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ABSTRACT 
 

One of the most important questions humanity will face in the next 100 years is going to be 

“What will happen when oil runs out?” This dissertation describes efforts to utilize solar energy 

to improve renewable energy technology in two ways: First, through the improvement of dye 

sensitized solar cells by the improvement of D-π-A dye subunits, the development of practical 

sensitizers, and progress towards stable, tunable redox shuttles. A novel indolizine donor subunit 

was synthesized that was shown to be the strongest reported donor. Dyes made from this novel 

donor and devices using the I-/I3
- reached up to 5.4% efficiency. This donor was then 

systematically improved by the addition of non-conjugated substituents, which acted as good 

surface blocking groups and thus facilitated high performance during device testing. Dyes made 

using this donor and devices using the I-/I3
- redox shuttle reached up to 6.7% efficiency. Second, 

this thesis describes efforts to close the carbon cycle through utilization of solar energy in CO2 

reduction. The described efforts regard the improvement of known catalysts through increased 

stability and performance, and of the use of a simulated solar spectrum to improve the 

practicality of photocatalytic CO2 reduction. By the substitution of a pyridyl chelating group for 

an N-Heterocyclic Carbene (NHC) ligand, the synthesized complexes were more stable while 

still absorbing visible light. The synthesized complexes operated as photocatalysts with or 

without a photosensitizer, making this the fourth reported series of non-sensitized photocatalysts 

for CO2 reduction. 
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INTRODUCTION 

 

INTRODUCTION TO THE HISTORY OF ENERGY 
 
  

 Since the discovery of fire, people have searched for sources of energy to improve 

standards of living or to aid human endeavors. Prior to the 19th century, woody material 

comprised the most of the world’s accessible energy reserves. While early accounts indicate that 

man utilized coal as early as 1000 B.C.,1 poor extraction technique left most of the useful 

material—and the feasibility of coal energy—behind. In the middle of the 19th century, the 

industrial revolution required more powerful energy sources and thus the movement was built 

largely on coal, whale oil, and petroleum.  

 Because whale oil was difficult to obtain and its supply waned with the population of 

whales, it fell out of use quickly. Better mining and extraction processes have led to the 

ubiquitous use of coal, natural gas, and petroleum as the modern world’s primary sources of fuel. 

Even so, the overall supply of each resource above is finite. Furthermore, just as whale oil’s use 

met its end with increasing prices and dwindling supply, so too must happen (eventually) to each. 

The timeline of such a decline is hotly debated at present, but some estimates say oil could run 

out in the next 100 years. The decline of supply (as well as rising prices) is a major influence in 

the quest to find renewable energy sources that are feasible for widespread use.  
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 A myriad of renewable energy sources exist, including wind, hydrothermal, geothermal, 

and solar power. Wood burning is also technically a renewable resource, however, it is not 

feasible or sustainable for widespread use. Solar energy is very promising in that each year, the 

sun irradiates the earth with 3x1021 kJ of energy, which equates to roughly 10,000 times annual 

global consumption.2  While much research is concerned with advancing each type of renewable 

energy source, only solar energy will be discussed here further.  

 Humans have utilized solar energy (excluding agriculture) purely as a heat source even as 

early as the 7th century B.C. with the invention of the magnifying glass. Perhaps the most famous 

early use of the suns thermal power came in the 2nd century B.C. As the story goes, a fleet of 

Roman ships besieged Syracuse and Archimedes used bronze shields to focus the sun’s power 

into a highly intense beam to set fire to the wooden ships (Note: No definite proof of this feat 

exists, however, it is possible to set fire to wooden ships in the same manner at a distance of 

50m).3    

Solar power went largely underutilized until 1839 when Edmond Bacquerel discovered 

that an electrolytic cell’s electricity generation increased when exposed to light. This 

phenomenon was termed the photoelectric effect. It would be another 115 years until scientists 

brought forth a solar cell able to power everyday electrical appliances-- the Si photovoltaic (PV) 

cell developed by Fuller, Chapin, and Pearson of Bell Laboratories. It is useful to note that 

photovoltaics found use immediately for space application, as early satellites did not need much 

power and panels were not very heavy. Terrestrial cells, however, were developed much more 

slowly.  
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The early (1956) terrestrial cells were capable of nearly 2% efficiency and 10W on a 

bright day. Ten years later, efficiency crept to 5% with Sharp outfitting Ogami Island Japan’s 

lighthouses with the largest (225 W) solar module of the time.3b  The energy generated from 

these systems has been estimated to be about $100/Watt. The energy crisis of the 1970s further 

spurred the pursuit of affordable solar technology, with 6% modules being sold for nearly 

$20/Watt (in large quantities). In the middle of the 1970s, the U.S. government began investing 

in solar power application and through purchasing nearly 200 kW, by 1979 the efficiency had 

improved to 8.4% and the price to $12-$18/Watt.3b   

With the start of the 1980s, funding had begun to diminish for fundamental solar cell 

development. Many manufacturing innovations had increased the durability dramatically, and 

engineering of the crystalline Si wafers also led to large increases in efficiency (up to 10% in 

1985). By the end of 1997, further engineering innovation led to the announcement of a 

commercial module with 15% efficiency, and in 2004 it was announced that a 16% efficiency 

module was being produced. Projections indicate that module prices should continue to fall with 

increased scale of manufacture and decreasing silicon wafer widths,3b a rate that so far has 

followed Swanson’s Law.4 Whether the price decrease continues that trend remains to be seen, 

however, it should be noted that Swanson himself questioned if the continued trend would 

continue much farther past 2012.4  

While Si PV modules exhibit efficiencies now greater than 16% at a commercial level 

(for research cell efficiencies, see Figure 1), the initial cost of installation is prohibitive. The 

reason for the high initial cost of production is that most manufacturing processes require large 
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energy and time input to produce high quality cells. The modules are also fragile, as the best 

performing devices are single Si crystals. As long as the panel does not suffer damage, modules 

can operate indefinitely with a median 0.5% decrease in power output per year.5   

Figure 1. A graph of the best research-cell efficiencies, compiled by the National Renewable Energy Laboratories. 

This plot is courtesy of the National Renewable Energy Laboratory, Golden, CO. 

 

As showcased above, manufacturing advances over the first 50 years of production have 

led to the increase in viability of Si photovoltaics for large-scale use. However, solid-state 

photoelectrochemical cells like Si PV are not the only hope for solar energy. In fact, the opinion 
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of nanocrystalline or conductive polymer devices are improving due to their potentially low 

fabrication cost, flexibility, and tinting capability (useful for transparent or near-transparent 

architectural or device applications). The rest of this work’s solar photovoltaics focus will be on 

dye-sensitized solar cells (DSC).  
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INTRODUCTION TO DYE SENSITIZED SOLAR CELLS 

The concept of a dye-sensitized cell came about in 1883 with Vogel’s discovery that 

silver halide emulsions could absorb visible light past 460 nm with the addition of a sensitizing 

dye. This description was important in regards to photography; however, four years later Moser 

used the same principle to construct a photoelectrochemical cell from erythrosine and silver 

halide electrodes. It would be another eighty years before the sensitization process (in both 

photography and photoelectrochemical cells) was confirmed to include primarily electron 

transfer from dye to semiconductor.2  

The modern era of DSC started in 1991 with Grätzel and O’Regan’s first communication 

of a 7.2% eifficiency cell based on dye-sensitized colloidal-TiO2 films.6 A schematic of the 

principle of operation of a DSC is shown in Figure 2. In a DSC, dye molecules adsorbed onto the 

TiO2 film’s surface absorb light and subsequently inject an electron into the TiO2 conduction 

band. With injection, the dye is oxidized and is regenerated to the ground state by the redox 

electrolyte. With regeneration of the dye, the redox electrolyte becomes oxidized and is in turn 

regenerated by electrons from the counter electrode, which completes the circuit. The overall 

efficiency of the DSC (η) is determined by the following (simplified) equation: 

η = (FF x Voc x Jsc)/I0  (1) 

where FF is the fill factor, Voc is the open circuit voltage, and Jsc is the short circuit current. The 

expanded equations for each term, the kinetics governing each, and the relevant issues in 

maximizing all three will not be covered here, however, each has been covered in reviews by 

Hagfeldt7 and Grätzel.8  While attempts to use dye-sensitized cells had been undertaken before 
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Grätzel and O’Regan’s publication, efficiencies had been too low to render DSC a viable 

competitor to Si PV cells. In their publication, the two authors addressed two very important 

problems.  

 

Figure 2. Left: Principle of operation of a DSC. Right: Transmission electron micrograph of nanometer-

sized anatase TiO2 colloid used for DSC. Reprinted with permission from Gratzel, M. Journal of Photochemistry 

and Photobiology C: Photochemistry Reviews 2003, 4, 145. Copyright 1991 Elsevier.6,7,8 

 

The first was that of light harvesting. With smooth surfaces, a monomolecular layer of 

sensitizing dye absorbed less than 1% of available light. By using a sintered nanometer-sized 

TiO2 semiconductor film, the surface area was greatly improved, which allowed for much greater 

quantities of dye to be adsorbed while also remaining in contact with the electrolyte solution. A 

transmission electron micrograph of the surface of the mesoporous TiO2 film described is 

presented in Fig 2.6   

The second important problem to be addressed was that of dye stability. Previous 

attempts to sensitize semiconductor films had utilized dyes such as Rose Bengal, which brought 

the efficiencies of these early DSC to less than 1%. The dye proposed for use by Grätzel and 
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O’Regan was a Ru metal-complex dye anchored to the TiO2 surface with carboxylic acid 

functionalities (Figure 3).6  The Ru dye’s longest wavelength (lowest energy) absorption is the 

result of charge transfer (CT), in which the ground-state of the molecule contains no charged 

species (other than the metal ion) but the excited state harbors both a discreet positive and 

negative charge. The CT absorption band drives electron injection, as the discreet negative 

charge lies very near the TiO2 surface, while the discreet positive charge lies far from the surface.  

 

Figure 3. Chemical structures of a) Grätzel’s trimeric Ru dye, b) current metalized dye record-holder 

SM315, and c) current organic dye record-holder ADEKA-1. 

 

 Since the seminal article, research in DSC has grown considerably and much progress has 

been achieved. Currently, the best metal containing dye (SM315,9 Figure 3) exhibited a 13% 

power conversion efficiency (PCE, equivalent to η), while the best all organic dye (ADEKA-1,10 

Figure 3) exhibited a PCE of 12.5%. Both state-of-the-art dyes highlighted here were published 

very recently, which demonstrates the continued need and utility of high quality synthetic dyes. 

Future potential dye targets should ideally conform to a set of parameters designed to give DSC 

the leg up it needs to be a feasible solar energy technology.  
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 First, the ideal photosensitizer should absorb all light in the standard solar AM 1.5 

spectrum11 up to a wavelength of 920 nm. The sun’s solar spectrum extends much further than 

920 nm, but energetically the dyes are theoretically limited to about this wavelength. Second, the 

dye must contain (at least one) functional group capable of allowing adsorption onto a TiO2 

surface, such as carboxylate, phosphate, silylalkoxy, or sulfonate groups. Third, the dye must 

inject absorbed photons into the TiO2 conduction band with a quantum yield of unity. Fourth, the 

dye must have energy levels (HOMO and LUMO) that are well matched for electron injection 

from the excited state and regeneration from the ground-state. Lastly, the ideal dye should be 

stable to at least 108 turnover cycles, which equates to 20 years of continual device operation.7,12 

 These dye guidelines allow for synthetic chemists to understand the benchmarks by 

which the greater community will judge their work and planning that is represented by the 

efficiencies their dyes reach.13  For the DSC portion of this work, the emphasis will be on dye 

synthesis, as the dye inside of a DSC is the most costly and also the most responsible for device 

performance. Thus, the development of highly performing, synthetically simple dyes will allow 

DSC to overtake Si-PV as the best option for solar energy.  
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INTRODUCTION TO PHOTOCATALYTIC CARBON DIOXIDE REDUCTION 

 Since at least May 2006, the amount of carbon dioxide in earth’s atmosphere has become 

a polarizing political figure, due to its implication in global warming. The debate (the political 

nature of which and the arguments from both sides are outside the scope of this work) 

surrounding the level of CO2 in Earth’s atmosphere centers on the gas’s origin. As an integral 

part of the carbon cycle, CO2 is needed to ensure each of Earth’s ecosystems has enough carbon 

to sustain it. While the carbon cycle is a natural phenomenon known since the days of Priestley 

and Lavoisier, man’s contribution to the atmospheric total is the debated factor. As illustrated in 

Figure 4, the amount of CO2 in the atmosphere has increased each year since the Scripps 

Institution of Oceanography has started monitoring in 1958.  

 

Figure 4. Carbon dioxide level in Earth’s atmosphere in March 2014 as reported by Scripps Institution of 

Oceanography. 
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According to a recent measurement in May 2014, CO2 resides in the atmosphere at 

401.18 ppm.14  This level is 51.18 ppm above 350 ppm, or what many experts consider as a safe 

level of atmospheric CO2. Because this work’s aim ultimately hopes to reduce the amount of 

CO2 by developing catalysts that can react CO2 at its source (while also generating useful 

chemical intermediates or liquid fuels), determining how far from a safe level we are is important.  

Taking the mass of Earth’s atmosphere as 5.132 x 1018 kg, then the total mass of CO2 in 

the atmosphere is 2,068 Tt.15  It follows then that the mass of CO2 we need to remove from the 

atmosphere (as of May 2014) to return to 350 ppm is 262 Tt of CO2. This figure, while accurate, 

is also misleading (aside from the problem of CO2 concentration continuing to rise), as 262 Tt of 

any solid or liquid would be at best intractable. This, then, means that any process converting 

CO2 into another chemical needs to take into account the problem of scale in order to be practical 

or useful. Simple organometallic chemistry would suggest that using Grignard reagents or 

lithiated hydrocarbons might be a useful way to remove CO2, but aside from needing vast 

quantities of these extremely reactive reagents, the products of these stoichiometric reactions 

(meaning reactant and product ratios are whole number integers) are solid ionic salts and liquids.  

In order to mitigate the problems of scale, then, catalytic processes for reducing CO2 are 

needed. The energy source for reduction can be electricity (electrocatalysis), solar energy 

(photocatalysis). In electrical catalysis, electrons provided by the working electrode fuel the 

catalytic cycle; however, the reaction is also spatially dependent as the requisite electrons can 

only be transferred to the catalyst within close proximity of the electrode (Figure 5). In 

photocatalysis, photons fuel the catalytic cycle, and the catalytic cycle is completed by electron 
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transfer from sacrificial reductant molecules (Figure 5). Currently, no “best” method for CO2 

utilization exists, even though much research on catalytic processes is ongoing throughout the 

world (only 1% of CO2 on earth is being used in synthesis).16  Because of the aforementioned 

scale issues, the ideal photocatalytic process would draw the required electrons and protons 

(Figure 5) from H2O. 

 

Figure 5. Two general methods for CO2 reduction: a) electrocatalysis. b) photocatalysis.  

 

All three routes could play important roles in reducing atmospheric CO2 levels. Catalytic 

processes can produce valuable chemical feedstocks such as: lactones, carboxylic acids, acrylates, 

and more.16-17  Electrocatalytically, CO2 can be changed selectively into CO, which can be 

utilized directly in the Fischer-Tropsch process to generate liquid fuels to help offset the energy 

cost associated with bulk electrolysis. Photocatalytic processes also generate CO and use 

sunlight as an integral part of the catalytic cycle. Photocatalysis offers a truly sustainable 

catalytic process. Because of this marked advantage, it will be the focus of this work.  
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 Perhaps one of the biggest problems facing photocatalytic CO2 reduction research is that 

homogeneous catalysts should both absorb visible light and interact with CO2. Transition metal 

complexes often have color, however, not many transition metal complexes are capable of 

interacting with CO2. In fact, there are only three series of metal complexes reported to do both 

the jobs of absorbing visible light and reducing CO2 (a literature search will show that porphyrin 

metal complexes have been reported to reduce CO2 with UV light and that several 

electrocatalysts have been photosensitized) (Figure 6). The first to be reported was based on Re 

(I) bipyridyl complexes,18 while the others are based on cyclometallated Ir (III) catalysts.19  The 

Re catalyst is capable of 27 turnovers in four hours; however, the catalyst is not active after that 

time. Similarly, the Ir catalyst is capable of 40 turnovers in the same amount of time but is 

inactive thereafter. Thus, the problem of CO2 photoreduction remains to be solved. In order to do 

so, new light absorbing, CO2 interacting catalysts must be synthesized.  

 

Figure 6. The molecular structures of: a): The first photocatalytic CO2 reduction catalyst, 

ReX(bpy)(CO)3. b): Ir(tpy)(ppy)Cl catalyst reported by Ishitani. c): [Ir(thiazole)2(bpy)]+ catalyst 

reported by Zhou. 
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CHAPTER 1 

SECTION 1 

INDOLIZINE-BASED DONORS AS ORGANIC SENSITIZER COMPONENTS FOR 

DYE-SENSITIZED SOLAR CELLS 

INTRODUCTION 
 

Dye-sensitized solar cells (DSCs) have undergone continuous improvements since their 

introduction in 1991.2 DSCs have already extended into the solar energy conversion market due 

to their high solar-to-electric power conversion efficiencies (PCEs) and relative affordability.3,13 

Despite their tremendous success so far, several key aspects of DSCs could benefit from 

additional improvements, including conversion of near-IR (NIR) photons and price of 

sensitizers.20 Often cited as cost-effective alternatives to metal-based sensitizers, organic 

sensitizers have been a key focus within DSC development.13 These sensitizers have remarkable 

tunability and have been demonstrated to productively utilize NIR photons up to 1000 nm.21 

Organic sensitizers have seen continuous improvements leading to PCEs of >12% since the 

inception of DSCs.10 

The most common organic dye structure is the proven donor-π bridge-acceptor (D-π-A) 

configuration. Research with regard to the donor fragment has proven instrumental in increasing 

organic sensitizer-based DSC PCE values to >10%.22 High-efficiency NIR absorbing D-π-A 

dyes require balanced donor and acceptor strengths to avoid non-beneficial energy level 

perturbations. Frequently, strongly electron deficient motifs (acceptors) result in excited-state 
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oxidation potentials that are too stabilized for electron injection into the TiO2 conduction band 

rendering these dyes non-functional. Accordingly, there is a vast need for stronger organic 

electron-donor materials to be matched with many of the common electron deficient DSC π-

bridge-acceptor motifs.23 We examined for the first time in DSC devices a fully-conjugated 

planar nitrogen-containing donor, indolizine, in model visible light absorbing systems. 

Nearly all-organic sensitizers with >10% PCE utilize arylamine donors, either as 

triphenylamine, diphenylamine, or indoline. However, these donor systems are not ideal since 

the electron donation strength is mitigated by three main factors: (1) weak donation directionality 

to the dye acceptor, (2) large energy barriers to charge transfer due to the breaking of phenyl 

resonance stabilization energy to access the dye excited-state, and (3) non-optimal nitrogen lone 

pair orbital alignment with the dye π-conjugated system due to sterically induced twist angles. 

These mitigating factors can be substantially reduced through designing planar fully-conjugated 

nitrogen-containing donor building blocks for dyes, such as indolizine-based donors. For the first 

time in DSCs, we have examined indolizine in model dye systems (Figure 7). When compared 

computationally to triphenylamine (TPA) and diphenylamine (or indoline) based donors, 

dramatic improvements in nitrogen-substituent twist angles are observed. TPA shows a 

substantial 43o dihedral angle and indoline shows a significantly improved 23o dihedral angle. 

However, indolizine shows an ideal planar nitrogen-substituent bond angle. Additionally, the 

nitrogen lone-pair of indolizine may donate either into the 6 or 5 member ring and productively 

deliver the donated electron pair to the π-bridge according to valence bond theory. Given these 

desirable properties and a remarkably rapid high-yielding donor synthesis (1-step in many cases), 
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we have prepared a series of model dyes with indolizine donors for comparison to the properties 

of TPA and indoline donor-based dyes with identical π-bridges and acceptors.  

 

Figure 7. Indolizine-based donors as D-π-A dye components (top) with a common thiophene π-bridge-

cyanoacrylic acid acceptor (T-CAA, bottom right). Common all-organic donor functionality (bottom left) with 

nitrogen-aryl bond dihedral angles calculated after DFT geometry optimization with a B3LYP functional and 6-

311G(d,p) basis set.  

 

DYE SYNTHESIS 

A range of substituted indolizine donor targets were selected with substituents on both 

the five and six member rings of the fused system (Figure 7). The selected DSC target 

indolizine-based dyes keep the π-bridge and acceptor regions constant as thiophene-cyanoacrylic 

acid (T-CAA) throughout the series for simple donor effect comparison (Figure 7). The 

indolizine donors differ in electron-donating group (EDG) strength at the 2-position, substituent 
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For practical synthetic purposes, we found the 2-position may be substituted with either electron-

withdrawing functionality (which adversely effects charge transfer based absorptions)24 or with 

aryl substituents to yield stable electron-rich intermediates. 

The synthetic route employed for all dyes began with donor formation followed by 

palladium-catalyzed direct C-H arylation at the Indolizine 2-position then Knovenagle 

condensation. Concerning donor formation, indolizine 3 was prepared according to literature 

precedent.25 Synthesis of indolizine-based dyes AH3, AH4, AH5 and AH6 began with 2-

alkylated pyridines which were purchased (2-ethylpyridine), prepared through lithiation-

alkylation (4), or prepared through Kumada coupling (6). The 2-alkyl pyridines were then N-

alkylated with α-bromoacetophenones and underwent subsequent base-induced cyclization to 

form intermediates 7-10. The alkylation/cyclization sequence may be conducted in a single step 

to generate the parent polycyclic donor or as a two-step sequence with simple filtrations to purify 

the intermediate pyridinium salts (Scheme 1).26 It is noteworthy that indolizine 10 decomposes 

significantly within minutes when exposed to air which suggests the indolizine parent system for 

AH6 is near the maximum electron donating potential available for handling under ambient 

conditions. Palladium catalyzed C-H activation of the indolizine donors (3, 7-10) with 5-bromo-

2-formylthiophene led to aldehyde intermediates 11-15, which underwent Knovenagle 

condensation with cyanoacetic acid to give the desired dyes AH2-AH6.27 These dyes are 

accessible in remarkably few synthetic steps (3-5 steps total) in up to 39% overall yield.  
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Scheme 1. Synthetic route to dyes AH2-AH6. Reaction Conditions: i) DABCO, CHCl3, rt, 91% 1; ii) Ac2O, 

100ºC, 86% 2; iii) 120ºC, neat, 76% 3; iv) t-BuLi, THF, -78ºC, then C6H13Br, 50% 4; v) Mg, I2, THF, rt to reflux, 

then Ni(dppp)Cl2, pentylbromide, 0ºC to reflux, 92% 6; vi) acetone, reflux, then NaHCO3, H2O, reflux, 92%-16% 

intermediates 7-10; vii) R3 = H, 5-bromothiophene-2-carboxaldehyde, Pd(PPh3)2Cl2, KOAc, NMP, 80ºC, 92-44% 

intermediates 11-14; viii) R3 = OMe, Pd(OAc)2, PCy3, Cs2CO3, toluene, 130ºC, 19% intermediate 15; ix) piperidine, 

cyanoacetic acid, CHCl3, 90ºC, 84-14%, AH2-AH6. 
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OPTICAL AND ELECTROCHEMICAL PROPERTIES 

The optical properties of AH2-AH6 were analyzed to understand the effect of the 

indolizine substituents on the UV-Vis absorption properties (Table 1, Figure 2).  

Table 1. Optical and electrochemical properties of AH2-AH6 in dichloromethane solutions.  

 

a Measured in CH2Cl2 
bMeasured at the intercept of the absorption and emission curves in CH2Cl2. 

c 

Measured in a 0.1 M Bu4NPF6 in CH2Cl2 solution with glassy carbon working electrode, Pt reference electrode, and 

Pt counter electrode with ferrocene as an internal standard. Values are reported versus NHE. d Calculated from 

E(S+/S*) = E(S+/S) - E(0-0). 
e Triphenylamine-thiophene-cyanoacrylic acid (CAA) dye, CQ1. See ref. 28. f p-

Dimethoxytriphenylamine-thiophene-CAA dye, C1. See ref. 29. g Estimated from the absorption curve onset in 

CH2Cl2. 
h Estimated from the CV voltammogram in CH2Cl2. 

i Indoline-thiophene-CAA dye, LS1. See ref. 30. 

 

Substituents at the 2-position of indolizine were found to be electronically active whereas 

the dyes AH2, AH3 and AH5 exhibited red-shifted λmax values progressing from electron 

withdrawing groups (EWGs) to EDGs (ester < pH-phenyl < pMeO-phenyl) over a range of ~150 

nanometers (nm) (Figure 8). Additionally, substituents on the 5-positon of indolizine were found 

to give a significant red-shift (~50 nm) when comparing H-substituted AH4 to OMe-substituted 

AH6. The large red-shifted absorptions (75-135 nm Δλonset AH6 vs. CQ1,28 C129 & LS1)30  

Dye !max
 (nm)a E(0-0) (eV)b E(S+/S*) (V)dE(S+/S) (V)c

AH2
AH3
AH4
AH5
AH6
CQ1e

C1f

LS1i

419 (sh)
553
558
562 (sh)
592
442
499
523

2.42
2.06
2.06
2.06
1.88g

2.27
2.16g

2.06

-1.12
-0.98
-0.98
-1.00
-1.03
-1.11
-1.12
-1.05

1.22
0.99
0.99
0.97
0.85
1.16
1.04h

1.01

!onset
 (nm)a

535
633
633
640
675
540
590
600

" (L mol-1cm-1)a

1,250
8,500
11,300
5,800
12,500
25,000
27,500
20,000
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observed with the indolizine dye series when compared to other common donor-based dyes 

illustrates the strong electron donation strength of the indolizine building blocks. The molar 

absorptivities ranged from 1,000-13,000 M-1cm-1
 with the short alkyl chain length dyes at the 3-

position (AH2, AH3 and AH5) yielding the lowest molar absorptivities. AH2 has a substantially 

lower molar absorptivity than the remaining indolizine-based dyes which is likely the result of a 

weakened charge transfer transition due to the addition of an electron deficient ester on the 

indolizine donor. The highest molar absorptivity indolizine-based dyes, AH4 and AH6, have 

roughly half the molar absorptivity values observed for the phenylamine based-donors. The 

indolizine donors are significantly more sterically congested at the donor-π bridge bond than 

phenyl amine based donors and computationally show larger twist angles about this bond (32o vs. 

~20o). 

 

Figure 8. Left: Absorption spectra of dyes AH2-AH6 measured in 0.05% AcOH and CHCl3. Right: 

Emission spectra of of dyes AH2,3 & 5 in CHCl3.  

The increase in wavelength absorption breadth of indolizine donors when compared with 

triaryl- and diarylamine donors can be rationalized through several factors including amine 
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planarity (Figure 9), the generation of an aromatically stabilized pyridinium excited-state region 

upon electron donation (Figure 9a), less competing electron donation directionality due to 

indolizine being a fully conjugated donor system (Figure 9b), and a lower inherent resonance 

stabilization energy for the amine donor to overcome than the common benzene resonance 

stabilization energy (Figure 9c).  

 

Figure 9. a) Structures of AH6 in the ground- and excited-state, illustrating the competing local aromaticity 

between the pyrrole and pyridinium substructures. b) Structure of CQ1 with a non-productive conjugated pathway 

illustrated. c) Structure of CQ1 in the ground- and excited-state illustrating a high-resonance stabilization barrier, 

which must be overcome for charge transfer to occur. 
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The excited-state generated pyridinium substructure has a larger aromatic stabilization energy 

than the ground-state locally aromatic pyrrole (28 kcal mol-1 vs. 22 kcal mol-1) which likely leads 

to a substantially lower charge-transfer energy barrier. Proaromatic substructures (i.e. 

substructures with competing local aromaticity) are rare in donor functionality and most 

commonly observed with π-bridges and acceptors.   

The electrochemical properties of the D-π-A dyes AH3-AH6 were analyzed with regard 

to DSC device components to evaluate if the dyes are energetically suitable for regeneration 

from the I-/I3
- redox shuttle and electron injection into a mesoporous TiO2 semiconductor (Table 

1). Through cyclic voltammetry (CV), the ground-state oxidation potentials (E(S+/S)) of AH3-

AH6 are established to range from 0.99 to 0.85 V versus normal hydrogen electrode (NHE) 

which indicates regeneration from the I-/I3
- redox shuttle is favorable (ΔGreg = 500-640 mV). 

According to the equation E(S+/S*) = E(S+/S) – E(0-0) the excited-state oxidation potentials (E(S+/S*)) 

are determined based on E(S+/S) and the intercept of the absorption and emission curves (E(0-0)) 

(Figure 8b). The E(S+/S*) values were found to be favorable for electron injection into the TiO2 

conduction band (ΔGinj = 480 – 530 mV). The oxidation potential of indolizine dyes AH3-AH6 

were found to be significantly higher in energy when compared with triphenyl amine and 

indoline based dye derivatives. The indolizine molecular geometry enhances electron donation 

strengths leading to a significant destabilizing of the oxidation potential (more strongly than 

typical donors) and the proaromatic pyridinium substructure leads to a unique stabilization of the 

excited-state oxidation potential. Because the optical band-gap is concomitantly narrowed, 
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longer absorption wavelengths may be accessed with an atypically low number of conjugated π-

bonds relative to typical DSC D-π-A dyes with absorptions reaching ~700 nm. 

While E(S+/S) is a good measure of a one-electron donation strength and the ability of the 

molecule to stabilize a radical cation, we sought to also examine the two-electron donation 

strengths through a comparison of the CAA carbonyl vibrational stretches between dyes. The 

CAA carbonyl stretch shifts to smaller wavenumbers with increasing donor strength and allows 

for a comparison of a variety of donor groups with identical π-bridges and acceptors. The TPA-

based dyes L1 (identical to CQ1) and C213 (a C1 analogue) give similar values for this stretch 

(1683 cm-1 for L1,31 1682 cm-1 for C213, Table 2).32 An indoline-based dye gave only a slightly 

smaller carbonyl vibrational frequency value (1680 cm-1).33 In comparison, indolizine-based dyes 

gave an average value of 1646 cm-1, which is significantly smaller (~35 cm-1) than the other 

donors examined. Additionally, the C-N bond stretch of the CAA cyano group was compared 

between the four donors (Table 2).  

Table 2. Electrochemical and spectroscopic vibrational analysis of dyes with varying donor functionalities 

(with T-CAA as bridge and acceptor) as they pertain to electron donation strength. 

 

a Estimated from IR absorption figure in Ref. 33. 

 

Asymm. CO
(cm-1)

1683
1682
1680
1646

Dye

L1 (CQ1)
 C213 (C1)

LS1
AH3

CN
(cm-1)

2216
2216
2220a

2203

E(S+/S) 
(V)

1.16
1.04
1.01
0.98
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Both TPA donors (L1 and C213) have the same value (2216 cm-1), while indoline is estimated to 

be near identical (~2220 cm-1). The indolizine dyes again demonstrated the lowest C-N bond 

stretch value (2203 cm-1) further illustrating the remarkable two-electron donations strengths.  

COMPUTATIONAL STUDIES 

For dyes to efficiently inject electrons into the TiO2 conduction band with minimal back 

electron transfer for TiO2 to the oxidized dye, the LUMO should be positions near the dye 

anchor and significantly separated from the dye HOMO. To examine the orbital geometries, 

AH2-AH6 were computationally evaluated using a variety of density functional theory (DFT) 

methods (B3LYP, VSXC, MN12L, N12, M11L, VSXC, M06L, LC-PBE, PBE0, CAM-B3LYP) 

and basis sets (6-31G(d,p), 6-311G(2df,2pd)) with dichloromethane polar continuum model 

(PCM) and no-PCM. The HOMO and LUMO orbitals for each of the dyes show the HOMO 

primarily localized on the indolizine donor and the LUMO primarily localized on the T-CAA 

motif (Figure 10). The dye LUMO and HOMO orbital arrangements are well situated for 

efficient electron injection from the dye into the TiO2 conduction band and diminished back 

electron transfer from the TiO2 semiconductor to the oxidized dye, respectively.  

A tremendous number of organic dye building blocks are available to tune dye properties. 

An experimentally accurate computational method for predicting dye absorption spectrum can 

have a dramatic impact on prioritizing future synthetic dye targets and on the wise utilization of 

chemical resources. To establish an accurate computational method, time-dependent DFT (TD-

DFT) computations were performed to analyze the dye vertical transitions and oscillator 

strengths (Table 3, Figure 10).  
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HOMO 

 

AH3   AH4    AH5               AH6 

LUMO                                                         

 

AH3          AH4    AH5          AH6  

Figure 10. HOMO (top) and LUMO (bottom) orbitals for AH3, AH4, AH5, and AH6 with a set contour 

value of 0.065. Calculations performed by Dreux and Tschumper. 

