isobenzofuran-1,4'-piperidine] HCl, and the reaction mixture heated at 60 oC for 5 hr, then 

the mixture extracted with CH2Cl2 and water, dried over sodium sulfate and the solvent 
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evaporated using vaccu then purified by column chromatography (EtOAc: Hexane) to get 0.15g 

of 3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-nitro-1-pentyl-1,3-dihydro-2H-

benzo[d]imidazol-2-one as brown residue in 58% yield. MS (ESI) m/z 493.94 [M+1]+.  1H NMR 

(500 MHz, Methanol-d4) δ 8.16 – 8.09 (m, 2H), 7.37 – 7.25 (m, 5H), 4.86 (s, 3H), 4.08 (q, J = 

8.7, 7.9 Hz, 2H), 4.00 (t, J = 7.3 Hz, 2H), 3.17 (d, J = 12.2 Hz, 2H), 2.85 (s, 2H), 2.12 (td, J = 

13.6, 4.5 Hz, 2H), 1.90 – 1.73 (m, 8H), 1.40 – 1.32 (m, 4H), 0.94 – 0.87 (m, 4H). 13C NMR (126 

MHz, MeOD) δ 154.90, 144.12, 142.61, 138.70, 134.43, 129.05, 127.76, 127.24, 120.90, 120.32, 

117.94, 107.40, 103.50, 83.11, 70.45, 56.89, 49.52, 41.14, 40.47, 34.62, 28.54, 27.65, 25.54, 

22.28, 21.93, 12.89. 

 

5-amino-3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-1-methyl-1,3-dihydro-

2H-benzo[d]imidazol-2-one. 329 (WA249) To a solution of 3-(4-(6,7-dimethoxy-3,4-

dihydroisoquinolin-2(1H)-yl)butyl)-1-methyl-5-nitro-1,3-dihydro-2H-benzo[d] imidazol-2-one 

(0.3g, 0.68 mmol) in methanol (50 mL) was added to 10% Palladium on carbon catalyst (0.033g) 

and stirred under a hydrogen atmosphere (20psi) for 2h. The mixture was filtered through celite 

and evaporated in vacuo to give 0.235g of  

5-amino-3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-1-methyl-1,3-dihydro-2H-

benzo[d]imidazol-2-one as grey residue in 84% yield. MS (ESI) m/z 411 [M+1]+. 1H NMR (400 

MHz, Methanol-d4) δ 6.88 (dd, J = 13.6, 8.3 Hz, 1H), 6.64 (d, J = 19.9 Hz, 3H), 6.55 (d, J = 8.2 

Hz, 1H), 3.87 (q, J = 7.0, 6.2 Hz, 2H), 3.77 (s, 6H), 3.53 (s, 2H), 3.34 (d, J = 9.2 Hz, 5H), 2.80 

(t, J = 6.0 Hz, 2H), 2.70 (t, J = 6.0 Hz, 2H), 2.53 (t, J = 7.6 Hz, 2H), 1.78 (p, J = 7.1 Hz, 2H), 

1.64 (p, J = 7.7 Hz, 2H).13C NMR (101 MHz, MeOD) δ 154.69, 147.83, 147.45, 142.71, 129.74, 
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125.89, 125.83, 122.44, 111.53, 109.76, 109.19, 108.15, 96.19, 57.26, 55.10, 55.03, 50.53, 40.29, 

27.61, 25.95, 23.36. 

 

3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-amino-1-methyl-1,3-dihydro-

2H-benzo[d]imidazol-2-one. 330 (WA257) To a solution of 3-(4-(3H-spiro[isobenzofuran-1,4'-

piperidin]-1'-yl)butyl)-1-methyl-5-nitro-1,3-dihydro-2H-benzo [d]imidazol-2-one (0.223g, 0.512 

mmol) in methanol (75ml) was added to 10% Palladium on carbon catalyst (0.033g) and stirred 

under a hydrogen pressure (20 psi) for 2h. The mixture was filtered through celite and 

evaporated in vacuo to give 0.16g of 3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-

amino-1-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one as brown residue in 76% yield. MS 

(ESI) m/z 407.90 [M+1]+. 1H NMR (400 MHz, DMSO-d6) δ 7.25 (s, 4H), 6.79 (d, J = 8.2 Hz, 

1H), 6.43 (s, 1H), 6.33 (d, J = 8.2 Hz, 1H), 4.95 (s, 2H), 4.78 (s, 2H), 3.73 (t, J = 6.9 Hz, 2H), 

3.23 (s, 3H), 2.70 (d, J = 10.8 Hz, 2H), 2.32 (t, J = 7.0 Hz, 2H), 2.23 (t, J = 11.6 Hz, 2H), 1.84 

(td, J = 12.9, 4.6 Hz, 2H), 1.65 (t, J = 7.6 Hz, 2H), 1.57 (d, J = 13.2 Hz, 2H), 1.44 (t, J = 7.6 Hz, 

2H).13C NMR (101 MHz, MeOD) δ 154.69, 145.17, 142.77, 138.69, 129.79, 127.40, 127.07, 

122.42, 120.73, 120.35, 109.15, 108.14, 96.14, 84.25, 70.14, 57.96, 49.65, 40.38, 35.68, 26.08, 

25.97, 23.50. 

 

5-amino-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-1-propyl-1,3-dihydro-2H-

benzo[d]imidazol-2-one. 331 (WA263) To a solution of 3-(4-(4-(4-fluorophenyl)piperazin-1-

yl)butyl)-5-nitro-1-propyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (0.3g, 0.6585 mmol) in 

methanol (75ml) was added to 10% Palladium on carbon catalyst (0.035g) and stirred under a 

hydrogen pressure (20psi) for 2h. The mixture was filtered through celite and evaporated in 
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vacuo to give 0.2g of 5-amino-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-1-propyl-1,3-

dihydro-2H-benzo[d]imidazol-2-one as brown residue in 71% yield. MS (ESI) m/z 426.71 

[M+1]+.  1H NMR (400 MHz, DMSO-d6) δ 7.05 – 6.97 (m, 2H), 6.89 (dd, J = 9.2, 4.6 Hz, 2H), 

6.81 (d, J = 8.2 Hz, 1H), 6.42 (d, J = 2.0 Hz, 1H), 6.31 (dd, J = 8.2, 2.0 Hz, 1H), 4.77 (s, 2H), 

3.70 (dt, J = 21.7, 7.0 Hz, 4H), 3.00 (t, J = 4.8 Hz, 4H), 2.42 (t, J = 4.9 Hz, 4H), 2.30 (t, J = 7.2 

Hz, 2H), 1.70 – 1.53 (m, 4H), 1.42 (p, J = 7.4 Hz, 2H), 0.82 (t, J = 7.3 Hz, 3H). 13C NMR (101 

MHz, DMSO) δ 157.54, 155.20, 154.03, 148.39, 148.37, 144.06, 130.21, 120.58, 117.46, 117.38, 

115.74, 115.52, 108.70, 107.37, 95.09, 57.61, 53.08, 49.40, 42.18, 40.44, 26.08, 23.87, 21.74, 

11.50. 

5-amino-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-1-pentyl-1,3-dihydro-2H-

benzo[d]imidazol-2-one. (336, WA338) To a solution of 3-(4-(4-(4-fluorophenyl)piperazin-1-

yl)butyl)-5-nitro-1-pentyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (WA336) (1.5g, 3.1018 

mmol) in methanol (100ml) was added to 10% Palladium on carbon catalyst (0.2g) and stirred 

under a hydrogen pressure (20psi) for 2h. The mixture was filtered through celite and evaporated 

in vacuo to give 1.2g of 5-amino-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-1-pentyl-1,3-

dihydro-2H-benzo[d]imidazol-2-one as brown residue in 85% yield. MS (ESI) m/z 454.79 

[M+1]+. 1H NMR (400 MHz, DMSO-d6) δ 7.00 (t, J = 8.8 Hz, 2H), 6.92 – 6.84 (m, 2H), 6.79 

(dd, J = 8.3, 4.8 Hz, 1H), 6.42 (d, J = 2.0 Hz, 1H), 6.31 (dd, J = 8.2, 2.0 Hz, 1H), 4.76 (s, 2H), 

3.77 – 3.65 (m, 4H), 2.99 (t, J = 4.9 Hz, 4H), 2.41 (t, J = 5.0 Hz, 4H), 2.28 (t, J = 7.3 Hz, 2H), 

1.68 – 1.51 (m, 4H), 1.41 (t, J = 7.5 Hz, 2H), 1.21 (dqd, J = 18.5, 10.5, 9.5, 4.5 Hz, 4H), 0.80 (t, 

J = 7.1 Hz, 3H). 13C NMR (101 MHz, DMSO) δ 157.54, 153.99, 148.38, 144.05, 130.21, 120.51, 

117.45, 117.37, 115.73, 115.51, 108.65, 107.40, 95.12, 57.63, 53.08, 49.41, 28.76, 28.03, 26.06, 

23.86, 22.20, 14.30. 
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5-amino-3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-1-propyl-1,3-dihydro-

2H-benzo[d]imidazol-2-one. 335 (WA337) To a solution of 3-(4-(6,7-dimethoxy-3,4-

dihydroisoquinolin-2(1H)-yl)butyl)-5-nitro-1-propyl-1,3-dihydro-2H-benzo[d]imidazol-2-

one(1.2g, 2.561 mmol) in methanol (100ml) was added to 10% Palladium on carbon catalyst 

(0.2g) and stirred under a hydrogen pressure (20psi) for 2h. The mixture was filtered through 

celite and evaporated in vacuo to give 0.8g of 5-amino-3-(4-(6,7-dimethoxy-3,4-

dihydroisoquinolin-2(1H)-yl)butyl)-1-propyl-1,3-dihydro-2H-benzo[d]imidazol-2-one as brown 

residue in 80% yield. MS (ESI) m/z 439 [M+1]+.  1H NMR (400 MHz, Methanol-d4) δ 7.02 – 

6.51 (m, 7H), 3.90 (t, J = 6.9 Hz, 2H), 3.83 – 3.78 (m, 4H), 3.78 (d, J = 1.5 Hz, 4H), 3.54 (s, 

2H), 3.35 (s, 4H), 2.81 (t, J = 5.8 Hz, 2H), 2.72 (t, J = 5.9 Hz, 2H), 2.59 – 2.53 (m, 2H), 1.77 (dt, 

J = 19.7, 7.3 Hz, 4H), 1.68 – 1.62 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H). 13C NMR (101 MHz, 

MeOD) δ 154.60, 147.85, 147.47, 142.53, 129.77, 125.84, 125.82, 121.77, 111.54, 109.75, 

109.21, 108.50, 96.28, 57.25, 55.09, 55.03, 50.55, 42.12, 40.20, 27.58, 25.86, 23.32, 21.42, 

10.10. 

5-amino-3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-1-pentyl-1,3-dihydro-

2H-benzo[d]imidazol-2-one. (333, WA295/300/312) To a solution of 3-(4-(6,7-dimethoxy-3,4-

dihydroisoquinolin-2(1H)-yl)butyl)-5-nitro-1-pentyl-1,3-dihydro-2H-benzo[d]imidazol-2-one 

(0.35g, 0.7047 mmol) in methanol (100 ml) was added to 10% Palladium on carbon catalyst 

(0.028g) and stirred under a hydrogen pressure (20 psi) for 2h. The mixture was filtered through 

celite and evaporated in vaccu to give 0.265g of 5-amino-3-(4-(6,7-dimethoxy-3,4-

dihydroisoquinolin-2(1H)-yl)butyl)-1-pentyl-1,3-dihydro -2H-benzo[d]imidazol-2-one as brown 

residue in 80% yield. MS (ESI) m/z 467.69 [M+1]+.  2HCl salt:1H NMR (400 MHz, DMSO-d6) δ 

10.55 (s, 2H), 7.35 – 7.24 (m, 2H), 7.10 (dd, J = 8.2, 1.9 Hz, 1H), 6.80 (d, J = 13.1 Hz, 2H), 4.38 
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(d, J = 15.1 Hz, 1H), 4.13 (d, J = 15.0 Hz, 1H), 3.86 (dt, J = 20.6, 6.8 Hz, 4H), 3.72 (d, J = 3.8 

Hz, 6H), 3.56 (d, J = 9.4 Hz, 2H), 3.20 (s, 4H), 2.87 (d, J = 16.4 Hz, 1H), 1.81 (s, 2H), 1.72 (s, 

2H), 1.64 (q, J = 7.2 Hz, 2H), 1.36 – 1.20 (m, 4H), 0.91 – 0.78 (m, 4H). 13C NMR (101 MHz, 

MeOD) δ 154.50, 147.76, 147.39, 142.53, 129.78, 126.03, 121.70, 111.48, 109.71, 109.19, 

108.47, 96.29, 57.32, 55.06, 55.00, 50.55, 48.24, 48.02, 47.81, 47.73, 47.60, 47.39, 47.31, 47.17, 

46.96, 40.52, 40.23, 28.60, 27.70, 25.89, 23.37, 21.98, 12.95. 

3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-amino-1-propyl-1,3-dihydro-

2H-benzo[d]imidazol-2-one. (334, WA304) To a solution of 3-(4-(3H-spiro[isobenzofuran-1,4'-

piperidin]-1'-yl)butyl)-5-nitro-1-propyl-1,3-dihydro-2H-benzo [d]imidazol-2-one (0.375g, 

0.8072 mmol) in methanol (50ml) was added to 10% Palladium on carbon catalyst (0.033g) and 

stirred under a hydrogen pressure (20psi) for 2h. The mixture was filtered through celite and 

evaporated in vacuo to give 0.23g of 3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-

amino-1-propyl-1,3-dihydro-2H-benzo[d]imidazol-2-one as brown residue in 65.5% yield. MS 

(ESI) m/z 435.72 [M+1]+.  1H NMR (400 MHz, DMSO-d6) δ 7.23 (d, J = 2.1 Hz, 4H), 6.81 (d, J 

= 8.2 Hz, 1H), 6.42 (d, J = 2.0 Hz, 1H), 6.30 (dd, J = 8.3, 2.0 Hz, 1H), 4.93 (s, 2H), 4.76 (s, 2H), 

3.70 (dt, J = 22.2, 7.0 Hz, 4H), 2.72 – 2.64 (m, 2H), 2.31 (t, J = 7.2 Hz, 2H), 2.26 – 2.15 (m, 

2H), 1.82 (td, J = 12.9, 4.5 Hz, 2H), 1.71 – 1.51 (m, 6H), 1.42 (p, J = 7.5 Hz, 2H), 0.82 (t, J = 7.4 

Hz, 3H). 13C NMR (101 MHz, DMSO) δ 154.04, 146.13, 144.06, 139.23, 130.23, 127.82, 

127.63, 121.56, 121.27, 120.57, 108.70, 107.35, 95.11, 84.47, 70.25, 58.00, 50.09, 42.18, 40.50, 

36.54, 26.13, 24.19, 21.73, 11.50. 

 

3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-amino-1-pentyl-1,3-dihydro-2H-

benzo[d]imidazol-2-one. 332 (WA268)  To a solution of 3-(4-(3H-spiro[isobenzofuran-1,4'-
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piperidin]-1'-yl)butyl)-5-nitro-1-pentyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (0.225g, 0.4567 

mmol) in methanol (75ml) was added to 10% Palladium on carbon catalyst (0.03g) and stirred 

under a hydrogen pressure (20psi) for 2h. The mixture was filtered through celite and evaporated 

in vacuo to give 0.16g of 3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-amino-1-

pentyl-1,3-dihydro-2H-benzo[d]imidazol-2-one as brown residue in 76% yield. MS (ESI) m/z 

463.92 [M+1]+.  1H NMR (400 MHz, DMSO-d6) δ 7.23 (q, J = 4.5, 3.8 Hz, 4H), 6.79 (dd, J = 

8.2, 5.3 Hz, 1H), 6.42 (d, J = 2.0 Hz, 1H), 6.30 (dt, J = 8.2, 1.9 Hz, 1H), 4.93 (s, 2H), 4.76 (s, 

2H), 3.71 (dt, J = 11.3, 6.9 Hz, 3H), 2.67 (d, J = 11.0 Hz, 2H), 2.30 (t, J = 7.2 Hz, 2H), 2.21 (td, 

J = 11.9, 11.3, 2.5 Hz, 2H), 1.82 (td, J = 12.8, 4.4 Hz, 2H), 1.71 – 1.50 (m, 6H), 1.43 (q, J = 7.4 

Hz, 2H), 1.36 – 1.12 (m, 4H), 0.88 – 0.76 (m, 4H). 13C NMR (101 MHz, DMSO) δ 153.99, 

146.13, 144.05, 139.23, 130.24, 127.83, 127.63, 121.56, 121.25, 120.50, 108.66, 107.36, 95.13, 

84.46, 70.25, 58.00, 50.08, 40.52, 40.46, 36.54, 28.76, 28.02, 26.09, 24.16, 22.20, 14.31. 

 

3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-5-isothiocyanato-1-methyl-1,3-

dihydro-2H-benzo[d]imidazol-2-one. 339 (WA250) A solution of 5-amino-3-(4-(6,7-

dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-1-methyl-1,3-dihydro-2H-benzo[d]imidazol-

2-one (WA249) (0.13g, 0.3166 mmol) in dry DCM is added (0.088g, 0.87mmol) of TEA, then 

cooled down to 0 oC and treated with thiophosegene (0.0365g, 0.3173mmol). The orange 

solution was stirred at r.t. under an argon atmosphere for 2hr. Solvents were removed in vacuo, 

and the residue was purified by column chromatography using DCM/MeOH (95/5) eluent to 

afford 0.1g of 3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-5-isothiocyanato-1-

methyl-1,3-dihydro-2H-benzo [d]imidazol-2-one as brown residue in 70% yield. MS (ESI) m/z 

453.69 [M+1]+.   1H NMR (400 MHz, Chloroform-d) δ 6.99 (dd, J = 8.3, 1.8 Hz, 1H), 6.89 (dd, J 
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= 5.1, 3.2 Hz, 2H), 6.60 (s, 1H), 6.52 (s, 1H), 3.95 – 3.81 (m, 8H), 3.58 (s, 2H), 3.41 (s, 3H), 

2.84 (t, J = 5.9 Hz, 2H), 2.74 (t, J = 5.8 Hz, 2H), 2.59 (t, J = 7.3 Hz, 2H), 1.83 (p, J = 7.2 Hz, 

2H), 1.72 – 1.62 (m, 2H). 13C NMR (101 MHz, MeOD) δ 154.67, 147.80, 147.40, 134.12, 

129.52, 128.96, 125.64, 125.52, 124.53, 119.04, 111.42, 109.63, 108.20, 105.46, 57.12, 55.10, 

55.02, 54.93, 50.57, 40.64, 27.53, 26.24, 25.84, 23.23. 

 

3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-isothiocyanato-1-methyl-1,3-

dihydro-2H-benzo[d]imidazol-2-one. 340 (WA258) A solution of 3-(4-(3H-

spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-amino-1-methyl-1,3-dihydro-2H-

benzo[d]imidazol-2-one (WA257) (0.07g, 0.1721 mmol) in dry DCM is added (0.048g, 

0.4752mmol) of TEA, then cooled down to 0 oC and treated with thiophosegene (0.02g, 

0.1739mmol). The orange solution was stirred at r.t. under an argon atmosphere for 2hr. Solvents 

were removed in vacuo, and the residue was purified by column chromatography using 

DCM/MeOH (95/5) eluent to afford 0.055g of 3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-

yl)butyl)-5-isothiocyanato-1-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one as brown residue 

in 71% yield. MS (ESI) m/z 449 [M+1]+. 1H NMR (400 MHz, Methanol-d4) δ 7.32 – 7.19 (m, 

5H), 7.13 – 6.97 (m, 2H), 4.88 (s, 2H), 3.94 (t, J = 6.1 Hz, 2H), 3.40 (q, J = 8.0, 6.1 Hz, 6H), 

3.20 – 3.08 (m, 3H), 2.26 (td, J = 13.6, 4.5 Hz, 2H), 1.84 (t, J = 8.8 Hz, 6H). 13C NMR (101 

MHz, MeOD) δ 154.73, 143.50, 138.70, 134.15, 129.44, 129.05, 128.01, 127.39, 124.59, 121.07, 

120.41, 119.20, 108.34, 105.47, 82.34, 70.71, 56.41, 49.51, 40.21, 33.89, 26.41, 25.37, 21.58. 

 

3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-5-isothiocyanato-1-propyl-1,3-dihydro-2H-

benzo[d]imidazol-2-one. 341 (WA264) A solution of 5-amino-3-(4-(4-(4-

fluorophenyl)piperazin-1-yl)butyl)-1-propyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (WA263) 
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(0.14g, 0.329 mmol) in dry DCM is added (0.091g, 0.9mmol) of TEA, then cooled down to 0 oC 

and treated with thiophosegene (0.038g, 0.33mmol). The orange solution was stirred at r.t. under 

an argon atmosphere for 2hr. Solvents were removed in vacuo, and the residue was purified by 

column chromatography using DCM/MeOH (95/5) eluent to afford 0.065g of 3-(4-(4-(4-

fluorophenyl)piperazin-1-yl)butyl)-5-isothiocyanato-1-propyl-1,3-dihydro-2H-benzo[d]imidazol-

2-one as brown residue in 42% yield. MS (ESI) m/z 468.75 [M+1]+. 1H NMR (400 MHz, 

Methanol-d4) δ 7.23 – 7.12 (m, 2H), 7.04 (dd, J = 8.3, 2.0 Hz, 1H), 6.94 (td, J = 4.8, 2.9 Hz, 4H), 

3.94 (t, J = 7.0 Hz, 2H), 3.87 (t, J = 7.2 Hz, 2H), 3.16 – 3.06 (m, 4H), 2.61 (q, J = 7.0, 4.8 Hz, 

4H), 2.45 (s, 2H), 1.79 (dt, J = 14.4, 6.9 Hz, 4H), 1.59 (td, J = 8.8, 8.4, 3.9 Hz, 2H), 0.95 (q, J = 

7.8, 7.2 Hz, 3H). 13C NMR (101 MHz, MeOD) δ 158.45, 156.09, 154.64, 147.91, 134.40, 

134.40, 129.64, 128.40, 124.61, 119.02, 117.83, 117.75, 115.01, 114.79, 108.56, 105.57, 57.41, 

52.79, 49.54, 42.40, 40.56, 25.71, 23.09, 21.34, 10.11. 

3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-5-isothiocyanato-1-pentyl-1,3-dihydro-2H-

benzo[d]imidazol-2-one. 344, (WA349) To a solution of 1,1’-thiocarbonyldiimidazole 

(0.0183g, 0.1026mmol) dissolved in 2mL DMF at 50 oC was added dropwise a preprepared 

solution of 5-amino-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-1-pentyl-1,3-dihydro-2H-

benzo[d]imidazol-2-one (0.1g, 0.2142 mmol) and (0.026g, 02574 mmol) TEA in dry DMF 1mL 

for 5 min. Then the mixture was stirred for 25 min at r.t, the mxture was diluted with water and 

extracted with DCM. The organic layer washed with brine, dried over sodium sulfate, and filtred. 

The filtrate concentrated in vacuo, and purified by column chromatography on silica gel with 

ethyl acetate/hexanes to give 0.08g of 3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-5-

isothiocyanato-1-pentyl-1,3-dihydro-2H-benzo[d]imidazol-2-one as brown residue in 73% yield. 

MS (ESI) m/z 496.63 [M+1]+. 1H NMR (400 MHz, Methanol-d4) δ 7.23 – 7.12 (m, 2H), 7.05 (d, 



 271 

J = 8.4 Hz, 1H), 6.95 (d, J = 7.1 Hz, 4H), 3.92 (dt, J = 16.3, 7.2 Hz, 4H), 3.10 (t, J = 5.0 Hz, 4H), 

2.63 (t, J = 4.9 Hz, 4H), 2.47 (t, J = 7.8 Hz, 2H), 1.76 (dp, J = 22.6, 7.4 Hz, 4H), 1.58 (q, J = 7.7 

Hz, 2H), 1.35 (dd, J = 15.5, 8.3 Hz, 4H), 0.89 (d, J = 7.1 Hz, 3H). 13C NMR (101 MHz, MeOD) 

δ 158.49, 156.12, 154.59, 147.86, 134.39, 129.65, 128.34, 124.63, 119.02, 117.86, 117.79, 

115.01, 114.78, 108.53, 105.57, 57.36, 52.76, 49.50, 40.81, 40.52, 28.55, 27.69, 25.67, 23.00, 

21.95, 12.93. 

 

3-(4-(6,7-dimethoxy-3,4-dihydroisoqouinolin-2(1H)-yl)butyl)-5-isothiocyanato-1-propyl-1,3-

dihydro-2H-benzo[d]imidazol-2-one. 346 (WA352) To a solution of 1,1’-

thiocarbonyldiimidazole (0.0682g, 0.3826mmol) dissolved in 2mL DMF at 50 oC was added 

dropwise a pre-prepared solution of 5-amino-3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-

yl)butyl)-1-propyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (0.14g, 0.3192 mmol) and TEA 

(0.038g, 0.383 mmol)  in dry DMF 1mL for 5 min. Then the mixture was stirred for 25 min at r.t, 

the mxture was diluted with water and extracted with DCM. The organic layer washed with 

brine, dried over sodium sulfate, and filtred. The filtrate concentrated in vacuo, and purified by 

column chromatography on silica gel with ethyl acetate/hexanes to give 0.1g of 3-(4-(6,7-

dimethoxy-3,4-dihydroisoqouinolin-2(1H)-yl)butyl)-5-isothiocyanato-1-propyl-1,3-dihydro-2H-

benzo[d]imidazol-2-one as brown residue in 65% yield. MS (ESI) m/z 481.77 [M+1]+. 1H NMR 

(400 MHz, Methanol-d4) δ 7.18 (d, J = 2.0 Hz, 1H), 7.13 (d, J = 8.4 Hz, 1H), 7.01 (dd, J = 8.3, 

1.9 Hz, 1H), 6.65 (s, 1H), 6.58 (s, 1H), 3.92 (t, J = 7.0 Hz, 2H), 3.85 (t, J = 7.2 Hz, 2H), 3.76 (d, 

J = 2.4 Hz, 6H), 3.51 (s, 2H), 2.79 (t, J = 6.0 Hz, 2H), 2.68 (t, J = 6.0 Hz, 2H), 2.56 – 2.48 (m, 

2H), 1.75 (dq, J = 9.8, 7.5 Hz, 4H), 1.63 (td, J = 8.9, 7.5, 4.3 Hz, 2H), 0.93 (t, J = 7.4 Hz, 3H). 

13C NMR (101 MHz, MeOD) δ 154.61, 147.79, 147.41, 134.19, 129.59, 128.39, 125.79, 125.77, 



 272 

124.50, 119.02, 111.48, 109.66, 108.52, 105.59, 57.20, 55.09, 55.03, 50.62, 42.39, 40.58, 27.67, 

25.82, 23.31, 21.36, 10.15. 

 

3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-5-isothiocyanato-1-pentyl-1,3-

dihydro-2H-benzo[d]imidazol-2-one. 345 (WA350) To a solution of 1,1’-

thiocarbonyldiimidazole (0.0682g, 0.3826mmol) dissolved in 2 mL DMF at 50 oC was added 

dropwise a pre-prepared solution of 5-amino-3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-

yl)butyl)-1-propyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (0.1g, 0.2142 mmol) and TEA 

(0.026g, 0.257 mmol)  in dry DMF 1mL for 5 min. Then the mixture was stirred for 25 min at r.t, 

the mxture was diluted with water and extracted with DCM. The organic layer washed with 

brine, dried over sodium sulfate, and filtred. The filtrate concentrated in vacuo, and purified by 

column chromatography on silica gel with ethyl acetate/hexanes to give 0.08g of 3-(4-(6,7-

dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-5-isothiocyanato-1-pentyl-1,3-dihydro-2H-

benzo[d]imidazol-2-one as brown residue in 73% yield. MS (ESI) m/z 409.76 [M+1]+. 1H NMR 

(400 MHz, Methanol-d4) δ 7.17 (d, J = 1.9 Hz, 1H), 7.12 (d, J = 8.4 Hz, 1H), 7.01 (dd, J = 8.3, 

2.0 Hz, 1H), 6.64 (s, 1H), 6.57 (s, 1H), 3.89 (dt, J = 19.7, 7.1 Hz, 4H), 3.76 (d, J = 2.7 Hz, 6H), 

3.49 (s, 2H), 2.78 (t, J = 5.9 Hz, 2H), 2.66 (t, J = 5.9 Hz, 2H), 2.51 (dd, J = 8.6, 6.7 Hz, 2H), 

1.84 – 1.56 (m, 6H), 1.42 – 1.23 (m, 4H), 0.88 (t, J = 6.9 Hz, 3H). 13C NMR (101 MHz, MeOD) 

δ 154.53, 147.77, 147.39, 129.62, 128.34, 125.95, 125.84, 124.49, 119.01, 111.48, 109.67, 

108.46, 105.59, 57.26, 55.09, 55.02, 50.63, 40.81, 40.60, 28.57, 27.77, 27.72, 25.85, 23.36, 

21.97, 13.00. 

 

3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-isothiocyanato-1-propyl-1,3-
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dihydro-2H-benzo[d]imidazol-2-one. 343 (WA306) A solution of 3-(4-(3H-

spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-amino-1-propyl-1,3-dihydro-2H-benzo 

[d]imidazol-2-one (0.16g, 0.368 mmol) in dry DCM is added (0.093g, 0.92mmol) of TEA, then 

cooled down to 0 oC and treated with thiophosegene (0.042g, 0.3652 mmol). The orange solution 

was stirred at r.t. under an argon atmosphere for 2hr. Solvents were removed in vacuo, and the 

residue was purified by column chromatography using DCM/MeOH (90/10) eluent to afford 

0.12g of 7a as brown residue in 68% yield. MS (ESI) m/z 477.64 [M+1]+. 1H NMR (400 MHz, 

Methanol-d4) δ 7.30 – 7.18 (m, 4H), 7.18 – 7.12 (m, 2H), 7.04 (dd, J = 8.4, 2.0 Hz, 1H), 4.86 (s, 

2H), 3.94 (t, J = 6.9 Hz, 2H), 3.86 (t, J = 7.1 Hz, 2H), 2.93 – 2.85 (m, 2H), 2.57 – 2.44 (m, 4H), 

1.97 (td, J = 13.5, 4.5 Hz, 2H), 1.83 – 1.67 (m, 6H), 1.62 (h, J = 7.7, 6.6 Hz, 2H), 0.93 (t, J = 7.4 

Hz, 3H). 13C NMR (101 MHz, MeOD) δ 154.65, 144.87, 138.68, 134.39, 129.63, 128.41, 

127.50, 127.14, 124.62, 120.79, 120.34, 119.06, 108.57, 105.57, 83.94, 70.25, 57.60, 49.64, 

42.41, 40.56, 35.45, 25.81, 23.10, 21.35, 10.13. 

 

5-nitro-1,3-dihydro-2H-benzo[d]imidazol-2-one. 466 (WA313) To a solution of 4-

nitrobenzene-1,2-diamine (10g, 65.3 mmol) in 200 mL of freshly distilled THF was added (14g, 

86.34 mmol) of carbonyldiimidazole, and the reaction mixture refluxed for 2 hr to afford 9 g of 

5-nitro-1,3-dihydro-2H-benzo[d]imidazol-2-one as yellow precipitate in 77% yield. MS (ESI) 

m/z 178.33 [M-1]+. 1H NMR (400 MHz, DMSO-d6) δ 11.24 (s, 2H), 7.87 (d, J = 8.6 Hz, 1H), 

7.66 (s, 1H), 7.04 (d, J = 8.7 Hz, 1H). 13C NMR (101 MHz, DMSO) δ 155.90, 141.64, 136.06, 

130.09, 118.12, 108.42, 104.05. 

 
1-methyl-6-nitro-1,3-dihydro-2H-benzo[d]imidazol-2-one. 467 (WA400) To a solution of 5-

nitro-1,3-dihydro-2H-benzo[d]imidazol-2-one (WA313) (5g, 27.85 mmol) in 100 mL acetone 
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was added portionwise  powdered KOH (1.6g, 28.51 mmol). Then a solution of methyl iodide in 

50 mL acetone was added dropwise over 15 min and left for 24 hr at room temperature. The 

yellow precipitate was purified by column chromatography using MeOH:DCM as an eluent to 

obtain, 1-methyl-6-nitro-1,3-dihydro-2H-benzo[d]imidazol-2-one (467, WA400a) and 1-methyl-

5-nitro-1,3-dihydro-2H-benzo[d]imidazol-2-one (468, WA400b) in 1:3 ratio, (0.6g:1.8g) as 

yellow solid. MS (ESI) m/z 192.59 [M-1]+. WA400a: 1H NMR (400 MHz, DMSO-d6) δ 11.40 (s, 

1H), 8.01 – 7.95 (m, 2H), 7.27 (d, J = 8.4 Hz, 1H), 3.37 (s, 3H). 13C NMR (101 MHz, DMSO) δ 

154.61, 142.00, 135.50, 130.04, 118.24, 107.59, 103.58, 27.73. WA400b: MS (ESI) m/z 192.59 

[M-1]+.  1H NMR (400 MHz, DMSO-d6) δ 11.42 – 11.36 (m, 1H), 7.96 (dd, J = 8.7, 2.3 Hz, 1H), 

7.68 (d, J = 2.2 Hz, 1H), 7.23 (d, J = 8.7 Hz, 1H), 3.32 (s, 3H). 13C NMR (101 MHz, DMSO) δ 

155.10, 141.81, 136.88, 128.58, 118.06, 107.59, 104.10, 27.31, 27.21. 

 
1-(4-bromobutyl)-3-methyl-5-nitro-1,3-dihydro-2H-benzo[d]imidazol-2-one. 317 

(WA401/WA406)   To a solution of 1-methyl-6-nitro-1,3-dihydro-2H-benzo[d]imidazol-2-one 

(WA400B) (0.6g, 3.1062 mmol) in 10 mL DMF were added (1.28g, 9.27 mmol ) of potassium 

carbonate and (2.68g, 12.4 mmol )  of 1,4-dibromobutane, and the reaction mixture heated at 65 

oC for 2 hr, then the mixture extracted with ethyl acetate and water, dried over sodium sulfate 

and the solvent evaporated using vaccu then purified by column chromatography (EtOAc: 

Hexane) to afford 0.775g of 1-(4-bromobutyl)-3-methyl-5-nitro-1,3-dihydro-2H-

benzo[d]imidazol-2-one as yellow oil in 76% yield. MS (ESI) m/z 350.71 [M+23]+. 1H NMR (400 

MHz, DMSO-d6) δ 8.12 (q, J = 2.7 Hz, 1H), 8.04 – 8.00 (m, 1H), 7.33 (dd, J = 8.7, 2.5 Hz, 1H), 3.95 (ddt, J = 7.2, 

4.8, 2.3 Hz, 2H), 3.56 (td, J = 6.2, 2.3 Hz, 2H), 3.41 – 3.37 (m, 3H), 1.86 – 1.74 (m, 4H). 13C NMR (101 MHz, 

DMSO) δ 154.46, 142.14, 135.63, 129.32, 118.34, 107.89, 103.77, 40.31, 35.01, 29.76, 27.87, 27.04. 
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1-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-3-methyl-5-nitro-1,3-dihydro-2H-

benzo[d]imidazol-2-one. 327 (WA402)  To a solution of 1-(4-bromobutyl)-3-methyl-5-nitro-

1,3-dihydro-2H-benzo[d]imidazol-2-one (WA401) (0.744g, 2.26 mmol) in 8 mL DMF were 

added (0.938g, 6.79 mmol ) of potassium carbonate and (0.5g, 2.31 mmol )  of 1-(4-

fluorophenyl)piperazine, and the reaction mixture heated at 65 oC for 2 hr, then the mixture 

extracted with ethyl acetate and water, dried over sodium sulfate and the solvent evaporated 

using vaccu then purified by column chromatography (EtOAc: Hexane) to afford 0.73g of 1-(4-

(4-(4-fluorophenyl)piperazin-1-yl)butyl)-3-methyl-5-nitro-1,3-dihydro-2H-benzo[d]imidazol-2-

one as a yellow oil in 75% yield. MS (ESI) m/z 428.72 [M+1]+. 1H NMR (400 MHz, 

Chloroform-d) δ 8.10 (ddd, J = 8.6, 5.0, 2.2 Hz, 1H), 7.90 (dd, J = 7.0, 2.2 Hz, 1H), 7.04 (dd, J = 

12.7, 8.6 Hz, 1H), 6.98 – 6.91 (m, 2H), 6.90 – 6.83 (m, 2H), 3.98 (td, J = 7.3, 4.2 Hz, 2H), 3.49 

(d, J = 3.6 Hz, 3H), 3.11 (dd, J = 6.3, 3.7 Hz, 4H), 2.59 (q, J = 5.4 Hz, 4H), 2.44 (q, J = 6.6, 6.0 

Hz, 2H), 1.84 (h, J = 7.3 Hz, 2H), 1.61 (p, J = 7.4 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 

158.30, 155.93, 154.57, 147.93, 142.56, 135.09, 129.99, 129.23, 118.31, 117.80, 117.73, 115.55, 

115.33, 106.53, 103.29, 57.74, 53.24, 50.13, 41.41, 27.56, 26.18, 23.91. 

 

5-amino-1-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-3-methyl-1,3-dihydro-2H-

benzo[d]imidazol-2-one. 337 (WA403) To a solution of 1-(4-(4-(4-fluorophenyl)piperazin-1-

yl)butyl)-3-methyl-5-nitro-1,3-dihydro-2H-benzo[d]imidazol-2-one (WA402) (0.6g, 1.4 mmol) 

in methanol (200ml) was added to 10% Palladium on carbon catalyst (0.1g) and stirred under a 

hydrogen pressure (40psi) for 2h. The mixture was filtered through celite and evaporated in 

vacuo and the residue was purified by column chromatography using MeOH/DCM as an eluent 

to give 0.45g of 5-amino-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-
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one as brown solid in 80% yield. MS (ESI) m/z 398.97 [M+1]+.  1H NMR (400 MHz, DMSO-d6) 

δ 7.01 (td, J = 8.8, 1.9 Hz, 2H), 6.89 (ddt, J = 6.7, 4.6, 1.9 Hz, 2H), 6.78 (dd, J = 8.2, 1.7 Hz, 

1H), 6.41 (d, J = 2.1 Hz, 1H), 6.31 (dt, J = 8.2, 1.9 Hz, 1H), 4.76 (s, 2H), 3.76 – 3.67 (m, 2H), 

3.21 (d, J = 1.7 Hz, 3H), 3.00 (dd, J = 6.7, 3.3 Hz, 4H), 2.43 (t, J = 4.9 Hz, 4H), 2.29 (s, 2H), 

1.62 (td, J = 17.2, 15.8, 8.3 Hz, 2H), 1.44 (q, J = 7.2 Hz, 2H). 13C NMR (101 MHz, DMSO) δ 

154.14, 148.40, 144.22, 130.20, 121.28, 117.46, 117.39, 115.75, 115.53, 108.50, 107.36, 95.04, 

57.67, 53.12, 49.41, 40.55, 27.20, 26.18, 23.92. 

 
1-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-5-isothiocyanato-3-methyl-1,3-dihydro-2H-

benzo[d]imidazol-2-one. 347 (WA404) To a solution of thiocarbonyldiimidazole (0.1614 g, 

0.9056 mmol) dissolved in DMF (2 mL) at 50 oC was added dropwise a pre-prepared solution of 

5-amino-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one (WA403) (0.3 

g, 0.7547 mmol) and triethylamine (0.0914 g, 0.905 mmol)  in DMF (3 mL) for 5 min. After the 

mixture was stirred for 30 min at room temperature, the reaction mixture was diluted with water 

and extracted with ethylacetate. The combined organic layers were washed with water, brine, 

dried over sodium sulfate, and filtered. The filtrate was concentrated in vaccu, and the residue 

was purified by column chromatography using Ethylacetate/Hexane (20/80) eluent to afford 0.2 

g of 1-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-5-isothiocyanato-3-methyl-1,3-dihydro-2H-

benzo[d]imidazol-2-one as brown residue in 60% yield. MS (ESI) m/z 440.87 [M+1]+. 1H NMR 

(400 MHz, Methanol-d4) δ 7.01 (tdt, J = 14.2, 9.6, 5.2 Hz, 2H), 6.90 (ddt, J = 16.2, 8.2, 4.9 Hz, 

5H), 3.93 – 3.82 (m, 2H), 3.40 – 3.33 (m, 3H), 3.10 – 2.95 (m, 4H), 2.59 – 2.47 (m, 4H), 2.39 

(dt, J = 16.8, 8.0 Hz, 2H), 1.78 (q, J = 8.2, 7.8 Hz, 2H), 1.58 (dd, J = 16.4, 8.9 Hz, 2H). 13C 

NMR (101 MHz, DMSO) δ 157.50, 155.17, 154.26, 148.41, 128.72, 117.47, 117.40, 117.38, 
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116.77, 115.73, 115.70, 115.51, 115.48, 107.08, 103.82, 57.66, 53.15, 49.43, 28.14, 27.30, 26.34, 

23.90. 

 
3-(4-bromobutyl)-1-methyl-5-nitro-1,3-dihydro-2H-benzo[d]imidazol-2-one. 314 (WA407) 

To a solution of 1-methyl-5-nitro-1,3-dihydro-2H-benzo[d]imidazol-2-one (WA400A) (1.5 g, 

7.7655 mmol) in 15 mL DMF were added (3.2g, 23.18 mmol ) of potassium carbonate and 6.7 g, 

31.018 mmol )  of 1,4-dibromobutane, and the reaction mixture heated at 65 oC for 2 hr, then the 

mixture extracted with ethyl acetate and water, dried over sodium sulfate and the solvent 

evaporated using vaccu then purified by column chromatography (EtOAc: Hexane) to afford 2 g 

of 3-(4-bromobutyl)-1-methyl-5-nitro-1,3-dihydro-2H-benzo[d]imidazol-2-one as yellow oil in 

80% yield. MS (ESI) m/z 328.59 [M+1]+. 1H NMR (400 MHz, Methanol-d4) δ 8.92 (d, J = 2.2 

Hz, 1H), 8.84 – 8.81 (m, 1H), 8.13 (d, J = 8.7 Hz, 1H), 4.74 (dd, J = 11.5, 6.1 Hz, 2H), 4.37 (t, J 

= 6.0 Hz, 2H), 4.21 (d, J = 7.4 Hz, 3H), 2.61 (h, J = 8.4, 5.7 Hz, 4H). 13C NMR (101 MHz, 

MeOD) δ 155.28, 142.96, 136.44, 130.13, 119.14, 108.68, 104.56, 41.13, 35.78, 30.58, 28.66, 

27.84. 

 
3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-5-isothiocyanato-1-pentyl-1,3-

dihydro-2H-benzo[d]imidazol-2-one. 342 (WA269) A solution of 5-amino-3-(4-(6,7-

dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-1-pentyl-1,3-dihydro -2H-benzo[d]imidazol-

2-one (0.107g, 0.2316 mmol) in dry DCM is added (0.064g, 0.6336mmol) of TEA, then cooled 

down to 0 oC and treated with thiophosegene (0.026g, 0.2313 mmol). The orange solution was 

stirred at r.t. under an argon atmosphere for 2hr. Solvents were removed in vacuo, and the 

residue was purified by column chromatography using DCM/MeOH (90/10) eluent to afford 

0.09g of 7a as brown residue in 77% yield. MS (ESI) m/z 409.76 [M+1]+. 1H NMR (400 MHz, 

Methanol-d4) δ 7.17 (d, J = 1.9 Hz, 1H), 7.12 (d, J = 8.4 Hz, 1H), 7.01 (dd, J = 8.3, 2.0 Hz, 1H), 
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6.64 (s, 1H), 6.57 (s, 1H), 3.89 (dt, J = 19.7, 7.1 Hz, 4H), 3.76 (d, J = 2.7 Hz, 6H), 3.49 (s, 2H), 

2.78 (t, J = 5.9 Hz, 2H), 2.66 (t, J = 5.9 Hz, 2H), 2.51 (dd, J = 8.6, 6.7 Hz, 2H), 1.84 – 1.56 (m, 

6H), 1.42 – 1.23 (m, 4H), 0.88 (t, J = 6.9 Hz, 3H). 13C NMR (101 MHz, MeOD) δ 154.53, 

147.77, 147.39, 129.62, 128.34, 125.95, 125.84, 124.49, 119.01, 111.48, 109.67, 108.46, 105.59, 

57.26, 55.09, 55.02, 50.63, 40.81, 40.60, 28.57, 27.77, 27.72, 25.85, 23.36, 21.97, 13.00. 

 

 9.4.3 Symthesis of the benzoimidazolone derivatives (356), (357), (358), (359), and (360). 
 
Synthesis of 1,3-dihydro-2H-benzo[d]imidazol-2-one. 351 (WA277) A solution of benzene-

1,2-diamine (350) (5 g, 46.19 mmol) and 1,1’-carbonyldiimidazole (CDI) (7.5g, 46.25mmol) in 

freshly prepared tetrahydrofuran (50 mL) was stirred at 85°C for 18 hours. The reaction mixture 

was then cooled to 0°C. The resulting precipitate was filtered and dried to give (4 g, 68.5 % 

yield) of 1,3-dihydro-2H-benzo[d]imidazol-2-one as beige crystals. MS (EI) m/z 135 (M++1), 

133 (M+-1). 1H NMR (400 MHz, DMSO-d6) δ 10.59 (s, 2H), 6.91 (s, 4H). 13C NMR (101 MHz, 

DMSO) δ 155.77, 130.10, 120.87, 108.96. 

