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ABSTRACT 

Diseases of the posterior segment of the eye such as diabetic retinopathy, age related 

macular degeneration and glaucoma are the leading causes for blindness throughout the world. 

Topical eye drops is the most convenient formulation for daily application. The human eye, 

however, presents major physiological and dynamic barriers for the topically administered 

drug/molecule from reaching the retina. Similarly, the blood-retinal and blood-aqueous barriers 

restricts passage of drug from systemic circulation into the eye. Although intravitreal injections 

are the gold standards for the treatment of posterior segment ocular diseases, they are associated 

with pain, inflammation, endopthalmitis and infection. So there is a necessity to develop novel 

noninvasive drug delivery strategies to treat the posterior segment ocular diseases. 

 In the present study, we have used melt cast technology to develop a polymeric matrix film 

system to deliver Hesperetin (HT), a bioflavanoid, to the posterior segment of the eye. The film is 

4 mm x 2 mm in dimension and 0.2 to 0.4 mm in thickness. When the HT-film was tested in vivo 

in anesthetized rabbit model, HT levels were maintained above the neuroprotective and anti-

inflammatory IC50 levels for upto 6 h. We also prepared HT loaded (0.1% w/v) solid lipid 

nanoparticles (SLN’s) using a combination of 85% glyceryl monostereate and 15% compritol ATO 

888. The particle size, zeta potential and entrapment efficiency of the HT-SLN’s was 225 nm, -21 

mV and 85% respectively. Although the dose administered in the animal study was approximately 

16-fold lower than the HT-Film, SLN’s provided very good HT levels in the anterior segment of 

the eye. These formulations were tested in the conscious animal model to determine the effect of 

active lymphatic and tear drainage. Significant elimination of HT was observed in the aqueous 
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humor due to the turnover rate (1.0% to 1.5% of the anterior chamber volume per minute). But the 

film formulation was able to maintain 2.3 µg of HT/gm of tissue in the retina choroid and 80 ng 

of HT/gm of vitreous humor upto 3 h. SLN’s were able to deliver 1.9 µg of HT/gm of iris ciliary 

bodies, but HT levels were below detection limit in the posterior segment of the eye. Thus, 

polymeric matrix films prove to be a safe and effective platform for the delivery of drugs/drug 

candidates to the posterior segment of the eye. 

Glaucoma is the second leading cause for blindness worldwide. Rise in intraocular pressure 

(IOP) has been identified as an important risk factor in the pathogenesis of the disease. Δ9-

Tetrahydrocannabinol (THC), an active ingredient of the plant cannabis sativa, and an agonist of 

the cannabinoid receptors, CB1 and CB2, could potentially be such a dual acting anti-glaucoma 

agent. Delivering therapeutic levels of THC into the inner ocular layers is very challenging due to 

the extremely lipophilic characteristics of THC. A synthetic amino acid dicarboxylic acid prodrug 

of THC, Δ9-Tetrahydrocannabinol valine hemisuccinate (THC-Val-HS) was developed. Micellar 

and nanoemulsion formulations of THC-Val-HS and THC were prepared. These formulations 

were evaluated for IOP reduction in an alpha chymotrypsin induced rabbit glaucoma model. With 

the 0.5%w/v THC emulsion formulation drop in IOP was observed at 30 min, but was very 

minimal and short acting (60 min). With an increase in dose (0.8% w/v THC) a similar effect was 

observed with a slight increase in the duration of activity (90 min). With THC-Val-HS (0.6% w/v 

THC equivalent), drop in IOP was observed at 30 min, but the maximum drop was observed at 90 

min, lasting upto 3 h (90% of the baseline). The more gradual drop in IOP can be attributed to the 

fact that THC-Val-HS has to be enzymatically converted into THC to show activity. Receptor 
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binding studies revealed that THC-Val-HS has 21.8 and 38 folds less affinity towards CB1 and 

CB2 receptors, respectively, than THC. Thus, the present study demonstrates that a rational 

combination of prodrug design and formulation strategies can effectively deliver THC to the 

anterior chamber of the eye. An increased IOP reduction with the prodrug at lower equivalent 

doses of THC, supports improved ocular penetration of the prodrug. Importantly, with most of the 

conventionally developed anti-glaucoma drugs having no reported neuroprotective action, THC, 

an established neuroprotectant, has the potential to become an effective glaucoma medication. 

Further studies are currently aimed at developing and optimizing various formulations with 

improved THC delivery to the back-of-the eye. 

Since the rate of elimination of drug candidates was relatively rapid in the earlier studies, 

ion exchange resin - drug complexes were incorporated into the matrix film to improve the 

sustained release profile. Ion exchange resins (IR) are water insoluble cross linked polymers with 

ionizable groups that can be exchanged to form complexes. Diclofenac sodium (DFS) was used as 

a model drug. The goal of this study was to develop polymeric matrix films loaded with a 

combination of free diclofenac sodium (DFS) and DFS-Ion exchange resin (IR) complexes for 

immediate and sustained release profiles, respectively. Complexation efficiency of DFS-IR was 

found to be 99% at 1:1 ratio of DFS:IR. Solution and DFS:IR suspension formulations were not 

able to maintain therapeutic DFS levels in AH and other ocular tissues. The matrix film, as such, 

was able to achieve high levels of DFS in the ocular tissues, but was not able to overcome the rapid 

elimination profile. On the other hand, DFS:IR loaded matrix films were able to maintain DFS 

levels in the inner ocular tissues fairly constant for upto 8h, probably because of continuous release 
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of DFS from the IR and retention of the IR complexes on the ocular surface. Thus, drug IR 

complexes loaded into matrix films could be a potential sustained ocular delivery platform.
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CHAPTER 1 

1.1. INTRODUCTION: 

The ‘eye’ is a specialized sensory organ which responds to light and gives us the visual 

perception of our surrounding environment.  The anatomy of eye and the routes of drug delivery 

pertaining to eye are shown in the Figure 1.1. Human eye is divided into two major segments: the 

anterior segment 

and the posterior 

segment.  

 The major 

parts of anterior 

segment are 

cornea, trabecular 

meshwork and 

schlemm’s canal, 

anterior uvea (iris, 

pupil and ciliary 

body), aqueous humor and lens. The posterior segment of the eye consists of sclera, choroid, retina, 

vitreous humor and optic nerve. It is the retina where the visual information is collected by the 

rods and cones and passed on to the optic nerve for processing in the central nervous system. Age, 

disease and injury may cause temporary or permanent damage to the eye. Although, damage to the 

Figure 1.1: Anatomical structure of the human eye. 
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anterior segment of the eye may sometimes leads to permanent damage, they can, however be 

treated by proper medication.  

1.1.1. Posterior segment ocular diseases: 

A report from the World Health Organization (WHO) in 2011 estimated that approximately 285 

million people were suffering from visual impairment worldwide out of which 39 million face 

blindness while 246 million suffer from moderate to severe vision impairment. With an increase 

in the average survival age and the percentage of diabetics, diabetes related retinopathies are 

rapidly gaining in significance. It has been predicted that, without additional steps, these numbers 

will increase to 75 million blind and 200 million visually impaired by the year 2020 (WHO, 2010). 

Age seems to be a causative factor in blindness as 90% and 58% of the population with blindness 

are aged above 45 and 60 years respectively [1].  

 Oxidative stress, inflammatory mechanisms and decreased antioxidant capacity in the 

ocular tissues are all thought to play an active role in the development and progression of these 

ocular diseases. The following sections briefly highlight the etiology of these ocular disorders, 

followed by discussions on the therapeutic potential of various phytochemicals and challenges 

encountered in their delivery to the ocular tissues. 

Diabetic Retinopathy 

 Diabetic retinopathy (DR) is the most common diabetes associated eye disease and is the 

leading cause of blindness in American adults [2, 3]. The WHO estimates that over 360 million 

worldwide will suffer from diabetes by the year 2030. Currently, 10% of the diabetics suffer from 

Type I diabetes whereas 90% suffer from Type 2 diabetes. DR in Type 1 diabetics approaches 80 

and 90 % prevalence rate after 10 and 20 years of diabetes, respectively. Up to 21% of patients 
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with Type 2 diabetes have recently been found to have retinopathy at the time of first diagnosis of 

diabetes, and most develop some degree of retinopathy over subsequent decades [4]. 

 DR can be broadly categorized into three stages; background DR, pre-proliferative DR and 

proliferative DR (PDR) [5-7]. In background DR, hyperglycemia is considered to induce 

thickening of capillary basement membranes and death of pericytes, which support the vessel wall, 

and endothelial cells of retinal blood vessels. Microaneurysms and vascular leakage follow, and 

blockage of retinal capillaries take place. In pre-proliferative DR, loss of vascular patency leads to 

areas of increasing retinal hypoxia and multiple hemorrhages. Increased areas of tissue non-

perfusion stimulate the production of angiogenic factors leading to the proliferation of vessels, 

which is a typical feature of PDR. The newly formed blood vessels by themselves do not lead to 

vision loss, but leakage of blood through their weak walls can result in severe vision loss and can 

ultimately lead to complete loss of sight. 

 Hyperglycemia and tissue hypoxia, are considered to be principal factors in the DR 

pathology described above. Multiple studies demonstrate the relationship between high blood 

glucose, oxidative stress and initiation of DR [7-12]. The retina is highly susceptible to oxidative 

damage since: a) it has an abundance of the polyunsaturated fatty acids in its membrane bilayers, 

whose double bonds are prime targets for peroxidation reactions; b) it is periodically subjected to 

continuous light which, by photoexcitation, can initiate free radical formation and peroxidation 

reactions and c) the retina is a highly metabolic tissue that requires a high rate of blood flow in 

order to receive an adequate oxygen supply. Oxidative damage in biological systems occurs when 

endogenous antioxidant mechanisms are overwhelmed by free oxygen radicals or reactive oxygen 

species (ROS). These radicals are extremely unstable and can cause cytotoxicity and cellular 
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damage by reacting with plasma membrane lipids, DNA, RNA and metal-containing compounds 

[13].  

 Multiple pathways have been suggested to be activated during hyperglycemia associated 

oxidative stress, which subsequently leads to damage of retinal blood vessels. These include nitric 

oxide (NO) synthesis [14, 15], NF-κβ expression, secretion of cytokines such as IL-1β, lipid 

peroxide generation, activation of retinal caspase-3, protein kinase C (PKC) stimulation and 

alterations of retinal glutamate levels [13, 16-21]. 

In advanced stages, i.e. PDR, reduced retinal blood flow induces retinal ischemia which 

leads to hypoxic conditions in the retina. Hypoxia stimulates production of a variety of local agents 

including vascular endothelial growth factor (VEGF) [7, 22-26], prostaglandins, cyclooxygenase-

2 (COX-2) and nitric oxide (NO), all of which participates in increasing vascular permeability and 

angiogenesis [7]. The VEGF family plays a key role in the regulation of vascular patency and is 

involved in both physiological and pathological angiogenesis, stimulating endothelial cells to 

migrate, proliferate and form tubes [7, 27-30]. VEGF is also a potent vascular bed permeability 

enhancer [31, 32]. Hypoxia is a stimulant for COX-2 transcription also in various tissues [7, 33-

35], including human vascular endothelium [7, 33] and neural cells [36]. NF-kβ, an oxygen 

sensitive transcription factor [7, 37, 38] mediates the induction of COX-2 in hypoxic conditions. 

The angiogenic properties of COX-2 are likely to directly involve VEGF, as COX-2 has been 

shown to up-regulate VEGF synthesis which can be inhibited with selective or non-selective COX 

inhibitors [7, 39, 40]. 

In the context of DR, the actions of prostaglandins E2 and I2 are also considered to be 

important in the development of angiogenesis, breakdown of the blood-retinal barrier and 

alterations in retinal blood flow [7, 41-46]. These prostaglandins are produced via the COX-2 
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pathway, [7, 47-49]. Prostaglandins, and in particular PGE2, are also strong inducers of VEGF in 

cell types such as synovial fibroblasts monocytes and lung and retinal Müller cells. There is 

evidence that the vascular events prior to angiogenesis may involve the induction of COX-2 

followed by VEGF. It has thus been suggested that angiogenesis may be mediated by dual 

interdependent gene expression pathways that involve COX-2 and VEGF [7, 50].   

NO is known to participate in vascular permeability and angiogenesis via interactions with 

VEGF and COX-2. NO reacts with superoxide anions to form peroxynitrite, a highly reactive 

oxidant. Excess production of peroxynitrite in diabetes may exhibit cytotoxic effects by increasing 

DNA damage, stimulating lipid peroxidation and depleting glutathione levels [51-53]. Peroxynitrite 

alters tyrosine in proteins to form nitrotyrosine and nitration of proteins can inactivate 

mitochondrial and cytosolic proteins and damage cellular elements leading to nitrative stress [54]. 

PDR is the most damaging stage of DR as it leads to the generation of abnormally located retinal 

blood vessels with weak capillary walls. Microvascular leakage from these newly formed blood 

vessels can lead to total blindness through a variety of mechanisms. 

 In addition to hyperglycemia associated increased ROS generation, it has recently been 

demonstrated that the Total Antioxidant Capacity (TAC) of the vitreous humor and aqueous humor 

is lowered in DR. Mancino et al. determined the antioxidant capacity of blood, aqueous humor and 

vitreous of controls (non-diabetic) and of patients with non-proliferative DR (NPDR) and with 

proliferative DR (PDR) [55]. The authors observed that the control group displayed significantly 

higher TAC levels than the diabetic sub-groups in both the vitreous and aqueous humor. PDR 

patients had decreased TACs in the vitreous and aqueous humor as compared with control subjects 

and with the NPDR patient subgroup, pointing to the role of oxidative stress in the progression of 
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NPDR to PDR [55]. The results strongly support the need for increased antioxidant levels in the 

retina, aqueous humor and vitreous humor. 

 

Age-Related Macular Degeneration 

Age-related macular degeneration (AMD), which can be categorized into dry and wet 

AMD, is the leading cause of irreversible vision loss in the developed world. As per the statistical 

data published by the National Eye Institute, AMD affected 1.75 million persons in the United 

States, in 2004, a number which is expected to rise to nearly 3 million by 2020 due to the aging of 

the population [56]. Like DR, progression of AMD is linked to the activation of inflammatory and 

immunological pathways [57]. Presence of excess ROS and decreased antioxidant capacity in the 

ocular tissues is also considered to play a significant role in the initiation and progression of AMD 

[58, 59]. Ding et al provides a summary of the molecular pathways involving inflammation, 

angiogenesis and oxidative stress, considered  to play a role in the development of AMD [60]. 

Cataract 

Oxidative stress induced damage to the lens fibers has also been well documented. It is 

thought that these free radicals accelerate and aggravate cataract development. Additionally, 

diabetic lenses show an impaired antioxidant capacity that increases their susceptibility to 

oxidative stress. The loss of antioxidants is exacerbated by glycation and inactivation of lens 

antioxidant enzymes like superoxide dismutase [61]. 

Glaucoma 

  Glaucoma is caused when the aqueous humor builds up in the anterior chamber. This 

causes increased pressure in the anterior chamber of the eye which is passed on to the posterior 
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segment of the eye. Elevated intraocular pressure on the retina causes imbalance in adaptive cell 

response (ant-oxidant system, anti-proteolytic system and adaptive gene expression) and cell death 

(genetic mutation, chronic and acute oxidative stress, apoptosis and mechanical stress) leading to 

retinal ganglion cell death and blindness. 

1.2. Challenges in drug delivery to the posterior segment of the eye: 

The eye is a secluded organ, protected by various physiological barriers that restrict entry 

of xenobiotics into the ocular tissues from the external environment (topical or periocular) or 

systemic circulation (Table 1.1). The choroidal blood vessels possess many large fenestrations 

and pinocytic vesicles that allow free exchange of endogenous/exogenous substances between the 

choroidal stroma and choroidal vasculature. 

Thus, systemically administered therapeutic agents can easily diffuse out into the choroidal 

stroma from the systemic circulation [62]. Bruch’s membrane, separating the choroid from the 

RPE, acts as a barrier to the diffusion of only macromolecules, like proteins and genes, and thus 

does not pose much of a diffusional barrier to small molecules. The retinal pigmented epithelium 

(RPE), on the other hand, presents a formidable permeation barrier to small drug molecules in their 

diffusion into the neural retina and vitreous humor from the choroidal stroma [62-64]. Epithelial 

cells of the RPE are joined together by tight junctions [65-69] similar to those observed in the 

blood-brain barrier, severely restricting paracellular diffusion of hydrophilic molecules. The RPE 

cells also express the efflux proteins P-gp and MRP on the basolateral membrane [70-73]. As a 

result, trans-retinal permeation of compounds that are substrates of these efflux proteins, from the 

systemic circulation (choroidal side) into the neural retina/vitreous humor, is strongly modulated 

by RPE P-gp/MRP mediated efflux. The RPE, thus, presents a major barrier to the exchange of 
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therapeutic agents between the choroidal stroma and the neural retina / vitreous humor, and is 

referred to as the outer BRB.  