 

After extensive calibration (Table 3), DFT/TD-DFT protocols were identified for the 

computation of the vertical transitions of AH3-AH6 that could reliably reproduce the 

experimental λmax (within 10 nm). No-PCM, TD-DFT computations performed with the VSXC 

functional and 6-311G(2df,2pd) basis set gave very good agreement when using geometries 

optimized with either the VSXC or B3LYP functionals (within 10 nm or 20 nm, respectively). 

Table 3: Deviations (Δλ in nm where + indicates an overestimation of the experimental λmax) from experimental 
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λmax values for the most intense vertical transition computed with two different functionals and the 6-311G(2df,2pd) 

basis set. Calculations performed by Dreux and Tschumper. 

 AH3 AH4 AH5 AH6 

Experimental Reference (λmax in nm) 553 558 562(sh) 592 

TD-DFT Geometry Optimization  Δλ in nm 

No-PCM No-PCM  

B3LYP B3LYP -44 -52 -62 -63 

B3LYP VSXC -40 -38 -44 -47 

VSXC B3LYP +17 +5 -18 -12 

VSXC VSXC +4 +9 -4 +1 

PCMa No-PCM  

B3LYP B3LYP +2 -6 -19 -11 

B3LYP VSXC +2 +3 -7 0 

VSXC B3LYP +68 +53 +29 +40 

VSXC VSXC +49 +52 +46 +48 

PCMa PCMa  

B3LYP B3LYP 0 -8 -10 -18 

B3LYP VSXC +3 +4 -1 -24 

VSXC B3LYP +57 +43 -10 +21 

VSXC VSXC +44 +49 +49 +7 

Experimental Reference (λmax in nm) 553 558 562(sh) 592 

aDefault solvent parameters for dichloromethane. 

 

While these results were highly accurate, we sought to examine the effects of solvent on the 

structures and vertical transitions of AH3-AH6 through the use of an implicit solvation model 

for dichloromethane. When coupled with PCM, TD-DFT computations performed with the 

B3LYP functional provided better agreement with the experimental λmax values regardless of 
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whether the VSXC or B3LYP functional was employed for the geometry optimizations (within 

10 nm and 20 nm, respectively for AH3-AH6). This level of agreement is encouraging given the 

relative simplicity of these computational models, and it suggests the predictive computational 

analysis of extended conjugation π-bridges could play an important role in the design and 

development of second generation dye targets based on indolizine donors.  

FLUORESCENCE LIFETIME MEASUREMENTS 

Electron injection from each of the dyes into the TiO2 conduction band was found to be 

geometrically favorable through computational analysis of HOMO/LUMO orbital positions as 

well as thermodynamically favorable through electrochemical, UV-Vis and emission spectrum 

analysis. To examine the kinetics for electron injection, fluorescence lifetime studies were 

undertaken for each of the dyes in solution and on TiO2 films to evaluate electron injection 

efficiencies (ηeff, where ηeff = 1 - τTiO2/τsol). Lifetimes of the dyes in dichloromethane solutions 

(τsol) were found to be on the order of nanoseconds ranging from 1.6 ns to 0.9 ns (Figure 11, 

Table 4). 

 

Excited-state lifetimes of the dyes on TiO2 films (τTiO2) are predicted to be significantly 

shorter whereas electrons may be injected from the dye into the TiO2 CB effectively quenching 

the fluorescence. Dye-TiO2 film fluorescence lifetimes were measured under three 

environmental conditions: (1) with dye and TiO2 under air, (2) with dye, TiO2 and known 

deaggreation agent chenodeoxycholic acid (CDCA) under air, and (3) with dye, TiO2 and CDCA 

in a filled acetonitrile cell containing a typical device electrolyte lithium iodide concentration of 
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0.002 M. τTiO2 was found to be dramatically shorter for all dyes on TiO2 regardless of 

environment.  

 

Figure 11. Excited-state fluorescence decay curves for dicholormethane solutions and TiO2 films sensitized 

with dyes AH3-AH6. Blue square markers are dichloromethane dye solutions, green triangle markers are dyes on 

TiO2 films with CDCA under air, red circle markers are dyes on TiO2 films with CDCA and mock-device electrolyte 

0.002 M LiI in acetonitrile. Measurements performed by McNamara and Hammer. 

 

Without any additives, ηeff was found to vary between 45-82% according to the following 

order: AH4>AH3>AH5>AH6. Upon introduction of CDCA, a substantial increase in ηeff is 

observed for AH5 and AH6 leading to a range of injection efficiencies from 70-82%. The 

increase in efficiency is likely due to the reduction of intermolecular energy transfer between 

aggregated dyes on the TiO2 film, which decreases the rate of electron injection into the TiO2 

conduction band. Upon the addition of an electrolyte containing MeCN and 0.002 M LiI to give 
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mock-device conditions, ηeff increased even further to >84% for each of the dyes where τTiO2 was 

found to be beyond measureable limits. 

 Table 4. Excited-state lifetime measurements for dyes AH3-AH6. Measurements performed by 

McNamara and Hammer. 

 

a Measurement made using dye dissolved in CH2Cl2. 
b Measurement made using dye-sensitized TiO2 film 

in air with no additive. c Measurement made using dye-sensitized TiO2 film with added CDCA. d Measurement 

made using dye-sensitized TiO2 films with added CDCA and 0.002 M LiI in MeCN electrolyte. 

 

PHOTOVOLTAIC PERFORMANCE 

Having established the indolizine dye series exhibits suitable characteristics for 

productive photon-to-electric conversion, dyes AH3-AH6 were examined in DSC devices with a 

TiO2 semiconductor and I-/I3
- redox shuttle. From the equation PCE (η) % = (JscVocFF)/I(sun) 

where Jsc = short-circuit current, Voc is the open-circuit voltage, FF is the fill factor and I(sun) is 

the incident light intensity, the device performances under AM 1.5 irradiation were analyzed 

(Table 5).  

Dye !sol
a
 (ns)!TiO2

b (ns) "eff
b (%)

AH3
AH4
AH5
AH6

1.14
1.59
0.93
1.18

0.30
0.29
0.26
0.65

74
82
63
45

!TiO2
c (ns) "eff

c (%)

0.30
0.29
0.26
0.35

74
82
72
70

!TiO2
d (ps) "eff

d (%)

<150
<150
<150
<150

>86
>91
>84
>87
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Table 5. Photovoltaic parameters measured under AM 1.5 incident light. Measurements Performed by 

Giordano, Nazeeruddin, Zakeeruddin, and Grätzel.

 

After device optimization with CDCA loadings to diminish aggregation, dye Jsc values 

ranged from 8.1-10.8 mA/cm2 in the order of AH6>AH3>AH5>AH4. AH6 has the longest 

wavelength absorption, which led to a significantly larger photocurrent than the remaining dyes. 

AH3, AH5 and AH6 demonstrated very similar Voc values (680-668 mV) and FF values (0.74-

0.76) leading to a close range of PCEs from 5.0%-5.4% with AH6 demonstrating the overall 

highest PCE of 5.4%. AH4 demonstrated the lowest PCE due to lower performance in all 

parameters. The model indolizine donors employed in these studies utilized few aggregation 

controlling substituents and TiO2 surface protecting alkyl chains (only AH4 and AH6 have a 

single alkyl chain longer than methyl) which are known to boost Voc values. When compared to 

dyes CQ1, C1, and LS1, similar voltages are observed for the no-alkyl chain donor 

triphenylamine (CQ1) and the methyl substituted indoline donor (LS1). Superior PCE values 

were observed for AH6 when compared with these donors despite a potentially PCE-diminishing 

lower molar absorptivity and significant aggregation on the TiO2 film surface. Among the 

Dye Jsc (mA/cm2) Voc (mV) ! (%)

AH3
AH4
AH5
AH6
CQ1
C1
LS1

10.0
  8.06
  9.75
10.8
10.29
9.72
10.58

680
560
668
670
707
787
650

0.74
0.69
0.76
0.74
0.69
0.71
0.69

5.10
3.10
4.97
5.36
4.99
5.45
4.72

FF
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common donors compared to the AH6 donor, only the bis(methyloxy)triphenylamine donor of 

C1 gives a similar PCE value due to a significantly higher Voc. 

The incident photon-to-electron conversion efficiency (IPCE) spectra were measured for 

each of the dyes (Figure 12). AH6 had the longest wavelength IPCE onset at ~700 nm which 

coincides with the largest Jsc value observed. The remaining dyes (AH3-AH5) all have similar 

IPCE onset values of ~650 nm. Ranging from ~400-475 nm, a significant depression is observed 

for each of the dyes which mirrors the absorption spectral profiles of these sensitizers (Figure 8) 

due to their low molar absorptivity (~2,000 M-1cm-1) in this region. Overall, these model dyes 

suffer from low molar absorptivities (13,000-6,000 M-1cm-1), which could lead to diminished 

IPCE values as a result of less light being absorbed on the 10 µm TiO2 films. Additionally, dye 

aggregation on TiO2 led to apparent lower injection efficiencies when fluorescence lifetime 

measurements were taken. Both of these factors likely contributed to the observed peak 

maximum IPCE values reaching 70-75% for each of the dyes. However, while the percent IPCE 

intensity is diminished in these model systems relative to TPA and indoline based analogues 

(~80% from 400-550 nm), the IPCE breadth is significantly increased for the indolizine-based 

dyes as a result of absorptions at longer wavelengths (650 nm vs. 700 nm onset). TPAs and 

indolines are two of the most common DSC donors in organic dye designs which are common to 

nearly all organic sensitizers with greater than 10% PCE.22,34 Indolizine donors exhibit 

substantially broader solution absorption spectra (narrowed optical band-gap) compared with 

these donors (λonset = 675 nm for AH6 versus λonset = 540 nm for TPA-based CQ1,28 590 nm for 

diMeO-TPA-based C1,29 and 600 nm for indoline-based LS1,30 Table 1, Figure 12) and 
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increased performance beyond 650 nm in DSC devices (Figure 13). Significantly, both TPA and 

indoline derivatives are common to nearly all organic sensitizers with greater than 10% PCE.22,34  

 

Figure 12. IPCE curves for devices based on AH3-AH6. Measurements Performed by Giordano, 

Nazeeruddin, Zakeeruddin, and Grätzel. 

 

 

Figure 13. Energy level schematics comparing the optical bandgaps (right) of indolizine (dyes AH2-AH6), 

(o-H)2TPA (CQ1), (o-OMe)2TPA (C1) and indoline (LS1) donors on T-CAA.  
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While this part has largely outlined the successes of discovering the indolizine donor 

subunit the advance of indolizine was just as dependent on synthetic failures as it was on the 

successes. Take, for example, the optimization of the donor heterocycle. Before synthesizing the 

donor utilized in AH2, several other donor heterocycles were synthesized in an attempt to better 

understand the reactivity of indolzine (Figure 14).  

 

Figure 14. Attempts towards indolizine synthesizers that were not successful. Conditions: i): NBS, DMF, 0ºC to rt, 

0.040 g, 30%. ii): DMF, POCl3, DCE, 0ºC to rt, 80%. iii) a): acetone, chloroacetone, reflux. b): NaHCO3, H2O, 

reflux, 50% yield. i): NBS, DMF, 0ºC to rt, 0% yield. v): 2-(diethylphosphonato)methylthiophene, NaH, THF, 0ºC 

to rt, 45% yield. vi): LiAlH4, THF, 0ºC, 38% yield.   

 The first indolizine dyes we synthesized had EWG at the 2- position, as it was assumed 

these were needed to form the indolizine heterocycle. Because these first structures had no 

substituents at either the 3-position or the 1-position, which had the two largest HOMO 

molecular orbital coefficients in early computation, attempts to substitute the heterocycle by 

EAS yielded 2:1 mixtures of 1-subtituted or 3-substituted products. Once the need to force 

selectivity by alkyl substitution had been determined, attempts to synthesize the dimethyl 

indolizine resulted in heterocycles that were very unstable to O2. Before embarking upon the 

synthesis of indolizine 6, reducing the withdrawing ester group of indolizine 3 after HWE olefin 
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formation to a donating alkoxy group was attempted. While the olefin starting material was 

stable to ambient atmosphere, the alcohol product was not.  

CONCLUSION 

We have synthesized and characterized a series of organic dyes for dye-sensitized solar 

cells based on the indolizine donor. This donor is shown to have a facile synthesis, remarkable 

electron donation strength when compared with state-of-the-art organic donors, and promising 

first generation DSC device performances based on a simple thiophene-CAA bridge-acceptor 

systems. The IPCE spectrum onset of the low molecular weight indolizine dye AH6 is within 

~25 nm of high performance dyes (10-12.5% PCEs) such as Y123,34c YA422,33 C25934a and 

ADEKA-110 and is available in a fraction of the synthetic steps and molecular mass.  

Given the seemingly unprecedented rapid donor synthesis and the remarkable electron 

donation strength of indolizine donors when compared with state-of-the-art donor functionalities, 

studies are underway to computationally determine the origin of the substantial absorption 

breadth observed from simple indolizine donor-based dyes, increase the π-bridge conjugation 

length to access high-efficiency dyes, reduce twist angles along the conjugated charge transfer 

pathway and to incorporate additional film morphology controlling substituents on the donor. 

Tuning TiO2 film dye surface coverage has proven highly successful for the Hagfeldt34 and 

Grätzel33,9 donors with regard to slowing electrolyte-TiO2 recombination pathways, controlling 

aggregation states, and substantially improving device voltages. 
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EXPERIMENTAL SECTION 

General Information:  All commercially obtained reagents were used as received. 1H 

NMR spectra were recorded on a Bruker Avance-300 (300 MHz), Bruker Avance DRX-500 

(500MHzspectrometer and are reported in ppm using solvent as an internal standard (CDCl3 at 

7.26 ppm). Data reported as: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, m = 

multiplet, b = broad, ap = apparent; coupling constant(s) in Hz; integration. UV-Vis spectra were 

measured with a Cary 5000 UV-Vis spectrometer. Cyclic voltammograms were measured with a 

C-H Instruments electrochmeical analyzer.  

Photovoltaic Characterization:  A 450W xenon lamp (Oriel, USA) was used as a light 

source to study the current-voltage characteristics of the DSSC. The spectral output of the lamp 

was filtered using a Schott K113 Tempax sunlight filter (Präzisions Glas & Optik GmbH, 

Germany) to reduce the mismatch between the simulated and actual solar spectrum to less than 

2 %. The Keithley model 2400 digital source meter (Keithley, USA) was used for data 

acquisition. The photo-active area of 0.16 cm2 was defined by a black mask of 4x4 mm2. 

Incident photon-to-current conversion efficiency measurements were carried from the mono 

chromated visible photons, from Gemini-180 double monochromator Jobin Yvon Ltd. (UK), 

powered by a 300 W xenon light source (ILC Technology, USA) superimposed on a 

10mW/cm2 LED light. The monochromatic incident light was passed through a chopper running 

at 2 Hz frequency and the on / off ratio was measured by an operational amplifier. 
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Device Fabrication:  The photoanode consists of thin TiO2 electrodes comprising a 9.5 

mm mesoporous TiO2 layer (particle size, 20 nm) and a 5.0 mm TiO2 scattering layer (particle 

size, 400 nm).The sintered photoanode was soaked 30 minutes at 70 C in a 40mM TiCl4  water 

solution and heated again at 500ºC prior sensitization. The complete working electrode was 

prepared by immersing the 14.5 mm (9.5 mm thick transparent layer + 5.0 mm thick scattering) 

TiO2 film into the dye solution for 2 h.The solution is 0.2 mM of dye in THF:ethanol mixture 

(1:4). The dye:CDCA molar ratio for the optimized device is 1:40 A thermally platinized FTO 

glass counter electrode and the working electrode were then sealed with a 25 mm thick hot-melt 

film (Surlyn, Dupont) by heating the system at 100°C. Devices were completed by filling the 

electrolyte by pre-drilled holes in the counter electrodes and finally the holes were sealed with a 

Surlyn sheet and a thin glass cover by heating. A black mask (4x4 mm2) was used in the 

subsequent photovoltaic studies. 

General Computational Details: Numerous combinations of density functional theory (DFT) 

method, basis set and implicit solvation model were examined in an attempt to identify efficient 

model chemistries capable of reproducing experimental λmax values for 5 dye molecules (AH2, 

AH3, AH4, AH5 and AH6). Emphasis was placed on pure density functionals in order to take 

advantage of the density fitting (DF)35 procedures available in the Gaussian0936 software 

package, but several popular hybrid functionals were also tested. Full geometry optimizations 

were performed with the B3LYP,37 VSXC,38 M06L,39 M11L,40 N12,41 and MN12L42 functionals 

in conjunction with two split-valence basis sets of double- and triple-zeta quality (6-31G(d,p) 

and 6-311G(2df,2pd), respectively). Rather stringent convergence criteria were adopted for the 
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geometry optimizations (maximum Cartesian force < 1.1×10−5 Hartree/bohr). Harmonic 

vibrational frequencies were also computed to ensure that every gas-phase optimized structure 

was a minimum at the corresponding level of theory. These gas-phase structures were also re-

optimized with the same functionals and basis sets in conjunction with an implicit solvation 

model to mimic the effects of the experimental solvent. The polarizable continuum model 

(PCM)43 was adopted for these computations along with the default parameters for 

dichloromethane as implemented in Revision D.01 of Gaussian09.  

Time-dependent density functional theory (TD-DFT) computations were carried out to 

compute the vertical transition energies and oscillator strengths for the 10 lowest excited states. 

Symmetry was explicitly turned off for these computations even though all of the optimized 

structures belonged to the C1 point group. In addition to the procedures used to optimize the 

structures, the TD-DFT computations were also performed with the CAM-B3LYP,44 PBE0,45 

and LC-PBE46 functionals. The effects of solvation on the excited state transitions were modeled 

with PCM TD-DFT calculations.45 The labels “PCM” and “no-PCM” are adopted to help 

distinguish whether solvation effects were modeled in the geometry optimization and/or TD-

DFT computations.47  

All computations were performed with the Gaussian09 software package and employed 

an ultrafine pruned numerical integration grid of composed of 99 shells and 590 angular points 

per shell. Spherical harmonic components of the basis functions (5d and 7f) were utilized rather 

than their Cartesian counterparts (6d and 10f). All electronic energies (including the excited 

states) were converged to at least 1.0×10−8 Hartree. 
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Synthetic Procedures for AH2: Ethyl 2-(hydroxy(pyridin-2’-yl)methyl)acrylate (1):48 To a 

50 mL round bottom flask was added pyridine-2-carboxaldehyde (5.63 g, 52.6 mmol, 1.0 equiv.), 

DABCO (0.340 g, 3.00 mmol, 0.05 equiv.), ethyl acrylate (5.52 g, 5.89 mL, 55.1 mmol, 1.05 

equiv.), and chloroform (4.0 mL, 13.15 M). The mixture was allowed to stir for 3d at room 

temperature. During this time the solution slowly changes colors from yellow to red. An aliquot 

was removed and the reaction was judged complete by TLC. The mixture was concentrated and 

subjected to flash chromatography using 350 mL SiO2, 10x 160mm collection tubes, and EtOAc 

as eluent. Collected product fractions concentrated to yield a yellow oil. (9.94g, 48.0 mmol, 

91%). 1H NMR (300 MHz, CDCl3) d 8.55 (dt, J = 4.4 Hz, 1.0 Hz, 1H), 7.68 (td, J = 7.6 Hz, 1.7 

Hz, 1H), 7.43 (d, J = 8.6 Hz, 1H), 7.23 (ddd, J = 7.3 Hz, 5.1 Hz, 1 Hz, 1H), 6.36 (dd, J = 2.0 Hz, 

0.5 Hz, 1H), 5.95 (t, J = 1.1 Hz, 1H), 5.62 (d, J = 6.6 Hz, 1H), 4.80 (d, J = 2.0 Hz, 1H), 4.18 (q, J 

= 7.1 Hz, 2H), 1.24 (t, J = 7.1 Hz, 3H).  

 

Ethyl 2-(acetoxy(pyridin-2’-yl)methyl)acrylate (2):26a To a 25 mL flask was added Ethyl 

2-(hydroxy(pyridin-2-yl)methyl)acrylate (7.00 g, 33.8 mmol, 1.0 equiv) and acetic anhydride (20 

mL, 1.7 M). The mixture was heated to 100 oC with stirring. After 1h, cooled to room 

temperature and diluted with EtOAc (100 mL). Washed sequentially with saturated NaHCO3 (2 x 

100 mL), H2O (1 x 100 mL), and brine (2 x 100 mL). Dried organic solution with MgSO4 and 

passed through thick pad of SiO2 using 5% MeOH:EtOAc. Concentrated to yield a dark oil (7.20 

g, 28.9 mmol, 86%). 1H NMR (300 MHz, CDCl3) d 8.59 (d, J = 4.5 Hz, 1.0 Hz, 1H), 7.69 (td, J 

= 7.5 Hz, 1.7 Hz, 1H), 7.45 (d, J = 7.8 Hz, 1H), 7.22 (ddd, J = 7.3 Hz, 3.8 Hz, 1.2 Hz, 1H), 6.74 
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(s, 1H), 6.49 (t, J = 0.9 Hz, 1H), 5.94 (t, J = 1.3 Hz, 1H), 4.15 (qd, J = 7.0 Hz, 1.0 Hz, 2H), 2.16, 

(s, 3H), 1.21 (t, J = 6.8 Hz, 3H).  

Ethyl(indolizine-2-carboxylate) (3):26a To a 25 mL flask was added ethyl 2-

(acetoxy(pyridin-2-yl)methyl)acrylate (7.0 g, 28 mmol). The acrylate was set to stir at 120 oC 

under a nitrogen atmosphere. After 55 min, the reaction was judged complete by TLC. The 

reaction mixture was diluted in 50 mL 5% MeOH: EtOAc and passed through a thick pad of 

SiO2 using 5% MeOH: EtOAc as eluent. Concentrated to give a dark solid (4.02 g, 21.2 mmol, 

75%). 1H NMR (300 MHz, CDCl3) d 7.85 (d, J = 6.3 Hz, 1.0 Hz, 1H), 7.80 (s, 1H), 7.36 (d, J = 

9.2 Hz, 1H), 6.83 (s, 1H), 6.68 (dd, J = 9.0 Hz, 6.3 Hz1H), 6.53 (td, J = 6.9 Hz, 1,2 Hz, 1H), 4.35 

(q, J = 7.1 Hz, 2H), 1.38 (t, J = 7.1 Hz, 3H).  

Ethyl (1-(thiophen-2’-yl-5’-carboxaldehyde)indolizine)-2-carboxylate (10):26a,49 To a 25 

mL flask was added Ethyl(indolizine-2-carboxylate) (0.12 g, 0.64 mmol), PdCl2(PPh3)2 (0.037 g, 

0.053 mmol), 5-bromo-2-thiophenecarboxaldehyde (0.30 g, 0.19 mL, 1.6 mmol), KOAc (0.21 g, 

2.12 mmol), NMP (2.5 mL) under a nitrogen atmosphere. Set to stir at 80ºC. After 20h, subjected 

material to column chromatography using 10%EtOAc:Hexanes. Concentrated product spot to 

yield an orange solid (0.15 g, .50 mmol, 47%). 1H NMR (300 MHz, CDCl3) d 9.95 (s, 1H), 7.96 

(d, J = 8.1 Hz, 1H), 7.84 (d, J = 4.0 Hz, 1H), 7.42 (d, J = 8.5 Hz, 1H), 7.34 (d, J = 3.7 Hz, 1H), 

7.0 (s, 1H), 6.8 (t, J = 7.3 Hz, 1H), 6.59 (t, J = 7.0 Hz, 1H), 4.25 (q, J = 7.2 Hz, 2H), 1.25 (t, J = 

7.3 Hz, 3H).  

3-(ethyl(thiophen-2’’-yl-5’’-3-pentyl-indolizine-2-carboxylate)-2-cyano-2-propenoic acid 

(AH2). To a 10 mL flask added Ethyl (1-(thiophen-2’-yl-5’-carboxaldehyde)indolizine)-2-
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carboxylate (0.085 g, 0.29 mmol), CHCl3 (4.75 mL). Bubbled with nitrogen for 30 min. 

Cyanoacetic acid (0.14g, 1.7 mmol), piperidine (0.33g, 0.39 mL, 4.0 mmol) added. Sealed flask 

using a plastic stopper and electrical tape. Warmed to 90ºC. After 4.5 h, cooled to rt. Diluted 

with 150 mL CH2Cl2, acidified with AcOH, washed with H2O (3x 100 mL),  Concentrated. 

Passed crude material through thick pad of SiO2 using first CH2Cl2 (500 mL), then 10% 

MeOH:CH2Cl2 (500 mL), and finally 10% MeOH:5%AcOH:CH2Cl2 (500 mL). Concentrated to 

yield a dark range powder (0.084 g, 0.23 mmol, 84%). 1H NMR (500 MHz, CDCl3). d  8.35 (d, J 

= 6.3 Hz, 1H), 7.90 (d, J = 4 Hz, 1H), 7.84 (s, 1H), 7.4 (d, J = 6.0 Hz, 1H), 7.35 (d, J = 4.0 Hz, 

1H), 7.0 (s, 1H), 6.8 (t, J = 6.5 Hz, 1H), 6.6 Hz (t, J = 6.6 Hz), 4.25 (q, J = 7.0 Hz, 2H),  1.37 (t, J 

= 7.1 Hz, 3H). HRMS (ESI) m/z calculated for C19H14N2O4S [M]+: 367.0753, found 367.0707. 

UV-Vis (CHCl3): λmax = 430 nm (ε = 1,250 M-1cm-1), λonset = 530 nm. Cyclic Voltammetry (0.1 

M Bu4NPF6 in CH2Cl2, sweep width 1.1-(-2.0), 0.1 V/s scan rate):  E(S+/S) = 1.22 V (vs NHE). 

E(0-0) = 2.42 V. E(S+/S*) = -1.12 V [vs NHE, calculated from E(S+/S*) = (E(S+/S) – Eg
opt)].  

Synthetic Procedures for AH3: 2-Phenyl-3-methylindolizine (6):25 To a 100 mL flask was 

added 2-ethylpyridine (10.0 g, 93.37 mmol), bromoacetophenone (18.58 g, 93.37 mmol), acetone 

(50 mL). Set to stir open to air at reflux. After 21h, the reaction mixture was cooled to rt and the 

resulting white precipitate filtered and washed with acetone. The white solid was then added to a 

250 mL flask, along with NaHCO3 (31.00 g, 370.0 mmol). Set to stir open to air at reflux. After 

1.5h, a biphasic reaction mixture was observed and upon cooling the flask to rt, the top layer 

crystallized into a dark mass. Filtered the dark crystals and dissolved them in CH2Cl2. Passed 

through a thin pad of SiO2 and concentrated to yield an off white solid (17.64 g, 85.11 mmol, 
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92%). 1H NMR (500 MHz, CDCl3) d d 7.85 (dt, J = 7.0 Hz, 0.9 Hz, 1H), 7.54 (d, J = 7.7 Hz, 1H), 

7.45 (t, 7.4 Hz, 1H), 7.39 (s, 1H), 7.35-7.29 (m, 2H), 6.61 (ddd, J = 7.1 Hz, 6.4 Hz, 1.0 Hz, 1H), 

6.42 (t, 6.8 Hz, 1H), 2.45 Hz (s, 3H). 13C NMR (125 MHz, CDCl3) d 136.3, 131.3, 129.4, 129.0, 

128.7, 126.5, 125.1, 117.8, 115.9, 110.5, 110.1, 105.9, 9.9. IR (neat, cm-1): 3067.7, 2919.3, 

2862.0, 1602.8, 1457.6, 736.1. HRMS (ESI) m/z calculated for C15H13N [M+H]+: 208.1126, 

found 208.1182. 

1-(thiophen-2’-yl-5’-carboxaldehyde)-2-phenyl-3-methylindolizine (11): To a 25 mL 

flame dried flask was added 2-Phenyl-3-methylindolizine (0.25 g, 1.2 mmol), PdCl2(PPh3)2 

(0.043 g, 0.061 mmol), 5-bromo-2-thiophenecarboxaldehyde (0.35 g, 0.22 mL, 1.8 mmol), 

KOAc (0.24 g, 2.4 mmol), NMP (2.5 mL) under a nitrogen atmosphere. Set to stir at 80ºC. After 

6.5 h, subjected material to column chromatography using 10%EtOAc:Hexanes. Concentrated 

product spot to yield an orange oil that crystallized upon standing (0.35 g, 1.1 mmol, 92%). 1H 

NMR (300 MHz, CDCl3) d 9.72 (s, 1H), 8.34 (d, J = 6.8 Hz, 1H), 7.55 (d, J = 4.0 Hz, 1H), 7.37-

7.25 (m, 4H), 7.17 (d, J = 6.0 Hz, 2H), 6.88 (d, J = 4.0 Hz, 1H), 6.72 (ddd, J = 7.8 Hz, 6.8 Hz, 

1.0 Hz, 1H), 6.53 (t, J = 6.3 Hz, 1H), 2.20 (s, 3H). 13C NMR (75 MHz, 

CDCl3)d 182.6, 143.5, 141.7, 136.9, 135.0, 132.7, 131.6, 130.8, 128.6, 127.4, 127.4, 123.0, 118.

3, 118.0, 114.4, 112.1, 109.6, 9.3.  IR (neat, cm-1): 3067.5, 2860.9, 1660.2, 1434.8, 1226.6, 734.9. 

HRMS (ESI) m/z calculated for C20H15NOS [M]+: 317.0874, found 317.0906. 

 3-(thiophen-2’-yl-5’-2-phenyl-3-methylindolizine)-2-cyano-2-propenoic acid (AH3). For 

procedure see AH2. Yield: (0.032 g, 0.079 mmol, 25%). 1H NMR (300 MHz, CDCl3) d 8.26 (d, 

J = 6.4 Hz, 1H), 8.04 (m, 1H), 7.36 (m, 1H), 7.29 (m, 1H), 7.25 (m, 1H), 7.22 (m, 2H), 7.08 (m, 
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2H), 6.67 (t, J = 7.9 Hz, 1H), 6.55 (m, 1H), 6.42 (m, 1H), 2.15 (s, 3H). IR (neat, cm-1): 3429.1, 

2200, 1645.5, 1394.9, 1199.1. HRMS (ESI) m/z calculated for C23H16N2O2S [M]+: 385.1011, 

found 385.0549. UV-Vis (CHCl3): λmax = 557 nm (ε = 8,500 M-1cm-1), λonset = 627 nm. Cyclic 

Voltammetry (0.1 M Bu4NPF6 in CH2Cl2, sweep width 1.1-(-2.0), 0.1 V/s scan rate):  E(S+/S) = 

0.99 V (vs NHE). E(0-0) = 2.06 V. E(S+/S*) = -0.98 V [vs NHE, calculated from E(S+/S*) = (E(S+/S) – 

Eg
opt)].  

Synthetic Procedures for AH4: 2-Heptylpyridine (4):50 To a 100 mL flame-dried flask 

was added 2-picoline (2.0g, 2.12 mL, 21.44 mmol), and THF (50 mL). This solution was cooled 

to -78ºC and t-Butyl lithium (15.12 mL, 1.7M) was added dropwise to yield a red-orange 

solution. Set to stir at -78ºC. After 1h,  Hexylbromide (7.5 mL, 55.6 mmol) added dropwise at -

78ºC. Allowed reaction to warm to rt slowly with stirring. After 20h, passed reaction mixture 

through thin pad of SiO2 and concentrated to give a pale yellow liquid (1.90 g, 10.72 mmol, 

50%). 1H NMR (300 MHz, CDCl3) d 8.51 (dq, J = 5.0 Hz, 1.0 Hz, 1H), 7.57 (td, J = 7.9 Hz, 1.8 

Hz, 1H), 7.13 (d, J = 7.8 Hz, 1H), 7.08 (dm, J = 7.0 Hz, 1H), 2.77 (t, J = 6.2 Hz, 2H), 1.72 (q, J = 

7.2 Hz, 2H), 1.38-1.21 (m, 9H), 0.87 (t, J = 7.5 Hz, 3H). 

2-Phenyl-3-hexylindolizine (7):  For procedure, see 7. Yield: (1.0 g, 3.6 mmol, 74%). 1H 

NMR (300 MHz, CDCl3) d d 7.85 (d, J = 6.9 Hz, 1H), 7.48 (d, 6.8 Hz, 2H), 7.41 (t, J = 7.0 Hz, 

2H), 7.34 (d, J = 7 Hz, 1H), 7.33 (s, 1H), 7.30 (m, 1H), 6.60 (ddd, J = 7.8 Hz, 6.5 Hz, 1.0 Hz, 

1H), 6.41 (t, J = 6.6 Hz, 1H), 2.85 (t, 7.9 Hz, 2H), 1.57 (q, 7.3 Hz, 2H), 1.31 (q, J = 6.6 Hz, 2H), 

1.24 (m, 6H), 0.85 (t, J = 7.0 Hz, 3H). 13C NMR (125 MHz, CDCl3) d 136.6, 131.0, 129.3, 129.2, 

128.7, 126.6, 125.1, 118.0, 116.0, 111.8, 110.4, 110.2, 31.9, 29.7, 24.4, 23.0, 14.4. IR (neat, cm-
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1): 3067.9, 2925.8, 2854.4, 1603.2, 1457.6, 734.6. HRMS (ESI) m/z calculated for C20H23N 

[M+H]+: 278.1909, found 278.1988. 