 
 

tert-butyl 2-oxo-2,3-dihydro-1H-benzo[d]imidazole-1-carboxylate. 352 (WA278) To a 

solution of 1,3-dihydro-2H-benzo[d]imidazol-2-one (1.3g, 9.7 mmol) in anhydrous DMF (15 

mL) was added 2.6 g of NaH (60% wt in mineral oil) portionwise under argon and stirring. After 

45 min. ditert-butyl dicarbonate (2.1g, 9.62 mmol) in 10 mL DMF was added dropwise then 

stirred at room temperature overnight. The reaction mixture was then poured into ice-cold NH4Cl 

saturated solution, and filtered to afford 1.4g (61.6%) of tert-butyl 2-oxo-2,3-dihydro-1H-

benzo[d]imidazole-1-carboxylate  as a white solid. MS (EI) m/z 257 (M++23), 233.55 (M+-1). 1H 

NMR (400 MHz, DMSO-d6) δ 10.57 (s, 1H), 7.62 (d, J = 7.9 Hz, 1H), 7.11 (t, J = 7.6 Hz, 1H), 
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7.06 – 6.94 (m, 2H), 1.57 (s, 9H).13C NMR (101 MHz, DMSO) δ 151.21, 148.85, 129.02, 

127.15, 124.18, 121.63, 114.16, 109.50, 84.02, 28.09. 

tert-butyl 3-(4-bromobutyl)-2-oxo-2,3-dihydro-1H-benzo[d]imidazole-1-carboxylate. 353 

(WA279) To a solution of tert-butyl 2-oxo-2,3-dihydro-1H-benzo[d]imidazole-1-carboxylate  

(1.4g, 6 mmol) in 50 mL water were added (1.6g, 11.6 mmol ) of potassium carbonate and (5g, 

23.14 mmol) of 1,4-dibromobutane, and the reaction mixture heated at 100 oC for 10 h, then the 

mixture extracted with CH2Cl2 and water, dried over NaSO4 and the solvent evaporated using 

vaccu then purified by column chromatography (EtOAc: Hexane) to get 0.87g of tert-butyl 3-(4-

bromobutyl)-2-oxo-2,3-dihydro-1H-benzo[d]imidazole-1-carboxylate as a white solid in 40% 

yield. MS (EI) m/z 367.68 (M+-1). 1H NMR (400 MHz, DMSO-d6) δ 7.70 (dd, J = 8.0, 1.1 Hz, 

1H), 7.27 – 7.18 (m, 2H), 7.11 (td, J = 7.7, 1.5 Hz, 1H), 3.84 (t, J = 6.7 Hz, 2H), 3.56 (t, J = 6.4 

Hz, 2H), 1.87 – 1.71 (m, 4H), 1.58 (s, 9H). 13C NMR (101 MHz, DMSO) δ 150.38, 148.63, 

129.68, 125.99, 124.33, 122.18, 114.21, 108.69, 84.42, 39.96, 35.02, 29.88, 28.11, 26.54. 

 
1-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one. 356 

(WA365) To a solution of tert-butyl 3-(4-bromobutyl)-2-oxo-2,3-dihydro-1H-

benzo[d]imidazole-1-carboxylate (1g, 2.7 mmol) in 10 mL DMF were added (1.12g, 8.11 mmol) 

of potassium carbonate and (0.583g, 3.23 mmol ) of 1-(4-fluorophenyl)piperazine-HCl, and the 

reaction mixture heated at 65 oC for 6 h, then the mixture extracted with ethylacetate and water, 

washed with brine and dried over magnesium sulfate and the solvent evaporated using vaccu 

then purified by column chromatography (EtOAc: Hexane) to get 0.8g of 1-(4-(4-(4-

fluorophenyl)piperazin-1-yl)butyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one as brown oil in 66% 

yield.  MS (EI) m/z 369.87 (M++1). 1H NMR (400 MHz, DMSO-d6) δ 10.84 (s, 1H), 7.12 – 7.08 

(m, 1H), 7.03 – 6.94 (m, 5H), 6.89 (dd, J = 9.2, 4.6 Hz, 2H), 3.79 (t, J = 7.0 Hz, 2H), 3.00 (dd, J 
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= 6.2, 3.7 Hz, 4H), 2.43 (t, J = 4.9 Hz, 4H), 2.31 (t, J = 7.2 Hz, 2H), 1.66 (dd, J = 8.8, 6.0 Hz, 

2H), 1.45 (p, J = 7.4 Hz, 2H). 13C NMR (101 MHz, DMSO) δ 155.19, 154.67, 148.38, 130.64, 

128.73, 121.08, 120.84, 117.46, 117.38, 115.75, 115.53, 109.17, 108.15, 57.53, 53.09, 49.42, 

40.06, 26.09, 23.81. 

 
1-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-3-(4-nitrophenyl)-1,3-dihydro-2H-

benzo[d]imidazol-2-one. 357 (WA367) To a solution of 1-(4-(4-(4-fluorophenyl)piperazin-1-

yl)butyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one (1.4g, 3.8 mmol) in 10 mL DMSO were added 

(1.6g, 11.59 mmol ) of potassium carbonate and (1 g, 7.08 mmol )  of 1-fluoro-4-nitrobenzene, 

and the reaction mixture heated at 100 oC for 3 hr, then the mixture extracted with ethylacetate 

and water, washed with brine and dried over MgSO4 and the solvent evaporated using vaccu then 

purified by column chromatography (EtOAc: Hexane) to get 0.9g of 1-(4-(4-(4-

fluorophenyl)piperazin-1-yl)butyl)-3-(4-nitrophenyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one as 

a yellow solid in 50% yield.  MS (EI) m/z 490.80 (M++1). 1H NMR (400 MHz, DMSO-d6) δ 8.43 

– 8.37 (m, 2H), 7.93 – 7.88 (m, 2H), 7.36 (d, J = 7.8 Hz, 1H), 7.27 (d, J = 7.9 Hz, 1H), 7.20 (t, J 

= 7.6 Hz, 1H), 7.11 (t, J = 7.7 Hz, 1H), 7.01 (t, J = 8.8 Hz, 2H), 6.90 (dd, J = 9.2, 4.6 Hz, 2H), 

3.94 (t, J = 7.1 Hz, 2H), 3.02 (t, J = 4.9 Hz, 4H), 2.45 (t, J = 5.0 Hz, 4H), 2.34 (t, J = 7.1 Hz, 

2H), 1.75 (p, J = 7.2 Hz, 2H), 1.52 (p, J = 7.3 Hz, 2H). 13C NMR (101 MHz, DMSO) δ 157.54, 

155.20, 152.41, 148.39, 145.78, 140.97, 129.92, 127.93, 126.28, 125.29, 123.19, 121.96, 117.46, 

117.39, 115.75, 115.53, 109.32, 109.27, 57.50, 53.12, 49.43, 41.01, 25.93, 23.80. 

 
1-(4-aminophenyl)-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-1,3-dihydro-2H-

benzo[d]imidazol-2-one. 359 (WA371) To a solution of 1-(4-(6,7-dimethoxy-3,4-

dihydroisoquinolin-2(1H)-yl)butyl)-3-(4-nitrophenyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one 
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(0.65g, 1.32 mmol) in methanol (150 mL) was hydrogenated in the Parr apparatus (45 psi) in the 

presence of 10% palladium on charcoal (0.53 g) for 3 h. Filtration of the catalyst, concentrated 

and dried to afford 0.4 g (61%) of 1-(4-aminophenyl)-3-(4-(4-(4-fluorophenyl)piperazin-1-

yl)butyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one as brown oil. MS (EI) m/z 460.83 (M++1).  1H 

NMR (400 MHz, Methanol-d4) δ 7.24 (d, J = 7.7 Hz, 1H), 7.19 – 7.10 (m, 3H), 7.06 (td, J = 7.6, 

1.2 Hz, 1H), 6.94 (pd, J = 8.1, 6.7, 3.7 Hz, 5H), 6.88 – 6.80 (m, 2H), 4.01 (t, J = 6.9 Hz, 2H), 

3.09 (t, J = 5.1 Hz, 2H), 2.66 (s, 4H), 2.61 (t, J = 5.1 Hz, 4H), 2.51 – 2.40 (m, 2H), 1.85 (p, J = 

7.1 Hz, 2H), 1.71 – 1.51 (m, 2H). 13C NMR (101 MHz, MeOD) δ 158.48, 156.12, 154.11, 

148.15, 130.19, 128.92, 127.29, 123.56, 121.70, 121.41, 117.85, 117.77, 115.15, 115.00, 114.78, 

108.46, 108.05, 57.53, 52.76, 49.48, 39.03, 25.87, 23.22. 

 
1-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-3-(4-isothiocyanatophenyl)-1,3-dihydro-2H-

benzo[d]imidazol-2-one. 360 (WA372) A solution of 1-(4-aminophenyl)-3-(4-(4-(4-

fluorophenyl)piperazin-1-yl)butyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one (0.3g, 0.6528 mmol) 

in dry DMF (5 mL) is added (0.080g, 0.79 mmol) of TEA, then cooled down to 0 oC and treated 

with 1,1'-thiocarbonyldiimidazole (0.14g, 0.78 mmol). The mixture was stirred at r.t. under argon 

atmosphere for 2hr. Solvents were removed in vacuo, and the residue was purified by column 

chromatography using DCM/MeOH (90/10) eluent to afford 0.2g of 1-(4-(4-(4-

fluorophenyl)piperazin-1-yl)butyl)-3-(4-isothiocyanatophenyl)-1,3-dihydro-2H-

benzo[d]imidazol-2-one  as brown residue in 61% yield. MS (EI) m/z 502.81 (M++1). 1H NMR 

(400 MHz, Chloroform-d) δ 7.61 – 7.54 (m, 2H), 7.42 – 7.33 (m, 2H), 7.19 – 7.08 (m, 4H), 6.98 

– 6.84 (m, 4H), 4.00 (t, J = 7.0 Hz, 2H), 3.11 (t, J = 4.8 Hz, 4H), 2.60 (t, J = 4.9 Hz, 4H), 2.46 (t, 

J = 7.4 Hz, 2H), 1.88 (p, J = 7.3 Hz, 2H), 1.66 (t, J = 7.8 Hz, 2H). 13C NMR (101 MHz, CDCl3) 

δ 158.29, 155.92, 152.99, 147.97, 147.95, 136.49, 133.65, 130.13, 129.52, 128.73, 126.75, 
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122.38, 121.53, 117.77, 117.70, 115.58, 115.36, 108.68, 108.15, 77.42, 77.10, 76.78, 57.83, 

53.21, 50.13, 41.14, 26.15, 24.10. 

 
1-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-1,3-dihydro-2H-benzo[d] 

imidazol-2-one. 358 (WA294) To a solution of tert-butyl 3-(4-bromobutyl)-2-oxo-2,3-dihydro-

1H-benzo[d]imidazole-1-carboxylate (353) (0.3 g, 0.817 mmol) in 10 mL DMF were added 

(0.22 g, 1.6 mmol ) of potassium carbonate and (0.2 g, 0.88 mmol )  of 3H-spiro[isobenzofuran-

1,4'-piperidine] -HCl, and the reaction mixture heated at 60 oC for 6 hr, then the mixture 

extracted with ethylacetate and water, washed with brine and dried over anhydrous magnesium 

sulfate and the solvent evaporated using vaccu to get the protected compound (355) that was 

treated with trifluoroacetic acid (TFA) in methylene chloride (DCM)  and stirred at room 

temperature for 3hr. The solvents were evaporated and the residue was purified by column 

chromatography (EtOAc: Hexane) to get 0.22 g of 1-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-

1'-yl)butyl)-1,3-dihydro-2H-benzo[d] imidazol-2-one as white-brownish solid in 73% yield. MS 

(EI) m/z 378.66 (M++1). 1H NMR (400 MHz, DMSO-d6) δ 10.85 (s, 1H), 7.28 (d, J = 3.0 Hz, 

3H), 7.21 (d, J = 4.4 Hz, 1H), 7.14 (d, J = 7.0 Hz, 1H), 7.03 – 6.96 (m, 3H), 3.82 (t, J = 6.8 Hz, 

2H), 3.03 (dd, J = 16.9, 9.6 Hz, 2H), 2.69 (d, J = 23.3 Hz, 4H), 1.98 (d, J = 12.9 Hz, 2H), 1.63 

(dq, J = 44.1, 7.9, 6.7 Hz, 7H), 1.16 (t, J = 7.3 Hz, 1H). 13C NMR (101 MHz, DMSO) δ 154.72, 

145.11, 139.17, 130.61, 128.72, 128.19, 127.82, 121.76, 121.19, 121.12, 120.92, 109.18, 108.19, 

83.39, 70.56, 49.67, 46.10, 39.86, 35.02, 25.89, 22.83. 

1-(4-bromobutyl)-5-nitro-3-pentyl-1,3-dihydro-2H-benzo[d]imidazol-2-one. 471 [(WA419) 

(WA418A & WA418B)] To a solution of 5-nitro-1,3-dihydro-2H-benzo[d]imidazol-2-one 

(WA313) (1 g, 5.58 mmol), potassium carbonate (2.30 g, 16.74 mmol) in DMF (15 ml) was 
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added 1-iodopentane (2.2 g, 11.16 mmol). Stirring was continued at room temperature for 5 h. 

Then the mixture extracted with ethyl acetate and water, dried over sodium sulfate and the 

solvent evaporated using vaccu then purified by column chromatography (EtOAc: Hexane) to 

afford a mixture of (0.4 g, 1.6046 mmol) 5-nitro-1-pentyl-1,3-dihydro-2H -benzo[d]imidazol-2-

one [WA418A] and (0.9 g, 3.61 mmol) of 6-nitro-1-pentyl-1,3-dihydro-2H-benzo[d]imidazol-2-

one [WA418B]. The later was treated with potassium carbonate (1.5 g, 10.86 mmol) and 1,4-

dibromobutane (3.119 g, 14.44 mmol) in DMF (15 ml), and the reaction mixture heated at 65 oC 

for 2 hr, then the mixture extracted with ethyl acetate and water, dried over sodium sulfate and 

the solvent evaporated using vaccu. The remaining residue purified by column chromatography 

on a silica gel (EtOAc: Hexane) to afford 0.8 g of 1-(4-bromobutyl)-5-nitro-3-pentyl-1,3-

dihydro-2H-benzo[d]imidazol-2-one as yellow oil in 69% yield. MS (ESI) m/z 384.56 [M+1]+.1H 

NMR (400 MHz, Chloroform-d) δ 8.05 – 7.93 (m, 1H), 7.84 (dd, J = 10.2, 2.2 Hz, 1H), 7.02 (t, J 

= 9.0 Hz, 1H), 3.93 (t, J = 6.4 Hz, 2H), 3.86 (t, J = 7.3 Hz, 2H), 3.39 (q, J = 5.5, 4.8 Hz, 2H), 

1.89 (dq, J = 8.8, 4.7 Hz, 4H), 1.71 (d, J = 7.3 Hz, 2H), 1.29 (dp, J = 8.9, 4.9 Hz, 4H), 0.82 (t, J 

= 6.5 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 154.35, 142.29, 134.62, 129.07, 118.24, 106.80, 

103.24, 41.58, 40.43, 32.76, 29.49, 28.77, 27.93, 26.77, 22.19, 13.85.  WA418A: 1H NMR (400 

MHz, DMSO-d6) δ 11.39 (s, 1H), 7.97 (dd, J = 8.7, 2.3 Hz, 1H), 7.72 (d, J = 2.3 Hz, 1H), 7.31 

(d, J = 8.7 Hz, 1H), 3.82 (t, J = 7.1 Hz, 2H), 1.62 (p, J = 7.2 Hz, 2H), 1.31 – 1.18 (m, 4H), 0.81 

(t, J = 6.9 Hz, 3H). 13C NMR (101 MHz, DMSO) δ 154.91, 141.78, 136.27, 128.65, 118.09, 

107.73, 104.27, 40.74, 28.67, 27.87, 22.17, 14.24. 15N NMR (51 MHz, DMSO) δ 370.74, 130.81, 

119.97. WA418B: 1H NMR (500 MHz, DMSO-d6) δ 11.62 (s, 1H), 8.02 (d, J = 2.2 Hz, 1H), 

7.96 (dd, J = 8.6, 2.2 Hz, 1H), 7.14 (d, J = 8.6 Hz, 1H), 3.87 (t, J = 7.2 Hz, 2H), 1.64 (p, J = 7.3 

Hz, 2H), 1.28 (dq, J = 14.4, 5.4, 4.2 Hz, 4H), 0.84 (t, J = 7.0 Hz, 3H). 13C NMR (101 MHz, 
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DMSO) δ 154.99, 141.94, 134.63, 130.75, 118.32, 108.71, 103.61, 40.58, 28.67, 27.87, 22.18, 

14.25. 15N NMR (51 MHz, DMSO) δ 371.36, 125.37, 105.59. 

1-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-5-nitro-3-pentyl-1,3-dihydro-2H-benzo 

[d]imidazol-2-one. 472 (WA420) To a solution of 3-(4-bromobutyl)-5-nitro-1-pentyl-1,3-

dihydro-2H-benzo[d]imidazol-2-one (WA419) (1 g, 3.02 mmol) in 15 mL DMF were added 

(1.25 g, 9.05 mmol ) of potassium carbonate and (0.653g, 3.62 mmol) of 1-(4-

fluorophenyl)piperazine, and the reaction mixture heated at 65 oC for 3 hr, then the mixture 

extracted with ethyl acetate and water, dried over sodium sulfate and the solvent evaporated 

using vaccu then purified by column chromatography (EtOAc: Hexane) to afford 1 g of 1-(4-(4-

(4-fluorophenyl)piperazin-1-yl)butyl)-5-nitro-3-pentyl-1,3-dihydro-2H-benzo[d]imidazol-2-one 

as yellow solid in 76% yield. MS (ESI) m/z 484.69 [M+1]+. 1H NMR (400 MHz, Chloroform-d) 

δ 8.08 (dd, J = 8.6, 2.2 Hz, 1H), 7.88 (d, J = 2.2 Hz, 1H), 7.05 (d, J = 8.7 Hz, 1H), 6.99 – 6.91 

(m, 2H), 6.91 – 6.80 (m, 2H), 3.95 (dt, J = 20.4, 7.3 Hz, 4H), 3.10 (t, J = 5.0 Hz, 4H), 2.92 (d, J 

= 29.2 Hz, 2H), 2.63 – 2.54 (m, 4H), 2.44 (t, J = 7.3 Hz, 2H), 1.80 (dp, J = 21.4, 7.2 Hz, 4H), 

1.37 (hept, J = 4.7, 4.0 Hz, 4H), 0.95 – 0.86 (m, 3H). 13C NMR (101 MHz, CDCl3) δ 154.39, 

147.89, 142.40, 134.50, 129.40, 118.14, 117.78, 117.71, 115.58, 115.36, 106.63, 103.37, 57.64, 

53.16, 50.10, 41.60, 41.35, 28.84, 27.98, 26.19, 23.91, 22.26, 13.91. 

 

5-amino-1-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-3-pentyl-1,3-dihydro-2H-

benzo[d]imidazol-2-one. 473 (WA421) To a solution of 3-(4-(4-(4-fluorophenyl)piperazin-1-

yl)butyl)-5-nitro-1-pentyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (WA420) (0.694 g, 1.43 

mmol) in methanol (100 ml) was added to 10% Palladium on carbon catalyst (0.150g) and stirred 

under a hydrogen pressure (50 psi) for 1h. The mixture was filtered through celite and 
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evaporated in vaccu then purified by column chromatography (EtOAc: Hexane) to afford 0.200 g 

of 5-amino-1-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-3-pentyl-1,3-dihydro-2H-

benzo[d]imidazol-2-one as brown solid in 31% yield. MS (ESI) m/z 454.73 [M+1]+. 1H NMR 

(400 MHz, Chloroform-d) δ 6.94 (t, J = 8.7 Hz, 2H), 6.85 (dd, J = 9.1, 4.5 Hz, 2H), 6.77 (d, J = 

8.1 Hz, 1H), 6.46 – 6.35 (m, 2H), 3.81 (dt, J = 25.5, 7.2 Hz, 4H), 3.67 (s, 2H), 3.09 (t, J = 4.9 

Hz, 4H), 2.61 – 2.54 (m, 4H), 2.43 (t, J = 7.5 Hz, 2H), 1.76 (ddd, J = 19.0, 13.2, 7.2 Hz, 4H), 

1.58 (ddd, J = 15.1, 8.7, 6.0 Hz, 2H), 1.34 (dt, J = 7.8, 3.7 Hz, 4H), 0.88 (t, J = 6.6 Hz, 3H). 13C 

NMR (101 MHz, CDCl3) δ 158.27, 155.90, 154.35, 147.96, 147.94, 141.30, 130.50, 122.31, 

117.77, 117.70, 115.55, 115.34, 108.15, 107.99, 95.90, 57.83, 53.11, 50.03, 41.04, 40.76, 28.96, 

28.03, 26.26, 23.91, 22.36, 13.99. 

 

1-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-5-isothiocyanato-3-pentyl-1,3-dihydro-2H-

benzo[d]imidazol-2-one. 474 (WA422) To a solution of thiocarbonyldiimidazole (0.047 g, 0.26 

mmol) dissolved in DMF (1 mL) at 50 oC was added dropwise a pre-prepared solution of 5-

amino-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-1-pentyl-1,3-dihydro-2H-

benzo[d]imidazol-2-one (WA421) (0.100 g, 0.2207 mmol) and triethylamine (0.027 g, 0.2673 

mmol)  in DMF (1 mL) for 5 min. After the mixture was stirred for 30 min at room temperature, 

the reaction mixture was diluted with water and extracted with ethylacetate. The combined 

organic layers were washed with water, brine, dried over sodium sulfate, and filtered. The filtrate 

was concentrated in vaccu, and the residue was purified by column chromatography using 

Ethylacetate/Hexane (20/80) as an eluent to afford 0.06 g of 1-(4-(4-(4-fluorophenyl)piperazin-1-

yl)butyl)-5-isothiocyanato-3-pentyl-1,3-dihydro-2H-benzo[d]imidazol-2-one as a white solid in 

55% yield. MS (ESI) m/z 496.69 [M+1]+. 1H NMR (400 MHz, Chloroform-d) δ 7.04 – 6.89 (m, 

4H), 6.89 – 6.81 (m, 3H), 3.91 (q, J = 7.1 Hz, 2H), 3.83 (t, J = 7.4 Hz, 2H), 3.11 (q, J = 5.1 Hz, 
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4H), 2.60 (q, J = 6.1, 5.1 Hz, 4H), 2.45 (s, 2H), 1.84 – 1.68 (m, 4H), 1.63 – 1.54 (m, 2H), 1.34 

(tq, J = 7.0, 4.3, 3.1 Hz, 4H), 0.89 (dt, J = 10.5, 6.8 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 

158.34, 155.97, 154.25, 147.85, 134.17, 129.98, 128.45, 124.36, 118.92, 117.83, 117.75, 115.59, 

115.37, 107.85, 105.26, 57.67, 53.10, 50.01, 41.38, 41.00, 28.88, 27.96, 26.16, 23.80, 22.30, 

13.95. 

 

9.4.4 Synthesis of the isothiocyanate derivative of benzofuran 

1-(4-(benzofuran-3-yl)butyl)-4-(4-isothiocyanatophenyl)piperazine. 349 (WA255) A solution 

of 4-(4-(4-(benzofuran-3-yl)butyl)piperazin-1-yl)aniline (WA254) (0.11 g, 0.3151 mmol) in dry 

DCM 3 mL is added (0.084 g, 0.86 mmol) of TEA, then cooled down to 0 oC and treated with 

thiophosegene (0.036 g, 0.31 mmol) solution  in 2 mL dry DCM. The orange solution was stirred 

at r.t. under an argon atmosphere for 2hr. Solvents were removed in vacuo, and the residue was 

purified by column chromatography using hexanes/ethylacetate (80/20) eluent to afford 0.06 g of 

1-(4-(benzofuran-3-yl)butyl)-4-(4-isothiocyanatophenyl)piperazine as brown residue in 49% 

yield. MS (ESI) m/z 292.83 [M+1]+. 1H NMR (400 MHz, DMSO-d6) δ 11.55 (s, 1H), 10.66 (s, 

1H), 7.82 (s, 1H), 7.63 (d, J = 7.3 Hz, 1H), 7.52 (d, J = 7.9 Hz, 1H), 7.34 – 7.19 (m, 4H), 7.01 (d, 

J = 8.4 Hz, 2H), 3.85 (d, J = 13.0 Hz, 2H), 3.50 (d, J = 11.7 Hz, 2H), 3.28 (t, J = 12.3 Hz, 2H), 

3.11 (dt, J = 25.0, 7.7 Hz, 4H), 2.68 (t, J = 7.3 Hz, 2H), 1.89 – 1.77 (m, 2H), 1.69 (p, J = 7.1 Hz, 

2H). 13C NMR (101 MHz, DMSO) δ 155.11, 149.19, 142.51, 132.10, 128.20, 127.36, 124.70, 

122.86, 121.13, 120.23, 119.88, 116.62, 111.75, 55.44, 50.65, 45.00, 26.14, 23.09, 22.73. 

9.4.5 Synthesis of benzoxazolone derivatives of isothiocyanate 
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5-nitrobenzo[d]oxazol-2(3H)-one. 362 (WA391) A solution of 2-amino-4-nitrophenol () (5 g, 

32.44 mmol) (361) and 1,1’-carbonyldiimidazole (CDI) (7.88 g, 48.66 mmol) in tetrahydrofuran 

(100 mL) was stirred at 65°C for 6 hours. The reaction mixture was then cooled to 0°C. The 

resulting precipitate was filtered and dried to give (0.88g, 4mmol, 51.6% yield) of 5-

nitrobenzo[d]oxazol-2(3H)-one as a grey solid. MS (ESI) m/z 179.56 [M-1]+. 1H NMR (400 

MHz, DMSO-d6) δ 12.09 (s, 1H), 8.00 (d, J = 8.7 Hz, 1H), 7.78 (s, 1H), 7.47 (d, J = 8.4 Hz, 1H). 

13C NMR (101 MHz, DMSO) δ 154.43, 148.23, 144.16, 131.62, 118.96, 110.18, 105.37. 

 
3-(4-bromobutyl)-5-nitrobenzo[d]oxazol-2(3H)-one. 363 (WA392) To a solution of 5-

nitrobenzo[d]oxazol-2(3H)-one (WA391) (4 g, 22.2 mmol) in 25 mL DMF were added (9.19 g, 

66.59 mmol ) of potassium carbonate and (19,18 g, 88,8 mmol) of 1,4-dibromobutane, and the 

reaction mixture heated at 60 oC for 4 hr, then the mixture extracted with ethyl acetate and water, 

dried over sodium sulfate and the solvent evaporated using vaccu then purified by column 

chromatography (EtOAc: Hexane) to get 6.8 g of 3-(4-bromobutyl)-5-nitrobenzo[d]oxazol-

2(3H)-one as a yellow solid in 97 % yield. MS (ESI) m/z 337.65 [M+23]+. 1H NMR (400 MHz, 

DMSO-d6) δ 8.26 (d, J = 2.3 Hz, 1H), 8.07 (dd, J = 8.8, 2.4 Hz, 1H), 7.56 (d, J = 8.6 Hz, 1H), 

3.95 (t, J = 6.7 Hz, 2H), 3.57 (t, J = 6.3 Hz, 2H), 1.87 (ddt, J = 16.5, 11.6, 6.9 Hz, 4H). 13C NMR 

(101 MHz, DMSO) δ 154.06, 146.91, 144.55, 132.44, 119.33, 110.45, 105.26, 41.83, 34.82, 

29.69, 26.39. 

 
3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-5-nitrobenzo[d]oxazol-2(3H)-one. 364 

(WA394) To a solution of 3-(4-bromobutyl)-5-nitrobenzo[d]oxazol-2(3H)-one (WA392) (2 g, 

6.35 mmol) in 25 mL DMF were added (2.6 g, 18.84 mmol ) of potassium carbonate and (1.37g, 

7.6 mmol )  of 1-(4-fluorophenyl)piperazine, and the reaction mixture heated at 65 oC for 1 hr, 
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then the mixture extracted with ethyl acetate and water, dried over sodium sulfate and the solvent 

evaporated using vaccu then purified by column chromatography (EtOAc: Hexane) to get yellow 

oil, which was washed with methanol to afford 2.6 g of 3-(4-(4-(4-fluorophenyl)piperazin-1-

yl)butyl)-5-nitrobenzo[d]oxazol-2(3H)-one as a yellow solid in 98% yield. MS (ESI) m/z 415.94 

[M+1]+. 1H NMR (400 MHz, Chloroform-d) δ 8.12 (dd, J = 8.8, 2.2 Hz, 1H), 7.90 (d, J = 2.3 Hz, 

1H), 7.32 (d, J = 8.7 Hz, 1H), 6.94 (t, J = 8.7 Hz, 2H), 6.86 (dd, J = 9.2, 4.5 Hz, 2H), 3.95 (t, J = 

7.3 Hz, 2H), 3.11 (t, J = 5.0 Hz, 4H), 2.59 (t, J = 5.0 Hz, 4H), 2.46 (t, J = 7.2 Hz, 2H), 1.90 (d, J 

= 7.5 Hz, 2H), 1.64 (t, J = 7.6 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 158.30, 155.93, 153.88, 

147.91, 146.75, 144.49, 131.75, 119.18, 117.81, 117.74, 115.56, 115.34, 109.96, 104.06, 57.47, 

53.23, 50.12, 42.65, 25.48, 23.72. 

 
5-amino-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one. 367 

(WA396) To a solution of 3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-5-nitrobenzo[d]oxazol-

2(3H)-one (1.2 g, 2.89 mmol) in methanol (200ml) was added to 10% Palladium on carbon 

catalyst (0.4 g) and stirred under a hydrogen pressure (40 psi) for 2h. The mixture was filtered 

through celite and evaporated in vacuo to give 0.8 g of 5-amino-3-(4-(4-(4-

fluorophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one as white crystals in 72% yield. MS 

(ESI) m/z 385.98 [M+1]+.  1H NMR (400 MHz, DMSO-d6) δ 7.06 – 6.83 (m, 5H), 6.46 – 6.37 

(m, 1H), 6.33 – 6.23 (m, 1H), 5.03 (d, J = 10.9 Hz, 2H), 3.72 (t, J = 7.0 Hz, 2H), 3.02 (d, J = 5.1 

Hz, 4H), 2.44 (t, J = 5.0 Hz, 4H), 2.31 (q, J = 10.4, 8.8 Hz, 2H), 1.69 (p, J = 7.2 Hz, 2H), 1.46 

(p, J = 7.6 Hz, 2H). 13C NMR (101 MHz, DMSO) δ 154.91, 148.39, 146.32, 133.64, 131.89, 

117.47, 117.40, 115.75, 115.53, 110.27, 107.44, 95.31, 57.49, 53.11, 49.42, 41.81, 25.47, 23.76. 

 
3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-5-isothiocyanatobenzo[d]oxazol-2(3H)-one. 

370 (WA397) To a solution of thiocarbonyldiimidazole (0.22 g, 1.24 mmol) dissolved in DMF 
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(2.5 mL) at 50 oC was added dropwise a pre-prepared solution of 5-amino-3-(4-(4-(4-

fluorophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one (WA396) (0.4 g, 1.04 mmol) and 

triethylamine (0.126 g, 1.24 mmol)  in DMF (5 mL) for 5 min. After the mixture was stirred for 

30 min at room temperature, the reaction mixture was diluted with water and extracted with 

ethylacetate. The combined organic layers were washed with water, brine, dried over sodium 

sulfate, and filtered. The filtrate was concentrated in vacuo, and the residue was purified by 

column chromatography using Ethylacetate/Hexane (20/80) eluent to afford 0.4g of 3-(4-(4-(4-

fluorophenyl)piperazin-1-yl)butyl)-5-isothiocyanatobenzo[d]oxazol-2(3H)-one as a white solid 

in 90% yield. MS (ESI) m/z 427.56 [M+1]+. 1H NMR (400 MHz, Chloroform-d) δ 7.23 – 7.09 

(m, 1H), 6.99 (d, J = 15.2 Hz, 3H), 6.89 (s, 3H), 3.86 (s, 2H), 3.14 (s, 4H), 2.62 (s, 4H), 2.47 (s, 

2H), 1.86 (s, 2H), 1.63 (s, 2H). 13C NMR (101 MHz, CDCl3) δ 158.36, 154.29, 147.90, 141.17, 

131.97, 127.49, 120.08, 117.86, 117.78, 115.59, 115.37, 110.75, 105.88, 57.48, 53.22, 50.14, 

42.34, 25.44, 23.72. 

 

3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-nitrobenzo[d]oxazol-2(3H)-one. 

365 (WA409)  To a solution of 3-(4-bromobutyl)-5-nitrobenzo[d]oxazol-2(3H)-one (WA392) 

(0.5 g, 1.58 mmol) in 10 mL DMF were added (0.65 g, 4.71 mmol ) of potassium carbonate and 

(0.33g, 2.39 mmol)  of 3H-spiro[isobenzofuran-1,4'-piperidine], and the reaction mixture heated 

at 65 oC for 3 hr, then the mixture extracted with ethyl acetate and water, dried over sodium 

sulfate and the solvent evaporated using vaccu then purified by column chromatography (EtOAc: 

Hexane) to afford 0.4 g of 3-(4-(3H-spiro [isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-

nitrobenzo[d]oxazol-2(3H)-one as brown residue in 60% yield. MS (ESI) m/z 424.57 [M+1]+. 1H 

NMR (400 MHz, Chloroform-d) δ 8.13 (dd, J = 8.8, 2.3 Hz, 1H), 7.92 (d, J = 2.4 Hz, 1H), 7.33 
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(d, J = 8.8 Hz, 1H), 7.29 – 7.24 (m, 2H), 7.23 – 7.18 (m, 1H), 7.15 (dd, J = 5.3, 3.3 Hz, 1H), 5.06 

(s, 2H), 3.96 (t, J = 7.3 Hz, 2H), 2.95 – 2.86 (m, 2H), 2.55 (t, J = 7.5 Hz, 2H), 2.48 (t, J = 12.3 

Hz, 2H), 2.11 – 1.99 (m, 2H), 1.91 (p, J = 7.4 Hz, 2H), 1.78 (dd, J = 14.1, 2.5 Hz, 2H), 1.70 (q, J 

= 7.5 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 153.90, 146.76, 145.24, 144.51, 138.79, 131.74, 

127.66, 127.42, 121.03, 120.84, 119.20, 109.97, 104.11, 84.37, 70.79, 57.70, 50.18, 42.63, 36.27, 

25.53, 23.69. 

 
3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-5-nitrobenzo[d]oxazol-2(3H)-

one. 366 (WA410) To a solution of 3-(4-bromobutyl)-5-nitrobenzo[d]oxazol-2(3H)-one 

(WA392) (0.6 g, 1.904 mmol) in 10 mL DMF were added (0.788 g, 5.71 mmol ) of potassium 

carbonate and (0.523 g, 2.28 mmol) of 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline-HCl, and 

the reaction mixture heated at 65 oC for 4 hr, then the mixture extracted with ethyl acetate and 

water, dried over sodium sulfate and the solvent evaporated using vaccu then purified by column 

chromatography (EtOAc: Hexane) to afford 0.7 g of 3-(4-(6,7-dimethoxy-3,4-

dihydroisoquinolin-2(1H)-yl)butyl)-5-nitrobenzo [d]oxazol-2(3H)-one as yellow solid in 86% 

yield. MS (ESI) m/z 428.59 [M+1]+. 1H NMR (400 MHz, DMSO-d6) δ 8.24 (d, J = 2.5 Hz, 1H), 

8.06 (dd, J = 8.8, 2.5 Hz, 1H), 7.56 (d, J = 8.9 Hz, 1H), 6.58 (d, J = 19.6 Hz, 2H), 3.94 (t, J = 7.2 

Hz, 2H), 3.68 (s, 6H), 3.40 (s, 2H), 3.33 (s, 2H), 2.66 (t, J = 5.7 Hz, 2H), 2.44 (t, J = 7.0 Hz, 2H), 

1.76 (p, J = 7.4 Hz, 2H), 1.57 (p, J = 7.1 Hz, 2H). 13C NMR (101 MHz, DMSO) δ 154.07, 

147.54, 147.29, 146.87, 144.45, 132.44, 126.94, 126.28, 119.29, 112.14, 110.44, 110.31, 105.26, 

57.37, 55.88, 55.51, 51.08, 42.54, 28.69, 25.46, 23.85. 

 
5-amino-3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)benzo[d]oxazol-2(3H)-

one. 368 (WA411) To a solution of 3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-

yl)butyl)-5-nitrobenzo[d]oxazol-2(3H)-one (WA410) (0.6 g, 1.4 mmol) in methanol (150 ml) 
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was added to 10% Palladium on carbon catalyst (0.2 g) and stirred under a hydrogen pressure (40 

psi) for 3h. The mixture was filtered through celite and evaporated in vacuo then purified by 

column chromatography (EtOAc: Hexane) to afford 0.4 g of 5-amino-3-(4-(6,7-dimethoxy-3,4-

dihydroisoquinolin-2(1H)-yl)butyl)benzo[d] oxazol-2(3H)-one as yellow solid in 72% yield. MS 

(ESI) m/z 398.63 [M+1]+.  1H NMR (400 MHz, Chloroform-d) δ 6.93 (d, J = 8.3 Hz, 1H), 6.60 

(s, 1H), 6.53 (s, 1H), 6.39 – 6.30 (m, 2H), 3.86 – 3.75 (m, 8H), 3.57 (s, 2H), 3.56 – 3.40 (m, 2H), 

2.83 (t, J = 5.9 Hz, 2H), 2.72 (t, J = 5.9 Hz, 2H), 2.58 (t, J = 7.1 Hz, 2H), 1.85 (p, J = 7.3 Hz, 

2H), 1.68 (q, J = 7.2 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 155.21, 147.60, 147.26, 143.38, 

135.59, 131.88, 126.26, 126.00, 111.35, 110.33, 109.49, 108.34, 95.97, 56.85, 55.92, 55.70, 

50.73, 41.73, 28.52, 25.22, 23.72. 

 
3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-aminobenzo[d]oxazol-2(3H)-

one. 369 (WA412) To a solution of 3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-

nitrobenzo[d]oxazol-2(3H)-one (WA409) (0.35 g, 0.827 mmol) in methanol (100 ml) was added 

to 10% Palladium on carbon catalyst (0.100 g) and stirred under a hydrogen pressure (40 psi) for 

3h. The mixture was filtered through celite and evaporated in vacuo then purified by column 

chromatography (EtOAc: Hexane) to afford 0.19 g of 3-(4-(3H-spiro[isobenzofuran-1,4'-

piperidin]-1'-yl)butyl)-5-aminobenzo[d] oxazol-2(3H)-one as brown residue in 59% yield. MS 

(ESI) m/z 394.61 [M+1]+. 1H NMR (400 MHz, Chloroform-d) δ  7.20 (dq, J = 9.9, 5.4, 4.1 Hz, 

2H), 7.12 (tt, J = 9.1, 4.2 Hz, 2H), 6.86 (dd, J = 11.4, 8.1 Hz, 1H), 6.35 (dq, J = 12.5, 4.3, 3.3 Hz, 

2H), 4.99 (d, J = 9.1 Hz, 2H), 4.06 (s, 2H), 3.73 (q, J = 8.3, 7.7 Hz, 2H), 3.03 – 2.88 (m, 2H), 

2.58 (d, J = 9.6 Hz, 4H), 2.10 (ddd, J = 16.3, 10.8, 4.0 Hz, 2H), 1.73 (dtt, J = 23.2, 15.5, 7.5 Hz, 

6H). 13C NMR (101 MHz, CDCl3) δ 155.24, 144.71, 143.81, 138.63, 135.35, 131.69, 127.79, 
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127.45, 121.06, 120.83, 110.32, 108.48, 95.89, 83.87, 70.83, 57.65, 50.02, 41.72, 35.65, 25.56, 

23.23. 

3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-5-isothiocyanatobenzo 

[d]oxazol-2(3H)-one. 371 (WA433) To a solution of thiocarbonyldiimidazole (0.110 g, 0.617 

mmol) dissolved in DMF (1 mL) at 50 oC was added dropwise a pre-prepared solution of 5-

amino-3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)benzo [d] oxazol-2(3H)-one 

(WA411) (0.200 g, 0.51 mmol) and triethylamine (0.067 g, 0.6633 mmol)  in DMF (2 mL) for 5 

min. After the mixture was stirred for 30 min at room temperature, the reaction mixture was 

diluted with water and extracted with ethylacetate. The combined organic layers were washed 

with water, brine, dried over sodium sulfate, and filtered. The filtrate was concentrated in vaccu, 

and the residue was purified by column chromatography using Ethylacetate/Hexane (20/80) as an 

eluent to afford 0.110 g of 3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-5-

isothiocyanatobenzo [d]oxazol -2(3H)-one as a yellow solid in 49% yield. MS (ESI) m/z 440 

[M+1]+. 1H NMR (400 MHz, Chloroform-d) δ 6.98 (d, J = 8.3 Hz, 1H), 6.81 (d, J = 11.2 Hz, 

2H), 6.41 (d, J = 34.2 Hz, 2H), 3.79 – 3.64 (m, 8H), 3.37 (s, 2H), 2.65 (d, J = 6.2 Hz, 2H), 2.54 

(t, J = 5.8 Hz, 2H), 2.41 (t, J = 7.1 Hz, 2H), 1.72 (p, J = 7.8, 7.2 Hz, 2H), 1.52 (t, J = 7.5 Hz, 

2H). 13C NMR (101 MHz, CDCl3) δ 154.12, 147.34, 147.02, 140.98, 135.74, 131.84, 127.12, 

126.31, 125.98, 119.97, 111.29, 110.48, 109.36, 105.98, 57.14, 55.78, 55.56, 50.92, 42.22, 28.58, 

25.30, 23.89. 

 
3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-isothiocyanatobenzo[d] oxazol-

2(3H)-one. 372 (WA434) To a solution of thiocarbonyldiimidazole (0.040 g, 0.2244 mmol) 

dissolved in DMF (1 mL) at 50 oC was added dropwise a pre-prepared solution of 3-(4-(3H-

spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-aminobenzo[d] oxazol-2(3H)-one (WA412) 
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(0.075 g, 0.2 mmol) and triethylamine (0.025 g, 0.2475 mmol)  in DMF (1 mL) for 5 min. After 

the mixture was stirred for 30 min at room temperature, the reaction mixture was diluted with 

water and extracted with ethylacetate. The combined organic layers were washed with water, 

brine, dried over sodium sulfate, and filtered. The filtrate was concentrated in vaccu, and the 

residue was purified by column chromatography using ethylacetate/hexane (20/80) as an eluent 

to afford 0.050 g of 3-(4-(3H-spiro [isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-

isothiocyanatobenzo[d] oxazol-2(3H)-one as a yellow solid in 57% yield. MS (ESI) m/z 440 

[M+1]+. 1H NMR (400 MHz, Methanol-d4) δ 7.32 – 7.21 (m, 3H), 7.17 (tdd, J = 8.7, 5.7, 2.5 Hz, 

2H), 7.13 – 7.01 (m, 2H), 5.04 (s, 2H), 3.93 (dt, J = 19.8, 6.8 Hz, 2H), 3.07 (d, J = 12.2 Hz, 2H), 

2.73 (dq, J = 19.1, 10.9, 9.4 Hz, 4H), 2.14 – 2.02 (m, 2H), 1.81 – 1.68 (m, 4H), 1.28 (d, J = 5.4 

Hz, 2H). 13C NMR (101 MHz, MeOD) δ 144.29, 138.69, 130.04, 128.14, 127.69, 127.18, 

121.36, 121.08, 120.86, 120.84, 120.30, 109.43, 109.07, 107.89, 83.29, 70.35, 57.16, 49.52, 

39.65, 34.93, 34.77, 25.70, 25.11, 22.55. 

 

9.4.6.  Synthesis of benzothiazolone derivatives of isothiocyanate 
 
 

6-nitrobenzo[d]thiazol-2(3H)-one. (WA389). (3 g, 20 mmol) of benzo[d]thiazol-2(3H)-one 

(373) was added 200 mL (10 ml / 1 mmol) of  HNO3  (68%) and stirred for 30 minutes at 50 oC 

and then was left for 2 hr at room temperature. The HNO3  was evaporated and the concentrate 

was purified over column chromatography using hexanes/ethylacetate (50/50) eluent to afford 2 

g of 6-nitrobenzo[d]thiazol-2(3H)-one as a pale yellow solid in 51% yield. MS (ESI) m/z 195.32 

[M-1]+. 1H NMR (400 MHz, DMSO-d6) δ 12.53 (s, 1H), 8.57 (s, 1H), 8.13 (s, 1H), 7.23 (s, 1H). 

13C NMR (101 MHz, DMSO) δ 170.96, 142.87, 142.44, 124.93, 123.10, 119.50, 111.83. 
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3-(4-bromobutyl)-6-nitrobenzo[d]thiazol-2(3H)-one. 375 (WA408) To a solution of 6-

nitrobenzo[d]thiazol-2(3H)-one (WA389) (3 g, 15.3 mmol) in 35 mL DMF were added (6.3 g, 

45.65 mmol) of potassium carbonate and (13.2 g, 61.1 mmol)  of 1,4-dibromobutane, and the 

reaction mixture heated at 65 oC for 2 hr, then the mixture extracted with ethyl acetate and water, 

dried over sodium sulfate and the solvent evaporated using vaccu then purified by column 

chromatography (EtOAc: Hexane) to afford 3.3 g of 3-(4-bromobutyl)-6-nitrobenzo[d]thiazol-

2(3H)-one as yellow oil in 66% yield. MS (ESI) m/z 353.43 [M+23]+. 1H NMR (400 MHz, 

DMSO-d6) δ 8.68 (d, J = 2.4 Hz, 1H), 8.22 (dd, J = 9.0, 2.5 Hz, 1H), 7.59 (d, J = 9.0 Hz, 1H), 

4.03 (t, J = 6.9 Hz, 2H), 3.54 (t, J = 6.4 Hz, 2H), 1.91 – 1.70 (m, 4H). 13C NMR (101 MHz, 

DMSO) δ 169.91, 143.19, 142.50, 123.16, 123.11, 119.68, 111.79, 42.41, 34.79, 29.78, 26.34. 