 

Similar to the RPE, the endothelial cells of the blood vessels perfusing the neural retina express 

efflux proteins and tight-junction proteins [64, 74]. The efflux proteins are polarized on the apical 

Table 1.1: Route of administration dependent physiological barriers encountered in the 
diffusion path to the neural retina. 
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membrane of the endothelial cells (facing the lumen of blood vessels) and prevent entry of 

xenobiotics from the systemic circulation into the neural retina. Like in the outer BRB, tight 

junction proteins expressed on the inner BRB also severely limits paracellular diffusion of 

hydrophilic compounds. The barrier properties of the retinal blood vessel endothelial cells are 

commonly referred to as the inner BRB. Additionally, because of extensive intestinal and heapatic 

metabolism, the hydrophilic metabolites of the phytochemicals are seen in the systemic circulation 

and are available for penetration into the ocular tissues. The ambiguity in the results obtained from 

the limited number of clinical studies that have been carried out with the phytochemicals could be 

because of the inadequate delivery of the compounds into the tissues of the eye [75]. 

  Periocularly administered agents also encounter the RPE barrier. Thus, the inner and outer 

BRB acts as a considerable physiological barrier to the ocular delivery of therapeutic agents 

through the systemic and transcleral routes of administration. Additionally, transcleral permeation 

is also challenged by the scleral and choroidal blood flow and lymphatics.  

  Intravitreal and surgical interventions, though very effective, are associated with risks such 

as retinal detachment and endophthalmitis [76]. Topical administration is the most favored route 

of administration for ocular disorders. It is thought that following topical application diffusion into 

the cornea, followed by lateral migration into the sclera and then diffusion across the choroid and 

RPE into the vitreous, is the major pathway for topically administered agents [77]. Thus, scleral 

and choroidal vascular and lymphatic systems as well as the RPE present significant barriers in 

the diffusional path. Additionally, precorneal loss, corneal ultrastructure and efflux proteins 

expressed on the corneal membrane present additional physiological barriers to topically 

administered agents. Although significant advances have been made with respect to drug delivery 

into the front of the eye through the topical route, back-of the eye delivery remains a significant 
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challenge. Thus there is a necessity in development of novel noninvasive sustained release drug 

delivery strategies. 

The goal of this project is to develop novel formulations of Hesperetin (HT), 

Tetrahydrocannabinol valine hemisuccinate (THC-Val-HS) and Diclofenac sodium (DFS) and to 

evaluate in vivo ocular distribution and pharmacodynamic response through the non-invasive 

topical route. Melt-cast films and colloidal systems will be evaluated with respect to ocular 

distribution and pharmacodynamic response in vivo.  

1.3. Specific aims: 

1. Develop melt-cast films and solid lipid nanoparticles (SLN’s) of Hesperetin (HT) and 

evaluate in vivo ocular distribution in male New Zealand albino rabbits. 

2. Evaluate intraocular pressure lowering (IOP) efficacy of tetrahydrocannabinol (THC) and 

THC-Val-HS and compare with marketed formulations in a glaucoma induced rabbit 

model. 

3. Evaluation of the effect of cyclodextrins on morphology and barrier characteristics of 

isolated rabbit corneas. 

4. Development and evaluation of sustained release DFS ion exchange resin complexes 

loaded into melt cast films and their in vivo ocular distribution. 

 

 

 



12 
 

 

 

CHAPTER 2 

EVALUATION OF TOPICAL HESPERETIN MATRIX FILM AND SOLID 

LIPID NANOPARTICLES FOR POSTERIOR SEGMENT OCULAR 

DELIVERY 

 

 

 

 

 

 

 

 

 

 



13 
 

CHAPTER 2 

 

INTRODUCTION 

Bioflavonoids, a group of plant polyphenols, are reported to exhibit antioxidant, anti-

angiogenic and anti-inflammatory properties along with fluid retention reduction and capillary 

wall strengthening activities [78, 79]. Hesperidin (HD), and its aglycone hesperetin (HT), a plant 

based flavanone (Fig. 2.1A & 2.1B) obtained from Citrus sinensis, possess antioxidant [80, 81], 

and neuroprotectant properties [80], and reduces vascular permeability. HT is recognized to be 

more potent than HD in scavenging reactive oxidative species (ROS) [82-84]. HT also prevents 

the cytotoxic effect of peroxynitrites by converting them to non-toxic mono-nitrated products and 

increasing phosphorylation of extracellular-signal-regulated kinases (ERKs) [85]. Anti-

inflammatory activity of HT is thought to be achieved by inhibition of the COX-2 pathway and 

synthesis of PGE2 [86], and inhibition of nitric oxide production by blocking nitric oxide synthase 

[87, 88].  Additionally, HT was observed to increase ocular blood flow and promote recovery of 

retinal function following ischemic insult of retina [89]. Currently HT is available as an oral dietary 

supplement to improve blood flow and as a vasoprotectant. Cumulative urinary recovery of HT 

suggests a bioavailability of less than 25 % after oral administration of HD and HT [90]. Poor oral 

bioavailability of HT can be attributed to its rapid metabolism into hydrophilic glucuronide 

metabolites [91] and short half-life (Plasma half-life: 6.7 h and vitreous humor half-life: 110 min) 

[92, 93].  
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Treating the posterior segment eye diseases has always been a great challenge because of 

the unique physiological and anatomical barriers of the eye. Our earlier studies demonstrate that 

systemic application fails to deliver HT to the ocular tissues [91]. This makes topical or 

intraocular/periocular application the most effective. Less than 5 -10 % of topically applied drug, 

however, permeates into the intraocular tissues [94-96]. Various ocular delivery systems are being 

investigated to increase drug contact time and site specific delivery to the posterior segment of the 

eye using liposomal formulations and other sustained release and controlled release systems such 

as ocular inserts, collagen shields, matrix systems, and hydrogel lenses [97-100].  

The goal of the present study is to evaluate the effectiveness of topical melt-cast polymeric 

matrix systems and solid lipid nanoparticles with respect to the delivery of HT to the back-of-the-

eye tissues, especially to the retina-choroid (RC) and vitreous humor (VH). The matrix film and 

the SLN’s were evaluated in vivo for dose dependent and time dependent drug delivery in 

anesthetized and conscious animal model.   

2.2. Methods:  

2.2.1. Chemicals: 

PEO (PubChem CID: 5327147) [PolyOx® WSR N-10 (PEO N-10), MW: 100,000 

Daltons] was kindly donated by Dow Chemical Company (Midland, MI). HT (PubChem CID: 

72281) (Type HP-2, from Helix pomatia) was purchased from Sigma Aldrich (St. Louis, MO). 

Geleol™ Mono and Diglycerides NF (GMS: PubChem CID: 24699) and Compritol® 888 ATO 

(PubChem CID: 5362585) were gifted by Gattefossé. All other chemicals were purchased from 

Fisher Scientific (St. Louis, MO). 
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2.2.2. Animal tissues: 

Whole eye globes of New Zealand albino rabbits were purchased from Pel-Freez 

Biologicals® (Rogers, AK), shipped overnight in Hanks Balanced Salt Solution (HBSS) over wet 

ice [32]. Corneas and whole eye globes were used on the day of receipt. 

2.2.3. Animals: 

Male New Zealand albino rabbits (2.0 - 2.5 Kg) procured from Harlan Laboratories® 

(Indianapolis, IN) were used in all the studies. All animal experiments conformed to the tenets of 

the Association for Research in Vision and Ophthalmology statement on the Use of Animals in 

Ophthalmic and Vision Research and followed the University of Mississippi Institutional Animal 

Care and Use committee approved protocols (UM protocol # 11-006 and 14-002). 

2.2.4. Formulations:  

2.2.4.a. Preparation of polymeric matrix film: 

Melt-cast method was employed in the preparation of the polymeric matrix film (Fig 2.2). 

PEO N10 was selected as the matrix forming polymer. A physical mixture of HT and PEO N10 

was prepared by geometric dilution. Drug load in the film was 10 % or 20 % of the total weight of 

film. A 13 mm die was placed over a brass plate and heated to 70 °C using a hot plate. The physical 

mixture of HT and polymer was added in the center of the die and compressed to form a flat matrix 

surface. The mixture was further heated for 2-3 min. After cooling, 4 mm x 2 mm sections each 

weighing approximately 8 mg and with a drug load of 0.8 mg or 1.6 mg for the 10 %w/w and 20 

%w/w films, respectively, were cut out from the film.  
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2.2.4.b. Preparation of Solid lipid nanoparticles:  

HT-SLNs were prepared using a hot homogenization method followed by probe sonication 

(Fig.2.3). Accurately weighed Compritol 888 ATO (60 mg) and Glyceryl monostereate (GMS: 

340 mg) was melted, and HT (5% w/w with respect to the lipid) was dissolved therein to obtain a 

clear lipid phase. Simultaneously, an aqueous phase, containing surfactants (Poloxamer 188 and/or 

Tween 80) and glycerin (2.25% w/v) in bidistilled water, was heated. The hot aqueous phase was 

then added to the melted lipid phase under stirring (magnetic stirrer) to form a premix (600 rpm, 

1–2 min). The premix was then subjected to emulsification at 16,000 rpm for 6 min using T 25 

digital Ultra-Turrax (IKA® Works, Inc.) to form a hot pre-emulsion. This pre-emulsion was further 

subjected to ultra-sonication using Sonics VibraCellTM at 15 sec pulse rate and 80% amplitude for 

5 min. The hot emulsion thus obtained was slowly cooled to room temperature to form HT-SLNs. 

Figure 2.2: Preparation of 10% and 20% w/w HT-Film using melt-cast technology. 
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The final concentrations of the lipid and HT in the formulation were kept constant at 4% w/v and 

0.1% w/v, respectively. 

 

2.2.4.c. HT-Cyclodextrin solution (1% w/v): 

Hesperetin cyclodextrin (CD) solution (1% w/v) for topical instillation was prepared by 

dissolving accurately weighed amount of HT in 100 µL of 1N sodium hydroxide and adding this 

solution to 10% HPβCD (prepared in IPBS, pH 7.4, containing 0.1% HPMC). Final pH was 

adjusted to 7.4 using 1N hydrochloric acid. 

2.2.5. Physicochemical characterization of the HT-Film and HT-SLN’s: 

To determine HT content, the film was placed in a mixture of methanol and dimethyl 

sulfoxide (DMSO) 50:50 and sonicated for 15 min until the film was completely dissolved in the 

solvent mixture. Content uniformity was determined using four separate sections of 8 mg each, 

Figure 2.3: Preparation of HT-SLN’s using hot homogenization method followed by Ultra-probe 
sonication. 
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randomly cut from a single 13 mm film and analyzed as described under analytical procedure using 

an HPLC-UV method [101]. 

The lipid in the HT-SLN dispersion was precipitated using 190-proof alcohol, and the drug 

content in the supernatant after centrifugation (13,000 rpm for 20min), as such or after further 

dilution with 190-proof alcohol, was measured using an HPLC system. 

The percentage of HT entrapped in the SLNs (% EE) was determined by measuring the 

concentration of free drug in the aqueous phase of an undiluted IN-SLN dispersion. The EE was 

evaluated by an ultrafiltration technique with a 100-kDa centrifugal filter device composed of a 

regenerated cellulose membrane (Amicon Ultra). An aliquot (500 mL) of undiluted HT-SLN was 

added to the sample reservoir and centrifuged at 5,000 rpm for 10 min. The filtrate obtained was 

further diluted with alcohol (190 proof) and analyzed for drug content using HPLC.  

The mean particle size and the polydispersity index (PI) of HT-SLN’s were determined by 

photon correlation spectroscopy using Zetasizer Nano ZS Zen3600 (Malvern Instruments, Inc.) at 

25 oC and 173o backscatter detection in disposable folded capillary clear cells. The measurements 

were obtained using a helium-neon laser of 633 nm, and the particle size analysis data were 

evaluated using volume distribution. Zeta-potential measurements were carried out at 25 oC in 

folded capillary cells using the same instrument. For measurement of particle size distribution and 

zeta-potential, SLN samples were diluted (1:500) with water. All measurements were performed 

in triplicates. 

2.2.6. Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy 

(FTIR): 

DSC thermograms for HT, excipients, the 10 %w/w film and 0.1% HT-SLN’s was 

collected using a Diamond Differential Scanning Calorimeter (Perkin-Elmer® Life and Analytical 
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Sciences) [102].The samples were weighed and sealed in aluminum pans and were heated from 0 

oC to 270 oC at a heating rate of 10 oC/min under nitrogen purge (20 mL/min). 

Infrared spectra (IR) for excipients used in both formulations, HT, and the final 

formulations were obtained using a Cary 660 series FTIR (Agilent Technologies) and MIRacle™ 

Single Reflection ATR (PIKE Technologies). Further, the IR spectrum of the 13 mm matrix film 

was collected randomly from different areas of the film, to evaluate distribution uniformity within 

the polymer matrix.  

2.2.7. In vitro release and corneal permeability studies: 

2.2.7.a. HT-Film: 

To study the release profile of HT from the film, in vitro release studies were carried out 

as depicted in figure 2.4. Three 20 mL glass vials were taken and a 10 %w/w film (8 mg; Dose: 

0.8 mg) was placed at the bottom of each vial. A standard US 100 mesh sieve was placed over the 

film and a magnetic bead was placed on the sieve. The glass vials were placed over a magnetic 

stirrer. Similar set up was employed in 3 more vials but without the sieve and the magnetic stirrer 

Figure 2.4: Release of HT from film using standard US 100 mesh sieve and without 
sieve. 
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to evaluate the barrier characteristics of the sieve, if any. In both cases, 18 mL of 5 %w/v HPβCD 

was used as the release/dissolution medium to ensure sink conditions were maintained (0.6 mg of 

HT is soluble in 1 mL of 5 %w/v HPβCD). The temperature was maintained at 34 ± 2 oC using hot 

plates. Aliquots, 0.8 mL, were collected at specific time intervals and replaced with an equal 

volume of release medium. The release studies were carried out for a period of 2 h. Samples were 

analyzed using a HPLC-UV method [101].  

In vitro corneal permeability of HT from the matrix film was evaluated using a side-by-

side diffusion apparatus (PermeGear, Inc., Hellertown, PA) for 3 h (Fig. 2.5). The studies were 

carried out by sandwiching the film (4 mm x 2 mm; 10 %w/w HT; weighing 8 mg approximately; 

0.8 mg HT) in between a Spectra/Por® membrane (MWCO: 10,000 Daltons) and isolated rabbit 

cornea (Pel-Freez Biologicals; Rogers, AK). Corneas were excised from whole eye globes, 

following previously published protocols [103], with approximately 1 mm scleral portions 

remaining for ease of mounting. The membrane-film-cornea sandwich was then placed in between 

Figure 2.5:  Side-by-side diffusion apparatus setup used for in vitro 
release and transcorneal permeability studies. 
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the side-by-side diffusion cells (the chamber towards the Spectra/Por® membrane representing the 

periocular surface and the chamber towards the cornea representing the aqueous humor) and 

samples were collected and analyzed as described above under release study. The side-by-side 

diffusion cells maintained at 34 °C using a circulating water bath. Five percent HPβCD in isotonic 

phosphate buffer saline (IPBS) (pH 7.4) was used as the receiver medium. Aliquots (0.6 mL) were 

drawn at every 30 min interval and replaced with an equal volume of fresh buffer. Samples were 

analyzed by a HPLC-UV method [101].  

2.2.7.b. HT-SLN’s: 

To determine percentage release and transcorneal permeability of HT from the SLN’s, side-

by-side diffusion apparatus (PermeGear, Inc., Hellertown, PA), Spectra/Por® membrane and 

isolated rabbit cornea were used for the release and permeability studies respectively. Three mL 

of HT-SLN’s 0.1% w/v were filled in the donor chamber and 3.2 mL of 5%w/v RMβCD was used 

as receiver solution. Aliquots of 0.6 mL were collected at predetermined time points and replaced 

with fresh media. Samples were analyzed using HPLC-UV method. 