1-(thiophen-2’-yl-5’-carboxaldehyde)-2-phenyl-3-hexylindolizine (12): For procedure, 

see 11. Yield: (0.17 g, 0.44 mmol, 49%). 1H NMR (500 MHz, CDCl3) d 9.80 (s, 1H), 8.45 (dt, J 

= 8.1 Hz, 0.8 Hz, 1H), 7.61 (d, J = 5.4 Hz, 1H), 7.45 (dt, J = 8.0 Hz, 1.2 Hz, 1H), 7.39-7.32 (m, 

3H), 7.25, (m, 2H), 6.94 (d, J = 4 Hz, 1H), 6.80 (ddd, J = 9.7 Hz, 6.3 Hz, 1.0 Hz, 1H), 6.61 (td, J 

= 7.2 Hz, 1.3 Hz, 1H), 2.68 (t, J = 8.0 Hz, 2H), 1.48 (m, 2H), 1.27-1.15 (m, 6H), 0.83 (t, J = 6.7 

Hz, 3H). 13C NMR (125 MHz, 

CDCl3)d 182.6, 143.7, 141.5, 137.0, 135.2, 132.8, 131.7, 130.9, 128.6, 127.5, 127.2, 127.1, 123.

3, 123.2, 118.3, 118.2, 115.5, 114.7, 112.1, 3`.8, 31.6, 29.5, 24.2, 22.9, 14.4.  IR (neat, cm-1): 

3067.6, 2925.8, 1661.1, 1435.4, 1225.8, 700.7. HRMS (ESI) m/z calculated for C25H24NOS 

[M]+: 387.1657, found 387.1754. 

3-(thiophen-2’-yl-5’-2-phenyl-3-hexylindolizine)-2-cyano-2-propenoic acid (AH4). For 

procedure, see AH2. Yield: (0.022 g, 0.048 mmol, 14%). 1H NMR (300 MHz, CDCl3) ). 

d  8.58 (d, J = 7.3 Hz, 1H), 8.2 (s, 1H), 7.71 (m, 1H), 7.5 (m, 1H), 7.4 (m, 4H), 6.9 (m, 2H), 6.73 

(m, 2H), 2.68 (m, 2H), 1.49 (m, 2H), 1.25 (m, 6H), 0.85 (t, J = 6.9 Hz, 3H). HRMS (ESI) m/z 

calculated for C28H26N2O2S [M]+: 455.1793, found 415.1274. UV-Vis (CHCl3): λmax = 563 nm (ε 

= 11,300 M-1cm-1), λonset = 627 nm. Cyclic Voltammetry (0.1 M Bu4NPF6 in CH2Cl2, sweep 

width 1.1-(-2.0), 0.1 V/s scan rate):  E(S+/S) = 0.99 V (vs NHE). E(0-0) = 2.06 V. E(S+/S*) = -0.98 V 

[vs NHE, calculated from E(S+/S*) = (E(S+/S) – Eg
opt)].  
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Synthetic Procedures for AH5: 2-(4’-Methoxyphenyl)-3-methylindolizine (8): for 

procedure, see 7. Yield: (2.0 g, 8.4 mmol, 78%). 1H NMR (500 MHz, CDCl3) d 7.84 (d, J = 7.4 

Hz, 1H), 7.46 (d, J = 6.8 Hz, 2H), 7.34 (s, 1H), 7.32 (dd, J = 8.4 Hz, 1.2 Hz, 1H), 6.99 (d, J = 7.8 

Hz, 2H), 6.60 (ddd, J = 6.2 Hz, 6.4 Hz, 1.0 Hz, 1H), 6.40 (t, J = 6.6 Hz), 3.85 (s, 3H), 2.42 (s, 

3H). 13C NMR (125 MHz, CDCl3) d 158.6, 131.2, 130.0, 129.1, 128.8, 125.0, 117.7, 115.9, 

114.3, 114.2, 110.2, 110.0, 105.7, 55.6, 9.9. IR (neat, cm-1): 3069.4, 2997.9, 2833.6, 1610.6, 

1246.6, 741.4. HRMS (ESI) m/z calculated for C16H15NO [M+H]+: 238.1232, found 238.1251. 

1-(thiophen-2’-yl-5’-carboxaldehyde)-2-(4’’-methoxyphenyl)-3-methylndolizine (13): For 

procedure, see 11. Yield: (0.16 g, 0.46 mmol, 44%). 1H NMR (500 MHz, CDCl3) d 9.82 (s, 1H),  

8.42 (dt, J = 7.2 Hz, 1.3 Hz, 1H), 7.63 (d, J = 4.2 Hz, 1H), 7.41 (dt, J = 8.9 Hz, 0.5 Hz), 7.17 (dm, 

J = 8.2 Hz, 2H, 6.99 (d, J = 3.9 Hz, 1H), 6.91 (dm, J = 8.6 Hz, 2H), 6.79 (ddd, J = 8.9 Hz, 6.6Hz, 

1.0 Hz, 1H), 6.60 (td, J = 6.7 Hz, 1.4 Hz, 1H), 3.85 (s, 3H), 2.26 (s, 3H). 13C NMR (125 

MHz,CDCl3)d 182.7, 159.2, 143.8, 141.6, 137.0, 132.9, 131.9, 131.4, 127.2, 127.1, 123.1, 118.4,

 118.0, 114.5, 114.3, 114.2, 112.0, 109.7, 55.5, 9.4. IR (neat, cm-1): 3032.3, 2934.2, 1659.0, 

1431.1, 1247.1, 737.0. 

3-(thiophen-2’-yl-5’-2’’-(4’’’-methoxyphenyl)-3’’-methylindolizine)-2-cyano-2-propenoic 

acid (AH5). For procedure see AH2. Yield: (0.090 g, 0.22 mmol, 49%). 1H NMR (300 MHz, 

CDCl3) ). d  8.60 (d, J = 6.9 Hz, 1H), 8.25 (s, 1H), 7.75 (d, J = 4.0 Hz, 1H), 7.47 (d, J = 8.8 Hz, 

1H), 7.24 (d, J = 6.6 Hz, 2H), 6.9 (d, J = 6.6 Hz, 2H), 6.97 (d, J = 4.0 Hz, 1H), 6.92 (dd, J = 8.2 

Hz, 7.0 Hz, 1H), 6.74 (td, J = 7.0 Hz, 1.3 Hz, 1H), 3.90 (s, 3H), 2.28 (s, 3H). IR (neat, cm-1): 

3422.3, 2964.1, 2206, 1648.6, 1402.1, 1207.2. HRMS (ESI) m/z calculated for C24H18N2O3S 
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[M]+: 415.1116, found 415.1130. UV-Vis (CHCl3): λmax = 554 nm (ε = 5,800 M-1cm-1), λonset = 

634 nm. Cyclic Voltammetry (0.1 M Bu4NPF6 in CH2Cl2, sweep width 1.1-(-2.0), 0.1 V/s scan 

rate):  E(S+/S) = 0.97 V (vs NHE). E(0-0) = 2.06 V. E(S+/S*) = -0.96 V [vs NHE, calculated from 

E(S+/S*) = (E(S+/S) – Eg
opt)].  

Synthetic Procedures for AH6: 2-Hexyl-4-methoxypyridine (5):51 To a 50 mL flame dried 

flask was added Mg (0.54 g, 22.16 mmol), THF (25 mL) and one crystal of I2 under a nitrogen 

atmosphere. A drop of Hexyl bromide was added and once the reaction started the remaining was 

added via addition funnel (2.48 mL, 2.92 g, 17.7 mmol). Set to stir at reflux. After 20 min, the 

reaction was allowed to cool to rt. In a separate flame dried flask was added Ni(dppp)Cl2 (0.29 g, 

0.53 mmol), 2-bromo-4-methoxypyridine (1.0 g, 5.3 mmol), THF (25 mL) and the falsk was 

cooled to 0ºC. The Grignard solution was added to the pyridine solution via cannula at 0ºC and 

the reaction allowed to warm to rt with stirring. After 30 min, the reaction mixture was set to stir 

at reflux. After 2h, the reaction mixture was diluted with 50 mL EtOAc, washed sequentially 

with sat’d NaHCO3 (50 mL), brine (50 mL), and dried with MgSO4. Filtered the solution and 

concentrated. Subjected crude product to flash chromatography using a gradient of Hexanes (500 

mL) and EtOAc to yield an orange red oil (0.934 g, 4.85 mmol, 92%). 1H NMR (500 MHz, 

CDCl3) d d 8.31 (dd, J = 6.3 Hz, 0.7 Hz, 1H), 6.63 (t, J = 2.5 Hz, 1H), 6.61 (t, J = 3.1 Hz, 1H), 

2.70 (t, 7.9 Hz, 2H), 1.69 (q, J = 7.8 Hz, 2H), 1.34-1.22 (m, 6 H), 0.88 (t, J = 7.0 Hz, 3H). 

2-Phenyl-3-pentyl-5-methoxyindolizine (9): For procedure, see 7. Yield: (0.10 g, 0.32 

mmol, 16%). 1H NMR (300 MHz, C6D6) d 7.63 (dm, J = 7.0 Hz, 2H), 7.33 (tm, J = 8.1 Hz, 2H), 

7.18 (dt, J = 7.4 Hz, 1.3 Hz, 1H), 6.94 (dd, J = 7.3 Hz, 0.7 Hz, 1H), 6.73 (s, 1H), 6.08 (d, J = 2.5 
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Hz, 1H), 6.05 (dd, J = 8.4 Hz, 2.6 Hz, 1H), 3.30 (s, 3H), 2.94 (t, J = 7.6 Hz, 2H), 1.68 (m, 2H), 

1.32-1.18 (m, 4H), 0.79 (t, J = 7.0 Hz, 3H). 13C NMR (125 MHz, C6D6) d 151.9, 137.4, 131.2, 

130.3, 129.3, 128.8, 128.4, 126.6, 126.5, 109.7, 109.2, 105.6, 94.0, 54.6, 32.2, 31.5, 24.7, 22.9, 

14.3. IR (neat, cm-1): 3063.9, 2953.8, 2927.8, 1646.6, 1222.1, 769.7. HRMS (ESI) m/z calculated 

for C20H23NO [M+H]+: 294.1858, found 294.1957. 

1-(thiophen-2’-yl-5’-carboxaldehyde)-2-phenyl-3-pentyl-5-methoxyindolizine (14): For 

procedure, see 11. Yield: (0.16 g, 0.46 mmol, 44%). 1H NMR (300 MHz, CDCl3) d 9.76 (s, 1H), 

8.38 (dd, J = 7.5 Hz, 0.7 Hz, 1H), 7.57 (d, J = 4.0 Hz, 1H), 7.38-7.32 (m, 3H), 7.25-7.22 (m, 2H), 

6.85 (d, J = 4.0 Hz, 1H), 6.62 (d, J = 2.7 Hz, 1H), 6.38 (dd, J = 7.1 Hz, 2.7 Hz, 1H), 3.87 (s, 3H), 

2.6 (t, J = 7.6 Hz, 2H), 1.45 (m, 2H), 1.3-1.2 (m, 4H), 0.85 (t, J = 6.4 Hz, 3H).  

3-(thiophen-2’-yl-5’-2’’-phenyl-3’’-pentyl-5’’-methoxyindolizine)-2-cyano-2-propenoic 

acid (AH6). For procedure, see AH2. Yield: (0.018 g, 0.043 mmol, 60%). 1H NMR (300 MHz, 

CDCl3) d  8.53 (d, J = 7.3 Hz, 1H), 8.14 (s, 1H), 7.60 (m, 1H), 7.40 (m, 4H), 7.20 (m, 1H), 6.72 

(d, J = 4.1 Hz, 1H), 6.65 (m, 1H), 6.51 (m, 1H), 6.48 (m, 1H), 3.91 (s, 3H), 2.57 (t, J = 7.1 Hz, 

2H), 1.66 (m, 2H), 1.43 (m, 4H), 0.83 (t, J = 6.7 Hz, 3H). HRMS (ESI) m/z calculated for 

C28H26N2O3S [M]+: 471.1742, found 471.1260. UV-Vis (CHCl3): λmax = 597 nm (ε = 12,500 M-

1cm-1), λonset = 665 nm. Cyclic Voltammetry (0.1 M Bu4NPF6 in CH2Cl2, sweep width 1.1-(-2.0), 

0.1 V/s scan rate):  E(S+/S) = 0.83 V (vs NHE). E(0-0) = 1.88 V. E(S+/S*) = -1.03 V [vs NHE, 

calculated from E(S+/S*) = (E(S+/S) – Eg
opt)].  
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SECTION 2. FILM MORPHOLOGY CONTROL IN HIGHLY EFFICIENT 
INDOLIZINE-BASED SENSITIZERS FOR DSC 

 
INTRODUCTION 

 
As described in Part 1, the key challenges in DSC are twofold: 1) The sensitizers need 

very narrow band gaps in order to absorb light to 920 nm and thus maximize the short circuit 

current (Jsc). 2) The sensitizers need to exhibit a high level of film morphology control so that 

upon adsorption onto the semiconductor surface, the redox shuttle is effectively blocked from the 

surface, thus reducing recombination of electrons from the TiO2 CB and increasing Jsc, Voc, and 

FF.7,52,53    

 In practice, film morphology manifests in two main ways: either the sensitizer has been 

modified synthetically with non-conjugated substituents as to physically block the surface of the 

TiO2
9,33,34 or the surface of the TiO2 has been physically blocked with non-title molecules, Figure 

15.10,54 The addition of non-conjugated functionalities often adds more synthetic steps to 

syntheses, which increases sensitizer cost and synthetic complexity. Conversely, in the very 

successful “multi-capping” approach reported recently for dye ADEKA-1 requires the use of 

very strong anchoring groups such as –P(O)(OH)2 or –Si(OMe)3, which greatly increases the 

synthetic complexity.10  
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Figure 15. Left: Surface blocking via sensitizer non-conjugated substituents. Right: Surface blocking via 

“multi-capping.” 

DYE SYNTHESIS 

We chose to further investigate the potential for indolizine-based DSC sensitizers by 

incorporating non-conjugated substituents to encourage superior morphology control.55 We 

undertook a bottom-up synthesis of the indolizine donor starting with 4-bromo-2-picoline, 

Scheme 2. After alkylating the picolinic carbon with 2-ethylhexylbromide (an established 

blocking group),56 a Suzuki coupling added the first of two bis(hexyloxy)resorcinol morphology 

control groups to the pyridine ring.57 The indolizine structure was then formed in a one-pot 

procedure55 to generate a Suzuki coupling partner to incorporate the second 

bis(hexyloxy)resorcinol group.57 A C-H activation coupling reaction successfully attached the π-

bridge functionalities studied to the donor.26b The π-bridges we were able to successfully react in 

this way include thiophene, pyridine (Pyr),58 4H-cyclopenta[2,1-b∶3,4-b]dithiophene (CPDT),59 

which are some of the bridges present in the vast majority of state of the art D- π -A dyes 

(Scheme 2). Once coupled to the donor, the cyano-acrylic acid acceptor group was formed by 

condensation of an aldehyde group on the bridge.  
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Scheme 2. Top: Synthetic avenues to surface-blocking indolzine dyes. Bottom: Bridges that did not result 

in a compete dye. Conditions: i): a): LDA, THF, -78ºC. b): 2-ethylhexylbromide, -78ºC to rt. 1.10 g, 19%. ii): 2,4-

bis(hexyloxy)phneylboronic acid, Pd(PPh3)4, Aliquat 336, Na2CO3, H2O, Tol reflux, 17:2.28g, 69%, 19: 3.30g, 

88%. . iii): a): 2,4’-dibromoacetophenone, acetone reflux. b): NaHCO3, H2O reflux, 2.83g, 79%. iv): 5-bromo-2-

thiophenecarboxaldehyde, PdCl2(PPh3)2, KOAc, NMP, 80ºC,  20:0.086 g, 81%, 21: 0.017 g, 21% (used without 

purification),  22: 0.038 g, 35%. v): cyanoaceticacid, piperidine, CHCl3, 90ºC, AH7: 0.030 g, 67%, AH8: 0.004g, 

25% (impure). vi): AH9: a): xs DIBAL, CH2Cl2. b): Swern Oxidation c): cyanoacetic acid, piperidine, CHCl3, 

0.002g, 4.5% over three steps. Bottom: Bridges used that did not result in a completed dye.  
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Synthesis of dyes with other π-bridges using C-H activation was also attempted but did 

not lead to completed dyes, including Benzo[1,2-b:4,5-b′]dithiophene (BDT),60 and their 

structures including the step that failed are also shown in Scheme 2. Attempts to couple the 

bridge BDT to inodlizine donor 19 were unsuccessful, even in the presence of very strong 

donating ligands for the Pd catalyst. A bridge based on 5,6-diphenylpyrazin[2,3]thiophene was 

succssfully coupled to  indolizine donor 19, however, an aldehyde group could not be installed 

by deprotonation/quenching with DMF or through a Vilsmeier-Haack reaction.  

RESULTS AND DISCUSSION 

 Formation of the acceptor group generally equates to fully air, water, acid, and 

chromatography stable molecules, however, the donation strength of the indolizine donor forced 

the synthesized dyes to be much less stable than should have been expected through great 

destabilization of the dye ground-state oxidation potential. While AH7 could be isolated and 

purified, AH8 and AH9 were too unstable to be isolated and/or purified. For AH8 the extended 

conjugation of an additional, planarized thiophene resulted in a ground-state oxidation potential 

substantial above potential stable in O2. For AH9, instability is likely due to the severe twist 

angle between the indolizine donor and π –bridge, which reduced the ability of the donor to be 

incorporated into the dye’s stabilizing D-π-A conjugated path. The effect of this twist angle can 

be observed in the very low (10000-20000) extinction coefficient observed in dyes AH3-AH6. 

While full characterization data for these dyes could not be obtained, the optical and 

electrochemical data collected is compiled in Table 6.  

Table 6. Optical and Electronic Properties of Dyes AH7-9.  
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a Measured in CH2Cl2. 
bEstimated from the tangent of the lower-energy tangent of the lambda max transition in the 

UV-Vis absorption spectrum in CH2Cl2. 
cTaken as the difference between the oxidation potentia E(S+/S) and the 

estimated optical bandgap E(0-0). 
d Measured in a 0.1 M Bu4NPF6 in CH2Cl2 solution with glassy carbon disk 

working electrode, Pt reference electrode, and Pt counter electrode with ferrocene as an internal standard. Values are 
reported versus NHE. e: Estimated from impure sample f: Estimated from impure sample.  

 
 
 The oxidation potentials for the three dyes are very different, due to the difference in 

twist angle likely present. Dyes AH7 and AH8 are attached from indolizine to a thiophene-type 

ring group, which is sterically smaller than the six-membered AH9. Because the donor-bridge 

twist angle is much more severe, the oxidation potential observed is not characteristic of a D-π-A 

dye, but of a strongly donated indolizine subunit. This character change due to twist angle also 

affected the dye stability (AH9 was the least stable of the three) and dye E(S+/S*) (AH9 had the 

highest energy (most destabilized excited state, as estimated from absorption onset).  

Dyes AH7, AH8, and AH9 all survived the reaction conditions and workup and could be 

characterized to some extent. The only dye stable to purification techniques was AH7, which 

was only stable for 30 min in solution. Our hypothesis for the decreased stability of dyes AH7-9 

was that the combination of poorly paired donor/acceptor strength and severe twist angle 

between the donor and bridge units greatly decreased dye stability, especially in the presence of 

acid and oxygen. Likely, the dye could be oxidized by atmospheric oxygen and the sensitivity to 

acid likely originated from protonation of the indolizine nitrogen. These hypotheses are 

Dye λmax
 (nm)a E(0-0) (eV)b E(S+/S*) (V)c E(S+/S) (V)d

AH7
AH8e
AH9f

605
640
590

1.81
1.65
1.82

-0.93
-0.95
-1.12

0.87
0.70
0.70

λonset
 (nm)a

685
750
690
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supported by the observation that in the knoevenagel condensation’s reaction conditions, which 

include base and inert atmospheric conditions, no decomposition is observed. The UV-Vis 

absorption spectrum for AH7 is shown in Figure 16.  

 

Figure 16. UV-Vis absorption spectrum for AH7 measured in CH2Cl2. 

Once it was confirmed that the energy levels for dye AH7 was suitable for use in DSC, it 

was tested in devices using a TiO2 semiconductor. While dye series AH2-AH6 was tested using 

only the I-/I3
- redox shuttle due to the poor morphology control inherent to the dyes, AH7 was 

tested using both the I-/I3
- redox shuttle and CoIII/II(bpy)3 shuttle (on-going tests). From the 

equation PCE (η) % = (JscVocFF)/I(sun) where Jsc = short-circuit current, Voc is the open-circuit 

voltage, FF is the fill factor and I(sun) is the incident light intensity, the device performances 

under AM 1.5 irradiation were analyzed and the results are compiled in Table 7.  
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Table 7. Photovoltaic performance of AH7 compard to AH3 and D35. Measurements taken by Yella, Nazeeruddin, 

and Grätzel. 

 

When using the I-/I3
- redox shuttle, the performance of AH7 was higher than the simple 

indolizine dye AH3 and simple dye with Hagfeldt’s triarylamine donor-based dye D35.34b,c That 

AH7 performs better than D35 is significant in that Hagfeldt’s landmark dye is largely regarded 

as extremely well-performing, both in surface blocking and photon to energy conversion across 

the dye’s absorption spectrum even though it absorbs only ~200 nm of the visible spectrum (530 

nm onset). Even though it has a much lower energy CT band, dye AH7 performs only somewhat 

better, due to two main factors: first, the extinction coefficient is very low at its largest value 

(9,350 Lmol-1cm-1) and second, the absorption coefficient drops well below 5,000 (the threshold 

for quantitative photon conversion) between 400-500 nm. The voltage difference between AH3 

and AH7 can likely be ascribed to the decreased driving force for dye regeneration, while the 

current difference is due to the red shifted CT band of AH7. Dye AH3 should likely have Voc 

similar to that of D35, however, aggregation contributed to voltage losses by intermolecular 

energy transfer between aggregated dyes. While AH7 likely does not aggregate to the same 

extent, the decreased ΔGregen lowers the voltage well below that of D35. Utilizing CoIII/II redox 

shuttles allows for lower ΔGregen requirments (250 mV) and precise matching of redox shuttle to 

AH3
AH7

D35

Dye Jsc (mA/cm2) Voc (mV) η (%)

10.0
14.67

??
12.96
10.7

680
665
??

750
920

0.74
0.67

??
0.61
0.68

5.10
6.67

??
6.00
6.70

FFRedox Shuttle

I-/I3
-

I-/I3
-

CoIII/II

I-/I3
-

CoIII/II
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sensitizer energy level. The more favorable overpotential with Co redox shuttles equates to 

higher Voc values in most cases, which boosts device performance.  

EXPERIMENTAL SECTION 

See Chapter 1, Part 1 for General Considerations (Experimental, Photovoltaic Characterization, 

and Device Fabrication). 

Synthetic Procedures to Reach AH7: 

2-(3-ethylheptyl)-4-bromopyridine (16): A flame dried flask was charged with dry, degassed 

THF (10 mL) and diisopropylamine (3.08 mL, 22.0 mmol) was added and cooled to -78ºC. Once 

cool, n-butyl lithium (2.5 M, 8.8 mL) added dropwise via syringe. After 40 minutes, the LDA 

solution was transferred via cannula to a flame dried flask equipped with a stirbar that had 

previously been charged with THF (10 mL) and 4-bromo-2-picoline (2.4 mL, 20.2 mmol). After 

30 minutes, ethylhexylbromide (5.39 mL, 30.4 mmol) added dropwise via syringe, the solution 

was allowed to warm to rt with stirring, and was monitored by 1H NMR spectroscopy. After 16h, 

the reaction mixture was diluted with Et2O (100 mL), quenched with 10% H3PO4 (20 mL), and 

washed with H2O (3 x 25 mL). material passed through SiO2 plug using first hexanes, then 10% 

EA:Hx. Product fractions concentrated to yield a pale yellow oil (1.10 g, 19%). %). 1H NMR 

(500 MHz, CDCl3) δ 8.33 ( d, J = 5.5 Hz, 1H), 7.33 (d, J = 2 Hz, 1H), 7.26 (dd, J = 2 Hz, 5.5 Hz, 

1H), 2.73 (t, J = 8 Hz, 2H), 1.65 (m, 2H), 1.37-1.24 (m, 10H), 0.89 (t, J = 7 Hz, 3H), 0.87 (t, J = 

7.5 Hz, 3H). ). 13C NMR (125 MHz, CDCl3) δ 164.9, 150.3, 133.2, 126.2, 124.5, 39.0, 35.9, 33.6, 

33.0, 29.2, 26.1, 23.4, 14.5, 14.4, 11.1.  
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2-(3-ethylheptyl)-4-(2,4-bis(hexyloxy)phenyl)pyridine (17): A flask equipped with reflux 

condenser and stirbar was charged with 16 (1.95 g, 6.86 mmol), 2,4-bis(hexyloxy)bromobenzene 

(3.05 g, 7.55 mmol) and dissolved in 6:1 Toluene : 2M Na2CO3 (aq) (34 mL total). Aliquat 336 

(3 drops) was added and the solution bubbled vigorously with N2. After 30 min, Pd(PPh3)4 (0.31 

g, 0.27 mmol) added in one solid portion from a vial, the reaction mixture was heated to Toluene 

reflux, allowed to stir, and was monitored by 1H NMR spectroscopy. After 18h, reaction mixture 

was cooled to rt, the organic layer was separated and the crude reaction mixture loaded directly 

onto SiO2 plug. Passed Hexanes (250 mL, then 5%EtOAc:Hexanes (250 mL), then 

10%EtOAc:Hexanes (500 mL), then 25%EtOAc:Hexanes (500 mL) through plug. Product 

fractions concentrated to yield a mixture of product and protodeboronated starting material 

(2.28g, 69% yield, 3.30 g of a 67% impure mixture). Used without further purification. 1H NMR 

(300 MHz, CDCl3) δ 8.5 (d, J = 5.4 Hz, 1H), 7.34 (s, 1H), 7.26 (m, 2H), 6.59 (aps, 1H), 6.56 (s, 

1H), 3.99 (m, 4H), 2.8 (m, 2H), 1.85-1.74 (m, 6H), 1.5-1.3 (m, 22 H), 0.96-0.87 (m, 12 H).  

 

 2-(4-bromophenyl)-3-(2-ethylhexyl)-5-(2,4-bis(hexyloxy)phenyl)indolizine (18): A flask 

equipped with a reflux condenser and stirbar was charged with 17 (2.60 g, 5.4 mmol), 2,4’-

dibromoacetophenone (1.50 g, 5.4 mmol), dissolved in acetone (25 mL), set to stir, heated to 

reflux, and monitored by 1H NMR spectroscopy. After 15h, the reaction mixture was cooled to rt, 

concentrated, and suspended in degassed H2O (20mL). NaHCO3 added (1.81 g, 21.6 mmol), and 

the reaction mixture was set to stir, heated to reflux, and monitored by 1H NMR spectroscopy. 

After 2h, CH2Cl2 (50 mL) added, org. layer separated and diluted with Hexanes (200 mL), 
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passed through a short plug of SiO2 using first 25% CH2Cl2:Hexanes (500 mL), then DCM 

(1.5L). Concentrated product fractions to yield an off-white solid (2.83 g, 79%). %). 1H NMR 

(300 MHz, CDCl3) δ 7.80 (d, J = 6.6 Hz, 1H), 7.51 (d, J = 8.4 Hz, 2H), 7.45 (s, 1H), 7.35 (d, J = 

8.5 Hz, 2H), 7.27 (s, 2H), 6.71 (dd, J = 1.8 Hz, 4.2 Hz, 1H), 6.55 (m, 2H), 6.46 (apd, J = 8.0 Hz, 

1H), 3.95 (m, 4H), 2.77 (m, 2H), 1.83-1.72 (m, 6 H), 1.5-1.24 (m, 22 H), 0.96-0.87 (m, 12 H). 

 

2-(4-(2,4-bis(hexyloxy)phenyl)-3-(2-ethylhexyl)-5-(2,4-bis(hexyloxy)phenyl)indolizine (19): A 

flask equipped with reflux condenser and stirbar was charged with 18 (2.83 g, 4.28 mmol), 2,4-

bis(hexyloxy)bromobenzene (1.90 g, 4.7 mmol) and dissolved in 6:1 Toluene : 2M Na2CO3 (aq) 

(23 mL total). Aliquat 336 (3 drops) was added and the solution bubbled vigorously with N2. 

After 30 min, Pd(PPh3)4 (0.20 g, 0.17 mmol) added in one solid portion from a vial, the reaction 

mixture was heated to Toluene reflux, allowed to stir, and was monitored by 1H NMR 

spectroscopy. After 2h, reaction mixture cooled to rt, the org. layer separated and directly 

subjected to column chromatography using 350 mL SiO2, 25% CH2Cl2:Hexanes, product spot 

concentrated to yield a pale yellow solid (3.30 g, 88%). 1H NMR (300 MHz, CDCl3) δ 7.82 (d, J 

= 7.2 Hz, 1H), 7.59 (d, J = 9 Hz, 2H), 7.49 (d, J = 8.8 Hz, 2H), 7.46 (s, 1H), 7.33 (s, 1H), 7.29 

(dd, J = 1.8 Hz, 9 Hz), 6.69 (dd, J = 3 Hz, 7.5 Hz, 1H), 6.56 (m, 4H), 3.98 (m, 8H), 2.84 (apd, J = 

7.2 Hz, 2H),  1.89-1.7 (m, 10H), 1.55-1.2 (m, 34 H), 0.96-0.87 (m, 18 H). 

 

1-(thiophen-2’-yl-5’-carboxaldehyde)-2-(4-(2,4-bis(hexyloxy)phenyl)-3-(2-ethylhexyl)-5-(2,4-

bis(hexyloxy)phenyl)indolizine (20): To an amber vial equipped with a stirbar was added 2-
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bromo-5-thiophenecarboxaldehyde (0.019 mL, 0.165 mmol), 19 (0.10 g, 0.11 mmol), NMP (1 

mL). After degassing with N2 30 min, PdCl2(PPh3)2 (0.0039 g, 0.0055 mmol), KOAc (0.016 g, 

0.165 mmol) added in one solid portion. Reaction mixture heated to 80ºC, allowed to stir, and 

monitored by 1H NMR spectroscopy. After 5 h the reaction mixture was directly subjected to 

column chromatography using solvent gradient of hexanes to 3%EtOAc:hexanes to 5% 

acetone:hexanes. Product sport concentrated to yield a red oil (0.086g, 81%). 1H NMR (300 

MHz, CDCl3) δ 9.79 (s, 1H), 8.53 (d, J = 7.5 Hz, 1H), 7.58 (apd, J = 4.2 Hz, 2H), 7.54 (d, J = 7.8 

Hz, 2H), 7.31 (m, 2H), 7.23 (2, 1H), 6.9 (m, 2H), 6.58 (m, 4H), 3.99 (m, 8H), 2.66 (apd, J = 5.4, 

2H), 1.86-1.55 (m, 10H), 1.5-1.05 (m, 34 H), 0.95-0.6 (m, 18 H). 

3-(thiophen-2’-yl-5’-carboxaldehyde)-2-(4-(2,4-bis(hexyloxy)phenyl)-3-(2-ethylhexyl)-5-(2,4-

bis(hexyloxy)phenyl)indolizine)-2-cyano-2-propenoic acid (AH7). A flask equipped with a 

stirbar was charged with 20 (0.043 g, 0.044 mmol), CHCl3 (0.85 mL) and degassed wth N2. After 

30 min, cyanoacetic acid (0.011 g, 0.13 mmol) and piperidine (0.039 mL, 0.31 mmol) added and 

the flask sealed with a plastic stopper and electrical tape. The reaction mixture was heated to 

90ºC with stirring and was monitored by TLC. After 40 min, the reaction mixture was cooled to 

rt, diluted with CH2Cl2 (50 mL), acidified with AcOH (5 mL), washed with H2O (3 x 100 mL) 

and passed through a short pad of SiO2 using CH2Cl2 (500 mL), 10% MeOH:CH2Cl2 (500 mL), 

5% AcOH:10%MeOH:CH2Cl2 500 mL. Product fractions concentrated to yield a black solid 

(0.030 g, 67%). 1H NMR (300 MHz, CDCl3) δ 9.79 (s, 1H), 8.53 (d, J = 7.5 Hz, 1H), 7.58 (apd, J 

= 4.2 Hz, 2H), 7.54 (d, J = 7.8 Hz, 2H), 7.31 (m, 2H), 7.23 (2, 1H), 6.9 (m, 2H), 6.58 (m, 4H), 

3.99 (m, 8H), 2.66 (apd, J = 5.4, 2H), 1.86-1.55 (m, 10H), 1.5-1.05 (m, 34 H), 0.95-0.6 (m, 18 H). 
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SECTION 3. SYNTHESIS OF INDOLIZINE-BASED SENSITIZERS WITH BIS-

RHODANINE ACCEPTOR SUBUNITS FOR DSC 

To address both issues raised from dye series AH7-AH9, we chose to synthesize dyes 

that contained stronger acceptors (bis-rhodanine)61 than the cyanoacrylic acid group. A further 

advantage of the bis-rhodanine group is that an alkene group is formed between the donor and 

bis-rhodanine since the bond forming reaction is a C-C bond-forming condensation reaction, 

which equated to much less severe twist angles. Two types of dyes were synthesized to assess 

the bis-rhodanine acceptor group. The first type compared the film morphology-controlling 

donor from AH7 incorporated into either a D-π-A dye (thiophene bridge) or D-A dye (no bridge). 