 

3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-6-nitrobenzo[d]thiazol-2(3H)-one. 376 

(WA413) To a solution of 3-(4-bromobutyl)-6-nitrobenzo[d]thiazol-2(3H)-one (WA408) (1 g, 

3.02 mmol) in 15 mL DMF were added (1.25 g, 9.05 mmol ) of potassium carbonate and (0.653 

g, 3.62 mmol) of 1-(4-fluorophenyl)piperazine, and the reaction mixture heated at 65 oC for 4 hr, 

then the mixture extracted with ethyl acetate and water, dried over sodium sulfate and the solvent 

evaporated using vaccu then purified by column chromatography (EtOAc: Hexane) to afford 1 g 

of 3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-6-nitrobenzo[d]thiazol-2(3H)-one as yellow 

solid in 76% yield. MS (ESI) m/z 431.58 [M+1]+. 1H NMR (400 MHz, Chloroform-d) δ 8.35 (d, 

J = 2.3 Hz, 1H), 8.23 (dd, J = 8.9, 2.3 Hz, 1H), 7.21 (d, J = 8.9 Hz, 1H), 6.94 (t, J = 8.7 Hz, 2H), 

6.86 (dd, J = 9.2, 4.4 Hz, 2H), 4.05 (t, J = 7.4 Hz, 2H), 3.11 (t, J = 4.9 Hz, 4H), 2.60 (t, J = 4.9 

Hz, 4H), 2.46 (t, J = 7.2 Hz, 2H), 1.82 (q, J = 7.6 Hz, 2H), 1.63 (q, J = 7.3 Hz, 2H). 13C NMR 
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(101 MHz, CDCl3) δ 169.49, 158.32, 155.94, 147.87, 147.85, 143.33, 141.88, 123.61, 122.64, 

118.71, 117.78, 117.70, 115.59, 115.38, 110.15, 57.46, 53.19, 50.11, 43.20, 25.38, 23.73. 

 
3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-6-nitrobenzo[d]thiazol-2(3H)-

one. 377 (WA414) To a solution of 3-(4-bromobutyl)-6-nitrobenzo[d]thiazol-2(3H)-one 

(WA408) (1g, 3.02 mmol) in 15 mL DMF were added (1.25g, 9.05 mmol ) of potassium 

carbonate and (0.824g, 3.59 mmol) of 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline-HCl, and 

the reaction mixture heated at 65 oC for 4 hr, then the mixture extracted with ethyl acetate and 

water, dried over sodium sulfate and the solvent evaporated using vaccu then purified by column 

chromatography (EtOAc: Hexane) to afford 1g of 3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-

2(1H)-yl)butyl)-6-nitrobenzo [d]thiazol-2(3H)-one as yellow solid in 74% yield. MS (ESI) m/z 

444.55 [M+1]+. 1H NMR (400 MHz, Chloroform-d) δ 8.32 (d, J = 2.3 Hz, 1H), 8.09 – 7.99 (m, 

1H), 7.28 (d, J = 8.8 Hz, 1H), 6.62 (s, 1H), 6.52 (s, 1H), 4.06 (t, J = 7.6 Hz, 2H), 3.85 (d, J = 9.7 

Hz, 6H), 3.55 (s, 2H), 2.82 (t, J = 5.9 Hz, 2H), 2.70 (t, J = 5.9 Hz, 2H), 2.58 (t, J = 6.9 Hz, 2H), 

1.85 (p, J = 7.2 Hz, 2H), 1.70 (q, J = 7.2 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 169.49, 

147.66, 147.27, 143.31, 141.91, 126.44, 126.03, 123.50, 122.54, 118.57, 111.38, 110.51, 109.49, 

56.76, 55.94, 55.87, 50.85, 43.06, 28.72, 25.10, 23.77. 

 
3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-6-nitrobenzo[d]thiazol-2(3H)-one. 

378 (WA415) To a solution of 3-(4-bromobutyl)-6-nitrobenzo[d]thiazol-2(3H)-one (WA408) 

(0.5 g, 1.5 mmol) in 10 mL DMF were added (0.621 g, 4.5 mmol ) of potassium carbonate and 

(0.324g, 1.8 mmol) of 3H-spiro[isobenzofuran-1,4'-piperidine], and the reaction mixture heated 

at 65 oC for 6 hr, then the mixture extracted with ethyl acetate and water, dried over sodium 

sulfate and the solvent evaporated using vaccu then purified by column chromatography (EtOAc: 

Hexane) to afford 0.33 g of 3-(4-(3H-spiro [isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-6-
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nitrobenzo[d]thiazol-2(3H)-one as yellow solid in 50% yield. MS (ESI) m/z 440.59 [M+1]+. 1H 

NMR (400 MHz, Chloroform-d) δ 8.35 (t, J = 1.8 Hz, 1H), 8.25 (dt, J = 8.9, 1.8 Hz, 1H), 7.30 – 

7.08 (m, 5H), 5.04 (s, 2H), 4.05 (t, J = 7.4 Hz, 2H), 3.44 (d, J = 1.4 Hz, 4H), 2.90 (d, J = 11.0 

Hz, 2H), 2.55 – 2.43 (m, 4H), 2.07 – 1.98 (m, 2H), 1.86 – 1.79 (m, 2H). 13C NMR (101 MHz, 

CDCl3) δ 169.57, 145.10, 143.35, 141.87, 138.73, 127.70, 127.43, 123.60, 122.66, 121.06, 

120.75, 118.71, 110.24, 84.30, 70.78, 57.77, 50.13, 43.18, 36.18, 25.52, 23.66. 

 

6-amino-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)benzo[d]thiazol-2(3H)-one. 379 

(WA416) To a solution of 3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-6-nitrobenzo[d]thiazol-

2(3H)-one (WA413) (1 g, 2.32 mmol) in methanol (200 ml) was added to 10% Palladium on 

carbon catalyst (0.3 g) and stirred under a hydrogen pressure (50 psi) for 2h. The mixture was 

filtered through celite and evaporated in vaccu then purified by column chromatography (EtOAc: 

Hexane) to afford 0.7 g of 6-amino-3-(4-(4-(4-fluorophenyl)piperazin-1-

yl)butyl)benzo[d]thiazol-2(3H)-one as brown residue in 75% yield. MS (ESI) m/z 401.62 

[M+1]+. 1H NMR (400 MHz, Methanol-d4) δ 7.00 – 6.76 (m, 6H), 6.76 – 6.65 (m, 1H), 4.70 (s, 

2H), 3.87 (q, J = 8.9, 8.0 Hz, 2H), 3.01 (dd, J = 6.5, 3.6 Hz, 4H), 2.48 (q, J = 10.1, 7.6 Hz, 4H), 

2.33 (q, J = 7.8 Hz, 2H), 1.67 (hept, J = 8.6, 7.9 Hz, 2H), 1.53 (ddd, J = 15.1, 8.8, 6.0 Hz, 2H). 

13C NMR (101 MHz, MeOD) δ 169.82, 158.33, 155.97, 147.95, 147.93, 144.30, 128.70, 123.17, 

117.68, 117.60, 115.08, 114.86, 114.01, 111.68, 108.54, 57.39, 52.75, 49.48, 42.06, 25.24, 23.19. 

 
6-amino-3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)benzo[d]thiazol-2(3H)-

one. 380 (WA417) To a solution of 3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-

yl)butyl)-6-nitrobenzo [d]thiazol-2(3H)-one (WA414) (1 g, 2.32 mmol) in methanol (300 ml) 

was added to 10% Palladium on carbon catalyst (0.3 g) and stirred under a hydrogen pressure (50 



 297 

psi) for 2h. The mixture was filtered through celite and evaporated in vaccu then purified by 

column chromatography (EtOAc: Hexane) to afford 0.75 g of 6-amino-3-(4-(6,7-dimethoxy-3,4-

dihydroisoquinolin-2(1H)-yl)butyl)benzo[d] thiazol-2(3H)-one as brown solid in 75% yield. MS 

(ESI) m/z 414 [M+1]+. 1H NMR (400 MHz, Methanol-d4) δ 7.70 (d, J = 2.3 Hz, 1H), 7.58 – 7.42 

(m, 2H), 6.80 (d, J = 8.8 Hz, 2H), 4.69 (d, J = 9.5 Hz, 2H), 4.12 (t, J = 6.8 Hz, 2H), 3.81 (d, J = 

2.3 Hz, 8H), 3.36 (dd, J = 19.0, 10.7 Hz, 4H), 3.26 – 3.00 (m, 2H), 2.03 – 1.85 (m, 4H). 13C 

NMR (101 MHz, MeOD) δ 170.05, 149.35, 148.54, 137.22, 126.05, 124.10, 123.08, 121.44, 

119.32, 117.46, 112.12, 111.47, 109.70, 55.30, 55.20, 52.53, 49.94, 41.81, 24.57, 24.44, 21.14. 

 
3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-6-aminobenzo[d]thiazol-2(3H)-

one. 381 (WA418) To a solution of 3-(4-(3H-spiro [isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-6-

nitrobenzo[d]thiazol-2(3H)-one (WA415) (0.2 g, 0.45 mmol) in methanol (75 ml) was added to 

10% Palladium on carbon catalyst (0.08 g) and stirred under a hydrogen pressure (50 psi) for 2hr. 

The mixture was filtered through celite and evaporated in vaccu then purified by column 

chromatography (EtOAc: Hexane) to afford 0.15 g of 3-(4-(3H-spiro[isobenzofuran-1,4'-

piperidin]-1'-yl)butyl)-6-aminobenzo[d] thiazol-2(3H)-one as brown solid in 81% yield. MS 

(ESI) m/z 410.56 [M+1]+. 1H NMR (400 MHz, Methanol-d4) δ 7.30 – 7.11 (m, 4H), 7.03 (d, J = 

8.6 Hz, 1H), 6.88 (d, J = 2.3 Hz, 1H), 6.77 (dd, J = 8.6, 2.3 Hz, 1H), 5.00 (s, 2H), 4.85 – 4.79 (m, 

2H), 3.95 (t, J = 7.0 Hz, 2H), 2.82 (d, J = 11.6 Hz, 2H), 2.47 – 2.34 (m, 4H), 1.95 (td, J = 13.2, 

4.4 Hz, 2H), 1.80 – 1.64 (m, 4H), 1.64 – 1.52 (m, 2H). 13C NMR (101 MHz, MeOD) δ 170.00, 

145.11, 144.27, 138.64, 128.76, 127.43, 127.11, 123.09, 120.75, 120.36, 114.13, 111.66, 108.59, 

84.28, 70.16, 57.82, 49.62, 42.01, 35.66, 25.40, 23.35. 
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3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-6-isothiocyanatobenzo 

[d]thiazol-2(3H)-one.  382 (WA423) To a solution of thiocarbonyldiimidazole (0.047 g, 0.26 

mmol) dissolved in DMF (1 mL) at 50 oC was added dropwise a pre-prepared solution of 6-

amino-3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)benzo [d]thiazol-2(3H)-one 

(WA417) (0.100 g, 0.2207 mmol) and triethylamine (0.027 g, 0.2673 mmol)  in DMF (1 mL) for 

5 min. After the mixture was stirred for 30 min at room temperature, the reaction mixture was 

diluted with water and extracted with ethylacetate. The combined organic layers were washed 

with water, brine, dried over sodium sulfate, and filtered. The filtrate was concentrated in vaccu, 

and the residue was purified by column chromatography using Ethylacetate/Hexane (20/80) as an 

eluent to afford 0.06 g of 3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-6-

isothiocyanatobenzo[d]thiazol-2(3H)-one as a white solid in 55% yield. MS (ESI) m/z 496.69 

[M+1]+. 1H NMR (400 MHz, Methanol-d4) δ 7.02 (d, J = 8.6 Hz, 1H), 6.86 (d, J = 2.3 Hz, 1H), 

6.73 (dd, J = 8.6, 2.3 Hz, 1H), 6.63 (d, J = 22.0 Hz, 2H), 3.94 (t, J = 7.0 Hz, 2H), 3.77 (d, J = 1.6 

Hz, 6H), 3.50 (s, 2H), 2.79 (t, J = 5.9 Hz, 2H), 2.67 (t, J = 5.9 Hz, 2H), 2.51 (dd, J = 8.6, 6.6 Hz, 

2H), 1.75 (dq, J = 14.1, 6.9 Hz, 2H), 1.64 (tt, J = 9.8, 5.8 Hz, 2H). 13C NMR (101 MHz, MeOD) 

δ 169.98, 147.69, 147.33, 144.29, 128.72, 126.09, 125.94, 123.04, 114.12, 111.69, 111.50, 

109.72, 108.54, 57.22, 55.11, 55.05, 50.55, 41.98, 27.71, 25.31, 23.35. 

 

3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-5-isothiocyanatobenzo[d]thiazol-2(3H) -one. 

383 (WA435) To a solution of thiocarbonyldiimidazole (0.1067 g, 0.5987 mmol) dissolved in 

DMF (2 mL) at 50 oC was added dropwise a pre-prepared solution of 6-amino-3-(4-(4-(4-

fluorophenyl)piperazin-1-yl)butyl)benzo[d]thiazol-2(3H)-one (WA416) (0.200 g, 0.499 mmol) 

and triethylamine (0.025 g, 0.2475 mmol)  in DMF (1 mL) for 5 min. After the mixture was 



 299 

stirred for 30 min at room temperature, the reaction mixture was diluted with water and extracted 

with ethylacetate. The combined organic layers were washed with water, brine, dried over 

sodium sulfate, and filtered. The filtrate was concentrated in vaccu, and the residue was purified 

by column chromatography using ethylacetate/hexane (20/80) as an eluent to afford 0.120 g of 3-

(4-(4-(4-fluorophenyl) piperazin-1-yl)butyl)-5-isothiocyanatobenzo[d]thiazol-2(3H)-one as a 

yellow oil in 54% yield. MS (ESI) m/z 443 [M+1]+. 1H NMR (400 MHz, Chloroform-d) δ 7.32 

(d, J = 2.0 Hz, 1H), 7.17 (dd, J = 8.6, 2.1 Hz, 1H), 7.05 (d, J = 8.6 Hz, 1H), 6.95 (t, J = 8.7 Hz, 

2H), 6.86 (dd, J = 9.1, 4.4 Hz, 2H), 3.97 (t, J = 7.3 Hz, 2H), 3.14 (q, J = 7.0, 4.8 Hz, 4H), 2.63 (t, 

J = 4.9 Hz, 3H), 2.49 (t, J = 7.3 Hz, 2H), 1.79 (p, J = 7.6 Hz, 2H), 1.65 (q, J = 7.5 Hz, 2H). 13C 

NMR (101 MHz, CDCl3) δ 169.29, 158.41, 156.03, 147.77, 147.75, 136.29, 135.81, 126.48, 

124.05, 119.92, 117.91, 117.83, 115.63, 115.41, 111.13, 57.44, 53.09, 49.95, 42.73, 25.30, 23.54. 

 
3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-6-isothiocyanatobenzo[d] thiazol-

2(3H)-one. 384 (WA436) To a solution of thiocarbonyldiimidazole (0.0522 g, 0.2929 mmol) 

dissolved in DMF (2 mL) at 50 oC was added dropwise a pre-prepared solution of 3-(4-(3H-

spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-6-aminobenzo[d] thiazol-2(3H)-one (WA418) 

(0.100 g, 0.244 mmol) and triethylamine (0.032 g, 0.3168 mmol)  in DMF (3 mL) for 5 min. 

After the mixture was stirred for 30 min at room temperature, the reaction mixture was diluted 

with water and extracted with ethylacetate. The combined organic layers were washed with 

water, brine, dried over sodium sulfate, and filtered. The filtrate was concentrated in vaccu, and 

the residue was purified by column chromatography using ethylacetate/hexane (20/80) as an 

eluent to afford 0.065 g of 3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-5-

isothiocyanatobenzo[d]thiazol-2(3H)-one as  yellow oil in 59% yield. MS (ESI) m/z 452 [M+1]+. 

1H NMR (400 MHz, Chloroform-d) δ 7.35 – 7.12 (m, 6H), 7.07 (d, J = 8.6 Hz, 1H), 5.06 (s, 2H), 
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3.98 (dd, J = 8.3, 6.0 Hz, 2H), 3.00 (d, J = 11.0 Hz, 2H), 2.62 (s, 4H), 2.17 (s, 2H), 1.88 – 1.70 

(m, 6H). 13C NMR (101 MHz, CDCl3) δ 169.35, 138.68, 136.33, 135.76, 127.82, 127.51, 126.53, 

124.11, 124.03, 121.07, 120.85, 119.91, 111.17, 83.94, 70.90, 57.61, 50.07, 50.03, 42.62, 35.77, 

25.41. 

 

9. 5 Synthesis of CM699 Derivatives 

9.5.1 Synthesis of benzo[d]thiazol-2(3H)-one and benzo[d]oxazol-2(3H)-one derivatives 
 
Synthesis of 1-(4-fluorophenyl)thiourea. 386 (WA470). 4-Fluoroaniline (11.10 g, 0.1 mmol), 

hydrochloric acid (9 mL), and water (25 mL) were taken and refluxed for 30 min in a round 

bottomed flask. The contents were cooled to room temperature and NH4SCN (7.60 g, 0.1 mmol) 

was added. The reaction mixture was again refluxed for 4 h. The solid obtained was cooled 

down, filtered, washed with water, dried and recrystallized from ethanol to give 10.5 g (61 %) of 

270 as a yellowish white solid. 1H NMR (400 MHz, DMSO-d6) δ 9.62 (s, 1H), 7.39 (dd, J = 8.8, 

5.0 Hz, 3H), 7.20 – 7.08 (m, 3H).13C NMR (101 MHz, DMSO) δ 181.80, 160.73, 158.33, 

135.86, 135.83, 126.07, 125.99, 115.82, 115.59. MS (EI) m/z 171.33 [M+1]+. 

 
Synthesis of 6-fluorobenzo[d]thiazol-2-amine. 387 (WA471). Bromine (10.8 g, 11.04 mmol) in 

CHCl3 (15 mL) was added over 30 min to a stirred solution of compound 270 (6 g, 35.28 mmol) 

in CHCl3 (30 mL) at 5 °C. The mixture was held at room temperature for 30 min and was then 

refluxed for 2 h. Filtration followed by washing the by CHCl3 and then with ether to give a 

yellow bromine containing solid which was suspended in acetone (100 mL) to discharge the 

yellow color. The solid was filtered and washed with acetone and with ether to give HBr salt. 

The salt was dissolved in hot water (150 mL) and the pH of the cold solution was brought to pH 

= 9 with 14 N NH4OH. Filteration followed by washing with H2O gave 5 g (84 %) of 271 as a 
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white solid. 1H NMR (400 MHz, Methanol-d4) δ 7.84 (dd, J = 8.9, 4.9 Hz, 1H), 7.36 – 7.07 (m, 

2H).13C NMR (101 MHz, MeOD) δ 171.49, 163.80, 161.36, 138.74, 138.62, 124.35, 124.25, 

118.88, 118.86, 112.64, 112.39, 101.55, 101.27. MS (EI) m/z 169.32 [M+1]+. 

Synthesis of 2-amino-5-fluorobenzenethiol 389 (WA474A). Compound 471 (5 g, 29.76), KOH 

(5 times by weight of thiazole) and H2O (10 times by weight of thiazole) were transferred into 

R.B flask and refluxed until evolution of ammonia ceased. The reaction mixture was cooled, 

filtered and washed with H2O. The filtrate was neutralized with acetic acid (5N) while vigorous 

stirring. During neutralization, the temperature of the mixture was maintained below 10°C by 

adding ice otherwise a decomposed greenish mass is obtained instead of the desired 2-

aminobenzenethiol. The resulting mixture was extracted 3 times with ethyl acetate. The organic 

extract was evaporated, dried and recrystallized from ethanol to give 4 g (93 %) of 474 as a 

yellow solid. 1H NMR (400 MHz, DMSO-d6) δ 6.97 (td, J = 8.6, 3.1 Hz, 1H), 6.86 (dq, J = 8.6, 

4.1, 3.0 Hz, 1H), 6.75 (dd, J = 8.9, 5.0 Hz, 1H), 5.41 (s, 2H), 3.38 (s, 1H). 13C NMR (101 MHz, 

DMSO) δ 154.78, 152.45, 146.70, 146.68, 120.26, 120.04, 118.63, 118.41, 117.18, 117.10, 

116.23, 116.15. MS (EI) m/z [M+ 2]+; 184 [M+39]+. 

Synthesis of 6-fluorobenzo[d]thiazol-2(3H)-one. 390 (WA474B). To a solution of compound 

273 (4 g, 29.76 mmol) in THF (30 mL) was added 1,1'-carbonyldiimidazole (5.29 g, 32.69 

mmol). The reaction mixture was stirred under reflux for 3 h. The reaction mixture was cooled 

and the solvent was evaporated. The residue was taken up in 2N HCl solution (30 mL) and 

extracted with ethyl acetate (2 x 50 mL). The combined organic layers were washed with brine, 

dried and evaporated. The residue was purified by chromatography on a silica gel column using a 

gradient of ethyl acetate/hexanes (2 : 8) as eluent to give 4.1 g (81 %) of 274 as a light brown 
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solid. 1H NMR (DMSO-d6): 1H NMR (400 MHz, DMSO-d6) δ 11.90 (s, 1H), 7.52 (dd, J = 8.2, 

2.0 Hz, 1H), 7.16 – 6.99 (m, 3H). 13C NMR (101 MHz, DMSO) δ 170.29, 159.53, 157.16, 

133.26, 125.17, 125.06, 114.07, 113.84, 112.85, 112.76, 110.49, 110.22. MS (EI) m/z 170.35 

(M++1). 

 
 

Synthesis of 3-(4-bromobutyl)-6-fluorobenzo[d]thiazol-2(3H)-one. 391a (WA151). K2CO3 

(9.79 g, 71.01 mmol) and 1,4-dibromobutane (25.31 g, 118.34 mmol) were added, while stirring, 

to a solution of 6-fluorobenzo[d]thiazol-2(3H)-one 274 (4 g, 23.67 mmol) in anhydrous DMF 

(30 mL). The reaction mixture was heated at 65 °C for 3 h. After cooling, the reaction mixture 

was poured onto H2O (100 mL) and extracted with ethyl acetate (3 x 50 mL). The combined 

organic layers were washed with saturated aqueous NaCl and dried over magnesium sulfate. The 

solvent was removed in vacuo, and the residue was purified by flash column chromatography 

(SiO2) using hexane/ ethyl acetate (8: 2) as eluent to give 5.23 g (73%) of 3-(4-bromobutyl)-6-

fluorobenzo[d]thiazol-2(3H)-one as a yellow oil. 1H NMR (CDCl3): δ 7.37 – 6.72 (m, 3H), 3.96 

(t, J = 6.8, 2H), 3.45 (t, J = 6.1, 2H), 2.18 – 1.53 (m, 4H). 13C NMR (101 MHz, CDCl3) δ 169.41, 

158.88 (d, J = 242.8), 132.81, 123.70, 113.60 (d, J = 23.8), 111.14 (d, J = 8.4), 110.10 (d, J = 

26.8), 41.91, 32.91, 29.45, 26.05. MS (EI) m/z 304.27 [M]+ ; 306.27 [M+2]+ . 

 

Synthesis of 3-(4-bromopentyl)-6-fluorobenzo[d]thiazol-2(3H)-one 391b (WA152). K2CO3 

(9.97 g, 71.01 mmol) and 1,4-dibromopentane (16.18 mL, 71.01 mmol) were added, while 

stirring, to a solution of 6-fluorobenzo[d]thiazol-2(3H)-one 275 (4.0 g, 23.67 mmol) in 

anhydrous DMF (30 mL). The reaction mixture was heated at 60 °C for 3 h. After cooling, the 

reaction mixture was poured onto H2O (100 mL) and extracted with ethyl acetate (3 x 50 mL). 
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The combined organic layers were washed with saturated aqueous NaCl and dried over 

magnesium sulfate. The solvent was removed in vacuo, and the residue was purified by flash 

column chromatography (SiO2) using hexane/ ethyl acetate (8: 2) as eluent to give 5.23 g (71%) 

of 276 as a brown oil. 1H NMR (CDCl31H NMR (400 MHz, Chloroform-d) δ 7.19 (dd, J = 7.7, 

2.4 Hz, 1H), 7.11 – 6.97 (m, 2H), 4.17 (p, J = 6.5 Hz, 1H), 4.06 – 3.88 (m, 2H), 2.08 – 1.87 (m, 

3H), 1.87 – 1.81 (m, 1H), 1.71 (d, J = 6.7 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 169.40, 

160.09, 157.68, 133.11, 133.09, 123.96, 123.86, 113.71, 113.48, 111.18, 111.10, 110.22, 109.95, 

50.58, 42.12, 37.72, 26.54, 25.92.MS (EI) m/z 318.41 [M]+; 320.36 [M+2]. 

 

3-(4-(3,5-dimethylpiperazin-1-yl)pentyl)-6-fluorobenzo[d]thiazol-2(3H)-one. 395 (WA153) 

To a solution of 3-(4-bromopentyl)-6-fluorobenzo[d]thiazol-2(3H)-one (WA152) (0.181 g, 0.57 

mmol) in 1.5 mL DMF were added (0.235 g, 1.7 mmol) of potassium carbonate and (0.45 g, 3.94 

mmol)  of 2,6-dimethylpiperazine, and the reaction mixture heated at 60 oC for 5 h, then the 

mixture extracted with ethyl acetate and water, washed with brine, dried over magnesium sulfate 

and the solvent evaporated using vaccu then purified by column chromatography (MeOH: DCM) 

to obtain 0.143 g of 3-(4-(3,5-dimethylpiperazin-1-yl)pentyl)-6-fluorobenzo[d]thiazol-2(3H)-one 

as yellow oil in 72% yield. 1H NMR (400 MHz, Methanol-d4) δ 7.40 (dd, J = 8.1, 2.7 Hz, 1H), 

7.31 (dd, J = 8.9, 4.3 Hz, 1H), 7.15 (td, J = 9.0, 2.7 Hz, 1H), 4.01 (dq, J = 11.9, 7.1 Hz, 2H), 2.97 

– 2.78 (m, 2H), 2.71 – 2.57 (m, 3H), 2.07 (t, J = 11.0 Hz, 1H), 1.91 – 1.73 (m, 3H), 1.64 – 1.54 

(m, 1H), 1.39 (ddd, J = 13.5, 8.5, 6.7 Hz, 1H), 1.14 – 0.94 (m, 9H). 13C NMR (101 MHz, 

MeOD) δ 169.99, 160.25, 157.85, 133.45, 133.43, 123.59, 123.49, 113.45, 113.21, 112.08, 

111.99, 109.74, 109.46, 58.07, 56.08, 51.56, 50.90, 42.40, 29.61, 24.07, 17.33, 17.25, 12.59. MS 

(EI) m/z 352.59 [M+1]+. 
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3-(4-(3,5-dimethylpiperazin-1-yl)butyl)-6-fluorobenzo[d]thiazol-2(3H)-one. 394 (WA157) 

To a solution of 3-(4-bromobutyl)-6-fluorobenzo[d]thiazol-2(3H)-one (WA151) (0.2 g, 0.66 

mmol) in 1 mL DMF were added (0.27 g, 1.6 mmol) of potassium carbonate and (0.52 g, 4.6 

mmol)  of 2,6-dimethylpiperazine, and the reaction mixture heated at 60 oC for 4 h, then the 

mixture extracted with ethyl acetate and water, washed with brine, dried over magnesium sulfate 

and the solvent evaporated using vaccu then purified by column chromatography (MeOH: DCM) 

to obtain 0.160 g of 3-(4-(3,5-dimethylpiperazin-1-yl)pentyl)-6-fluorobenzo[d]thiazol-2(3H)-one 

as yellow oil in 72% yield.  1HNMR (400 MHz, Methanol-d4) δ 7.39 (dd, J = 8.1, 2.6 Hz, 1H), 

7.30 (dd, J = 8.9, 4.3 Hz, 1H), 4.03 (t, J = 7.1 Hz, 2H), 3.36 (s, 3H), 3.02 – 2.79 (m, 4H), 2.44 – 

2.34 (m, 2H), 1.80 – 1.54 (m, 6H), 1.11 (d, J = 6.5 Hz, 6H). 13C NMR (101 MHz, MeOD) δ 

169.97, 160.24, 157.84, 133.37, 123.58, 123.48, 113.48, 113.24, 112.02, 111.93, 109.74, 109.46, 

58.56, 57.17, 50.36, 48.44, 48.23, 48.01, 47.80, 47.59, 47.37, 47.16, 46.95, 42.20, 24.91, 22.88, 

17.22. MS (EI) m/z 338.64 [M+1]+. 

 

3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-6-fluorobenzo[d]thiazol-2(3H)-

one. 396 (WA241) To a solution of 3-(4-bromobutyl)-6-fluorobenzo[d]thiazol-2(3H)-one 

(WA151) (0.05 g, 0.1644 mmol) in 1 mL DMF were added (0.068 g, 0.4927 mmol) of potassium 

carbonate and (0.0442 g, 0.1956 mmol)  of 3H-spiro[isobenzofuran-1,4'-piperidine]-HCl, and the 

reaction mixture heated at 60 oC for 4 h, then the mixture extracted with ethyl acetate and water, 

washed with brine, dried over magnesium sulfate and the solvent evaporated using vaccu then 

purified by column chromatography (MeOH: DCM) to obtain 0.052 g of 3-(4-(3,5-

dimethylpiperazin-1-yl)pentyl)-6-fluorobenzo[d]thiazol-2(3H)-one as yellow oil in 77% yield.   
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1H NMR (400 MHz, Methanol-d4) δ 7.39 – 7.12 (m, 7H), 5.04 (s, 2H), 4.05 (t, J = 6.7 Hz, 2H), 

3.15 (d, J = 11.5 Hz, 2H), 2.88 – 2.71 (m, 4H), 2.11 (td, J = 13.6, 4.4 Hz, 2H), 1.79 (q, J = 15.5, 

11.5 Hz, 6H). 13C NMR (101 MHz, MeOD) δ 170.00, 160.25, 157.85, 144.17, 138.70, 133.30, 

127.76, 127.24, 123.50, 120.92, 120.33, 113.33, 112.01, 111.92, 109.80, 109.53, 83.13, 70.46, 

56.98, 49.58, 41.98, 34.67, 24.91, 22.36. MS (EI) m/z 413 [M+1]+. 

 

3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)pentyl)-6-fluorobenzo[d]thiazol-2(3H)-

one. 397, (WA242) To a solution of 3-(4-bromopentyl)-6-fluorobenzo[d]thiazol-2(3H)-one 

(WA152) (0.05 g, 0.1571 mmol) in 1 mL DMF were added (0.065 g, 0.47 mmol) of potassium 

carbonate and (0.0425 g, 0.1882 mmol)  of 3H-spiro[isobenzofuran-1,4'-piperidine]-HCl, and the 

reaction mixture heated at 60 oC for 4 h, then the mixture extracted with ethyl acetate and water, 

washed with brine, dried over magnesium sulfate and the solvent evaporated using vaccu then 

purified by column chromatography (MeOH: DCM) to obtain 0.045 g of 3-(4-(3,5-

dimethylpiperazin-1-yl)pentyl)-6-fluorobenzo[d]thiazol-2(3H)-one as yellow oil in 67% yield. 

1H NMR (400 MHz, Methanol-d4) δ 7.43 – 7.14 (m, 7H), 5.07 (s, 2H), 4.07 (t, J = 6.7 Hz, 2H), 

3.18 (dd, J = 22.9, 9.5 Hz, 5H), 2.19 (qd, J = 13.3, 5.4 Hz, 2H), 1.94 – 1.56 (m, 6H), 1.28 (d, J = 

6.6 Hz, 3H). 13C NMR (101 MHz, MeOD) δ 170.10, 160.29, 157.90, 143.74, 138.66, 133.31, 

127.88, 127.30, 123.64, 123.54, 120.97, 120.30, 113.58, 113.34, 112.02, 111.93, 109.82, 109.55, 

82.98, 70.56, 60.64, 44.14, 42.11, 34.64, 28.48, 24.22, 12.59. MS (EI) m/z 413 [M+1]+. 

 

6-fluoro-3-(4-(2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)benzo[ 

d]thiazol-2(3H)-one. 398 (WA478)  To a solution of 3-(4-bromobutyl)-6-fluorobenzo[d]thiazol-

2(3H)-one (WA151) (0.048g, 0.1578 mmol) in 3 mL DMF were added (0.0655g, 0.47 mmol ) of 

potassium carbonate and (0.0455g, 0.19 mmol )  of 2'-methyl-3H-spiro[isobenzofuran-1,4'-
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piperidine]-HCl, and the reaction mixture heated at 65 oC for 2 h, then the mixture extracted with 

ethyl acetate and water, washed with brine, dried over magnesium sulfate and the solvent 

evaporated using vaccu then purified by column chromatography (EtOAc: Hexane) to obtain 

0.04g of 6-fluoro-3-(4-(2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidin]-1'-

yl)butyl)benzo[d]thiazol-2(3H)-one as yellow oil in 52% yield. MS (ESI) m/z 427.62 [M++1]. 1H 

NMR (400 MHz, Methanol-d4) δ 7.37 (dt, J = 6.6, 3.3 Hz, 1H), 7.32 (dd, J = 9.0, 4.5 Hz, 1H), 

7.26 (ddt, J = 8.7, 6.4, 3.7 Hz, 4H), 7.15 (td, J = 8.9, 2.8 Hz, 1H), 4.85 (d, J = 6.3 Hz, 2H), 4.04 

(q, J = 6.8 Hz, 2H), 3.20 (p, J = 5.9 Hz, 1H), 3.03 (ddd, J = 12.5, 9.3, 3.6 Hz, 1H), 2.82 – 2.69 

(m, 3H), 2.11 – 1.93 (m, 2H), 1.84 – 1.65 (m, 6H), 1.24 (q, J = 6.2 Hz, 3H). 13C NMR (101 

MHz, MeOD) δ 169.99, 163.41, 161.52, 160.25, 157.85, 145.15, 139.06, 133.36, 127.47, 126.96, 

123.61, 120.84, 113.53, 113.30, 112.03, 109.79, 109.52, 84.54, 70.17, 52.89, 52.65, 44.32, 42.15, 

41.25, 35.22, 25.09, 22.69, 13.88. 

 

3-(4-bromobutyl)benzo[d]oxazol-2(3H)-one. 393a (WA479) To a solution of benzo[d]oxazol-

2(3H)-one (0.5g, 3.70 mmol) in 10 mL DMF were added (5.59g, 40.50 mmol ) of potassium 

carbonate and (1.53g, 11.08 mmol) of 1,4-dibromobutane, and the reaction mixture heated at 65 

oC for 2 h, then the mixture extracted with ethyl acetate and water, treated with brine, dried over 

magnesium sulfate and the solvent evaporated using vaccu then purified by column 

chromatography (EtOAc: Hexane) to afford 0.65g of 3-(4-bromobutyl)benzo[d]oxazol-2(3H)-

one as clear oil in 65% yield. MS (ESI) m/z 292.41 [M++23]. 1H NMR (400 MHz, Chloroform-d) 

δ 7.20 (t, J = 8.4 Hz, 2H), 7.12 (t, J = 7.7 Hz, 1H), 7.00 (d, J = 7.6 Hz, 1H), 3.87 (t, J = 6.3 Hz, 

2H), 3.47 (q, J = 5.9, 5.4 Hz, 2H), 2.03 – 1.95 (m, 4H). 13C NMR (101 MHz, CDCl3) δ 154.55, 

142.67, 130.93, 123.88, 122.49, 110.12, 108.22, 41.28, 32.71, 29.40, 26.31. 
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3-(4-bromobutyl)benzo[d]thiazol-2(3H)-one. 392a (WA480) To a solution of benzo[d]thiazol-

2(3H)-one (0.5g, 3.30 mmol) in 5 mL DMF were added (1.4g, 10.14 mmol ) of potassium 

carbonate and (2.85g, 13.2 mmol) of 1,4-dibromobutane, and the reaction mixture heated at 65 

oC for 2 h, then the mixture extracted with ethyl acetate and water, treated with brine, dried over 

magnesium sulfate and the solvent evaporated using vaccu then purified by column 

chromatography (EtOAc: Hexane) to afford 0.7g of 3-(4-bromobutyl)benzo[d]thiazol-2(3H)-one 

as clear oil in 74% yield. MS (ESI) m/z 308.42 [M++23], 310.43 [M+25]+. 1H NMR (400 MHz, 

Chloroform-d) δ 7.44 (d, J = 7.7 Hz, 1H), 7.33 (t, J = 7.8 Hz, 1H), 7.17 (t, J = 7.6 Hz, 1H), 7.07 

(d, J = 8.0 Hz, 1H), 4.00 (q, J = 6.1 Hz, 2H), 3.47 (q, J = 6.0, 5.5 Hz, 2H), 1.95 (qq, J = 7.6, 4.2 

Hz, 4H). 13C NMR (101 MHz, CDCl3) δ 169.93, 136.86, 126.40, 123.14, 122.78, 122.74, 110.51, 

41.68, 32.92, 29.55, 26.15. 

 

 3-(4-(2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)benzo[d]oxazol-2(3H)-

one. 399 (WA483) To a solution of 3-(4-bromobutyl)benzo[d]oxazol-2(3H)-one (WA479) 

(0.05g, 0.185 mmol) in 2 mL DMF were added (0.0766g, 0.55 mmol ) of potassium carbonate 

and (0.045g, 0.2213 mmol )  of 2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidine], and the 

reaction mixture heated at 65 oC for 3 h, then the mixture extracted with ethyl acetate and water, 

washed with brine, dried over magnesium sulfate and the solvent evaporated using vaccu then 

purified by column chromatography (EtOAc: Hexane) to obtain 0.045g of 3-(4-(2'-methyl-3H-

spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)benzo[d]oxazol-2(3H)-one as yellow oil in 62% 

yield. MS (ESI) m/z 393.70 [M++1]. 1H NMR (400 MHz, Methanol-d4) δ 7.32 – 7.07 (m, 8H), 

4.86 (s, 2H), 3.94 (t, J = 6.9 Hz, 2H), 3.06 – 2.96 (m, 2H), 2.78 – 2.67 (m, 2H), 2.09 – 1.63 (m, 



 308 

8H), 1.32 – 1.07 (m, 4H). 13C NMR (101 MHz, MeOD) δ 163.41, 155.00, 145.26, 142.64, 

139.07, 131.01, 127.41, 126.92, 123.83, 122.29, 120.81, 109.41, 108.74, 84.67, 70.12, 52.88, 

52.45, 44.36, 41.48, 35.37, 25.30, 22.77, 13.91. 

 

3-(4-(2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)benzo[d]thiazol-2(3H)-

one. 400 (WA484) To a solution of 3-(4-bromobutyl)benzo[d]thiazol-2(3H)-one (WA480) 

(0.05g, 0.1747 mmol) in 2 mL DMF were added (0.0723g, 0.5239 mmol ) of potassium 

carbonate and (0.0426g, 0.21 mmol )  of 2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidine], and 

the reaction mixture heated at 65 oC for 3 h, then the mixture extracted with ethyl acetate and 

water, washed with brine, dried over magnesium sulfate and the solvent evaporated using vaccu 

then purified by column chromatography (EtOAc: Hexane) to obtain 0.05g of 3-(4-(2'-methyl-

3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)benzo[d]thiazol-2(3H)-one as yellow oil in 

71% yield. MS (ESI) m/z 409.66 [M++1]. 1H NMR (400 MHz, Methanol-d4) δ 7.53 (d, J = 7.8 

Hz, 1H), 7.43 – 7.12 (m, 7H), 4.86 (s, 2H), 4.07 (t, J = 7.0 Hz, 2H), 3.23 (dt, J = 12.6, 6.4 Hz, 

1H), 3.08 – 2.98 (m, 1H), 2.87 – 2.69 (m, 3H), 2.15 – 1.94 (m, 2H), 1.88 – 1.60 (m, 6H), 1.25 (d, 

J = 6.7 Hz, 3H). 13C NMR (101 MHz, MeOD) δ 170.50, 145.11, 139.05, 136.97, 127.48, 126.96, 

126.42, 123.13, 122.42, 120.83, 111.04, 84.50, 70.18, 52.91, 44.31, 41.89, 41.18, 35.16, 25.12, 

22.67, 13.88. 

 

6-fluoro-3-(4-(spiro[isochromane-1,4'-piperidin]-1'-yl)butyl)benzo[d]thiazol-2(3H)-one. 401 

(WA497) To a solution of 3-(4-bromobutyl)-6-fluorobenzo[d]thiazol-2(3H)-one (WA151) 

(0.05g, 0.1970 mmol) in 3 mL DMF were added (0.068g, 0.4927 mmol ) of potassium carbonate 

and (0.04g, 0.19 mmol )  of spiro[isochromane-1,4'-piperidine]-HCl, and the reaction mixture 

heated at 65 oC for 2 h, then the mixture extracted with ethyl acetate and water, washed with 
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brine, dried over magnesium sulfate and the solvent evaporated using vaccu then purified by 

column chromatography (EtOAc: Hexane) to obtain 0.03g of 6-fluoro-3-(4-(spiro[isochromane-

1,4'-piperidin]-1'-yl)butyl)benzo[d] thiazol-2(3H)-one as yellow oil in 43% yield. MS (ESI) m/z 

427.56 [M++1]. 1H NMR (400 MHz, Chloroform-d) δ 7.24 – 7.12 (m, 4H), 7.12 – 7.03 (m, 3H), 

3.99 (t, J = 7.1 Hz, 2H), 3.89 (t, J = 5.5 Hz, 2H), 2.97 – 2.79 (m, 4H), 2.59 (d, J = 7.8 Hz, 4H), 

2.22 (s, 2H), 1.93 (d, J = 13.8 Hz, 2H), 1.83 (t, J = 7.0 Hz, 2H), 1.26 (s, 2H). 13C NMR (101 

MHz, CDCl3) δ 169.43, 160.09, 157.67, 133.62, 133.21, 128.78, 126.40, 126.32, 125.45, 123.99, 

123.89, 113.65, 113.41, 111.28, 111.19, 110.18, 109.91, 72.58, 58.93, 57.61, 49.16, 42.58, 36.04, 

29.69, 29.59, 25.43. 

 

6-fluoro-3-(4-(2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)benzo[d] 

thiazol-2(3H)-one. 398 (WA478)  To a solution of 3-(4-bromobutyl)-6-fluorobenzo[d]thiazol-

2(3H)-one (WA151) (0.048g, 0.1578 mmol) in 3 mL DMF were added (0.0655g, 0.47 mmol ) of 

potassium carbonate and (0.0455g, 0.19 mmol )  of 2'-methyl-3H-spiro[isobenzofuran-1,4'-

piperidine]-HCl, and the reaction mixture heated at 65 oC for 2 h, then the mixture extracted with 

ethyl acetate and water, washed with brine, dried over magnesium sulfate and the solvent 

evaporated using vaccu then purified by column chromatography (EtOAc: Hexane) to obtain 

0.04g of 6-fluoro-3-(4-(2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidin]-1'-

yl)butyl)benzo[d]thiazol-2(3H)-one as yellow oil in 52% yield. MS (ESI) m/z 427.62 [M++1]. 1H 

NMR (400 MHz, Methanol-d4) δ 7.37 (dt, J = 6.6, 3.3 Hz, 1H), 7.32 (dd, J = 9.0, 4.5 Hz, 1H), 

7.26 (ddt, J = 8.7, 6.4, 3.7 Hz, 4H), 7.15 (td, J = 8.9, 2.8 Hz, 1H), 4.85 (d, J = 6.3 Hz, 2H), 4.04 

(q, J = 6.8 Hz, 2H), 3.20 (p, J = 5.9 Hz, 1H), 3.03 (ddd, J = 12.5, 9.3, 3.6 Hz, 1H), 2.82 – 2.69 

(m, 3H), 2.11 – 1.93 (m, 2H), 1.84 – 1.65 (m, 6H), 1.24 (q, J = 6.2 Hz, 3H). 13C NMR (101 
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MHz, MeOD) δ 169.99, 163.41, 161.52, 160.25, 157.85, 145.15, 139.06, 133.36, 127.47, 126.96, 

123.61, 120.84, 113.53, 113.30, 112.03, 109.79, 109.52, 84.54, 70.17, 52.89, 52.65, 44.32, 42.15, 

41.25, 35.22, 25.09, 22.69, 13.88. 