 2.2.8. Ex vivo studies: 

 Whole eye globes obtained from Pel-Freez were placed in 12 well tissue culture plates 

containing IPBS (pH 7.4) with corneas facing upwards. IPBS was added to the wells and was 

maintained below the level of corneo-scleral-limbus. The whole set up was maintained at 34 oC 

using a water bath. The 10 %w/w HT film was placed at the corneo-scleral-limbus and the eye 

globes were allowed to stand for 3 h. At the end of 3 h the surface of the eye globes were washed 

thoroughly and aqueous humor (AH), vitreous humor (VH) and retina-choroid (RC) were carefully 

isolated and analyzed for HT content using HPLC-UV method [101]. 
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2.2.9. In vivo bioavailability studies: 

Male New Zealand albino rabbits weighing between 2.0 - 2.5 Kg were used to determine 

in vivo bioavailability of HT from the matrix film and SLN’s in a time and dose dependent manner. 

Initially ocular distribution studies were conducted in anesthetized rabbit model. For this study 

rabbits were anesthetized using a combination of ketamine (35 mg/kg) and xylazine (3.5 mg/kg) 

injected intramuscularly, and maintained under anesthesia throughout the experiment. In these 

studies, either the 10 % or the 20 %w/w HT loaded films were placed in the conjunctival sacs of 

the rabbit eye. Similarly, 100 µL of HT-SLN’s 0.1% w/v were administered in the cul-de-sac of 

the rabbit eye.  

To evaluate the effect of active lymphatic and tear drainage on the ocular distribution of 

HT, studies were conducted in the conscious animal model also. HT-CD solution was used as 

control formulation for these studies.  

At the end of each study, rabbits were euthanized under deep anesthesia with an overdose 

of pentobarbital injected through the marginal ear vein. The eyes were washed with ice cold IPBS 

and immediately enucleated and washed again. Ocular tissues were separated, weighed and 

preserved at -80 °C until further analysis using HPLC-UV method [101]. All experiments were 

carried out in triplicate. Corneal tissues following 6 h time point were evaluated for morphological 

changes, if any. Corneas from the contra-lateral eye of the animal were used as controls. 

2.2.10. Corneal histology 

Corneas exposed to the 20 %w/w HT film (highest dose tested) for 6h (longest duration) 

in vivo were collected and evaluated for histological characteristics. Corneas excised from the 

contralateral eyes were used as controls. Extracted corneas were fixed in 2 %w/v 

paraformaldehyde and 2 %v/v gluteraldehyde in IPBS. Histological evaluation was carried out at 
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Excalibur Pathology Inc. (Oklahoma City, OK) as per previously reported protocols [104]. 

Corneas embedded in paraffin were sliced into 5µm cross sections using a microtome (American 

Optical® 820 Rotary Microtome). These sections were placed on a slide and dried overnight in an 

oven at 68 oC. The slide was washed with xylene to remove paraffin and washed with alcohol and 

water to hydrate the tissue. This was then stained with nuclear dye Gill III hematoxylin (StatLab 

medical) for 10 min and rinsed, and then counterstained with eosin. These slides were then washed 

in reverse manner (running water, alcohol, and xylene), cover slipped and examined under 

microscope (Chromavision ACIS II). 

2.2.11. Analytical procedure for in vitro Samples 

Waters HPLC system with 600 E pump controller, 717 plus auto sampler and 2487 UV 

detector was used. Data handling was carried out using an Agilent 3395 integrator. HT stock 

solution was prepared in acetonitrile (ACN). A 50:50 mixture of 20 mM phosphate buffer (pH 2.5) 

and ACN was used as mobile phase with Phenomenex Luna® 5 µm C18 100 Å, 250 x 4.6 mm 

column at a flow rate of 1 mL/min and 284 nm. 

2.2.12. Bio-analytical method 

2.2.12.a. Standard solution preparation: 

To 100 µL of aqueous humor (AH) or 500 µL of vitreous humor (VH) and to a weighed 

amount of the cornea, sclera, iris ciliary bodies (IC) and retina-choroid (RC), 20 µL of HT stock 

solution in ACN (0.5, 1, 2.5, 5, 7.5, and 10 µg/mL) was added and allowed to stand for 5 min. To 

precipitate the proteins, ice cold ACN was added to the AH and VH standards in 1:1 ratio and 1 

mL to the cornea, sclera, IC and RC standards. Final concentrations of the standard solutions 

prepared were in the range of 10 - 200 ng/mL for AH; 10 - 100 ng/mL for VH; 20 - 200 ng/mL: 

cornea & sclera and 10 - 200 ng/mL: IC & RC. All samples were centrifuged at 13,000 rpm and 4 
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oC for 30 min and analyzed using HPLC-UV. All the standard curves generated an R2 value greater 

than 0.95. Average recovery values were determined in AH (93.5 %), VH (94.7 %), IC (92.1 %), 

RC (97.3 %), cornea (89.6 %) and sclera (88.7 %).  

2.2.12.b. Sample preparation: 

Approximately 0.1 mL of AH and 0.5 mL of VH was collected from each test eye into 

individual centrifugal tubes. All other tissues, RC, IC, cornea & sclera, from each test eye were 

individually cut into very small pieces and placed into individual vials. Protein precipitation was 

carried out similar to the standard solution preparation and analyzed using HPLC-UV method. 

A mixture of 20 mM phosphate buffer (pH 2.5) and ACN in a ratio of 65:35 was used as the mobile 

phase and Phenomenex Luna® 5 µm C18 100 Å, 250 x 4.6 mm column at a flow rate of 1 mL/min 

and 284 nm.  

2.2.13. Data analysis 

All experiments were carried out at least in triplicate.  

The entrapment efficiency (EE) of HT in the SLN’s was estimated using Equation (1): 

EE (%) = [(Wi -Wf)/(Wi)] X 100 

Where,  

Wi = total drug content,  

Wf = amount of free drug in aqueous phase. 

HT release data was fitted to zero order, first order and Higuchi models (Equations 2, 3 & 4). 

Ct = C0 + K0t 

LogCt = LogC0 + Kt/2.303 

Ct = KHt1/2 

Where, 

Eq (2) 

Eq (3) 

Eq (4) 

Eq (1) 
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 C0 & Ct = concentration at time 0 min and t min, 

 K0, K & KH = kinetic constants for zero order, first order and Higuchi models. 

Drug diffusion parameters across cornea such as cumulative amount (Mn) , rate (R) and 

flux (J) were calculated using previously described method [105].  

Cumulative amount of HT released from the film was calculated using equation 5 

 

 

Where, 

 n = sampling time point (n=1, 2, 3 and 4… corresponding to 15, 30, 45 and 60..min 

respectively), 

Vr = volume of the medium in the receiver chamber (mL),  

VS = volume of the sample withdrawn at the nth time point (mL),  

Cr(n) = concentration of the drug in the receiver chamber medium at nth time point (µg/mL). 

Steady state flux was determined using equation 6 

  

 Where, 

 M = cumulative amount of HT (µg), 

 t = time (min), 

 A= surface area of cornea (0.636 cm2). 

Statistical analysis was carried out using ANOVA to compare between different groups 

and Tukey’s post-hoc HSD was used to compare differences between two groups. A ‘p’ value less 

than 0.05 was considered to denote statistically significant difference. 

 

Mn= Vr Cr(n) +  Σ 

x=n 

x=1 
Vs(x-1) Cr(x-1) Eq (5) 

Flux (J) = (dM/dt) 
A 

Eq (6) 
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2.3. Results: 

2.3.1. Physicochemical characterization: 

HT content in all the films was observed to be approximately between 90 – 93 %  of the 

theoretical values and was found to be uniformly distributed within the matrix (RSD<2.3 %).  

HT content in the SLN’s was found to be 92 - 97% of the theoretical value. Entrapment efficiency, 

particle size, polydispersity index and zeta potential were found to be 86.4 ±0.7 %, 225.5 ± 21 nm, 

0.379 and -21 ± 9 mV respectively. 

2.3.2. DSC and FTIR studies:  

2.3.2.a. HT-Film: 

DSC thermograms of PEO N10, drug and polymeric film are presented in Figure 2.6. HT 

exhibited an endotherm at 234 oC corresponding to its melting point. PEO N10 exhibited a melting 

point temperature of 65 oC. PEO N10 demonstrated an endothermic peak shift from 65 to 63 and 

60 oC with the 10 %w/w and 20 %w/w films, respectively. HT peak at 245 oC was absent in the 

melt-cast films. 

  FTIR spectra of HT showed aromatic stretching from 1650 to 1500 cm-1, and –OH phenolic 

stretching was observed at 1200 cm-1. PEO revealed -CH stretching at 2890 cm-1. Scissoring and 

wagging movement of -CH2 were observed at 1450 and 1350 cm-1. Aromatic stretch bands 

corresponding to HT and -CH stretch bands corresponding to PEO N10 were observed with the 10 

%w/w film. Similar spectral bands were observed with the 20 %w/w film (Figure 2.7).  
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Figure 2.6: Differential scanning calorimetry thermograms of hesperetin (HT) polymeric 
matrix film, PEO N10 and HT. 

Figure 2.7: FTIR spectral images of PEO N10, hesperetin (HT), 10 %w/w HT polymeric 
matrix film and 20 %w/w HT polymeric matrix film. 
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2.3.2.b. HT-SLN: 

DSC thermograms of HT, GMS, Compritol 888 ATO, lyophilized HT-SLNs, and other 

excipients used in the formulation are presented in Figure 2.8. HT had similar endothermic peak 

at 234 oC as seen in the thermograms with the matrix film. All other excipients had corresponding 

endothermic peaks between 45 and 60 oC. The thermal curve of the bulk Compritol 888 ATO and 

GMS exhibited an endothermic peak at 70-75 oC. Additionally, an endotherm at 50-55 oC 

corresponding to the melting point of Pluronic F68 was also observed in HT-SLNs. The 

endothermic peak of HT was not observed in the SLN formulation. 

Figure 2.8: DSC thermograms of A) Compritol® ATO 888, B) GMS, C) Pluronic® F-68, D) 
HT and E) HT-SLN’s. 
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FTIR spectra of  IR spectra of compritol and GMS show typical bands at 2820 cm–1, due to C-H 

stretching, and 1705 cm–1 due to C = O (carbonyl) stretching (Fig.2.9). Pluronic F68 exhibits 

characteristic peaks at 2886 and 1112 cm−1 due to stretching vibrations of C–H, and C–O groups. 

Tween 80 exhibits broad peak between 3400 and 3600 corresponding to OH stercthing. While the 

peak at 2880 corresponds to CH stretching. The spectral peak corresponding to OH group in HT 

was absent in the SLN formulation. Instead a broad peak was observed.  

2.3.3. In vitro release and corneal permeability studies: 

Release of HT from the matrix films was 95.3 ± 1.3 % (with sieve) and 89.3 ±11.9 (without 

sieve and no stirring) within 120 minutes (Fig.2.10).  Rate and flux across the corneal and 

Spectra/Por® membranes were found to be 0.37 ± 0.03 μg/min and 0.58 ± 0.05 μg/min/cm2 and 

0.57 ± 0.05 μg/min and 0.89 ± 0.06 μg/min/cm2, respectively (Fig.2.11). Under the settings 

employed release towards the periocular surface (representing the precorneal loss) of HT from the 

film was found to be 16.1 ± 4.5 % in 3 h. Cumulative precorneal loss of HT was 1.7-folds higher 

HT-SLN's 0.1 %w/v
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Figure 2.9: FTIR spectra of HT-SLN’s and different excipients used in the preparation 
of HT-SLN’s. 



28 
 

than that observed across the cornea. Cumulative amount of HT permeating across the isolated 

rabbit cornea in 3 h was determined to be 59.9 ± 5.2 µg.  

 

HT release from the SLN’s was found to be 60.7 ± 6.03% in 3 h. Rate, flux and permeability 

coefficient of HT from the SLN’s were found to be 1.4 ± 0.2 µg/min, 2.2 ± 0.24 µg/min/cm2 and 

28.7 ± 3.1 x 10-6 cm/sec respectively. 

2.3.4. Ex vivo studies: 

HT content in the AH, VH and RC were found to be 5.8 ± 0.2 μg/gm of tissue, 5.6 ± 1.4 

μg/gm of tissue, and 14.2 ± 3.8 μg/gm of tissue, respectively. Amount of HT in RC was found to 

be 2.5-fold higher compared to that in the AH or VH.  

2.3.5. In vivo studies: 

Initially, ocular tissue concentrations obtained with 10 %w/w HT loaded matrix film was 

evaluated in vivo 1h after topical application of the film in anesthetized animal model. AH, VH, 

IC, RC, cornea and sclera were analyzed for HT content. Significant levels of HT were detected 

in the IC, cornea and sclera tissues. HT levels were also observed in the back-of-the-eye tissues: 

Figure 2.11:  In vitro transcorneal 
permeability of HT from 10 %w/w matrix 
film across isolated rabbit cornea. 

Figure 2.10: Percentage release of HT from 
10 %w/w film across the standard US 100 
mesh and without sieve. 
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VH (0.05 ± 0.03 μg/gm of tissue) and RC (7.8 ± 0.2 μg/gm of tissue). When, HT load in the film 

was doubled (Dose: 1.6 mg per 4 mm x 2 mm; 8 mg of film) HT levels in the AH, IC, and cornea 

were 2-fold higher than that of the 10 %w/w HT film. With the 20 %w/w film, amount of HT in 

the posterior segment ocular tissues was found to be 1.4 ± 0.5 μg/gm of tissue (VH) and 23.5 ± 6.9 

μg/gm of tissue (RC). It was observed that doubling the dose of HT in the matrix resulted in an 

approximately 10- and 28-folds increase in scleral and VH HT concentrations, respectively. The 

results are presented in Figure 2.12 A&B.  

Ocular tissue concentrations, 3 h post topical instillation of the 10 %w/w and the 20 %w/w 

HT film in vivo, were also evaluated. Expectedly, HT concentrations at the end of 3h were 

relatively low compared to the 1 h time point. Results from the 3 h study are presented in Figure 

2.12 A&B.  

Figure 2.12 A: Ocular tissue hesperetin (HT) concentrations (µg/g of tissue) 
obtained from 10%w/w film 1h and 3h following topical application. * - 
Significantly different from 10%w/w HT-3 h. Anesthetized animal model. 



30 
 

Ocular tissue HT concentrations obtained with the 20 %w/w film was also tested 6 h post 

topical application. HT was detected in VH (0.03 ± 0.02 μg/gm of tissue), RC (0.4 ± 0.02 μg/gm 

of tissue), IC (1.5 ± 0.1 μg/gm of tissue) and sclera (6.1 ± 1.6 μg/gm of tissue) (Figure 2.8 B). Only 

the posterior segment ocular tissue concentrations were determined in the 6h study as the cornea 

was carefully isolated and taken for histology studies. Thus, both cornea and AH HT 

concentrations were not determined in the 6h study. 

Ocular distribution of HT from the SLN’s are presented in figure 2.13. Anterior chamber 

of the eye exhibited high HT levels with the HT-SLN’s 1 h post topical application. While the 

posterior segment of the eye had very little concentration of HT.  

 

Figure 2.12 B: Ocular tissue hesperetin (HT) concentrations (µg/g of tissue) 
obtained from 20%w/w film 1h, 3h and 6h following topical application. ND – not 
determined. Ψ - Significantly different from 10%w/w HT-3h and 6h, ḉ - 
Significantly different from 10%w/w HT- 1h and 6h and ḙ- Significantly different 
from 10%w/w HT- 1h and 3h. Anesthetized animal model. 
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Ocular distribution of HT in the conscious animal model with active lymphatic and tear drainage, 

HT-Film, HT-SLN’s and HT-CD solution were evaluated after 3 h of topical application. Results 

were presented in the figure 2.14.  
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Figure 2.13: Ocular tissue concentrations of HT obtained from HT-
CD, HT-SLN’s and HT-Films 1 h post topical administration in 
anesthetized animal model.  AH- Aqueous humor, VH- Vitreous 
humor, IC-Iris ciliary bodies and RC- Retina choroid. Anesthetized 
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w/v HT-10% w/v HPβCD, 20%w/w film and 0.1% HT-SLN’s at the end of 3h following topical 
application. ND – below detection limit. AH-aqueous humor, IC-Iris ciliary bodies, VH-
Vitreous humor and RC-Retina choroid. Conscious animal model.  
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Table 2.1: Compiled ocular tissue hesperetin (HT) concentrations (µg/g of tissue) obtained from 

1% w/v HT+10% w/v HPβCD, 10% w/w and 20%w/w film and 0.1% HT-SLN’s at the end of 1h, 

3h, and 6h following topical application. ND – below detection limit. AH-aqueous humor, IC-Iris 

ciliary bodies, VH-Vitreous humor and RC-Retina choroid. A-Anesthetized animal model and C-

Conscious animal model. 