The second type compared the cyanoacrylic acid accepting group with the bis-rhodanine 

accepting group by incorporating the donor from AH5 into a D-π-A dye (olefin-thiophene 

bridge). The dyes resulting from this series and the synthetic route to reach them are shown in 

Scheme 3. 

The bis-rhodanine acceptor was synthesized by first cyclizing octyl isothiocyanate with methyl 

2-thiol acetic acid to form rhodanine 20. The bis-rhodanine 21 was synthesized from 

condensation with ethyl 2-isocyanatoacetate followed by alkylation with ethyl 2-bromo acetate.61 

Acid hydrolysis of ester 21 yielded acid 22. To form aldehyde 26 (no π-bridge to help narrow the 

bandgap), indolizine 19 underwent a Vilsmeier-Haack reaction. Condensation with bis-rhodanine 

25 then formed AH11. Similarly, condensation of aldehyde 20 with bis-rhodanine 25 yielded 

AH10. Using the hydrolyzed bis-rhodanine proved important, as condensation with bis-
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rhodanine ester 25 proceeded smoothly to yield esters 27 and 28, however, basic hydrolysis with 

LiOH resulted in decomposition and no product formation.  

 

 

Scheme 3. Top: Synthetic route to bis-rhodanine 25. Bottom: Synthetic route to D-A dye AH11 and D-π-A dye 

AH10. Conditions: i): thioglycolic acid, MeOH, H2O, 100ºC, 1.0 g, 79%. ii): a): EtCO2CH2CNS, DBU, rt, MeCN. 

b): bromoethylacetate, 100ºC, 0.56 g, 30%. iii): HCl, AcOH, 90ºC, 0.035 g, 30%. iv): DMF, POCl3, DCE, 0ºC to rt, 

0.150 g, 50%. v): 5-bromo-2-thiophenecarboxaldehyde, PdCl2(PPh3)2, KOAc, NMP, 80ºC, 0.086 g, 81%. vi):  25 

(for acid product) or 24 (for ester product), piperidine, CHCl3, 90ºC,  AH10: 0.046 g, 45%, AH11, 0.006 g, 6% yield, 

27:  0.063 g, quant., 28: 0.030 g, 41%,  vii): DMF, POCl3, DCE, 0ºC to rt, 0.79 g, 87% yield. viii (a): LiAlH4, THF, 

0ºC to rt, 0.67 g, 84%. (b): HPPh3Br, CHCl3 reflux, 0.18g, quant. ix): 2,5-thiophenebis(carboxaldehyde), KOtBu, 

THF, -78ºC to rt. 0.013 g, (85:15 E:Z), 50%. x): cyanoacetic acid, piperidine, CHCl3, 90ºC, 0.005 g, 30%. vi): 25, 

piperidine, CHCl3, 90ºC, 0.015 g, 25%.  
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To synthesize AH13 & 14 a Wittig reagent was synthesized from indolizine 8 by 

Vilsmeier-Haack reaction to form aldehyde 29 followed by LiAlH4 reduction to form alcohol 30 

and substitution with HPPh3Br to form Wittig reagent 31. Olefination with 2,5-

thiophenedicarboxaldehyde formed aldehyde 32 and condensation formed cyanoacetic acid-

based dye AH13 as well as bis-rhodanine-based dye AH14. All ester products and acid products 

were stable to purification, with AH10 being the least stable of the series due to a severe twist 

angle between the indolizine and thiophene moieties and, as stated in previous section, the 

potential for decomposition due to heterocycle protonation in acidic media.  

Results and Discussion 

 Dyes AH10 and AH11 both exhibit excellent panchromatic (full-spectrum) absorption, as 

shown in the UV/Vis spectrum in Figure 17. The extinction coefficients for both dyes are much 

higher than observed for AH2-9, due to the elimination of severely twisted aryl-aryl bonds. The 

extinction coefficient was >10,000 from 350 nm to 700 nm for dye AH10. The large red shift 

observed in AH10 and AH11 can be rationalized by the addition of strongly accepting bis-

rhodanine and in AH10, the presence of the simple π-bridge thiophene. The λonset for AH10 is 

740 nm and for AH11 is 650 nm (both in CH2Cl2), both of which are more red shifted in 

comparison with the indoline D-A dye D205 (λonset = 570 nm in DMF) that achieved 9.4% 

PCE.61 Unfortunately, the energy levels for D205 are not reported in the literature, however, the 

energy levels of D149, an analogous dye have been reported and will serve as a useful 

comparison to dye AH10-11.62 Further comparison of the electro-optical properties of the two 

indolizine dyes with D149 are listed in Table 8. 
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Figure 17. Left: UV-Vis absorption spectra of AH10 and AH11 in CH2Cl2. Right: UV-Vis absorption spectra of 

AH13 and AH14 in CH2Cl2. 

Table 8. Optical and Electronic Properties of dyes AH10,11,13,14 compared to dye D149. 

 

a Measured in CH2Cl2. 
b:Estimated from the tangent of the lower-energy tangent of the lambda max transition in the 

UV-Vis absorption spectrum in CH2Cl2. 
cTaken as the difference between the oxidation potential E(S+/S) and the 

estimated optical bandgap E(0-0). 
d Measured in a 0.1 M Bu4NPF6 in CH2Cl2 solution with glassy carbon disk 

working electrode, Pt reference electrode, and Pt counter electrode with ferrocene as an internal standard. Values are 
reported versus NHE. e Taken from Ref. 62. f: Estimated from the onset of absorption in Ref. 62 to be more 
comparable to AH10-11. g: Estimated from the difference between the onset of absorption and the oxidation 
potential vs. NHE reported in Ref. 62. h: Reported in Ref. 62 to have been measured in MeCN.  
 
 

The energy levels of AH10-11 are near ideal for use in DSC with the E(S+/S) lying near 

0.76 V vs. NHE for AH10 & AH13 & AH14 and was lower (0.99 V vs. NHE) for AH11. The 

E(S+/S*) lies well above the ideal value of -0.7 V vs NHE energetically.  All four have lower 
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E(S+/S*)  values than D149 due to competing local aromaticity. While the E(S+/S) for D149 is higher 

in energy than AH11, the former was measured in MeCN while the latter was measured in 

CH2Cl2. Changing solvent can greatly affect the apparent energy levels, so the E(S+/S) are much 

harder to compare. Besides this difficulty, it appears that dyes AH11 and D149 have similar 

energy levels, with AH11 absorbing a little more into the NIR region (650 nm λonset vs. 610 nm 

λonset).  

 Having established the dyes exhibited suitable characteristics for productive photon-to-

electric conversion, dyes AH10-AH11 and AH13-14 were examined in DSC devices with a TiO2 

semiconductor and I-/I3
- redox shuttle. From the equation PCE (η) % = (JscVocFF)/I(sun) where Jsc 

= short-circuit current, Voc is the open-circuit voltage, FF is the fill factor and I(sun) is the incident 

light intensity, the device performances under AM 1.5 irradiation were analyzed (Table 9).  

Table 9. Device performance data for dyes AH10-AH11 and AH13-14 compared with dye D149.a 

Measurements performed by Giordano, Nazeeruddin, and Grätzel. 

 

a: Electrolyte 960 used as electrolyte, 100 mM LiI additive used in electrolyte, no CDCA additive used. b: no LiI 

added to device. c: no LiI added, no CDCA added. 

 After device optimization with LiI to increase electron injection efficiency into the TiO2 

CB, dye AH14 had the lowest voltage output at 376 mV with AH11 being highest at 557 mV. 

Dye

AH10
AH11b

AH13
AH14
D149c

Voc (mV) η (%)

456
557
498
376
638

0.717
0.757
0.733
0.723
0.682

1.46
3.15
2.78
0.15
8.26

FFJsc (mA/cm2)

4.33
 7.27
  7.42
0.55

19.08
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The voltage was likely highest because it did not require Li+, which is known to lower voltage 

output. While indoline dye D149 has been reported to produce 8.85% PCE, the measured device 

performance of dyes AH10-11 an AH13-14 is much lower, with AH14 producing the least at  

0.14% and AH11 producing the most at 3.15%. The Jsc values for indolizine D-π-A dyes were 

very low in comparison with indoline dye D149. Devices with D-A dye AH11 and D-π-A dye 

AH13, which had a cyanoacrylic acid acceptor group, had much higher Jsc values than AH10 or 

AH14. While recombination is likely suppressed with AH11, it does seem to be completely 

eliminated, as the Jsc value is very low. Furthermore, even though the E(S+/S*) values for all dyes 

except AH11 were well above the TiO2 CB (Figure 18), LiI additive was needed in to ensure 

adequate electron injection. The fill factor values were very good, which indicated that 

performance losses due to resistance were low.  

 

Figure 18. Bandgap diagram of dyes AH10-14 and dye D149.  
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EXPERIMENTAL SECTION 

See Chapter 1, Section 1 for General Considerations (Experimental, Photovoltaic 

Characterization, and Device Fabrication). 

Synthetic Methods to Reach bis-rhodanine acceptor 25: 

N-hexylrhodanine (23): A flask equipped with a stirbar and reflux condenser was charged with 

hexyl isocyanate (0.929 mL, 5.85 mmol), thioglycolic acid (0.67 mL, 8.5 mmol), MeOH (5 mL), 

and H2O (58 mL). It was heated to reflux with stirring. After 16h, reactant mixture was extracted 

with EtOAc (3 x 100 mL), passed through a plug of SiO2 using CH2Cl2, and product spot 

concentrated. 50% conversion observed, so NEt3 (0.5 equiv, 0.29 g, 2.9 mmol) and 

methylthioglycolate (0.5 equiv, 0.36 g, 2.9 mmol) added, allowed to stir at rt, and was monitored 

by 1H NMR spectroscopy. After 3h, reaction mixture was diluted with Et2O (50 mL), washed 

with H2O (3 x 100 mL), dried with MgSO4 and concentrated to yield a colorless oil (1.0 g, 79%).  

 

Ethyl 2-(N’-hexylrhodaninyl)-rhodanine N-2-acetate (24): A flask equipped with a stirbar was 

charged with rhodanine 23 (0.90g, 3.67 mmol), ethyl 2-isocyanato acetate (0.53 g, 3.67 mmol), 

MeCN (4 mL), DBU (0.55 mL, 0.56 g), and allowed to stir at rt. After 1h, ethyl bromoacetate 

added and the mixture was warmed to 100ºC with stirring and was monitored by 1H NMR 

spectroscopy. After two hours, the crude reaction mixture was loaded onto a SiO2 plug and 

eluted with CH2Cl2. Dissolved in MeOH, left in -4ºC freezer to crystallize overnight. Metallic 

red crystals obtained (0.56 g, 30% yield).  
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2-(N’-hexylrhodanin-5-yl)-rhodanine-3-yl)-acetic acid (25): A flask equipped with a stirbar was 

charged with ester 24 (0.37 g, 0.851 mmol), concentrated HCl (5 mL), glacial acetic acid (10 

mL), allowed to stir at 90ºC. After four hours, reaction mixture was cooled to rt, extracted with 

CH2Cl2 (3 x 20 mL), dried with MgSO4 and concentrated to yield a yellow/orange powder (0.090 

g, 28%). 1H NMR (300 MHz, CDCl3) δ 10.8 (bs, 1H), 4.73 (s, 2H), 4.06 (t, J = 7.5 Hz, 2H), 3.90 

(s, 2H), 1.68 (m, 2H), 1.32 (m, 6H), 0.88 (t, J = 6.0 Hz, 3H).  

 

Synthetic Procedures to reach AH10: 

2-((thiophen-2’-yl-5’-idine)-2-(4-(2,4-bis(hexyloxy)phenyl)-3-(2-ethylhexyl)-5-(2,4-

bis(hexyloxy)phenyl)indolizine))-(N’-hexylrhodanin-5-yl)-rhodanine-3-yl)acetic acid (AH10): A 

flask equipped with a stirbar was charged with aldehyde 20 (0.74 g, 0.075 mmol), bis-rhodanine 

25 (0.030 g, 0.075 mmol), CHCl3 (1 mL), and the contents were bubbled with N2. After 30 min, 

piperidine (0.031 mL, 0.24 mmol) was added, the solution warmed to 90ºC with stirring, and the 

reaction was monitored by TLC. After 30 min, the reaction mixture was cooled to rt and diluted 

with CH2Cl2 (250 mL). After acidifying with 5 mL AcOH, the mixture was washed with H2O (3 

x 250 mL) and passed through an SiO2 plug using first CH2Cl2 (500 mL), then 5%MeOH:CH2Cl2 

(500 mL), then 5% AcOH:5%MeOH:CH2Cl2 (500  mL). Washed product fractions with H2O (3 

x 500 mL) and dried organic layer with MgSO4. Concentrated to yield a dark green solid (0.046 

g, 45% yield).  
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Synthetic Prodcedures to reach AH11: 

1-Formyl-2-(4-(2,4-bis(hexyloxy)phenyl)-3-(2-ethylhexyl)-5-(2,4-bis(hexyloxy)phenyl)indolizine 

(26): A flame-dried flask equipped with a stirbar was charged with indolizine 19 (0.50 g, 0.55 

mmol) and DCE (1.35 mL). After cooling to 0ºC, dry DMF (0.050 mL, 0.65 mmol) and POCl3 

(0.060 mL, 0.65 mmol) added, in that order. The solution was then allowed to warm to rt with 

stirring under N2 and was monitored by 1H NMR spectroscopy. After 15h, the reaction mixture 

was diluted with CH2Cl2 (50 mL) and hydrolyzed with KOH (2M, 100 mL). Once hydrolysis was 

complete by TLC, the organic layer was separated, dried with MgSO4, and concentrated to yield 

a dark green oil (0.32 g, 62%).  

 

2-(2-(4-(2,4-bis(hexyloxy)phenyl)-3-(2-ethylhexyl)-5-(2,4-bis(hexyloxy)phenyl)indolizin-1-yl) ))-

(N’-hexylrhodanin-5-yl)-rhodanine-3-yl)acetic acid (AH11): A flask equipped with a stirbar was 

charged with aldehyde 26 (0.071 g, 0.079 mmol), bis-rhodanine 25 (0.035 g, 0.087 mmol), and 

CHCl3 (1.5 mL), and bubbled with N2. After 30 min, piperidine (0.022 mL, 0.26 mmol) added, 

the reaction heated to 90ºC with stirring, and was monitored by 1H NMR spectroscopy. After 1h, 

the reaction mixture was cooled to rt and diluted with CH2Cl2 (200 mL). After acidifying with 5 

mL AcOH, the mixture was washed with H2O (3 x 250 mL) and passed through an SiO2 plug 

using first CH2Cl2 (500 mL), then 5%MeOH:CH2Cl2 (500 mL), then 5% 

AcOH:5%MeOH:CH2Cl2 (500  mL). Washed product fractions with H2O (3 x 200 mL) and dried 

organic layer with MgSO4. Concentrated to yield a dark blue solid (0.006 g, 6% yield).  
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Synthetic Prodcedures to reach AH13: 

1-Formyl-2-(4-methoxyphenyl)-3-methyl-indolizine (27): A flame-dried flask equipped with a 

stirbar was charged with indolizine 8 (0.250 g, 1.05 mmol) and DCE (2 mL). After cooling to 

0ºC, dry DMF (0.075 mL, 0.095 mmol) and POCl3 (0.10 mL, 0.095 mmol) added, in that order. 

The solution was then allowed to warm to rt with stirring under N2 and was monitored by 1H 

NMR spectroscopy. After 18h, the reaction mixture was diluted with CH2Cl2 (50 mL) and 

hydrolyzed with KOH (2M, 50 mL). Once hydrolysis was complete by TLC, the organic layer 

was separated, passed through a thin pad of SiO2, dried with MgSO4, and concentrated to yield a 

pale green solid (0.25 g, 90%).  

 

1-(2-(4-methoxyphenyl)-3-methyl-indolizine)-methanol (28): A flame-dried flask equipped with a 

stirbar was charged with aldehyde 27 (0.79 g, 3 mmol), dried and degassed THF (4.5 mL), and 

cooled to 0ºC under N2. Once cooled, LIAlH4 (2.0M in THF, 2.5 mL) added dropwise and the 

reaction mixture allowed to warm to rt. After 5 min, H2O added just until bubbling ceased, 

MgSO4 (25 g) added, the reaction mixture diluted with CH2Cl2 (100 mL), filtered, and 

concentrated to yield a white solid (0.67 g, 87%).  

 

1-(2-(4-methoxyphenyl)-3-methyl-indolizine)-methyltriphenylphosphonium bromide (29): A flask 

equipped with a stirbar and reflux condenser was charged with alcohol 28 (0.082 g, 0.31 mmol), 

CHCl3 (13 mL), HPPh3Br (0.11 g, 0.31 mmol), warmed to reflux with stirring under N2, and 
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monitored by TLC. After 16h, the reaction mixture was cooled to rt, concentrated, triturated with 

Et2O (5 mL), and dried to yield a yellow solid (0.18g, quant.) 

 

5-(2-(2-(4-methoxyphenyl)-1-methylindolizin-3-yl)vinyl)thiophene-2-carbaldehyde (30): 

A flame dried flask equipped with a stir bar was charged with phosphonium bromide 29 (0.050 g, 

0.085 mmol), 2,5-thiophenedicarboxaldehyde (0.012 g, 0.085 mmol), dried and degassed THF (2 

mL) under N2, and the reaction was cooled to -78ºC. Once cool, KOtBu (0.019 g, 0.17 mmol) 

was dissolved in dried and degassed THF (1 mL) was added dropwise. The reaction mixture was 

allowed to stir and was monitored by TLC. After 1.5 h, reaction allowed to warm to rt and 

diluted with CH2Cl2 (50 mL), washed with H2O (2 x 25 mL), passed through a thin pad of SiO2, 

and concentrated. Subjected crude product to column chromatography using using 200 mL SiO2, 

gradient of 35% CH2Cl2:Hexanes to 50% CH2Cl2:Hexanes to 60% CH2Cl2:Hexanes to 75% 

CH2Cl2:Hexanes to CH2Cl2. Product fractions concentrated to yield a red solid (0.020 g, 63%, 

85:15 E:Z isomer ratio).  

 

3-(5-(2-(2-(4-methoxyphenyl)-1-methylindolizin-3-yl)vinyl)thiophene)-2-cyano-2-propenoic acid 

(AH13): A flask equipped with a stirbar was charged with aldehyde 30 (0.013 g, 0.035 mmol), 

CHCl3 (0.85 mL) and degassed wth N2. After 30 min, cyanoacetic acid (0.009 g, 0.10 mmol) and 

piperidine (0.031 mL, 0.24 mmol) added and the flask sealed with a plastic stopper and electrical 

tape. The reaction mixture was heated to 90ºC with stirring and was monitored by TLC. After 30 

min, the reaction mixture was cooled to rt, diluted with CH2Cl2 (50 mL), acidified with AcOH (5 
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mL), washed with H2O (3 x 100 mL) and passed through a short pad of SiO2 using CH2Cl2 (500 

mL), 10% MeOH:CH2Cl2 (500 mL), 5% AcOH:10%MeOH:CH2Cl2 500 mL. Product fractions 

concentrated to yield a dark blue solid (0.005 g, 30%). 

 

Synthetic Procedures to reach AH14: 

2-(5-(2-(2-(4-methoxyphenyl)-3-methyl-indolizine)vinyl)thiophene))-(N’-hexylrhodanin-5-yl)-

rhodanine-3-yl)acetic acid (AH14): A flask equipped with a stirbar was charged with aldehyde 

30 (0.030 g, 0.080 mmol), bis-rhodanine 25 (0.032 g, 0.080 mmol), and CHCl3 (1.3 mL), and 

bubbled with N2. After 30 min, piperidine (0.031 mL, 0.24 mmol) added, the reaction heated to 

90ºC with stirring, and was monitored by TLC. After 15 min, the reaction mixture was cooled to 

rt and diluted with CH2Cl2 (100 mL). After acidifying with 2 mL AcOH, the mixture was washed 

with H2O (3 x 150 mL) and passed through an SiO2 plug using first CH2Cl2 (500 mL), then 

5%MeOH:CH2Cl2 (500 mL), then 5% AcOH:5%MeOH:CH2Cl2 (500  mL). Washed product 

fractions with H2O (3 x 200 mL) and dried organic layer with MgSO4. Concentrated to yield a 

dark blue solid (0.01 g, 10% yield). 
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SECTION 4. SYNTHESIS OF D-A-π-A INDOLIZINE SENSITIZERS FOR USE IN DSCS 

 In an attempt to increase the overall conjugation length and lower the E(S+/S*) of 

indolizine dyes, efforts were made to synthesize sensitizers with a D-A-π-A structure, which has 

been shown to improve device performance in porphyrin (to world record values with SM315), 

indoline (to 10.7% with YA422), and TPA (to TPA-best 10.2% efficiency with RK1) dyes, 

Scheme 4.9,33,63-65 Towards this aim, we were able to synthesize AH15 and characterize its 

absorbance and measure the E(S+/S) and E(S+/S*) energy levels, Figure 19.  

 

Scheme 4. Top: Synthetic route to reach D-A-π-A dye AH15. Bottom: Structures of dyes YA422 and RK1. 

Conditions: i): TEA, SOCl2, CHCl3, 1.23 g, quant. ii): Br2, HBr, (47% in H2O), reflux, 1.11 g of a 90% pure product, 

45%. iii): NBS, (PhCO)2, CHCl3, 75ºC, 1.35g, 95%. iv): P(OEt)3, 120ºC, 0.71 g, 40%. vi): ethyl 4-

carboxylphenylboronic acid, Pd(PPh3)4, Na2CO3 (2M in H2O), Tol, THF reflux, 0.17 g, 96%. vii): 1. 29, 4-

aminophenol, AcOH, Tol, 130ºC. 2 LiHMDS, 90ºC, 0.009g, 25%.  
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To reach dye AH15, the benzothiadiazole bridge portion was constructed first. Benzothiadiazole 

32 was formed by reacting 2,3-diaminotoluene with SOCl2 in the presence of a base.66 

Bromination with Br2 led to formation of 33 and subsequent radical bromination using NBS with 

benzoyl peroxide as initiator smoothly formed 34.67 Substitution with P(OEt)3 gave phosphonate 

35 and Suzuki coupling gave ester phosphonate 36.68 Reacting 36 with aldehyde 29 in the 

presence of water and strong base led directly to the formation of AH15.  

 The UV/Vis absorption spectrum of AH15 is shown in Figure 19. Because it lacks the 

strongly accepting cyanoacrylic acid unit present on dyes AH2-7, the CT band of AH15 is very 

blue-shifted (100 nm) in comparison to the analogous AH13 dye. It is likely that upon 

installation of a stronger acceptor, the CT band will be at least comparable to AH13 if not more 

red shifted. Both dyes exhibit poor absorption in the 450-500 nm range of the visible spectrum, 

due to the poor high-energy charge transfers, which are observed in dyes AH10 and AH14.  

The measurement of the E(S+/S) and E(S+/S*) energy levels of AH15 gave firm support to 

the logic that the acid acceptor was not strong enough to balance the exceptional donating 

strength of the indolizine donor, Figure 19. This is evidenced by the similar E(S/S) values for  

AH13 (0.72 V) and AH15 (0.71 V) but grossly different E(S/S*) values (-1.01 V for AH13 and -

1.19 V for AH15, Table 10). The supposition that adding a stronger acceptor is supported by 

reports of bandgap modification in other series of dyes, but also in the observation that in AH13 

and AH14 (Part 1.3), the addition of the strongly accepting bis-rhodanine only lowered the 

E(S+/S*) energy level.  

 



 72 

 

 
Figure 19. Left: UV/Vis absorption spectrum of AH15 measured in CH2Cl2. Right: Bandgap diagram of AH15 and 
AH13.  
 
Table 10. Optical and electronic properties of dyes AH13 and AH15.  

 
 
a Measured in CH2Cl2. 

b:Estimated from the tangent of the lower-energy tangent of the lambda max transition in the 
UV-Vis absorption spectrum in CH2Cl2. 

c:Taken as the difference between the oxidation potential E(S+/S) and the 
estimated optical bandgap E(0-0). 

d: Measured in a 0.1 M Bu4NPF6 in CH2Cl2 solution with glassy carbon disk 
working electrode, Pt reference electrode, and Pt counter electrode with ferrocene as an internal standard. Values are 
reported versus NHE.  
 

Before the device performance data for AH10-14 was obtained by our collaborators in 

Switzerland, which indicated that olefins were detrimental to sensitizer performance, many 

attempts at synthesizing olefin dyes with more advanced bridges like BDT or CPDT were 

undertaken, however, they did not result in final dyes due to poor stability. The attempts will be 

briefly mentioned here along with the reason for synthetic route failure, Figure 20.  

Dye λmax
 (nm)a E(0-0) (eV)b E(S+/S*) (V)c E(S+/S) (V)d

AH13
AH15

609
550

1.72
1.91

-1.01
-1.19

0.71
0.72

λonset
 (nm)a

722
650
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Figure 20. Unsuccessful attempts at synthesizing advanced olefin-containing sensitizers and the reasons for 

the failure of each. Conditions: i): THF, tBuOK, -78ºC to rt. ii): cyanoacetic acid, CHCl3, piperidine, 90ºC.  

 
The Wittig reaction of 30 proceeded to form the bridge aldehyde for CPDT, BDT, and 

TT, however, upon knoevenagel condensation with cyanoacetic acid, the final dyes were either 

too unstable to be characterized or did not appear to form. Many attempts were made at attaching 

an unfunctionalized thiophene to an indolizine donor and utilizing it for further coupling 

reactions afterwards, however, none were successful. Some examples of these efforts included: 

Lithitation of indolizine-bridge and indolizine-olefin-bridge species followed by quenching with 

halogen, DMF, or SnR3 electrophiles, all of which yielded a mixture of products due to 

competing acidities of the benzylic carbon at the 3- position, the 1-proton and the 7-proton.69 
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Also attempted was bromination of unfunctionalized indolizine-bridge compounds, the products 

of which decomposed very quickly. Vilsmeier-Haack reactions of indolizine-olefin-bridge 

species also failed due to large amounts of side-product generation during the reaction.  

Future attempts at synthesizing D-A-π-A sensitizers utilizing indolizine will focus on the 

removal of the olefin bridge group, as well as the inclusion of cyanoacrylic acid accepting groups 

to increase the dye absorption window. The removal of the olefin group is important, as the dyes 

AH13-14 both exhibited very poor performance in devices due to the reactive alkene group. The 

higher planarity observed with olefins imparted larger absorption coefficients for dyes AH10-

AH15, however, the reactivity of the alkene lowered performance in AH10-14 to such a degree 

that further investigation of olefin-including dyes would be a very poor use of time and resources.  

The exclusion of olefins from future dyes will not only enhance performance of future 

indolzine dyes, but make incorporation of cyanoacrylic acid acceptors easier from a synthetic 

standpoint, as well. To incorporate olefin bridge groups, Wittig or Horner-Wadsowrth-Emmonds 

(HWE) type olefinations are often utilized, which has two important drawbacks: First, extra 

synthetic steps must be implemented to install the aldehyde electrophile and phosphonate or 

phosphonium nucleophile. Second, if using a symmetrical bridge like in AH13, a di-aldehyde 

must be utilized. Conversely, if using an unsymmetrical bridge, an ester like 36 must be utilized 

on the bridge group instead of an aldehyde in order to prevent non-productive side reactions. In 

both cases, when using a Wittig nucleophile the desired E olefin product must be separated form 

the undesired Z product. From an ester group, it takes three synthetic steps to reach the 

cyanoacrylic acid acceptor, whereas starting from an aldehyde it takes only one step.  
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EXPERIMENTAL SECTION 

See Chapter 1, Section 1 for General Considerations (Experimental) 

Synthetic Procedures to reach AH15: 

4-Methyl-2,1,3-benzothiadiazole (32): A flask equipped with a stirbar and reflux condenser was 

charged with 2,3-diaminotoluene (1.0 g, 8.19 mmol), triethylamine (4.6 mL, 32.96 mmol), 

CH2Cl2 (25 mL) and cooled to -78ºC with stirring. Once cool, SOCl2 added dropwise until 

vigorous bubbling with addition stopped. The reaction mixture was then heated to reflux with 

stirring and was monitored with TLC. After 22h, the reaction mixture was cooled to rt and 

poured into 10% HCl (100 mL) and extracted with 100 mL CH2Cl2. The organic layer was 

washed with H2O (2 x 50 mL), dried with MgSO4, passed through a thin pad of SiO2 using 

CH2Cl2 as eluent and concentrated to give an off-white solid (1.2 g, quant.). 

 

7-Bromo-4-methyl-2,1,3-benzothiadiazole (33): A flask equipped with a stirbar and reflux 

condenser was charged with thiadiazole 32 (1.23 g, 9.49 mmol), HBr (10 mL) and heated to 

70ºC with stirring. Once warm, Br2 (0.49 mL, 9.49 mmol) added dropwise, the solution was 

heated to reflux with stirring, and monitored by TLC. After 24h, the reaction mixture was cooled 

to rt, extracted with CH2Cl2 (3 x 100 mL), and passed through a thin pad of SiO2 using 50% 

CH2Cl2:Hexanes. Concentrated to give an off-white solid (1.11 g, (10:1 product:doubly 

brominated product), 54%). Used without further purification.  
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7-Bromo-4-bromomethyl-2,1,3-benzothiadiazole (34): A flask equipped with a stirbar and reflux 

condenser was charged with bromothiadiazole 33 (1.1 g, 4.6 mmol), NBS (0.82 g, 4.6 mmol), 

benzoyl peroxide (0.020 g), CHCl3 (7 mL), heated to 70ºC with stirring, and monitored by 1H 

NMR spectroscopy. After 16h, reaction mixture was cooled to rt, concentrated, and directly 

subjected to column chromatography using 50% CH2Cl2:Hexanes. Concentrated product 

fractions to give an off-white solid (1.35 g, 95%).  

 

7-Bromo-4-(diethylphosphonato)methyl-2,1,3-benzothiadiazole (35): A flask equipped with a 

stirbar was charged with bromomethylthiadiazole 34 (1.35 g, 4.4 mmol), diethylphosphite (2 

mL), heated to 120ºC with stirring, and monitored by TLC. After 2h, reaction mixture cooled to 

rt and subjected to column chromatography using gradient 30% EtOAc:Hexanes to 50% 

EtOAc:Hexanes to 60% EtOAc:Hexanes to EtOAc. Product spots concentrated to yield a yellow 

oil (0.71g, 40%).  

 

Ethyl (7-(4-carboxyphenyl)-4-(diethylphosphonato)methyl-2,1,3-benzothiadiazole (36): 

A flask equipped with reflux condenser and stirbar was charged with phosphonate 35 (0.150 g, 

0.41 mmol), ethyl (4-carboxyphenylboronic acid) (0.12 g, 0.62 mmol), dissolved in 1:1.5:1 

Toluene:THF:2M Na2CO3 (aq) (4 mL total), and the solution was bubbled vigorously with N2. 

After 30 min, Pd(PPh3)4 (0.018 g, 0.016 mmol) added in one solid portion from a vial, the 

reaction mixture was heated to Toluene reflux, allowed to stir, and was monitored by 1H NMR 

spectroscopy. After 18h, the reaction mixture was cooled to rt, extracted with EtOAc (3 x 25 
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mL), washed with H2O (2 x 25 mL), dried with MgSO4 and concentrated. The crude product was 

submitted to column chromatography using 200 mL SiO2, gradient 60% EtOAc:Hexanes to 

EtOAc to 15%MeOH:EtOAc. Product fractions concentrated to yield a viscous yellow oil (0.17g, 

96%).  