 
3-(4-bromobutyl)benzo[d]oxazol-2(3H)-one. 393a (WA479) To a solution of benzo[d]oxazol-

2(3H)-one (0.5g, 3.70 mmol) in 10 mL DMF were added (5.59g, 40.50 mmol ) of potassium 

carbonate and (1.53g, 11.08 mmol) of 1,4-dibromobutane, and the reaction mixture heated at 65 

oC for 2 h, then the mixture extracted with ethyl acetate and water, treated with brine, dried over 

sodium sulfate and the solvent evaporated using vaccu then purified by column chromatography 

(EtOAc: Hexane) to afford 0.65g of 3-(4-bromobutyl)benzo[d]oxazol-2(3H)-one as clear oil in 

65% yield. MS (ESI) m/z 292.41 [M++23]. 1H NMR (400 MHz, Chloroform-d) δ 7.20 (t, J = 8.4 

Hz, 2H), 7.12 (t, J = 7.7 Hz, 1H), 7.00 (d, J = 7.6 Hz, 1H), 3.87 (t, J = 6.3 Hz, 2H), 3.47 (q, J = 

5.9, 5.4 Hz, 2H), 2.03 – 1.95 (m, 4H). 13C NMR (101 MHz, CDCl3) δ 154.55, 142.67, 130.93, 

123.88, 122.49, 110.12, 108.22, 41.28, 32.71, 29.40, 26.31. 

 
3-(4-bromobutyl)benzo[d]thiazol-2(3H)-one. (392a, WA480) To a solution of benzo[d]thiazol-

2(3H)-one (0.5 g, 3.30 mmol) in 5 mL DMF were added (1.4 g, 10.14 mmol ) of potassium 

carbonate and (2.85 g, 13.2 mmol) of 1,4-dibromobutane, and the reaction mixture heated at 65 

oC for 2 h, then the mixture extracted with ethyl acetate and water, treated with brine, dried over 

sodium sulfate and the solvent evaporated using vaccu then purified by column chromatography 

(EtOAc: Hexane) to afford 0.7 g of 3-(4-bromobutyl)benzo[d]thiazol-2(3H)-one as clear oil in 

74% yield. MS (ESI) m/z 308.42 [M++23], 310.43 [M+25]+. 1H NMR (400 MHz, Chloroform-d) 

δ 7.44 (d, J = 7.7 Hz, 1H), 7.33 (t, J = 7.8 Hz, 1H), 7.17 (t, J = 7.6 Hz, 1H), 7.07 (d, J = 8.0 Hz, 

1H), 4.00 (q, J = 6.1 Hz, 2H), 3.47 (q, J = 6.0, 5.5 Hz, 2H), 1.95 (qq, J = 7.6, 4.2 Hz, 4H). 13C 
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NMR (101 MHz, CDCl3) δ 169.93, 136.86, 126.40, 123.14, 122.78, 122.74, 110.51, 41.68, 

32.92, 29.55, 26.15. 

 

3-(4-(2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)benzo[d]oxazol-2(3H)-

one. 399 (WA483) To a solution of 3-(4-bromobutyl)benzo[d]oxazol-2(3H)-one (WA479) 

(0.05g, 0.185 mmol) in 2 mL DMF were added (0.0766g, 0.55 mmol ) of potassium carbonate 

and (0.045g, 0.2213 mmol )  of 2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidine], and the 

reaction mixture heated at 65 oC for 3 h, then the mixture extracted with ethyl acetate and water, 

washed with brine, dried over sodium sulfate and the solvent evaporated using vaccu then 

purified by column chromatography (EtOAc: Hexane) to obtain 0.045g of 3-(4-(2'-methyl-3H-

spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)benzo[d]oxazol-2(3H)-one as yellow oil in 62% 

yield. MS (ESI) m/z 393.70 [M++1]. 1H NMR (400 MHz, Methanol-d4) δ 7.32 – 7.07 (m, 8H), 

4.86 (s, 2H), 3.94 (t, J = 6.9 Hz, 2H), 3.06 – 2.96 (m, 2H), 2.78 – 2.67 (m, 2H), 2.09 – 1.63 (m, 

8H), 1.32 – 1.07 (m, 4H). 13C NMR (101 MHz, MeOD) δ 163.41, 155.00, 145.26, 142.64, 

139.07, 131.01, 127.41, 126.92, 123.83, 122.29, 120.81, 109.41, 108.74, 84.67, 70.12, 52.88, 

52.45, 44.36, 41.48, 35.37, 25.30, 22.77, 13.91. 

 
3-(4-(2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)benzo[d]thiazol-2(3H)-

one. 400 (WA484) To a solution of 3-(4-bromobutyl)benzo[d]thiazol-2(3H)-one (WA480) 

(0.05g, 0.1747 mmol) in 2 mL DMF were added (0.0723g, 0.5239 mmol ) of potassium 

carbonate and (0.0426g, 0.21 mmol )  of 2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidine], and 

the reaction mixture heated at 65 oC for 3 h, then the mixture extracted with ethyl acetate and 

water, washed with brine, dried over sodium sulfate and the solvent evaporated using vaccu then 

purified by column chromatography (EtOAc: Hexane) to obtain 0.05g of 3-(4-(2'-methyl-3H-
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spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)benzo[d]thiazol-2(3H)-one as yellow oil in 71% 

yield. MS (ESI) m/z 409.66 [M++1]. 1H NMR (400 MHz, Methanol-d4) δ 7.53 (d, J = 7.8 Hz, 

1H), 7.43 – 7.12 (m, 7H), 4.86 (s, 2H), 4.07 (t, J = 7.0 Hz, 2H), 3.23 (dt, J = 12.6, 6.4 Hz, 1H), 

3.08 – 2.98 (m, 1H), 2.87 – 2.69 (m, 3H), 2.15 – 1.94 (m, 2H), 1.88 – 1.60 (m, 6H), 1.25 (d, J = 

6.7 Hz, 3H). 13C NMR (101 MHz, MeOD) δ 170.50, 145.11, 139.05, 136.97, 127.48, 126.96, 

126.42, 123.13, 122.42, 120.83, 111.04, 84.50, 70.18, 52.91, 44.31, 41.89, 41.18, 35.16, 25.12, 

22.67, 13.88. 

 
6-fluoro-3-(4-(spiro[isochromane-1,4'-piperidin]-1'-yl)butyl)benzo[d]thiazol-2(3H)-one.  

401 (WA497) To a solution of 3-(4-bromobutyl)-6-fluorobenzo[d]thiazol-2(3H)-one (WA151) 

(0.05g, 0.1970 mmol) in 3 mL DMF were added (0.068g, 0.4927 mmol ) of potassium carbonate 

and (0.04g, 0.19 mmol )  of spiro[isochromane-1,4'-piperidine]-HCl, and the reaction mixture 

heated at 65 oC for 2 h, then the mixture extracted with ethyl acetate and water, washed with 

brine, dried over sodium sulfate and the solvent evaporated using vaccu then purified by column 

chromatography (EtOAc: Hexane) to obtain 0.03g of 6-fluoro-3-(4-(spiro[isochromane-1,4'-

piperidin]-1'-yl)butyl)benzo[d] thiazol-2(3H)-one as yellow oil in 43% yield. MS (ESI) m/z 

427.56 [M++1]. 1H NMR (400 MHz, Chloroform-d) δ 7.24 – 7.12 (m, 4H), 7.12 – 7.03 (m, 3H), 

3.99 (t, J = 7.1 Hz, 2H), 3.89 (t, J = 5.5 Hz, 2H), 2.97 – 2.79 (m, 4H), 2.59 (d, J = 7.8 Hz, 4H), 

2.22 (s, 2H), 1.93 (d, J = 13.8 Hz, 2H), 1.83 (t, J = 7.0 Hz, 2H), 1.26 (s, 2H). 13C NMR (101 

MHz, CDCl3) δ 169.43, 160.09, 157.67, 133.62, 133.21, 128.78, 126.40, 126.32, 125.45, 123.99, 

123.89, 113.65, 113.41, 111.28, 111.19, 110.18, 109.91, 72.58, 58.93, 57.61, 49.16, 42.58, 36.04, 

29.69, 29.59, 25.43. 

 

9.5.2 Synthesis of the de-methylated CM699 
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1-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-1,3-dihydro-2H-benzo[d] 

imidazol-2-one. 358 (WA294) To a solution of tert-butyl 3-(4-bromobutyl)-2-oxo-2,3-dihydro-

1H-benzo[d]imidazole-1-carboxylate (353) (0.5 g, 1.35 mmol) in 10 mL DMF were added (0.56 

g, 4 mmol ) of potassium carbonate and (0.37 g, 1.63 mmol )  of 3H-spiro[isobenzofuran-1,4'-

piperidine] -HCl, and the reaction mixture heated at 160 oC in microwave reactor for 30 min., 

then the mixture extracted with ethyl acetate and water, washed with brine and dried over 

anhydrous magnesium sulfate and the solvent evaporated using vaccu. Then the residue was 

purified by column chromatography (EtOAc: Hexane) to get 0.35 g of 1-(4-(3H-

spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-1,3-dihydro-2Hbenzo[d]imidazol-2-one as 

white-yellowish solid in 68 % yield. MS (EI) m/z 378.66 (M++1). 1H NMR (400 MHz, DMSO-

d6) δ 10.85 (s, 1H), 7.28 (d, J = 3.0 Hz, 3H), 7.21 (d, J = 4.4 Hz, 1H), 7.14 (d, J = 7.0 Hz, 1H), 

7.03 – 6.96 (m, 3H), 3.82 (t, J = 6.8 Hz, 2H), 3.03 (dd, J = 16.9, 9.6 Hz, 2H), 2.69 (d, J = 23.3 

Hz, 4H), 1.98 (d, J = 12.9 Hz, 2H), 1.63 (dq, J = 44.1, 7.9, 6.7 Hz, 7H), 1.16 (t, J = 7.3 Hz, 1H). 

13C NMR (101 MHz, DMSO) δ 154.72, 145.11, 139.17, 130.61, 128.72, 128.19, 127.82, 121.76, 

121.19, 121.12, 120.92, 109.18, 108.19, 83.39, 70.56, 49.67, 46.10, 39.86, 35.02, 25.89, 22.83. 

9.5.3 Synthesis of 1-methyl-benzo[d]imidazol-2-one derivatives of CM699 
 
Synthesis of 5-fluoro-N-methyl-2-nitroaniline. 407 (WA374) 5g (31.42 mmol) of 2,4-difluoro-

1-nitrobenzene, and 7.68g (40% in water) of methylamine stirred at 0 oC for 30 min and then 

warmed up to room temperature and left for 1h. The reaction mixture was then filtered and dried 

to give 5g (93.5%) of 5-fluoro-N-methyl-2-nitroaniline as a yellow solid. MS (ESI) m/z 171.33 

[M++1]. 1H NMR (400 MHz, DMSO-d6) δ 8.29 (s, 1H), 8.17 – 8.08 (m, 1H), 6.73 (dt, J = 12.3, 

2.1 Hz, 1H), 6.49 (td, J = 8.5, 7.5, 2.1 Hz, 1H), 2.92 (d, J = 4.9 Hz, 3H). 13C NMR (101 MHz, 
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DMSO) δ 168.62, 166.11, 148.55, 148.41, 130.14, 130.01, 128.59, 103.82, 103.57, 100.08, 

99.80, 30.30. 

 
5-fluoro-N1-methylbenzene-1,2-diamine. 410 (WA375) To a solution of 5-fluoro-N-methyl-2-

nitroaniline (5g, 29.38 mmol) in methanol (200 ml) was added to 10% Palladium on carbon 

catalyst (1g) and stirred under a hydrogen atmosphere (40 psi) for 16 h. The mixture was filtered 

through celite and evaporated in vacuo to give 2.5g of 5-fluoro-N1-methylbenzene-1,2-diamine 

as reddish-brown residue in 60% yield. MS (ESI) m/z 139.29 [M+-1]. 1H NMR (400 MHz, 

DMSO-d6) δ 6.51 – 6.45 (m, 1H), 6.20 – 6.13 (m, 2H), 4.94 – 4.85 (m, 1H), 4.27 (s, 2H), 2.69 (d, 

J = 4.9 Hz, 3H). 13C NMR (101 MHz, DMSO) δ 158.01, 155.73, 139.44, 139.34, 131.36, 131.34, 

114.03, 113.93, 101.28, 101.07, 96.79, 96.52, 30.44. 

 

6-fluoro-1-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one. 413 (WA376) A solution of 5-

fluoro-N1-methylbenzene-1,2-diamine (2.5 g, 17.85 mmol) and 1,1’-carbonyldiimidazole (CDI) 

(3.5g, 21.58 mmol) in tetrahydrofuran (100 mL) was stirred at 80°C for 16 h. The reaction 

mixture was then cooled to 0°C. The resulting precipitate was filtered and dried to give (2 g, 67 

% yield) of 6-fluoro-1-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one as beige-brown solid. 

MS (ESI) m/z 189.58 [M++1], 165.52 [M+-1]. 1H NMR (400 MHz, DMSO-d6) δ 10.87 (s, 1H), 

7.22 – 6.65 (m, 3H), 3.29 (s, 3H). 13C NMR (101 MHz, DMSO) δ 159.30, 156.97, 155.33, 

132.26, 132.13, 124.91, 109.33, 109.24, 107.26, 107.02, 96.57, 96.28, 27.07. 

 

1-(4-bromobutyl)-5-fluoro-3-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one. 416 (WA377) 

To a solution of 6-fluoro-1-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (0.93g, 5.6 mmol) in 

15 mL DMF were added (2.32g, 16.81 mmol ) of potassium carbonate and (4.84g, 22.4 mmol) of 
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1,4-dibromobutane, and the reaction mixture heated at 65 oC for 2.5 h, then the mixture extracted 

with CH2Cl2 and water, dried over magnesium sulfate and the solvent evaporated using vaccu 

then purified by column chromatography (EtOAc: Hexane) to get 1.4g of 1-(4-bromobutyl)-5-

fluoro-3-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one as a white solid in 83% yield. MS 

(ESI) m/z 323.61 [M++23]. 1H NMR (400 MHz, DMSO-d6) δ 7.16 (dd, J = 8.6, 4.5 Hz, 1H), 7.10 

(dd, J = 9.1, 2.5 Hz, 1H), 6.85 (ddd, J = 10.2, 8.6, 2.5 Hz, 1H), 3.83 (t, J = 6.4 Hz, 2H), 3.54 (t, J 

= 6.2 Hz, 2H), 3.30 (s, 3H), 1.76 (dddd, J = 15.4, 10.7, 8.0, 4.6 Hz, 4H). 13C NMR (101 MHz, 

DMSO) δ 159.54, 157.22, 154.40, 130.98, 130.86, 125.63, 108.59, 108.49, 107.37, 107.13, 

96.81, 96.52, 40.00, 34.92, 29.83, 27.58, 27.00. 

 

1-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-fluoro-3-methyl-1,3-dihydro-

2H-benzo[d]imidazol-2-one.  423 (WA378) To a solution of 1-(4-bromobutyl)-5-fluoro-3-

methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (0.5g, 1.66 mmol) in 5 mL DMF were added 

(0.687g, 4.97 mmol ) of potassium carbonate and (0.38g, 1.68 mmol )  of 3H-

spiro[isobenzofuran-1,4'-piperidine] HCl,, and the reaction mixture heated at 65 oC for 2.5 h, 

then the mixture extracted with CH2Cl2 and water, dried over magnesium sulfate and the solvent 

evaporated using vaccu then purified by column chromatography (EtOAc: Hexane) to get 0.539g 

of 1-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-fluoro-3-methyl-1,3-dihydro-2H-

benzo[d]imidazol-2-one as yellow oil in 79% yield. MS (ESI) m/z 410.80 [M++1]. 1H NMR (500 

MHz, Methanol-d4) δ 7.25 (dd, J = 5.6, 3.1 Hz, 2H), 7.21 – 7.17 (m, 1H), 7.15 (s, 1H), 6.90 (dd, 

J = 8.5, 4.3 Hz, 1H), 6.79 (ddd, J = 9.7, 8.5, 2.5 Hz, 1H), 6.72 (dd, J = 8.4, 2.5 Hz, 1H), 3.90 (t, J 

= 7.1 Hz, 2H), 2.87 (d, J = 11.5 Hz, 2H), 2.54 – 2.37 (m, 5H), 2.00 (td, J = 13.1, 4.4 Hz, 3H), 

1.92 – 1.70 (m, 6H), 1.71 – 1.56 (m, 3H). 13C NMR (126 MHz, CDCl3) δ 159.57, 157.68, 
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154.68, 145.43, 138.82, 130.72, 130.62, 127.60, 127.36, 125.38, 121.03, 120.80, 107.73, 107.65, 

107.42, 107.23, 96.01, 95.78, 84.51, 70.74, 58.13, 50.12, 41.02, 36.38, 27.27, 26.37, 24.04. 

 

5-fluoro-1-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-3-methyl-1,3-dihydro-2H-

benzo[d]imidazol-2-one. 424 (WA379) To a solution of 1-(4-bromobutyl)-5-fluoro-3-methyl-

1,3-dihydro-2H-benzo[d]imidazol-2-one (0.3g, 0.99 mmol) in 10 mL DMF were added (0.412g, 

2.98 mmol ) of potassium carbonate and (0.233g, 1.29 mmol )  of 1-(4-fluorophenyl)piperazine, 

and the reaction mixture heated at 65 oC for 3 h, then the mixture extracted with CH2Cl2 and 

water, dried over magnesium sulfate and the solvent evaporated using vaccu then purified by 

column chromatography (EtOAc: Hexane) to get 0.35g of 5-fluoro-1-(4-(4-(4-

fluorophenyl)piperazin-1-yl)butyl)-3-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one as yellow 

oil in 88% yield. MS (ESI) m/z 401.67 [M++1]. 1H NMR (400 MHz, Chloroform-d) δ 6.99 – 6.92 

(m, 2H), 6.92 – 6.84 (m, 3H), 6.82 – 6.71 (m, 2H), 3.91 (t, J = 7.1 Hz, 2H), 3.39 (s, 3H), 3.15 – 

3.06 (m, 4H), 2.63 – 2.54 (m, 4H), 2.48 – 2.40 (m, 2H), 1.86 – 1.74 (m, 2H), 1.67 – 1.54 (m, 

2H). 13C NMR (101 MHz, CDCl3) δ 159.83, 158.32, 157.46, 155.95, 154.69, 147.93, 130.75, 

125.38, 117.80, 117.73, 115.58, 115.36, 107.69, 107.60, 107.44, 107.20, 96.04, 95.76, 57.81, 

53.17, 50.08, 41.01, 27.27, 26.22, 23.94. 

 

1-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-5-fluoro-3-methyl-1,3-dihydro-

2H-benzo[d]imidazol-2-one. 425 (WA380) To a solution of 1-(4-bromobutyl)-5-fluoro-3-

methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (0.3g, 0.99 mmol) in 10 mL DMF were added 

(0.412g, 2.98 mmol ) of potassium carbonate and (0.3g, 1.31 mmol )  of 6,7-dimethoxy-1,2,3,4-

tetrahydroisoquinoline, and the reaction mixture heated at 65 oC for 4 h, then the mixture 
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extracted with CH2Cl2 and water, dried over magnesium sulfate and the solvent evaporated using 

vaccu then purified by column chromatography (EtOAc: Hexane) to get 0.3g of 1-(4-(6,7-

dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-5-fluoro-3-methyl-1,3-dihydro-2H-

benzo[d]imidazol-2-one as yellow oil in 73% yield. MS (ESI) m/z 314.69 [M++1]. 1H NMR (400 

MHz, DMSO-d6) δ 7.13 (ddd, J = 15.6, 8.8, 3.5 Hz, 2H), 6.82 (ddd, J = 11.9, 6.9, 2.5 Hz, 1H), 

6.59 (d, J = 20.1 Hz, 2H), 3.83 (t, J = 7.0 Hz, 2H), 3.67 (d, J = 2.6 Hz, 6H), 3.37 (s, 2H), 3.31 – 

3.27 (m, 3H), 2.64 (d, J = 5.8 Hz, 2H), 2.53 (t, J = 5.8 Hz, 2H), 2.40 (t, J = 7.1 Hz, 2H), 1.72 – 

1.59 (m, 2H), 1.49 (t, J = 7.4 Hz, 2H). 13C NMR (101 MHz, DMSO) δ 159.49, 157.16, 154.41, 

147.54, 147.29, 130.97, 130.84, 127.08, 126.34, 125.71, 112.18, 110.37, 108.67, 108.58, 107.30, 

107.06, 96.77, 96.49, 57.40, 55.90, 55.56, 51.07, 40.78, 28.75, 27.57, 26.10, 24.05. 

 

4-fluoro-N-methyl-2-nitroaniline. 408 (WA424) 6g (37.71 mmol) of 1,4-difluoro-2-

nitrobenzene, and 8.2g (40% in water) of methylamine stirred at 0 oC for 30 min and then 

warmed up to room temperature and left for 1h. The reaction mixture was then filtered and dried 

to give 5.5g (85%) of 5-fluoro-N-methyl-2-nitroaniline as orange crystals. MS (ESI) m/z 171.33 

[M++1] 1H NMR (400 MHz, DMSO-d6) δ 8.09 (s, 1H), 7.80 (dd, J = 9.5, 3.2 Hz, 1H), 7.51 (ddd, 

J = 10.2, 7.6, 3.1 Hz, 1H), 7.01 (dd, J = 9.5, 4.8 Hz, 1H), 2.94 (d, J = 5.0 Hz, 3H). 13C NMR 

(101 MHz, DMSO) δ 153.05, 150.71, 143.83, 129.77, 129.68, 125.88, 125.65, 116.55, 116.48, 

111.41, 111.15, 30.31. 

 

4-fluoro-N1-methylbenzene-1,2-diamine. 411 (WA425) To a solution of 4-fluoro-N-methyl-2-

nitroaniline (5.5g, 32.326 mmol) in methanol (200 ml) was added to 10% Palladium on carbon 

catalyst (1g) and stirred under a hydrogen atmosphere (45 psi) for 16 h. The mixture was filtered 
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through celite and evaporated in vacuo to give 4g of 4-fluoro-N1-methylbenzene-1,2-diamine as 

reddish-brown residue in 88% yield. MS (ESI) m/z 141 [M++1]. 1H NMR (400 MHz, 

Chloroform-d) δ 6.61 – 6.50 (m, 2H), 6.47 (dd, J = 9.8, 2.7 Hz, 1H), 2.83 (s, 3H). 13C NMR (101 

MHz, CDCl3) δ 158.12, 155.79, 136.34, 136.24, 134.35, 134.33, 111.99, 111.90, 105.43, 105.22, 

103.22, 102.97, 31.50. 

 

5-fluoro-1-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one. 414 (WA426) A solution of 5-

fluoro-N1-methylbenzene-1,2-diamine (3g, 28.55 mmol) and 1,1’-carbonyldiimidazole (CDI) 

(5.55g, 34.25 mmol) in freshly prepared tetrahydrofuran (60 mL) was stirred at 80°C for 5 h. The 

reaction mixture was then cooled to 0°C. The resulting precipitate was filtered and dried to give 

(2 g, 66 % yield) of 5-fluoro-1-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one as a beige (off-

white) solid. MS (ESI) m/z 189 [M++23], 165 [M+-1]. 1H NMR (400 MHz, DMSO-d6) δ 10.98 

(s, 1H), 7.04 – 7.00 (m, 1H), 6.84 – 6.78 (m, 2H), 3.24 (s, 3H). 13C NMR (101 MHz, DMSO) δ 

159.36, 157.04, 155.15, 129.28, 129.15, 127.80, 108.39, 108.29, 107.14, 106.90, 97.27, 96.99, 

26.90. 

 

3-(4-bromobutyl)-5-fluoro-1-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one. 418 (WA427) 

To a solution of 5-fluoro-1-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (1.8g, 10.83 mmol) 

in 15 mL DMF were added (4.43g, 32.10 mmol ) of potassium carbonate and (9.36g, 43.33 

mmol) of 1,4-dibromobutane, and the reaction mixture heated at 65 oC for 2.5 h, then the mixture 

extracted with CH2Cl2 and water, dried over magnesium sulfate and the solvent evaporated using 

vaccu then purified by column chromatography (EtOAc: Hexane) to get 1.4g of 3-(4-

bromobutyl)-5-fluoro-1-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one as yellow oil in 82% 

yield. MS (ESI) m/z 301 [M++1]. 1H NMR (400 MHz, Chloroform-d) δ 6.89 – 6.73 (m, 3H), 3.92 
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– 3.86 (m, 2H), 3.48 – 3.42 (m, 2H), 3.40 (s, 3H), 1.92 (q, J = 3.2 Hz, 4H). 13C NMR (101 MHz, 

CDCl3) δ 159.87, 157.51, 154.66, 129.76, 129.63, 126.18, 107.65, 107.55, 107.31, 96.11, 95.82, 

40.27, 32.94, 29.54, 27.22, 26.79. 

 

5-fluoro-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-1-methyl-1,3-dihydro-2H-

benzo[d]imidazol-2-one. 426 (WA428) To a solution of 3-(4-bromobutyl)-5-fluoro-1-methyl-

1,3-dihydro-2H-benzo[d]imidazol-2-one (0.8g, 2.657 mmol) in 10 mL DMF were added (0.8g, 

5.797 mmol ) of potassium carbonate and (0.55g, 1.29 mmol )  of 1-(4-fluorophenyl)piperazine, 

and the reaction mixture heated at 65 oC for 3 h, then the mixture extracted with CH2Cl2 and 

water, dried over magnesium sulfate and the solvent evaporated using vaccu then purified by 

column chromatography (EtOAc: Hexane) to get 0.35g of 5-fluoro-3-(4-(4-(4-

fluorophenyl)piperazin-1-yl)butyl)-1-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one as yellow 

oil in 88% yield. MS (ESI) m/z 401 [M++1]. 1H NMR (400 MHz, DMSO-d6) δ 7.19 (dd, J = 9.2, 

2.5 Hz, 1H), 7.10 (dd, J = 8.6, 4.5 Hz, 1H), 7.01 (t, J = 8.9 Hz, 2H), 6.92 – 6.83 (m, 3H), 3.82 (t, 

J = 7.1 Hz, 2H), 3.30 (s, 3H), 3.01 (t, J = 4.9 Hz, 4H), 2.43 (t, J = 4.9 Hz, 4H), 2.30 (t, J = 7.2 

Hz, 2H), 1.65 (p, J = 7.3 Hz, 2H), 1.45 (p, J = 7.3 Hz, 2H). 13C NMR (101 MHz, DMSO) δ 

159.58, 157.54, 157.25, 155.20, 154.39, 148.39, 148.37, 130.19, 130.06, 126.48, 117.45, 117.38, 

115.74, 115.52, 108.57, 108.47, 107.30, 107.06, 96.81, 96.53, 57.45, 53.10, 49.41, 40.83, 27.43, 

25.98, 23.69. 

 

3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-fluoro-1-methyl-1,3-dihydro-

2H-benzo[d]imidazol-2-one. 427 (WA429) To a solution of 3-(4-bromobutyl)-5-fluoro-1-

methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (0.8g, 2.657 mmol) in 10 mL DMF were added 

(0.8g, 5.797 mmol ) of potassium carbonate and (0.65g, 2.88 mmol )  of 3H-spiro[isobenzofuran-
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1,4'-piperidine] hydrochloride, and the reaction mixture heated at 65 oC for 3 h, then the mixture 

extracted with CH2Cl2 and water, dried over magnesium sulfate and the solvent evaporated using 

vaccu then purified by column chromatography (EtOAc: Hexane) to get 0.6g of 3-(4-(3H-

spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-fluoro-1-methyl-1,3-dihydro-2H-

benzo[d]imidazol-2-one as yellow oil in 55% yield. MS (ESI) m/z 410 [M++1]. 1H NMR (400 

MHz, Chloroform-d) δ 7.26 – 7.18 (m, 2H), 7.13 (dt, J = 14.6, 5.0 Hz, 2H), 6.84 – 6.71 (m, 3H), 

5.02 (s, 2H), 3.85 (t, J = 7.2 Hz, 2H), 3.36 (s, 3H), 2.91 – 2.80 (m, 2H), 2.44 (dt, J = 23.9, 9.3 

Hz, 4H), 2.00 (td, J = 13.3, 4.4 Hz, 2H), 1.75 (ddt, J = 14.5, 11.5, 4.9 Hz, 6H). 13C NMR (101 

MHz, CDCl3) δ 159.83, 157.47, 154.61, 145.39, 138.80, 129.91, 129.79, 127.56, 127.34, 126.16, 

120.98, 120.80, 107.49, 107.40, 107.33, 107.09, 96.19, 95.90, 84.45, 70.72, 57.90, 50.12, 40.95, 

36.33, 27.16, 26.06, 23.85. 

 

3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-5-fluoro-1-methyl-1,3-dihydro-

2H-benzo[d]imidazol-2-one. 428 (WA430) To a solution of 3-(4-bromobutyl)-5-fluoro-1-

methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (0.9g, 2.99 mmol) in 10 mL DMF were added 

(0.9g, 6.52 mmol ) of potassium carbonate and (0.8g, 3.48 mmol )  of 6,7-dimethoxy-1,2,3,4-

tetrahydroisoquinoline hydrochloride, and the reaction mixture heated at 65 oC for 3 h, then the 

mixture extracted with CH2Cl2 and water, dried over MgSO4 and the solvent evaporated using 

vaccu then purified by column chromatography (EtOAc: Hexane) to get 0.7g of 3-(4-(6,7-

dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-5-fluoro-1-methyl-1,3-dihydro-2H-

benzo[d]imidazol-2-one as yellow oil in 63% yield. MS (ESI) m/z 414 [M++1]. 1H NMR (400 

MHz, Chloroform-d) δ 6.84 (dd, J = 8.4, 4.5 Hz, 1H), 6.81 – 6.71 (m, 2H), 6.57 (s, 1H), 6.50 (s, 

1H), 3.89 (t, J = 7.1 Hz, 2H), 3.82 (d, J = 1.3 Hz, 6H), 3.52 (s, 2H), 3.39 (s, 3H), 2.79 (t, J = 5.9 
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Hz, 2H), 2.67 (t, J = 5.9 Hz, 2H), 2.56 – 2.49 (m, 2H), 1.87 – 1.77 (m, 2H), 1.65 (q, J = 7.9 Hz, 

2H). 13C NMR (101 MHz, CDCl3) δ 159.84, 157.48, 154.69, 147.46, 147.15, 129.93, 129.80, 

126.54, 126.17, 126.14, 111.34, 109.46, 107.49, 107.39, 107.34, 107.10, 96.19, 95.91, 57.59, 

55.87, 55.73, 51.03, 41.12, 28.65, 27.17, 26.15, 24.33. 

 

1-(4-bromobutyl)-3-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one. 420 (WA318) To a 

solution of 1-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (2g, 13.50 mmol) in 10 mL DMF 

were added (5.59g, 40.50 mmol ) of potassium carbonate and (11.66g, 53.98 mmol) of 1,4-

dibromobutane, and the reaction mixture heated at 65 oC for 2.5 h, then the mixture extracted 

with CH2Cl2 and water, dried over magnesium sulfate and the solvent evaporated using vaccu 

then purified by column chromatography (EtOAc: Hexane) to afford 2.55g of 1-(4-bromobutyl)-

3-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one as colorless oil in 67% yield. MS (ESI) m/z 

305.44 [M++23]; 207.39 [M++25]. 1H NMR (400 MHz, Chloroform-d) δ 7.13 – 7.07 (m, 2H), 

6.99 (ddd, J = 8.8, 5.1, 2.3 Hz, 2H), 3.97 – 3.88 (m, 2H), 3.46 (q, J = 5.5, 4.0 Hz, 2H), 3.42 (s, 

3H), 1.93 (h, J = 3.5 Hz, 4H). 13C NMR (101 MHz, CDCl3) δ 154.40, 130.06, 129.14, 121.24, 

121.20, 107.49, 107.47, 40.07, 33.07, 29.62, 27.13, 26.95. 

 

1-methyl-3-(4-(2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-1,3-dihydro-

2H-benzo[d]imidazol-2-one. 429 (WA475) To a solution of 1-(4-bromobutyl)-3-methyl-1,3-

dihydro-2H-benzo[d]imidazol-2-one (WA318) (0.05g, 0.1765 mmol) in 10 mL DMF were added 

(0.073g, 0.53 mmol ) of potassium carbonate and (0.073g, 0.53 mmol )  of 2'-methyl-3H-

spiro[isobenzofuran-1,4'-piperidine], and the reaction mixture heated at 65 oC for 3 h, then the 

mixture extracted with CH2Cl2 and water, dried over magnesium sulfate and the solvent 
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evaporated using vaccu then purified by column chromatography (EtOAc: Hexane) to obtain 

0.03g of 1-methyl-3-(4-(2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-1,3-

dihydro-2H-benzo[d]imidazol-2-one as yellow oil in 43% yield. MS (ESI) m/z 406.76 [M++1]. 

1H NMR (400 MHz, Methanol-d4) δ 7.31 – 7.18 (m, 5H), 7.16 – 7.08 (m, 3H), 5.04 (d, J = 2.3 

Hz, 2H), 4.88 (s, 4H), 3.97 (t, J = 6.7 Hz, 2H), 3.37 (d, J = 12.4 Hz, 3H), 3.18 – 3.02 (m, 3H), 

1.91 – 1.73 (m, 6H), 1.44 (d, J = 6.9 Hz, 3H). 13C NMR (101 MHz, MeOD) δ 154.62, 144.22, 

138.84, 129.75, 128.77, 127.87, 127.26, 121.44, 120.96, 120.72, 107.91, 107.75, 83.30, 70.60, 

54.20, 52.84, 43.88, 39.90, 39.05, 33.75, 26.14, 25.50, 21.72, 13.20. 

 

5-fluoro-3-methyl-1-(4-(2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-1,3-

dihydro-2H-benzo[d]imidazol-2-one. 430 (WA476) To a solution of 1-(4-bromobutyl)-5-

fluoro-3-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (WA377) (0.05g, 0.166 mmol) in 10 

mL DMF were added (0.07g, 0.507 mmol ) of potassium carbonate and (0.048g, 0.24 mmol )  of 

2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidine], and the reaction mixture heated at 65 oC for 3 

h, then the mixture extracted with CH2Cl2 and water, washed with brine, dried over magnesium 

sulfate and the solvent evaporated using vaccu then purified by column chromatography (EtOAc: 

Hexane) to obtain 0.04g of 1-methyl-3-(4-(2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidin]-1'-

yl)butyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one as yellow oil in 55% yield. MS (ESI) m/z 

424.64 [M++1]. 1H NMR (400 MHz, Methanol-d4) δ 7.38 – 7.21 (m, 4H), 7.19 (dd, J = 8.6, 4.3 

Hz, 1H), 7.01 (dd, J = 8.7, 2.5 Hz, 1H), 6.89 (ddd, J = 10.7, 8.7, 2.5 Hz, 1H), 5.06 (d, J = 2.2 Hz, 

2H), 4.00 (t, J = 6.7 Hz, 2H), 3.42 (s, 3H), 3.30 (s, 2H), 3.02 (d, J = 13.1 Hz, 3H), 2.25 (dd, J = 

14.4, 5.2 Hz, 1H), 2.12 (td, J = 12.5, 11.0, 4.2 Hz, 1H), 1.92 – 1.69 (m, 6H), 1.41 (d, J = 6.8 Hz, 

3H).13C NMR (101 MHz, MeOD) δ 163.42, 160.16, 157.81, 155.08, 144.45, 138.93, 130.64, 
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127.75, 127.14, 125.07, 120.90, 120.69, 108.40, 108.30, 107.58, 107.34, 96.15, 95.86, 83.66, 

70.45, 53.79, 52.83, 43.99, 40.08, 35.53, 30.24, 26.24, 25.53, 22.01. 

 

1-(4-bromopentyl)-3-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one. 421 (WA477) To a 

solution of 1-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (1g, 6.75 mmol) in 10 mL DMF 

were added (2.8g, 20.28 mmol ) of potassium carbonate and (6.207g, 26.99 mmol) of 1,4-

dibromopetane, and the reaction mixture heated at 65 oC for 3 h, then the mixture extracted with 

ethyl acetate and water, washed with brine, dried over magnesium sulfate and the solvent 

evaporated using vaccu then purified by column chromatography (EtOAc: Hexane) to afford 

1.5g of 1-(4-bromopentyl)-3-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one as clear oil in 75% 

yield. MS (ESI) m/z 319.45 [M++23]. 1H NMR (400 MHz, Chloroform-d) δ 7.10 (dt, J = 8.1, 4.1 

Hz, 2H), 7.03 – 6.96 (m, 2H), 4.17 (h, J = 6.6 Hz, 1H), 3.91 (p, J = 6.9 Hz, 2H), 3.42 (s, 3H), 

2.08 – 1.84 (m, 4H), 1.70 (d, J = 6.6 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 154.39, 130.06, 

129.17, 121.23, 121.17, 107.50, 107.46, 50.87, 40.31, 37.90, 27.13, 26.80, 26.53. 

 

1-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)pentyl)-3-methyl-1,3-dihydro-2H-

benzo[d]imidazol-2-one. 431 (WA481) To a solution of 1-(4-bromopentyl)-3-methyl-1,3-

dihydro-2H-benzo[d]imidazol-2-one (WA477) (0.15g, 0.5047 mmol) in 3 mL DMF were added 

(0.209g, 1.51 mmol ) of potassium carbonate and (0.115g, 0.6 mmol )  of 3H-

spiro[isobenzofuran-1,4'-piperidine], and the reaction mixture heated at 65 oC for 2 h, then the 

mixture extracted with ethyl acetate and water, washed with brine, dried over magnesium sulfate 

and the solvent evaporated using vaccu then purified by column chromatography (EtOAc: 

Hexane) to obtain 0.1g of 6-fluoro-3-(4-(2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidin]-1'-
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yl)butyl)benzo[d]thiazol-2(3H)-one as yellow oil in 50% yield. MS (ESI) m/z 406.67 [M++1]. 1H 

NMR (400 MHz, Methanol-d4) δ 7.34 – 7.23 (m, 5H), 7.18 – 7.14 (m, 3H), 5.10 (s, 2H), 4.02 (td, 

J = 6.4, 2.5 Hz, 2H), 3.53 – 3.38 (m, 10H), 2.37 (dd, J = 13.3, 6.6 Hz, 2H), 1.97 (ddt, J = 14.8, 

6.5, 2.9 Hz, 4H), 1.41 (d, J = 6.6 Hz, 3H). 13C NMR (101 MHz, MeOD) δ 154.73, 142.78, 

138.67, 129.80, 128.75, 128.21, 127.44, 121.52, 121.48, 121.12, 120.26, 107.81, 81.85, 70.84, 

62.00, 46.41, 44.84, 39.94, 33.57, 27.79, 26.07, 24.81, 12.35. 

 

5-fluoro-1-methyl-3-(4-(2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-1,3-

dihydro-2H-benzo[d]imidazol-2-one. 432 (WA486) To a solution of 3-(4-bromobutyl)-5-

fluoro-1-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (WA427)  (0.05g, 0.166 mmol) in 2 

mL DMF were added (0.069g, 0.5036 mmol ) of potassium carbonate and (0.0426g, 0.197 mmol 

)  of 2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidine], and the reaction mixture heated at 65 oC 

for 4 h, then the mixture extracted with ethyl acetate and water, washed with brine, dried over 

magnesium sulfate and the solvent evaporated using vaccu then purified by column 

chromatography (EtOAc: Hexane) to obtain 0.055g of 5-fluoro-1-methyl-3-(4-(2'-methyl-3H-

spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one as 

yellow oil in 78% yield. MS (ESI) m/z 424.70 [M++1]. 1H NMR (400 MHz, Methanol-d4) δ 7.23 

(qt, J = 8.3, 4.6 Hz, 4H), 7.04 (dd, J = 8.6, 4.2 Hz, 2H), 4.98 (s, 2H), 3.91 (t, J = 7.0 Hz, 2H), 

3.37 (s, 3H), 2.81 – 2.54 (m, 4H), 2.08 – 1.90 (m, 2H), 1.83 – 1.57 (m, 7H), 1.20 (d, J = 6.7 Hz, 

3H). 13C NMR (101 MHz, MeOD) δ 160.07, 157.72, 154.89, 145.26, 139.07, 129.69, 129.56, 

127.43, 126.95, 125.99, 120.93, 120.83, 108.13, 108.04, 107.51, 107.27, 96.26, 95.97, 84.62, 

70.14, 52.94, 52.46, 44.31, 41.39, 40.54, 35.34, 26.18, 25.81, 22.76, 13.88. 
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1-(4-bromopentyl)-5-fluoro-3-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one. 417 

(WA488) To a solution of 6-fluoro-1-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (WA376) 

(0.1g, 0.6 mmol) in 3 mL DMF were added (0.248g, 1.8 mmol ) of potassium carbonate and 

(0.554g, 2.4 mmol) of 1,4-dibromopentane, and the reaction mixture heated at 65 oC for 2 h, then 

the mixture extracted with ethyl acetate and water, treated with brine, dried over magnesium 

sulfate and the solvent evaporated using vaccu then purified by column chromatography (EtOAc: 

Hexane) to afford 0.09g of 1-(4-bromopentyl)-5-fluoro-3-methyl-1,3-dihydro-2H-

benzo[d]imidazol-2-one as clear oil in 48% yield. MS (ESI) m/z 315.30 [M++1]. 1H NMR (400 

MHz, Methanol-d4) δ 7.12 (dd, J = 8.6, 4.3 Hz, 1H), 6.97 (dd, J = 8.7, 2.5 Hz, 1H), 6.86 (ddd, J 

= 9.9, 8.6, 2.5 Hz, 1H), 4.21 (h, J = 6.5 Hz, 1H), 3.92 (td, J = 6.5, 2.2 Hz, 2H), 3.39 (s, 3H), 2.01 

– 1.78 (m, 4H), 1.66 (d, J = 6.6 Hz, 3H). 13C NMR (101 MHz, MeOD) δ 160.09, 157.74, 154.95, 

130.57, 130.44, 125.07, 108.26, 108.17, 107.52, 107.27, 96.09, 95.80, 50.40, 39.96, 37.66, 26.40, 

26.20, 25.53. 

 

3-(4-bromopentyl)-5-fluoro-1-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one. 419 

(WA489) To a solution of 5-fluoro-1-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (WA426) 

(0.08g, 0.5 mmol) in 3 mL DMF were added (0.207g, 1.5 mmol ) of potassium carbonate and 

(0.443g, 1.92 mmol) of 3H-spiro[isobenzofuran-1,4'-piperidine]-HCl, and the reaction mixture 

heated at 65 oC for 6 h, then the mixture extracted with ethyl acetate and water, treated with 

brine, dried over magnesium sulfate and the solvent evaporated using vaccu then purified by 

column chromatography (EtOAc: Hexane) to afford 0.06g of 3-(4-bromopentyl)-5-fluoro-1-

methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one as clear oil in 38% yield. MS (ESI) m/z 315.30 

[M++1]. 1H NMR (400 MHz, Methanol-d4) δ 7.07 (dd, J = 8.6, 4.4 Hz, 1H), 7.01 (dd, J = 8.8, 2.5 

Hz, 1H), 6.89 – 6.82 (m, 1H), 4.21 (q, J = 6.6 Hz, 1H), 3.90 (ddd, J = 9.6, 5.5, 2.8 Hz, 2H), 3.40 
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(s, 3H), 2.01 – 1.78 (m, 4H), 1.66 (d, J = 6.6 Hz, 3H). 13C NMR (101 MHz, MeOD) δ 160.10, 

157.75, 154.93, 129.62, 129.49, 125.98, 108.15, 108.06, 107.54, 107.29, 96.14, 95.85, 50.40, 

40.05, 37.63, 26.33, 26.11, 25.53. 

 

1-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)pentyl)-5-fluoro-3-methyl-1,3-dihydro-

2H-benzo[d]imidazol-2-one. 434 (WA490) To a solution of 1-(4-bromopentyl)-5-fluoro-3-

methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (WA488) (0.074g, 0.235 mmol) in 3 mL DMF 

were added (0.0972g, 0.7043 mmol ) of potassium carbonate and (0.064g, 0.2835 mmol) of 3H-

spiro[isobenzofuran-1,4'-piperidine]-HCl, and the reaction mixture heated at 65 oC for 6 h, then 

the mixture extracted with ethyl acetate and water, treated with brine, dried over magnesium 

sulfate and the solvent evaporated using vaccu then purified by column chromatography (EtOAc: 

Hexane) to afford 0.06g of 1-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)pentyl)-5-fluoro-3-

methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one as clear oil in 50% yield. MS (ESI) m/z 424.83 

[M++1]. 1H NMR (400 MHz, Methanol-d4) δ 7.32 – 7.22 (m, 3H), 7.20 – 7.12 (m, 2H), 6.99 (dd, 

J = 8.7, 2.5 Hz, 1H), 6.88 (ddd, J = 9.9, 8.6, 2.5 Hz, 1H), 5.04 (s, 2H), 3.96 (t, J = 6.7 Hz, 2H), 

3.41 (s, 3H), 2.95 (q, J = 14.4, 13.7 Hz, 5H), 2.15 – 1.98 (m, 2H), 1.93 – 1.70 (m, 5H), 1.58 – 

1.44 (m, 1H), 1.18 (d, J = 6.6 Hz, 3H). 13C NMR (101 MHz, MeOD) δ 160.12, 157.77, 155.03, 

144.32, 138.64, 130.61, 127.68, 127.19, 125.13, 120.87, 120.30, 108.28, 107.31, 95.84, 83.64, 

70.37, 59.97, 46.21, 43.62, 40.54, 35.12, 29.04, 26.24, 25.17, 12.71. 