Formulatio
ns 

Volume; Dose 
(mg) 

Time 
(h) 

Mode
l 

Tissue concentrations (µg/gm of tissue) 
Corne

a AH IC VH RC Scler
a 

Solution 
(1 % w/v 
HPβCD) 

100 µL; 1 mg 3 C 3.5 ± 
0.5 

0.08 ± 
0.05 

1.8 ± 
0.1 

0.02 
± 

0.01 

0.52 
± 0.1 

5.4 ± 
1.2 

Film (10% 
w/w) 

4 mm x 2 mm 
x 0.2 mm; 0.8 

mg 
1 A 14.1 ± 

0.2 
4.2 ± 
0.4 

37.6 
± 6.2 

0.05 
± 

0.03 

7.8 ± 
0.2 

5.02 
± 0.9 

Film (10% 
w/w) 

4 mm x 2 mm 
x 0.2 mm; 0.8 

mg 
3 A 8.5±0.

9 
1.2±0.

1 
4.2±
1.1 

0.06
±0.0

2 

1.8±0
.5 

14.6
±8.8 

Film (20% 
w/w) 

4 mm x 2 mm 
x 0.2 mm; 1.6 

mg 
1 A 33.5 ± 

5.4 
7.2 ± 
3.6 

44.9 
± 

19.7 

1.4 ± 
0.51 

23.5 
± 6.9 

53.2 
± 5.2 

Film (20% 
w/w) 

4 mm x 2 mm 
x 0.2 mm; 1.6 

mg 
3 A 14±1.

1 
3.4±0.

9 
7.7±
0.8 

0.16
±0.0

7 

3.3±0
.4 

39.8
±16.

1 

Film (20% 
w/w) 

4 mm x 2 mm 
x 0.2 mm; 1.6 

mg 
3 C 4.1 ± 

0.4 
0.03 ± 
0.01 

3.01 
± 0.4 

0.08 
± 

0.03 

2.3 ± 
0.96 

15.5 
± 5.7 

Film (20% 
w/w) 

4 mm x 2 mm 
x 0.2 mm; 1.6 

mg 
6 A NA NA 1.5±.

1 

0.03
±0.0

2 

0.38±
0.02 

6.1±
1.6 

SLN 
(0.1% 
w/v) 

100 µL; 0.1 
mg 1 A 16.4 ± 

5.2 
2.6 ± 
0.1 

15.2 
± 0.2 

0.03 
± 

0.01 

0.59 
± 

0.02 

1.6 ± 
0.6 

SLN 
(0.1% 
w/v) 

100 µL; 0.1 
mg 3 C 1.7 ± 

0.7 
0.01 ± 
0.001 

1.9 ± 
0.36 ND ND 0.9 ± 

0.2 
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Corneas exposed to the 20 %w/w HT film for 6 h did not show any substantial damage 

when compared to the control. Extracellular swelling of the corneal epithelium or stromal lamellae 

was observed in the control and the corneas exposed to the film representing the minor artifacts 

that were introduced during the fixating process (Fig. 2.15).  

2.4. Discussion: 

In this study HT was incorporated into a polymeric matrix system utilizing a melt-cast 

method. In this method, the active compound is embedded in a carrier matrix comprised of one or 

more meltable substances and other functional excipients. Once the formulation comes into contact 

with the release media (in vitro) or tear fluid (in vivo) it quickly transforms into a gel and releases 

the drug slowly over prolonged periods of time, depending on the matrix composition. Moreover, 

high drug loads (20 - 40 %w/w) can be easily incorporated without the need for any organic 

solvent. Importantly, both hydrophilic and hydrophobic moieties can be incorporated into the 

polymeric matrix without any difficulty. Considering the low volumes that can be administered 

Figure 2.15: Histological images of rabbit corneas exposed to 1) IPBS & 2) 20 %w/w 
HT film for 6h. 
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topically (35 - 50 µL in general) and the fact that a large number of new drug candidates are poorly 

water soluble, most of the current dosage forms require surfactants or other solubilization 

approaches. The melt-cast technology converts the compounds into its amorphous state, or 

disperses them at a molecular level in the polymer matrix, because of which the solubility of the 

compound is increased. Increased solubility could improve transcorneal permeability of the 

therapeutic agent several folds. By altering the type of matrix polymer, this process technology 

can be employed to design sustained release dosage forms.  

In this study we also evaluated solid lipid nanoparticles (SLN’s) as a secondary approach 

to deliver HT to the intraocular tissues. Nanotechnology offers many advantages in drug delivery 

from controlled release to targeted drug delivery.  SLNs have been used in the field of ocular drug 

delivery for decades. They have shown enhanced corneal absorption and improved ocular 

bioavailability of both hydrophilic and hydrophobic drugs. In this study, we have prepared HT-

SLN using a mixture of 15% Compritol and 85% GMS. Particle size of HT-SLN’s was 225 nm 

approximately. This helps improve corneal absorption and at the same time keeps them from 

getting eliminated easily from the ocular surface and tissues. With Zeta potential at -21 mV, a 

stable SLN’s were achieved. Although the polydispersity index of the SLN’s was slightly higher 

than the ideal requirement (approximately ≤0.2), further optimization of the process technique can 

be helpful. 

We prepared the melt cast films with 10 %w/w and 20 %w/w HT loads such that the total 

amount of HT per unit dosage of 4 mm x 2 mm film was maintained at 0.8 mg and 1.6 mg, 

respectively. The thickness of the films was maintained between 0.2 mm - 0.4 mm. PEO N10 was 

selected as the matrix forming material because of its good aqueous solubility, low viscosity and 

low toxicity [106]. Since the polymer is water soluble, it can easily transform into a gel and be 
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slowly washed away by the tear fluid. PEO N10 has a low melting point and an excellent film 

forming ability. This property helps in achieving smooth flexible films at low temperatures and 

can thus be employed to develop matrix films for thermo-sensitive compounds. Surface of the film 

was flat and smooth avoiding any discomfort in vivo. Uniform distribution of HT was achieved 

within the polymeric matrix by continuous geometric dilution as confirmed by both FTIR and 

HPLC analysis. PEO N10 has been reported to form simple binary eutectic mixtures due to its low 

entropy of fusion thereby improving drug release from the matrix [107, 108]. Endothermic peak 

shifts observed in the DSC thermograms could be because of this eutectic mixture formation. 

Side-by-side diffusion apparatus was employed to determine flux across the cornea. A 

modified protocol was used to represent periocular loss of HT from the film. To the best of our 

knowledge, this is the first time an in vitro model has been used to study transcorneal permeation 

in the presence of precorneal/periocular loss. In this study, flux across the Spectra/Por® membrane, 

used on the precorneal side, was 1.7-fold greater than the corneal tissue. The ratio of precorneal 

loss to corneal penetration was thus 1.7:1 under the conditions tested. By changing the 

experimental parameters (e.g. use of different backing membranes, vertical apparatus, sandwiched 

cassettes, continuous dilution of the donor chamber solution) periocular/precorneal loss can be 

increased to mimic precorneal loss in vivo and to develop in vitro in vivo correlations. The 

apparatus/set-up can be easily modified to accommodate various types of ophthalmic formulations.  

Release of HT from the film, with or without sieve, followed the Higuchi model with 

coefficient of determination (R2) 0.9899 and 0.9873, respectively. The results demonstrate that the 

sieve did not act as a barrier to HT release and diffusion in the release medium. Flux across the 

membranes exhibited zero-order kinetics. In vitro transcorneal flux was several folds greater than 
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that obtained with other formulations reported in the literature [109], even in the presence of a 

precorneal loss. This demonstrates the value of the melt-cast topical HT dosage form. 

The whole eye globes obtained from Pel-Freez Biologicals served as a good ex vivo model. 

HT film required approximately 30 min to transform into a gel in the absence of any tear fluid. 

The concentrations observed in the RC were 3-fold higher when compared to the levels in the AH 

and VH. The results suggest that the film was preferentially delivering HT to the posterior segment 

of eye through conjunctival-scleral pathway. Considering the data, from the subsequent in vivo 

studies, ocular tissue concentrations of HT in AH, VH and RPE were found to be overestimated 

in the ex vivo model due to lack of vascular and lymphatic drainage systems.  

As expected, and unlike the ex vivo studies, HT films transformed into a gel in less than 5 

min following topical application. This was much quicker when compared to the ex vivo study due 

to the presence of tear fluids. Allergic reactions such as inflammation or redness or excessive 

tearing were not observed throughout the duration of the study. Results from the topical HT films 

indicate that significant levels of HT can be delivered to the posterior segment of the eye with 

these matrix film formulations. With the 10 %w/w HT film significant amounts of HT was detected 

in both VH and RC. On doubling the amount of HT in the matrix, VH and RC levels markedly 

increased by 28- and 3-folds, respectively. Thus, a dose dependent concentration profile was 

observed from the matrix system. Significant HT levels were detected in the cornea, sclera, IC and 

AH 1 h post topical application of the matrix. The concentration profile, higher HT concentrations 

in the RC when compared to the VH, was consistent with scleral absorption pathway, as also 

suggested by the ex vivo studies. High drug concentration in the PEO matrix in close contact with 

the ocular tissues could favor direct partitioning from the matrix into the ocular tissues. This might 
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be one of the possible reasons for achieving significant intraocular tissue concentrations from the 

matrix film.  

With SLN’s, the dose administered was 8 and 16-folds lower than the 10% w/w and 20% 

w/w film. Even at such low doses HT-SLN’s were able to deliver significant levels to the anterior 

segment of the eye (Table 2.1). When compared with the solution formulation, which has a 10 fold 

higher dose than the SLN formulation, SLN’s were able to deliver much higher concentration to 

the anterior segment tissues. This shows improved ocular absorption of the nanoparticle through 

corneal route of absorption.  

Ramesh et al, have previously evaluated ocular bioavailability of HT through intravenous 

and topical routes of application [110]. In these studies, 1 %w/v HT solution (Dose: 1 mg) for 

topical instillation was prepared using 10 %w/v HPβCD and 10 %w/v RMβCD. HT concentrations 

in the AH, VH, RC and IC achieved with the 1 %w/v HT-CD solution (dose: 1 mg; 100 µL instilled 

volume) were approximately 3-5 folds lower than the levels obtained with the 10 %w/w HT film 

(Dose: 0.8 mg) in the current study. Concentrations in the sclera and cornea were similar in both 

the cases. When benzalkonium chloride (BAK) was included in the HT-CD solution formulation 

[110], the ocular tissue concentrations achieved were 2-fold higher than that obtained with the 10 

%w/w film, which did not contain any BAK, at the 1 h time point [110]. The 20 %w/w HT film, 

however, was able to deliver significantly higher HT levels in all cases. Thus, although the melt-

cast film did not have any preservatives or solubilizers, the intraocular tissue concentrations 

achieved with this dosage form were very high.  

HT is rapidly eliminated from the ocular tissues due to choroidal and lymphatic drainage. 

HT levels in all ocular tissues declined rapidly after application of both 10 % and 20 %w/w film 

(Fig.2.12A & B). Less than 50% of the concentration determined at the 1 h time point remained 
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in the VH, RC and IC 3 h post topical application, suggesting a vitreal half-life of less than 2 h. 

The results are consistent with vitreal half-life of 110 minutes reported in earlier studies [110]. 

Matrix films containing 20% HT, however, maintained significant levels in all the ocular tissues 

at the end of 3 h. In fact, with the 20 %w/v HT films a significant amount of HT was maintained 

in the VH and RC and other ocular tissues, even after 6 h post application.  

Smith et al. reported that at 0.1-0.3 µM (30.2 - 90.7 ng/mL) concentrations, HT 

demonstrates neuroprotective activity when mouse primary cortical neurons were subjected to a 

pro-apoptotic insult by exposing them to staurosporine [111]. All studies determining IC50 values 

report solution concentrations and not actual tissue concentrations. Thus, the AH and VH 

concentrations, which are in equilibrium with the anterior and posterior segment ocular tissues, 

serve as good therapeutic response indicators for IC and RC sites. Considering that the VH is on 

the receiving side with the scleral side being the dosing side (topical application) it can be expected 

that the HT concentrations in the RC or IC will be well within the therapeutic range at least for as 

long as the VH and AH concentrations are within the IC50 range. In the current study we observe 

that even at the 6h time point, the levels of HT in VH (30 ng/mL), are within this range. Although 

the AH was not analyzed at the 6h time point, since the AH concentrations were typically several 

folds greater than the VH concentrations at all time-points, following topical application, it can be 

concluded that the AH concentrations would also be within the neuroprotective concentration 

range at the 6h time point. Thus, with the 20% matrix films, ocular tissue HT concentrations were 

maintained within and above levels required for neuroprotectant activity for at least 6h post topical 

application.  

With respect to anti-oxidant activity, HT levels at the end of 1 h in the AH (4.2 µg/mL) 

was greater than the IC50 values for peroxynitrites (IC50: 4.67 µM; 1.4 µg/mL) and superoxide 
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inhibition (IC50: 7.47 µM; 2.3 µg/mL) [82]. With the 20 %w/w film, at the end of 1h, HT levels in 

both AH and VH were above these IC50 values. Levels of HT in AH (3.4 µg/mL) were maintained 

above the IC50 values for peroxynitrites and superoxide inhibition even at the end of 3h, following 

topical application of the 20 %w/w film. 

In terms of anti-inflammatory activity, Yang et al. reported that at 1-10 µM (0.3 – 3.02 

µg/mL) HT concentrations, cellular levels of COX-2 and PEG2 are markedly attenuated [112]. 

With both the 10% and 20 %w/w films, HT levels in the AH (1.2 and 3.4 µg/mL, respectively) 

were maintained within the concentration range required for COX-2 and PEG2 inhibition, even at 

the end of 3h. 

When the 1%w/v HT+10%w/v CD solution, 0.1%w/v HT-SLN’s and 20%w/w HT-Film 

formulations were tested for intraocular distribution in the conscious animal model, 3 h post topical 

application, HT concentrations in all the tissues dropped significantly compared to the anesthetized 

model. This was expected and can be attributed to the active lymphatic and tear drainage in 

conscious animals. Aqueous humor outflow is presumed to be the one of the major routes of 

elimination from the intra ocular tissues [113]. As a result, AH concentrations in all conscious 

animal model were significantly lower compared the same formulations in anesthetized model 

(Table 2.1). When these concentrations were compared against the IC50 values, films were able to 

maintain neuroprotective HT levels in all the tissues. Anti-oxidant and anti-inflammatory levels 

were maintained in IC and RC. Although SLN’s were administered at much lower doses, were 

able to deliver significant levels of HT to the anterior segment of the eye. But we were not able to 

achieve and maintain the levels in posterior segment of the eye.  

Thus, the polymeric matrix film was successfully able to deliver and maintain levels of HT 

required for neuroprotectant, anti-oxidant and anti-inflammatory activity in the ocular tissues. As 
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mentioned earlier, the AH and VH concentrations represent the innermost ocular tissues (receiver 

solutions) in the anterior and posterior segments, respectively, for a topical route of application. 

Thus, the concentrations in the retina, choroid, cornea or iris-ciliary bodies would be significantly 

higher compared to what would be achieved if the AH or VH concentrations were to represent 

donor concentrations (e.g. intravitreal injection). 

2.5. Conclusion: 

In conclusion, appreciable ocular tissue concentrations were achieved using non-invasive 

topical melt-cast films. A 2-fold increase in HT content in the matrix film led to several fold 

increase in the HT concentration in the ocular tissues. With the 20 %w/w HT film high 

concentrations of HT were maintained in the posterior segment ocular tissues even at 3 h post 

topical application. Quantifiable levels of HT was still retained in the VH and RC even after 6 h. 

While matrix films were able to deliver HT to the posterior and anterior segment of the eye, SLN’s 

can be a promising platform to deliver drug to the anterior segment of the eye. Corneal histology 

studies indicate that the formulations did not produce any damage to the ocular tissues. Thus, the 

melt-cast matrix films appear to be a promising approach for drug delivery to the back-of-the-eye.
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CHAPTER 3 

 

3.1. INTRODUCTION 

Glaucoma is an ocular neuropathy characterized by progressive and irreversible loss of 

vision. It affects nearly 60 million people worldwide and is the second leading cause of blindness 

[114]. Intraocular pressure (IOP) has been identified as an important risk factor in the pathogenesis 

of the disease [115]. Elevated IOP leads to damage to the retinal ganglion cell (RGC) axons leading 

to progressive and irreversible vision loss [116]. Current therapy targets a reduction in IOP to 

prevent progression of the disease. This, however, is often not enough to prevent or arrest the 

development of glaucoma related optic neuropathy [117-119]. A number of hypotheses exist, but 

the complete mechanism of RGC cell death has not yet been elucidated [120-122]. New classes of 

agents that can reduce IOP as well as prevent or slow the loss of RGC are direly needed.  