 

4-((2-(2-(4-methoxyphenyl)-1-methylindolizin-3-yl)vinyl)-7-(4-benzoic acid) -2,1,3-

benzothiadiazole (AH15). A flame dried flask equipped with a stir bar was charged with 

phosphonate 36 (0.047 g, 0.11 mmol), aldehyde 27 (0.026 g, 0.1 mmol), dried and degassed 

Toluene (1 mL) under N2, 4-aminophenol (0.004 g, 0.04 mmol), AcOH (1 drop) and the reaction 

heated to 150ºC under ambient atmosphere to dryness. After 20h, reaction mixture cooled to rt, 

suspended in dried, degassed toluene (1 mL), LiHMDS (2.0 M in THF, 1.5 mL) added via 

syringe, the reaction heated to 90ºC with stirring and was monitored by TLC. After 3h, reaction 

mixture cooled to rt, subjected directly to column chromatography using 100 mL SiO2, gradient 

hexanes to 20% EtOAc:hexanes to EtOAc to 1%AcOH:EtOAc. Product spots concentrated to 

yield a deep purple solid (0.009 g, 12%).  
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SECTION 5. THE SYNTHESIS OF DOUBLE DONOR OR DOUBLE ANCHOR 

SENSITIZERS FOR DSC. 

 While previous parts of this chapter have dealt with indolizine-based sensitizers as a 

means to efficiently narrow sensitizer bandgaps and thus improve DSC performance, this part 

will outline the attempts to utilize multiple donors or accepting anchors to achieve the same end. 

In the rational design of dyes with two acceptors/anchors or two donor groups, the distinction of 

‘in-parallel’ and ‘in-series’ inclusion is an important distinction to make.  

The connection of more than one donor or acceptor ‘in-series’ would theoretically mean 

that from the number of donors connected in conjugation effectively ‘sum’ their donation 

strength, while the number of acceptors in conjugation effectively ‘sum’ their accepting strength. 

While this seems a good strategy to use, as in a series circuit, the bandgap energy is actually a 

product of overcoming the resonance stabilization energy and absorption-lowering twist angle 

problems of all the subunits combined. The idea of acceptors in series has been described above 

in D-A-π-A (current world-record holders in all-organic and metal containing sensitizers, vide 

supra) and D-π-A-A dyes.64 Positioning anchors in series would not benefit the performance of a 

sensitizer, as the anchor groups must adsorb to the TiO2 surface and thus should be on the 

terminal end of the dyes. Efforts have been made to use dyes of this type, but they will not be 

described here.  

PART 5.1 DOUBLE DONOR DYES 

Donors and acceptors/anchors ‘in parallel’ means that as in a parallel circuit, two or more 

donors or two or more acceptors are connected to the same bridge unit. Placing acceptors in 
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parallel is not as important as placing donors in parallel, as evidenced by the sheer number of 

world-record dyes with acceptors in series. Triarylamine donors, however, need to be placed in 

parallel rather than in series, because of the two consecutive nitrogen-aryl single bonds that 

break conjugation. It should be noted that the Wang group has recently reported an N-annulated 

perylene that does not rely on nitrogen to propagate conjugation.70,71,72  

Our efforts in sensitizers with multiple donors or anchors have not been the first by any 

means, as several groups have attempted to make high performing sensitizers with double donor 

and/or double anchor subunits. In 2008, three reports of such attempts to use double triarylamine 

donor groups, with different strategies (and degrees of success) were published by a 

collaboration of the Grätzel/Hagfeldt/Sun research groups, by a collaboration of the 

Chou/Ho/Lin groups, and by the Tian group, Figure 21.73,74,75  These initial efforts for double 

donor dyes have not been followed up until this work. 

 

Figure 21. Top: Some double donor dyes reported in the literature. Bottom: Pictorial description of In-Series and In-

Parallel double donor systems and their inherent problems.  

N N

S CO2H

CN

SS

S NC
CO2H

OMe

OMe

OMe

MeO

N

N

N

N

N

S
NC

CO2H

D11 1 S3

In-Series In-Parallel

N

N

N

Broken Conjugation

SDonor

Donor
NC

CO2H

SDonor

Donor
HNC

CO2H

hu

SDonor

Donor
NC

CO2H

SDonor

Donor
NC

CO2H

hu

Non-Productive Donation

N N

S CO2H

CN

OMe

OMe

OMe

MeO

Severe Twist 
Due to Sterics

Double Donor Dyes



 80 

In a report by Grätzel et al., the two triarylamine donors were place ‘in-parallel’ on a 

double bond, which in theory would allow for both aryl nitrogens to engage the acceptor group 

equally; however, the dye’s ground state energy level was very similar to that of reference dye 

C1.29 Calculations indicated that one of the triaryl amine donor groups was severely twisted, 

reducing the donation of this group to very low values. The dye IPCE window extended to just 

past 700 nm and devices with dye D11 showed good efficiency (7%).73 

In a publication by Chou et. al, two triarylamine donors were attached to a thiophene 

bridge at the 2 and 3 positions, while the acceptor was appended to the thiophene’s 5-position. 

While the two-position of thiophene rings lies in conjugation with the 5-position, the 3-position 

does not. Therefore, the donor attached to the 3-position only adds ‘passive’ electron density to 

the bridge and cannot contribute strongly to the dye’s energy levels. An examination of dye 1’s 

energy levels shows precisely that. The E(S+/S) value for dye 1 was almost exactly that of 

reference triarylamine dye CQ1. The dye exhibited an IPCE window out to 650 nm and good 

efficiency (6%).74  

A report by the Tian group described the use of ‘in-series’ triarylamine donors appended 

with either diarylamine groups or carbazole groups. The addition of alkoxy groups to 

triarylamine marginally increases donor strength, but not strongly due to the two aryl-N bonds in 

succession that breaks conjugation. Thus, the extra diarylamine or carbazole groups will 

encourage donation towards the acceptors, but cannot contribute in conjugation. Upon 

examination of dye S3, which has a (Ar2N-Ph)2NPh donor group, the E(S+/S) energy level was 

also very similar to reference dye CQ1, which indicated that as expected, the ‘in-series’ donor 
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approach did not help the dye’s overall donation. The performance of S3 was modest, with an 

IPCE absorption window out to 620 nm and an efficiency of 2.78% efficiency.75   

With the knowledge of these three approaches in hand, we decided that synthesizing a 

dye with two donors ‘in-parallel’ that also were substituted in active positions would be a key 

target towards advancing double-donor sensitizers. Thus, we sought a donor structure based on 

doubly substituted fluorene, Scheme 5. In this type of structure, both donors are in conjugation 

with the acceptor (as in D11). The fused fluorene ring allows for both triphenylamine donors to 

be planar and thus equally donate towards the acceptor, which is what dye D11 could not 

accomplish. Our synthetic route to reach dye AH1 is shown in Scheme 5. 

In order to ensure correct bromine atom placement on the fluorene ring, AIBN initiated 

radical bromination was used, which proceeded smoothly to afford dibromophenanthrenedione 

37. Oxidative hydroxide mediated ring contraction followed by Soxholat extraction afforded 

dibromofluorenone 38.76 HWE reaction proceeded to give fluorenylthiophene 39 and Buchwald-

Hartwig coupling with bis(4-hexyloxyaniline) formed bis (hexyloxyaniline) fluorenyl thiophene 

40. Despite low yields, deprotonation with n-BuLi followed by electrophilic quenching with 

DMF gave aldehyde 41, which was then condensed with cyanoacetic acid to give AH1.  
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Scheme 5. Top: Synthetic route to reach dye AH1. Bottom: Structures that did not result in a completed dye. 

Conditions: i): AIBN, Br2, C6H5NO2, 9.9 g, 50%. ii): a. KOH, H2O, 140ºC. b. KMnO4, 140ºC, 4.0 g, 70%. iii): NaH, 

THF, rt, 0.90 g, 97%. iv): bis(4-hexyloxy)aniline, P(tBu)3, Pd(dbs)2, NaOtBu, Tol, rt, 0.390 g, 98%. v): nBuLi, THF, 

-78ºC, DMF, 0.045 g, 10%. vi): cyanoacetic acid, piperidine, CHCl3, 90ºC.  

 

Once dye AH1 had been synthesized, its UV/Vis aborption data in both CHCl3 and EtOH 

were taken, Figure 22. Observing the absorbance in both solvents was important, as the reference 

dye D11 had its absorption measured in EtOH, meaning that a good comparison could be made 

between the two dyes. Performing the measurement in CHCl3 then allowed for a better indication 

of how the dye’s absorption will appear in-device, as the polar environment of CHCl3 has been 

observed to better mimic the environment found in DSCs. The onset of absorption as well as the 
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position of the CT band of dye AH1 is red shifted in comparison to that of reference dye D11 in 

EtOH by 60 nm, as compiled in Table 11. In CHCl3, the CT band was significantly broadened 

and red shifted, leading to a λonset of 693 nm (Figure 21).  

 

Figure 22. Left: UV/Vis Absorption of dye AH1 in CHCl3 (black) and EtOH (red).  

Table 11. Optical and Electronic properties of dyes AH1, D11, and C1.  

 

a: Measured in EtOH. b: Measured in CHCl3. 
c:Estimated from the tangent of the lower-energy tangent of the lambda 

max transition in the UV-Vis absorption spectrum in CH2Cl2. 
dTaken as the difference between the oxidation 

potential E(S+/S) and the estimated optical bandgap Egopt. 
e Measured in a 0.1 M Bu4NPF6 in CH2Cl2 solution with 

glassy carbon disk working electrode, Pt reference electrode, and Pt counter electrode with ferrocene as an internal 
standard. Values are reported versus NHE. f: Taken from Ref. 73 g: Reported in Ref. 73 to have been measured in 
MeCN. h: Taken from Ref. 29. 
 

The CT band of AH1 is very red shifted (100 nm) compared to reference dye C1, which 

is one indication that the double donor fluorene unit is much stronger than a simple 

alkoxytriphenylamine donor. The E(S+/S) energy level was substantially destabilized (0.82 V vs. 

Dye λmax
 (nm) Egopt (eV)c E(S+/S*) (V)d E(S+/S) (V)e
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 (nm)

610a
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NHE) for dye AH1 in comparison to dye C1 (1.04 V vs. NHE), while the  E(S+/S*) value for each 

was  closer (-0.97 V vs NHE for AH1 and -1.06 V vs. NHE for C1), indicating that not only did 

dye AH1 benefit from a much stronger donor, but also excited-state stabilization from competing 

local aromaticity. In the ground state, two locally aromatic benzene structures are present, while 

in the excited state one locally aromatic benzene structure and one locally aromatic 

cyclopentadiene structure, which lowers the energy required to access the excited state, and thus 

lowers the CT energy. Dye AH1 has not been tested yet in devices; however, it has been sent to 

our collaborators in Lausanne, Switzerland. 

Several other attempts at synthesizing double donor fluorene dyes were made; however, 

they were unsuccessful and will be briefly discussed here, Scheme 5. Diethyl amine was coupled 

to dibromofluorenyl thiophene 40 smoothly; however, upon reaction with n-BuLi, the product 

was quantitatively converted to the undesired fluorenone product. In another attempt, 

dihexyloxyaniline was coupled to dibromofluorenone 38; however, the ketone was observed to 

not undergo Wittig or HWE reaction with carbon nucleophiles. Attempts to utililize a fluorenyl 

nucleophile condensation reactions did not yield olefin product when reacted with 2-

formylthiophene. Future attempts to synthesize fluorene double-donor dyes should likely focus 

on coupling donor subunits after affixing more bridges or an aldehyde onto structures like 

fluorenyl thiophene 39. 
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PART 5.2 DOUBLE ANCHOR DYES 

While efficiency is one key factor in determining how well sensitizers perform, another, 

more practical aspect of device performance is the stability (or change in performance from the 

cell’s maximum efficiency) over time. It has been noted in other studies that while the 

cyanoacrylic acid anchor works well for short periods, it does not guarantee that the dye stays 

adsorbed onto the semiconductor surface.10,77 In the same way that bidentate chelators have 

lower dissociation constants than monodentate chelators (stronger binding) in transition metal 

complexes, dyes with multiple anchor sites should be much less likely to dissociate completely 

from the TiO2 surface. While this principle has not been investigated often in all-organic 

sensitizers, highly performing Ru-based sensitizers N3,78 N719,79 and the so-called “black dye”80 

all utilize double anchors produce very stable devices (with some lasting for 10+ years).81  

Notable reports of double anchor dyes have recently been published by the Grätzel 

(2009),82 Wang (2011),83 and Chou/Wong (2014)84 groups, Figure 23. The report by Grätzel et. 

al in 2009 utilized a single triphenylamine donor/double anchor dye design that was capable of 

light absorption out to ~700 nm in-device and 5.7% efficiency for DB-1. It’s worthy to note that 

DB-2 utilized rhodanine acceptor groups as the anchor; however, the device performance was 

poor.82  
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Figure 23. Some recent double anchor structures reported in the literature.  

In 2011, the Wang group reported a similar double anchor dye system, in which a single 

triphenylamine donor was appended twice with three different thiophene bridge groups. In this 

study, CoIII/II electrolytes were used instead of the standard iodide based redo shuttle and the 

performances increased from thiophene (C231) to EDOT (C232) to CPDT (C233) to range from 

5.8% to 7.7% PCE. It is worth noting that the double anchor dyes were compared with their 

single anchor analogs, and in each case the double anchor dyes performed worse.83 In 2014, the 

Chou/Wong groups collaboratively reported a double anchor dye using a fused double-donor 

system based on carbazole (ICZDTA). The double carbazole dye was capable of light absorption 

out to 650 nm in-device with efficiency of 6.0% PCE.84 Only the report by Grätzel included 

stability data over time. Using DB-1, the cells were subjected to accelerated ageing tests using 

full light intensity (100 mW cm-2) at 60ºC for 1000h. After that time period, cells with the double 

anchor dye were found to retain 67% of their initial efficiency, while the single anchor analog 

retained only 55% of its original efficiency.  

Our approach to the development of double anchor dyes was based on a heterocyclic 

structure, [2.2.3]cyclazine. Before embarking upon a series of syntheses towards the heterocycle, 
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we decided it would be an expedient use of time to determine the electronically active positions 

on the structure (Figure 24). As evident form the calculations, the positions with the most 

electron density were the 1, 4, and 6 positions on the heterocycle. While it appeared that the 

bridgehead carbon between the 2 and 3 positions was also active, this position cannot be 

modified and thus is not important for substitution assessment.  

                  

Figure 24. HOMO (left) and LUMO (right) orbital figures of [2.2.3]cyclazine using TD-DFT calculations.  

 

Once initial substitution leads were established, we then sought to determine precisely 

which of the three positions held the most promise in full D-π-A dyes. To do this, we next 

calculated a series of simple D-π-A dyes using dimethylamine as donor and cyanoacrylic acid as 

acceptor. By comparing the relative shift and the computed oscillator strength (indicative of 

extinction coefficient) of the vertical transition, a better assessment of important dye 

architectures can be made. The results of these initial calculations are shown in Figure 25 and the 

numerical results are tabulated in Table 12.  
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a)  b)   

HOMO 

a) b)   

LUMO 

Figure 25. Calculated HOMO and LUMO structures for a) 1,4- b) 6,4-substituted [2.2.3]cyclazine  

D-π-A dyes. Contour values set to 0.065. 

From the calculated HOMO and LUMO structures, two important points can be made: 

First, the donor appears to function well in either the 1- or 6-position. Second, the 3-position 

appears to have significant electron density in the calculated LUMO, which is fortuitous, since 

another anchor can be easily appended to the 3-position (Scheme 6).  

From the calculated results in Table 12, both dyes were calculated to have CT bands that 

were significantly red-shifted over the parent heterocycle with good oscillator strength values. 

As expected from the relative orbital electron densities present in Figure 22, the 1,4-substituted 

cyclazine is red shifted in comparison to the 6,4-substituted cyclazine. 
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Table 12. Calculated CT band vertical transitions and oscillator strengths.a  

 

a: Values calculated using TD-DFT methods (B3LYP/6-311G(d,p) geometry optimization) with calculated 

states = 10.  

Thus, the calculations suggest that while either substitution pattern should lead to a dye 

with good charge separation and a significant absorption in the visible spectrum, 1,4-substitution 

would be more favorable than 1,6-substitution.  

The synthetic route to a substituted [2.2.3]cyclazine in shown in Scheme 6. Indolizine 6 

underwent oxidative dimethylacetylenedicarboxylate (DMAD) cyclization to form cyclazine 42 

in good yield and at multi-gram scale (8.5 g yield). Reduction of diester 42 with LiAlH4 gave 

diol 43, which was oxidized via Swern oxidation to afford dialdehyde 44. Future attempts at 

condensation with cyanoacetic acid have been attempted, but product was not observed.  

Dye

1,4
6,4

Parent

Vert. Trans. Oscillator Strength

475
450
360

0.30
0.37
0.05
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Scheme 6. Top: Synthetic route to [2.2.3]cyclazine structures for future development as DSC sensitizers. 

Conditions: i): a. Tol, DMAD, 90ºC. b. DDQ, rt to 100ºC. 8.5g, 56%. ii): LiAlH4, THF, rt, 0.087 g, quant. yield. iii): 

Swern oxidation. 0.01 g, ~15%. Lower Panels: Unsuccessful attempts towards [2.2.3]cyclazine. 

 

 Even though the most successful route in Scheme 6 depicts a cyclazine with 6,4-

substitution, we attempted to make several methods for forming the 1,4-substituted heterocycle. 

Attempts to make a symmetrical 2,3-diphenyl[2.2.3]cyclazine failed due to the steric bulk of 2,6-
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InCl3,
23a FeCl3, and Pd(OAc)2 to no avail. The synthesis of 1,2-dimethyl[2.2.3]cyclazine as well 
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form a symmetrical cyclazine by acylation/condensation, however, that also failed.86 Once it was 

clear that 6,4-substitution was synthetically most feasible, attempts to brominate diester 42 using 

NBS also failed due to the selective formation of an unwanted by-product. Before we set out for 

[2.2.3]cyclazine, we made several attempts to follow procedures towards more complicated 

heterocycles, as is drawn in the bottom panel. Poor yields and unstable products led us to 

abandon the route towards these dye architectures in favor of the cyclazines.87  

EXPERIMENTAL SECTION 

See Chapter 1, Section 1 for General Experimental Considerations 

Computational Details: All computations were performed with the Gaussian09 software package. 

The geometry optimization steps were as follows: first the structures were optimized by MM2 in 

the ChemBio3D (version: 13.0.2.3021) software package and dihedral angles for all relevant 

groups set to values in-between the global minimum and the next local maximum on the 

conformational energy diagram as calculated by ChemBio3D (version: 13.0.2.3021) in the 

dihedral driver toolset. After MM2 optimization, the molecular structures were further optimized 

by DFT methods: first B3LYP/3-21g, second B3LYP/6-311g(d,p), and finally opt=tight 

B3LYP/6-311g(d,p) with tight convergence criteria. Lastly, time-dependent density functional 

theory (TD-DFT) computations were carried out to compute the vertical transition energies and 

oscillator strengths for the 10 lowest excited states. Symmetry was explicitly turned off for these 

computations even though all of the optimized structures belonged to the C1 point group. A 

representative input file is included for each type of calculation.  
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Diethyl 3,4-dicarboxylate-1-methyl-2-phenyl[2.2.3]cyclazine (42):	  A flame-dried flask equipped 

with a stirbar was charged with indolizine 6 (9.08 g, 43.8 mmol), toluene (80 mL) and the 

solution was heated to 90ºC. Once hot, DMAD (8.1 g, 56.9 mmol) added dropwise, the solution 

allowed to stir at 90ºC and monitored by TLC. After 1.5 h, flask cooled to rt and DDQ (9.94 g, 

43.8 mmol) added in one solid portion. Solution warmed to 100ºC with stirring and was 

monitored by TLC. After 30 min, crude material was passed through a pad of SiO2 using DCM 

and concentrated. Crude product dissolved in EtOAc (1000 mL), and ascorbic acid added. 

Washed with H2O (3 x 500 mL) and concentrated to yield a yellow solid (8.5 g, 56%). 1H NMR 

(300 MHz, CDCl3) δ 8.39 (d, J = 7.5 Hz, 1H), 7.91 (m 2H), 7.61 (m, 2H), 7.51 (m, 2H), 7.42 (m, 

2H), 4.00 (s, 3H), 3.77 (s, 3H), 2.70 (s, 3H).  

	  

 3,4-bis(hydroxymehyl)-1-methyl-2-phenyl[2.2.3]cyclazine (43):	   A flame-dried flask equipped 

with a stirbar was charged with cyclazine 42 (0.10 g, 0.29 mmol) and THF (5 mL). LiAlH4 (2M 

in THF, 0.288 mL) added dropwise, the reaction mixture allowed to stir at rt and monitored by 

TLC. After 1.5 h, minimal H2O added, followed by MgSO4 (xs). Added Et2O (50 mL), CH2Cl2 

(20 mL), filtered and concentrated. Passed crude product through SiO2 plug using CH2Cl2 then 

5% EtOAc: CH2Cl2
 to elute the product. Product fractions concentrated to yield a yellow solid 

(0.087 g, quant.). 1H NMR (500 MHz, CDCl3) δ 7.94 (d, J = 4.8 Hz, 1H), 7.91 (d, J = 4.8 Hz, 

2H), 7.59 (m, 2H), 7.52 (m, 2H), 7.40 (m, 2H), 5.20 (s, 2H), 5.08 (s, 2H), 2.69 (s, 3H). 
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SECTION 6. THE SYNTHESIS OF β-ENOL ETHER π-BRIDGES FOR USE IN DSC 

In addition to studying the development and improvement of donors and anchor groups 

for DSC sensitizers, I also contributed to the development of π-bridge units. While multitudes of 

these subunits have been reported in the literature (with varying degrees of success), they will 

not be reviewed here. In general, π-bridges usually fall into two main categories: electron rich or 

electron poor. Both types of bridges are useful, and both can serve different purposes.  

In Figure 26, the two categories of bridge subunits are shown with examples. Bridges that 

have inductively or resonance donating groups are usually termed as electron rich and generally 

destabilize the E(S+/S) energy level to a greater degree than the E(S+/S*) energy level. In contrast, 

bridges that are termed electron poor generally stabilize the E(S+/S*) energy level to a greater 

degree than the E(S+/S) energy level. Expediently utilizing one type of bridge or another can 

greatly aid in narrowing a sensitizer’s bandgap and alter the crystallinity, aggregation, and 

surface blocking characteristics.  

 

Figure 26. Some examples of electron rich and electron poor π-bridge subunits.  
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 We chose to focus on the synthesis of β-ketoenolether thiophene bridges (Scheme 7) for 

two reasons: First, we sought a bridge that would allow rapid narrowing of sensitizer bandgap in 

order to apply low-molecular weight dyes in devices. Choosing dyes with low-molecular weight 

often equates to less synthetic steps required to make the sensitizer, which also equates to a more 

practical and economical sensitizer, a key concern for DSC commercialization. Second, we 

desired a bridge that was morphologically tunable. Morphology control is important for DSC 

sensitizers, as recombination pathways between semiconductor and redox shuttle or between 

adsorbed dyes can severely reduce device performance. Thus, judicious bridge selection to tune 

sensitizer morphology is key in sensitizer design. By altering the non-conjugated substituents on 

the ester and enol ether groups, the sensitizer’s film morphology could be precisely tuned to 

match device needs.  

 

Scheme 7. Synthetic attempts at synthesizing a β-ketoenol ether thiophene bridge. Conditions: i): Ac2O, reflux, 3.6 

g, 80%.  
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Our approach to synthesizing the β-ketoenolether thiophene bridge (Scheme 7) was 

started with the cyclization of thiophene-3,4-dicarboxylic acid to form anhydride 45.88  We 

attempted to form a β-ketoenolate directly by methyl acetoacetate condensation; however, this 

product did not form.89 We also tried to submit the anhydride directly to a Wittig reaction, but 

that was also unsuccessful. Our final attempt was the formation of monoester 46 followed by 

acyl chloride formation and Wittig condensation/cyclization to form the desired β-ketoenolether 

thiophene.90 Unfortunately, this did not work either.  

EXPERIMENTAL SECTION 

See Chapter 1, Section 1 for General Experimental Considerations 

1H,3H-thieno[3,4-c]furan-1,3-dione (45): A flask equipped with a stirbar and reflux condenser 

was charged with 3,4-thiophenedicarboxylic acid (5.1 g, 29.5 mmol) and Ac2O (10 mL). The 

flask was then warmed to reflux with stirring. Once the reaction was complete, the mixture was 

cooled to rt and concentrated. The product was dissolved in minimal hot Toluene and allowed to 

cool. Large, pale brown crystals collected (3.6 g, 80%).  

 

4-(methoxycarbonyl)thiophene-3-carboxylic acid (46): A flask equipped with a stirbar was 

charged with anhydride 45 (1.54 g, 9.9 mmol), methanol (1.69 mL, 41.8 mmol), TEA (1.8 mL, 

12.83 mmol), DMAP (0.122 g, 1 mmol), CH2Cl2 (30 mL), and allowed to stir at rt. After 24h, 

reaction mixture was diluted with CHCl3 (20 mL) and washed sequentially with 1 N HCl (20 

mL), H2O (20 mL), Brine (20 mL), and dried with Na2SO4. Product concentrated to yield an off-

white solid (1.47 g, 79%).  
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SECTION 7. THE DEVELOPMENT OF MORDANT DYES AS SENSITIZERS FOR DSC. 

In the march towards commercialization, DSC will benefit from efforts aimed directly at 

utilizing very easily constructed architectures for use as sensitizers. While we have explored 

sophisticated donors, anchors, and π-bridge units, we next aimed to investigate the potential for 

mordant dyes to be used in DSC. Mordant dyes, or metal-complex fabric dyes have been used as 

fabric colorants since the middle agents, with textiles to be dyed first being impregnated with 

metal salt solutions and then soaked in a chelating dye solution to cause a bathochromic color 

shift in the fabric hue.91 The “mordant” part of the term is technically the polyvalent metal ion 

that is chelated by the dye, so the metal dye complexes described here will be termed mordant 

dyes. 

  

Figure 27. Top: Main types of chelating dye groups used in mordant dyes. Bottom: Previous azo-based sensitizers 

reported to be applied in DSC. 

 

The chelating dye groups found in mordant dyes are principally azo/azomethine dyes or 

formazan type dyes (Figure 27).92 Both dye types are fully conjugated and have N=N double 
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bonds. While formazan dyes can chelate metals with both azo groups, azo dyes only have one 

N=N group. Both can have auxiliary chelators, such as phenols or acid groups to increase the 

overall chelation number of the ligand. However, only the azo type dyes would allow for the 

anchoring group to be positioned away from the donor, which is a requirement for reducing 

recombination of injected electrons into the TiO2 CB. Our initial assessment was supported by a 

report by Cole et al. in 2013, in which a series of simple D-π-A dyes with an azo group as π-

bridge was tested in DSC.93 While the dyes did not perform well (0.14-0.32% PCE for the series), 

they still produced a functional device. 

Our strategy was to choose commercially available azo-based chelators and use chelated 

metal ions to red-shift the absorptions of the chelating dye, as textile dyers from the Middle Ages 

once did. These dyes do not possess a D-π-A structure as we have investigated in Parts 1-7. 

Instead, these dyes rely on metal-to-ligand charge transfer (MLCT) events, in which an electron 

from the metal atom is transferred to the ligand and finally to the anchor adsorbed onto the TiO2 

surface. The structures we chose to focus on are shown in Figure 28.  

 

Figure 28. Mordant dyes chosen to be evaluated as DSC sensitizers. Metallation Conditions: Ligand (1.0 g, 

mmol), CuSO4 (mmol), H2O, reflux, Yield: AH19: 0.45 g; AH22: 0.48 g. 
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Even though we have identified over 100 mordant dyes for potential use in DSCs, we 

chose to work with two commercial dyes (Eriochrome Black T (EBT) and Eriochrome Blue 

Black B (EBB)) and one metal ion (CuII). The series we proposed for study was composed of 

five dyes: AH18-AH22. Dyes AH18 and AH21 are not metallated, while the others are chelated 

to one CuII ion. There is likely another ligand on the CuII center, however, we did not attempt to 

determine its identity. To metallate AH18 and AH21, each ligand was heated with CuSO4 in H2O 

to 100ºC. Upon cooling to room temperature, a dark solid precipitated and was collected. Dye 

AH20 is metallated, however, it contains a tetrabutylammonium cation instead of a sodium 

cation. This was an important contribution to the study, as the sodium counterion could 

potentially lower the semiconductor CB energy level and therefore the device maximum Voc. To 

exchange the counterion, tetrabutylammonium bromide was added to a DMF solution of AH19 

and the solution submitted to size exclusion chromatography.  

Once each dye was synthesized, the UV-Vis absorption of each was measured and is 

shown in Figure 29. The two non-metallated ligands AH18 and AH21 both absorbed light out to 

620 nm (for AH18) and 650 nm (for AH21). Upon metallation with Cu, the absorption was red 

shifted in reference to the non-metallated dye (750 nm for AH19/20 and 650 nm for AH22). 

Thus, each of the dyes absorbs enough visible light to produce high efficiencies in DSCs (10% 

theoretical maximum, with 95% IPCE from 400-650 nm, 800 mV Voc and 0.75 FF).  
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Figure 29. The UV-Vis absorption spectrum of dye AH18 measured in H2O.  

 

Next, we sought to verify that the energy levels for each dye were positioned correctly for 

use in DSC devices. The combined optical and electronic properties of each dye are compiled in 

Table 13. Metallation of AH18 greatly stabilized the E(S+/S*) energy level in dyes AH19-20 while 

metallation of AH21 slightly destabilized the E(S+/S*) energy level in AH22. The metallation of  

AH18 resulted in slight destabilization of the E(S+/S) energy level as well, while the metallation of 

AH21 led to a slight stabilization of the E(S+/S) energy level.  

Table 13. Optical and Electronic Properties of Mordant Dyes AH18-22.  

 

a: Measured in a 0.1 M Bu4NPF6 in CH2Cl2 solution with glassy carbon disk working electrode, Pt reference 
electrode, and Pt counter electrode with ferrocene as an internal standard. Values are reported versus NHE. b: 
Measured in H2O. c:Estimated from the tangent of the lower-energy tangent of the lambda max transition in the UV-
Vis absorption spectrum in H2O. dTaken as the difference between the oxidation potential E(S+/S) and the estimated 
optical bandgap E(0-0). 

 

Dye Name E(S+/S) λonset Eg
opt E(S+/S*)

AH18
AH19
AH20
AH21
AH22

620 nm
750 nm
750 nm
650 nm
690 nm

2.0 eV
1.65 eV
1.65 eV
1.91 eV
1.80 eV

0.88
0.91
0.91
0.79
0.72

-1.12
-0.74
-0.74
-1.12
-1.18
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Thus, the dyes AH18-22 have the requisite energy levels for use in DSC and they absorb 

a substantial range of light in the visible region. To examine the kinetics for electron injection, 

fluorescence lifetime studies were undertaken for each of the dyes in solution and on TiO2 films 

to evaluate electron injection efficiencies (ηeff, where ηeff = 1 - τTiO2/τsol).  

 

Figure 30. Excited-state fluorescence decay curves for DMF of dyes AH18-AH22 (EBT = AH18, CuEBT 

= AH19/20, EBB = AH21, CuEBB = AH22). Measurements performed by McNamara and Hammer.  

Lifetimes of the dyes in dichloromethane solutions (τsol) were found to be on the order of 

nanoseconds ranging from 1.27 ns to 0.52 ns (Figure 30, Table 14). Excited-state lifetimes of the 

dyes on TiO2 films (τTiO2) are predicted to be significantly shorter whereas electrons may be 

injected from the dye into the TiO2 CB effectively quenching the fluorescence. Without any 

additives, ηeff was found to be >75% for AH19.  This  observation of high injection efficiency is 
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significant because sulfates are known to be very poor injectors and nitro groups have not been 

reported to be capable of injection into TiO2. 

Table 14. Excited-state lifetime measurements for dyes AH18-AH22.a Measurements performed by 

McNamara and Hammer. 

 

a:Measurements made in DMF solution. 

Having established the mordant dye series exhibits suitable characteristics for productive 

photon-to-electric conversion, dyes AH18-AH22 were examined in DSC devices with a TiO2 

semiconductor and I-/I3
- redox shuttle. From the equation PCE (η) % = (JscVocFF)/I(sun) where Jsc 

= short-circuit current, Voc is the open-circuit voltage, FF is the fill factor and I(sun) is the incident 

light intensity, the device performances under AM 1.5 irradiation were analyzed (Table 15).  

Table 15. Device performance data for dyes AH18-AH22.a Measurements performed by Giordano, 

Nazeeruddin, and Grätzel. 