 

3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)pentyl)-5-fluoro-1-methyl-1,3-dihydro-

2H-benzo[d]imidazol-2-one. 433 (WA491) To a solution of 3-(4-bromopentyl)-5-fluoro-1-

methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (WA489) (0.1g, 0.317 mmol) in 3 mL DMF 
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were added (0.131g, 0.9492 mmol ) of potassium carbonate and (0.085g, 0.3765 mmol) of 3H-

spiro[isobenzofuran-1,4'-piperidine]-HCl, and the reaction mixture heated at 65 oC for 8 h, then 

the mixture extracted with ethyl acetate and water, treated with brine, dried over magnesium 

sulfate and the solvent evaporated using vaccu then purified by column chromatography (EtOAc: 

Hexane) to afford 0.09g of 3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)pentyl)-5-fluoro-1-

methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one as yellow oil in 67% yield. MS (ESI) m/z 

424.77 [M++1]. Free base: 1H NMR (400 MHz, Methanol-d4) δ 7.31 – 7.23 (m, 3H), 7.20 – 7.14 

(m, 1H), 7.10 (td, J = 8.6, 3.5 Hz, 2H), 6.94 – 6.82 (m, 1H), 5.05 (s, 2H), 3.96 (t, J = 6.8 Hz, 

2H), 3.42 (d, J = 6.5 Hz, 3H), 3.36 (s, 2H), 2.98 (q, J = 14.1, 11.6 Hz, 4H), 2.14 – 1.97 (m, 2H), 

1.84 (ddt, J = 24.4, 12.6, 8.1 Hz, 4H), 1.57 – 1.49 (m, 1H), 1.18 (d, J = 6.6 Hz, 3H). HCl salt: 1H 

NMR (400 MHz, Methanol-d4) δ 7.38 – 7.31 (m, 2H), 7.26 (td, J = 17.0, 16.3, 9.5 Hz, 3H), 7.13 

(dq, J = 8.0, 3.0, 2.5 Hz, 2H), 6.91 (t, J = 9.4 Hz, 1H), 4.86 (d, J = 2.6 Hz, 6H), 4.00 (dt, J = 8.7, 

4.2 Hz, 2H), 3.47 – 3.41 (m, 6H), 2.36 (s, 2H), 2.01 (d, J = 3.1 Hz, 2H), 1.96 (s, 2H), 1.42 (dd, J 

= 6.9, 2.6 Hz, 3H).13C NMR (101 MHz, MeOD) δ 157.84, 155.08, 142.77, 138.68, 129.55, 

129.42, 128.21, 127.44, 126.08, 121.12, 120.25, 108.33, 108.23, 107.73, 107.49, 96.27, 95.98, 

81.85, 70.85, 62.01, 46.40, 44.88, 40.19, 33.59, 27.73, 26.18, 24.71, 12.35. 

 

1'-(4-(benzofuran-3-yl)butyl)spiro[isochromane-1,4'-piperidine]. 314 (WA496) To a solution 

of 3-(4-bromobutyl)benzofuran (WA208) (0.05g, 0.1382 mmol) in 3 mL DMF were added 

(0.06g, 0.4347 mmol ) of potassium carbonate and (0.034g, 0.1674 mmol) of spiro[isochromane-

1,4'-piperidine]-HCl, and the reaction mixture heated at 65 oC for 3 h, then the mixture extracted 

with ethyl acetate and water, treated with brine, dried over magnesium sulfate and the solvent 

evaporated using vaccu then purified by column chromatography (EtOAc: Hexane) to afford 
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0.034g of 1'-(4-(benzofuran-3-yl)butyl)spiro[isochromane-1,4'-piperidine] as yellow oil in 67% 

yield. MS (ESI) m/z 376 [M++1]. 1H NMR (400 MHz, Methanol-d4) δ 7.62 – 7.57 (m, 1H), 7.55 

(s, 1H), 7.46 – 7.41 (m, 1H), 7.31 – 7.19 (m, 2H), 7.19 – 7.05 (m, 4H), 3.87 (t, J = 5.5 Hz, 2H), 

2.77 (dt, J = 13.9, 6.4 Hz, 6H), 2.51 – 2.39 (m, 4H), 2.03 (td, J = 13.5, 4.4 Hz, 2H), 1.86 (dd, J = 

14.4, 2.6 Hz, 2H), 1.80 – 1.61 (m, 4H). 13C NMR (101 MHz, MeOD) δ 155.50, 141.41, 141.23, 

133.56, 128.44, 128.05, 125.87, 124.88, 123.75, 121.89, 120.05, 119.22, 110.75, 72.68, 58.43, 

58.30, 48.90, 35.88, 29.18, 26.90, 25.96, 22.82. 

 

9.6 Synthesis of the heterocycle substituents 

9.6.1 Synthesis of 3H-spiro[isobenzofuran-1,4'-piperidine] 
 
1-benzyl-4-(3-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)phenyl)piperidin-4-ol. 477 (WA186) A 

solution of 4,4-dimethyl-2-phenyl-4,5-dihydrooxazole (475) (6.4g, 36.5 mmol ) in anhydrous 

THF (100 mL) was stirred and cooled to -70 °C under argon. At this temperature (-70 °C), 17.78 

mL of n-butyllithium (2.5 M) was added slowly and stirred for 25 min. at -70 °C. After that, N-

benzyl-4-piperidone (476) (7 g, 37 mmol) in 50 mL anhydrous THF was added slowly with 

maintaining the temperature below - 65 °C, and the reaction mixture was stirred for more 20 min. 

at 70 °C. After that the reaction mixture left at room temperature for 1 h. Then the mixture was 

poured into saturated solution of NH4Cl and extracted (3x) with ethyl acetate. The combined 

organic layers were washed with brine, dried over magnesium sulfate and evaporated. The 

residue was purified by chromatography on a silica gel column using a gradient of ethyl 

acetate/hexanes (2 : 8) as eluent to give 4.0 g (70 %) of 1-benzyl-4-(3-(4,4-dimethyl-4,5-

dihydrooxazol-2-yl)phenyl)piperidin-4-ol as a brown solid that was analyzed by the Mass 

Spectrometer and immediately used in the next step without further characterization. MS (EI) 
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m/z 365.76 [M+1]+. 

1'-benzyl-3H-spiro[isobenzofuran-1,4'-piperidin]-3-one. 478, (WA188) A solution of 1-

benzyl-4-(3-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)phenyl)piperidin-4-ol (477) (4.0 g, 11 mmol) 

in 85 mL of 3 N HC1 was refluxed for 5 h and then evaporated in vacuo to yield a white solid. 

This was layered between CHC13 and water and the pH of the aqueous layer was adjusted to 10 

with saturated KOH solution. The layers were separated and the aqueous phase was extracted 

with CHCl3. The combined extracts were washed with brine, dried over magnesium sulfate, and 

evaporated in vacuo to give an oil which was crystallized from ether to yield 2.2 g (68%) of 1'-

benzyl-3H-spiro[isobenzofuran-1,4'-piperidin]-3-one as a white crystals that was analyzed by the 

Mass Spectrometer and directly used in the next step without further characterization. MS (EI) 

m/z 294.61 [M++1]+. 

1'-benzyl-3H-spiro[isobenzofuran-1,4'-piperidine]. 479 (WA190) To a solution of 1'-benzyl-

3H-spiro[isobenzofuran-1,4'-piperidin]-3-one, in 35 mL of  anhydrous THF cooled to 0 °C was 

added dropwise 13.73 mL of 1M Borane-THF with stirring. After addition was completed the 

mixture was kept at room temperature for 30 min. and then refluxed overnight. The reaction 

mixture cooled to 0 °C and 15 mL of 6N HCl was added dropwise. The reaction mixture was 

then refluxed for 5 h. After that, the reaction mixture pH adjusted to 10 and extracted with ethyl 

acetate (3x), treated with brine, dried over magnesium sulfate, and concentrated. The residue was 

purified by chromatography on a silica gel column using a gradient of methanol/dichloromethane 

(1: 9) as eluent to give 2.2 g (69 %) of 1'-benzyl-3H-spiro[isobenzofuran-1,4'-piperidine]  as a 

white solid that was analyzed by the Mass Spectrometer and directly used in the next step 

without further characterization. MS (EI) m/z 280.79 [M+1]+. 
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3H-spiro[isobenzofuran-1,4'-piperidine]. 480 (WA201) To a suspension of 0.17 g of 10% 

Pd/C in water/acetic acid (6: 4, 100 mL), and 2 mL of conc. HCl was added (1.7 g, 6 mmol) of 

1'-benzyl-3H-spiro[isobenzofuran-1,4'-piperidine]. The mixture was hydrogenated at 45 (psi) for 

5 h. Filtration, extraction with DCM, drying and evaporation of the filtrate gave clear oil, which 

triturated with ether to yield pure compound, 0.8 g (60%) of 3H-spiro[isobenzofuran-1,4'-

piperidine] as a white solid. MS (EI) m/z 204.56 [M+23]+. 1H NMR (400 MHz, DMSO-d6) δ 9.39 

(d, J = 31.4 Hz, 1H), 7.31 (d, J = 2.8 Hz, 3H), 7.15 (dd, J = 5.4, 2.6 Hz, 1H), 5.01 (s, 2H), 3.30 – 

3.21 (m, 2H), 3.05 (s, 2H), 2.24 (td, J = 13.8, 4.6 Hz, 2H), 1.75 (d, J = 14.0 Hz, 2H). 13C NMR 

(101 MHz, DMSO) δ 144.45, 138.98, 128.51, 128.03, 121.97, 120.89, 82.53, 70.89, 40.69, 

32.77. 

 

9.6.2 Synthesis of 3H-spiro[isobenzofuran-1,4'-piperidine] (Second route) 
 

1'-benzyl-3H-spiro[isobenzofuran-1,4'-piperidin]-3-one. 478 (WA281) A solution of 2-

bromobenzoic acid (481) (20.00 g, 0.1 mol) in THF (200 mL) was treated dropwise with n-BuLi 

(2.5 M, 80 mL) at -78°C. The mixture was stirred at this temperature for 40 min, followed by 

dropwise addition of a solution of N-benzylpiperdine-4-one (476) (26 g, 137 mmol) in THF (100 

mL). The resulting mixture was stirred at -78°C for 30 min, and was then allowed to warm up to 

room temperature and stirred overnight. The reaction was quenched with water (100 mL) and the 

resulting mixture was washed with ether (100 mL). The aqueous layer was refluxed for 1 h and 

then acidified to pH 2.5. The mixture was extracted with CHCl3 (3x), the combined organic 

layers were washed with brine, dried over magnesium sulfate and concentrated to dryness to 

obtain 8 g of 1'-benzyl-3H-spiro[isobenzofuran-1,4'-piperidin]-3-one  as yellow oil that was used 



 331 

in the next step without further purification .  

 

1'-benzyl-3H-spiro[isobenzofuran-1,4'-piperidine]. 479 (WA282) Under argon atmosphere 8 

g (30 mmol) of 1'-benzyl-3H-spiro[isobenzofuran-1,4'-piperidin]-3-one were suspended in 

freshly distilled THF (70 mL), the reaction mixture cooled at 0 °C and under vigorously stirring 

(CH3)2S * BH3 (5.70 mL, 60 mmol) was added drop wise. The reaction mixture was heated at 

reflux overnight. After this time the reaction was acidified (HCl 10%) until pH 2 and heated 

again at reflux for 4 h. The reaction was quenched with NaOH 2 N until pH 12, the THF was 

removed in vacuo and the aqueous layer extracted with ethyl acetate (3x). The organic layer was 

washed with brine, dried over magnesium sulfate, concentrated in vacuo and purified by column 

chromatography using ethyl acetate/hexane as an eluent to afford 6 g of 1'-benzyl-3H-

spiro[isobenzofuran-1,4'-piperidine] as a white solid in 78% yield. MS (EI) m/z 280.58 (M++1). 

1H NMR (400 MHz, Chloroform-d) δ 7.40 – 7.30 (m, 4H), 7.30 – 7.24 (m, 3H), 7.22 – 7.14 (m, 

2H), 3.63 (s, 2H), 2.96 – 2.84 (m, 4H), 2.47 (td, J = 12.1, 2.6 Hz, 2H), 2.03 (td, J = 13.2, 4.6 Hz, 

2H), 1.77 (dd, J = 14.2, 2.5 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 145.67, 138.91, 138.03, 

129.41, 128.24, 127.54, 127.32, 127.10, 121.03, 120.82, 84.67, 70.72, 63.32, 50.07, 36.50. 

 
3H-spiro[isobenzofuran-1,4'-piperidine]. 480 (WA290) To a solution of 1'-benzyl-3H-

spiro[isobenzofuran-1,4'-piperidin]  (6 g, 21.5 mmol) in dichloromethane (30 mL) was added 

dropwise 1-chloroethyl chloroformate (3 g, 20.9 mmol). The mixture was stirred at 25°C for 5 h 

and then was concentrated to dryness under reduced pressure. The residue was dissolved in 

methanol and the mixture was heated to reflux for 35 min. The mixture was concentrated to 

dryness and ether was added. The precipitated solid was collected by filtration and washed with 

ether, dried in air to obtain 4 g of 3H-spiro[isobenzofuran-1,4'-piperidine] as a white solid (HCl 
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salt) in 83% yield. MS (EI) m/z 190.53 (M++1).1H NMR (400 MHz, DMSO-d6) δ 9.43 (s, 1H), 

9.35 (s, 1H), 7.31 (d, J = 2.8 Hz, 3H), 7.15 (dd, J = 5.4, 2.6 Hz, 1H), 5.01 (s, 2H), 3.30 – 3.21 

(m, 2H), 3.05 (s, 2H), 2.24 (td, J = 13.8, 4.6 Hz, 2H), 1.75 (d, J = 14.0 Hz, 2H). 13C NMR (101 

MHz, DMSO) δ 144.45, 138.98, 128.51, 128.03, 121.97, 120.89, 82.53, 70.89, 40.69, 40.59, 

40.38, 40.17, 39.97, 39.76, 39.55, 39.34, 32.77. 

9.6.3 Synthesis of 2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidine] (WA469) 

tert-butyl-2'-methyl-3-oxo-3H-spiro[isobenzofuran-1,4'-piperidine]-1'-carboxylate. (485, 

WA460) To a solution of bromobenzoic acid (1 g, 4.97 mmol) in freshly distilled THF (5 mL) at 

-20°C was added BuMgCl (2.249 mL, 2M, 4.50 mmol), followed by slowly addition of n-BuLi 

(2.65 mL, 2.5M). The reaction mixture was then stirred for 40 min at -10 °C and added (1g, 4.75 

mmol) of tert-butyl 2-methyl-4-oxopiperidine-1-carboxylate in 1.5 mL THF dropwise over 20 

min. After stirring at -5°C for 1 h, acetic acid (1.5 mL) and water (3 mL) were added, and the 

reaction mixture was then heated at 40 °C for 18 h, and then extracted with methyl tert-butyl 

ether (3x), and the combined organic layer were washed with NaOH (1N, 50mL), saturated 

solution of K2CO3, brine, dried over magnesium sulfate, and concentrated. The residue was 

treated with hexane to give a white precipitate of tert-butyl-2'-methyl-3-oxo-3H-

spiro[isobenzofuran-1,4'-piperidine]-1'-carboxylate that was filtered and dried (0.6g). MS (EI) 

m/z 340.52 [M+1]+. 1H NMR (400 MHz, DMSO-d6) δ 7.80 (dd, J = 22.1, 5.9 Hz, 3H), 7.59 (dt, J 

= 8.4, 4.2 Hz, 1H), 4.43 (s, 1H), 3.98 (s, 1H), 3.14 (s, 1H), 2.37 (dd, J = 14.9, 6.7 Hz, 1H), 2.12 

(td, J = 13.8, 5.1 Hz, 1H), 1.60 (t, J = 13.2 Hz, 2H), 1.43 (s, 9H), 1.27 (d, J = 7.0 Hz, 3H). 13C 

NMR (101 MHz, DMSO) δ 169.18, 154.24, 135.03, 129.98, 125.53, 125.02, 122.58, 85.19, 

79.36, 38.98, 35.29, 35.26, 28.56, 20.23, 18.06. 

2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidin]-3-one. 486 (WA461) A solution of tert-
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butyl-2'-methyl-3-oxo-3H-spiro[isobenzofuran-1,4'-piperidine]-1'-carboxylate (600 mg, 1.9 

mmol) in DCM (5 mL) was treated with TFA (10 mL) for 2 h. The solvent was removed in 

vacuo and the crude was dissolved in Chloroform, washed with saturated NaHCO3, brine, dried 

over anhydrous magnesium sulfate, filtered, concentrated, and purified by chromatography on a 

silica gel column using MeOH/DCM (1:9) as an eluent to provide 0.4 g of 2'-methyl-3H-

spiro[isobenzofuran-1,4'-piperidin]-3-one as a white solid. MS (EI) m/z 218.54 (M++1). [Salt] 1H 

NMR (400 MHz, DMSO-d6) δ 10.16 (s, 1H), 8.95 (s, 1H), 7.89 (dd, J = 11.2, 7.7 Hz, 2H), 7.83 

(t, J = 7.5 Hz, 1H), 7.66 (t, J = 7.4 Hz, 1H), 3.83 (s, 1H), 3.48 – 3.37 (m, 2H), 2.26 (dd, J = 14.3, 

4.2 Hz, 1H), 2.16 (t, J = 6.0 Hz, 2H), 2.03 (dd, J = 14.3, 8.3 Hz, 1H), 1.37 (d, J = 6.6 Hz, 3H). 

[Free base] 1H NMR (400 MHz, Methanol-d4) δ 7.89 (d, J = 7.6 Hz, 1H), 7.82 (d, J = 4.2 Hz, 

2H), 7.65 (dq, J = 9.0, 5.1, 4.6 Hz, 1H), 3.98 (h, J = 6.6 Hz, 1H), 3.63 (ddd, J = 13.0, 8.1, 4.3 Hz, 

1H), 3.54 (ddd, J = 13.3, 7.6, 4.3 Hz, 1H), 2.44 (dd, J = 14.8, 4.7 Hz, 1H), 2.34 (ddd, J = 13.2, 

8.3, 4.3 Hz, 1H), 2.27 – 2.15 (m, 1H), 2.09 (dd, J = 14.8, 6.8 Hz, 1H), 1.57 (d, J = 6.9 Hz, 3H). 

13C NMR (101 MHz, MeOD) δ 169.05, 151.87, 134.76, 129.90, 125.65, 125.01, 121.82, 82.32, 

48.31, 37.81, 37.53, 31.91, 16.42. 

 
1'-benzyl-2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidin]-3-one. 487 (WA462)  To a 

solution of 2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidin]-3-one (0.4 g, 1.97 mmol) in 

anhydrous DMF (5 mL) was added  anhydrous K2CO3 ( 0.68g, 4.9 mmol) and benzylbromide ( 

0.4 g, 2.34 mmol). The reaction mixture was stirred at 65°C for 1 h, cooled down and poured 

into water and extracted (4x) with ethyl acetate, washed with brine, dried over magnesium 

sulfate, and concentrated. The residue was purified by chromatography on a silica gel column 

using ethyl acetate/hexane (5:5) as an eluent to provide 0.35 g (58%) of 1'-benzyl-2'-methyl-3H-
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spiro[isobenzofuran-1,4'-piperidin]-3-one as clear oil. MS (EI) m/z 308.55 (M++1). 1H NMR 

(400 MHz, Methanol-d4) δ 7.84 (dt, J = 7.7, 1.0 Hz, 1H), 7.72 (td, J = 7.5, 1.2 Hz, 1H), 7.63 (dt, 

J = 7.8, 1.0 Hz, 1H), 7.57 (td, J = 7.5, 1.0 Hz, 1H), 7.43 – 7.38 (m, 2H), 7.35 – 7.31 (m, 2H), 

7.27 – 7.23 (m, 1H), 3.86 (d, J = 13.2 Hz, 1H), 3.66 (d, J = 13.2 Hz, 1H), 3.18 (dt, J = 6.9, 5.0 

Hz, 1H), 2.93 (ddd, J = 12.6, 9.3, 3.4 Hz, 1H), 2.65 (ddd, J = 12.5, 5.9, 4.3 Hz, 1H), 2.29 – 2.22 

(m, 1H), 2.10 – 2.00 (m, 1H), 1.77 (dddd, J = 14.0, 11.9, 4.8, 2.1 Hz, 2H), 1.28 (d, J = 6.7 Hz, 

3H). 13C NMR (101 MHz, MeOD) δ 170.10, 154.07, 138.36, 134.14, 129.12, 128.86, 127.97, 

127.93, 126.85, 126.57, 125.22, 125.18, 121.88, 85.77, 57.88, 51.54, 48.26, 48.05, 47.84, 47.63, 

47.41, 47.20, 46.99, 43.37, 41.26, 35.26, 13.62. 

 

1'-benzyl-2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidine]. 488 (WA463) Under argon 

atmosphere 0.335 g (1.08 mmol) of 1'-benzyl-2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidin]-

3-one were suspended in freshly distilled THF (70 mL), the reaction mixture cooled at 0 °C and 

under vigorously stirring (CH3)2S * BH3 (5.70 mL, 60 mmol) was added drop wise. The reaction 

mixture was heated at reflux overnight. After this time the reaction was acidified (HCl 10%) 

until pH 2 and heated again at reflux for 4 h. The reaction was quenched with NaOH 2 N until 

pH 12, the THF was removed in vacuo and the aqueous layer extracted with ethyl acetate (3x). 

The organic layer was washed with brine, dried over magnesium sulfate, concentrated in vacuo 

and purified by column chromatography using methanol/DCM (1:9) as an eluent to afford 0.23 g 

of 1'-benzyl-2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidine] as clear oil in 76.6% yield. MS 

(EI) m/z 294.61 (M++1). 1H NMR (400 MHz, Methanol-d4) δ 7.45 – 7.37 (m, 2H), 7.36 – 7.30 

(m, 2H), 7.29 – 7.17 (m, 5H), 5.00 (s, 1H), 4.88 (s, 1H), 3.88 (d, J = 13.1 Hz, 1H), 3.60 (d, J = 

13.1 Hz, 1H), 3.06 (td, J = 6.6, 4.6 Hz, 1H), 2.88 (ddd, J = 12.2, 8.2, 3.7 Hz, 1H), 2.57 (ddd, J = 
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12.0, 7.3, 4.1 Hz, 1H), 2.04 (ddd, J = 13.6, 4.7, 1.5 Hz, 1H), 1.89 (dddd, J = 12.4, 8.3, 4.2, 1.4 

Hz, 1H), 1.83 – 1.69 (m, 2H), 1.27 (d, J = 6.5 Hz, 3H). 13C NMR (101 MHz, MeOD) δ 145.58, 

139.16, 137.98, 129.17, 127.90, 127.24, 126.84, 126.75, 121.10, 120.76, 85.23, 69.96, 57.86, 

52.22, 48.24, 48.03, 47.81, 47.60, 47.39, 47.18, 46.96, 44.50, 42.54, 35.91, 14.93. 

 

2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidine]. 489 (WA469) To a solution of 1'-benzyl-

2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidine] (0.23 g, 0.785 mmol) in methanol (30 ml) was 

hydrogenated in the Parr apparatus (40 psi) in the presence of 10% palladium on charcoal (0.035 

g) for 16 h. Filtration of the catalyst, concentrated and washed with ether, dried in air to afford 

0.14 g (88%) of  2'-methyl-3H-spiro [isobenzofuran-1,4'-piperidine] as clear oil. MS (EI) m/z 

204.47 (M++1). 1H NMR (400 MHz, Methanol-d4) δ 7.53 – 7.43 (m, 1H), 7.33 – 7.22 (m, 3H), 

5.02 (d, J = 9.0 Hz, 2H), 3.14 (tdd, J = 17.5, 9.7, 4.7 Hz, 2H), 2.42 (s, 1H), 2.03 – 1.84 (m, 4H), 

1.61 (dd, J = 13.3, 9.8 Hz, 1H), 1.24 – 1.17 (m, 3H). 13C NMR (101 MHz, MeOD) δ 144.89, 

139.36, 127.48, 126.84, 121.35, 121.04, 84.98, 69.95, 48.07, 43.45, 40.34, 36.00, 19.98. 

9.6.4 Synthesis of spiro[isochromane-1,4'-piperidine] (493) 
 
1-benzyl-4-(2-(2-hydroxyethyl)phenyl)piperidin-4-ol. 491 (WA485a) To a solution of 2-

bromopheyl ethyl alcohol (6g, 30 mmol) in freshly distilled THF (75 mL) was added 1.6M n-

butyl lithium solution in n-hexane (49 ml, 70 mmol) at - 60° C. After stirring for 30 min a 

solution of 1-benzyl-4-piperidone (7.8 g, 41.24 mmol) in THF (30 ml) was added over a period 

of 20 min at - 40° C. The cooling bath was removed and the reaction mixture was stirred for 72 h 

at room temperature. The mixture was quenched with saturated aqueous ammonium chloride 

solution (75 ml). Basification to pH 11 with 2 M aqueous sodium carbonate solution, followed 

by extraction (3x) with tert-butyl methyl ether. The combined organic layers were dried over 
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anhydrous magnesium sulfate and concentrated in vacuo. The residue was purified by 

chromatography on a silica gel column using methanol/DCM (2:8) as an eluent to provide 4.0 g 

(43%) of 1-benzyl-4-(2-(2-hydroxyethyl)phenyl)piperidin-4-ol as brown oil. MS (EI) m/z 312.51 

(M++1) 1H NMR (400 MHz, DMSO-d6) δ 7.37 (dd, J = 7.2, 2.1 Hz, 1H), 7.32 (d, J = 4.4 Hz, 

4H), 7.24 (ddt, J = 8.7, 6.2, 3.6 Hz, 1H), 7.20 – 7.07 (m, 3H), 4.76 (d, J = 17.8 Hz, 2H), 3.60 (t, J 

= 7.4 Hz, 2H), 3.50 (s, 2H), 3.37 (s, 2H), 3.14 (t, J = 7.4 Hz, 2H), 2.61 (d, J = 10.4 Hz, 2H), 1.98 

(td, J = 12.7, 4.3 Hz, 2H), 1.79 (d, J = 12.8 Hz, 2H). 13C NMR (101 MHz, DMSO) δ 147.31, 

139.10, 138.34, 132.37, 129.32, 128.54, 127.21, 126.78, 125.90, 125.70, 71.00, 63.69, 62.84, 

49.41, 37.96, 37.35. 

 
1'-Benzyl-3,4-dihydrospiro[isochromene-1,4'-piperidine]. 492 (WA485b) To a solution of 1-

benzyl-4-(2-(2-hydroxyethyl)phenyl)piperidin-4-ol (4g, 12.8 mmol) and triethylamine (4 mL, 28 

mmol) in freshly distilled THF (100 mL) was added methanesulfonyl chloride(0.96 g, 12.6 

mmol) at 0 C for a period of 10 min and then warmed up to room temperature for 15 min. The 

reaction mixture was then refluxed for 5 h, after that was cooled down and quenched with water 

and basified with 1M aqueous NaOH solution, followed by extraction (3x) with ethy acetate. The 

combined organic layers were dried over anhydrous magnesium sulfate and concentrated in 

vacuo. The residue was purified by chromatography on a silica gel column using ethyl 

acetate/hexane (3:7) as an eluent to provide 1.6 g (42%) of 1'-Benzyl-3,4-

dihydrospiro[isochromene-1,4'-piperidine] as yellow oil. MS (EI) m/z 294.48 (M++1). 1H NMR 

(400 MHz, Methanol-d4) δ 7.40 – 7.21 (m, 5H), 7.20 – 7.12 (m, 2H), 7.12 – 7.02 (m, 2H), 3.85 

(t, J = 5.5 Hz, 2H), 3.57 (s, 2H), 2.80 – 2.68 (m, 4H), 2.53 – 2.41 (m, 2H), 2.03 (td, J = 13.4, 4.5 

Hz, 2H), 1.83 (dd, J = 14.4, 2.5 Hz, 2H). 13C NMR (101 MHz, MeOD) δ 141.53, 136.96, 133.56, 

129.56, 128.45, 127.94, 127.09, 125.89, 125.87, 124.92, 72.70, 62.94, 58.40, 48.80, 35.94, 29.21. 
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3,4-dihydrospiro[isochromane-1,4'-piperidine]. 493 (WA485c) To a solution of 1'-Benzyl-

3,4-dihydrospiro[isochromene-1,4'-piperidine] (1g, 3.4 mmol) in methanol (100 mL) was 

hydrogenated in the Parr apparatus (45 psi) in the presence of 10% palladium on charcoal (0.1 g) 

for 72 h. Filtration of the catalyst, concentrated and washed with ether, dried in air to afford 0.45 

g (65%) of spiro[isochromane-1,4'-piperidine] as clear oil. MS (EI) m/z 204.53 (M++1) 1H NMR 

(400 MHz, Methanol-d4) δ 7.20 (d, J = 4.1 Hz, 2H), 7.14 (dt, J = 13.6, 7.5 Hz, 2H), 3.91 (t, J = 

5.5 Hz, 2H), 3.20 (td, J = 12.7, 2.9 Hz, 2H), 3.08 (dd, J = 12.6, 4.5 Hz, 2H), 2.81 (t, J = 5.5 Hz, 

2H), 2.09 (td, J = 13.7, 4.7 Hz, 2H), 1.94 (dd, J = 14.9, 2.6 Hz, 2H). 13C NMR (101 MHz, 

MeOD) δ 140.71, 133.45, 128.61, 126.22, 126.05, 124.82, 72.05, 58.81, 40.61, 34.73, 29.06. 

 

9.7 Synthesis of Spiro[isochromane-1,4'-piperidine] derivatives 

 
1-methyl-3-(4-(spiro[isochromane-1,4'-piperidin]-1'-yl)butyl)-1,3-dihydro-2H-

benzo[d]imidazol-2-one. 435 (WA514) To a solution of 1-(4-bromobutyl)-3-methyl-1,3-

dihydro-2H-benzo[d]imidazol-2-one (WA318) (0.03 g, 0.106 mmol) in 4 mL DMF were added 

(0.044 g, 0.3188 mmol ) of potassium carbonate and (0.03 g, 0.1251 mmol )  of 

spiro[isochromane-1,4'-piperidine]- HCl, and the reaction mixture heated at 65 oC for 2 h, then 

the mixture extracted with ethyl acetate and water, washed with brine, dried over MgSO4 and the 

solvent evaporated using vaccu then purified by column chromatography (EtOAc: Hexane) to 

obtain 0.03 g of 1-methyl-3-(4-(spiro[isochromane-1,4'-piperidin]-1'-yl)butyl)-1,3-dihydro-2H-

benzo[d]imidazol-2-one as yellow oil in 70% yield. MS (ESI) m/z 406.48 [M++1]. 1H NMR (400 

MHz, Chloroform-d) δ 10.38 (s, 1H), 7.25 – 7.03 (m, 6H), 6.97 (ddd, J = 13.2, 5.8, 3.2 Hz, 2H), 

3.87 (dt, J = 20.7, 5.7 Hz, 4H), 3.39 (d, J = 1.7 Hz, 3H), 3.19 – 3.10 (m, 2H), 2.91 – 2.75 (m, 
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6H), 2.41 (td, J = 13.8, 4.2 Hz, 2H), 1.92 (d, J = 14.3 Hz, 2H), 1.80 (tt, J = 10.6, 5.9 Hz, 4H). 13C 

NMR (101 MHz, CDCl3) δ 154.43, 140.09, 133.39, 130.00, 129.02, 128.73, 126.62, 126.57, 

125.52, 121.32, 121.26, 107.54, 107.51, 71.74, 59.18, 56.84, 48.58, 40.24, 34.61, 29.44, 27.12, 

25.99, 21.84. 

 

3-(4-(spiro[isochromane-1,4'-piperidin]-1'-yl)butyl)benzo[d]oxazol-2(3H)-one. 436 (WA515) 

To a solution of 3-(4-bromobutyl)benzo[d]oxazol-2(3H)-one (WA479) (0.03 g, 0.11 mmol) in 4 

mL DMF were added (0.046 g, 0.33 mmol ) of potassium carbonate and (0.032 g, 0.1334 mmol )  

of spiro[isochromane-1,4'-piperidine]-HCl, and the reaction mixture heated at 65 oC for 2 h, then 

the mixture extracted with ethyl acetate and water, washed with brine, dried over MgSO4 and the 

solvent evaporated using vaccu then purified by column chromatography (EtOAc: Hexane) to 

obtain 0.025 g of 3-(4-(spiro[isochromane-1,4'-piperidin]-1'-yl)butyl)benzo[d]oxazol-2(3H)-one 

as yellow oil in 58% yield. MS (ESI) m/z 393.51 [M++1]. 1H NMR (400 MHz, Chloroform-d) δ 

7.24 – 7.01 (m, 8H), 3.93 – 3.84 (m, 4H), 2.83 (t, J = 5.5 Hz, 4H), 2.63 – 2.43 (m, 4H), 2.14 (s, 

2H), 1.96 – 1.83 (m, 4H), 1.71 (q, J = 7.6 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 154.61, 

142.71, 133.69, 131.10, 128.78, 126.30, 126.21, 125.45, 123.79, 122.37, 110.07, 108.30, 72.81, 

58.83, 57.80, 49.25, 42.01, 36.41, 29.62, 25.74, 23.69. 

 

5-fluoro-3-methyl-1-(4-(spiro[isochromane-1,4'-piperidin]-1'-yl)butyl)-1,3-dihydro-2H-

benzo[d]imidazol-2-one. 437 (WA516) To a solution of 1-(4-bromobutyl)-5-fluoro-3-methyl-

1,3-dihydro-2H-benzo[d]imidazol-2-one (WA377) (0.03 g, 0.0996 mmol) in 4 mL DMF were 

added (0.041 g, 0.30 mmol ) of potassium carbonate and (0.0286 g, 0.1195 mmol )  of 

spiro[isochromane-1,4'-piperidine]-HCl, and the reaction mixture heated at 65 oC for 3 h, then 

the mixture extracted with ethyl acetate and water, washed with brine, dried over MgSO4 and the 
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solvent evaporated using vaccu then purified by column chromatography (EtOAc: Hexane) to 

obtain 0.02 g of 5-fluoro-3-methyl-1-(4-(spiro[isochromane-1,4'-piperidin]-1'-yl)butyl)-1,3-

dihydro-2H-benzo[d]imidazol-2-one as yellow oil in 48% yield. MS (ESI) m/z 424.44 [M++1]. 

1H NMR (400 MHz, Chloroform-d) δ 7.26 – 7.05 (m, 4H), 6.92 (ddd, J = 7.8, 5.0, 2.7 Hz, 1H), 

6.87 – 6.70 (m, 2H), 4.03 – 3.83 (m, 4H), 3.45 – 3.37 (m, 3H), 2.98 (d, J = 8.0 Hz, 2H), 2.83 (q, 

J = 4.7 Hz, 2H), 2.29 (s, 2H), 2.10 – 1.66 (m, 7H), 1.26 (s, 2H), 0.87 (s, 1H). 13C NMR (101 

MHz, CDCl3) δ 159.88, 157.52, 154.73, 133.54, 130.62, 128.75, 126.49, 126.40, 125.51, 125.26, 

107.76, 107.66, 107.59, 107.35, 96.10, 95.82, 72.34, 59.01, 57.53, 49.05, 40.69, 35.61, 29.55, 

27.30, 26.18, 22.95. 

 

5-fluoro-1-methyl-3-(4-(spiro[isochromane-1,4'-piperidin]-1'-yl)butyl)-1,3-dihydro-2H-

benzo[d]imidazol-2-one. 438 (WA517) To a solution of 3-(4-bromobutyl)-5-fluoro-1-methyl-

1,3-dihydro-2H-benzo[d]imidazol-2-one. (WA427) (0.03 g, 0.0996 mmol) in 3 mL DMF were 

added (0.041 g, 0.30 mmol) of potassium carbonate and (0.0286 g, 0.1195 mmol)  of 

spiro[isochromane-1,4'-piperidine]-HCl, and the reaction mixture heated at 65 oC for 3 h, then 

the mixture extracted with ethyl acetate and water, washed with brine, dried over MgSO4 and the 

solvent evaporated using vaccu then purified by column chromatography (EtOAc: Hexane) to 

obtain 0.025 g of 5-fluoro-1-methyl-3-(4-(spiro[isochromane-1,4'-piperidin]-1'-yl)butyl)-1,3-

dihydro-2H-benzo[d]imidazol-2-one as yellow oil in 59% yield. MS (ESI) m/z 424.51 [M++1]. 

1H NMR (400 MHz, Chloroform-d) δ 7.21 – 7.10 (m, 3H), 7.07 (d, J = 7.5 Hz, 1H), 6.88 – 6.77 

(m, 3H), 3.93 – 3.87 (m, 4H), 3.40 (s, 3H), 2.86 – 2.74 (m, 4H), 2.52 – 2.37 (m, 4H), 2.11 – 2.00 

(m, 2H), 1.89 (dd, J = 14.3, 2.5 Hz, 2H), 1.85 – 1.77 (m, 2H), 1.67 – 1.58 (m, 2H). 13C NMR 

(101 MHz, CDCl3) δ 159.88, 157.52, 154.68, 141.83, 133.70, 129.96, 129.84, 128.75, 126.23, 

126.19, 126.10, 125.43, 107.51, 107.41, 107.38, 107.14, 96.21, 95.93, 73.00, 58.74, 57.92, 49.17, 
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41.08, 36.60, 29.65, 27.19, 26.19, 23.92. 

 

1-methyl-3-(4-(spiro[isochromane-1,4'-piperidin]-1'-yl)pentyl)-1,3-dihydro-2H-

benzo[d]imidazol-2-one. 439 (WA518) To a solution of 1-(4-bromopentyl)-3-methyl-1,3-

dihydro-2H-benzo[d]imidazol-2-one. (WA477)  (0.03 g, 0.1 mmol) in 3 mL DMF were added 

(0.042 g, 0.30 mmol) of potassium carbonate and (0.0286 g, 0.1209 mmol)  of 

spiro[isochromane-1,4'-piperidine]-HCl, and the reaction mixture heated at 65 oC for 3 h, then 

the mixture extracted with ethyl acetate and water, washed with brine, dried over MgSO4 and the 

solvent evaporated using vaccu then purified by column chromatography (EtOAc: Hexane) to 

obtain 0.028 g of 1-methyl-3-(4-(spiro[isochromane-1,4'-piperidin]-1'-yl)pentyl)-1,3-dihydro-

2H-benzo[d]imidazol-2-one as yellow oil in 67% yield. MS (ESI) m/z 420.49 [M++1]. 1H NMR 

(400 MHz, Chloroform-d) δ 7.26 – 6.97 (m, 8H), 4.00 – 3.85 (m, 4H), 3.43 (s, 2H), 2.83 (q, J = 

5.7, 5.3 Hz, 5H), 2.72 (s, 1H), 2.58 (t, J = 12.3 Hz, 1H), 2.45 (s, 1H), 2.31 – 2.12 (m, 2H), 2.00 – 

1.78 (m, 5H), 1.31 – 1.22 (m, 2H), 1.12 (s, 2H). 13C NMR (101 MHz, CDCl3) δ 154.40, 133.67, 

130.09, 128.78, 128.70, 126.39, 126.27, 125.67, 125.44, 121.17, 121.08, 107.59, 107.41, 72.13, 

58.89, 51.18, 46.35, 42.05, 41.07, 36.23, 29.60, 27.11, 25.69, 13.77. 

 

5-fluoro-1-methyl-3-(4-(spiro[isochromane-1,4'-piperidin]-1'-yl)pentyl)-1,3-dihydro-2H-

benzo[d]imidazol-2-one. 440 (WA519) To a solution of 3-(4-bromopentyl)-5-fluoro-1-methyl-

1,3-dihydro-2H-benzo[d]imidazol-2-one. (WA489) (0.03 g, 0.0951 mmol) in 3 mL DMF were 

added (0.039 g, 0.2826 mmol) of potassium carbonate and (0.027 g, 0.1126 mmol)  of 

spiro[isochromane-1,4'-piperidine]-HCl, and the reaction mixture heated at 65 oC for 4 h, then 

the mixture extracted with ethyl acetate and water, washed with brine, dried over MgSO4 and the 
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solvent evaporated using vaccu then purified by column chromatography (EtOAc: Hexane) to 

obtain 0.02 g of 5-fluoro-1-methyl-3-(4-(spiro[isochromane-1,4'-piperidin]-1'-yl)pentyl)-1,3-

dihydro-2H-benzo[d]imidazol-2-one as yellow oil in 49% yield. MS (ESI) m/z 438.52 [M++1]. 

1H NMR (400 MHz, Chloroform-d) δ 7.33 (d, J = 7.8 Hz, 1H), 7.24 – 7.05 (m, 3H), 6.88 (dd, J = 

9.0, 4.4 Hz, 1H), 6.81 (ddd, J = 9.0, 6.7, 2.5 Hz, 2H), 3.98 – 3.82 (m, 4H), 3.40 (s, 5H), 3.38 – 

3.22 (m, 4H), 2.90 – 2.72 (m, 4H), 2.04 (d, J = 14.8 Hz, 2H), 1.39 (d, J = 6.5 Hz, 3H), 1.31 (s, 

1H), 1.25 (s, 2H). 13C NMR (101 MHz, CDCl3) δ 159.97, 157.60, 154.72, 138.74, 133.12, 

128.69, 127.06, 126.97, 126.14, 125.78, 107.88, 107.61, 96.20, 95.91, 77.37, 77.12, 71.22, 61.57, 

59.57, 45.82, 43.85, 40.60, 33.68, 29.36, 28.15, 27.27, 25.14, 13.50. 

 

3-(4-(spiro[isochromane-1,4'-piperidin]-1'-yl)butyl)benzo[d]thiazol-2(3H)-one. 441 

(WA520) To a solution of 3-(4-bromobutyl)benzo[d]thiazol-2(3H)-one (WA480)  (0.03 g, 

0.1048 mmol) in 3 mL DMF were added (0.044 g, 0.3188 mmol) of potassium carbonate and 

(0.03 g, 0.1251 mmol)  of spiro[isochromane-1,4'-piperidine]-HCl, and the reaction mixture 

heated at 65 oC for 3 h, then the mixture extracted with ethyl acetate and water, washed with 

brine, dried over MgSO4 and the solvent evaporated using vaccu then purified by column 

chromatography (EtOAc: Hexane) to obtain 0.023 g of 3-(4-(spiro[isochromane-1,4'-piperidin]-

1'-yl)butyl)benzo[d]thiazol-2(3H)-one as yellow oil in 55% yield. MS (ESI) m/z 409.53 [M++1]. 

1H NMR (400 MHz, Chloroform-d) δ 7.42 (d, J = 7.7 Hz, 1H), 7.33 (t, J = 7.8 Hz, 1H), 7.15 

(ddt, J = 29.3, 18.5, 8.6 Hz, 6H), 4.00 (t, J = 7.1 Hz, 2H), 3.88 (t, J = 5.5 Hz, 2H), 2.99 – 2.75 

(m, 4H), 2.59 (q, J = 13.0, 10.0 Hz, 4H), 2.21 (t, J = 13.5 Hz, 2H), 1.92 (d, J = 13.8 Hz, 2H), 

1.84 (q, J = 7.3 Hz, 2H), 1.78 – 1.69 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 169.95, 141.24, 

136.98, 133.63, 128.78, 126.38, 126.34, 126.29, 125.47, 123.08, 122.78, 122.68, 110.65, 72.60, 
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58.90, 57.71, 49.22, 42.31, 36.10, 29.59, 25.46, 23.36. 

 

5-fluoro-3-methyl-1-(4-(spiro[isochromane-1,4'-piperidin]-1'-yl)pentyl)-1,3-dihydro-2H-

benzo[d]imidazol-2-one. 442 (WA522) To a solution of 1-(4-bromopentyl)-5-fluoro-3-methyl-

1,3-dihydro-2H-benzo[d]imidazol-2-one (WA488) (0.03 g, 0.0942 mmol) in 3 mL DMF were 

added (0.039 g, 0.2826 mmol) of potassium carbonate and (0.027 g, 0.1126 mmol)  of 

spiro[isochromane-1,4'-piperidine]-HCl, and the reaction mixture heated at 65 oC for 4 h, then 

the mixture extracted with ethyl acetate and water, washed with brine, dried over magnesium 

sulfate and the solvent evaporated using vaccu then purified by column chromatography (EtOAc: 

Hexane) to obtain 0.018 g of 3-(4-(spiro[isochromane-1,4'-piperidin]-1'-

yl)butyl)benzo[d]thiazol-2(3H)-one as yellow oil in 43% yield. MS (ESI) m/z 438.45 [M++1]. 1H 

NMR (400 MHz, Chloroform-d) δ 7.37 (d, J = 7.7 Hz, 1H), 7.18 (dt, J = 25.4, 7.4 Hz, 2H), 7.06 

(d, J = 7.6 Hz, 1H), 6.94 (dd, J = 8.6, 4.3 Hz, 1H), 6.83 – 6.71 (m, 2H), 3.95 – 3.83 (m, 4H), 3.38 

(s, 3H), 3.30 – 3.09 (m, 5H), 2.81 (t, J = 5.4 Hz, 4H), 2.21 (s, 1H), 2.00 (d, J = 14.6 Hz, 2H), 

1.93 – 1.77 (m, 2H), 1.61 – 1.49 (m, 1H), 1.34 (d, J = 6.6 Hz, 3H). 13C NMR (101 MHz, CDCl3) 

δ 159.93, 157.56, 154.68, 139.21, 133.16, 130.70, 130.58, 128.65, 126.94, 126.82, 125.87, 

125.07, 107.87, 107.78, 107.55, 96.22, 95.93, 71.54, 61.24, 59.44, 46.10, 43.38, 40.65, 34.13, 

34.02, 29.40, 28.56, 27.33, 25.34, 13.44. 