Δ9-Tetrahydrocannabinol (THC; Fig.3.1A), an active ingredient of the plant cannabis 

sativa, and an agonist of the cannabinoid receptors, CB1 and CB2, could potentially be such a dual 

acting anti-glaucoma agent [123-125]. The presence of cannabinoid receptors in the ocular tissues 

have been recently identified [126] lending support to a localized IOP reducing mechanism, rather 

than central nervous system involvement. What makes THC especially attractive is that in addition 

to its IOP lowering activity, THC has also demonstrated independent neuroprotective potential 

[79].  
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In terms of the route of delivery, since glaucoma is a chronic disease, non-invasive topical 

application would be the most preferred means of drug delivery.  The anatomy and physiology of 

the eye, however, presents a formidable barrier to intraocular delivery of drugs, especially to the 

back-of-the eye which is needed for neuroprotectant activity, through the topical route. The 

combination of precorneal and corneal barriers, and other physiological barriers, results in only 

about 5-10% of the topically applied drug reaching the inner ocular tissues [94, 95, 127]. 

Development of THC as an eye drop is especially challenging due to its poor aqueous solubility 

(1-2 µg/mL) and high logP (6.42) [128]. In view of the challenges in topical delivery of THC it is 

not surprising that disparity exists in the literature with respect to the efficacy of THC administered 

through the topical route [129-131]. Some reports showed IOP lowering activity of THC in 

normotensive rabbits [130], ocular hypertensive human subjects [132], rabbit glaucoma model 

[133], normotensive dogs [134] and normotensive cats [135], while several other studies showed 

no IOP lowering activity in normal human subjects [129, 136], glaucoma models [137]. In fact, 

based on the earlier data a study panel constituted by the National Eye Institute of the National 

Institutes of Health had concluded that there was insufficient evidence to conclude that THC could 

be useful in the treatment of glaucoma [138]. 

Review of the literature revealed that in most of these earlier studies evaluating the efficacy 

of THC through the topical route, researchers used mineral oil or surfactant based solutions or 

emulsions as the formulation platform. While these formulations improved solubility of THC they 

would not alter its membrane permeation characteristics. Taking into consideration the 

formulations used and the associated preclinical data, we hypothesized that THC, because of its 

lipophilic characteristics, would rapidly partition into the lipophilic corneal epithelia but would 

remain trapped there – failing to efficiently partition out into the more hydrophilic stromal layers 
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- and not reach the intraocular tissues [139]. Thus, we started evaluating various THC prodrugs to 

enhance ocular tissue permeation characteristics of THC. 

We previously synthesized and studied dicarboxylic acid prodrugs, the hemisuccinate 

(THC-HS) and the hemiglutarate (THC-HG) esters, to improve ocular bioavailability [79]. A 

significant improvement in aqueous solubility was observed due to the ionization of the molecules 

at physiological pH. Transcorneal permeability, however, remained low at physiological pH. Use 

of ion-pairs, which shielded the negative charge of THC-HG at physiological pH, significantly 

improved permeability at pH 7.4. Topical administration of THC-HG in rabbits using these ion-

pair formulations delivered THC to the front of the eye tissues, such as aqueous humor and the 

iris-ciliary bodies. THC levels were below detection levels in the retina and vitreous humor [139].  

In contrast to the dicarboxylic acid prodrugs, the amino acid THC prodrugs has shown 

greater stability, especially the valine ester, but low aqueous solubility at physiological pH [140]. 

Figure 3.1: Chemical structures of A) Δ
9
-Tetrahydrocannabinol (THC), B) Δ

9
-

Tetrahydrocannabinol Valine (THC-Val), C) Δ
9
-Tetrahydrocannabinol Valine Valine (THC-Val-

Val) and D) Δ
9
-Tetrahydrocannabinol Valine Hemisuccinate (THC-Val-HS). 
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Thus, THC-Val (Fig.3.1B) and THC-Val-Val (Fig.3.1C) were included in this study. Their ocular 

penetration and solubility in the presence of surfactants and cyclodextrins have been evaluated. 

However, due to poor aqueous solubility, Val and Val-Val were not evaluated further. 

Additionally, to overcome the drawbacks observed with the dicarboxylic acid esters and the 

solubility limitations of the amino acid prodrugs, a new amino acid-dicarboxylic acid prodrug, 

THC-Val-HS (Fig.3.1D), was designed.  

The preformulation characteristics and ocular tissue homogenate stability and IOP 

lowering activity of the most promising compound was tested in alpha-chymotrypsin induced 

rabbit glaucoma model. Therapeutic activity was compared to that of the controls - THC, timolol 

maleate and pilocaprine eye drops (the latter two being marketed ophthalmic formulations).  

3.2. MATERIALS AND METHODS 

3.2.1. Materials 

Hydroxypropyl methyl cellulose (HPMC, 4000 cps), 2-Hydroxypropyl-β-cyclodextrin 

(HPβCD), randomly-methylated-beta-cyclodextrin (RMβCD), Tyloxapol and alpha-chymotryspin 

(Type II, lyophilized powder, ≥40 units/mg protein) were purchased from Sigma-Aldrich (St. 

Louis, MO). Super Refined™ Tween 80™ was received as a gift sample from Croda Inc. (Mill 

Hall, PA). Pluronic® F 68 (Poloxomer 188), Pluronic® F 127 (Poloxomer 407) and Cremophor® 

RH 40 were received as a gift sample from BASF (Florham Park, NJ). Tocrisolve™100 was 

purchased from Tocris Biosciences (Minneapolis, MN). Timolol maleate eye drops (0.25 % w/v) 

and Pilocarpine HCl eye drops (2 %w/v) were marketed eye drops. All other chemicals and 

solvents were purchased from Fisher Scientific (St. Louis, MO).  

Buffer reagents used in the cannabinoid receptor binding studies were purchased from 

Sigma-Aldrich (St. Louis, MO). All radioligands and MicroScint™ were purchased from 
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PerkinElmer (Waltham, MA). Non-labeled controls were purchased from Tocris Bioscience 

(Minneapolis, MN). Membrane preparation was made using a Tris-HCl buffer (50 nM Tris-HCl), 

pH 7.4. Dilutions of membrane, radioligand and control/test compounds were made in a Tris-

EDTA buffer (50mM Tris-HCl, 20mM EDTA, 154mM NaCl and 0.2% fatty-acid BSA), pH 7.4.   

In vitro transcorneal permeability studies were carried out using corneas of New Zealand albino 

rabbits (isolated from whole eye globes) delivered overnight on wet ice in Hanks Balanced Salt 

Solution from Pel-Freez Biologicals® (Rogers, AK). The tissues were used on the day of receipt 

[139]. 

3.2.2. Animals 

Male New Zealand albino Rabbits (2-2.5 kg) were procured from Harlan laboratories® 

(Indianapolis, IN). All animal experiments conformed to the tenets of the Association for Research 

in Vision and Ophthalmology statement on the Use of Animals in Ophthalmic and Vision Research 

and followed the University of Mississippi Institutional Animal Care and Use Committee approved 

protocols. 

3.2.3. Synthesis and characterization of Δ9-Tetrahydrocannabinol Prodrugs 

THC-Val, THC-Val-Val and THC-Val-HS were synthesized as per previously established 

protocols [140]. The final product was purified using column chromatography and characterized 

by mass spectroscopy in the positive ionization mode. Identity and purity of the synthesized 

prodrugs was established by spectral means including 1H-NMR, 13C-NMR and 2D-NMR such as 

correlation spectroscopy (COSY), Heteronuclear single-quantum correlation spectroscopy 

(HMQC), Heteronuclear multiple-bond correlation spectroscopy (HMBC), as well as other 

spectroscopic means as reported earlier [140]. 

 

http://en.wikipedia.org/wiki/Heteronuclear_single-quantum_correlation_spectroscopy
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3.2.4. Stability of THC-Val-HS in Ocular Tissue Homogenates 

3.2.4.a. Tissue Preparation 

Aqueous humor and vitreous humor was used as such. Retina choroid and iris ciliary bodies 

used in this study were homogenized in ice cold IPBS, on an ice bath, using TISSUEMISER 

(Fisher Scientific, St Louis, USA). The homogenate was then centrifuged at 13000 rpm at 4 °C for 

15 min. Protein content in the supernatant was determined according to the method of Bradford 

[103] and were standardized to 1 mg/mL approximately. 

3.2.4.b. Hydrolysis Procedure 

The tissue homogenates were equilibrated for 30 min at 37 °C to activate the enzymes. To 

1.9 mL of the supernatant, 100 µL of THC-Val-HS (2 mg/mL) in ethanol was added and mixed. 

Hundred microliters of samples were withdrawn at specific time intervals up to 6 h post initiation. 

An equal volume of ice cold acetonitrile was added to the samples, to arrest the reaction, and 

centrifuged at 13,000 rpm for 15 min. The supernatant was collected and analyzed using HPLC-

UV method described under section Analytical Method for In vitro Studies. 

3.2.5. Formulations 

An accurately weighed amount of THC and/or the prodrug was dissolved in light mineral 

oil, NF, to prepare the mineral oil based formulation. Emulsion-1 (THC) formulations were 

prepared according to previously published protocols [141]. Tocrisolve™ emulsion formulations 

were prepared by dispersing known amount of THC or prodrug in the emulsion and sonicating for 

30 sec followed by stirring for 2 min. Micellar solutions were prepared by dissolving the 

drug/prodrug in HPβCD solution in IPBS (pH; 7.4) for 24 h and adding Cremophor® RH 40 in it 

and mixing for 2 min. Weighed amounts of BAK and EDTA were also added and the final volume 
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was made up with IPBS (pH: 7.4). All the formulations used for the IOP efficacy studies are listed 

under table 3.1.  

 

 

3.2.6. Efficacy studies 

Open angle glaucoma was induced in New Zealand white rabbits (weighing about 2-2.5 

kg). Rabbits were anesthetized by intramuscular injection of Xylazine (3.5 mg/ kg), and Ketamine 

(35 mg/kg). Chronic open ocular glaucoma was induced by a single posterior injection of alpha-

chymotrypsin (20 mg/mL, 50 µL) into the vitreal cavity [142, 143]. Care was taken to avoid the 

Ingredients THC THC-Val-HS Timolol 
maleate 

Pilocarpine 
HCl 

(%w/v) Tocrisolve 
Emulsion 

Tocrisolve 
Emulsion 

Micellar 
solution 

Aqueous 
solution 

Aqueous 
solution 

Drug/Drug 
canditate 0.37 (THC) 0.6 (THC 

equivalent) 
0.55 (THC 
equivalent) 0.25 2 

Soyabean oil 14 14 - - - 
Oleic acid 6 6 - - - 
Glycerine 2.25 2.25 - - - 
Poloxamer 188 2 2 - - - 
Lipoid E 80 1 1 - - - 
α-tocopherol 0.02 0.02 - - - 
Cremophor® 
RH 40 - - 0.25 - - 
HBβCD - - 15 - - 
HPMC - - 0.5 - X 
BAK - - 0.02 0.01 - 
EDTA - - 0.1 - X 
NaH2PO4 - - - X X 
Na2HPO4 - - - X X 

Table 3.1: THC, THC-Val-HS, Timolol maleate and pilocarpine HCl formulations used for in 
vivo efficacy studies in alpha chymotrypsin induced rabbit glaucoma model. 

HPβCD: (2-Hydroxypropyl)-β-cyclodextrin, HPMC: Hydroxypropyl methyl cellulose, BAK: 
Benzalkonium chloride, EDTA: Ethylenediamine tetra acetic acid, Na2HPO4: Dibasic sodium 
phosphate and NaH2PO4: Monobasic sodium phosphate. 
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contact of alpha-chymotrypsin with the surface of the eye. Daily ocular examination was 

conducted for a few days. Following the intravitreal injection, one drop each of ciprofloxacin, 

dexamethasone and diclofenac sodium ophthalmic solutions were instilled for about 5 days to 

prevent topical inflammation. When the elevating IOP was stabilized to 30 ± 3 mmHg 

(approximately 14 days post-intravitreal injection of alpha-chymotrypsin) for three successive 

days, the IOP lowering efficacy studies were initiated.   

For IOP lowering studies, about 50 µL of each formulation was instilled into the lower cul 

de sac of the left eye of the rabbits (n = 3), while the right eye served as control. Immediately after 

instillation the eye lid was closed for 10 seconds in order to avoid spillage of the preparation. IOP 

was measured before instillation (baseline IOP) and every 30 min post instillation till the IOP 

returned to 90% of baseline IOP using Tonovet® tonometer (Reichert Inc.). As a result of alpha 

chymotrypsin, corneal surface of the eye was very flaccid compared to the normal eye. So the 

during the IOP measurement in the glaucomatous eye, tonometer applied with slight pressure. 

Each value is an average of five concurrent measurements, in triplicates, at each time point for 

each animal. Same measurement steps were followed during each time point of the study. The IOP 

determined at each point is reported as the percent baseline IOP (± SEM) i.e. (measured 

IOP/baseline IOP) x 100.  

3.2.7. Cannabinoid Receptor Binding Assay 

Cannabinoid receptor binding studies were carried out as per previously reported methods 

[110, 144] with suitable modifications in order to determine the affinity of the designed prodrug 

in comparison with CP-55,940, a full agonist of CB1/CB2 receptors and THC, the parent 

molecule.  
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3.2.7.1. Cell Culture 

HEK293 cells (ATCC, Manassas, VA) were stably transfected via electroporation with 

full-length human recombinant cDNA (OriGene, Rockville, MD) for cannabinoid receptor 

subtypes 1 and 2. These cells were maintained at 37°C and 5% CO2 in a Dulbecco’s Modified 

Eagles’ Medium (DMEM) and F-12 HAM nutrient mixture (50/50), supplemented with 2 mM L-

glutamine, 10% fetal bovine serum, 1% penicillin− streptomycin, and G418 antibiotic solutions. 

3.2.7.2. Membrane Preparation 

Membranes were made by washing the cells with cold IPBS. The cells were lysed and 

scraped in cold Tris-HCl, pH 7.4 and then centrifuged at 5,200 x g for 10 min at 4°C. The 

supernatant was discarded and the pellet was resuspended in the same buffer and homogenized 

via Sonic Dismembrator Model 100 (Fisher Scientific, Pittsburgh, PA) for 30 seconds and then 

centrifuged at 1,000 x g for 10 min at 4°C. The supernatant was saved and the pellet underwent 

the suspension and homogenization process 2 more times with the same conditions. The 

supernatants were combined and centrifuged at 23,300 x g for 40 minutes at 4°C. The pellet was 

re-suspended in cold Tris-HCl buffer, aliquoted into 2mL vials and stored at -80°C. The total 

protein concentration was determined using a Pierce BCA Protein Assay Kit (Thermo Scientific, 

Rockford, IL) using to manufactures instructions. 

3.2.7.3. Method for Cannabinoid Receptor Binding Assay 

For each assay, non-specific binding was determined using 10μM of CP-55,940 as a 

positive control and total binding was ascertained with 0.1% DMSO in Tris-EDTA buffer. Each 

test well contained 50μL of radioligand ([3H]-CP-55,940), 50μL of compounds, control or vehicle 

and 100μL cell membrane. The assays were incubated for 90 minutes at 37°C with gentle agitation. 

The reaction was terminated via rapid filtration with cold Tris-HCl with 0.1% BSA through a 
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UniFilter GF/C 96-well plate pre-soaked with 0.5% PEI. When the filters were dry, 25μL 

MicroScint-20 was applied to each filter and the plates were read on a TopCount NXT HTS 

Microplate Scintillation Counter (PerkinElmer, Waltham, MA) where the counts per minute 

(CPM) were recorded. 

The Kd for the radioligand for each receptor was established through a membrane 

evaluation and saturation binding experiment. For the membrane evaluation experiment 1-10 μg 

of membrane was incubated with 1 nM of [3H]-CP-55,940. For the saturation assay, the optimal 

membrane concentration and 0-10 nM of [3H]-CP-55,940 was incubated with 10 μM of a non-

labeled CP-55,940 or 0.1% DMSO in buffer. Data was analyzed by a non-linear curve fit model 

using GraphPad Prism 5.04 software (GraphPad, La Jolla, CA) and the Kd value was calculated. 