 

a: Electrolyte 960 used as electrolyte, 100 mM LiI additive used in electrolyte, 

Unfortunately, Dyes AH18-22 did not perform well in DSC devices. The Jsc values ranged from 

0.49 to 0.022 ma/cm2, the Voc ranged from 394 to 301 mV, and the FF ranged from 0.647 to 

Dye
AH18
AH19/20
AH21
AH22

1.15
1.27
0.78
0.52

τ

Dye

AH18
AH19
AH21
AH22

Voc (mV) h (%)

306
343
394
301

0.647
0.355
0.681
0.509

0.10
0.01
0.05
0.01

FFJsc (mA/cm2)

0.493
0.069
0.182
0.022
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0.355. Dye AH20 was not tested, as AH19 was not functional. Metallation of ligands AH18 and 

AH21 both resulted in severely reduced FF and Jsc values, likely due to facile recombination 

between the TiO2 CB and oxidized dye coupled with the absence of a reliable injecting group 

like -COOH. The Voc was also very low due to the large amount of LiI used in the electrolyte and 

likely aggregation of dyes on the TiO2 surface, since no effort was taken to prevent aggregation.  

EXPERIMENTAL SECTION 

See Chapter 1, Section 1 for General Considerations (Experimental, Photovoltaic 

Characterization, and Device Fabrication). 

Synthetic Procedures to reach AH19: 

1:1 Eriochrome Black T : Cu complex (AH19): A flask equipped with a stirbar was charged with 

Eriochrome Black T (1.0 g, 2.17 mmol), CuSO4 (0.35 g, 2.17 mmol), H2O (10 mL), and heated 

to 100ºC with stirring. After 4h, the reaction mixture was cooled to rt and NaCl (1 g) added. A 

precipitate formed, was filtered, and was washed with copious H2O to yield a black solid (0.48 g).  

Synthetic Procedures to reach AH22: 

1:1 Eriochrome Blue Black B : Cu complex (AH21): A flask equipped with a stirbar was charged 

with Eriochrome Black T (1.0 g, 2.17 mmol), CuSO4 (0.35 g, 2.17 mmol), H2O (10 mL), and 

heated to 100ºC with stirring. After 4h, the reaction mixture was cooled to rt and NaCl (1 g) 

added. A precipitate formed, was filtered, and was washed with copious H2O to yield a black 

solid (0.45 g).  
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SECTION 8. BENZIMIDAZOLE ACCEPTORS FOR DSC SENSITIZERS 

Our last attempt at improving sensitizers for use in DSC was aimed at improving the 

acceptor group. While many acceptor groups have been developed for use in DSC,13 such as 

cyanoacrylic acid, rhodanine and bis-rhodanine, they will not be reviewed here. As a subunit, 

there are two requirements that acceptors need to meet. First, the acceptor should optimally bare 

the anchoring group, in order to position the donor group as far from the semiconductor surface 

as possible. Second, the acceptor group should be sufficiently electron accepting in order to 

promote a strong CT band in the absorption spectrum.  

Our synthetic strategy for improving acceptor groups was based on the benzimidazole 

group (Scheme 8). Upon oxidative condensation with an aldehyde, the acceptor group can be 

installed. The benzimidazole acceptor offers a fully conjugated path to the anchor group 

(important for efficient electron injection) and also offers a donating amine functionality that 

should serve the dual purpose of helping to destabilize the dye E(S+/S) energy level and might 

provide a high energy light absorption band, as was observed in rhodanine dyes. To test our 

hypothesis, our study included one dye, AH12.  

 

Scheme 8. Synthesis of benzimidazole acceptor containing AH12. Conditions: i) 3,4-diaminobenzoic acid, 

piperidine, CHCl3, 90ºC, 0.070 g, 50%. 
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The UV-Vis absorption spectrum and emission spectrum of AH12 looked similar to those 

measured for aldehyde 11 (Figure 31, Table 16), except that the spectrum of dye AH12 also 

contained a very weak CT band near 600 nm. The emission spectrum of both in CHCl3 contained 

an emission near 550 nm. Dye AH12 did not was not observed to emit from the weak CT band.  

 

 

Figure 31. Left: UV-Vis absorption spectra of AH12 and aldehyde 11 measured in CHCl3. Right: Emmision spectra 

of AH12 and aldehyde 11 measured in CHCl3. 

Table 16. Optical and electronic properties of dye AH12 and aldehyde 11 compared to AH3.  

 

a: Measured in CHCl3. 
b:Estimated from the intercept of the lower-energy tangent of the lambda max transition in 

the UV-Vis absorption spectrum and the higher-energy tangent of the emission spectrum in CHCl3. . 
cTaken as the 

difference between the oxidation potential E(S+/S) and the estimated optical bandgap E(0-0). 
d: Measured in a 0.1 M Bu4NPF6 in CH2Cl2 solution with glassy carbon disk working electrode, Pt reference 
electrode, and Pt counter electrode with ferrocene as an internal standard. Values are reported versus NHE 

 

The electrochemical properties of dye AH12 and aldehyde 11 were analyzed with regard to DSC 

device components to evaluate if the dye is energetically suitable for regeneration from the I-/I3
- 

Dye λmax
 (nm)a Eg

opt (eV)b E(S+/S*) (V)c E(S+/S) (V)dλonset
 (nm)a

AH12
11
AH3

455, 620 
455
553

2.39, 1.73
2.49
2.06

-1.49, -0.83 
-1.49
-0.98

0.90
1.07
0.99

550, 715
510
633

(ε Lmol-1cm-1)a

---
---

8,500

λem
 (nm)a

530
560
625
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redox shuttle and electron injection into a mesoporous TiO2 semiconductor (Table 16) and 

determine how the benzimidazole acceptor affected the dye energy levels. In using the weak CT 

transition towards the calculation of dye energy levels, the benzimidazole acceptor both 

destabilized the dye E(S+/S) energy level and stabilized the dye E(S+/S*) energy level in relation to 

AH3. This indicates that benzimidazole is a stronger acceptor than cyanoacrylic acid and also 

contributes to the dye overall donor strength. The high-energy absorption band near 450 nm 

observed in rhodanine was not observed in AH12, however.  

While the energetics were suitable for use in DSC, the CT band intensity was too low to 

adequately generate electricity from photons. Because of this, the “effective” λmax that would 

actually be observed in-device would be the higher energy absorption at 455 nm and the dye 

E(S+/S*) energy level would then be -1.49 eV, which would mean that instead of a much stronger 

acceptor than cyanoacrylic acid, benzimidazole would be much weaker. Thus, in order to make 

dye AH12 usable, we decided to investigate the nature of the CT band near 620 nm.  

Upon closer examination of the benzimidazole acceptor unit, we realized that the imine 

nitrogen could be protonated (benzimidazole pKa = 5.6) by the carboxylic acid (pKa = ~4.5-5) in 

solution (Figure 32). Upon protonation, the neutral imine N bears a positive charge, which 

greatly increases the heterocycles’ accepting ability. However, too much acid causes irreversible 

decomposition of the dye, while careful titration allows for reversibility. The addition of base to 

AH12 caused the already weak CT band to disappear, while the high-energy transition near 450 

nm blue shifted. Upon the addition of a small amount of triflic acid to AH12, the charge transfer 

band near 620 nm increased greatly and the high-energy band was somewhat diminished. The 
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addition of excess acid caused the complete reduction of the CT band and a severe blue shift in 

the high energy region to near 350 nm.  

 

Figure 32. Left: Proposed increase of benzimidazole acceptor strength with protonation. Right: UV-Vis absorption 

spectrum of AH12 in titration studies in CHCl3.  

To better understand the absorption spectrum changes we observed in solution, we 

performed some TD-DFT calculations on AH12 and some representative charged analogs. We 

calculated the vertical transitions of the lowest energy absorptions as well as the oscillator 

strength for each of the structures calculated (Table 17). The results compiled in Table 17 

illustrate that the charged nitrogen should indeed make AH12 a stronger acceptor, with dimethyl 

alkylated AH12Me2 having a large red shift (100 nm) in comparison to dye AH12. Adding a 

stronger acceptor to methylated AH12Me2 to form AH12Me2CAA resulted in a further red shift 

(50 nm). The protonated version of AH12 to form AH12+H as drawn in Figure 30 was 

calculated to have a transition at 684 nm, nearly 250 nm red shifted from the neutral dye AH12. 

While the exact transition values are likely not accurate, the qualitative conclusions drawn from 

the relative numbers indicate that protonation of the benzimidazole acceptor greatly increases the 

heterocycle’s accepting power and thus lowers the energy of the lowest energy transition.  
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Table 17. Calculated vertical transitions and oscillator strengths of dye AH12 and charged analogs.a  

 

a: Values calculated using TD-DFT methods (B3LYP/6-311G(d,p) geometry optimization) with calculated 

states = 10.  

EXPERIMENTAL SECTION 

See Chapter 1, Section 1 for General Experimental Considerations 

Computational Details: All computations were performed with the Gaussian09 software package. 

The geometry optimization steps were as follows: first the structures were optimized by MM2 in 

the ChemBio3D (version: 13.0.2.3021) software package and dihedral angles for all relevant 

groups set to values in-between the global minimum and the next local maximum on the 

conformational energy diagram as calculated by ChemBio3D (version: 13.0.2.3021) in the 

dihedral driver toolset. After MM2 optimization, the molecular structures were further optimized 

by DFT methods: first B3LYP/3-21g, second B3LYP/6-311g(d,p), and finally opt=tight 

B3LYP/6-311g(d,p) with tight convergence criteria. Lastly, time-dependent density functional 

theory (TD-DFT) computations were carried out to compute the vertical transition energies and 

oscillator strengths for the 10 lowest excited states. Symmetry was explicitly turned off for these 

computations even though all of the optimized structures belonged to the C1 point group. A 

representative input file is included for each type of calculation.  

Dye

AH12
AH12Me2

AH12Me2CAA
AH12+H

Vert. Trans. Oscillator Strength

445
557
606
684

0.52
0.69
0.61
0.37
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Synthetic	  procedures	  to	  reach	  AH12:	  

2-(Thiophen-2’-yl-5’-2’’-phenyl-3’’-pentyl-5’’-methoxyindolizine)-1H-benzmidazole-5-

carboxylic acid (AH12): A flask equipped with a stirbar was charged with aldehyde 11 (0.105 g, 

0.33 mmol), 3,4-diamino-5-benzoic acid (0.055 g, 0.36 mmol), CHCl3 (3 mL), and was degassed 

with N2. After 30 min, piperidine (0.13 mL, 0.99 mmol) added, the reaction warmed to 90ºC 

with stirring, and the reaction monitored by TLC. After 2h, the reaction was cooled to rt and 

diluted with CH2Cl2 (50 mL), acidified with AcOH (2 mL), washed with H2O (3 x 50 mL), dried 

with MgSO4, concentrated, and passed through a plug of SiO2 using first CH2Cl2 (500 mL), then 

5%:MeOH:CH2Cl2 (500 mL), 5%AcOH:5%MeOH:CH2Cl2 (1000 mL). Concentrated product 

fractions to yield a red solid (0.070 g, 50%).  
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SECTION 9. THE SYNTHESIS OF HEXACOORDINATE CO-CONTAINING REDOX 

SHUTTLES FOR DSCS 

Another synthetic avenue of research possible with DSC is the development of redox 

shuttles. The most widely used redox shuttle by far is the I-/I3
- redox shuttle. This shuttle is 

convenient as it is soluble in acetonitrile and negatively charged, which discourages 

recombination of electrons from the TiO2 layer and the oxidized redox shuttle.94 While other 

similar organic or non-metal redox shuttles (such as SeCN-/(SeCN)3
- and Br-/Br3

-) have attained 

some success,95 the development of negatively charged transition metal redox shuttles has been 

very slow due to the highly reactive nature of anionic transition metal complexes.  

Shuttles such as I-/I3
- and Br-/Br3

- work through SET reaction directly from the 

complexation of dye and iodine molecules (as illustrated in the following reactions):52,94  

X- + Dye+ à [X-:Dye+]  (2) 

[X-:Dye+] + X- à X2
- + Dye  (3) 

Thus, these types of electrolytes are termed two electron shuttles. One disadvantage of using two 

electron shuttles is that kinetics involved in shuttle regeneration and competing complexation 

reactions with other species (I2
-, I3

-, among others) is very complicated and makes the use of this 

type of shuttle less than ideal. Even with the complicated kinetics, cells often reach 99% 

regeneration efficiency with the iodide based redox shuttle. However, the redox shuttle is 

corrosive to the platinized counter electrode in high concentrations and at low concentrations 

slow diffusion of I3
- to the counter electrode can result in voltage losses. Another disadvantage of 

using this shuttle is that over time the concentration of triiodide in the cell can decrease, which 
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leads to losses in voltage over time.94 Yet another disadvantage to using this type of redox 

shuttle (I-/I3
-, SeCN-/(SeCN)3

- and Br-/Br3
-) is that the overall electronic process involves two 

electrons and requires a large driving force for efficient dye regeneration.94 Overpotential of the 

reaction has been observed to be ~500 mV to ensure the recombination of injected electrons in 

the conduction band do not recombine with the oxidized dye at a faster rate.96 Outersphere one 

electron transition metal complex electrolytes, such as Co2+(bpy)3 allow for much smaller over 

potentials (150 mV has been observed for the above Co electrolyte) and furthermore they allow 

for much simpler kinetics through the following equation:  

Mn+(L)n + Dye+ à M(n+1)+(L)n + Dye  (4) 

The energy levels of many neutral or anionic transition metal complexes are not well 

matched for the energy levels of the TiO2 layer or the dye HOMO level (Figure 33).97 As 

depicted, a typical HOMO energy level of a DSC dye ranges anywhere from 0.8-1.2 V (vs NHE), 

while the TiO2 conduction band (CB) is at -0.5 V and the I-/I3
- redox shuttle is at 0.35 V. The 

optimal dye HOMO is at 0.7 V (vs NHE), with the optimal LUMO of the dye residing at -0.70 V, 

which would mean absorption out to 920 nm. The maximum voltage possible out of the cell is 

the energy difference between electrons in the TiO2 CB and the redox potential of the shuttle. 

Thus, the redox shuttle’s oxidation potential should be higher in energy than the dye, but as low 

as possible in reference to the CB in order to maximize the Voc.  
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Figure 33. Energy diagram depicting some common redox shuttles and reagents in reference to TiO2, typical, and 

ideal dye energy values. 

 In addition to energetic requirements, sterics also play a key role in determining the value 

of a particular redox shuttle in DSCs. Firstly, the TiO2 film used in DSC is 5-20 µm thick, has a 

porosity of about 50-60% with an average pore size of 15 nm.8 Thus, the film has a rather 

cavernous morphology, especially with adsorbed dye molecules on the surface. It follows then, 

that a redox shuttle with substantial steric bulk would not diffuse into the cavernous spaces of the 

sensitized TiO2 very well. Additionally, electrolyte regeneration is also sterically limited, as the 

oxidized shuttle must diffuse from the sensitized surface to the counter electrode. Thus, poor 

diffusion (or mass-transport), limits dye regeneration and thus lowers the device Jsc. The electron 

transfer kinetics of electrolyte regeneration at the counter electrode will not be addressed here, 

but discussion of such is covered elsewhere.52 Specifically, increasing the oxidized dye diffusion 

rate while retaining the necessary energy levels and ensuring long-term stability of the 

electrolyte are important to the advancement of DSC technology.  
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 The diffusion of the oxidized redox shuttle to the counter electrode is a necessary step in 

charge separation. This diffusion also completes the electrical circuit. The precise amount the 

diffusion hinders the Jsc is known as the diffusion limiting current density (Jlim) as illustrated in 

the equation below:98  

Jlim ∝ (εp x F x Do x [R+]) / l  (5) 

where εp is the porosity, F is a Faraday, Do is the diffusion coefficient, [R+] is the concentration 

of the oxidized shuttle, and l is the electrolyte diffusion distance.  

By simply analyzing Equation 5, one logical method of decreasing the diffusion 

limitation (increasing Jlim) common to one-electron shuttles is simply to increase [R+] in solution. 

However, not only is [R+] not very soluble in organic solvents, the concentration increase would 

merely result in an increase in charge recombination at the photoanode (TiO2), as illustrated in 

the equation below:99  

Urec = krec x [R+] x ns  (6) 

where Urec is the recombination (specifically in reference to the electron transfer from the 

semiconductor to the oxidized dye or the oxidized redox shuttle), krec is the recombination rate, 

and ns is the concentration of free electrons at the electrode surface. For these purposes, 

recombination to the dye is assumed to be negligible. In assembling cells, some amount of 

oxidized electrolyte is added in order to lower the redox energy and thus boost the Voc of the cell, 

however, increasing [R+] also increases the dark current of the cell (which lowers Voc) while 

enhancing the FF and Jsc. 



 113 

Additionally, while bulky ligands (such as 4,4’-ditert-butyl-2,2’-bipyridine (t-Bu2bpy) in 

Co(t-Bu2bpy)3) serve to lower krec through sterics, Do is lowered substantially to less than 10 

times the value for I3
- (at low concentration, since the redox shuttle does not follow the Stokes-

Einstein equation at high concentration100).101 The effect of diffusion limitation resulting from 

the use of Co(t-Bu2bpy)3 as shuttle is illustrated in Figure 34.101  

 

Figure 34. Left: The effect of incident light power on diffusion limitation for DSC using Co(t-Bu2bpy)3 as 

redox shuttle. Right: The effect of concentration on diffusion limitation for the same system. Both figures taken from 

ref. 94. Reprinted with permission from Boschloo, G.; Hagfeldt, A. Acc. Chem. Res. 2009, 42, 1819. Copyright 2009 

American Chemical Society. 

 

As shown above, in all but the lowest intensity case the initial current observed is proportional to 

light intensity. However, the current drops sharply and levels off at a lower value that is not 

proportional to the light intensity. Initially, the concentration of electrolyte is sufficient to 

regenerate the oxidized dye. The number of electrolyte molecules available to regenerate the 

oxidized dye molecules quickly decreases as each oxidized electrolyte takes much longer to 

diffuse to the counter electrode and back than the dye takes to absorb a photon and inject the 
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resulting high-energy electron, which lowers the observed current. This conclusion of small Do is 

strengthened by the neighboring figure (Figure 34), which illustrates that increasing the 

concentration of redox shuttle species mitigates the sharp decline in initial current. 

Our synthetic strategy for the synthesis of hexacoordinate Co complexes involved the 

synthesis of multi-dentate ligands composed of (imidazol-2-ylidene)pyridines used in forming a 

coordinately saturated Co complex (Scheme 9). After coupling imidazole to 2-bromopyridine, 

the imine N was alkylated using MeI.102 The imidazolium was then deprotonated and added to 

CoCl2. Concentration of the organic solvent revealed only trace amount of product, which we 

suspected to be the CoIII complex, which is NMR detectable. A large amount of white precipitate 

was formed from the reaction, however, it gave no signals in the 1H NMR spectrum, therefore, 

we discarded the precipitate. Unfortunately, CoII is a paramagnetic metal ion, meaning that it 

(and complexes including it) is not detectable by 1H NMR.  

  

Scheme 9. The attempted synthesis of pyridine NHC Co complex 49.  

 Future attempts at synthesizing these types of redox shuttles should focus on the 

collection of the white precipitate that forms and then one electron oxidation to a diamagnetic 

CoIII complex, which is detectable by 1H NMR. Once formed, the energy levels of these redox 

shuttles can then be measured and their potential for use in DSC assessed.  
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The pyridine-NHC complexes should exhibit all the requirements for DSC redox shuttles: First, 

they should not absorb visible light, as Co polypyridine complexes are known to not absorb light 

past 450 nm.103 Second, the pyridine-NHC complexes will be very tunable, with possible 

destabilization and stabilization of E(S+/S) energy levels by withdrawing or donating group 

substitution.104,105 Third, the complexes are sterically small enough to allow for adequate 

diffusion and oxidized dye regeneration, as polypyridine ligands allow for good diffusion.52 

Furthermore, the five membered NHC rings are smaller than pyridine rings. Fourth and perhaps 

most importantly, pyridine NHC ligands should be stronger chelators and thus produce more 

stable metal complexes in solution.106 This is extremely important in consideration of the fact 

that without one-electron redox shuttles that are stable in-device for >10 years (as is I-/I3
-), they 

are not practical choices for commercial DSC application.107  
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CHAPTER 2 

SECTION 1. PHOTOCATALYTIC REDUCTION OF CO2 USING RE 

BIPYRIDYL AND PYRIDYL-NHC COMPLEXES WITH A SIMULATED SOLAR 

SPECTRUM. 

Carbon dioxide is available in tremendous quantities and the problems of scale were discussed in 

the introduction. Specifically, conversion of CO2 to fuel could close the ‘carbon cycle’ and 

provide power from an non-utilized waste.108 Simply reducing CO2 electrochemically is not 

energetically efficient as the single electron reduction of CO2 to CO2●- is very energetically 

demanding (-1.97 V vs NHE in DMF). Multiple electron reduction products may be formed at 

less negative potentials (i.e. CO at -0.53 V vs. NHE or CH3OH at -0.38 V vs. NHE); however the 

substantial kinetic barriers require a catalyst to drive the reaction. Selectivity between possible 

products is then dependent on the chosen catalyst.  

As discussed in the introduction, the energy to drive these catalytic reductions should be derived 

directly (photocatalysis) or indirectly (solar cell driven electrocatalysis) from the sun. Numerous 

reports on electrocatalysis109 since the 1970’s have emerged using a host of transition metals 

including Re,110 Ru,111 Co,112 Fe,113 Ni,112b,114 and others.115,109b  

While in electroctalysis the catalyst is able to obtain requisite electrons from the electrode 

surface, in photocatalysis the electrons come from either absorption of a photon by the catalyst 

followed by excited state reduction from a sacrificial donor (SD) or a separate photosensitizer 

(PS) molecule absorbs a photon from the sun, has its excited-state reduced by a sacrificial donor, 

and then reduces the catalyst molecules through outersphere single electron transfer (SET). In the 
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first manner of operation, the catalyst is responsible for both light absorption and CO2 reduction, 

while in the second, the catalyst is not photoactive and thus the responsibility of light absorption 

falls to the photosensitizer. While there are only three reported series of catalysts capable of 

performing both light absorption and CO2 reduction duties,18,19 there are many catalysts capable 

of photosensitized CO2 reduction.116 

Herein for the first time we report the photocatalytic reduction of CO2 to CO with a series of 

Re(PyNHC)(CO)3Cl catalysts as a mononuclear catalyst and with and without the addition of a 

photosensitizer using a solar simulated spectrum (AM 1.5). The catalysts studied here and results 

of photosensitized runs with these catalysts compared to Re(bpy)(CO)3Cl are shown in Figure 

35. The most investigated of the photocatalysts are based on Re(bpy)(CO)3X, which was first 

reported in 198318 and has been shown to exhibit good selectivity for CO with a turnover number 

(TON) of up to 27 and a quantum yield (ΦCO) of up to 0.38.109c, 117 However, Re(bpy)(CO)3X 

catalysts often require inert atmosphere storage and rigorously anhydrous reaction conditions for 

high performance.118 We sought to modify the bidentate bpy ligand to access air and water stable 

complexes to avoid air-free purification and handling techniques as well as to generate a longer 

lived catalyst. Importantly, water stability is necessary for a high TON catalyst as H2O is a 

byproduct of CO2 reduction.  
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Figure 35. Top: Structures of Re(I) pyridyl catalysts used in this study and structures of electron 

donor BIH and PS fac-Ir(ppy)3. Bottom: µmol CO produced versus time for each of the Re(I) 

catalysts (0.2  µmol catalyst/ 2 mL 10% TEA:MeCN solution with 0.2 µmol  fac-Ir(ppy)3* and 

0.2 mmol BIH). Solutions irradiated with 150W Xe lamp set to 1 sun and equipped with an 

AM1.5 filter after vigorous bubbling with CO2 for 15 min. Each data point is the average of two 

runs. 

Several Re(NHC)(CO)3X complexes are reported and characterized in literature.119 To access 

catalysts stable to ambient atmosphere and reaction conditions, we substituted a ring on the 

bipyridyl ligand for N-heterocyclic carbene (NHC) chelating groups with a range of electron 

donating and withdrawing substituents (Figure 35, Scheme 10).120 Re-bipyridyl based catalysts 

are thought to first undergo ligand based reduction on the bipyridyl ligand.119d,121 NHC ligands 
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are strongly donating ligands with shortened conjugation lengths. These features raise reduction 

potentials to higher energies and widen optical band gaps. A photosensitizer (PS) may be used to 

broaden the absorption window and improve access to the important one-electron reduced (OER) 

CO2 reduction catlaysts.116  fac-Ir(ppy)3, has an attractivly positioned reduction  potential (ES
-
/S 

of -1.95 V vs. NHE) and is suitable for used with sacrificial electron donors such as TEA and 

1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH).122,123 

 

Scheme 10. Synthetic Steps to Reach Re(I) complexes 50-54. Reaction conditions: i): Tol, reflux, 91%. ii): 
Cu(OAc)2 �H2O, imidazole, K2CO3, TMEDA, DMF, reflux, 68%. iii): MeI, Et2O, rt, 25%. iv): Tol, TEA, Re(CO)5Cl, 
reflux, yields: 51: 39%. 52: 83%. 53: 59%. 54: 33%. v): CuI, imidazole, K3PO4, DMF, yields: 57: 26%, 59: 64%. 
vi): 2-bromopyridine, heat, yields: 58: 53%, 60: 33%, 61: 53%. vii): MeI, MeCN, 100ºC,  29%. viii) NaBH4, MeOH, 
57%. 
 

Following the rapid (2-3 steps) synthesis of catalystis 51-54 (Scheme 10), we wanted to ensure 

the reduction potentials of complexes 51-54 were sufficiently high in energy to reduce CO2. Each 

complex was tested with cyclic voltammetry (CV) to determine their oxidation potential, 
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reduction potential, and the presence of a catalytic current in the presence of CO2 (Figure 36, 

Table 18). 

 

Figure 36. CV data of complexes 50-54 (a-e) in the presence of N2 (black) and CO2 (red). 

Spectrum taken in 0.1 M NBu4PF6 in MeCN using Pt reference, Pt counter, and glassy carbon 

disk working electrodes at a scan rate of 100 mV/s. Spectra were referenced to an internal 

standard, ferrocence (Fc) using a value of Fc/Fc+ = 0.4 V vs. saturated calomel electrode (SCE) 

and SCE = 0.24 V vs. NHE.97 
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Upon dissolving complex 54 in acetonitrile (MeCN) under an atmosphere of N2, two irreversible 

reductions at -1.33 V and -1.76 V vs. normal hydrogen electrode (NHE) were observed. The first 

reduction potentials were 430-250 mV higher in energy for the NHC-Re complexes than 50 

under the same conditions (Table 18). The oxidation and reduction potentials observed for 51-54 

are irreversible and likely metal centered.119d Upon exchanging the atmosphere for CO2 by 

vigorous bubbling for 15 min, a slight catalytic current increase was observed in the first 

reduction wave with a larger current increase and anodic shift of the second wave (Figure 36).  

Table 18. Electrochemical Properties of Catalysts 1-5.a 

Catalyst E(S+/S) (V)b E(S-/S) (V)b E(S-/S*) (V)c 

50 1.64 -1.08 1.68 

51 1.60 -1.41 1.48 

52 1.53 -1.38 1.55 

53 1.53 -1.30 1.62 

54 1.63 -1.26 1.60 

PSd 1.01 -1.95 0.43 

a: Measured in acetonitrile. All values are reported versus NHE. b: Values were measured by CV in 0.1M NBu4PF6 

in MeCN using a Pt reference, Pt counter, and glassy carbon working electrode. Values were measured at the onset 

of reduction for the irreversible waves. c: Taken as the difference in the reduction potential and Egopt via the 

equation: ES-/S* = ES-/S + Egopt. λonset was converted to Egopt through the equation 1240/λonset = Egopt. 
d: PS = fac-

Ir(ppy)3. 
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The optical data for complexes 50-54 is compiled in Table 19. The UV/Vis absorption data for 

the Re complexes indicates that in all cases the Re(PyrNHC) complexes absorb into the visible 

spectrum and the absorption onset (λonset) values are blue-shifted relative to Re(bpy) complex 50. 

Varying NHC-substituents had minimal effect on λonset values or on the molar absortivity (ε), the 

λemission was strongly affected, however (Figure 37). Two emission bands were observed for each 

complex (505 and 444 nm), and the intensity of the more red-shifted peak increased from 

complex 51-54 (Figure 37) 

Table 19. Optical Properties of Catalysts 50-54.a 

 

 

 

 

 

a: Measured in acetonitrile. sh = shoulder. b: Taken from the intercept of the baseline and a 

tangent line on the absorption spectrum on the low energy side of the longest wavelength 

transition. c: Measured in MeCN using 390 nm excitation wavelength. d: Taken as the energy 

(eV) of the intercept of the absorption and emission curves. e: Taken from Ref. 117d. f: Taken 

from Ref. 122b. 

Catalyst λmax (nm) λonset
 (nm)b ε  

(M-1cm-1) 

λem (nm)c E0-0 (eV)
d

 

50 370e 450e 2890e 580e 2.64e 

51 358, 402 (sh) 429 4850 444, 505 (sh) 2.98 

52 354, 400 (sh) 423 4750 444, 505 2.94 

53 351, 402 (sh) 424 4600 444, 505 2.98 

54 356, 404 (sh) 433 4800 444, 505 3.05 

PS 400, 500 (sh)f 520f 10,000f 540f 2.43f 
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Figure 37. UV-Vis Absorption and emission spectra for complexes 50-54. 

Complexes 51-54 have excited-state reduction potentials (E(S-/S*), taken as the difference in the 

reduction potential and the optical band gap) ranging from 1.37 to 1.51 V vs. NHE (Figure 38). 

These are all suitable for the two electron reduction of CO2 to CO in MeCN by more than 800 

mV. BIH is a much stronger electron donor that TEA with an oxidation potential over 500 mV 

higher in energy. Furthermore, the BIH oxidation potential is considerably closer in energy 

(ΔGred = -110 mV) than the excited state reduction potential of fac-Ir(ppy)3, which allows for 

much more efficient access to the PS●- state, which accounts for the increase in catalyst 

performance using the PS with BIH and no reaction with TEA only (ΔGred = -630 mV). 
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Figure 38. Bandgap diagram depicting the excited state oxidation potential (ES-/S*) and OER 

state (ES/S-) of complexes 50-54, and the PS. Both values were measured by CV in 0.1M 

NBu4PF6 in MeCN using a Pt reference, Pt counter, and glassy carbon disk working electrode. 

The TEA (ES+/S) was taken as the onset of oxidation. 

Once the reduction potentials were found to be positioned favorably and the complexes were 

observed to absorb visible light, for CO2 reduction, we evaluated complexes 51-54 as catalysts in 

the photocatalytic reduction of CO2 with fac-Ir(tpy) using an AM1.5 solar simulated light source 

to approximate a practical reduction. Typically photocatalytic reactions operate with cutoff filters 

to reduce UV and near-IR energy with varying visible light power intensities. As illustrated in 

Figure 1 (Table 20), the Re(PyNHC)(CO)3X complexes 51-54 were found to function as CO2 

reduction catalysts, with catalysts 51 (NHC-Me) and 54 (NHC-PhCF3) performing comparably 

(10 TON) and at higher TONs (15) than standard catalyst 50 (13 TON), respectively.  
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Table 20. Comparison of Catalyst Performance at One Hour. 

entrya catalyst µmol CO TON 

1 51 2.0 10 
2 52 0.93 5 
3 53 1.18 6 
4 54 2.57 13 
5b 54 3.03 15 
6 50 2.56 13 

a: 0.2  µmol catalyst/2 mL 10% TEA:MeCN solution with 0.2 µmol  fac-Ir(ppy)3 and 0.2 mmol BIH. Solutions 
irradiated for 1 hour after vigorous bubbling with CO2 for 15 minutes with a solar simulator (125 W Xe lamp, 
AM1.5 filter). Each data point is the average of two runs. b: Catalyst was irradiated for 4 hours. 

 

Towards the aim of natural light driven photocatalysis, we utilized AM 1.5 spectrum-simulating 

filters on a 150 W Xe lamp with our reaction positioned 10 cm from the light source. As 

illustrated in Figure 35 (Table 20), the Re(PyNHC)(CO)3Cl complexes 51-54 were found to 

function as CO2 reduction catalysts, with catalysts 51 (NHC-Me) and 54 (NHC-PhCF3) 

performing comparably (10 TON) and at higher TONs (15) than standard catalyst 50 (13 TON), 

respectively.  