 

9.8 Synthesis of CM304 derivatives 

 
6-(2-chloroacetyl)benzo[d]thiazol-2(3H)-one.  443 (WA309) DMF (10 ml) was slowly added 

to AlCl3 (44.1 g, 330.73 mmol) under vigorous stirring. The mixture was heated at 450C and 

2(3H)-benzothiazole (5 g, 33.07 mmol) was added. After 20 min chloroacetyl chloride (5.6 g, 
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49.58 mmol) was added and the reaction mixture was heated at 850C for 3h. The hot mixture was 

then carefully poured onto ice and stirred for 30 min then the crude product was collected by 

filtration, washed with water and air-dried. The solid was crystallized from ethanol to give 9 g of 

6-(2-chloroacetyl)benzo[d]thiazol-2(3H)-one as a chocolate solid in 99% yield.  MS (ESI) m/z 

226.32 [M+1]+. H NMR (400 MHz, DMSO-d6) δ 12.43 – 12.29 (m, 1H), 8.23 (s, 1H), 7.94 – 

7.88 (m, 1H), 7.26 – 7.19 (m, 1H), 5.12 (s, 2H). 13C NMR (101 MHz, DMSO) δ 190.36, 170.81, 

141.31, 129.34, 127.81, 124.33, 124.03, 111.82, 47.76. 

 

6-(3-chloropropanoyl)benzo[d]thiazol-2(3H)-one. 444 (WA310) Anhydrous DMF (10 ml) was 

slowly added to AlCl3 (52.91 g, 396.80 mmol) under vigorous stirring. The mixture was heated 

at 450C and 2(3H)-benzothiazole (6 g, 39.68 mmol) was added. After 20 min chloropropionyl 

chloride (7.55 g, 59.46 mmol) was added and the reaction mixture was heated at 850C for 3h. 

The hot mixture was then carefully poured onto ice and stirred for 30 min then the crude product 

was collected by filtration, washed with water and air-dried. The solid was crystallized from 

ethanol to give 8 g of 6-(3-chloropropanoyl)benzo[d]thiazol-2(3H)-one as a grey solid in 83% 

yield.  MS (ESI) m/z 240.33 [M-1]+. 1H NMR (400 MHz, DMSO-d6) δ 12.28 (s, 1H), 8.24 (s, 

1H), 7.89 (d, J = 8.6 Hz, 1H), 7.19 (d, J = 8.0 Hz, 1H), 3.95 – 3.87 (m, 2H), 3.57 – 3.45 (m, 2H). 

13C NMR (101 MHz, DMSO) δ 195.58, 170.90, 141.01, 131.41, 127.40, 124.27, 123.77, 111.71, 

40.88, 40.03. 

 
6-(2-chloroethyl)benzo[d]thiazol-2(3H)-one. 445 (WA311) Triethylsilane (10.57 g, 90.90 

mmol) was added to the stirred solution of 6-(2-chloroacetyl)benzo[d]thiazol-2(3H)-one 

(WA309)(9 g, 39.53 mmol) in (30 mL) trifluoroacetic acid. The mixture was vigorously stirred 

at room temperature for 16h, and then the mixture was evaporated over the vaccu. The residue 
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was purified by column chromatography using (3:7) ethyl acetate in hexanes to give 3.5 g 6-(2-

chloroethyl)benzo[d]thiazol-2(3H)-one as a white solid in 41% yield. MS (ESI) m/z 212.30 [M-

1]+. 1H NMR (400 MHz, DMSO-d6) δ 11.82 (s, 1H), 7.47 (s, 1H), 7.16 (s, 1H), 7.06 – 7.02 (m, 

1H), 3.83 – 3.80 (m, 2H), 3.00 (s, 2H). 13C NMR (101 MHz, DMSO) δ 170.25, 135.26, 133.18, 

127.64, 123.70, 123.26, 111.70, 45.91, 38.22. 

 
6-(3-chloropropyl)benzo[d]thiazol-2(3H)-one. 446 (WA315) Triethylsilane (8.57 g, 71.29 

mmol) was added to the stirred solution of 6-(3-chloropropanoyl)benzo[d]thiazol-2(3H)-one 

(WA310)(7.5 g, 31.03 mmol) in (30 mL) trifluoroacetic acid. The mixture was vigorously stirred 

at room temperature for 18h, and then the mixture was evaporated over the vaccu. The residue 

was purified by column chromatography using (3:7) ethyl acetate in hexanes to give 4.5 g 6-(3-

chloropropyl)benzo[d]thiazol-2(3H)-one as a white solid in 41% yield. MS (ESI) m/z 226.32  

[M-1]+. 1H NMR (400 MHz, Methanol-d4) δ 7.35 – 7.29 (m, 1H), 7.14 (dt, J = 7.6, 2.7 Hz, 1H), 

7.06 (dd, J = 8.3, 5.0 Hz, 1H), 3.54 (q, J = 6.2 Hz, 2H), 2.78 (td, J = 7.6, 5.1 Hz, 2H), 2.12 – 1.99 

(m, 2H). 

 
3-(2-(azepan-1-yl)ethyl)-6-(3-chloropropyl)benzo[d]thiazol-2(3H)-one. 448 (WA323) 6-(3-

chloropropyl)benzo[d]thiazol-2(3H)-one (WA315) (1 g, 4.39 mmol)  was dissolved in 25 mL 

DMF and was added (4.35 g, 21.95 mmol) 1-(2-chloroethyl)azepane-HCl and heated at 120 °C. 

Then the (3.68 g, 43.81 mmol) sodium bicarbonate was added slowly and the reaction left at 120 

°C for 30 min. The reaction mixture was cooled to room temperature and poured into water. It 

was extracted in ethyl acetate and the organic layer was washed with brine. The solvent was 

evaporated under reduced pressure and the product was purified by column chromatography over 

silica gel using ethyl acetate in hexanes to give 0.8 g of 3-(2-(azepan-1-yl)ethyl)-6-(3-
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chloropropyl)benzo[d]thiazol-2(3H)-one as yellow oil in 51% yield. MS (ESI) m/z 353.59 

[M+1]+. 1H NMR (400 MHz, Methanol-d4) δ 7.36 (d, J = 1.6 Hz, 1H), 7.21 – 7.14 (m, 2H), 4.04 

(t, J = 7.1 Hz, 2H), 3.53 (t, J = 6.5 Hz, 2H), 2.78 (t, J = 6.9 Hz, 4H), 2.73 – 2.69 (m, 4H), 2.10 – 

1.98 (m, 2H), 1.66 – 1.60 (m, 4H), 1.56 (d, J = 3.8 Hz, 4H). 13C NMR (101 MHz, MeOD) δ 

170.26, 136.34, 135.34, 126.71, 122.36, 122.19, 110.85, 55.38, 54.37, 43.47, 40.38, 34.07, 31.94, 

27.56, 26.54. 

 
 3-(2-(azepan-1-yl)ethyl)-6-(2-chloroethyl)benzo[d]thiazol-2(3H)-one. 447 (WA324) 6-(2-

chloroethyl)benzo[d]thiazol-2(3H)-one (WA311) (1 g, 4.67 mmol)  was dissolved in 25 mL 

DMF and was added (4.63 g, 23.36 mmol) 1-(2-chloroethyl)azepane-HCl and heated at 120 °C. 

Then the (3.93 g, 46.78 mmol) sodium bicarbonate was added slowly and the reaction left at 120 

°C for 30 min. The reaction mixture was cooled to room temperature and poured into water. It 

was extracted in ethyl acetate and the organic layer was washed with brine. The solvent was 

evaporated over vacuo and the product was purified by column chromatography over silica gel 

using ethyl acetate in hexanes to give 1.3 g of 3-(2-(azepan-1-yl)ethyl)-6-(2-

chloroethyl)benzo[d]thiazol-2(3H)-one as yellow oil in 82% yield. MS (ESI) m/z 339.49 [M+1]+. 

1H NMR (400 MHz, Methanol-d4) δ 7.40 (dd, J = 5.7, 1.7 Hz, 1H), 7.30 – 7.14 (m, 2H), 4.03 (q, 

J = 6.4, 5.8 Hz, 2H), 3.73 (q, J = 6.4, 5.8 Hz, 2H), 3.06 (t, J = 6.9 Hz, 2H), 2.78 (t, J = 7.1 Hz, 

2H), 2.71 (q, J = 5.3 Hz, 4H), 1.60 (dq, J = 18.9, 4.3, 3.8 Hz, 8H). 13C NMR (101 MHz, MeOD) 

δ 170.26, 135.80, 133.84, 127.14, 122.69, 122.31, 110.80, 55.38, 54.35, 44.57, 40.39, 38.16, 

27.52, 26.54. 

 
3-(2-(azepan-1-yl)ethyl)-6-(3-(methylthio)propyl)benzo[d]thiazol-2(3H)-one. 450 (WA325) 

A mixture of 3-(2-(azepan-1-yl)ethyl)-6-(3-chloropropyl)benzo[d]thiazol-2(3H)-one 



 346 

(WA323)(0.250 g, 0.7 mmol), and sodium thiomethoxide (0.300 g, 4.28 mmol), in ethanol (2 ml) 

was stirred at room temperature for 16 h. Then, the reaction mixture was poured into water and 

extracted with ethyl acetate (3x20 ml). The combined organic layers were washed with water (20 

ml) and brine (20 ml), and then concentrated over vacuo. The residue was purified by column 

chromatography over silica gel using ethyl acetate in hexanes to afford 0.160 g of 3-(2-(azepan-

1-yl)ethyl)-6-(3-(methylthio)propyl)benzo[d]thiazol-2(3H)-one as viscous oil, in 62 % yield. MS 

(ESI) m/z 365.55 [M+1]+. 1H NMR (400 MHz, Methanol-d4) δ 7.32 (s, 1H), 7.18 (s, 2H), 4.08 (t, 

J = 7.1 Hz, 2H), 2.90 – 2.81 (m, 6H), 2.70 (t, J = 7.6 Hz, 2H), 2.45 (t, J = 7.2 Hz, 2H), 2.04 (d, J 

= 2.7 Hz, 3H), 1.87 (q, J = 7.5 Hz, 2H), 1.67 – 1.63 (m, 4H), 1.58 (p, J = 3.1 Hz, 4H). 13C NMR 

(101 MHz, MeOD) δ 170.23, 137.28, 135.02, 126.77, 122.25, 122.21, 110.77, 55.34, 54.32, 

39.95, 33.82, 32.92, 30.63, 26.97, 26.47, 14.08. 

 

3-(2-(azepan-1-yl)ethyl)-6-(2-(methylthio)ethyl)benzo[d]thiazol-2(3H)-one. 449 (WA327) A 

mixture of 3-(2-(azepan-1-yl)ethyl)-6-(2-chloroethyl)benzo[d]thiazol-2(3H)-one (WA324)(0.5 g, 

1.47 mmol), and sodium thiomethoxide (0.450 g, 6.42 mmol), in ethanol (5 ml) was stirred at 

room temperature for 18 h. Then, the reaction mixture was poured into water and extracted with 

ethyl acetate (3x25 ml). The combined organic layers were washed with water (25 ml) and brine 

(25 ml), and then concentrated over vacuo. The residue was purified by column chromatography 

over silica gel using ethyl acetate in hexanes to afford 0.45 g of 3-(2-(azepan-1-yl)ethyl)-6-(2-

(methylthio)ethyl)benzo[d]thiazol-2(3H)-one as viscous oil, in 87 % yield. MS (ESI) m/z 351.55 

[M+1]+. 1H NMR (500 MHz, Methanol-d4) δ 7.42 (d, J = 1.7 Hz, 1H), 7.29 – 7.15 (m, 2H), 4.08 

(t, J = 7.1 Hz, 2H), 2.92 (dd, J = 8.6, 6.6 Hz, 2H), 2.83 (t, J = 7.1 Hz, 2H), 2.76 (dd, J = 10.4, 5.2 
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Hz, 6H), 2.11 (s, 3H), 1.69 – 1.57 (m, 8H). 13C NMR (126 MHz, MeOD) δ 170.42, 136.28, 

135.42, 126.83, 122.34, 122.22, 110.77, 55.39, 54.37, 40.37, 35.40, 34.95, 27.52, 26.54, 14.12. 

 
3-(2-(azepan-1-yl)ethyl)-6-(2-azidoethyl)benzo[d]thiazol-2(3H)-one. 453 (WA329) A solution 

of 3-(2-(azepan-1-yl)ethyl)-6-(2-chloroethyl)benzo[d]thiazol-2(3H)-one (WA324) (0.5 g, 

1.47mmol) in 3 mL anhydrous DMF was added a solution of NaN3 (0.192 g, 2.95 mmol) in 2 mL 

anhydrous DMF at room temperature. The mixture was stirred for 3 h, then was added a catalytic 

amount of potassium iodide and left until all the starting material had been consumed after 36 h, 

as observed by TLC. The reaction was quenched with water (50mL) and extracted with ethyl 

acetate (3x30mL), and washed with brine (50mL). The organic layer was dried over sodium 

sulfate, filtered, and the solvent removed over vacuo. The residue was purified by column 

chromatography over silica gel using ethyl acetate in hexanes to afford 0.4 g of 3-(2-(azepan-1-

yl)ethyl)-6-(2-azidoethyl)benzo[d]thiazol-2(3H)-one as brown oil in 78 % yield. MS (ESI) m/z 

346.62 [M+1]+. 1H NMR (400 MHz, Methanol-d4) δ 7.30 – 7.18 (m, 2H), 4.08 (t, J = 7.0 Hz, 

2H), 3.53 (t, J = 6.9 Hz, 2H), 2.91 (t, J = 6.9 Hz, 2H), 2.85 – 2.77 (m, 2H), 2.77 – 2.69 (m, 4H), 

1.67 – 1.55 (m, 8H). 13C NMR (101 MHz, MeOD) δ 170.38, 135.75, 134.00, 127.07, 122.61, 

122.41, 110.91, 55.37, 54.34, 52.17, 40.37, 34.42, 27.52, 26.51. 

 

6-(2-aminoethyl)-3-(2-(azepan-1-yl)ethyl)benzo[d]thiazol-2(3H)-one. 455 (WA343) To a 

solution of 3-(2-(azepan-1-yl)ethyl)-6-(2-azidoethyl)benzo[d]thiazol-2(3H)-one (WA329) (0.232 

g, 0.67 mmol) in methanol (75 mL) was added to 10% Palladium on carbon catalyst (0.027 g) 

and stirred under a hydrogen atmosphere (30 psi) for 3 h. The mixture was filtered through celite 

and evaporated under vacuo. The residue was purified by column chromatography over silica gel 

using ethyl acetate in hexanes to afford 0.160 g of 6-(2-aminoethyl)-3-(2-(azepan-1-
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yl)ethyl)benzo[d]thiazol-2(3H)-one as brown residue in 74% yield. MS (ESI) m/z 320.65 

[M+1]+. 1H NMR (400 MHz, Methanol-d4) δ 7.39 (d, J = 1.7 Hz, 1H), 7.27 – 7.16 (m, 2H), 4.05 

(t, J = 7.0 Hz, 2H), 2.95 – 2.85 (m, 2H), 2.79 (t, J = 7.1 Hz, 4H), 2.72 (t, J = 5.4 Hz, 4H), 1.63 – 

1.54 (m, 8H). 13C NMR (101 MHz, MeOD) δ 170.30, 135.50, 134.93, 126.97, 122.47, 122.39, 

110.92, 63.60, 55.37, 54.37, 42.65, 40.38, 27.55, 26.54. 

 

3-(2-(azepan-1-yl)ethyl)-6-(3-azidopropyl)benzo[d]thiazol-2(3H)-one. 454 (WA345) A 

solution of 3-(2-(azepan-1-yl)ethyl)-6-(3-chloropropyl)benzo[d]thiazol-2(3H)-one (WA323) 

(0.69 g, 1.955 mmol) in 15 mL anhydrous acetonitrile was added a solution of NaN3 (0.254 g, 

3.9 mmol) in 5 mL anhydrous acetonitrile at room temperature.Then was added a catalytic 

amount of potassium iodide (33 mg) and heated at 75 °C until all the starting material had been 

consumed after 36 h, as observed by TLC. The reaction mixture was quenched with water 

(50mL) and extracted with ethyl acetate (3x30mL), and washed with brine (50mL). The organic 

layer was dried over sodium sulfate, filtered, and the solvent removed under vacuo. The residue 

was purified by column chromatography over silica gel using ethyl acetate in hexanes to afford 

0.45 g of 3-(2-(azepan-1-yl)ethyl)-6-(3-azidopropyl)benzo[d]thiazol-2(3H)-one as brown oil in 

64 % yield. MS (ESI) m/z 360.69 [M+1]+. 1H NMR (400 MHz, Methanol-d4) δ 8.28 (s, 1H), 8.05 

(dt, J = 25.5, 12.5 Hz, 2H), 4.77 (t, J = 6.7 Hz, 2H), 4.13 (t, J = 6.9 Hz, 2H), 3.53 (t, J = 6.7 Hz, 

2H), 3.46 (t, J = 7.6 Hz, 2H), 3.41 (d, J = 5.6 Hz, 2H), 2.64 (q, J = 7.2 Hz, 2H), 2.28 (d, J = 14.9 

Hz, 6H), 2.03 (d, J = 7.1 Hz, 2H), 1.63 (dt, J = 10.5, 6.6 Hz, 2H). 13C NMR (101 MHz, MeOD) δ 

169.81, 137.18, 136.51, 127.90, 123.57, 122.72, 112.57, 56.24, 55.64, 51.29, 42.03, 32.94, 31.36, 

29.37, 27.69. 
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6-(3-aminopropyl)-3-(2-(azepan-1-yl)ethyl)benzo[d]thiazol-2(3H)-one. 456 (WA351) To a 

solution of 3-(2-(azepan-1-yl)ethyl)-6-(3-azidopropyl)benzo[d]thiazol-2(3H)-one (WA345) 

(0.350 g, 0.99 mmol) in methanol (100 mL) was added to 10% Palladium on carbon catalyst 

(0.040 g) and stirred under a hydrogen atmosphere (30 psi) for 3 h. The mixture was filtered 

through celite and evaporated under vacuo. The residue was purified by column chromatography 

over silica gel using ethyl acetate in hexanes to afford 0.250 g of 6-(2-aminoethyl)-3-(2-(azepan-

1-yl)ethyl)benzo[d]thiazol-2(3H)-one as brown residue in 75% yield. MS (ESI) m/z 334.64 

[M+1]+. 1H NMR (400 MHz, DMSO-d6) δ 7.44 (s, 1H), 7.25 – 7.14 (m, 2H), 3.96 (t, J = 6.9 Hz, 

2H), 3.16 – 2.96 (m, 4H), 2.73 (t, J = 6.8 Hz, 2H), 2.55 (t, J = 7.3 Hz, 2H), 2.49 (s, 2H), 1.66 (q, 

J = 7.5 Hz, 2H), 1.48 (d, J = 10.8 Hz, 10H). 13C NMR (101 MHz, DMSO) δ 169.01, 137.61, 

135.44, 127.08, 122.70, 121.75, 111.67, 55.42, 54.81, 41.20, 41.16, 35.05, 32.45, 28.55, 26.89. 

 

3-(2-(azepan-1-yl)ethyl)-6-(3-mercaptopropyl)benzo[d]thiazol-2(3H)-one. 452 (WA353) A 

mixture of thiourea (0.060 g, 0.788 mmol) and 3-(2-(azepan-1-yl)ethyl)-6-(3-

chloropropyl)benzo[d]thiazol-2(3H)-one (WA323) (0.25 g, 0.709 mmol) were dissolved in 

ethanol (15 mL) under an atmosphere of argon. After stirring for 24 h at 80°C, the the solvent 

was evaporated and the residue was dissolved in water (5 mL) and treated with aqueous solution 

of sodium hydroxide (40% in water, 10 mL). After a further 2 h of stirring at room temperature, 

the reaction mixture was extracted with ethyl acetate (3 X 20 mL). The organic phase was 

washed with sodium bicarbonate and brine, dried over anhydrous sodium sulfate, and the solvent 

was removed under vacuo. The residue was purified by column chromatography over silica gel 

using ethyl acetate in hexanes to afford 0.2 g of 3-(2-(azepan-1-yl)ethyl)-6-(3-

mercaptopropyl)benzo[d]thiazol-2(3H)-one as brown oil in 80 % yield. MS (ESI) m/z 350.70 
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[M+1]+. 1H NMR (400 MHz, DMSO-d6) δ 7.40 (s, 1H), 7.21 (d, J = 8.2 Hz, 1H), 7.13 (d, J = 8.2 

Hz, 1H), 3.93 (t, J = 6.9 Hz, 2H), 2.70 (t, J = 6.7 Hz, 2H), 2.64 (q, J = 8.6, 7.7 Hz, 4H), 2.59 (d, J 

= 5.8 Hz, 4H), 1.89 (p, J = 7.5 Hz, 2H), 1.48 (s, 2H), 1.46 (s, 1H), 1.43 (s, 6H). 13C NMR (101 

MHz, DMSO) δ 168.98, 136.53, 135.60, 127.05, 122.72, 121.92, 111.66, 55.39, 54.75, 41.10, 

37.59, 33.61, 30.79, 28.39, 26.86. 

 

3-(2-(azepan-1-yl)ethyl)-6-(2-mercaptoethyl)benzo[d]thiazol-2(3H)-one. 451 (WA354) A 

mixture of thiourea (0.062 g, 0.814 mmol) and 3-(2-(azepan-1-yl)ethyl)-6-(2-

chloroethyl)benzo[d]thiazol-2(3H)-one (WA324) (0.25 g, 0.739 mmol) were dissolved in ethanol 

(15 mL) under an atmosphere of argon. After stirring for 24 h at 80°C, the solvent was 

evaporated and the residue dissolved in water (5 mL) and treated with aqueous solution of 

sodium hydroxide (40% in water, 10 mL). After a further 2 h of stirring at room temperature, the 

reaction mixture was extracted with ethyl acetate (3 X 20 mL). The organic phase was washed 

with sodium bicarbonate and brine, dried over anhydrous sodium sulfate, and the solvent was 

removed under vacuo. The residue was purified by column chromatography over silica gel using 

ethyl acetate in hexanes to afford 0.21 g of 3-(2-(azepan-1-yl)ethyl)-6-(2-

mercaptoethyl)benzo[d]thiazol-2(3H)-one as brown oil in 84 % yield. MS (ESI) m/z 339.49 

[M+1]+. 1H NMR (400 MHz, DMSO-d6) δ 7.54 (s, 1H), 7.27 (t, J = 5.5 Hz, 2H), 3.98 (t, J = 6.7 

Hz, 2H), 3.84 (t, J = 7.0 Hz, 2H), 3.03 (t, J = 7.0 Hz, 2H), 2.74 (t, J = 6.7 Hz, 2H), 2.63 (t, J = 

5.4 Hz, 4H), 1.51 (s, 1H), 1.48 (s, 2H), 1.46 (d, J = 5.6 Hz, 6H). 13C NMR (101 MHz, DMSO) δ 

169.01, 136.38, 136.16, 133.59, 127.72, 123.38, 121.81, 111.74, 55.39, 54.74, 45.87, 41.15, 

38.11, 28.40, 26.87. 
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6-(2-bromopropanoyl)benzo[d]thiazol-2(3H)-one. 457 (WA437) DMF (4.5 ml) was slowly 

added to AlCl3 (26.6 g, 200 mmol) under vigorous stirring. The mixture was heated at 450C and 

2(3H)-benzothiazole (3 g, 20 mmol) was added. After 20 min 2-bromobutyryl chloride (5.42 g, 

31.61 mmol) was added and the reaction mixture was heated at 650C for 45 min. The hot mixture 

was then carefully poured onto ice and stirred for 30 min then the crude product was collected by 

filtration, washed with water and air-dried. The solid was purified by column chromatography 

over silica gel using ethyl acetate in hexanes to afford 4 g of 6-(2-

bromopropanoyl)benzo[d]thiazol-2(3H)-one as a white solid in 70% yield.  MS (ESI) m/z 

286.37; 288.38 [M, M+2]+. 1H NMR (400 MHz, DMSO-d6) δ 12.34 (s, 1H), 8.27 (s, 1H), 7.99 – 

7.92 (m, 1H), 7.22 (d, J = 8.4 Hz, 1H), 5.71 (dq, J = 13.2, 6.5 Hz, 1H), 1.75 (d, J = 6.5 Hz, 3H), 

1.60 (d, J = 6.5 Hz, 1H). 13C NMR (101 MHz, DMSO) δ 192.45, 170.98, 141.23, 128.74, 

128.36, 124.38, 124.36, 111.85, 43.36, 20.47. 

 

6-(2-bromopropyl)benzo[d]thiazol-2(3H)-one. 458 (WA438) Triethylsilane (1.87 g, 16.08 

mmol) was added to the stirred solution of 6-(2-bromopropanoyl)benzo[d]thiazol-2(3H)-one 

(WA437) (2 g, 7 mmol) in (15 mL) trifluoroacetic acid. The mixture was vigorously stirred at 

room temperature for 16 h, and then the mixture was evaporated over the vaccu. The residue was 

purified by column chromatography using (4:6) ethyl acetate in hexanes to give 1.7 g 6-(2-

bromopropyl)benzo[d]thiazol-2(3H)-one as a white solid in 89 % yield. MS (ESI) m/z 272.37; 

274.38 [M, M+1]+. 1H NMR (400 MHz, Chloroform-d) δ 10.19 (s, 1H), 7.28 (s, 1H), 7.14 (d, J = 

1.2 Hz, 2H), 4.33 – 4.16 (m, 1H), 3.24 – 3.06 (m, 2H), 1.73 (d, J = 6.7 Hz, 3H). 13C NMR (101 

MHz, CDCl3) δ 173.58, 134.12, 133.99, 127.72, 124.00, 123.06, 111.79, 50.44, 46.92, 25.72. 
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1-(2-oxo-2,3-dihydrobenzo[d]thiazol-6-yl)propan-2-yl benzoate. 459 (WA442) Anhydrous 

potassium carbonate (3.042 g, 22.04 mmol) and benzoic acid (4.48 g, 36.68 mmol) were added 

successively to a stirred solution of 6-(2-bromopropyl)benzo[d]thiazol-2(3H)-one (WA338) (2 g, 

7.35 mmol) in anhydrous DMF (60 mL). The reaction mixture was heated at 110 °C for 9 h. 

After cooling the mixture was poured into 50 mL of HCl (2N) solution in water, extracted with 

ethyl acetate (3 x 50 mL) and the organic layer was washed several times with saturated sodium 

bicarbonate solution to remove excess benzoic acid.  The organic layer was washed with brine, 

dried over anhydrous sodium sulfate, and evaporated under vacuo. The residue was purified by 

column chromatography (silica gel) using a mobile phase consisting of (2:98) methanol/diethyl 

ether to afford 1.7 g of 1-(2-oxo-2,3-dihydrobenzo[d]thiazol-6-yl)propan-2-yl benzoate as a 

white solid in 74% yield. MS (ESI) m/z 336.31 [M+23]+. 1H NMR (400 MHz, Chloroform-d) δ 

10.47 (d, J = 16.1 Hz, 1H), 8.19 – 8.08 (m, 1H), 8.03 – 8.00 (m, 1H), 7.62 – 7.54 (m, 1H), 7.49 – 

7.43 (m, 2H), 7.27 (d, J = 2.9 Hz, 1H), 7.17 (dd, J = 8.2, 1.6 Hz, 1H), 7.11 (t, J = 7.4 Hz, 1H), 

5.37 (q, J = 6.3 Hz, 1H), 3.11 – 2.90 (m, 2H), 1.37 (d, J = 6.3 Hz, 3H). 13C NMR (101 MHz, 

CDCl3) δ 173.47, 166.09, 134.12, 132.94, 130.45, 130.12, 129.48, 128.44, 128.37, 127.85, 

124.05, 123.21, 111.78, 72.06, 41.97, 19.50. 

 

1-(3-(2-(azepan-1-yl)ethyl)-2-oxo-2,3-dihydrobenzo[d]thiazol-6-yl)propan-2-yl benzoate. 

460 (WA448) Benzoic acid (1 g, 8.18 mmol) was dissolved in 10 mL HMPA and added 25% 

aqueous solution of sodium hydroxide (0.197 g, 4.925 mmol) and stirred for 15 minutes before 

adding a solution of 3-(2-(azepan-1-yl)ethyl)-6-(2-bromopropyl)benzo[d]thiazol-2(3H)-one 

(WA444a) (0.655 g, 1.65 mmol) in 5 mL HMPA. After that, the reaction mixture was then 

heated at 100 °C for 36 h. After cooling the mixture was poured into 30 mL water, extracted with 
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ethyl acetate (3 x 25 mL) and the organic layer was washed with brine, dried over anhydrous 

sodium sulfate, and evaporated under vacuo. The residue was purified by column 

chromatography over silica gel using ethyl acetate in hexanes to afford 0.7 g of 1-(3-(2-(azepan-

1-yl)ethyl)-2-oxo-2,3-dihydrobenzo[d]thiazol-6-yl)propan-2-yl benzoate as  yellow oil in 96 % 

yield. MS (ESI) m/z 339.62 [M+1]+. 1H NMR (400 MHz, Methanol-d4) δ 7.95 – 7.91 (m, 1H), 

7.58 – 7.48 (m, 1H), 7.47 – 7.36 (m, 3H), 7.27 (tdd, J = 16.5, 7.9, 3.7 Hz, 2H), 7.15 (d, J = 8.4 

Hz, 1H), 4.55 (d, J = 2.2 Hz, 1H), 4.03 (dt, J = 9.4, 6.0 Hz, 2H), 3.02 (ddt, J = 17.0, 11.4, 5.7 Hz, 

2H), 2.85 – 2.79 (m, 2H), 2.73 (dd, J = 6.8, 4.1 Hz, 2H), 2.71 – 2.67 (m, 2H), 1.61 – 1.51 (m, 

8H), 1.37 (d, J = 6.3 Hz, 3H). 13C NMR (101 MHz, MeOD) δ 170.45, 166.09, 135.79, 133.20, 

132.67, 129.80, 128.96, 128.07, 127.57, 125.02, 124.20, 123.18, 122.27, 119.36, 110.84, 110.78, 

72.21, 55.43, 54.45, 41.35, 40.61, 27.56, 26.47, 18.53. 

 

3-(2-(azepan-1-yl)ethyl)-6-(2-hydroxypropyl)benzo[d]thiazol-2(3H)-one. 462 (WA449) To a 

solution of 3-(3-(2-(azepan-1-yl)ethyl)- 2-oxo-2,3-dihydrobenzo[d]thiazol-6-yl) propyl benzoate 

(WA448) (1 g, 2.3 mmol) in 20 mL of methanol/H2O (6:4) was added 25 ml of freshly prepared 

aqueous sodium hydroxide (0.228 g, 5.7 mmol) solution. The mixture was heated at 90°C for 1 

h. The reaction mixture was cooled to room temperature, and the residue concentrated in vacuo 

to remove methanol. The residue was acidified with 1N HCl while cooling in an ice bath and the 

aqueous layer was extracted initially with 30 mL of ethyl acetate. The pH of the aqueous layer 

was adjusted to pH=10 with aqueous potassium carbonate solution and the product extracted 

with ethyl acetate (25 mL x 3). The combined organic layers were washed with brine, dried over 

sodium sulfate, filtered and evaporated under vacuo. The residue was purified by column 

chromatography using 2.5 % methanol/diethyl ether as the eluent to obtain 0.7 g of 3-(2-(azepan-
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1-yl)ethyl)-6-(2-hydroxypropyl)benzo[d]thiazol-2(3H)-one as yellow oil in 91 % yield. MS (ESI) 

m/z 335.60 [M+1]+. 1H NMR (400 MHz, Methanol-d4) δ 8.50 (s, 1H), 7.42 (d, J = 1.7 Hz, 1H), 

7.37 – 7.21 (m, 2H), 4.37 (t, J = 6.8 Hz, 2H), 3.96 (h, J = 6.2 Hz, 1H), 3.43 – 3.31 (m, 6H), 2.75 

(qd, J = 13.6, 6.4 Hz, 2H), 1.99 – 1.85 (m, 4H), 1.79 – 1.67 (m, J = 4.8, 4.3 Hz, 4H), 1.16 (d, J = 

6.2 Hz, 3H). 3C NMR (101 MHz, MeOD) δ 170.86, 135.22, 134.59, 127.96, 123.33, 122.09, 

110.54, 68.23, 55.05, 53.81, 44.53, 37.93, 25.97, 24.27, 21.65. 

 

3-(2-(azepan-1-yl)ethyl)-6-(3-methyloxiran-2-yl)benzo[d]thiazol-2(3H)-one. (464, (WA458) 

(0.460 g, 1.45 mmol) of 3-(2-(azepan-1-yl)ethyl)-6-(prop-1-en-1-yl)benzo[d]thiazol-2(3H)-one 

(WA444b)  was dissolved in 15 mL freshly distilled THF and added 15 mL of 2 M solution of 9-

BBN in THF and refluxed overnight. After that, then were added 10 mL of 3N NaOH and 10 mL 

of 50 % solution of H2O2 and stirred for 1 h. The mixture was extracted with ethyl acetate (3 x 25 

mL) and the organic layer was washed with brine, dried over anhydrous sodium sulfate, and 

evaporated under vacuo. The residue was purified by column chromatography over silica gel 

using ethyl acetate in hexanes to afford 0.200 g of 3-(2-(azepan-1-yl)ethyl)-6-(3-methyloxiran-2-

yl)benzo[d]thiazol-2(3H)-one as a white solid in 41 % yield. MS (ESI) m/z 333.65 [M+1]+. 1H 

NMR (400 MHz, Methanol-d4) δ 7.50 (dd, J = 19.3, 1.6 Hz, 1H), 7.47 – 7.31 (m, 2H), 6.40 (dd, J 

= 15.6, 2.0 Hz, 1H), 6.26 (dq, J = 15.8, 6.5 Hz, 1H), 4.52 (q, J = 8.3, 7.6 Hz, 2H), 3.59 (dt, J = 

14.7, 9.1 Hz, 4H), 3.52 – 3.42 (m, 2H), 2.18 – 2.04 (m, 2H), 1.88 (td, J = 6.2, 1.8 Hz, 3H), 1.75 

(d, J = 16.4 Hz, 4H). 13C NMR (101 MHz, MeOD) δ 170.33, 135.04, 134.28, 129.64, 125.27, 

124.47, 122.53, 119.50, 110.83, 69.67, 64.56, 36.46, 26.52, 21.31, 17.18. Note:The intention at 

first was to break the epioxde ring and get the alcohol (462); however, breaking the ring didn’t 

happen and I was curious to test this compound against sigma receptors. 
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(E)-3-(2-(azepan-1-yl)ethyl)-6-(prop-1-en-1-yl)benzo[d]thiazol-2(3H)-one. 461 (WA459) 

This compound was obtained as a result of benzoate hydrolysis (460)  where the elimination take 

place in stead of forming alcohol in compound (462). 1H NMR (400 MHz, Methanol-d4) δ 7.42 

(d, J = 1.7 Hz, 1H), 7.28 (dd, J = 8.4, 1.8 Hz, 1H), 7.10 (d, J = 8.4 Hz, 1H), 6.34 (dd, J = 15.8, 

1.9 Hz, 1H), 6.20 (dq, J = 15.7, 6.5 Hz, 1H), 3.98 (t, J = 7.1 Hz, 2H), 2.82 – 2.61 (m, 6H), 1.84 

(dt, J = 11.5, 5.7 Hz, 3H), 1.65 – 1.50 (m, 8H). 13C NMR (101 MHz, MeOD) δ 170.17, 135.64, 

133.77, 129.78, 124.93, 124.22, 122.51, 119.36, 110.76, 55.35, 54.34, 40.34, 27.50, 26.53, 17.31. 

 

3-(2-(azepan-1-yl)ethyl)-6-(2-fluoropropyl)benzo[d]thiazol-2(3H)-one. 463 (WA466) To a 

solution of 3-(2-(azepan-1-yl)ethyl)-6-(2-hydroxypropyl)benzo[d]thiazol-2(3H)-one (WA449) 

(0.1 g, 0.3 mmol) in anhydrous DCM 7.5 mL at -78 °C was added Deoxo-Fluor (0.0795 g, 36 

mmol). After that, the reaction mixture was warmed up to room temperature and stirred for 1 h. 

The reaction mixture was poured onto water 15 mL and extracted (3 x 25 mL) with methylene 

chloride and the organic layer was washed with brine, dried over anhydrous sodium sulfate, and 

evaporated under vacuo. The residue was purified by column chromatography over silica gel 

using ethyl acetate in hexanes to afford 0.065 g of 3-(2-(azepan-1-yl)ethyl)-6-(2-

fluoropropyl)benzo[d]thiazol-2(3H)-one as yellow oil in 65 % yield. MS (ESI) m/z 337.61 

[M+1]+. 1H NMR (400 MHz, Chloroform-d) δ 7.29 (d, J = 1.7 Hz, 1H), 7.17 (d, J = 7.9 Hz, 1H), 

7.07 (d, J = 8.3 Hz, 1H), 4.21 (q, J = 6.6 Hz, 1H), 4.05 (t, J = 7.4 Hz, 2H), 3.12 – 2.96 (m, 2H), 

2.84 (t, J = 7.4 Hz, 2H), 2.75 (d, J = 5.7 Hz, 2H), 1.61 (d, J = 22.8 Hz, 8H), 1.54 (d, J = 6.5 Hz, 

3H), 1.27 (s, 2H). 13C NMR (101 MHz, CDCl3) δ 169.79, 135.95, 132.22, 127.43, 123.32, 

122.90, 110.52, 91.74, 90.07, 55.73, 54.72, 42.85, 42.63, 41.26, 28.24, 26.92, 20.67, 20.45. 
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3-(2-(azepan-1-yl)ethyl)-6-(2-bromopropyl)benzo[d]thiazol-2(3H)-one. 494(WA444a) & 3-
(2-(azepan-1-yl)ethyl)-6-(prop-1-en-1-yl)benzo[d]thiazol-2(3H)-one. 461 (WA444b) 
 
A solution of 6-(2-bromopropyl)benzo[d]thiazol-2(3H)-one (WA438) (1.3 g, 4.77 mmol) and 1-

(2-chloroethyl) azepane hydrochloride (4.1 g, 20.69 mmol) in anhydrous DMF (35 mL) was 

heated at 110 °C and added sodium bicarbonate (2.4 g, 28.62 mmol) slowly over 5 minutes. 

Then, the temperature was raised to 120 °C and the reaction left for 30 min. After cooling the 

mixture was poured into 50 mL water, extracted with ethyl acetate (3 x 25 mL) and the organic 

layer was washed with brine, dried over anhydrous sodium sulfate, and evaporated under vacuo. 

The residue was purified by column chromatography over silica gel using ethyl acetate in 

hexanes to afford 0.7 g of 3-(2-(azepan-1-yl)ethyl)-6-(2-bromopropyl)benzo[d]thiazol-2(3H)-one 

as  yellow oil that was used in the next step without further characterization. Also, bromine 

elimination afforded 0.4 g of 3-(2-(azepan-1-yl)ethyl)-6-(prop-1-en-1-yl)benzo[d]thiazol-2(3H)-

one as yellow solid. MS (ESI) m/z 317.57 [M+1]+. 1H NMR (400 MHz, Chloroform-d) δ 7.36 (d, 

J = 1.7 Hz, 1H), 7.30 – 7.19 (m, 1H), 7.01 (d, J = 8.4 Hz, 1H), 6.35 (dd, J = 15.7, 2.0 Hz, 1H), 

6.16 (dq, J = 15.8, 6.6 Hz, 1H), 4.01 (q, J = 7.9 Hz, 2H), 2.82 (q, J = 7.2, 6.5 Hz, 2H), 2.73 (q, J 

= 5.6, 4.9 Hz, 4H), 1.88 (td, J = 7.2, 6.6, 2.0 Hz, 3H), 1.64 – 1.55 (m, 8H). 13C NMR (101 MHz, 

CDCl3) δ 169.73, 135.92, 133.41, 129.88, 125.35, 124.15, 123.04, 119.57, 110.60, 55.69, 54.73, 

41.24, 28.23, 26.91, 18.44. 
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CHAPTER X: CONCLUSION 
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Since the discovery of sigma receptors and their roles in various diseases have been 

widely demonstrated and documented in the literature. Similarly, an increasing number of 

research indicated the involvement of sigma receptors in the toxic and locomotor effects of 

cocaine and methamphetamine. In fact, several reports confirmed the association of sigma 

receptors with a number of CNS functions and disorders including: anxiety, convulsions, 

schizophrenia, regulation of motor behavior, and psychostimulatory effects from drugs of abuse. 

Interestingly, sigma receptor antagonists have been shown to attenuate cocaine-induced 

convulsions and locomotor stimulation. With this, sigma receptor ligands are being studied as a 

possible means to treat drug addiction. On the other hand, it has been reported that sigma-2 

receptors have a 10-fold higher density in proliferating tumor cells than in quiescent tumor cells, 

and that sigma-2 receptor agonists are capable of killing tumor cells via apoptotic and non-

apoptotic mechanisms. Thus the development of ligands with high affinity and selectivity would 

greatly assist in the determination of the specific roles of the sigma receptor subtypes. 

In an effort to determine the basis for sigma activity and selectivity, a series of original 

benzofuran-based analogs were synthesized and characterized and their affinities for sigma 

receptors are being determined using in vitro radioligand binding assays.  Most of the tested 

molecules exhibited preference for sigma-1 receptors over sigma-2 receptors. Among the tested 

compounds, 287 (W224) displayed the best selectivity towards sigma-1 receptors with 73 σ2/σ1 

selectivity ratio.  Introducing a nitro group or isothiocyanate group at para position on the phenyl 

ring of (274), and (379) the phenyl piperazine motif does not show any preference to any of 

sigma receptors, whereas the 1-methyl-4-phenethylpiperazine substituent in 272 (WA205) 

displayed good affinity toward both subtypes with some preference to sigma-1 receptors.  Both 

(273) and (279) showed high affinity for both subtypes. In general, the benzofuran-based analogs 
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showed good to moderate binding affinity towards sigma receptors and warrant further 

modification upon receiving the results for the rest of the compounds. 

Also, in the search for a highly selective sigma-2 receptor ligand, which cannot only act 

as a probe to explore unknown biochemical mechanisms in cancer and other related diseases, but 

also be used as a radioligand in sigma-2 receptor binding assays. In this regard, we have 

synthesized and incorporated the isothiocyanate moiety in the heterocyclic aromatic ring of a 

series of selective sigma-2 ligands that were developed in our laboratory. This has resulted in 

producing novel selective irreversible sigma-2 ligands with little to no irreversible binding to 

sigma-1 receptors. Among these tested compounds, 345 (WA350) and 346 (WA352) produced 

selective irreversible inhibition of sigma-2 binding over sigma-1 binding. Nevertheless, 345 

(WA350) showed higher affinity and selectivity for sigma-2 over sigma-1 than the other 

compounds irreversibly. Compound 344 (WA349), interestingly, has a higher binding affinity for 

sigma-2 receptors and is one of the best synthesized and tested compounds in the series so far; 

however, the irreversible data for this compound is still under investigation and will be presented 

in detail in the near future. 

Additionally, in the search for an effective drug for the treatment of cocaine abuse and 

addiction, and based on our previous work on 240 CM699 that showed high affinity for sigma-1 

and DAT, and its ability to attenuate the cocaine self-administration. We have decided to make 

more analogs of 240 (CM699) in order to enhance blockade of cocaine self-administration and 

metabolic stability. The 240 (CM699) analogs were synthesized and their affinities toward sigma 

receptors and dopamine transporter measured using radioligand binding assays. Several 

compounds have retained the dual affinity towards sigma receptors and DAT. Subsequently; 

some of these compounds were subjected to metabolic stability study in liver microsomes assays. 
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Interestingly, all the tested analogs showed superior metabolic stability to CM699. We 

successfully improved the metabolic stability of our lead 240 (CM699) through designing of a 

new series while blocking the vulnerable sites of metabolism. 