The competitive binding assay was performed using the optimal concentration of membrane with 

a radioligand concentration equal to the Kd, and concentrations of each compound ranging from 

0.00032-100 μM. Each compound was tested in triplicate. The assays were performed as stated 

above. The IC50 and Ki values were calculated by a non-linear curve fit model using GraphPad 

Prism 5.0 software. 

3.2.8. Data Analysis 

Difference in variance between the groups was checked with Levenes test before carrying 

out ANOVA. Statistical significant difference among multiple groups was checked using one way 

ANOVA. Tukey’s Honestly Significant test was carried out to differentiate between the groups. A 

p value less than 0.05 was considered to be statistically significant.  
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3.3. RESULTS 

3.3.1. Preformulation studies  

The predicted physicochemical properties of THC-Val-HS, THC-Val and THC-Val-Val, 

as well as THC and THC-HG have been depicted in Table 3.2. Considering the critical 

physicochemical properties, THC-Val-HS was expected to be relatively more hydrophilic with 

improved LogDpH 7.4 and higher polar surface area, compared to the other prodrugs. 

3.3.2. Stability of THC-Val-HS in Ocular Tissue Homogenates 

Apparent first order degradation rate constants and half-life of THC-Val-HS in aqueous 

humor, vitreous humor iris ciliary bodies and retina-choroid homogenates have been depicted in 

Table 3.3. THC-Val-HS was rapidly converted to THC in the ocular tissues (t1/2: 46.4 ± 3.1 and 

39.2 ± 10.3 min, respectively).  

 

Table 3.2: Comparison of the predicted physicochemical properties of the dicarboxylic acid 
ester and Amino Acid-dicarboxylic acid ester THC Prodrugs, using ACD/I-Lab 2.0. 
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3.3.3. Efficacy studies  

THC lowered IOP in the glaucoma model, but not in the normotensive rabbits, in a dose dependent 

manner (Fig.3.2). The maximum percent drop in the IOP from the baseline IOP (ΔIOPmax) and 

time for peak IOP reduction (Tmax), both varied depending on the THC dose. With a 0.5% w/v THC 

in Tocrisolve™ formulation, IOP was 66.0 % of the baseline (at 30 min) and rapidly started 

Figure 3.2:  IOP-Time profile for THC in normotensive and α-chymotrypsin induced rabbit 
glaucoma model. Data represents Mean ± SEM. Numbers in brackets represent concentration 
and dose of THC. 
 

Table 3.3: Apparent first order rate constants (k*) and half-lives (t1/2) of THC-Val-HS in 
ocular tissue homogenates. Results are depicted as mean ± SD. 
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returning back to baseline IOP, reaching 89.2 % (at 60 min). The short duration of action observed 

with THC could be due to poor penetration and rapid elimination of THC from the eye. With a 

0.7% THC concentration, a slightly prolonged duration in IOP lowering activity was observed. 

THC (0.8 %w/v), demonstrated further improvement in IOP reduction. The percent baseline IOP 

was 64.8% at 30 min and 66.6% at 60 min. IOP started reverting back to baseline after 60 min, 

reaching 83.7% and 91.0% at 90 min and 120 min, respectively. Tocrisolve™ did not show any 

effect on IOP.  
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Figure 3.3: IOP-Time profile for THC-Val-HS in comparison with THC in rabbit glaucoma 
model. Data represents Mean ± SEM. Numbers in brackets represent concentration and dose of 
THC. 
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With THC-Val-HS emulsion and micellar solution formulations, an improved IOP 

lowering activity was observed (Fig.3.3). At a THC equivalent dose of 0.6 % w/v (THC-Val-HS: 

0.99 %w/v) improved IOP lowering activity, compared to THC, was seen. Though the onset of 

action was delayed, due to slower bioconversion of the prodrug into THC, the duration of action 

was prolonged. The maximum percent change in IOP from the baseline was observed to be at 90 

min and was maintained till the 120 min time point and reverted back to the baseline IOP by the 

end of 240 min. The overall IOP lowering profile was more profound compared to THC, even at 

a lower THC dose. THC-Val-HS formulated in the cyclodextrin + surfactant solution, also showed 

improved IOP lowering activity (THC equivalent dose: 0.55 % w/v). Although the duration of 

activity was slightly shorter compared to the emulsion formulation the overall profile remained the 

same.  

Timolol maleate eye drops showed a prolonged IOP lowering activity lasting for about 6h, 

with a maximum percent IOP change from baseline of 59% (120 min). IOP returned to baseline 

more slowly showing a longer duration of action. THC-Val-HS was slightly better in IOP lowering 

compared to Timolol, though the former showed a shorter duration of action. When compared to 

another marketed anti-glaucoma product, Pilocarpine eye drops, THC-Val-HS showed much 

improved IOP lowering activity (Fig.3.4).  
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3.3.4. Receptor binding studies 

The receptor binding studies showed that the IC50 and Ki for THC-Val-HS was much higher 

than CP-55,940 and THC for both CB1 and CB2 receptors (Fig.3.5). The Ki of CB1 receptors for 

THC-Val-HS (0.960 ± 0.174 µM) compared to that of CP-55,940 (0.003 ± 0.0 µM) and THC 

(0.044 ± 0.005) was found to be 320 and 21.8 folds higher respectively, while Ki for CB2 receptors 

for THC-Val-HS (1.2154 ± 0.0.082 µM) compared to that of CP-55,940 (0.002 µM) and THC 

(0.032 ± 0.001) was about 607.5 and 38 folds higher respectively. The IC50 values for CB1 

receptors for THC-Val-HS (1.593 ± 0.289 µM) compared to that of CP-55,940 (0.005 ± 0.001 µM) 

and THC (0.077 ± 0.008) were found to be 318.6 and 20.6 folds higher respectively, while Ki for 

CB2 receptors for THC-Val-HS (2.430 ± 0.164 µM) compared to that of CP-55,940 (0.004 ± 0.0 

Figure 3.4: IOP-Time profile for THC-Val-HS in comparison with Timolol maleate and 
Pilocarpine eye drops (marketed) in rabbit glaucoma model. Data represents Mean ± SEM. 
Numbers in brackets represent concentration and dose.  
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µM) and THC (0.047 ± 0.002) were about 607.5 and 51.7 folds higher respectively. The results 

suggested that the prodrug (THC-Val-HS) has much lower affinity for the cannabinoid receptors 

and the pharmacologically inactive as is.   

 

3.4. DISCUSSION 

We previously reported that 1 hour post topical instillation of THC eye drops, formulated 

in light mineral oil, nanoemulsion or micellar solutions, THC levels in the deeper ocular tissues 

such as the aqueous humor, iris-ciliary bodies, vitreous humor and retina choroid of anesthetized 

rabbits, could not be detected by the analytical method used [79].  A hydrophilic THC ester 

prodrug, THC-HG, formulated as an ion-pair, significantly increased ocular tissue concentrations 

in anesthetized rabbits. THC-HG, however, was not very stable in the formulations tested [141]. 

Initial studies with several amino acid ester prodrugs suggested that the valine ester prodrug was 

significantly more stable. This is consistent with previous literature reports [145, 146]. It had also 

Figure 3.5: Cannabinoid receptor (CB1 and CB2) binding studies of THC-Val-HS, THC 
and CP-55,940. 
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been suggested that addition of an amide linkage to the ester link enhances the stability of the ester 

bond [147]. The combination prodrug THC-Val-HS was thus conceived with the expectation that 

the valine ester would be the most stable and the stability of the ester bond would be enhanced by 

the amide linkage with the hemisuccinate. The hemisuccinate moiety was selected based on the 

fact that it would have the minimum chain length while providing enhanced solubility by virtue of 

ionization at physiological pH. Thus, the overall objective of this study was to evaluate THC-Val-

HS, as well as THC-Val and THC-Val-Val, in terms of its in vivo IOP lowering activity. 

The alpha-chymotrypsin induced rabbit glaucoma model was used to evaluate the in vivo 

IOP lowering activity of THC-Val-HS [142, 143, 148-151]. This model has been widely used to 

study effect of drug and drug candidates on IOP. In an attempt to increase THC loading, compared  

to that achieved with the formulations used for the bioavailability studies (Table 3.1), 

Tocrisolve™, a commercially available optimized emulsion, was used which allowed a 0.8 %w/v 

THC loading. With the THC- Tocrisolve™ emulsion formulation, a dose dependent decrease in 

IOP was observed. The IOP lowering effect duration was, however, short and IOP returned to the 

baseline value within 2h. This is consistent with the ocular distribution data obtained with the 

lower THC doses, showing poor penetration into the intraocular tissues and/or rapid clearance. 

The results however are different from that reported in an earlier study evaluating the effect of Δ8-

THC on IOP [133]. The authors reported that, 50 µL of a submicron emulsion formulation of 0.4 

%w/v ∆8-THC produced a drop of 10.83 ± 2.04 mm of Hg reduction in IOP in an alpha-

chymotrypsin induced rabbit model of ocular hypertension. Moreover, the drop in IOP lasted upto 

8 h in the animal model.  

THC did not show any effect on IOP in normotensive rabbits, suggesting an unique mode 

of action and requires further investigation [152]. Muchtar et al also reported that the drop in IOP 
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in normotensive rabbits with the submicron emulsion formulation was not significant to that 

observed in hypertensive model [133]. Crandall et al, reported that even systemic administration 

of THC (5 mg/kg body weight) did not show any drop in normotensive control eye compared to 

hypertensive eye (approximately 6 mm of Hg drop) [123].  

For THC-Val-HS also the formulations employed in the ocular disposition could dissolve 

only upto 0.25 %w/v THC, which was significantly lower than the THC dose in TocrisolveTM.  

Thus, a new formulation was prepared combining HPβCD (15 %w/v) and Cremophor® RH 40 

(0.25 %w/v) as the solubilizers, which increased the drug loading to 0.55 %w/v THC equivalent 

(THC-Val-HS: 0.9 %w/v). Tocrisolve™ emulsion could load 0.6 % w/v THC equivalent (THC-

Val-HS: 0.99 %w/v).  Both formulations were used to evaluate the effect of THC-Val-HS on IOP.  

THC-Val-HS, administered topically to the alpha-chymotrypsin induced high IOP rabbits, 

displayed a gradual onset of IOP lowering effect and a longer time to achieve maximum effect, in 

comparison to THC. THC-Val-HS exhibited a much longer duration of activity, up to 4h, even at 

a lower THC equivalent dose. The significantly increased duration observed with THC-Val-HS 

could be due to increased penetration of the prodrug into the inner ocular tissues (as seen in the 

ocular distribution studies) and, thus, availability of higher amounts of THC at the target tissues. 

The more gradual achievement of peak IOP reduction could be because of the need for 

regeneration of THC, from the prodrug, in the ocular tissues (Table 3.3). Though both 

Tocrisolve™ emulsion and micellar solution-2 were similar in IOP reduction profile, the former 

was slightly more efficacious than the latter.  

When compared to Pilocarpine HCl and Timolol maleate marketed eye drops, the IOP 

lowering action of THC-Val-HS was equivalent to that of Pilocarpine with equal intensity (if not 

more) and duration of action. Timolol maleate eye drops exhibited a prolonged IOP lowering 
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activity compared to THC-Val-HS emulsions; however, the latter was more intense in terms of 

maximum IOP reduction. The IOP lowering profiles observed for pilocarpine and timolol was 

similar to that reported in earlier studies [153, 154]. 

The receptor binding studies demonstrated that the THC Val-HS did not have significant 

affinity for both CB1 and CB2 receptors. This indicates that the cannabinoid receptor mediated 

action is solely dependent THC and that THC-Val-HS does not act as a THC analog. This is 

consistent with the gradual IOP lowering profile and the delayed maximum drop in IOP seen with 

THC-Val-HS as a result of dependence on THC regeneration.  

Thus, the present study demonstrates that a rational combination of prodrug design and 

formulation strategy can effectively deliver THC to the anterior chamber of the eye. An increased 

IOP reduction with the prodrug at lower equivalent doses of THC, supports improved ocular 

penetration of the prodrug. Importantly, with most of the conventionally developed anti-glaucoma 

drugs having no reported neuroprotective action, THC, an established neuroprotectant, has the 

potential to become an effective glaucoma medication. Further studies are currently aimed at 

developing and optimizing various formulations with improved THC delivery to the back-of-the 

eye. 



64 
 

 

 

 

 

CHAPTER 4 

 

EFFECT OF CYCLODEXTRINS ON MORPHOLOGY AND BARRIER 

CHARACTERISTICS OF ISOLATED RABBIT CORNEAS 

 

 

 

 

 

 

 

 

 

 

 



65 
 

CHAPTER 4 

 

4.1. INTRODUCTION: 

Cyclodextrins (CD’s) are a group of cyclic oligosaccharides with a hydrophobic inner core 

and a hydrophilic outer surface. Based on the number of glucopyranose units in the structure, they 

are classified into alpha (α), beta (β) and gamma (γ) CD’s (6, 7 and 8 units respectively). Over the 

last few decades, CD’s have emerged as an important pharmaceutical excipient for solubility 

enhancement of lipophilic drugs and permeability improvement across biological membranes 

[155]. CD’s act as penetration enhancers by increasing the availability of drug molecules at the 

surface of the biological membrane barrier. Because of their aqueous solubility improving 

characteristics, suitable cavity size and drug complexation efficiency [155], beta-cyclodextrins 

(βCD’s; Fig.4.1A)  such as hydroxypropyl beta cyclodextrin (HPβCD; Fig.4.1B) and randomly 

methylated beta cyclodextrin (RMβCD; Fig.4.1C) are widely used in the field of formulation and 

drug delivery.  

It is only recently that the mechanism of permeability enhancement across biological 

membranes, such as skin, buccal mucosa and cornea, have been discussed. CD’s interact with 

cholesterol present in the phospholipid monolayers of the cell membranes, thus exchanging them 

with the drugs/drug candidates held in the hydrophobic CD core (Fig.4.5). In addition to their 

utility as transcorneal permeability enhancers, by virtue of their ability to extract lipophilic 

components like cholesterol and phospholipids from the corneal membrane [156], CD’s are often 

added to the receiver solutions to maintain sink conditions during in vitro transcorneal permeability
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studies of lipophilic molecules [157]. Unknowingly damaging the cornea (epithelium, stroma 

lamellae or endothelium), 

however, may lead to altered 

permeability of the drug/drug 

candidates as a result of the 

receiver solution characteristics 

rather than formulation or 

drug/prodrug candidate 

properties. This can lead to 

misinterpretation of the results 

and overestimation of the 

permeability enhancement of the 

formulation/drug candidate if 

adequate controls were not included in the experiment design. Thus, an understanding of the effect 

of CDs on the corneal permeability characteristics, when added as a solubilizer in the receiver 

solution, is very important and has not been analyzed as yet. The aim of the present study is to 

evaluate the effect of CD concentration, duration and type on the morphological characteristics 

and barrier properties, using propranolol hydrochloride (PHCl; Fig.4.1D) as a paracellular 

diffusion marker, of isolated rabbit cornea in vitro.  

4.2.  Methods: 

4.2.1. Phase solubility studies: 

Complexation of PHCl with HPβCD and RMβCD was evaluated using phase-solubility 

studies according to the method of Higuchi and Connors [158]. Excess amount of PHCl was added 

Figure 4.1: Chemical structure of A) General structure of 
beta cyclodextrin (β-CD), B) Hydroxypropyl-βeta-
cyclodextrin (HPβCD), C) Randomly methylated-βeta-
cyclodextrin (RMβCD) and D) Propranolol (PHCl). 
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to 1 mL IPBS, containing increasing concentrations of CDs. The concentrations ranged from 2.5 - 

10 %w/v. The resulting suspensions were shaken at 25°C for 24 h in a reciprocating water bath. 

Following equilibration, the suspensions were centrifuged at 13,000 rpm for 20 min at 25°C and 

the supernatant thus obtained was analyzed using an HPLC-UV method [159].  

Phase-solubility profile was obtained by plotting the solubility of PHCl against the 

concentration of CD’s used. The binding constants (K1:1) and complexation efficiencies (CE) for 

the PHCl-CD complex were calculated from the linear region of the solubility curves using 

Equation 1 & 2: 

𝐾𝐾1:1 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑜𝑜(1−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)      Eq (1) 

𝐶𝐶𝐶𝐶 = 𝐾𝐾1:1 𝑥𝑥 𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
(1−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)

     Eq (2) 

Where K1:1 is the binding constant, So is the saturation concentration of PHCl in water, and slope 

denotes the slope of the straight line. 