All catalysts were found to halt CO production after 1 hour of irradiation except catalysts 51 and 

54 which increased CO production for 2 and 4 hours, respectively. Phenyl substituted catalyst 52 

and electron donated hexyloxyphenyl substituted catalyst 53 performed at the lowest TONs and 

turnover frequencies (TOFs). The evaluation of each reaction component on the performance of 

catalyst 54 is reported in Table 21. 
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Table 21. Experimental Optimization. 

entrya cat PSb e- donor µmol CO (TON) 

1 54 Yes TEA, BIH 2.6 (13) 

2 54 Yes TEA 0.04 (0.2) 

3 54 No TEA, 
BIH 

1.5 (7.5) 

4c 54 No TEA, BIH 0.61 (3.1) 
5 54 No TEA 0.11 (0.6) 

6d 54 Yes TEA, BIH 0.04 (0.2) 

7 - Yes TEA, BIH 0 (0) 

a: 0.2  µmol catalyst in 2 mL 10% TEA:MeCN solution with 0.2 µmol  fac-Ir(ppy)3 and 0.2 mmol BIH. Solutions 
irradiated with a K2 filtered (Newport) 500 W Xe lamp in a water cooled emersion well with a merry-go-round 
apparatus to approximate the solar spectrum. Reactions were irradiated for 4 hours after vigorous bubbling with 
CO2 for 15 min. Each data point is the average of two runs. b: PS = fac-Ir(ppy)3. c: Rigorously anhydrous 
conditions. d: Nitrogen atmosphere 

 

The effect of removing the strong electron donor material BIH is remarkable (13 TON with BIH 

vs. 0.2 TON without BIH, Entries 1 & 2).123 The removal of the PS did not stop catalytic 

performance of 54 (13 TON vs. 11 TON, Entries 1 & 3). Surprisingly, catalyst 54 is able to 

efficiently reduce CO2 without a PS. Rigorously anhydrous solvents are frequently utilized with 

complex 50; however these conditions led to a decrease in catalytic performance with 54 (13 vs. 

3 TON, Entries 1 & 4). Control experiments (Entries 5-7) for removal of PS and BIH, removal of 

CO2, and removal of catalyst all led to no appreciable CO formation.  

Synthetically turning the monstrously abundant CO2 into synthetic fuel would prove an 

immensely useful way to repurpose an underutilized waste from combustion. Because the sun 

offers far more than enough solar energy to accommodate this goal,  photocatalytic reduction of 

CO2 could be one way to sustainably reduce atmospheric CO2 concentration. We aimed to 
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improve Re(I) pyridyl-based photocatalysts by utilizing a photosensitizer, fac-Ir(ppy)3, in order 

to take the light absorbing burden from the catalyst, and by improving catalyst stability to air and 

H2O by substituting a pyridine for an NHC ligand. This led to a decrease in light absorption and 

destabilization of each complex’s reduction potential, however, the potentials of each complex 

were still positioned correctly. Each of the catalysts performed as CO2 reduction catalysts in the 

presence of the PS and the strong electron donor BIH. Catalyst 54 performed comparably to 

Re(bpy) complex 50 in each set of reaction conditions, and was found to lose less of its initial 

activity over 4h than complex 50. Both complexes 54 and 50 reached good TON of (13 for 50 

and 15 for 54) with PS and BIH. Complex 54 attained good TON with no PS, making 

Re(PyNHC)(CO)3Cl just the fourth series of catalysts capable of unsensitized CO2 photocatalytic 

reduction. It is important to note that the TON observed for each catalyst was obtained without 

rigorous drying of solvents. Rigorously anhydrous solvents lowered the observed TON to 3 in 

the same time frame. Studies to further catalyst improvement, electron donor optimization, and 

additive inclusion are currently ongoing. 

EXPERIMENTAL SECTION 

See Chapter 1, Section 1 for General Experimental Considerations 

fac-{2,2’bipyridyl}tricarbonylchlorororhenium(I) (50).124 A flame dried flask equipped with a 

stirbar and reflux condenser was charged with 2,2’-bipyridine (0.108g, 0.69 mmol), 

chlororhenium (I) pentacarbonyl (0.250 g, 0.69 mmol) and dry, degassed toluene (35 mL). The 

reaction mixture was then warmed to reflux and allowed to stir. After 2h, the reaction mixture 

was cooled, concentrated using a rotary evaporator, and the yellow solid triturated with hot 
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hexanes (3 x 19 mL). The solid was dried to yield a fluffy yellow powder (0.290g, 91%). %). 1H 

NMR (500 MHz, CDCl3) d 9.09 (d, J = 5 Hz, 2H), 8.21 (d, J = 7 Hz, 2H), 8.10 (dt, J = 7, 1.5 Hz, 

2H), 7.56 (t, J = 7 Hz, 2H).  

 

Synthetic Procedures to Reach Complex 51 

2-(imidazol-1-yl)pyridine (55).125 A flask equipped with a stirbar and reflux condenser was 

charged with imidazole (1.96 g, 28.8 mmol), K2CO3 (7.95 g,  57.5 mmol), 2-bromopyridine (5 g, 

3.02 mL, 31.6 mmol), Cu(OAc)2 �H 2O (1.96 g, 1.44 mmol), TMEDA (0.50 g, 0.65 mL, 4.31 

mmol), and DMF (25 mL). The reaction mixture was then warmed to DMF reflux, allowed to 

stir, and monitored by TLC. After 16h, the reaction mixture was cooled to rt, filtered and diluted 

with EtOAc (50 mL). The crude product mixture was washed with H2O (1 x 50 mL), Brine (5 x 

50 mL), dried with MgSO4 and concentrated to give a red oil (2.68 g, 68% yield. 1H NMR (300 

MHz, CDCl3) d 8.50 (d, J = 5.1 Hz, 1H), 7.86 (s, 1H), 7.83 (dt, J = 7.8, 1.8 Hz, 1H), 7.66 (s, 1H), 

7.38 (t, J = 7.5 Hz, 1 H), 7.24 (m, 2 H). 

 

2-(3-methylimidazol-1-yl)pyridine iodide (56):126  An Erlenmeyer flask equipped with a stirbar 

was charged with compound 55 (1.0 g, 6.9 mmol), and Et2O (15 mL). MeI (0.86 mL, 13.8 mmol) 

added dropwise, the solution allowed to stir at rt, and monitored by 1H NMR spectroscopy. After 

20 h, the reaction mixture was concentrated on a rotary evaporator and the crude product 

recrystallized from CH2Cl2: Et2O to yield a colorless microcrystalline solid (0.44 g, 25%). 1H 
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NMR (300 MHz, CDCl3) d 11.9 (s, 1H), 8.51 (m, 2H), 8.26 (d, J = 7.4 Hz, 1H), 8.07 (dt, J = 7.2, 

1.5Hz, 1H), 7.49 (t, J = 7.2 Hz, 1H), 7.35 (s, 1H), 4.30 (s, 3H).  

 

fac-{3-methyl-1-(2’-pyridyl)imidazolin-2- ylidene}tricarbonylchlorohenium(I) (51):127 A flame-

dried flask equipped with a stirbar and reflux condenser were charged with compound 56 (0.086 

g, 0.3 mmol), Re(CO)5Cl (0.109 g, 0.3 mmol), dry, degassed toluene (5 mL), TEA (0.42 mL, 

0.304 g, 3 mmol). The reaction mixture was warmed to reflux, allowed to stir, and monitored by 

1H NMR spectroscopy. After four days, the reaction mixture was concentrated on a rotary 

evaporator and the crude product subjected to column chromatography using CH2Cl2 as eluent. 

Product fractions were concentrated to yield a pale yellow solid (0.061 g, 39% yield). 1H NMR 

(300 MHz, CDCl3) d 8.87 (d, J = 6.3 Hz, 1H), 8.45 (d, J = 2.1 Hz, 1H), 8.27 (m, 2H), 7.70 (d, J = 

2.2 Hz, 1H), 7.46 (m, 1H), 3.93 (s, 3H).  

 

Synthetic Procedures to Reach Complex 52 

1-Phenylimidazole (57):128 A flame dried flask equipped with a stir bar was charged with 

imidazole (1.02 g, 14.96 mmol), bromobenzene (1.12 mL, 1.68 g, 10.68 mmol), dry, degassed 

DMF (11 mL). Solid CuI (0.41 g, 2.14 mmol) and K3PO4 (4.54 g, 21.4 mmol) were added to the 

flask together in one portion. The reaction mixture was then heated to 100ºC, allowed to stir, and 

monitored by 1H NMR spectroscopy. After 40h, the reaction mixture was cooled to rt and diluted 

with Et2O (100 mL), washed 3x with H2O (200 mL), and dried with MgSO4. Once concentrated, 

the crude product mixture was submitted to column chromatography using 50% Hexanes: 50% 
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EtOAc eluent. Product fractions were concentrated to give a pale yellow oil (0.24 g, 26%). 1H 

NMR (500 MHz, CDCl3) d 7.87 (s, 1H), 7.49 (apt, J = 7.5 Hz, 2H), 7.41-7.36 (m, 3H), 7.30 (s, 

1H), 7.22 (s, 1H).  

 

 2-(3-phenylimidazol-1-yl)pyridine bromide (58):129 A sealable tube was charged with compound 

57 (0.24 g, 1.68 mmol), 2-bromopyridine (0.32 mL, 0.53 g, 3.35 mmol), heated to 175ºC under 

N2 and monitored by 1H NMR spectroscopy. After 14h, the reaction mixture was cooled to rt, at 

which time a ppt formed. The tube’s contents were dissolved in dichloromethane and the product 

precipitated using Et2O as a pale brown microcrystalline solid (0.270 g,  53%). 1H NMR (500 

MHz, d6-DMSO) d 10.58 (s, 1H), 8.74 (s, 1H), 8.71 (d, J = 3 Hz, 1H), 8.27 (t, J = 5 Hz, 1H), 

8.15 (d, J = 7.4 Hz, 1 H), 7.94 (d, J = 7.5 Hz, 2H), 7.73-7.69 (m, 3H), 7.65 (t, J = 7.4 Hz, 1H).  

 

fac-{3-phenyl-1-(2’-pyridyl)imidazolin-2- ylidene}tricarbonylchlororhenium(I) (52):127 A flame-

dried flask equipped with a stirbar and reflux condenser were charged with compound 58 (0.10 g, 

0.33 mmol), Re(CO)5Cl (0.12 g, 0.33 mmol), dry, degassed toluene (5 mL), TEA (0.46 mL, 0.33 

g, 3.3 mmol). The reaction mixture was warmed to reflux, allowed to stir, and monitored by 1H 

NMR spectroscopy. After 20h, the reaction mixture was concentrated on a rotary evaporator and 

the crude product precipitated from DCM to yield a pale yellow solid (0.144 g, 83% yield). 1H 

NMR (500 MHz, d6-DMSO) d 8.81 (s, 1H), 8.69 (s, 1H), 8.37 (s, 2H), 8.0 (s, 1H), 7.71-7.75 (m, 

6H). 
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Synthetic Procedures to Reach Complex 53 

1-bromo-4-hexyloxybenzene (59):130 A flask equipped with a stirbar and reflux condenser was 

charged with 4-bromophenol (37 g, 214 mmol), K2CO3 (45 g, 321 mmol), Hexyl bromide (33 

mL, 235 mmol) and DMF (200 mL). The mixture was allowed to stir at 100ºC and monitored by 

TLC. After 16h, the reaction mixture was cooled to rt and diluted with Et2O (400 mL), washed 

sequentially with 10% K2CO3 (w/w, 150 mL), H2O (2 x 100 mL), brine (2 x 150 mL), dried with 

MgSO4, and concentrated. The crude product was then passed through 400 mL silica plug using 

hexanes and concentrated to yield a colorless oil (44 g, 80%). 1H NMR (300 MHz CDCl3) d 7.36 

(d, J = 6.9 Hz, 2H), 6.77 (d, J = 6.8 Hz, 2H), 3.91 (t, J = 6.6 Hz, 2H), 1.74 (m, 2H), 1.47 (m, 2H), 

1.33 (m, 4H), 0.93 (t, J = 6.1 Hz, 3H).  

 

1-(4-hexyloxybenzene)imidazole (60):131 A flame dried flask equipped with a stir bar was 

charged with imidazole (1.02 g, 14.96 mmol), compound 59 (2.38 g, 10.68 mmol), dry, degassed 

DMF (11 mL). Solid CuI (0.41 g, 2.14 mmol) and K3PO4 (4.54 g, 21.4 mmol) were added to the 

flask together in one portion. The reaction mixture was then heated to 130ºC, allowed to stir, and 

monitored by 1H NMR spectroscopy. After 20h, the reaction mixture was cooled to rt and diluted 

with Et2O (100 mL), washed 3x with H2O (200 mL), and dried with MgSO4. Once concentrated, 

the crude product mixture was passed through a short plug of silica using first 50% Hexanes: 

50% Et2O eluent, then EtOAc to elute pdt. Product fractions were concentrated to give a pale 

yellow oil (1.44 g, 64%). 1H NMR (500 MHz, CDCl3) d 7.75 (s, 1H), 7.28 (d, J = 8.5 Hz, 2H), 
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7.20 (s, 1H), 7.19 (s, 1H), 6.97 (d, J = 8.6 Hz, 2H), 3.90 (t, J = 7 Hz, 2H), 1.79 (m, 2H), 1.48 (m, 

2H), 1.36 (m, 4H), 0.92 (t, J = 6.8 Hz, 3H).  

 

2-(3-(4-hexyloxyphenyl)imidazol-1-yl)pyridine bromide(61):130 A sealable tube was charged with 

compound 60 (0.5 g, 2.38 mmol), 2-bromopyridine (0.45 mL, 0.75 g, 4.76 mmol), heated to 

175ºC under N2, and monitored by 1H NMR spectroscopy. After 6 h, the reaction mixture was 

cooled to rt, at which time a ppt formed. The tube’s contents were dissolved in dichloromethane 

and the product precipitated using Et2O as a pale brown microcrystalline solid (0.293 g, 33%). IR 

(neat, cm-1): 3134.4, 2930.9, 2857.3, 1598.2, 1542.3, 1255.1, 1186.9, 825.3, 778.4. 1H NMR 

(500 MHz, CDCl3) d 11.8 (s, 1H), 9.2 (d, J = 8 Hz, 1H), 8.51 (s, 2H), 8.09 (t, J = 7.7 Hz, 1H), 8.0 

(d, J = 8.5 Hz, 2 H), 7.79 (s, 1H), 7.47 (t, J = 10 Hz, 1H), 7.05 (d, J = 8 Hz, 2H), 3.96 (t, J = 6 Hz, 

2H), 1.77 (m, 2H), 1.44 (m, 2H), 1.34 (m, 4H), 0.91 (t, J = 6.4 Hz, 3H).  

 

fac-{3-(4-hexyloxyphenyl)-1-(2’-pyridyl)imidazolin-2- ylidene}tricarbonylchlororhenium(I) 

(53):127 A flame-dried flask equipped with a stirbar and reflux condenser were charged with 

compound 61 (0.10 g, 0.27 mmol), Re(CO)5Cl (0.097 g, 0.27 mmol), dry, degassed toluene (5 

mL), TEA (0.38 mL, 0.27 g, 2.7 mmol). The reaction mixture was warmed to reflux, allowed to 

stir, and monitored by 1H NMR spectroscopy. After 20h, the reaction mixture was concentrated 

on a rotary evaporator and the crude product precipitated from DCM to yield a pale yellow solid 

(0.10 g, 59% yield). IR (neat, cm-1): 3133.4, 29321, 2015.7, 1918.0, 1888.2, 1543.8, 1488.1, 

1248.2, 772.9. 1H NMR (500 MHz, CDCl3) d 8.81 (s, 1H), 8.95 (d, J = 4.5 Hz, 1H), 8.06 (apq, J 
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= 6.5 Hz, 1H), 7.69 (s, 1H), 7.62 (d, J = 8 Hz, 1H), 7.58-7.56 (m, 2H), 7.33 (apq, J = 8 Hz, 1H), 

7.05 (d, J = 8.4 Hz, 2H), 4.02 (t, J = 7.6 Hz, 2H), 1.81 (m, 2H), 1.45 (m, 2H), 1.35 (m, 4H), 0.92 

(t, J = 6.8 Hz, 3H). 

 

Synthetic Procedures to Reach Complex 54 

2-(3-(4-trifluoromethylphenyl)imidazol-1-yl)pyridine bromide (62):130 A sealable tube was 

charged with 1-(4-trifluorophenyl)imidazole (0.5 g, 2.35 mmol), 2-bromopyridine (0.41 mL, 

0.72 g, 4.7 mmol), heated to 175ºC under N2, and monitored by 1H NMR spectroscopy. After 3 

days, the reaction mixture was cooled to rt, at which time a ppt formed. The tube’s contents were 

dissolved in dichloromethane and the product precipitated using Et2O as a pale brown 

microcrystalline solid (0.270 g,  53%). IR (neat, cm-1): 3058.9, 3022.7, 1547.1, 1134.2, 8371, 

779.7. 1H NMR (500 MHz, DMSO) d 10.75 (s, 1H), 8.79 (s, 1H), 8.72 (d, J = 4.1 Hz, 1H), 8.68 

(s, 1H), 8.3 (t, J = 8.2 Hz, 1H), 8.23-8.20 (m, 3H), 8.14 (d, J = 8.2 Hz, 2H), 7.71 (t, J = 7.6 Hz, 

1H). 13C NMR (500 MHz, DMSO) d 149.3, 146.2, 140.7, 137.7, 134.9, 130.1, 127.4, 125.6, 

124.7, 123.3, 122.5, 122.3, 120.1, 114.8. 

 

fac-{3-(4-trifluoromethylphenyl)-1-(2’-pyridyl)imidazolin-2- 

ylidene}tricarbonylchlororhenium(I) (54):127 A flame-dried flask equipped with a stirbar and 

reflux condenser were charged with compound 62 (0.11 g, 0.3 mmol), Re(CO)5Cl (0.11 g, 0.3 

mmol), dry, degassed toluene (5 mL), TEA (0.42 mL, 0.30 g, 3.0 mmol). The reaction mixture 

was warmed to reflux, allowed to stir, and monitored by 1H NMR spectroscopy. After 4 days, the 
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reaction mixture was concentrated on a rotary evaporator and the crude product submitted to 

column chromatography using CH2Cl2/acetone as eluent. Product fractions washed with H2O (3 

x 25 mL), dried with MgSO4, and concentrated to yield a pale yellow solid (0.073 g, 33% yield). 

IR (neat, cm-1): 2089.1, 2924.1, 2017.8, 1919.2, 1890.2, 1487.4, 1323.1, 774.1. 1H NMR (500 

MHz, d6-DMSO) d 8.89 (d, zj = 5.4 Hz,1H), 8.73 (d, J = 2.3 Hz, 1H), 8.39 (d, J = 3.5 Hz, 2H), 

8.06 (m, 3H), 7.94 (d, J = 8.3 Hz, 2H), 7.58 (apq, J = 5.3 Hz, 1H). 

 

Synthetic Route to Donor Compound BIH 

1,3-dimethyl-2-phenylbenzimidazolium iodide (63):132 A sealable tube equipped with a stirbar 

was charged with 2-phenylbenzimidazole (2.50 g, 12.97 mmol), MeI (4 mL, 9.14 g, 64.36 mmol), 

MeCN (15 mL) and allowed to stir at 100ºC, and was monitored by TLC. After 2 days, the 

reaction mixture was concentrated and the crude product passed through a short silica plug using 

acetone. Concentrated crude product to ½ volume, then cooled to 0ºC. After 16h, the mixture 

was filtered to yield a white microscrystalline solid (1.31g, 29%). 1H NMR (500 MHz CDCl3) 

d 8.07 (d, J = 8.07 Hz, 2h), 7.79-7.71 (m, 7H), 4.03 (s, 6H).  

 

1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH):132 A flask was charged with 

compound 14 (1.31 g, 4.78 mmol) and MeOH (50 mL) and cooled to 0ºC. Once cool, NaBH4 

(0.27 g, 7.17 mmol) added and the reaction mixture allowed to warm to room temperature and 

monitored by 1H NMR spectroscopy. After 1h, MeOH (50 mL) and H2O (100 mL) added, at 

which time a white precipitate formed. The precipitate was collected, dissolved in CH2Cl2, 
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washed with 1:1 H2O:MeOH, and concentrated to yield a fluffy white solid (0.40 g, 57%). 1H 

NMR (500 MHz, d6-DMSO) d 7.54 (d, J = 5.5 Hz, 2H), 7.44 (d, J = 5 Hz, 3H), 6.61 (s, 2H), 6.44 

(s, 2H), 4.87 (s, 1H), 2.48 (s, 6H).  
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SECTION 2. SYNTHESIS OF CR-PICOLINATE COMPLEXES FOR THE 

HOMOGENEOUS CATALYTIC PRODUCTION OF METHANOL FROM CO2. 

The electrocatalytic reduction of CO2 has been known since the 1970’s, and many 

catalysts have been reported to effect the formation of many products (including CO, CO2H2, 

HO2CCO2H, CH4, MeOH) from CO2.
109, 110-115 In each of these instances, energy comes from 

electron transfer from the cathode surface to the catalyst (either on the surface or near the 

surface). While CO2 can be reduced to CO2H2 at -1.97 V (vs NHE in DMF), this energy is very 

high. Because the kinetic barriers to other reduced products are prohibitively high, a catalyst 

must be used. The energy gain from lowering the activation energy often comes with the trade-

off of an overpotential (the potential difference in the standard reduction potential and the 

observed reduction potential), which increases the potential needed to effect reduction.  

Based upon the recent local proton source work of Savéant and Robert113b,116b in 

conjunction with reports of Group 6 metals coordinating carbonyl compounds, we reasoned that 

an electron deficient CrIII center with a ligand capable of forming hydrogen bonds near the metal 

could be promising CO2 reduction catalysts.133 We have improved upon the synthesis of the 2,6-

pyridinedipicolinate (abbreviated dipic) complex [Cr(dipic)2]Na, 64, and have evaluated the 

electrocatalytic activity of the complex towards CO2. 

While previous reports of Cr picolinate syntheses were on small scale and relied upon weeks of 

crystallization,134 we improved the synthesis to be completed within a matter of hours instead. 

We were able to obtain the pure dark purple [Cr(bispic)2]Na complex (0.50 g) 64 in the span of a 

few hours (workup included). Cyclic voltammagrams of complex 64 in DMF are shown in 
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Figure 39. Two reversible reduction waves were observed under N2 at -1.05 V vs. NHE and   -

1.42 V vs NHE. The first reduction is ligand-centered, while the second is metal-centered, as 

described previously.134 Upon bubbling with CO2 for 15 min, the second reduction wave 

exhibited a catalytic current, with the reversibility of each wave reduced substantially, as would 

be expected for CO2 reduction. Upon addition of H2O, both waves shift anodically, while the 

magnitude of the second reduction wave remained larger than under N2. Each change in the CV 

spectrum listed here indicates catalytic CO2 reduction by Cr complex 64.  

 

Figure 39. Left: Top: Synthesis of Cr complex 64. Bottom: CV of 64 under N2 (black), CO2 (blue dash), and CO2 

with 10% H2O added (red) in DMF with 0.1M NBu4PF6 supporting electrolyte and a scan rate of 100 mV/s, starting 

negative. Ferrocene was used as internal standard and referenced to NHE using the value Fc/Fc+ = 0.69V vs. NHE 

as reported by Connelly and Geiger.97 The saturated Calomel Electrode (SCE) is taken as 0.24 V vs NHE. CV was 

measured using Pt counter, Pt reference, glassy carbon working electrode. 
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Because complex 64 exhibited a catalytic current with CO2 (See Figure 39) controlled-

potential electrolyses were performed to assess the catalytic rate and selectivity of complex 64. 

Electrolyses were performed at potentials more negative than the observed onset of catalysis in 

CV and the product selectivity at each potential evaluated. Electrolysis of a 2.5 mM solution of 

complex 64 dissolved in 0.1M NBu4PF6 in anhydrous DMF -1.79 V (vs NHE)  (as determined by 

CV under N2 and CO2 directly prior to electrolysis) produced no CO or HCOOH. Upon 

electrolysis at -1.7 V vs NHE after the addition of 10% H2O (5.5 M), the section of the purple 

solution nearest to the RVC working electrode turned brown-orange. After ceasing the 

electrolysis at 1h, the discolored section regained its original purple appearance, however, the 

CV of this solution appeared to contain substantially less (~20% of the original) of complex 64. 

Longer electrolyses (8h), led to a more persistent yellow color change, however, over time the 

solution regained its previous purple color. Unfortunately, no reduction products have been 

observed from any electrolysis and efforts to detect methanol are currently underway. 

Regarding the observed color change observed during DMF/H2O electrolysis, we suspect that the 

dipicolinate ligand becomes more freely dissociated from the CrIII metal center upon the first 

reduction. Direct observations of ligand substitution in Cr picolinate and polypyridine complexes 

has been observed by us in the course of this investigation and by others in the synthesis of 

mixed picolinate complexes, such as Cr(dipic)(phen)Cl.134 As Cr(dipic)2 is coordinately 

saturated, it is likely that the active species is a Cr complex that has undergone a ligand 

dissociation, with the vacant coordination positions taken by solvent. We attempted to synthesize 

coordinatively unsaturated Cr dipicolinate complexes, however, upon electrolysis, the complexes 



 139 

reverted to the Cr(dipic)2 form, which was also observed before (Figure 40).125 A complex based 

on imidazole-2-carboxylate did not result in a complex that was stable enough to assess as a CO2 

reduction catalyst. The only other complex we synthesized that did not result in the formation of 

complex 64 upon dissolution or reduction was complex 65, which did not include a bis-

picolinate ligand.  

 

Figure 40. The synthesis of other Cr picolinate complexes.  

We next sought to investigate the propensity for complex 64 to function as a 

photocatalyst for CO2 reduction. As reported previously,134 complex 64 absorbs visible light up 

to 650 nm. Emission at 440, 470, and 500 nm was observed upon excitation at 400 nm, with τ0 = 

3 ns (Figure 41). Upon addition of triethylamine (TEA) to complex 64 in degassed MeCN, the 

emission was quenched (kq = 1.3 x 1010 Lmol-1s-1, Figure 41), which indicated that 64* could be 

reduced by TEA to 64●-. Unfortunately, exhaustive attempts to apply complex 64 towards CO2 

photoreduction in a veriety of solvents (DMF, DMA, MeCN, H2O) failed to yield CO or CO2H2. 

Attempts to incorporate commonly used transition metal photosensitizers (Ir(ppy)3 or Ru(bpy)3), 

strong organic photosensitizers (perylene, phenanthrene, pyrene)  or strong electron donor 

material 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH) also resulted in no CO 

or CO2H2 formation however, the production of methanol has not been excluded yet.  

N
O

O

O

O Cr

N
N

CrCl3•6H2O
Cl

i)
N

O

O

O

O Cr

N
O

CrCl3•6H2O
Cl

ii)

O

N
OCr

O

N
O

O

N

OO

CrCl3•6H2O
iv)

NN

O O
Cr

N
N

O
O
N

N
O

O

CrCl3•6H2O
iii)

65



 140 

 

Figure 41. Left: Absorption and Emission of complex 64 in MeCN. Right: Emission quenching of complex 

64 using TEA as quencher. 

EXPERIMENTAL SECTION 

 General Considerations: All commercial reagents were purchased and used as 

received. Unless otherwise noted, all experiments were carried out under a N2 atmosphere. 

Before each measurement involving change of atmosphere, each solution was bubbled with the 

new gas for at least 15 minutes. After each electrolysis, the electrode was cleaned by electrolysis 

at +1.0 V vs NHE for 20 min. CV measurements were made using a glassy carbon disk working 

electrode, a Pt counter and Pt reference, with Ferrocene used as internal reference. For controlled 

potential electrolyses were performed with 30 ppi RVC working electrode (Duocel), Pt counter 

and Pt reference. Cyclic voltammograms were measured and controlled potential electrolyses 

were performed with a C–H Instruments electrochemical analyser. UV–Vis spectra were 

measured with a Cary 5000 UV–Vis spectrometer. Headspace analysis was performed using a 

gastight syringe with stopcock and Agilent 7890B Gas Chromatograph (Column: Agilent 

PorapakQ 6 ft, 1/8 O.D.). Quantitation of CO and CH4 were made using an FID detector, while 

H2 was quantified using a TCD detector (all calibrated using standards purchased from 

BuyCalGas.com). Formic acid analysis was performed by following a previously reported 
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procedure.14 

  Improved Synthesis of [Cr(dipic)2]Na, (64):134 An Erlenmeyer flask equipped with a 

stirbar was charged with 2,6-pyridine-dipicolinic acid (1.22g, 1.95 mmol), and CrCl3 

hexahydrate (1.0 g, 3.7 mmol). EtOH (150mL, absolute) added and the green solution 

allowed to stir at room temperature. After 1h, a 0.1M NaOH solution was added dropwise to 

the dark blue solution until it turned purple. Once the solution had turned purple, Acetone 

(150 mL) was added and the solution filtered through a 45 µm filter (Airdisk, Target2, 

Nylon). After filtration, Ethyl ether added until the solution turned just cloudy, after which 

the suspension was cooled to -78ºC. The resulting purple precipitate was filtered and dried to 

yield a dark purple powder (20%, 0.50 g). UV-Vis (DMF): λmax = 548 nm (ε = 80 M-1cm-

1), λonset = 650 nm. Cyclic Voltammetry (0.1 M Bu4NPF6 in DMF, sweep width 1.0-(-2.0), 

0.1 V/s scan rate):  Red1 = -0.94 V (vs NHE), Red2 = -1.39 V (vs NHE).  

	  

 

 

 

 



 142 

SECTION 3. THE APPLICATION OF AU NANOPARTICLES TOWARDS CO2 

REDUCTION. 

Our collaborators in the Dass group are experts in the synthesis and characterization of 

Au nanoparticles of many sizes and with many different types of ligands.135 Au nanoparticles 

have been applied as catalysts in a variety of reactions including oxidations (such as CO to CO2) 

and reductions (such as CO2 to CO).136 As the nanoparticles have different sizes, shapes, and 

certainly different electronic and steric environments depending on the chosen ligands, atom 

distribution, and method of synthesis, each type of nanoparticle is worthy of screening in small 

molecule catalysis. Specifically in the reaction of gas molecules, each size and particle 

shape/morphology has unique adsorption characteristics and thus likely different catalytic 

activities. We were particularly interested in the application of the Dass group’s atomically 

precise Au nanoparticles as catalysts for CO2 reduction.  

Only recently have Au nanoparticles been reported to act as electrocatalysts for CO2  

reduction, starting with a collaborative report led by Kaufman in 2012137 and followed up by a 

collaborative effort led by Sun in 2013138 and a collaboration led by Cuenya in 2014.139 Kaufman 

et al. tested different sizes of Au nanoparticles, from Au25 to 2 nm and 4 nm particles. The 

nanoparticles were included as an additive to carbon black inks and painted onto a glassy carbon 

electrode. The painted electrodes were then used as the working electrode in an electrochemical 

setup for CO2 reduction experiments. Kaufman found that the smallest size nanoparticle (which 

was also protected with thiolate ligands) tested (Au25) gave the most pronounced response to 

CO2 and was observed to produce CO and H2 in a ~100:1 ratio, indicating good selectivity for 



 143 

CO production (Figure 42). It is worth noting here that all three nanoparticle sizes outperformed 

bulk Au.137  

Sun et al. chose to compare 4 nm, 6 nm, 8 nm, and 10 nm Au nanoparticles using a 

treatment similar to that of Kaufman to prepare the carbon working electrodes. The bare 

nanoparticles (non-ligated) were suspended in hexane and carbon black added. A paste was made 

from the mixture and painted onto activated carbon paper support. Instead of increased catalytic 

activity with smaller sizes, as was observed by Kaufman, Sun et al. noted the 8 nm nanoparticle 

was the most active due to the high edge-to-surface-area ratio of the nanoparticle, and had 

moderate selectivity (90:10 CO:H2) for reduction products (Figure 42).138  

Cuenya et al. also investigated the correlation between nanoparticle size, CO2 reduction 

activity, and selectivity for CO2 reduction. Bare nanoparticles of five different sizes (1.1, 1.8, 3.2, 

4.3, 7.7 nm) were deposited onto glassy carbon support and used as electrocatalysts in CO2 

reduction. While Cuenya et al. also noted a more pronounced activity towards CO2 reduction for 

8 nm particles, they also noted a strong dependence on size and selectivity (Figure 42). With 

decreasing size, it was observed that H2 production increased to that even above the selectivity 

observed when bulk Au foil was used as electrode.139  
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Figure 42. Past reports of Au nanoparticle CO2 catalysts. Left:  Illustration of size dependence in “bare” Au 

nanoparticles and in ligated Au25 in the magnitude of catalytic current. X-axis = potential, from 0 to -1.4 V vs RHE, 

Y-axis = current (mA cm-2). Figure taken from Ref. 137. Middle: Illustration of size dependence in “bare” Au 

nanoparticles in the faradaic efficiency for CO formation. Figure taken from Ref. 138. Right: Illustration of size 

dependence in “bare” Au nanoparticles in the faradaic selectivity for CO and H2 formation. Figure taken from Ref. 