The last part of my research was to make more derivatives of the highly selective sigma-1 

ligand 23 (CM304) to assess its pharmacokinetic issues.  The very lipophilic, 23 (CM304) has 

shown a short half life in rat liver microsomes ((t1/2 = 12.6 min;) as well as poor oral 

bioavailability in rats (0.7%). In this regard, several analogs have been synthesized and 

characterized and their affinities toward sigma receptor subtypes have not been completed. These 

analogs were designed in attempt to reduce the lipophilicity by introducing several polar groups 

to the alkyl side chain.   
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2-(benzofuran-3-yl)ethyl methanesulfonate. (WA98/WA103) 
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3-(benzofuran-3-yl)propanoic acid. (WA148/161/191)   

 

-VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA148-161 25 (0.879) Scan ES+ 
1.29e6213.42

22.62

194.41

80.79

64.78

145.26

245.45
403.50

263.48

271.46

277.49

365.56

337.54

435.53

467.57

625.61593.58468.54
653.56

695.65 775.29 865.56 990.86
965.69

440



 
 

 
 

441



 
 
 
 
 
3-(benzofuran-3-yl)propan-1-ol. (WA149/162/192) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA149 1 (0.035) Scan ES+ 
2.35e6176.32

32.55

58.81

102.07

145.13

413.61

177.36

236.37
387.22

369.45245.39

803.95

414.59
566.73459.66

509.59 568.87 657.91 764.98
727.69

838.97

839.95

840.98 987.68887.42

442



 
 

 
 

443



 
3-(3-bromopropyl)benzofuran. (WA154/164/197) 
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4-(benzofuran-3-yl)butanoic acid. (WA166/158/202) 
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4-(benzofuran-3-yl) butan-1-ol. (WA159/167)                                                                                            
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3-(4-bromobutyl)benzofuran. (WA163/168) 
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1-(2-(benzofuran-3-yl)ethyl)-4-(4-fluorobenzyl)piperazine. (WA101) 
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457.80483.75
493.83

450



 
 
 

 

451



 
 
 
1-(2-(benzofuran-3-yl)ethyl)piperazine. (WA102) 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA102 8 (0.281) Scan ES+ 
1.51e5231.57

86.96

49.80

113.09

119.06

169.51

515.82

232.61

497.73

375.67285.73 432.68

516.79
621.85

681.84 700.84 947.60

452



 

 
 

453



1-(2-(benzofuran-3-yl)ethyl)-4-(4-methoxyphenyl)piperazine. (WA104) 

 
 

 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA104-METHOXY 23 (0.808) Scan ES+ 
1.86e5337.61

113.0399.08

86.76

72.82

72.49

139.29

236.44143.18 268.47

338.58

359.53

360.63

413.74
709.92573.80435.60479.57 607.65 727.88 948.12

454



 
 

 
 

455



1-(2-(benzofuran-3-yl)ethyl)-4-(2-fluorophenyl)piperazine.(WA106/110/180) 

 
 

 
 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA106 6 (0.211) Scan ES+ 
2.34e5325.61

32.74
192.53

58.81 80.92

102.20

190.52

214.52

234.56

256.54

326.65

347.59

663.74
380.86

559.72465.69 490.72 603.69 677.69

456



 
 

 
 

457



 
1-(2-(benzofuran-3-yl)ethyl)-4-(3-methoxyphenyl)piperazine. (WA107/182) 

 

 
 

+VE

m/z
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

%

0

100

WA107 15 (0.527) Scan ES+ 
5.63e5337.61

111.08

205.50

204.47
124.12 278.59

248.57
336.57

338.58

403.56

413.55

414.59 739.62727.82497.40 563.94
775.94

458



 

 

 
 

459



 
1-(2-(benzofuran-3-yl)ethyl)-4-(cyclohexylmethyl)piperazine. (WA111) 

 

 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA111 1 (0.035) Scan ES+ 
4.02e6327.55

195.4532.67

183.45

58.81 70.74
147.27

196.49
279.56

328.53

329.57

689.62371.52 413.42
451.36

524.38
624.32 764.26

460



 
 

 

461



1-(2-(benzofuran-3-yl)ethyl)azepane. (WA123) 

 

 
 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA123 13 (0.457) Scan ES+ 
3.57e6244.61

80.8654.72

22.75

112.18

113.22
204.53

523.73245.58

246.62
381.77302.65 521.78477.75

525.74

526.78

802.92583.65
669.78

708.82 830.02

462



 

 
 
 

463



1-(2-(benzofuran-3-yl)ethyl)-4-(4-chlorophenyl)-1,2,3,4-tetrahydropyridine.(WA124) 

 

 
 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA124 4 (0.140) Scan ES+ 
8.90e5338.64

334.62

102.13
38.71 80.92 119.19 294.67

190.07

340.59

341.56

713.75

382.74 571.72477.88429.70 551.68
712.84

619.71

728.86

732.10 928.14844.75

464



 
 

 
 

465



1-(2-(benzofuran-3-yl)ethyl)-4-(4-fluorophenyl)piperazine. (WA137) 

 

 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA137 3 (0.105) Scan ES+ 
4.99e5325.74

102.20
32.74

151.42 181.44 307.77

326.71

685.86

327.75
462.83

369.77
667.83

559.79

686.83

688.84

715.89 743.90

466



 

 
 
 

467



1-(2-(benzofuran-3-yl)ethyl)-4-cyclohexylpiperazine. (WA144) 
 

 
 
 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA144 9 (0.316) Scan ES+ 
7.21e5313.74

169.5164.84 102.13
211.60

311.73

314.71

315.75
639.94525.87

329.69 509.85380.80
546.82 703.95

964.07793.90 842.28

468



 

 
 
 

469



2-(2-(benzofuran-3-yl)ethyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline. (WA181) 

 

 
 
 
 
 

ES+

m/z
160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

%

0

100

WA181--181- 19 (0.191) Scan ES+ 
5.14e6338.70

206.62

194.59171.54

236.60

207.57

336.68

237.61
301.60279.49

334.73

339.71

360.68

340.71
361.69

405.84386.76 493.58419.95
454.78 473.86

470



 
 

 
 

471



1-(2-(benzofuran-3-yl)ethyl)-4-(2,3-dichlorophenyl)piperazine. (WA183) 

 

 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA183 28 (0.984) Scan ES+ 
9.68e6413.68

32.61

42.66

56.73

149.2169.83

90.91

94.93
301.48

243.38171.26
247.40

302.52 393.64

414.65

415.69

431.64
685.92505.70

647.66
563.68 803.95

727.75
964.07

833.66 922.96

472



 

 
 
 

473



1-(2-(benzofuran-3-yl)ethyl)-4-(4-chlorophenyl)piperazine. (WA184) 

 
 

 
 

+ve

m/z
150 200 250 300 350 400 450 500 550 600 650

%

0

100

WA184NEW 1 (0.010) Scan ES+ 
1.07e7341.64

209.53

205.50

157.41

158.51

211.54

325.66

249.62

217.52
265.61

279.58

475.77

343.66

423.72344.63

409.68
424.76

476.81

491.76

615.56493.71 541.73 633.43

474



 
 

 
 

475



1-(2-(benzofuran-3-yl)ethyl)-4-(pyridin-2-yl)piperazine. (WA193) 

 
 

 
 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA193 15 (0.527) Scan ES+ 
1.13e6308.62

58.75

147.2781.90 164.45 294.61

309.66

651.75

310.63
352.59

615.75586.70
468.67445.71

542.54

653.76

654.73
698.83 814.52 891.50

476



 
 

 
 

477



1-(2-(benzofuran-3-yl)ethyl)-4-(4-(trifluoromethyl)phenyl)piperazine. (WA196) 

 

 
 
 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA196 1 (0.035) Scan ES+ 
5.77e5375.61

186.57
22.69 81.96

102.13
309.72231.57

376.58

377.56
785.73

765.89
423.66

695.91
653.63487.61

588.71
788.71

478



 

 
 
 

479



4-(2-(benzofuran-3-yl)ethyl)piperazin-2-one. (WA199) 

 

 
 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA199 12 (0.422) Scan ES+ 
7.78e5245.52

54.79

40.72

80.92

86.89

113.16

139.23

161.28 187.48

489.68

277.55

278.59

391.69375.54 478.59

490.66

507.65

521.72
755.70619.71 638.58

733.78
977.89805.77

480



 
 

 
 

481



1-(2-(benzofuran-3-yl)ethyl)-4-(pyridin-4-yl)piperazine. (WA204) 

 
 

 
 

ES+

m/z
100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

%

0

100

WA204 46 (0.463) Scan ES+ 
4.87e7308.61

203.55131.18
102.20

176.46149.19 242.66
212.43

272.71 298.66

309.62

352.57310.62

335.63
353.58

368.63
394.71

482



 

 
 
 

483



1-(2-(benzofuran-3-yl)ethyl)-4-phenethylpiperazine. (WA205) 

 

 
 
 

ES+

m/z
100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

%

0

100

WA205 6 (0.060) Scan ES+ 
3.20e6335.67

144.34
135.77

334.65
145.62

189.39 219.47
272.71242.89

289.41

336.70

337.66
357.69

407.60358.65 479.65
421.68 492.32

484



 

 
 
 

485



1'-(2-(benzofuran-3-yl)ethyl)-3H-spiro[isobenzofuran-1,4'-piperidine]. (WA207) 

 
 
 

 
 
 

ES+

m/z
100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

%

0

100

WA207 2 (0.020) Scan ES+ 
6.28e6334.65

330.62

190.55

124.12 150.55

328.64

254.60240.59191.51
286.66 312.64

335.67

356.66

382.71 478.76421.74
413.68 471.78 486.69

486



 

 
 
 

487



1-(2-(benzofuran-3-yl)ethyl)-4-(4-nitrophenyl)piperazine. (WA210) 

 
 
 

 
 

ES+

m/z
100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

%

0

100

WA210---- 42 (0.423) Scan ES+ 
8.20e5355.77

353.72

336.63

312.89

309.82272.20

356.73

359.61

403.63365.62
422.00

466.60

488



 
 

 
 

489



2-(4-(benzofuran-3-yl)butyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline. (WA169) 

 

 
 
 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA169 2 (0.070) Scan ES+ 
1.68e6366.72

96.03

22.36
364.71102.13

256.61236.50

367.76

368.74

731.90
389.75 502.65 644.74 845.91753.89 867.77

490



 

 
 
 

491



1-(4-(benzofuran-3-yl)butyl)-4-cyclohexylpiperazine. (WA170) 

 

 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA170 15 (0.527) Scan ES+ 
2.37e6341.76

32.74
91.04 102.13

169.58

259.66 327.75

342.73

343.77

717.96
355.77 431.84 507.78

545.59 693.97
653.69 890.14

492



 
 

 
 

493



1-(4-(benzofuran-3-yl)butyl)-4-(4-fluorophenyl)piperazine. (WA171) 

 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA171 15 (0.527) Scan ES+ 
5.67e6353.62

145.3290.98
32.67

42.73

173.40

178.46 335.66
216.53

354.60

741.76
355.64

380.73
411.60

589.81519.64 723.80
625.87 744.81 801.75

937.22
859.86

494



 

 
 
 

495



1-(4-(benzofuran-3-yl)butyl)-4-(4-methoxyphenyl)piperazine. (WA172) 

 

ES+

m/z
220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

%

0

100

WA172 8 (0.080) Scan ES+ 
8.19e6365.66

242.71212.48
227.47 282.71257.58 349.66335.74301.60 315.52

366.66

367.67

395.70389.59
403.57

425.68 431.66 457.68 472.79
480.66493.58

496



 

 
 
 

497



2-(4-(benzofuran-3-yl)butyl)-1,2,3,4-tetrahydroisoquinoline. (WA173) 

 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA173 EXACT 15 (0.527) Scan ES+ 
3.17e6306.61

22.56
99.0280.86 304.53256.48

173.40

307.58

647.73

308.62

413.68329.57 605.70508.68 560.11

648.70

650.71
698.31

767.70 818.16
985.93897.40

498



 
 

 
 

499



1-(4-(benzofuran-3-yl)butyl)-4-(2,4-difluorophenyl)piperazine. (WA174) 

 

 
 
 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA174 3 (0.105) Scan ES+ 
7.50e6371.59

164.39

136.24102.13
32.67 199.41 336.57216.46259.59

372.56

373.53
777.69

385.53 769.65437.54 515.56 585.53
607.58

781.64 857.85
879.83

994.10

500



 
 

 
 

501



1-(4-(benzofuran-3-yl)butyl)-6-methoxy-1,2,3,4-tetrahydroquinoline. (WA175) 

 

 
 
 

ES+

m/z
200 220 240 260 280 300 320 340 360 380 400 420 440 460 480

%

0

100

WA175 11 (0.111) Scan ES+ 
1.11e6336.68

242.71

216.51190.50

235.53

335.61

306.64243.66

255.69 297.70281.57

332.65

321.63

337.63

338.70

366.66
371.70 419.51396.64 470.52423.79 465.04 487.84

502



 
 

 
 

503



1-(4-(benzofuran-3-yl)butyl)-1,2,3,4-tetrahydroquinoline. (WA176) 

 

 

+VE

m/z
150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

%

0

100

WA176 6 (0.211) Scan ES+ 
2.17e5306.54

160.37
234.49

248.57

307.58

367.70

308.55

524.83

483.85368.67 413.61
525.74

951.88561.67 750.97633.65

504



 

 
 

 

505



1-(4-(benzofuran-3-yl)butyl)-4-(4-(trifluoromethyl)phenyl)piperazine. (WA177) 

 

 
 
 
 

+VE

m/z
150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

%

0

100

WA177 7 (0.246) Scan ES+ 
7.14e5403.56

239.55

164.32 177.29

241.56

380.67
242.73

299.54

404.53

841.76405.51

538.52
425.67 476.52 798.31589.81 719.32660.63

842.74
899.93

506



 

 
 
 

507



1-(4-(benzofuran-3-yl)butyl)-4-(4-fluorophenyl)-1,2,3,4-tetrahydropyrazine. (WA178) 

 

 
 
 
 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA178 5 (0.176) Scan ES+ 
4.72e6350.58

346.56

202.46
102.1358.81 178.40

336.50
203.43

351.55

735.67

352.52

364.52 721.66426.65 487.67
628.73552.72

736.64

738.65
788.84

890.79 976.91

508



 
 

 
 

509



1-(4-(benzofuran-3-yl)butyl)-4-(pyridin-2-yl)piperazine. (WA179) 

 

 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA179 1 (0.035) Scan ES+ 
9.71e4336.57

95.97

42.66
214.32

121.20
244.48

337.61

358.55

359.53

671.72
360.56 413.61

708.49 771.72

510



 

 
 
 

511



1-(4-(benzofuran-3-yl)butyl)-4-(pyridin-4-yl)piperazine. (WA211) 

 
 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA211 15 (0.527) Scan ES+ 
3.95e6336.63

22.62
90.98

105.11
145.39 283.59248.63

337.61

508.68
338.64

413.68 443.64
509.72

671.79512.71556.03 764.59
694.94 801.29

873.22 999.09

512



 

 
 
 

513



1-(4-(benzofuran-3-yl)butyl)-4-(3-fluorophenyl)piperazine. (WA212) 

 
 

 

ES+

m/z
100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

%

0

100

WA212- 2 (0.020) Scan ES+ 
1.42e7353.72

102.18
249.67

181.59157.46130.40
202.58 351.67

316.67
265.67

354.68

362.87

475.81

423.72401.71 443.82

476.84

477.80

514



 

 
 
 

515



1-(4-(benzofuran-3-yl)butyl)-4-(3-fluorophenyl)piperazine. (WA212) 

 
 

 

ES+

m/z
100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

%

0

100

WA212- 2 (0.020) Scan ES+ 
1.42e7353.72

102.18
249.67

181.59157.46130.40
202.58 351.67

316.67
265.67

354.68

362.87

475.81

423.72401.71 443.82

476.84

477.80

516



 
 

 
 

517



1-(4-(benzofuran-3-yl)butyl)-4-(2-fluorophenyl)piperazine-2HCl. (WA213) 

 
 

 
 
 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA213 13 (0.457) Scan ES+ 
1.28e6353.69

81.96

73.99

147.33

176.52 204.53
239.16 289.49

354.73

741.83

355.70

356.74 727.82
586.77476.78 535.73

742.86

744.87

819.84745.85

518



 

 
 
 

519



1-(4-(benzofuran-3-yl)butyl)-4-(cyclohexylmethyl)piperazine. (WA214) 

 
 

 
 
 
 
 

ES+

m/z
100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

%

0

100

WA214- 10 (0.101) Scan ES+ 
3.03e7355.77

124.32 341.75131.23 212.56159.19 279.75237.58 333.75

356.73

357.75

377.72
475.81391.86 431.72 483.62

520



 
 

 
 

521



1-(4-(benzofuran-3-yl)butyl)-4-(3-methoxyphenyl)piperazine. (WA215) 

 
 
 
 
 

+VE

m/z
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

%

0

100

WA215 1 (0.035) Scan ES+ 
2.84e5365.62

145.32

173.40

234.49
193.51

248.63
294.61

366.60

413.55

443.70 740.92

522



 
 

 
 

523



1-(4-(benzofuran-3-yl)butyl)-4-(2,3-dichlorophenyl)piperazine. (WA216) 

 

 
 
 
 

ES+

m/z
100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

%

0

100

WA216-- 50 (0.503) Scan ES+ 
9.12e5403.57

125.21
233.48

231.37
172.50139.29 213.45

281.41
235.47 356.47284.48324.67 365.49

405.62

406.57

407.60

408.81
449.83

499.49

524



 

 
 
 

525



1-(4-(benzofuran-3-yl)butyl)-4-phenethylpiperazine. (WA217)            

                                                                                                                                                                                      
 
   

 
 

ES+

m/z
100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

%

0

100

WA217- 7 (0.070) Scan ES+ 
8.63e6363.66

115.31
241.53124.31 219.55191.52 347.60255.76

301.55

364.67

365.67

385.70 399.56

526



 

 
 
 

527



4-(4-(benzofuran-3-yl)butyl)piperazin-2-one. (WA218)

 
 
 

 

ES+

m/z
100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

%

0

100

WA218 39 (0.393) Scan ES+ 
4.15e6273.59

102.20

259.67212.56115.24
131.18

185.47149.32 242.79

295.63
274.60

311.57

312.70 332.79
346.84

374.81 393.76

528



 
 

 
 

529



1'-(4-(benzofuran-3-yl)butyl)-3H-spiro[isobenzofuran-1,4'-piperidine]. (WA220) 

 

 
 
 
 

m/z
100 150 200 250 300 350 400 450 500 550 600 650 700

%

0

100

WA220 1 (0.010) Scan ES+ 
1.23e3381.69

362.88

530



 

 
 
 

531



1-(4-(benzofuran-3-yl)butyl)-3,5-dimethylpiperazine. (WA221) 

 

 

ES+

m/z
100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

%

0

100

WA221 38 (0.383) Scan ES+ 
1.81e7287.63

173.44

171.43

169.47

174.45
285.62

177.47
284.67

209.41 233.72
243.42

288.64

289.65
308.61

325.61

532



 
 

 

533



 
 
1-(4-(benzofuran-3-yl)butyl)azepane. (WA222) 
 

 

ES+

m/z
100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

%

0

100

WA222 11 (0.111) Scan ES+ 
3.89e6272.64

100.25

173.50146.42105.10
145.48 147.37 220.68

174.45 211.74 270.82235.54

273.65

274.60

534



 
 

 
 

535



 
1-(4-(benzofuran-3-yl)butyl)-1,4-diazepane. (WA223) 
 

 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA223 2 (0.070) Scan ES+ 
2.30e6273.66

32.80

58.75
171.39

115.23 173.47

274.64

296.62

311.60
413.68 429.63 545.78 677.56

581.71
849.87721.85

808.30

536



 
 

 
 

537



 
 
1-(4-(benzofuran-3-yl)butyl)piperazine. (WA224) 
 

 
 

ES+

m/z
100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

%

0

100

WA224 10 (0.101) Scan ES+ 
6.21e7259.67

173.44
145.35131.18

245.56174.45
212.49

260.61

261.62

271.64 285.62 308.61 331.60 352.63 373.55 393.70

538



 
 

 
 

539



 
 
1-(4-(benzofuran-3-yl)butyl)-4-(4-fluorobenzyl)piperazine. (WA225) 
 

 

+VE

m/z
160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

%

0

100

WA225 7 (0.070) Scan ES+ 
2.03e7367.61

212.54169.46
181.81 353.63337.50

275.46
227.53

282.58

368.62

369.62

449.68419.70413.65 493.70457.61

540



 
 

 
 

541



 
 
1-(4-(benzofuran-3-yl)butyl)-4-(4-chlorophenyl)piperazine. (WA226) 
 

 
 

+VE

m/z
160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

%

0

100

WA226 42 (0.423) Scan ES+ 
2.98e6369.56

360.74

250.58

155.48
173.30 249.45 251.59 359.67

269.61

371.58

372.58
475.75

473.67381.59

399.48 469.77

481.61

542



 
 

 

543



 
 
1-(4-(benzofuran-3-yl)butyl)-4-(4-nitrophenyl)piperazine. (WA227) 
 

 
 

+VE

m/z
160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

%

0

100

WA227 42 (0.423) Scan ES+ 
1.69e6380.58

378.57

377.56

364.59173.49
208.51

191.44
246.55

269.73
361.56

279.62 325.66

381.59

396.58

475.69

430.53
397.53

423.54

453.71

432.48
454.78 491.69

492.76

544



 
 

 
 

545



 
 
1-(4-(benzofuran-3-yl)butyl)-4-phenylpiperazine. (WA228) 
 

 

ES+

m/z
100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

%

0

100

WA228 18 (0.181) Scan ES+ 
7.19e7335.31

145.22

120.16

160.28

173.25

216.08

174.57

201.28

216.59

272.39230.07 242.54 332.92
281.46 318.87

336.89

389.86349.49
362.65

546



 
 
 

 

547



 
 
 
1-(4-(benzofuran-3-yl)butyl)-4-(4-chlorophenyl)-1,2,3,4-tetrahydropyridine. (WA230) 

ES+

m/z
160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

%

0

100

WA230 10 (0.101) Scan ES+ 
5.81e5366.66

172.49

169.46

165.31

362.70

240.63

202.34194.53 211.72
349.72313.69271.94246.43 284.66 329.63

368.62

369.75
437.71

403.64393.75

371.64 421.71

481.73

451.69 465.67

495.78

548



 

 
 

 

549



 
 
1-(4-(benzofuran-3-yl)butyl)-3-methylpiperazine. (WA231) 

ES+

m/z
160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

%

0

100

WA231 14 (0.141) Scan ES+ 
4.08e6273.76

151.45
259.72220.67187.54

248.57

274.71

275.72
295.81

393.56363.77
311.80

358.79 399.86 440.54 495.78471.78

550



 
 
 

 

551



 
 
 
1-(4-(benzofuran-3-yl)butyl)-4-phenylpiperidine-4-carbonitrile. (WA232) 

 

ES+

m/z
160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

%

0

100

WA232- 7 (0.070) Scan ES+ 
3.40e5359.67

173.56

159.32 183.32 192.64

239.50197.36
229.67

273.51263.56 328.75295.56 311.80 345.63

360.62

361.56

393.68 483.81
475.63

415.73 436.64
493.70

552



 

 
 

 

553



 
 
2-(4-(benzofuran-3-yl)butyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole. (WA240) 

 
 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA240 9 (0.316) Scan ES+ 
1.21e7345.58

38.58

58.75 144.28

80.86
341.56

202.46 236.44

346.56

725.74
347.59

361.60 689.75413.61 531.71 623.60

726.72

735.86 879.83783.59
911.87

554



 

 

555



 
 
 
4-(4-(4-(benzofuran-3-yl)butyl)piperazin-1-yl)aniline. (WA254) 

 

+ve

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA254 2015 19 (0.668) Scan ES+ 
1.26e6350.64

102.13

38.64 204.47

151.29 278.59 348.76

351.68

394.68

407.65
695.78522.30422.76 563.68 662.90 725.87

842.86798.12 939.95894.42

556



 
 
 

 

557



 
 
 
1'-(4-(benzofuran-3-yl)butyl)spiro[isochromane-1,4'-piperidine]. (WA496) 

 
 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA496 4 (0.140) Scan ES+ 
3.29e7376.65

372.56
204.47102.0738.58

150.32 362.57
228.46

377.62

378.66

398.57 552.65
451.75

787.81
757.78577.75 712.84

849.80 935.15
974.97

558



 
 

 
 

559



 

560



	  
N -methyl-4-nitrobenzene-1,2-diamine:[WA244] 

 

	  

m/z
100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600

%

0

100

WA244 42 (0.423) Scan ES+ 
2.58e6168.56

148.48

136.33
103.18

190.53

203.65

205.60

272.73208.59
234.72 279.36

357.80295.80 346.95 446.96402.90 481.92 495.44 525.85 548.99
587.20

561



	  
	  
	  

	  

562



1-methyl-5-nitro-1,3-dihydro-2H-benzo[d]imidazol-2-one:[WA245] 

 

	  
	  
	  

+VE

m/z
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950

%

0

100

WA245 7 (0.246) Scan ES+ 
3.79e6194.35

141.11

148.18

226.39

283.46
413.48

315.36 391.37
487.41 563.48 674.58

649.02
723.73 739.49

801.36
913.42897.53

944.94 991.18

563



	  
	  
	  

	  

564



3-(4-bromobutyl)-1-methyl-5-nitro-1,3-dihydro-2H-benzo[d]imidazol-2-one:[WA247] 

	  

	  
	  
	  
	  

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA247 12 (0.422) Scan ES+ 
4.84e5350.45

22.56

288.51
236.50

80.79

38.71

102.07
197.46

352.46

413.68

382.48

463.61

414.65

679.44

677.49
464.59

506.03
565.62

615.63

681.45

683.85727.95 911.80
788.00 845.13 946.37

565



	  

	  
	  

566



3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-1-methyl-5-nitro-1,3-
dihydro-2H-benzo[d]imidazol-2-one:[WA248] 
 
 

 

 

567



 
 

 
 

568



3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-1-methyl-5-nitro-1,3-dihydro-
2H-benzo[d]imidazol-2-one:[WA256] 

 
 
 

 
 
 
 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA256 2 (0.070) Scan ES+ 
2.52e7437

10391
23 44 280277248133 190143

292
413353

370

439

439

910459 874543468 496
556

632623 658
856

753
738

689
832775 913937

972
994

569



 
 

 
 

570



4-nitro-N1-propylbenzene-1,2-diamine: [WA246] 

 
 
 

 
 

m/z
100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

%

0

100

WA250 3 (0.030) Scan ES+ 
2.66e6218.66

196.70
124.17106.95 171.74

133.08 163.88
177.07

216.71

219.70
236.73

234.78 321.41
276.76246.67 305.55 334.34 363.91 391.98

571



 

 
	  

572



4-nitro-N1-pentylbenzene-1,2-diamine: [WA252] 
 

 
 

	  
	  
	  

m/z
100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460

%

0

100

WA252 27 (0.272) Scan ES- 
2.67e6222.69

113.13

115.27
153.42 221.65

194.62187.73

223.67

258.70

224.77

268.77

320.76285.79
383.34336.81 367.94 445.98394.91

425.25 450.99

573



	  
	  

	  
	  

574



5-nitro-1-propyl-1,3-dihydro-2H-benzo[d]imidazol-2-one: [WA251] 

 
 
 

	  
	  
	  

m/z
100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440

%

0

100

WA251 34 (0.343) Scan ES- 
5.54e6220.61

113.19

117.22 153.42 194.55
161.28

221.59

441.76222.63
256.55 367.81318.68

310.75
283.58 334.66339.73 374.69 415.90 432.08 443.77

575



	  
	  

	  
	  

576



3-(4-bromobutyl)-5-nitro-1-propyl-1,3-dihydro-2H-benzo[d]imidazol-2-one: [WA333] 

	  
	  

	  
	  

+VE

m/z
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

%

0

100

WA333 15 (0.527) Scan ES+ 
8.72e5378.46

123.21

329.57
236.44145.26

226.45
248.37

276.52
358.49

380.47

469.64

381.45

413.61

467.63

735.47

733.53
491.63

492.60
563.35

684.69621.53

737.48

738.52

763.55 817.44 831.65 953.83915.04 973.22

577



	  
	  

	  
	  

578



5-nitro-1-pentyl-1,3-dihydro-2H-benzo[d]imidazol-2-one: [WA259] 
 

	  
	  

	  

m/z
100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600

%

0

100

WA259 6 (0.060) Scan ES- 
5.11e6248.69

113.19
171.42

151.34
178.50 228.87

249.73

250.70
284.75 460.09432.08368.78342.85

325.76
405.95

476.14
534.10

519.35
560.10

572.06

579



	  

	  
	  
	  

580



3-(4-bromobutyl)-5-nitro-1-pentyl-1,3-dihydro-2H-benzo[d]imidazol-2-one: 
[WA261/WA307]	  

	  
	  

	  
	  

+VE

m/z
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

%

0

100

WA307 17 (0.597) Scan ES+ 
6.63e5406.48

248.44

144.35

212.44
145.19

372.56

362.51

304.60
275.48

408.49

409.53

413.61
791.57

789.56

438.52 605.64
482.55 530.15 747.73661.99

727.75

793.58

794.62 943.51865.63

581



	  
	  

	  
	  

582



3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-5-nitro-1-propyl-1,3-
dihydro-2H-benzo[d]imidazol-2-one: [WA334] 

	  

	  

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA334 9 (0.316) Scan ES+ 
1.28e6469.64

467.63

113.0986.89

54.92
465.62139.29 192.47 239.36

375.87
285.47

470.68

973.86

471.65

937.87507.58 747.73699.67527.62 621.59 798.90
907.20

974.90

976.91

583



	  
	  
	  

	  

584



3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-5-nitro-1-propyl-1,3-dihydro-2H-
benzo[d]imidazol-2-one: [WA262] 

	  
	  

	  

m/z
300 320 340 360 380 400 420 440 460 480 500 520 540 560 580

%

0

100

WA262     +VE 9 (0.091) Scan ES+ 
9.94e4456.97

346.88

319.91

304.90

324.92

333.82

441.30

437.86

388.86360.92
387.95

407.90

406.80
421.87 448.13

458.01

583.82

481.01464.89 522.93
496.93

505.12
553.08

528.91
556.07

595.06

585



	  
	  
3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-nitro-1-propyl-1,3-dihydro-
2H-benzo[d]imidazol-2-one: [WA303]	  

	  
	  

586



	  
	  

	  
	  

587



3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-5-nitro-1-pentyl-1,3-
dihydro-2H-benzo[d]imidazol-2-one:[WA266/299/308] 

	  

	  
	  

m/z
320 340 360 380 400 420 440 460 480 500 520 540 560 580 600

%

0

100

WA266 29 (0.292) Scan ES+ 
1.15e6497.91

495.96

479.91

463.92342.40329.85
364.62 451.12

371.90
403.87 410.05

493.94

498.95

499.86

519.94

509.02

520.98
595.00558.54

538.98
580.05

588



	  
	  

	  
	  

589



3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-5-nitro-1-pentyl-1,3-dihydro-2H-
benzo[d]imidazol-2-one: [WA336/265] 

	  

	  
	  

m/z
320 340 360 380 400 420 440 460 480 500 520 540 560 580 600

%

0

100

WA265 33 (0.332) Scan ES+ 
2.12e5484.98

326.02 405.95393.35
382.17

349.94327.06
452.61421.09 438.19 468.99

486.02

486.99

507.20488.35 582.13
512.92 554.25539.11 568.35

596.17

590



	  
	  

	  
	  

591



	  
3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-nitro-1-pentyl-1,3-dihydro-
2H-benzo[d]imidazol-2-one: [WA267] 

	  

	  
	  

m/z
320 340 360 380 400 420 440 460 480 500 520 540 560 580 600

%

0

100

WA267 50 (0.504) Scan ES+ 
2.85e7493.94

362.87349.94
308.54 339.99 479.97437.93401.86

393.93
408.03 465.87462.04

494.98

495.96

497.00
515.97 564.00546.13

523.97 571.02
590.06

597.73

592



	  
	  
	  

	  

593



5-amino-3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-1-methyl-1,3-
dihydro-2H-benzo[d]imidazol-2-one: [WA249] 
	  

	  
	  

	  
	  

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA249 5 (0.176) Scan ES+ 
1.33e6411

409

407
55

2339 64 10291 240153116
194 278 394

381
338

413

822

456 820
457 651625584

495
515 690 696 771742

844
845

867891 949 981

594



	  

	  
	  
	  

595



3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-amino-1-methyl-1,3-
dihydro-2H-benzo[d]imidazol-2-one:[WA257] 

	  

	  
	  
	  

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA257 3 (0.105) Scan ES+ 
2.43e6408

55

33
22 15187

73
119

165
289

199
237239

399
321 361

409

836410
430

453 696593
490

619
631 827712

758
850 872

933
921

944

596



	  
	  

	  
	  

597



5-amino-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-1-propyl-1,3-dihydro-2H-
benzo[d]imidazol-2-one: [WA263] 

	  
	  

	  
	  
	  

+VE

m/z
200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950

%

0

100

WA263 +VE 2015 3 (0.105) Scan ES+ 
3.28e6426.71

195.52

204.53

408.75218.54
353.62

261.67 332.68

427.75

448.70

873.99449.73
658.30510.89 620.42551.75

853.18
711.86 726.78 888.07

598



	  
	  

	  
	  

599



	  
5-amino-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-1-pentyl-1,3-dihydro-2H-
benzo[d]imidazol-2-one: [WA338] 

	  
	  

	  

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA338 29 (1.019) Scan ES+ 
1.31e6454.79

73.86

64.91

45.77

147.40

90.98
324.70148.43 209.52 436.76391.69

455.77

498.76
499.80

538.84 944.10698.51588.91 719.19
907.98

794.87 964.33

600



	  
	  

	  
	  

601



5-amino-3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-1-propyl-1,3-
dihydro-2H-benzo[d]imidazol-2-one:[WA337] 

	  
	  

	  
	  

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA337 4 (0.140) Scan ES+ 
1.73e6439

55

23
33

338

87
69

337

116 155 165189 335221
265 437345

384

441

674441

484 670
497

656555 595

710

688
878711744 773

869794
914

916 975
990

602



	  

	  
	  

	  

603



	  
5-amino-3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-1-pentyl-1,3-
dihydro-2H-benzo[d]imidazol-2-one:[WA295/300/312] 

	  
	  

	  

+VE

m/z
100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600

%

0

100

TEST 12 (0.121) Scan ES+ 
2.14e6467.69

106.30
447.80179.35146.59 205.60 398.87262.01236.15 283.71 370.99342.66313.15

468.66

469.70

489.52 498.69525.46
567.70 575.31

604



	  
	  
3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-amino-1-propyl-1,3-
dihydro-2H-benzo[d]imidazol-2-one:[WA304] 
 

	  
	  

+VE

m/z
150 200 250 300 350 400 450 500 550 600 650 700 750 800

%

0

100

16 15 (0.151) Scan ES+ 
4.06e6435.72

259.69247.47215.24
152.73

311.87
424.35337.66

362.29

436.69

437.73

457.62 493.62 613.64533.51 568.08 739.89729.63663.02
764.00

788.56

605



	  

	  
	  
	  

606



	  
 
3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-amino-1-pentyl-1,3-
dihydro-2H-benzo[d]imidazol-2-one:[WA268] 

 
 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA268 12 (0.422) Scan ES+ 
2.18e7463.48

64.65
54.72 96.75 461.21

190.26 248.11
413.35

262.64 341.95

464.65

961.61479.37

960.96480.47 720.36
535.40 689.88597.66

737.09 865.89
794.81 963.75

607



 

 
 
 

608



 
 
3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-5-isothiocyanato-1-methyl-
1,3-dihydro-2H-benzo[d]imidazol-2-one: [WA250] 

 

+VE

m/z
150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

%

0

100

WA250 NEW 23 (0.808) Scan ES+ 
2.04e4453.69

451.62

267.50

266.66
241.43

279.43 413.81

411.60280.54

403.82

454.66

475.61

609



 

 
	  

610



	  
	  
3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-isothiocyanato-1-methyl-
1,3-dihydro-2H-benzo[d]imidazol-2-one:[WA258] 

	  

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA258 10 (0.351) Scan ES+ 
2.01e7449

5723 15287 89 289260233155 185 414311
408334

450

451

452

471 507
934

919
555 601 728639 689684

746
817

800
864 936 996

611



1-(4-(benzofuran-3-yl)butyl)-4-(4-isothiocyanatophenyl)piperazine. (349, WA255)	  
	  

	  

	  
	  
	  
	  
	  

m/z
200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600

%

0

100

WA255 34 (0.343) Scan ES+ 
2.12e6392.83

287.74

204.63 250.77212.75 282.74

363.84
311.79

347.86329.72 381.91

393.87

394.84

405.82

495.89421.81
439.88 459.89 513.83 591.88555.94534.04

612



	  
	  

	  
	  

613



6-nitrobenzo[d]thiazol-2(3H)-one (WA389) 
 

	  
	  
	  

	  
	  

-VE

m/z
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

%

0

100

WA389 16 (0.562) Scan ES- 
2.74e6195.32

165.23

107.97

196.30

212.44

213.48
413.42

254.01
323.66 639.10529.50 902.27

675.55
793.19

614



	  

	  

615



	  

	  
	  

616



	  
	  
3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-5-isothiocyanato-1-propyl-1,3-dihydro-
2H-benzo[d]imidazol-2-one:[WA264] 

 

+VE

m/z
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

%

0

100

WA264 46 (0.464) Scan ES+ 
4.67e7468.75

167.37

149.31115.03

413.73
235.60207.52 281.62 295.59

369.69
450.82

469.77

470.79

490.77 520.77 554.91
690.03

588.74
639.93 725.13 769.49

790.11

617



 

	  
	  

	  

618



	  
	  
3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-5-isothiocyanato-1-pentyl-1,3-dihydro-
2H-benzo[d]imidazol-2-one:[WA349] 

	  

+VE

m/z
100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650

%

0

100

WA349 34 (0.343) Scan ES+ 
4.81e6496.63

187.30

106.86

148.70

182.35

189.21

213.36

222.20
250.45

342.43315.24257.31 462.65353.38 397.59
414.68

497.62

498.61

499.67 542.69

502.57 566.12 631.18
615.87

641.27

619



	  
	  
	  

	  

620



	  
3-(4-(6,7-dimethoxy-3,4-dihydroisoqouinolin-2(1H)-yl)butyl)-5-isothiocyanato-1-
propyl-1,3-dihydro-2H-benzo[d]imidazol-2-one:[WA352] 
 

	  
	  

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA352 4 (0.140) Scan ES+ 
4.27e5481.77

97.01

90.98
64.78

479.76
169.45

106.02
214.52

465.69242.60
383.78348.37

482.74

483.72

484.82
525.81 576.71 984.95962.06638.71

621



	  
	  

	  
	  

622



	  
3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-5-isothiocyanato-1-pentyl-
1,3-dihydro-2H-benzo[d]imidazol-2-one:[WA350] 
	  

	  

+VE

m/z
50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

%

0

100

WA350 50 (0.504) Scan ES+ 
3.78e6509.76

507.73

505.71

169.24
121.26106.15

242.59
177.27 388.49326.21244.75

495.86
464.88

510.70

511.85

537.70
702.89612.47582.10 648.64 795.61

767.88

623



	  
	  

	  
	  

624



	  
	  
3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-isothiocyanato-1-propyl-
1,3-dihydro-2H-benzo[d]imidazol-2-one: [WA306] 

	  
	  

+VE

m/z
50 100 150 200 250 300 350 400 450 500 550 600 650 700

%

0

100

WA306 50 (0.504) Scan ES+ 
6.24e6477.64

86.9174.76 197.31139.2299.45
187.43 330.85246.44 269.44 441.64

413.70
367.56

478.68

479.65

499.67

500.70
645.55559.71 611.56

669.39

625



	  
	  

	  
	  

626



	  
	  
5-nitrobenzo[d]oxazol-2(3H)-one.[WA391]

 

-VE

m/z
50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

%

0

100

WA391 16 (0.161) Scan ES- 
2.23e7179.56

59.83

31.61

78.91

97.10 113.18

180.52

181.60 219.83 257.68
289.59 466.45369.50

391.14
629.97

597.68
514.38 693.54 775.81

712.82

627



	  
	  

	  
	  

628



	  
	  
3-(4-bromobutyl)-5-nitrobenzo[d]oxazol-2(3H)-one.[WA392] 

	  

+VE

m/z
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

%

0

100

WA392 40 (0.403) Scan ES+ 
1.39e6337.65

205.58

139.44

151.60

275.77249.65
289.67

339.67

393.80

391.77

340.51

395.61

397.71

413.91

564.20538.64
505.68 662.82621.54 806.83

760.10711.63 858.16 967.87
879.60

986.38

629



	  
	  
	  

	  

630



	  
 
3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-5-nitrobenzo[d]oxazol-2(3H)-one. 
[WA394] 

	  

+VE

m/z
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

%

0

100

WA394 49 (0.494) Scan ES+ 
2.03e6415.94

413.91

253.63
135.53156.41

181.77

399.87

390.17
281.78

347.91

416.98

437.87

507.98 662.12566.65
618.54 676.09 894.89848.10744.25 827.64

994.83967.32

631



	  
	  

	  
	  

632



	  
	  
5-amino-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-
one.[WA396] 

	  

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA396 28 (0.282) Scan ES+ 
3.30e5385.98

169.61

127.36

18.90 120.66

179.46

197.76
238.06

306.29

386.95

803.89494.64
448.97

663.52559.73 597.38 772.32 990.36856.55 875.48

633



	  
	  
	  

	  

634



	  
	  
3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-5-isothiocyanatobenzo[d]oxazol-2(3H)-
one. [WA397] 

	  

+VE

m/z
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

%

0

100

WA397 10 (0.351) Scan ES+ 
3.59e6427.56

385.60158.29

123.21
214.39

159.26 289.55235.47 381.84

428.53

449.48

450.51

465.49
875.68845.98

715.56
685.92

511.60579.44
639.75

811.74
902.07

933.59

635



	  
	  
	  

	  

636



	  
	  
5-nitro-1,3-dihydro-2H-benzo[d]imidazol-2-one. (WA313) 

	  
	  

-VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA313 6 (0.211) Scan ES- 
3.04e5178.33

44.67

78.78

96.94

121.13

179.30

357.52200.32
311.60 437.41 984.89821.33751.68

637



	  
	  

	  
	  

638



	  
	  
1-methyl-6-nitro-1,3-dihydro-2H-benzo[d]imidazol-2-one. (WA400)	  
WA404A: 

	  

-VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA400 6 (0.060) Scan ES- 
6.10e6192.59

59.83

31.47

97.05

178.62
99.01

193.57

194.62
312.85 334.57407.83 622.66423.62 516.36 575.03 669.80 824.15726.23 747.95 877.71

906.49 960.68

639



	  
	  

	  
	  

640



	  
	  
	  
WA404B: 

	  

-VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA400 37 (0.373) Scan ES- 
1.02e7192.59

97.05

44.74

162.56

147.54

146.64

193.64

194.69 241.90
407.76

370.89
549.82

518.32
619.17 838.81687.26

723.86 772.53
935.12

910.68 977.65

641



	  
	  
	  

	  

642



	  
	  
1-(4-bromobutyl)-3-methyl-5-nitro-1,3-dihydro-2H-benzo[d]imidazol-2-one. 
(WA401/WA406)

 

+VE

m/z
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

%

0

100

WA401 32 (0.322) Scan ES+ 
1.01e7350.71

174.50

159.42

101.10

137.56

248.60

247.55

246.65

176.53

316.76

249.65

352.66

413.91

353.71

394.29

354.76

679.72

677.76
414.89

521.32

504.70 640.54552.05 595.91

681.74

728.33 804.17 847.75 948.95859.20 964.52

643



	  
	  

	  
	  

644



	  
 
1-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-3-methyl-5-nitro-1,3-dihydro-2H-
benzo[d]imidazol-2-one. [WA402] 

 

+VE

m/z
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

%

0

100

WA402 36 (0.363) Scan ES+ 
4.72e7428.72

324.73

174.29159.28

133.23
176.39

249.23 323.54

410.70

325.84

429.83

450.79
855.64455.67 499.11 804.94574.82 736.29675.53590.25

878.06
949.30 994.55

645



 

	  
	  

	  

646



	  

	  
	  
5-amino-1-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-3-methyl-1,3-dihydro-2H-
benzo[d]imidazol-2-one. [WA403] 

 
 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA403 14 (0.141) Scan ES+ 
1.59e7398.97

73.93

45.58
79.10

319.91102.29 123.03
218.64 283.80

365.86

399.94

420.96

428.93
772.25555.33

486.82 746.20
613.30 678.25 831.69 925.97879.18

960.54

647



 
	  

	  

648



	  
	  
1-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-5-isothiocyanato-3-methyl-1,3-
dihydro-2H-benzo[d]imidazol-2-one. [WA404] 

	  
	  

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA404 50 (0.504) Scan ES+ 
5.91e7440.94

74.07

45.93

22.67

101.17

130.43
422.92364.05

174.50 260.75 326.05

441.92

442.89

443.94

473.97 592.84 729.16651.43 811.50 908.16
931.98 993.50

649



	  
	  
	  

	  

650



	  
	  
3-(4-bromobutyl)-1-methyl-5-nitro-1,3-dihydro-2H-benzo[d]imidazol-2-one. 
[WA407] 

	  

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA407 28 (0.984) Scan ES+ 
5.72e5328.59

212.44

80.86

123.21

102.13

184.43

144.35

236.44

300.58

291.43

248.44

269.58

411.67

352.46

409.59

364.46

407.52

413.61

480.54

478.53

431.84

435.66

727.88481.51

482.55
569.97

596.56
683.98

728.92

729.89771.98
837.87 882.55

920.43
978.60

651



	  

	  

652



	  
	  
3-(4-bromobutyl)-6-nitrobenzo[d]thiazol-2(3H)-one. [WA408] 
	  

	  

+VE

m/z
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

%

0

100

WA408 8 (0.281) Scan ES+ 
7.93e4353.43

144.09
119.12

251.42151.29

193.51
291.37

329.63

355.44

685.34357.32

427.49387.54
524.18

431.97
473.67

591.50 683.46
687.42

931.91805.25727.04
858.69 952.27

653



	  
	  

	  
	  

654



	  
	  
3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-nitrobenzo[d]oxazol-
2(3H)-one. [WA409] 

	  

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA409 15 (0.527) Scan ES+ 
2.53e6424

190
33

22
3955 11973 150 281

204
407

293
353

394

425

883

426

649
427

446 482
525 596550 691 847740

704
843

759
815

884

887

887911 944

655



	  

	  
	  

	  

656



	  

	  
	  
3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-5-nitrobenzo[d]oxazol-
2(3H)-one. [WA410] 

	  
	  

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA410 213 (2.146) Scan ES+ 
5.08e6429

427
102

713923

21
43

74
100

115 180129 411265249195
361305

348
387

451

452

453
468 878

856501
549 603574

619
774

652
728

791
922 985

657



	  
	  

	  
	  

658



	  
	  
5-amino-3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)benzo[d]oxazol-
2(3H)-one. [WA411]	  

	  

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA411 16 (0.562) Scan ES+ 
2.98e5398.63

396.62

64.84

58.87

97.01

213.22
113.35 394.68

356.67282.09

399.60

795.85

412.64

442.60
456.61 704.80

676.84
544.68 562.58

793.90

796.82

831.84
833.79 890.73

967.83

659



	  
	  

	  
	  

660



	  
	  