4.2.2. In vitro transcorneal permeability:  

A series of in vitro transcorneal permeability studies were carried out using 9 mm side-by-

side diffusion apparatus (PermeGear Inc., Hellertown, PA).  Freshly excised rabbit whole eye 

globes received from Pel-Freez Biologicals® were used for these studies. Briefly, corneas were 

excised by making a brief incision, about 2 mm from the corneal-scleral junction and cutting 

radially along the sclera. The excised corneas were immediately mounted between the diffusion 

cells. The half-cell facing the epithelial layer was termed as the donor compartment and the other 

half towards the endothelium was termed as receiver chamber. The nomenclature is based on the 

addition of PHCl to the epithelial side half-cell. A circulating water bath was used to maintain the 

temperature at 34 °C during the transport studies.  
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In vitro transcorneal permeability studies were carried out with 2.5 and 5 %w/v HPβCD 

and RMβCD in IPBS (pH 7.4) for 1 or 3h at 34 oC. PHCl (1 mg/mL) was used as the paracellular 

marker (PHCl; pKa = 9.4). PHCl solution was always added on the donor side. Permeation studies 

were performed with IPBS as control; with CD’s on donor side only, CD’s on receiver side only 

and CD’s on both donor and receiver sides as represented in Table 4.1. Aliquots, 600 µL, were 

withdrawn at predetermined time points for 1 or 3 h and replaced with an equal volume of the 

receiver solution. Samples were analyzed by HPLC-UV system [159]. 

4.2.3. Corneal Histology:  

Histological evaluation was carried out at Excalibur Pathology Inc. (Oklahoma City, OK). 

At the end of each study, corneas were fixed in 2 %w/v paraformaldehyde and 2 %v/v 

gluteraldehyde in IPBS. Corneas embedded in paraffin were sliced into 5 µm cross sections using 

a microtome (American Optical® 820 Rotary Microtome). These sections were mounted on a slide 

and dried overnight in an oven. The slide was washed with xylene to remove paraffin and washed 

with alcohol and water to hydrate the tissue. This was then stained with nuclear dye Gill III 

hematoxylin (StatLab medical) for 10 min and rinsed, and then counterstained with eosin. These 

slides were then washed in reverse manner (running water, alcohol, and xylene), cover slipped and 

examined under microscope (Chromavision ACIS II). 

4.3. Results: 

4.3.1. Phase solubility studies: 

 Binding constants of PHCl with HPβCD and RMβCD were very low (278.1 and 326.4 µM-

1 respectively). Complexation efficiency of PHCl with HPβCD and RMβCD were 0.94 and 1.1 

respectively. RMβCD was observed to have slightly higher CE with PHCl than HPβCD. Low 
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binding constant values demonstrate that only a low fraction of PHCl was bound to either of the 

CDs and that there was more free concentrations of CDs and PHCl in the solution. 

4.3.2. CDs on receiver side: 

With 5 %w/v HPβCD and RMβCD on the receiver side permeability coefficient of PHCl 

at the end of 1 h was found to be 40.8 ± 5.7 x 10-6 cm/sec and 52.1 ± 8.4 x 10-6 cm/sec respectively 

(1.5-fold and 1.9-fold higher than the control) (Table 4.1 and Fig.4.2). Similar results were 

encountered with the use of 2.5% w/v HPβCD and RMβCD on the receiver side at the end of 1h 

(32.2 ± 4.9 x 10-6 cm/sec and 41.3 ± 6.6 x 10-6 cm/sec respectively).  

Histological studies at the end of 1 h, revealed damage to both endothelium and epithelium 

in case of 5 %w/v HPβCD on the receiver side. Stroma lamellae were found to be disrupted at 

several points on the cornea. When 5% w/v RMβCD was used on the receiver side less damage 

was caused to the epithelium, and little or no damage to the endothelium was observed. HPβCD at 

2.5% w/v caused significant rupture of the corneal epithelium, but the endothelium was found to 

Table 4.1: In vitro transcorneal permeability coefficients of PHCl at different concentrations 
of CD’s. I) IPBS without CD’s (control; 1), II) CD’s in donor solution (3 & 6), III) CD’s in 
receiver solution (2 & 5) and IV) CD’s in both donor and receiver solutions (4 & 7). 
Experiments were carried out for 1 h or 3 h. * - Experiments were carried out for 1 h and 3 h. 
Permeability coefficients were calculated only for 1 h experiment. 
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be intact. At the same concentration, RMβCD showed little damage to the epithelium and none to 

the endothelium. These studies revealed that more damage was caused when HPβCD is used in 

the receiver solution in comparison to RMβCD (both 5% w/v and 2.5% w/v) (Fig.4.3 & 4.4).  

 

4.3.3. CDs on donor side: 

The permeability coefficients of PHCl at the end of 1 h with 5 %w/v HPβCD and RMβCD 

were found to be 8.1 ± 1.2 x 10-6 cm/sec and 14.5 ± 5.2 x 10-6 cm/sec. Permeability coefficient of 

PHCl in IPBS (control) was found to be 27.02 ± 1.2 x 10-6 cm/sec. Permeability coefficients of 

PHCl were also observed to be lower than the control in case of 2.5% w/v HPβCD and RMβCD 

(Table 4.1 and Fig.4.2).  

Figure 4.2: In vitro transcorneal permeability coefficients of PHCl at different 
concentrations of CD’s. I) IPBS without CD’s (control; 1), II) CD’s in donor solution (3 & 
6), III) CD’s in receiver solution (2 & 5) and IV) CD’s in both donor and receiver solutions 
(4 & 7). 
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Histological studies revealed rupture of the corneal epithelium with the use of 5% w/v and 

2.5% w/v HPβCD in the donor solution. With 5% w/v and 2.5% w/v RMβCD on the donor side 

little or no damage was caused to the corneal epithelium. In case of control group, corneal 

morphology was found to be intact. In all the studies HPβCD and RMβCD in the donor chamber, 

at the concentrations used, did not cause any damage to the endothelium (Fig.4.3 & 4.4).  

Figure 4.3: Hematoxylin-eosin stained corneal cross-sections 1 h post exposure to 1) IPBS: 
control A, 1A) 5% w/v HPβCD in receiver solution, 2A) 5% w/v HPβCD in donor solution, 
3A) 5% w/v HPβCD in receiver and donor solutions, 4A) 5% w/v RMβCD in receiver solution, 
5A) 5% w/v RMβCD in donor solution and 6A) 5% w/v RMβCD in receiver and donor 
solutions. 
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4.3.4. CDs in both donor and receiver chamber: 

Surprisingly, use of 5 %w/v and 2.5 %w/v RMβCD in both donor and receiver chambers 

simultaneously, did not show significant difference compared to the control. Permeability 

coefficients of PHCl in control, 5 %w/v HPβCD and 5 %w/v RMβCD solutions on the donor and 

the receiver sides were observed to be 27.0 ± 1.3 x 10-6 cm/sec, 17.6 ± 1.1 x 10-6 cm/sec and 24.5 

± 3.4 x 10-6 cm/sec respectively. Permeability coefficients of PHCl in control, 2.5 %w/v HPβCD 

and 2.5 %w/v RMβCD solutions on the donor and the receiver sides were observed to be 21.3 ± 

Figure 4.4: Hematoxylin-eosin stained corneal cross-sections 1 h post exposure to 1) IPBS: 
Control B, 1B) 2.5% w/v HPβCD in receiver solution, 2B) 2.5% w/v HPβCD in donor solution, 
3B) 2.5% w/v HPβCD in receiver and donor solutions, 4B) 2.5% w/v RMβCD in receiver 
solution, 5B) 2.5% w/v RMβCD in donor solution and 6B) 2.5% w/v RMβCD in receiver and 
donor solutions. 
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1.03 x 10-6 cm/sec, 13.8 ± 0.9 x 10-6 cm/sec and 19.2 ± 2.7 x 10-6 cm/sec respectively. On an 

average, a 20% drop in the permeability was observed as a function of 50% drop in CD 

concentrations.  

No damage was observed to the corneal epithelia with 5% w/v and 2.5% w/v RMβCD. At 

the end of 1h, when 5% w/v and 2.5% w/v HPβCD solution was used in both donor and receiver 

chambers, the corneal epithelia were found to be damaged. In all cases endothelia was found to be 

intact without any significant damage compared to the control (Fig.4.3 & 4.4). When corneas were 

exposed to 2.5% w/v HPβCD on both sides for 3h, complete erosion of the epithelium was 

observed, exposing the stroma. But no significant damage to the endothelium was noted (Fig.4.5).  

 

4.4. Discussion: 

Figure 4.5: Hematoxylin-eosin stained corneal cross-sections 3 h post exposure to 1) IPBS: 
control, 1B) 2.5% w/v HPβCD in receiver and donor solutions and 2B) 2.5% w/v RMβCD in 
receiver and donor solutions. 
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CDs have become important pharmaceutical excipients due to their ability to improve 

solubility of lipophilic molecules and to enhance permeability across biological membranes. It is 

considered that CD’s increase permeability across biological membranes through their surface 

activity, membrane partitioning and cholesterol extraction characteristics [160, 161].  

In the present study, we used rabbit corneas because of their similarities to human corneal 

ultra-structure [162] and common use in in vitro studies evaluating corneal drug penetration. We 

selected HPβCD and RMβCD because of their widespread use in the ocular formulations and 

permeability studies. Permeability coefficients of PHCl were in the order of CD’s on receiver side 

> control > CD’s on both sides > CD’s on donor side. Corneal histology revealed the damage to 

Figure 4.6: Extraction of cholesterol and the exchange of active moiety by cyclodextrins from 
the phospholipid cell membrane. 
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the membranes in the order of CD’s on receiver side > CD’s on donor side > CD’s on both sides 

> control. CD’s after forming inclusion complexes are known to improve permeability of 

compounds across the biological membranes. Thus, we observed higher permeability coefficients 

with the RMβCD-PHCl complex which could be because of the higher CE of PHCl with RMβCD 

compared to HPβCD.  

RMβCD produced less corneal damage than HPβCD. This is in agreement with previous 

literature reports. Savolainen et al. studied toxicity/irritation caused by CD’s on human corneal 

epithelial cell lines and observed that the cytotoxic effect were in the order of   αCD > Dimethyl-

βCD >SBEβCD = HPβCD > γCD [163]. In another study, Lopez et al. performed a computational 

simulation of CD’s interacting with cholesterol (Fig.4.6) [164]. It was reported that within 10 ns 

of the initial interaction, CD’s orient in a perpendicular direction to the surface of the phospholipid 

monolayer and the hydroxyl groups of membrane cholesterol penetrate into the inner core of the 

CD. On an average, rate of extraction of 1 cholesterol molecule per CD was found to be 0.5 µs. 

Based on the stoichiometric ratios, it was observed that one HPβCD is required to extract one 

molecule of cholesterol or membrane lipid forming a 1:1 soluble complex [165]. In some cases, 

two molecules of CD interact with one another in a head-head, head-tail or tail-tail fashion to form 

a dimer [166]. Both head-tail and tail-tail interactions are less stable than head-head interactions 

due to their spontaneous dissociation in water. Tsamaloukas et al. reported that extraction of one 

molecule of cholesterol/membrane lipid requires two molecules of RMβCD stoichiometrically 

(cholesterol: RMβCD::1:2), since the formation of 1:1 complex is not a spontaneous process [167]. 

These reports suggest that at a given concentration, number of cholesterol molecules extracted per 
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RMβCD are less compared to HPβCD. This could probably explain why RMβCD caused less 

damage to the corneal membranes.  

Besides the type of CDs used, the duration of contact and concentration used are other 

important parameters. Duckner et al. studied the effect of HPβCD concentration on porcine corneal 

endothelium [168]. It was observed that use of 10 %w/v HPβCD caused high grade of endothelial 

damage followed by minimal damage with 1 %w/v HPβCD and none with 0.1 %w/v HPβCD 

within 3 h of the study. Similar observations were recorded in our studies also. In the current report, 

use of 5 %w/v HPβCD caused severe damage to the corneal epithelium and endothelium layers 

within 3 h of exposure. Disruptions in the stromal lamellae were also observed when CD’s were 

employed in the receiver media. Damage to the corneal layers was observed to be minimum with 

the use of 2.5 %w/v CD’s. In our study, we observed that 2.5 %w/v RMβCD causes minimal 

damage compared to HPβCD, but only after 3h of exposure. 

In the current study, permeability coefficients of PHCl were found to be higher when CD’s 

were taken on the receiver side rather than on donor side. This was attributed to the fact that corneal 

endothelium is more permeable when compared to the epithelium [169]. Due to the concentration 

gradient, CD’s incorporated in the receiver side, probably cross the endothelium and stroma and 

interacts with basal cells and tight junctions of the corneal epithelium; thus causing more damage 

to the epithelia and endothelia. In contrast, CD’s on the donor side are unable to pass through the 

non-keratinized squamous cells of the epithelia; thus causing less damage to the cornea. When 

CD’s were employed on both donor and receiver side, due to the absence of net concentration 

gradient, little or no change was observed in the corneal integrity. But prolonged exposure (3 h) to 
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CD solutions leads to the loss of the ZO-1 initiating significant damage and complete erosion of 

corneal epithelium. As a result, we observed severe damage of the corneal epithelia after 3 h 

exposure of the cornea to both HPβCD and RMβCD. 

Several studies in the literature, including some from our own laboratory, have used CDs 

in the receiver solution during in vitro transcorneal permeability evaluation [94, 156, 170-173]. In 

view of the findings from this study, it is apparent that use of CDs as solubilizers in the receiver 

solution could significantly impact transcorneal flux. Thus, it is very important to understand and 

use proper controls and experimental design during in vitro transcorneal permeability studies using 

CDs.  

4.5.  Conclusion: 

The effect of CD’s on corneal membrane in vitro was observed to be dependent on factors 

such as type of CD’s employed, type of inclusion complex formed, CD concentration and the 

duration of exposure to the biological membrane. Thus, the use of CD’s in in vitro transcorneal 

permeation experiments as solubilizers in the receiving medium, especially when used only on one 

side of the tissue, needs to be carefully considered to avoid confounding effects in the permeability 

data obtained due to damage to the corneal ultra-structure.  
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CHAPTER 5 

 

5.1. INTRODUCTION: 

Ion exchange resins (IR) are water insoluble cross linked polymers with ionizable groups 

that can be exchanged to form complexes [174]. They are differentiated into anionic and cationic 

exchange resins based on the charge of the exchangeable ionic group [175]. The strong cation 

exchangers such as AmberliteTM IRP69 contain sulfonic acid functional groups, while the weak 

cation exchange resins such as AmberliteTM IRP64 and IRP88 contain carboxylic acid functional 

groups. Similarly anion exchange resins are also divided into strong exchange resins with 

quaternary ammonium groups attached to the matrix such as DuoliteTM AP 143/1083 (Fig.5.1) and 

Amberlite® IRA-410. Weak anion exchangers such as Dowex® WGR-2, Amberlite® IRA-67 have 

tertiary amine substitutes.  

In the past, IR’s were used primarily in the field of agriculture and for the purification of 

water [176]. Application of IR’s as excipients in the field of medicine started when synthetic ion-

exchange resins were used as taste masking and as stabilizing agents in oral dosage forms [177-

180]. Drug-IR complexes show a modified release profiles when compared to the release with the 

drug [181]. Saunders and Srivatsava studied the complexation efficiencies and release kinetics of 

alkaloids from IR’s and suggested that IR’s can be used as suitable carriers for the development of 

sustained-release formulations [182]. Sriwongjanya and Bodmeier have studied the complexation 

of propranolol hydrochloride and diclofenac sodium (DFS; Fig.5.1) by Amberlite® IRP 69 and 
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Duolite® ATP-143, respectively. These drug IR complexes were loaded in hydroxyl propyl methyl 

cellulose (HPMC) matrix tablets to slow their release and achieve a sustained release profile [175].  

The use of IR’s in the field of ophthalmic formulations, however, has been given little 

interest. In the present study, we are using drug-IR complexes loaded into polymeric melt cast 

films to deliver DFS into the eye for prolonged periods of time.  DFS belongs to the class of drugs 

known as nonsteroidal anti-inflammatory drugs (NSAIDs) and are used to treat swelling (anterior 

inflammation) of the eye after cataract surgery [183]. DFS is also used after corneal refractive 

surgery [184] to temporarily relieve pain and photophobia (sensitivity to light). One drop of the 

current DFS ophthalmic solution formulation is applied to the affected eye, 4 times daily beginning 

24 hours after cataract surgery and continued throughout the first 2 weeks of the postoperative 

period [185]. 