139. Reprinted with permission from Kauffman, D. R.; Alfonso, D.; Matranga, C.; Qian, H.; Jin, R. J. Am. Chem. 

Soc. 2012, 134, 10237. Zhu, W.; Michalsky, R.; Metin, Ö.; Lv, H.; Guo, S.; Wright, C. J.; Sun, X.; Peterson, A. A.; 

Sun, S. J. Am. Chem. Soc. 2013, 135, 16833.Mistry, H.; Reske, R.; Zeng, Z.; Zhao, Z.-J.; Greeley, J.; Strasser, P.; 

Cuenya, B. R. J. Am. Chem. Soc. 2014, 136, 16473. Copyright 2012,2013,2014 American Chemical Society. 

 

 Because Kaufman observed them to be superior catalysts, our approach to applying Au 

nanoparticles in CO2 reduction was to start by assessing the catalytic current of atomically 

precise thiolate-ligated nanoparticles under CO2 atmosphere with CV measurements. We 

obtained a sample of Au137(SEtPh)56 from the Dass group and collected CV measurements under 

both N2 and CO2 (Figure 43). We observed a massive increase in catalytic current in the presence 

of CO2, which indicated that the nanoparticles were indeed active towards CO2. This observation 

contributed to a collaborative publication in 2014.115f Further research into the catalytic activity 

of these nanoparticles is currently being undertaken in the group, especially the dependence of 
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nanoparticle size and number of potential binding sites on catalytic activity. Progress has been 

inhibited due to produt detection method development, which will be discussed later (Section 6). 

 

Figure 43. Cyclic voltammograph of Au137(SEtPh)56 under N2 (black) and CO2 (red) in DMF with 0.1 M Bu4NPF6 

as electrolyte and a scan rate of 100 mV/s. Ferrocene was used as an internal standard and reference to NHE using 

the value Fc/Fc+ = 0.69 vs. NHE reported by Connelly and Geiger.97 Measured with platinum reference, platinum 

counter, and glassy carbon working electrode. 
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SECTION 4. TOWARDS IRON PORYPHYRINS WITH SECONDARY 

COORDINATION SPHERES TARGETING CO2. 

Transition metal porphyrin complexes are a prinicipal group of chemicals and the group 

has been applied towards a myriad of applications, including as CO2 reduction catalysts.53,109b,140  

Iron and Co porphyrins have both been reported to be photo- (UV light) and electrocatalysts for 

CO2 reduction;113a-b,116c however, the catalytic rate reported in these early papers was low and the 

TON low as well. Not long before we embarked on this avenue of research and unknown to us, 

Saveant reported a very efficient porphyrin electrocatalyst for CO2 reduction that was similar in 

design to our target porphyrins. The porphyrin was decorated with 2,6-dihydroxybenzene groups 

at the meso positions (Figure 44) and achieved very high TON, due to the phenol functional 

groups acting as proton-relays. Upon seeing this result, our synthetic strategy was to synthesize 

Fe porphyrin complexes that would bear H-bond donor or acceptor groups to achieve the same 

end (Figure 44). Porphyrins with H-bond donors could potentially act as both proton relays and 

could help lower the activation energy of CO2 reduction through precoordinating the gas with H-

bonds. H-bond acceptors on the porphyrin ring could hydrogen bond with H2O to also achieve 

the same end.  
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Figure 44. a): Illustrative example of primary CO2 coordination. b): Illustrative example of secondary 

coordination of CO2. c): Porphyrin catalyst reported by Saveant in 2012. d): Our approach to testing the secondary 

coordination sphere hypothesis.  

 

Our hypothesis was that the inclusion of carboxylic esters to each meso-phenyl group 

would act as H bond donors and acceptors. Fortuitously, this complex was commercially 

available. We also planned to test the analogous methyl ester complex 66, as the ester groups 

would lack H bond donor capability but retain the H bond accepting capability of the carbonyl. 

We chose to study the unsubsituted porphyrin as a control. The Fe (III) tetraphenyl and 

tetra(benzoic acid) porphyrin complexes waere commercially available. Ester 66 was synthesized 

in two overall steps by first forming the porphyrin ring and then metallating it with Fe (Scheme 

11).  
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Scheme 11. Synthesis of tetra ester porphyrin 66. Conditions: i): a: pyrrole, BF3�OEt2, CHCl3 b: DDQ, 

65ºC, 0.122 g, 14%. ii): FeCl2, THF, reflux, 0.10 g, 90%.  

 

Once all the complexes required were in hand, we set out to the task of determining the 

energy levels of each reduced state by CV (Table 22). The addition of carboxylic acid groups 

shifted the reduction potentials more negative for the second and third reductions, while it 

slightly stabilized the first reduction. Installation of ester groups instead of acid led to less 

negative second and third reductions but also more positive first reduction values vs NHE.  

Table 22. Reduction potentials of the Fe porphyrin complexes tested.a
 

 

a:Values	  were	  measured	  by	  CV	  in	  0.1M	  NBu4PF6	  in	  MeCN	  using	  a	  Pt	  reference,	  Pt	  counter,	  and	  glassy	  carbon	  

working	  electrode	  with	  Fc	  as	  internal	  reference.	  All	  values	  reported	  vs.	  NHE. 

 

Thus, the teracarboxylic acid complex and tetra ester were observed to have favorable reduction 

potentials for CO2 reduction.  
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Unfortunately, before we could adequately screen the acid and ester porphyrin catalysts 

for activity as CO2 reduction photocatalysts, Robert reported an Fe porphyrin appended with 

phenol groups at the meso positions that functioned very well as a photocatalyst with a 

photosensitizer.116b The catalyst achieved >100 TON and was photosensitized with inexpensive 

9-cyanoanthracene (9-CA). We then chose to forego any further testing with Fe porphyrins, as 

we wished to spend time developing other catalysts, such as the RePyNHC catalysts described in 

Part 1 of this chapter.  

EXPERIMENTAL SECTION 

General Considerations: See Part 1 of this chapter for general considerations.  

Synthetic procedures to reach complex 66: 

Tetra-meso-(methyl o-carboxyphenyl)porphyrin (67): A flask equipped with a stirbar was 

charged with methyl-2-carboxylbenzaldehyde (0.49 g, 3 mmol), pyrrole (0.201 g, 3 mmol), 

CHCl3 (300 mL), and BF3�OEt2 (0.114 mL, 0.6 mmol), all under Ar, and allowed to stir at rt. 

After 2h, DDQ (0.51 g, 2.25 mmol) added, the reaction heated to 65ºC, allowed to stir, and 

monitored by TLC. After 1.5 h, TEA (2 mL) added, the reaction mixture concentrated, loaded 

onto an SiO2 plug, eluted with 90:10 EtOAc: CH2Cl2 and concentrated. Recrystallized from 

acetone/hexanes to give a dark purple solid (0.122 g, 14%). 1H NMR (300 MHz, CDCl3) δ 8.58 

(m, 12 H), 8.36 (m, 4H), 8.17 (m, 4H), 7.86 (m, 8 H), 2.88 (s, 12H), -2.44 (s, 2H).  

Chloro-Fe(III) Tetra-meso-(methyl o-carboxyphenyl)porphyrin (66): A flame-dried flask 

equipped with a reflux condenser and stirbar was charged with 67 (0.10 g, 0.12 mmol), FeCl2 

(0.15 g, 1.2 mmol), dried and degassed THF (30 mL), heated to reflux, allowed to stir, and 
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monitored by TLC. Ater 3h, the reaction mixture was cooled to rt and concentrated. The crude 

product was passed through an SiO2 plug using 10% MeOH: CH2Cl2 to yield a dark purple 

product (0.10 g, 90%). Paramagnetic  
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SECTION 5. THE DEVELOPMENT OF MORDANT DYES AS CO2 

REDUCTION CATALYSTS. 

In Section 7 of Chapter 1, so-called mordant dyes were discussed, as well as their 

potential application as DSC sensitizers. Because they are strong light absorbers, we chose to 

also investigate them as possible photocatalysts for CO2 reduction. Based on our previous studies 

with Cu mordant dyes (Table 13), the reduction potential of mordant dyes can be favorable for 

CO2 reduction. Our strategy, therefore, was to test a single mordant dye complex first, before 

launching into a large amount of screening and mordant dye synthesis. The dye we chose to 

synthesize was based on Eriochrome Black T (EBT) because of its three chelating functionalities 

(Figure 45).  

 

Figure 45. Synthesis of Zn mordant dye 68.  

Upon the synthesis of mordant dye 68, its energy levels and activity for CO2 reduction 

were checked with CV. Zn is a non-redox active metal, therefore, the only reductions which 

should arise stem from the ligand (Figure 46). We chose ths dye first as a suitable test to ensure 

any included metal was the important and catalytically active portion of the molecule. As 

expected, multiple reduction waves are observed at -0.43 V, -1.27 V, and -2.03 V vs NHE for 

complex 68 under N2, but unexpectedly, one of the waves increased substantially under CO2. 
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Upon collection of this data; however, it became clear that significantly more time would need to 

be devoted to determining the nature of the current increase. We were embroiled in multiple 

other (more promising) catalyst screening studies and thus did not collect any more evidence for 

whether mordant dye 68 reduced CO2 or what the reduction products were.  

 

Figure 46. Cyclic voltammograph of mordant dye 68 under N2 (black) and CO2 (red) in DMF with 0.1 M Bu4NPF6 

as electrolyte and a scan rate of 100 mV/s. Ferrocene was used as an internal standard and reference to NHE using 

the value Fc/Fc+ = 0.69 vs. NHE reported by Connelly and Geiger.97 Measured with platinum reference, platinum 

counter, and glassy carbon working electrode. 

 

EXPERIMENTAL SECTION 

See Section 1 of this chapter for General Considerations. 

Synthetic Procedures to reach (68): 

1:1 Eriochrome Black T : Zn complex (68): A flask equipped with a stirbar was charged with 

Eriochrome Black T (1.0 g, 2.17 mmol), ZnSO4 (0.35 g, 2.17 mmol), H2O (10 mL), and heated 

to 100ºC with stirring. After 4h, the reaction mixture was cooled to rt and NaCl (1 g) added. A 

precipitate formed, was filtered, and was washed with copious H2O to yield a black solid (0.35 g).  
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SECTION 6. METHOD DEVELOPMENT FOR THE REDUCTION OF CO2 AND 

ANALYTICAL DETECTION OF REDUCTION PRODUCTS. 

A key step in catalyst development and reaction optimization is ensuring that the products of a 

reaction can be accurately and precisely measured once formed (concentrations in the range of 

<1 turnover number (TON) to levels >1,000 TON). This part of the chapter will focus on the 

development of reliable reaction parameters for electrochemical and photochemical CO2 

reduction pertaining to everything before and after the chemical reaction occurs (i.e. reaction set-

up, general experimental considerations, reaction sampling, and sample analysis). This section is 

meant to serve as a tutorial for reaction setup and analysis, based on the analytical techniques 

developed in our lab.  

Photochemical Reaction Setup 

As is true for any chemical reaction, experiment design is key in CO2 reduction. This section will 

walk a user step-by-step in performing a photochemical CO2 reduction reaction.  

1. Choosing a Vessel 

The first step in experiment design is to choose the correct reaction vessel as headspace, 

catalyst/additive concentration, and pressure can be key factors affecting performance. 

Therefore, it is important to keep the reaction vessel constant through catalyst screening and 

reaction optimization. In many instances, small screw-cap test tubes work well for this type of 

screening. Because CO2 is a gaseous reactant, the choice of septum is important. For this reason, 
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it is also important to never use a septum that has been used previously, as leakage could occur. 

The “standard” tubes we have chosen to work with are 17 mL screw cap test tubes that can be 

fitted with screw cap w/ removable septa (For instance, Chemglass Part No.: CG-4910-02). 

Larger tubes may also be used if they have sufficiently resilient septa and screw caps. For high-

pressure (>1 bar) reactions, heavy walled schlenk flasks (such as ChemGlass UMS-1407-181JS) 

also work well. For visible light photocatalyses, the reaction vessels do not have to be made of 

quartz, since glass allows visible light complete transmittance. Examples of vessels for 

photochemical reaction are shown in Figure 47. 

 

Figure 47. Top: 17 mL screw cap vial, Middle: 40 mL screw cap vial, and Bottom: heavy-walled 

schlenk flasks for use in photochemical CO2 reduction. 

2. Preparing the Reaction Flask 

Once the appropriate vessel has been selected, it is then important to understand the steps 

required to prepare a reaction for irradiation.  

Stirring- Equip a Stirbar 
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Heterogeneous reactions (involving poorly soluble additives, insoluble catalysts, films, etc.) 

should certainly be stirred, and it is also a good idea to include stirring for homogeneous 

reactions in order to reduce the importance of diffusion-mediated processes. Therefore, include a 

stirbar where possible.  

Concentration- Choose a Catalyst Concentration for Initial Screening 

Catalyst concentration is a key reaction element that must eventually be optimized; however, it is 

a good idea to know where to start. For instance, Re(bpy)(CO)3X type catalysts perform well 

near 10-3 M18 and Ishitani’s (tpy)Ir(ppy)Cl catalyst works well at 5 x 10-4 M.19a Another factor to 

bear in mind when choosing a concentration to start a study with is that non-productive electron 

transfer processes increase with increasing concentration. This is because with higher 

concentration comes a higher chance that one excited catalyst/photosensitizer molecule could 

collide with another catalyst/photosensitizer instead of CO2. Another factor for consideration is 

the detection limit of the method being used to analyze the sample. Each method has its own 

limits of detection, so this will be an important factor in determining catalyst activity, since poor 

experimental design might lead to incorrect assessment. Figure 48 shows the catalyst TON 

needed to form 100 parts per million (ppm) of CO for different reaction vessel headspace values. 

In this figure, the choice of both vessel and catalyst amount are highlighted, in that since ppm is 

dependent on the headspace sampled, a large headspace or small amount of catalyst means it will 

take higher TON to achieve higher ppm values. This is important, since the GC (covered later) 

detects ppm CO.  
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Figure 48. Catalyst amount needed for 100 ppm CO using various vessel headspace values. 

Therefore, in order to ensure that catalyst activity is accurately assessed, A good starting point is 

to choose a catalyst amount that allows for TON = 1 to produce 100 ppm in the given flask.  

 

Solvent- Choose a Suitable Solvent for Initial Screening 

The solvent is also subject to optimization; however, it is good to start with a solvent that does 

not decompose in the reaction conditions to give products. For instance, DMF is often a poor 

choice of solvent for catalyst screening since it decomposes easily with light and/or acid to give 

both CO and CO2H2. Similarly, dioxane and DMA both decompose to CO with acid, acetone 

decomposes to methane with light, and DMSO can be reduced with an electron to give methane. 

The best solvents to try first are MeCN especially, and H2O if possible, as the only source of CO2 

reduction products are from CO2.  
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Electron Source- Choose a Suitable Electron Source for Initial Screening 

Many different electron sources have been reported in photosensitized and photochemical CO2 

reduction reactions including TEA, TEOA, BIH, and BNAH to name a few. In choosing an 

electron source to start catalyst screening, the two most commonly used are TEA and TEOA by 

far. Since it is not very volatile, TEOA can be added along with solvent. The highly volatile TEA 

must be degassed with CO2 prior to addition and addition to the reaction flask should only come 

after the reaction has been thoroughly degassed, in order to minimize evaporative loss during 

bubbling.  

 Electron Source- Choose a Suitable Amount for Initial Screening 

Typically, electron sources are included in solvent quantities, so precise measurement and 

exhaustive optimization screening should not be necessary. A good rule of thumb is to try to 

follow literature precedent. Typical quantities of electron source are compiled in Table 21.  

Table 23. Typical electron source quantities used in photochemical CO2 reduction reactions.  

 

Add any other desired additives  

It is typically before degassing that any other (non-volatile) additive be included into the 

photochemical reaction tube. This is true for photosensitizers, proton sources, and lewis acid 

additives. The proton sources might be volatile (and thus should be added after degassing as the 

Electron Source Commonly Used Amount Reference
15 % (v/v)
15 % (v/v)
0.1 M
0.1 M

TEA
TEOA
BIH
BNAH

19a
19a
116e
116d
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case with TEA), however, photosensitizers and lewis acids are almost certainly not volatile. 

Table 23. shows typical amounts for each type of additive and the references that describe their 

use.  

Table 24. Identity and amount of additive used in catalytic CO2 reduction. 

 

Degassing the Reaction Flask 

  

Figure 48. Picture of a 17 mL vial which has been equipped with a 24/40 stopper as septum, long steel needle as 

inlet needle, and short steel needle as outlet needle. 

 

Upon the judicious selection and addition of each necessary component, the last step is the 

inclusion of gaseous CO2 via bubbling (also termed sparging). As in the setup of any other 

reaction that includes bubbling, the flask needs to be equipped with a septum, inlet needle, and 

outlet needle (Figure 48). The septum chosen should not be the screw cap and septum to be used 

Additive Type Amount Ref.
Ir(ppy)3
Ru(bpy)3
9-CA
p-terphenyl
PhOH
F3CH2OH
H2O
iPrOH
Mg2+

Photosensitizer
Photosensitizer
Photosensitizer
Photosensitizer
Proton Source
Proton Source
Proton Source
Proton Source
Lewis Acid

1000x cat.
1000x cat.
1000x cat.
130x cat.
0.08 M
3.5 M
2 M
6.5 M
15 mM

116a,b
116d
116b
116c
113c
113b
113c
113b
113a
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during irradiation. Instead, a septum that fits a 24/40 round bottom flask fits nicely in this regard 

(Figure 48). Once fitted with the septum, the needle can be placed into the solution until the tip 

touches the bottom of the tube.  

 For a satisfactory bubbling rate, it is recommended that the pressure-tuning knob of the 

CO2 gas tanks regular be loosed until no gas can be observed bubbling through the solution. 

Slowly tighten the pressure-tuning knob until satisfactory bubbling is observed. No 

recommendation is given here about the specific bubbling rate, because the volatility of each 

solvent is different. For instance, DMF is not volatile and can be bubbled very vigorously, while 

acetonitrile is volatile enough that its entire volume can be evaporated in 15 min. It is 

recommended that for volatile solvent, a generous amount of excess solvent be included to 

account for evaporative loss. For example, 6 mL of MeCN can usually be reduced to nearly 2 

mL in 15 min with vigorous bubbling. Using vigorous bubbling for long degassing times can 

improve reproducibility.  

 Once a satisfactory bubbling rate has been reached, the timeframe of bubbling then needs 

to be considered. In general, for non-polar solvents (such as hexane), only 5-10 minutes are 

needed for bubbling. For mildly polar solvents (such as THF, MeCN, CH2Cl2), 15-20 minutes of 

degassing are sufficient. For very polar solvents (such as DMSO, DMF, H2O), times up to 30 

minutes may need to be utilized. When in doubt about the proper time for degassing, it is 

advisable to give the solution 30 min.  

 After bubbling, the tube needs to be sealed without any inclusion of oxygen, which will 

ruin the reaction. In order to properly seal the tube without inclusion of oxygen, the flow rate of 
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CO2 should be turned up to a very high bubbling rate and the long needle pulled out from the 

solution and ¾ of the way up the tube. To seal the tube, a screw cap with septum (see above) 

should be readied with one hand and the rubber septum with needles pulled off the top of the 

tube. The screw cap should be quickly placed so that it covers the open tube, with the long 

needle tip still under the lip of the tube. After ~15-20 s of allowing the long needle to purge the 

cap in this manner, the needle should be removed and the septum quickly placed on the tube and 

screwed down tightly. At this point, the reaction tube is prepared for irradiation.  

3. Irradiation 

Once prepared, the samples can then be placed in front of the proper light source. Our 

laboratory has two light sources: the sunbox and the solar simulator (Figure 49). The sunbox 

contains a merry-go-round apparatus with a 500W Xe lamp at the center in an immersion well. A 

series of K-2 filters on the merry-go-round stage filters the light from the Xe lamp so that it 

approximates the solar spectrum. The solar simulator is a 125W Xe lamp that is placed in a dog-

kennel that has two black sheets covering the top to exclude light. With a sample 10 cm away 

from the solar simulator’s opening (which has a solar-simulating filter equipped). The light 

accurately approximates the AM1.5 solar spectrum.  

 



 161 

 

Figure 50. Left: A picture of the sunbox. Right A picture of the solar simulator. 

 

In general catalyst screening and reaction optimization trials, the sunbox should be utilized. The 

solar simulator should only be utilized in end-of-study catalyst trials, because the lifetime of the 

Xe lamp is only ~1000 h. The sunbox has a lifetime of the same magnitude; however, it is meant 

for general and/or preliminary screening trials.  

Operating Procedure for Irradiation in the Sunbox 

There are a series of steps required to safely operate the sunbox.  

1. Ensure the power is on to each of the sunbox control units: The upconverter, the water 

alarm system, and the sunbox unit itself. The power to each of these units is controlled by a surge 

protector, which should be switched to ‘ON’ before attempted use.  

2. Ensure there is a strong flow of water through the quartz Xe lamp well cooling system. 

Without water, the 500W Xe lamp would surely overheat and explode.  



 162 

3. Ensure the fan mounted to the top of the sunbox is on. This can be checked by ensuring 

power to the sunbox unit and switching the fan to ‘ON’ using the control panel inside of the 

sunbox. Air circulation is important in keeping the sunbox and reaction flasks at a constant 

temperature. 

4. Mount the reaction flask(s) in the box carefully around the stage, being mindful that 

the glass filters are fragile. A maximum of 15 samples can be irradiated at one time, but only ~4 

samples can be stirred at one time. 

5. Ensure stirring if needed. A small megnietic stirrer can be placed on the merry-go-

round stage to aid in sample stirring. Before continuing, ensure that each sample to be stirred is 

stirring well. 

6. Close the door, latch it, double check that the water is flowing quickly through the well, 

and turn on the lamp using the switch on the light blue control unit directly under the sunbox. 

After the allotted time of irradiation has passed, the lamp can be turned off, the sunbox door 

opened, and the flasks reclaimed.  

Operating Procedure for Irradiation with the Solar Simulator 

There are a series of steps required to safely operate the solar simulator.  

1. Ensure the power is on to the power source. This power source controls the Xe lamp 

unit as well as the fan. 

2. The dial on the right side of the power source control panel should be turned from its 

resting position at the far left (counter clockwise) position to the marked position nearly 3/5 

around the knob (clockwise).  
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3. Mount the reaction flask(s) in the wire guides that lie 10 cm away from the lamp 

opening. A maximum of two 17 mL vials, one 40 mL vial, or one pressure flask can be irradiated 

at a time using this setup.  

4. Ensure stirring if needed. A small megnietic stirrer can be placed in the kennel to aid in 

sample stirring. Before continuing, ensure that each sample to be stirred is stirring well. 

6. Close the kennel door, latch it, pull the two lack sheet down around the kennel so that 

all but the solar simulator is covered, and turn on the lamp using the green initialize buttion. 

After the allotted time of irradiation has passed, the lamp can be turned off by pressing the red 

button on the power source control panel, the power control dial turned counter clockwise until it 

reaches the ‘0’ mark, the sheets lifted, the door opened, and the flasks reclaimed.  

4. Analyzing the Reactions for Gaseous and Liquid Products 

After irradiation, it is then time to analyze the samples for any reduction products. There 

are three main methods of analysis that should allow for the reliable separation of the most 

common products observed in CO2 photoreduction: Headspace analysis via gas chromatography 

(GC), solution analysis via high performance liquid chromatography (HPLC), and solution 

analysis via GC. Each of these methods offer different product detections as shown in Table 24. 

Table 25. Instruments needed to detect each of the commonly observed CO2 reduction products. 

 

 

Product Instrument

CO
H2
CH4

CO2H2
HO2CCO2H

MeOH

GC (Headspace)
GC (Headspace)
GC (Headspace)

HPLC
HPLC

GC (Solution)
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A picture of each of the instruments is shown in Figure 50.  

 

Figure 51. Left: Picture of the GC used for headspace analysis. Middle: Picture of the HPLC used for solution 

analysis analysis. Right: Picture of the GC used for solution analysis. 

 

Headspace Analysis 

In performing headspace analysis of a reaction, the following series of steps should be 

followed.  

1. Ensure that the GC (Figure 50, Left) is turned on at least 1h before the analysis is to 

take place. This gives the instrument proper equilibration time, which allows for reliable results.  

2. Once the instrument has been fully powered on (the flame ionization detector (FID) is 

on, the oven is at the correct temperature, and the gas has reached the required flow rate), a blank 

run needs to be initiated. No injection is necessary in this case, just press the ‘Run’ button on the 

GC. Performing this blank run is important, as latent materal on the column needs to be cleared 

away prior to reaction analysis.  

3. Using a gas-tight syringe, carefully pierce the reaction flask. Ensure that the valve is 

set to ‘open’ and draw the desired volume. It is recommended to draw between 250 and 500 µL. 

Ensure that the valve is set to ‘closed’ and remove the needle from the flask. 



 165 

4. Obtain a vial that has been filled halfway with Et2O. While the syringe valve is still set 

to ‘closed,’ depress the syringe plunger to ~halfway of its original value. Place the needle well 

into the Et2O and set the syringe valve to ‘open.’ If performed correctly, this should result in an 

eruption of bubbles from the tip of the needle. Once the initial burst of bubbles have shot from 

the needle tip, set the valve to ‘closed’ and remove the needle from the Et2O.  

5. After waiting 10-20 s to allow for Et2O evaporation from the needle tip, ensure that the 

GC is ‘Ready.’ Once ready, carefully place the needle into the GC injector port, set the syringe 

valve to ‘open,’ and carefully depress the plunger. The plunger and needle are both very thin and 

are machined to exactly match the glass syringe. Because they are so thin, it does not take much 

force to bend either. Once bent, these needles never work as well, so much care should be taken 

to ensure that both are never bent.  

6. Once the syringe has been depressed, press ‘Run’ on the GC and carefully remove the 

needle from the injection port. Ensure that the needle stays attached to the syringe during this 

removal. If the two separate before the needle is removed, injection port will leak and the run 

will be ruined.  

GC used for headspace analysis 

Headspace analysis was performed using an Agilent 7890B Gas Chromatograph 

(Column: Agilent PorapakQ 6 ft, 1/8 O.D.) equipped with FID and TCD detectors. 

The temperature program used in the GC should be:  

To =33 mL/min flow rate, injector = 35ºC, FID = 300ºC, TCD = 200ºC, Oven = 75ºC. 

T = 4 min, oven temp ramp to 150 ºC over 5.875 min. 
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T = 9.875 min, run finished. 

Solution Analysis (HPLC)  

 In performing solution analysis of a reaction in an effort to detect formic acid or 

oxalic acid, the following series of steps should be followed.  

1. Ensure that the HPLC (Figure 50, Middle) is turned on at least 1h before the analysis is 

to take place. This gives the instrument proper equilibration time, which is necessary for reliable 

results.  

2. Once the instrument has been fully powered on (the pumps are on and the instrument 

response has equilibrated), ensure that the HPLC solvent bottled are refilled and prepare a 

sample by adding ~1 mL of the solution to be analyzed into a 1 mL vial.  

3. Place the vial in one of the vial holders in the autosampling unit. The number of the 

vial well should be noted, as the instrument needs to know this.  

HPLC used for solution analysis 

Solution analysis was performed using an Agilent 1100 series HPLC (Column:Agilent 

eclipse plus c-18, 3.5um, 4.5 x 1500 mm). 

The program used in the HPLC should be:  

To =100% H2O solvent, 0.25 mL/min flow rate, T = 25ºC, detector λ: 180 nm.  

T = 1.5 min, flow ramp to 0.30 mL/min 

T = 2.5 min, flow ramp to 0.35 mL/min 

T = 3.0 min, flow ramp to 0.45 mL/min, solvent to 25% MeOH:H2O 

T = 4.2 min, flow ramp to 0.70 mL/min, solvent to 35% MeOH:H2O 
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T = 5.0 min, flow ramp to 1.0 mL/min, solvent to 50% MeOH:H2O 

T = 9.0 min, run finished. 

Retention time of HCO2H: 5.34 min 

Retention time of HO2CCO2H: 4.0 min  

Solution Analysis (GC) 

In performing solution analysis of a reaction in an effort to detect methanol, the following 

series of steps should be followed.  

1. Ensure that the GC (Figure 50, Left) is turned on at least 1h before the analysis is to 

take place. This gives the instrument proper equilibration time, which allows for reliable results.  

2. Once the instrument has been fully powered on (the flame ionization detector (FID) is 

on, the oven is at the correct temperature, and the gas has reached the required flow rate), a blank 

run needs to be initiated. No injection is necessary in this case, just press the ‘Run’ button on the 

GC. Performing this blank run is important, as latent materal on the column needs to be cleared 

away prior to reaction analysis.  

3. Place the vial in one of the vial holders in the autosampling unit. The number of the 

vial well should be noted, as the instrument needs to know this.  

GC used for solution analysis 

Solution analysis was performed using a Shimadzu GC-2010 Gas Chromatograph 

equipped with FID detector (Column: SHRXI-5MS 15m, 0.25 mm ID). 

The temperature program used in the GC should be:  

To =5.6 mL/min flow rate, injector = 35ºC, FID = 300ºC, Oven = 27ºC. 
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T = 5 min, oven temp ramp to 57 ºC, then hold 1.0 min. 

T = 9 min, oven temp ramp to 200 ºC, then hold 10 min. 

T = 27.0 min, run finished. 

 

Electrochemical reaction setup 

As is true for any chemical reaction, experiment design is key in CO2 reduction. This section will 

walk a user step-by-step in performing a electrochemical CO2 reduction reaction.  

1. Choosing a Vessel 

As in the photocatalysis discussion, the first step in experiment design is to choose the correct 

reaction vessel as solvent, headspace, and catalyst/additive concentration can be key factors 

affecting performance. Therefore, it is important to keep the reaction vessel constant through 

catalyst screening and reaction optimization. In some instances, screw-cap test tubes work well 

for this type of screening, while in others a three-neck conical flask can serve the purpose. The 

“standard” vessels we have chosen to work with are 40 mL screw vials that can be fitted with 

screw cap w/ removable septa and a 50 mL three-neck conical vial. For cyclic voltammetry 

experiments, the three neck conical flask is sufficient, while the screw cap vial should be used in 

controlled-potential bulk electrolyses. Examples of vessels for electrochemical reaction are 

shown in Figure 51. 
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Figure 52. Left: A picture of the three-neck conical flask used for CV. Right A picture of the bulk electrolysis setup. 

 

2. Preparing the Reaction Flask 

Once the appropriate vessel has been selected, it is then important to understand the steps 

required to prepare a reaction for irradiation.  

Stirring- Not Required 

Bulk electrolyses and CV experiments do not use stirring, as both are inherently controlled by 

diffusion rates of products and reactants. Therefore, do not equip the electrochemical reaction 

flask with a stirbar.  

Concentration- Choose a Catalyst Concentration  

Catalyst concentration is a key reaction element that must eventually be optimized, 

however, it is a good idea to know where to start. For instance, an excellent signal/noise ratio can 

be achieved with 10-4 M, in bulk electrolyses 10-3 M is advised. As with photocatalysis, another 

factor for consideration is the detection limit of the method being used to analyze the sample. 
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Even though each method has its own limits of detection, the reaction flask for each technique 

should not be changed, so this is not a concern for bulk electrolysis. The best way, then, to 

ensure more product in solution or headspace is to include more catalyst.  

Solvent- Choose a Suitable Solvent  

While the solvent is also subject to optimization, the choice of solvent is not nearly as important 

in electrocatalysis as in photocatalysis. For instance, DMF is often a poor choice of solvent for 

photocatalyst screening since it decomposes easily with light and/or acid, however electrolytic 

decomposition is much slower. The best solvents to try first are DMF and MeCN especially, and 

H2O if possible, as each is commonly used in catalytic studies.  

Degassing the Reaction Flask 

 Upon the judicious selection and addition of each necessary component, the last step is 

the inclusion of gaseous CO2 via bubbling (also termed sparging). Unfortunately, before the 

solution can be degassed with CO2, it must first be thoroughly degassed with N2. This is because 

when using a Pt reference electrode there can be substantial day-to-day drift. Thus, a scan under 

nitrogen standardizes the spectrum. Once the spectrum is standardized, gaseous CO2 can then be 

thoroughly bubbled into the solution. As in the setup of any other reaction that includes bubbling, 

the flask needs to be equipped with a septum, inlet needle, and outlet needle (Figure 51). In CV 

studies, the imperfect seal created from the 14/20 septa in each neck but not folded over is a 

sufficient outlet, while a long steel needle serves as the inlet. In bulk electrolyses, the inlet needle 

is a flexible Teflon needle and the outlet is hooked to a bubbler submerged in silicon oil (Figure 

48). The same concerns for bubbling rate found in the above section regarding photocatalysis is 
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valid for electrocatalysis as well. Once the solution has been thoroughly degassed, the needle 

should be removed from solution and the scan/electrolysis can then begin.  

Electrolysis 

Electrolyses are performed using a CH instruments electorchemical analyzer. Once the 

proper time of electrolysis has elapsed, analysis can commence.  

Analysis 

The techniques for analysis used in electrocatalysis are the same used in photocatalysis. 

See the instructions in the photocatalysis section for precise techniques.  
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