3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-aminobenzo[d]oxazol-
2(3H)-one. [WA412] 

	  
	  
	  

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA412 29 (1.019) Scan ES+ 
1.05e5394.61

86.89

64.45 112.90 379.57140.46
271.72

395.65

823.86
396.62

525.74410.69 634.56
826.91

661



	  
	  

	  
	  

662



	  
	  
3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-6-nitrobenzo[d]thiazol-2(3H)-one. 
[WA413] 

	  

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA413 4 (0.140) Scan ES+ 
4.73e5431.58

413.61
86.83

70.68 139.29 185.40 296.82251.42 375.54

432.55

897.73

433.59

434.56
709.59

489.49
656.74568.74

899.74

900.71

663



	  
	  

	  

664



	  
	  
3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-6-nitrobenzo[d]thiazol-
2(3H)-one. [WA414] 

	  
	  

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA414 2 (0.070) Scan ES+ 
3.33e5444.55

442.54
86.89

54.66 236.37113.09 154.53 440.59391.69332.81

445.58

923.73

446.62

448.63
651.68566.73 888.78684.37

835.60
744.36

924.77

926.72

665



	  
	  

	  
	  

666



	  
	  
3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-6-nitrobenzo[d]thiazol-
2(3H)-one. [WA415] 

	  
	  

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA415 6 (0.060) Scan ES+ 
2.36e7441

281103744423 252130134 215163
295

381360
423

442

443

444
463 916880593529 561 626630 875780742677 826 919 978

998

667



	  
	  

	  
	  

668



	  
	  
6-amino-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)benzo[d]thiazol-2(3H)-one. 
[WA416] 

	  
	  
	  

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA416 13 (0.457) Scan ES+ 
5.44e5401.62

64.78

58.75

97.07

113.03

214.45
383.52239.16

305.76

402.59

403.56

837.81408.10
823.80459.33

564.52 717.77610.70
679.63 853.82 929.90

669



	  

	  
	  
	  

670



	  
	  
6-amino-3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)benzo[d]thiazol-
2(3H)-one. [WA417] 

	  

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA417 2 (0.070) Scan ES+ 
2.15e7414

412
19274553933 102 119 147 253250 381

359
309

289

415

458
416

444
459

839827
488 496 728664615526 584

684
809782 849 893

915 979

671



	  
	  

	  
	  

672



	  
 
3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-6-aminobenzo[d]thiazol-
2(3H)-one. [WA418] 

	  

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA418 6 (0.211) Scan ES+ 
7.76e5410.56

86.8964.97 113.09 408.55
183.39 252.39 363.35

411.60

855.84

412.57

454.66
728.92468.67 605.57549.80 665.63

841.96

856.81

858.82

899.87 915.82 973.74

673



	  

	  
	  

	  

674



	  
	  
6-nitro-1-pentyl-1,3-dihydro-2H-benzo[d]imidazol-2-one. [WA418A] 

 

675



 
 

 
 

676



 

 
 
 

677



5-nitro-1-pentyl-1,3-dihydro-2H -benzo[d]imidazol-2-one. [WA418B] 

 

 

678



 

 
 

679



 
 
3-(4-bromobutyl)-5-nitro-1-pentyl-1,3-dihydro-2H-benzo[d]imidazol-2-one. 
[WA419] 

	  

+VE

m/z
200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

%

0

100

WA419 19 (0.668) Scan ES+ 
1.90e5384.56

214.45

340.59262.51

304.66 342.60

386.50

387.54

539.81406.54

408.49

413.68

429.50 526.84

581.84 611.93

642.93 727.82690.14 905.97
746.95

680



	  

	  
	  

	  

681



	  

	  
	  
3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-5-nitro-1-pentyl-1,3-dihydro-2H-
benzo[d]imidazol-2-one. [WA420] 

	  
	  

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA420 2 (0.070) Scan ES+ 
6.21e5484.69

410.56324.57

64.78
49.99

86.96
181.44 197.40250.38 325.67

466.73

485.66

486.70

969.07500.71544.68
579.31

633.72
723.54 770.56 790.01 870.95 915.95

682



	  
	  

	  
	  

683



	  
	  
	  
5-amino-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-1-pentyl-1,3-dihydro-2H-
benzo[d]imidazol-2-one. [WA421]

 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA421 1 (0.035) Scan ES+ 
1.04e6454.73

64.84

58.36
253.49195.4597.07

324.70 436.70391.63

455.70

484.69

498.76

596.95 930.03
630.48

787.94
674.77

863.88 946.04

684



 
 
 

	  

685



	  
	  
3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-5-isothiocyanato-1-pentyl-1,3-dihydro-
2H-benzo[d]imidazol-2-one. [WA422] 

	  
	  

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA422 1 (0.035) Scan ES+ 
6.27e5496.69

86.96

64.78

54.79

97.01
197.33

151.35
454.66413.68

210.43
281.45

497.66

498.70

528.72
773.67727.82610.50

685.34
891.37835.08 998.12909.60

686



	  
	  

	  
	  

687



	  
	  
3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-6-isothiocyanatobenzo 
[d]thiazol-2(3H)-one. [WA423] 

	  

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA423 5 (0.176) Scan ES+ 
3.62e5456.54

64.84

58.42

454.53

97.01

414.59

223.40
191.24 250.38

383.65298.70

457.58

458.55

488.58 947.73

489.55

929.12
510.63 869.65

554.60
814.98

734.69
611.99

949.68

950.71

688



	  

	  

	  
	  

689



	  
	  
3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-5-isothiocyanatobenzo 
[d]oxazol-2(3H)-one. [WA433] 

	  
	  

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA433 9 (0.316) Scan ES+ 
1.09e7440

69

4623

21 42
58

438

74

96 133 174 276179 206
239 413289

378309

441

442

879443
462

592540530 689684634 877727 737 881915
937

973
989

690



	  

	  
	  

691



	  
3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-isothiocyanatobenzo[d] 
oxazol-2(3H)-one. [WA434] 

	  
	  

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA434 15 (0.527) Scan ES+ 
1.26e7436

7446

33
23 72

13089 91 413160164 276196 247 369
355325

437

438

458

459

907727
490

563554 689683615
893

838
750 816

910 940 992 998

692



	  

	  
	  

	  

693



	  
	  
3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-5-isothiocyanatobenzo[d]thiazol-2(3H) 
-one. [WA435] 

	  

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA435 13 (0.457) Scan ES+ 
6.36e6443

46

23

21

74

72

58

410

130

101

133
160 263164188221 401

378289
301

411

425

444

445

446
475

459 523 595529
615

923683637 690 885
728

953 985988

694



	  

	  
	  
	  

695



	  
 
3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-6-isothiocyanatobenzo[d] 
thiazol-2(3H)-one. [WA436] 

	  
	  

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA436 8 (0.281) Scan ES+ 
1.62e7452

46

44

3130

74
72

57

130
128

87

292
160 263164 202 436394306 384

318

453

454

455

456 830484 604516
553

684613 639
813

722
735 939846

904 942966990

696



	  

	  
	  

697



	  
	  
	  

698



1-(4-fluorophenyl)thiourea. (WA470) 

 
	  
	  

	  
	  
	  

699



	  
	  
	  

	  

700



	  
	  
6-fluorobenzo[d]thiazol-2-amine. (WA471) 

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

	  

	  
	  
	  

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA472 2 (0.070) Scan ES+ 
6.39e6169.32

54.72 80.86

170.35

419.38171.33

337.48

201.35 273.34
402.52 420.36

519.45 667.31
559.66

919.20837.35
703.50

745.78 936.90

701



	  

	  
	  
	  

702



	  
2-amino-5-fluorobenzenethiol. (474) 
	  

	  
	  
	  

+VE

m/z
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

%

0

100

WA473 1 (0.035) Scan ES+ 
7.86e5184.36

145.32

131.25

234.49

214.45

285.40

235.47

391.69286.44

298.44

417.57 467.57

418.48 507.65 559.53
624.57 700.71

726.39

703



	  

704



	  
	  
6-fluorobenzo[d]thiazol-2(3H)-one. (WA474B): 

	  

	  

+VE

m/z
150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950

%

0

100

WA474B 23 (0.808) Scan ES+ 
6.13e5170.35

158.36

192.34

413.68

349.47

214.45

236.44
239.55 325.54

391.50

509.46

421.46

437.54
510.50

511.47
705.57590.53 617.89

793.58
727.82 828.21

958.30866.28
984.37

705



	  
	  

	  
 

706



 
3-(4-bromobutyl)-6-fluorobenzo[d]thiazol-2(3H)-one. (WA151) 

	  
	  

	  
	  

+VE

m/z
150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

%

0

100

WA151 9 (0.316) Scan ES+ 
9.41e3306.35

304.27

144.02 239.23210.30

352.59

326.39

629.44

575.68

557.52

353.50 577.69

633.39

975.29788.65634.37
684.30

715.95

707



	  

	  

	  
	  

708



3-(4-bromopentyl)-6-fluorobenzo[d]thiazol-2(3H)-one. (WA152) 

 

 

+VE

m/z
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

%

0

100

WA152 6 (0.211) Scan ES+ 
4.41e5318.41

100.06

144.28

214.45

190.46

234.49

243.51

244.48

320.36

321.39

322.37

391.56
637.29419.51

519.39
616.53

961.61817.44

709



	  

710



	  
 
3-(4-(3,5-dimethylpiperazin-1-yl)pentyl)-6-fluorobenzo[d]thiazol-2(3H)-one. (WA153) 
 

	  

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA153 15 (0.527) Scan ES+ 
8.37e6352.59

326.6538.64 283.59
71.97

101.94 223.66
156.35

353.62

354.60

374.57
739.62375.54 725.68

436.70
472.56 630.61585.66

779.70
817.64860.70 973.86

711



	  
	  
	  

712



3-(4-(3,5-dimethylpiperazin-1-yl)butyl)-6-fluorobenzo[d]thiazol-2(3H)-one.(WA157) 
 

	  

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA157 5 (0.176) Scan ES+ 
6.78e6338.64

224.51102.2022.56 169.58
336.70

339.62

340.65

360.63
361.60

711.80
410.69

535.66452.65 614.78 817.77
789.95

912.13862.90

713



	  
 
3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-6-fluorobenzo[d]thiazol-
2(3H)-one. (WA241) 

 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA241 15 (0.527) Scan ES+ 
7.94e6413

253

224

84
5733

29 42 69 18291108
143

170 202

267

395277
367317

355

415

415

435
826444 800506 640556 635 796675

689
728 829 940

864
906 999

977

714



 
 

 
 

715



 
 
3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)pentyl)-6-fluorobenzo[d]thiazol-
2(3H)-one.(WA242) 

 
 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA242 94 (0.947) Scan ES+ 
4.20e6428

81

74

3923

96
281

102
130

191
140

277

259192
345282

306 381 425

429

430

450

470 593
492

561514 639 653
706730 741 877

861
814

895 920
984

716



 
 

 
 

717



 

 
 
1-benzyl-4-(3-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)phenyl)piperidin-4-ol. (WA186) 

 

m/z
260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560

%

0

100

WA186-7 1 (0.010) Scan ES+ 
1.78e6365.79

270.78
271.76 296.84

325.89300.94 329.98

366.83

379.83

387.82
496.09441.95

435.91
388.86

401.86 481.92447.09
532.02

517.92 545.93 566.92

718



 
1'-benzyl-3H-spiro[isobenzofuran-1,4'-piperidin]-3-one. (WA188) 
 

 
1'-benzyl-3H-spiro[isobenzofuran-1,4'-piperidine]. (WA190)  

ES+

m/z
160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

%

0

100

WA188 50 (0.504) Scan ES+ 
9.28e5294.61

248.63
219.60

171.54

158.44

174.44

190.50

202.47
204.48

230.62

231.63 249.58

282.52256.63

295.62

296.63
371.95341.66

328.62
438.84

381.84 397.78427.82
454.71 482.87

495.84

m/z
100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600

%

0

100

WA190------ 50 (0.504) Scan ES+ 
9.84e6280.79

133.27 192.67174.60 212.62
232.83

281.83

302.82

303.86

595.97352.79 395.04 438.06444.88 540.08497.97 569.98

719



3H-spiro[isobenzofuran-1,4'-piperidine]. (WA201) 
 

 
 

 
 

ES+

m/z
100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

%

0

100

WA201 47 (0.473) Scan ES+ 
5.05e6204.56

176.47

129.37

114.14 147.48

280.64

236.62

222.60

246.66

250.63

278.66

262.60

312.64

282.63

283.59

388.72314.69

354.68

350.78

320.70

356.66

390.64

493.73
479.78426.67

393.78
453.74 496.86

720



 
 
 

 

721



1'-benzyl-3H-spiro[isobenzofuran-1,4'-piperidine]. (WA288) 
 

 
 
 
 

+VE

m/z
120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600

%

0

100

TEST 1 (0.010) Scan ES+ 
2.17e7280.58

254.58139.42 232.47169.45 207.35

281.59

302.55
573.59

328.49
485.64330.50 360.67

437.81378.54 493.77 550.68

574.67
596.64

722



 

 
 
 

723



3H-spiro[isobenzofuran-1,4'-piperidine]. (WA290) 

 

 

+VE

m/z
100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600

%

0

100

WA290 24 (0.242) Scan ES+ 
1.36e8190.33

172.39149.19115.01

280.53

191.43

192.54 218.47
262.53

595.65

281.51

505.51

415.51282.67
379.57302.63 371.58

503.63
445.33

507.53
533.52

519.68
593.70

597.60

724



 
 

 
 

725



tert-butyl-2'-methyl-3-oxo-3H-spiro[isobenzofuran-1,4'-piperidine]-1'-carboxylate. 
(WA460) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA460 6 (0.211) Scan ES+ 
1.77e7340.52

38.64

80.92

58.81
284.49256.48

236.50102.13 185.40

341.56

356.48

657.65
357.52 413.61

573.60504.15
643.64 658.69 715.63 773.60 833.40

950.52936.83
974.84

726



 
 

 
 

727



2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidin]-3-one. (WA461)  

 

 
 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA461 +VE 2015 10 (0.351) Scan ES+ 
3.11e7218.34

55.63
172.30154.27

114.00

219.32

240.33

435.47
256.35

376.32354.34 457.45
652.59533.46

571.46
707.39 723.34

778.27
902.72843.45 964.72 984.44

728



 
 

 
 

729



 
 
1'-benzyl-2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidin]-3-one. (WA462)   

 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA462 8 (0.281) Scan ES+ 
2.02e5308.55

90.98

38.77

41.88

306.54

119.19

134.23

183.32226.52 279.43

340.46

348.44

352.52
359.40

375.74 468.74

730



 
 
 

 

731



 
 
1'-benzyl-2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidine]. (WA463) 
 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA463 2 (0.070) Scan ES+ 
9.92e5294.61

54.72

64.78
256.48204.60

105.05

295.58

296.62
663.81

572.69317.57

352.59 527.69
413.48

607.71 664.78

701.75
744.81 967.25

732



 
 

 
 

733



 
 
2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidine]. (WA469) 

 
 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA467 8 (0.281) Scan ES+ 
4.97e6204.53

80.92

22.69
54.79 102.07 155.37

218.54

226.52

240.52

294.61 443.64391.69
316.59

457.65 594.81
511.67

689.43
616.79

734.69 908.88

734



 
 
 

 

735



 
 
1-benzyl-4-(2-(2-hydroxyethyl)phenyl)piperidin-4-ol. (485a) 

 

+VE

m/z
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

%

0

100

WA485 15 (0.527) Scan ES+ 
5.03e5312.57

120.16

294.55

248.57

129.24

133.13

159.33
249.54

334.56

413.61

335.53

383.59 623.73414.65
611.73

516.66

645.72

647.79 956.94
694.74

728.47

736



 
 
 

 

737



 
 
1'-Benzyl-3,4-dihydrospiro[isochromene-1,4'-piperidine]. (WA485b) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA485B 5 (0.176) Scan ES+ 
9.10e4294.61

160.43120.03

295.58

447.72316.46

738



 
 

 
 

739



 
 
3,4-‐dihydrospiro[isochromane-1,4'-piperidine]. (485c) 
 

 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA485C 6 (0.211) Scan ES+ 
4.97e6204.53

32.67 43.70 91.04

55.76 157.45

205.50

218.54

219.58
294.61 628.92447.79391.69

359.59
503.69 566.66 742.80643.64 872.11

740



 
 
 

 

741



 
 
 
1,3-dihydro-2H-benzo[d]imidazol-2-one. (WA277) 

+VE

m/z
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

%

0

100

WA277 15 (0.527) Scan ES+ 
1.52e6135

109

157

158

167 413291
214173 218 245

355
296

323
369

429
559

503
457

443
547

693
577

593
673

615 827727
811

758 894
879

974
961

945 997

742



 
 

-VE

m/z
100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600

%

0

100

WA277 50 (0.504) Scan ES- 
6.50e6133.34

132.36

104.16

163.43

134.31

149.39
192.47

190.46 222.56 367.81255.71 312.57283.65 343.89 407.77429.67 572.06
447.87

515.39465.28
557.50

599.16

743



 
 
 

744



 
 
tert-butyl 2-oxo-2,3-dihydro-1H-benzo[d]imidazole-1-carboxylate. (WA278) 

-VE

m/z
100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600

%

0

100

WA278 1 (0.010) Scan ES- 
9.36e6233.55

133.40 192.47

166.42134.38 222.63

234.52

249.60
269.48 367.74283.78 306.72

358.84 425.71
407.71

547.75540.21473.60
485.76 568.94

745



 
 

 
 

746



 
 
tert-butyl 3-(4-bromobutyl)-2-oxo-2,3-dihydro-1H-benzo[d]imidazole-1-carboxylate. 
(WA279) 

-VE

m/z
100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600

%

0

100

76-2 43 (0.433) Scan ES- 
7.16e5367.68

192.41

133.34

127.10

111.18

163.23
176.42

222.43

219.44

193.25 233.42

283.71255.58

365.53
317.90

368.65

369.69

479.84
397.76

405.30 475.81 584.66503.63 555.42
543.79

747



 
 

  

748



 
 
1-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-1,3-dihydro-2H-
benzo[d]imidazol-2-one. (WA280) 
 

 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA280 3 (0.105) Scan ES+ 
2.84e6378

55

50
22

87
69 204179151

95 139
247

262
312

333

379

755

380

450400413 566522493 630615
702656

748

756
837

791
794

838
943857

928
909

749



 

 
 
 

750



1-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-1,3-dihydro-2H-benzo[d]imidazol-2-
one. (WA365) 

 

 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA365 5 (0.176) Scan ES+ 
2.15e6370

33

32 73
47 194

11974
181133 352239214 243 342267

371

391
760738393

658461
444

593531470 538 597
680 762794

953852
869 936

980 987

751



 

 
 

752



1-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-3-(4-nitrophenyl)-1,3-dihydro-2H-
benzo[d]imidazol-2-one. (WA367) 

 

 
 
 
 

+VE

m/z
150 200 250 300 350 400 450 500 550 600 650 700 750 800

%

0

100

WA367 1 (0.010) Scan ES+ 
1.02e6490.93

145.35
194.68

179.50
304.07

195.49

253.66283.76 413.93314.26
349.62

472.85

452.13
511.92

654.04521.70 625.69
596.81 768.35685.08

753.37 790.82

753



 

 
 
 

754



	  
1-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-3-(4-nitrophenyl)-1,3-
dihydro-2H-benzo[d]imidazol-2-one. (WA370) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1-(4-aminophenyl)-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-1,3-dihydro-2H-
benzo[d]imidazol-2-one. (WA371) 

 
 

+VE

m/z
250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725 750 775 800

%

0

100

WA370 22 (0.222) Scan ES+ 
5.80e6503.79

499.83

311.68

271.53
299.55

413.80364.65
327.31 386.80 443.86 495.81

504.81

505.83
525.81

589.83
559.83 728.01621.99 692.84640.89

761.96 772.17

+VE

m/z
50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

%

0

100

WA371 21 (0.212) Scan ES+ 
3.88e6460.83

79.02

63.83

135.16

115.05

413.87
233.35

165.46
253.53 325.73289.70 389.91

447.88

461.85

504.90

526.83
564.15

618.81628.39 746.69
681.16

794.80

755



 
 

 
 

756



 
 
1-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-3-(4-isothiocyanatophenyl)-1,3-
dihydro-2H-benzo[d]imidazol-2-one. (WA372) 

 
 

+VE

m/z
50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

%

0

100

WA372 11 (0.111) Scan ES+ 
7.02e6502.81

107.16

92.38

79.83

322.83

135.30
224.51

193.60
275.80 414.07369.93

486.95

503.82

504.90

505.84

524.74 554.77
683.73582.84 673.27 696.95 755.93

776.58

757



 
 

 
 

758



 
 
5-fluoro-N-methyl-2-nitroaniline. (WA374) 
 

 

+VE

m/z
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

%

0

100

WA374 50 (0.504) Scan ES+ 
7.57e6171.33

125.11

193.33

413.73

225.45
359.61271.27 295.77

369.80 449.36 463.60 546.81493.90 631.70
568.13

695.40641.89 750.20 795.75

759



 
 

 
 

760



 
 
5-fluoro-N1-methylbenzene-1,2-diamine. (WA375) 
 

 
 

	  

761



 
 

 
 

762



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

763



 
 

 
 

764



 
 
 
6-fluoro-1-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one.(WA376) 

 
 
 
 

765



 

 
 
 

766



 
 
1-(4-bromobutyl)-5-fluoro-3-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one. 
(WA377) 

 
 
 

+VE

m/z
50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

%

0

100

WA377 45 (0.453) Scan ES+ 
3.09e7323.61

22.68

60.97

38.32

221.62
96.08

111.08
212.62 301.66222.64

283.72

325.59

326.61

413.80

327.63 369.82
625.69414.88

443.86 505.96 622.18
564.10 628.63 728.13

746.20
776.07

767



 
 

 
 

768



 
 
1-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-fluoro-3-methyl-1,3-
dihydro-2H-benzo[d]imidazol-2-one. (WA378) 

 
 
 

+VE

m/z
50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

%

0

100

WA378 46 (0.463) Scan ES+ 
3.97e7410.80

43.68

41.38

22.74

143.31

128.25

55.55
84.21

172.48190.54

250.66

251.62

392.86265.60 328.65

411.82

432.82

433.77
476.79

434.80 630.99
563.98552.04 728.13683.97 738.15773.26

769



 
 

 
 

770



 
 
1-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-5-fluoro-3-methyl-1,3-
dihydro-2H-benzo[d]imidazol-2-one. (WA380) 
 

 
 
 

+VE

m/z
50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

%

0

100

WA380 8 (0.081) Scan ES+ 
1.13e7414.75

412.78
192.52

139.35

112.7486.7654.78 155.37

410.73

383.80197.56
289.59300.13

415.78

436.84

437.79

582.93452.73
494.85 616.82

712.05648.99 784.04

771



 
 

 
 

772



 
 
4-fluoro-N-methyl-2-nitroaniline. (WA424) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+VE

m/z
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

%

0

100

WA424 11 (0.387) Scan ES+ 
3.61e6171.33

117.18

139.29

193.38

214.45

375.67

364.65
250.58 341.50

387.67

550.84467.70
529.83 567.76 727.82

631.77
744.61 883.79819.97 929.31 988.00

773



 
 

 
 

774



 
 

 
 

775



 
 
 
4-fluoro-N1-methylbenzene-1,2-diamine. (WA425) 

 
 

+VE

m/z
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

%

0

100

WA425 8 (0.281) Scan ES+ 
9.99e4141

126

109

259
177

151

165
214

182
229

275 326
293

776



 
 

 

777



 
 
5-fluoro-1-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one. (WA426) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA426 4 (0.140) Scan ES+ 
2.54e6189

69
39

23

46

167

15371 135
96

355

212

353

221

247
344

301293

804580

414356

392
430 440

554465
508

627581

628 728689
794744

805

837
822

856
877 944948

989

778



 
 

 
 

779



 
 
3-(4-bromobutyl)-5-fluoro-1-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one. 
(WA427)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+VE

m/z
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

%

0

100

WA427 10 (0.351) Scan ES+ 
1.69e6301

105
145

119 214151
191

226 250
267

625

304

603

601

374323 366
479464

398
413 589488 550

627

630

728632
695667

995
768 788

991
813

914886
875

948 998

780



 
 

 
 

781



 
 
5-fluoro-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-1-methyl-1,3-dihydro-2H-
benzo[d]imidazol-2-one. (WA428) 

 
+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA428 15 (0.527) Scan ES+ 
3.00e6401

324
21423 10239 7455

119
187

173 261285

383
381

402

423

823424

661425 453
487 521545

611584 615 746671
706

805
761 825 853 881

924 981

782



 
 

 

783



 
 
3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-5-fluoro-1-methyl-1,3-
dihydro-2H-benzo[d]imidazol-2-one. (WA429) 

 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA429 4 (0.140) Scan ES+ 
4.13e6410

55

22
333

9673 151119
167

205 261209 292317 392355

411

412

855432 841

823
781

764670596526 667
687 858 895

917963
979

784



 

 
 
 

785



 
 
3-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-5-fluoro-1-methyl-1,3-
dihydro-2H-benzo[d]imidazol-2-one. (WA430) 
 

 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA430 1 (0.035) Scan ES+ 
4.64e6414

337
1925522 10274

179
333248

412
396

415

827
416

417
750530436

509 727694
625

772
788

828 863
949885

786



 
 

 
 

787



 
 
 
1-(4-bromobutyl)-3-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one. (WA318) 

 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA318 4 (0.140) Scan ES+ 
1.02e6305.44

243.44

203.4338.71
102.20

116.14

307.39

308.42

413.68353.50

354.53

589.43
414.59 587.41

453.43 697.66
592.41

713.55 874.71
767.77

788



 
 

 
 

789



 
1-methyl-3-(4-(2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)-1,3-
dihydro-2H-benzo[d]imidazol-2-one. (WA475) 

 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA475 1 (0.035) Scan ES+ 
2.90e6406.80

54.85

38.64
64.91

242.79151.35 256.67
392.73

407.84

408.81

848.05
429.83 834.04648.89513.81

625.87537.03
662.84 759.98 893.97 914.98

970.10

790



 
 

 
 

791



 
 
5-fluoro-3-methyl-1-(4-(2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidin]-1'-
yl)butyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one. (WA476) 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA476 14 (0.492) Scan ES+ 
1.86e6424.64

169.38

96.03

73.9254.79

112.05

174.38

329.57266.08202.91
362.57

425.61

426.65

883.79446.56
555.70 679.70625.42 695.78 821.79 961.93

792



 
 

 

 

793



1-(4-bromopentyl)-3-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one. (WA477) 
 

 

 
 
 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA477 1 (0.035) Scan ES+ 
2.34e6319.45

285.53

239.49217.44

102.0722.56
161.41

240.52

617.44322.43

615.43

413.61387.54 451.49 601.49
491.56

619.45

620.49

711.61
751.49 813.68

847.99 985.60
917.64

794



 
 
 

 

795



6-fluoro-3-(4-(2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidin]-1'-
yl)butyl)benzo[d]thiazol-2(3H)-one. (WA478)  
 

  

 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA478 1 (0.035) Scan ES+ 
3.83e5427.62

304.66

22.62 276.65130.2845.58
260.56144.35

318.61
425.61

319.58
406.80

428.53

533.72
429.57

505.70430.67 890.01534.69

598.70 848.70 893.84 999.16

796



 
 

 
 

797



3-(4-bromobutyl)benzo[d]oxazol-2(3H)-one. (WA479) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA479 22 (0.773) Scan ES+ 
1.97e6292.41

276.45

64.78
22.56

190.3995.13 145.26
275.41

294.42

547.40

295.39

353.56 545.39

413.61

354.60
471.33 544.42

549.41

565.37

566.40 639.62
727.95 833.98

794.36
956.10885.15 972.31

798



 

 
 

 

799



3-(4-bromobutyl)benzo[d]thiazol-2(3H)-one. (WA480) 

 
 

 
 
 
 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA480 25 (0.879) Scan ES+ 
1.97e6310.43

308.42

38.64

301.55
206.41

68.80
102.07

236.50

311.47
619.78

597.60
413.68

353.62

354.60

595.39

593.38456.93 471.46
545.84

620.75

650.77
701.55

761.35
898.05 989.82

800



 

 
 
 

801



1-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)pentyl)-3-methyl-1,3-dihydro-2H-
benzo[d]imidazol-2-one. (WA481) 

 

 
 
 
 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA481 3 (0.105) Scan ES+ 
7.99e6406.67

54.72

22.56 95.97 151.16 257.51
190.65

347.66304.53

407.65

408.68

847.92
428.66 833.92492.73

662.77593.77 745.65 850.97
909.92

947.99

802



 
 

 
 

803



 
3-(4-(2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)benzo[d]oxazol-
2(3H)-one. (WA483) 

 

 
 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA483 15 (0.527) Scan ES+ 
9.37e5393.70

22.56 73.79 391.76
90.91 188.06 204.47

256.54 347.72

394.68

415.62

416.66
822.18499.74 533.52 786.77727.75

609.66 952.98878.92

804



 
 

 
 

805



3-(4-(2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl)benzo[d]thiazol-
2(3H)-one. (WA484) 

 

 
 
 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA484 19 (0.668) Scan ES+ 
8.30e5409.66

54.72

40.65

68.67
202.5287.02 123.08

248.63 268.54
321.46407.65

410.69

423.60

426.65
687.68

517.70439.62 646.88532.81

853.82
701.75 851.81 867.96 931.97

967.51

806



 
 

 
 

807



5-fluoro-1-methyl-3-(4-(2'-methyl-3H-spiro[isobenzofuran-1,4'-piperidin]-1'-
yl)butyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one. (WA486) 

 

 
 
 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA486 5 (0.176) Scan ES+ 
7.20e5424.70

38.64
102.13

90.98 248.63118.99 218.47
347.59256.54

413.68

425.67

426.65

446.69
530.73 749.54 883.92

783.79

808



 
 

 
 

809



1-(4-bromopentyl)-5-fluoro-3-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one. 
(WA488) 

 
 
 

+VE

m/z
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

%

0

100

WA488 4 (0.140) Scan ES+ 
2.25e6315.30

136.18

152.26
226.39

205.37
234.43

317.31

318.35

388.32

319.32

631.19
629.18

391.50
450.32 548.31468.35 615.24

633.13
634.17 815.17745.26

840.59880.48

810



 
 

 
 

811



1-(4-bromopentyl)-5-fluoro-3-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one. 
(WA488) 

 

 
 
 

+VE

m/z
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

%

0

100

WA489 1 (0.035) Scan ES+ 
2.51e5317.57

315.56

234.56

100.06

190.52

102.20

169.32128.20

214.52
235.60

248.76

257.58

318.61

337.54
391.82

340.59 632.62550.71419.77
653.63

812



 
 

 
 

813



1-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)pentyl)-5-fluoro-3-methyl-1,3-
dihydro-2H-benzo[d]imidazol-2-one. (WA490) 

 
 

 
 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA490 5 (0.176) Scan ES+ 
5.45e3424.83

425.74

814



 
 

815



 
 
3-(4-(3H-spiro[isobenzofuran-1,4'-piperidin]-1'-yl)pentyl)-5-fluoro-1-methyl-1,3-
dihydro-2H-benzo[d]imidazol-2-one. (WA491) 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA491 15 (0.527) Scan ES+ 
1.60e4424.77

235.53

73.73 179.43 236.63

425.80

816



 
 

 
 

817



 
 
1'-(4-(benzofuran-3-yl)butyl)spiro[isochromane-1,4'-piperidine]. (WA496) 

 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA496 4 (0.140) Scan ES+ 
3.29e7376.65

372.56
204.47102.0738.58

150.32 362.57
228.46

377.62

378.66

398.57 552.65
451.75

787.81
757.78577.75 712.84

849.80 935.15
974.97

818



 
 
 

 

819



 

 
 
6-fluoro-3-(4-(spiro[isochromane-1,4'-piperidin]-1'-yl)butyl)benzo[d]thiazol-2(3H)-
one. (WA497) 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA497 4 (0.140) Scan ES+ 
1.00e5427.56

338.5145.90

22.36

304.53

223.60102.20115.23
256.54

428.59

967.57889.62429.63

430.60 483.65
804.73705.64

892.61 970.43

820



 
 

 
 

821



 
 
1-methyl-3-(4-(spiro[isochromane-1,4'-piperidin]-1'-yl)butyl)-1,3-dihydro-2H-
benzo[d]imidazol-2-one. (WA514) 
 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA514 2 (0.070) Scan ES+ 
5.19e6406.48

239.42

22.62 38.64
158.29

45.77 105.05
236.37

248.44

319.38 393.51

407.52

847.53408.49

464.46
480.41 637.35

552.52
763.29655.31

837.61
848.51 905.51

990.47

822



 

 

 
 

823



 
 
3-(4-(spiro[isochromane-1,4'-piperidin]-1'-yl)butyl)benzo[d]oxazol-2(3H)-one. 
(WA515) 

 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA515 5 (0.176) Scan ES+ 
1.22e5393.51

91.17
32.42 209.27106.99 241.37

394.48

415.49

416.40

824



 
 
 

 

825



 

 
 
 

5-fluoro-3-methyl-1-(4-(spiro[isochromane-1,4'-piperidin]-1'-yl)butyl)-1,3-dihydro-
2H-benzo[d]imidazol-2-one. (WA516) 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA516 13 (0.457) Scan ES+ 
9.34e6424.44

73.86

45.77

38.64
90.98

177.36 256.41 406.48294.55

425.48

426.45

883.53427.49
496.56509.46 650.64602.40 693.77 865.76758.49

910.50
944.49

826



 

 
 

 

827



 
 

 
5-fluoro-1-methyl-3-(4-(spiro[isochromane-1,4'-piperidin]-1'-yl)butyl)-1,3-dihydro-
2H-benzo[d]imidazol-2-one. (WA517) 

+VE

m/z
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

%

0

100

WA517 15 (0.527) Scan ES+ 
3.55e5424.51

409.46
332.48

128.20

169.32
256.48

234.49 301.48

393.57

333.46

369.51

490.46
425.55

446.49

448.44

491.50

957.52
563.55505.57

621.66 671.59 876.59737.74
764.98

860.70 890.79
959.60

828



 

 

 
 

829



 
 
1-methyl-3-(4-(spiro[isochromane-1,4'-piperidin]-1'-yl)pentyl)-1,3-dihydro-2H-
benzo[d]imidazol-2-one. (WA518) 

 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA518 9 (0.316) Scan ES+ 
7.49e6420.49

22.62

393.57217.4438.64 80.73
204.40

257.45
294.48

421.52

486.44

487.48
875.55547.47 605.57

728.47 775.35 949.48993.45

830



 
 
 

 

831



 

 
 
5-fluoro-1-methyl-3-(4-(spiro[isochromane-1,4'-piperidin]-1'-yl)pentyl)-1,3-dihydro-
2H-benzo[d]imidazol-2-one. (WA519) 
 

 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA519 2 (0.070) Scan ES+ 
6.60e6438.52

409.53235.40
90.9857.64 204.47

104.92
264.45

406.54
310.30

439.55

440.53

911.61460.44
496.43 589.62

884.63
635.92

667.51 957.52 973.54

832



 
 
 

 

833



 
 
 
3-(4-(spiro[isochromane-1,4'-piperidin]-1'-yl)butyl)benzo[d]thiazol-2(3H)-
one.(WA520) 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA520 12 (0.422) Scan ES+ 
7.33e5409.53

90.98

85.01
38.58

57.64

177.42

158.36 178.40

248.50 304.60 346.75

410.50

411.54

412.51

481.64 735.54 854.41

834



 
 
 

 

835



 

 
 
5-fluoro-3-methyl-1-(4-(spiro[isochromane-1,4'-piperidin]-1'-yl)pentyl)-1,3-dihydro-
2H-benzo[d]imidazol-2-one. (WA522) 

+VE

m/z
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

%

0

100

WA522 5 (0.176) Scan ES+ 
2.07e6438.45

179.24

109.01

109.98

211.34
235.40

264.32 436.63
403.50295.26

439.42

494.35

495.65 911.54
758.75623.34

549.28
641.31

692.47 786.51 837.35
957.52 972.24

836



 
 

 

 

837



 

 
 
 
 

838



6-(2-chloroacetyl)benzo[d]thiazol-2(3H)-one. [WA309][b1] 

	  

-VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA309 2 (0.070) Scan ES- 
6.39e5226.32

34.56

36.57

44.67

68.80
113.09

190.33171.07

228.33

229.30

230.34
453.37

286.50
790.27

839



	  
	  

	  
 

840



 
6-(3-chloropropanoyl)benzo[d]thiazol-2(3H)-one. [WA310][b2] 

 
 

-VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA310 21 (0.738) Scan ES- 
1.80e5240.33

106.93

58.81

96.88

113.03

204.34
121.07

242.34

481.38

276.32 312.31

314.39 438.26 553.30484.43
957.59700.71

841



 
 

 
 

842



6-(2-chloroethyl)benzo[d]thiazol-2(3H)-one. [WA311][c1]  

 

	  

-VE

m/z
120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

%

0

100

WA311 45 (0.453) Scan ES- 
1.70e6212.30

192.31
121.06

171.30147.23 179.45 210.26

214.34

219.43

249.29
242.35 260.44 278.39

342.19326.14309.21 348.05 369.50 397.58
377.14

843



	  
	  
	  

	  

844



6-(3-chloropropyl)benzo[d]thiazol-2(3H)-one. [WA315][c2] 

 

-VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA315 7 (0.246) Scan ES- 
6.36e5226.32

44.61

68.73

113.03

190.33121.13

228.33

242.34

244.29 460.82
298.50 427.56

845



	  
	  

	  
	  

846



3-(2-(azepan-1-yl)ethyl)-6-(3-chloropropyl)benzo[d]thiazol-2(3H)-one. [WA323][d2]	  

	  
	  
	  

+VE

m/z
175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700

%

0

100

WA323 10 (0.101) Scan ES+ 
5.38e7353.59

216.55

169.43
202.57

319.60

258.65217.52

238.70 269.63

333.57

355.54

356.58

375.55
377.50

448.46411.68
693.63473.48 566.14540.21

496.61
593.11 637.55

679.47

847



	  

	  
	  
	  

848



3-(2-(azepan-1-yl)ethyl)-6-(2-chloroethyl)benzo[d]thiazol-2(3H)-one. [WA324][d1] 

	  

	  
	  

+VE

m/z
100 150 200 250 300 350 400 450 500 550 600 650 700

%

0

100

WA324 50 (0.504) Scan ES+ 
6.34e7339.49

96.07 144.42

101.07
174.31

189.38203.42
337.47

205.43
303.55233.44

341.50

361.52

363.47

365.42
698.64

405.44 438.32
464.51 497.39 545.54 585.37

849



	  

	  
	  
	  

850



3-(2-(azepan-1-yl)ethyl)-6-(3-(methylthio)propyl)benzo[d]thiazol-2(3H)-one. 
[WA325][e2] 

	  
	  
	  

+VE

m/z
125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700

%

0

100

WA325 38 (0.383) Scan ES+ 
6.99e7365.55

319.54
137.79

145.26

169.43

174.31 237.40
183.28 247.48 317.52

333.57

334.55

366.52

367.56

368.53
411.55 510.58

457.43446.51 590.38519.55 684.66643.73

851



	  
	  

	  
	  

852



	  
3-(2-(azepan-1-yl)ethyl)-6-(2-(methylthio)ethyl)benzo[d]thiazol-2(3H)-one. [WA327] 
[e1]	  

	  
	  

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA327 23 (0.808) Scan ES+ 
4.01e6351.55

100.06

80.86
22.62 242.60150.32 227.42 303.56

352.52

353.50

367.50

373.47
723.60409.59 457.52 701.62

588.58569.58
656.42 739.69

792.67
868.68 984.50932.81

853



	  
	  

	  
	  

854



3-(2-(azepan-1-yl)ethyl)-6-(2-azidoethyl)benzo[d]thiazol-2(3H)-one. [WA329][f1] 

 

	  
	  
	  

+VE

m/z
60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

%

0

100

WA329 15 (0.151) Scan ES+ 
4.59e5346.62

169.18
113.87

58.00 109.34
76.27

160.55

144.30

345.55
242.62

187.00
204.89 243.76

282.24 293.02
328.86

347.56

381.64348.64

362.74

433.73

427.69 441.61
470.65

491.94

855



	  
	  

	  
	  

856



6-(2-aminoethyl)-3-(2-(azepan-1-yl)ethyl)benzo[d]thiazol-2(3H)-one. [WA343][g1] 

 
 
 

+VE

m/z
100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700

%

0

100

WA343 32 (0.322) Scan ES+ 
7.66e7320.65

111.15

113.20
139.39

151.34
190.47 209.40 318.61289.64

321.64

661.73322.63

622.73342.63

348.63

350.68
418.64378.59

538.60
440.61

502.57
620.69

570.67

623.66

644.70

662.72

663.71
689.77
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3-(2-(azepan-1-yl)ethyl)-6-(3-azidopropyl)benzo[d]thiazol-2(3H)-one. [WA345][f2] 
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6-(3-aminopropyl)-3-(2-(azepan-1-yl)ethyl)benzo[d]thiazol-2(3H)-one. [WA351][g2] 
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3-(2-(azepan-1-yl)ethyl)-6-(3-mercaptopropyl)benzo[d]thiazol-2(3H)-one. [WA353] 
[h2] 
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3-(2-(azepan-1-yl)ethyl)-6-(2-mercaptoethyl)benzo[d]thiazol-2(3H)-one. [WA354] 
[h1] 
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6-(2-bromopropanoyl)benzo[d]thiazol-2(3H)-one. [WA437][b] 
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6-(2-bromopropyl)benzo[d]thiazol-2(3H)-one. [WA438][c] 
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1-(2-oxo-2,3-dihydrobenzo[d]thiazol-6-yl)propan-2-yl benzoate. [WA442][d]   
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3-(2-(azepan-1-yl)ethyl)-6-(prop-1-en-1-yl)benzo[d]thiazol-2(3H)-one. [WA444b] 
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1-(3-(2-(azepan-1-yl)ethyl)-2-oxo-2,3-dihydrobenzo[d]thiazol-6-yl)propan-2-yl 
benzoate. [WA448][e] 
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3-(2-(azepan-1-yl)ethyl)-6-(2-hydroxypropyl)benzo[d]thiazol-2(3H)-one. [WA449][g] 
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3-(2-(azepan-1-yl)ethyl)-6-(3-methyloxiran-2-yl)benzo[d]thiazol-2(3H)-one.[WA458] 
[f] 

 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA458 1 (0.035) Scan ES+ 
1.04e6333.65

218.4722.69

136.31112.31
70.81 138.25

240.52

241.56

355.64

687.74665.76

356.61
455.64

357.58
446.69

477.69

478.66 524.83
580.22

688.71

787.81689.75
703.82

809.79

997.80877.82
909.92

879



 

 
 
 

880



(E)-3-(2-(azepan-1-yl)ethyl)-6-(prop-1-en-1-yl)benzo[d]thiazol-2(3H)-one. [WA459] 
[f] 
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3-(2-(azepan-1-yl)ethyl)-6-(2-fluoropropyl)benzo[d]thiazol-2(3H)-one. [WA466][h] 
 

 

+VE

m/z
100 200 300 400 500 600 700 800 900 1000

%

0

100

WA466 15 (0.527) Scan ES+ 
1.45e6337.61

100.06
22.69

38.64
102.20 317.57150.32

222.50

338.58

353.56

695.65359.53
560.57

375.54428.59 540.59 665.63561.54
711.67 764.72

808.69
912.58 929.64 980.93

882



 
 

 
 

883



 

 

884



 

Walid Alsharif received his bachelor of pharmacy (B.Pharm.) degree from Garyounis 

University in Libya, and joined Dr. Christopher R. McCurdy’s research group at the University 

of Mississippi (Oxford, MS, USA) in 2010 pursing his doctorate studies. His doctoral research 

focused on the design and synthesis of new ligands for sigma receptors with the goals of 

developing medications that can treat stimulant abuse and addiction from one project, and 

identifying novel and selective sigma-2 ligands that can be used as pharmacological tools to 

isolate and identify sigma-2 receptors to gain greater understanding of their roles in cancer.  

Walid Alsharif has received several research awards locally and nationally during the last 

two years. He received consecutive first place award in 2013 and 2014 in the University of 

Mississippi’s local section of the American Chemistry Society (ACS) Poster Competition. He 

was recognized with the first place poster award at the 2014 Graduate Student Council (GSC) 

Graduate Research Forum at the University of Mississippi. He also received a GSC Research 

Grant Award, and has been recommended for funding of a second grant. The Mississippi 

Academy of Science (MAS) recognized his work with Honorable Mention distinction for his 

outstanding manuscript at the 2015 MAS Annual meeting. Later in the same year, he was 

received the first place award in Applied Neuroscience Category in the first Neuroscience 

Research Showcase Poster Competition, 2015. He also received national recognition from the 

American Association of Pharmaceutical Scientists when he was awarded the 2014 Graduate 

Student Research in Drug Discovery and Development Interface Award, in recognition of his 

excellence in graduate education in the fields of Drug Discovery and Development Interface. 

885

walidalsharif
Typewritten Text

walidalsharif
Typewritten Text

walidalsharif
Typewritten Text

walidalsharif
Typewritten Text

walidalsharif
Typewritten Text

walidalsharif
Typewritten Text

walidalsharif
Typewritten Text
   VITA

walidalsharif
Typewritten Text

walidalsharif
Typewritten Text


	Design, synthesis, and biological evaluation of sigma receptors (σRS) ligands as potential pharmacotherapy for cancer and drug addiction
	Recommended Citation

	Microsoft Word - Walids Dissertation FINAL FIXed.docx