Drug delivery to the eye has always been a challenging task due to various ocular 

physiological and dynamic barriers [99, 186]. Topical ophthalmic solutions have been the most 

accepted and conventional drug delivery system for treating ocular diseases [186]. However, they 

present major challenges when it comes to treating chronic issues such as chronic inflammation, 

dry eye, uveitis, age related macular degeneration, glaucoma and diabetic retinopathy [78, 187]. 

These diseases require long term therapy and frequent administration of eye drops. Conventional 

drops only deliver 5-10% of the applied dose into the anterior segment of the eye because of 

precorneal drainage and other ocular barriers [95, 99]. As a result, the frequency of administration 

of the eye drops is usually 4-6 times based on the severity of the pathological condition of the 

anterior segment of the eye. For posterior segment diseases, although intravitreal injections are 

very successful, they are associated with complications such as pain, infection, endopthalmitis and 

retinal detachment [187].  
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Thus, there is an unmet need for novel and efficient delivery strategies to prolong the 

duration of action of the drug or drug candidates to the eye. Some of these delivery systems include 

surface functionalized nanoparticles [188, 189], liposomes [190, 191] and matrix films [192-194].  

Of all these formulation strategies matrix films are easy to prepare and are also free of any solvents 

or other additives that might cause unwanted reactions at the site of application.  

Thus, the objective of the present study is to develop a sustained release DFS-IR complex 

(Fig.5.1) loaded polymeric matrix film for once or twice a day application based on the severity 

of the inflammation. Matrix films loaded with free DFS (uncomplexed) or DFS-IR complex or a 

combination of free and complexed DFS (DFS-IR) in various ratios were examined with respect 

to their release profiles. 

5.2. Methods: 

5.2.1. Chemicals: 

PEO [PolyOx® WSR N-10 (PEO N-10), MW: 100,000 Daltons; PubChem CID: 5327147] 

and DuoliteTM AP 143/1083 (Cholestyramine Resin USP; PubChem CID: 70695641) was kindly 

donated by Dow Chemical Company (Midland, MI). DFS (PubChem CID: 5018304) was 

purchased from Sigma Aldrich (St. Louis, MO). Pearlitol® 160 C was obtained from Roquette 

Pharma as gift sample. DFS 0.1% w/v ophthalmic solution was purchased from Akorn 

Figure 5.1: Interaction of Diclofenac sodium (DFS) 1 part in solution with 1 part of Duolite
TM

 
AP 143/1083 (resin). Chloride ion from the resin is exchanged for negatively charged 
diclofenac in solution to form DFS-IR complex. 
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pharmaceuticals Lake Forest, IL. All other chemicals were purchased from Fisher Scientific (St. 

Louis, MO).  

5.2.2. Animal tissues: 

Whole eye globes of New Zealand albino rabbits were purchased from Pel-Freez 

Biologicals® (Rogers, AK), shipped overnight in Hanks Balanced Salt Solution over wet ice [139] 

and used on the same day of receipt. 

5.2.3. Animals: 

Male New Zealand albino rabbits (2.0 - 2.5 Kg) procured from Harlan Laboratories® 

(Indianapolis, IN; now known as Envigo) were used in all the studies. All animal experiments 

confirmed to the tenets of the Association for Research in Vision and Ophthalmology statement 

on the Use of Animals in Ophthalmic and Vision Research and followed the University of 

Mississippi Institutional Animal Care and Use committee approved protocols (UM Protocol # 14-

022). 

5.2.4 Preparation of DFS-IR complex: 

Prior to the complex formation IR’s were washed thoroughly with deionized water. To 

activate the resin, they are washed with chloride and hydroxide forms and rinsed with water again. 

The drug-resin complexes were formed by batch process [195]. A concentrated aqueous solution 

of DFS (20 mg/mL) was prepared. To this, accurately weighed amount of resin in three different 

ratios (DFS:IR = 1:2, 1:1 and 2:1) was added and agitated for 24h. DFS-IR complexes, thus formed 

were separated by centrifugation, washed with deionized water to remove unbound drug and dried 

in a desiccator overnight. 
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Percentage of drug bound was calculated by analyzing the amount of drug remaining in the 

supernatant liquid using the equation 1: 

Percentage of bound drug =
A1 − A2

A3
x100 

Where A1= amount of DFS in initial aqueous solution (mg) 

A2= amount of DFS in supernatant solution (mg) 

A3= amount of IR in the solution (mg) 

To confirm the complexation of DFS with IR, Fourier transmission infrared (FTIR) spectra 

for IR, DFS and DFS-IR complex were obtained using a Cary 660 series FTIR (Agilent 

Technologies) and MIRacle™ Single Reflection ATR (PIKE Technologies).  

5.2.5. Preparation of polymeric matrix film and IR suspension: 

Melt-cast technology was employed in the preparation of the polymeric matrix film. A 

previously published protocol was used to prepare the films [192]. All matrix films were prepared 

with 20% w/w drug load. Briefly, DFS and/or DFS-IR complex was mixed with PEO N10 in 

geometric dilutions to obtain a uniform physical mixture. A 13 mm die was placed over a brass 

plate and heated to 70 °C using a hot plate. The physical mixture (200 mg) was added in the center 

of the die and compressed. The mixture was further heated for 2-3 min. After cooling, 4 mm x 2 

mm sections, each weighing approximately 8 mg and with a drug load of 1.6 mg, was cut out from 

the film. 

IR suspension was prepared by first dissolving the free DFS part into water (pH 7.2). Then 

accurately weighed amount of DFS-IR was added to the solution. Mannitol 4.5% w/v (Pearlitol® 

160 C) was added as tonicity agent. To this 0.5% HPMC (4000 cps) was added as suspending 

Eq (1) 
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agent and kept for stirring until all the HPMC got dissolved. To adjust the pH of the formulation 

to 7.3, 0.1 N hydrochloric acid or sodium hydroxide was used.  

5.2.6. Assay and content uniformity: 

To determine the assay and content uniformity of DFS in the film a static assay method 

was used [195].  A 50:50 mixture of isotonic phosphate buffer saline at pH 7.4 and dimethyl 

sulfoxide was used. Each film segment of 8 mg was placed in sufficiently large enough quantity 

of medium (50 mL) to allow for the API to unload from the resin and sonicated for 15 min. This 

cloudy suspension was kept under constant stirring for 2 h, to allow complete release of the 

complexed drug, and centrifuged at 13000 rpm for 15 min. The supernatant was filtered through 

0.2 µ filter and analyzed for free drug using HPLC-UV method. 

5.2.7. In vitro release and corneal permeability studies 

To study the release profile of DFS from the various formulations Side-A-Lyzer dialysis 

cassettes (10000 Dalton MWCO) were used. A 20 mL glass vial was filled with 18 mL of release 

media (IPBS pH 7.34) and a magnetic stirrer was added to maintain equilibrium.  Films (20 %w/w 

loading; Dose: 1.0 mg) loaded with 100% complexed DFS (1:1::DFS:IR) or with 50% un-

complexed (free) DFS and 50% complexed DFS (1+1:1) were placed in each dialysis cassette. 

Hundred microliters of IPBS was added in the dialysis cassette to wet the film. Similarly in three 

more sets (n=3), 1 mL of 0.1%w/v DFS ophthalmic solution (marketed formulation), 1:1::DFS:IR 

suspension and 1+1:1::DFS:IR complex in suspension (Dose: 1 mg) was added, to evaluate the 

effect of the matrix on the release profile. The glass vials were placed over a magnetic plate. The 

temperature was maintained at 34 ± 2 oC using calibrated hot plates. Aliquots, 0.8 mL, were 

collected at specific time intervals and replaced with an equal volume of release media. Studies 
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were carried out for a period of 24 h. Samples were analyzed using a HPLC-UV method. The 

results from the studies were fit into Zero order, first order and Huguchi models. 

In vitro corneal flux and permeability of DFS from the IR loaded film formulation was 

evaluated using a side-by-side diffusion apparatus (PermeGear, Inc., Hellertown, PA) for a period 

of 6 h. The studies were carried out by sandwiching the film (4 mm x 2 mm; 20 %w/w DFS; 

weighing 8 mg approximately; Dose: 1.6 mg) in between a Spectra/Por® membrane (MWCO: 

10,000 Daltons) and isolated rabbit cornea (Pel-Freez Biologicals; Rogers, AK). Corneas were 

excised from whole eye globes, following previously published protocols [103, 139]. The 

membrane-film-cornea sandwich was then placed in between the side-by-side diffusion cells (the 

chamber towards the Spectra/Por® membrane representing the periocular surface and the chamber 

towards the cornea representing the aqueous humor). In another set up wherein the cornea was 

mounted in between the two half-cells (membrane was not used in this case), 3 mL of DFS control 

solution and 1:1::DFS:IR complex suspension was added to the donor chamber. Phosphate buffer 

was used as receiver media (3.2 mL). The side-by-side diffusion cells maintained at 34 °C using a 

circulating water bath. Six hundred microliters of sample was collected at specific intervals of time 

and analyzed using HPLC method.  

5.2.9. In vivo bioavailability studies 

Male New Zealand albino rabbits weighing between 2.0 - 2.5 Kg were used to determine 

in vivo ocular bioavailability of DFS from the topically instilled formulations. Rabbits were kept 

conscious throughout duration of the study. In these studies, 20 %w/w DFS or DFS-IR loaded 

films were placed in the conjunctival sac of the rabbit eye (weight 8 mg; dose: 1.6 mg), while 1.6 

%w/v DFS-IR suspension (volume: 0.1 mL and dose: 1.6 mg) were administered in the eye. 

Hundred microliters of the 0.1% w/v DFS commercially marketed ophthalmic solution was 
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administered twice with half an hour gap between the two applications (at -30 and 0 min; total 

dose: 200 µg). Initially studies were carried out with 0.1% w/v DFS ophthalmic solution, 

3+1:1::DFS:IR film (3 parts DFS in uncomplexed form and 1 part in complexed form) and with 

uncomplexed DFS film for 4 h. Marketed ophthalmic solution (0.1% w/v 0.1% w/v Diclofenac 

sodium solutions from Akorn Pharmaceuticals, Lake Forest, Illinois) was used just to get an 

estimate of ocular bioavailability of DFS with the solution, but not as control formulation. 

Based on the 4h data obtained, and to determine time dependent ocular tissue 

concentrations of DFS, another set of in vivo studies were carried out for 8h exposure using the 

following formulations: 3+1:1::DFS:IR (3 parts DFS free and one part DFS bound to the IER) 

suspension, matrix films containing 3+1:1::DFS:IR, and uncomplexed DFS loaded films. Matrix 

films containing uncomplexed DFS served as the control for the DFS:IR loaded films The 

compositions of all the formulations used for the in vivo studies are reported in table 5.1.  

Table 5.1: Composition of various formulations of Diclofenac sodium (DFS) used for ocular 
disposition studies. 
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At the end of 4h and 8h post topical application (post last application in case of multiple 

applications), the rabbits were euthanized under deep anesthesia with an overdose of pentobarbital 

injected through the marginal ear vein. The eyes were washed with ice cold IPBS and immediately 

enucleated and washed again. Ocular tissues were separated, weighed and preserved at -80 °C until 

further analysis.  

5.2.11. Analytical procedure for in vitro Samples 

Waters HPLC system with 600 E pump controller, 717 plus auto sampler and 2487 UV 

detector was used. Data handling was carried out using an Agilent 3395 integrator. A 40:60 

mixture of water (pH 3.5-4.0) and ACN was used as mobile phase with Phenomenex Luna® 5 

µm C18 100 Å, 250 x 4.6 mm column at a flow rate of 1.5 mL/min and 276 nm. DFS stock solution 

was prepared in mobile phase. 

5.2.12. Bio-analytical method 

5.2.12.1. Standard solution preparation: 

To 100 µL of aqueous humor (AH) or 500 µL of vitreous humor (VH) and to a weighed 

amount of the cornea, sclera, iris ciliary bodies (IC) and retina-choroid (RC), 20 µL of DFS stock 

solution prepared in mobile phase (0.5, 1, 2.5, 5, 7.5, and 10 µg/mL) was added, vortexed and 

allowed to stand for 5 min. To precipitate the proteins, ice cold ACN was added to the AH and VH 

standards in 1:1 ratio and 1 mL to the cornea, sclera, IC and RC standards. Final concentrations of 

the standard solutions were in the range of 10 - 200 ng/mL for AH; 10 - 100 ng/mL for VH; 20 - 

200 ng/mL: cornea & sclera and 10 - 200 ng/mL: IC & RC. Similarly, blank samples were prepared 

for all the tissues by adding 20 µL of mobile phase instead of standard stock solutions. All samples 



88 
 

were centrifuged at 13,000 rpm and 4 oC for 30 min and the supernatant was analyzed using HPLC-

UV. All the standard curves generated an R2 value greater than 0.99.  

5.2.12.2. Sample preparation: 

Approximately 0.1 mL of AH and 0.5 mL of VH was collected from each test eye into 

individual centrifugal tubes. All other tissues, RC, IC, cornea & sclera, from each test eye were 

collected and weighed. Tissues were cut into very small pieces and placed into individual vials. 

Protein precipitation was carried out similar to the standard solution preparation procedure and the 

supernatant analyzed using HPLC-UV method. 

A mixture of water (pH 3.5) and ACN in a ratio of 65:35 was used as the mobile phase and 

Phenomenex Luna® 5 µm C18 100 Å, 250 x 4.6 mm column at a flow rate of 1 mL/min and 284 

nm.  

5.2.13. Data analysis 

All experiments were carried out at least in triplicate. DFS release data was fitted to zero 

order, first order and Higuchi models (Equations 2, 3 & 4). 

Ct = C0 + K0t  

LogCt = LogC0 + Kt/2.303 

Ct = KHt1/2 

Where, 

 C0 & Ct = concentration at time 0 min and t min, 

 K0, K & KH = kinetic constants for zero order, first order and Higuchi models. 

Eq (2) 

Eq (3) 

Eq (4) 
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Drug diffusion parameters across cornea such as cumulative amount (Mn) , rate (R) and 

flux (J) were calculated using previously described method [105].  

Cumulative amount of DFS released from the film was calculated using equation 5 

 

 

Where, 

 n = sampling time point (n=1, 2, 3 and 4… corresponding to 15, 30, 45 and 60…min 

respectively), 

Vr = volume of the medium in the receiver chamber (mL),  

VS = volume of the sample withdrawn at the nth time point (mL),  

Cr(n) = concentration of the drug in the receiver chamber medium at nth time point (µg/mL). 

Steady state flux was determined using equation 6 

  

 Where, 

 M = cumulative amount of DFS (µg), 

 t = time (min), 

 A = surface area of cornea (0.636 cm2). 

Rate of elimination of DFS from ocular tissues for the formulations was calculated from 

the slopes of the concentration obtained at the end of 4h and 8h time points.  

Mn= Vr Cr(n) +  Σ 

x=n 

x=1 
Vs(x-1) Cr(x-1) Eq (5) 

Flux (J) = (dM/dt) 
A 

Eq (6) 
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Statistical analysis was carried out using ANOVA to compare between different groups 

and Tukey’s post-hoc HSD was used to compare differences between two groups. A ‘p’ value less 

than 0.05 was considered to denote statistically significant difference. 

5.3. RESULTS: 

5.3.1. Complexation efficiency: 

DFS was complexed at different ratios with Duolite AP 143 (1:1, 1:2 and 2:1) and agitated 

for 24 h. When the amount of IR used was half the amount of DFS used, only a 49.3 ± 3.9% of 

complexation was observed between DFS and the resin. At 1:1 and 1:2 ratio of DFS:IR a 

complexation efficiency of approximately 99% was observed in both cases (Table 5.2). Thus, all 

further studies using complexed DFS employed 1:1 ratio of DFS: IR.  

 

Formulation Free Drug 
concentration (mg/mL) 

Amount of drug bound to 
resin (mg/mg) 

Percentage 
drug bound 

Drug 16.02 0 0 
1:2::Drug:resin 0.15 15.87 99.04 ± 0.1 
1:1::Drug:resin 0.49 15.53 99.03 ± 0.1 
2:1::Drug:resin 8.11 7.91 49.34 ± 3.9 

Table 5.2: Percentage drug bound to the resin at different ratios of drug:IR. 
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 FTIR spectra shows DFS binds to Duolite™ AP143. Characteristic peak of DFS at 3430.5 

cm-1 (N-H stretching), 1573.5 cm-1 (N-H bending) & 748.12 cm-1 (C-Cl stretching) were observed 

in the FTIR spectra. DuoliteTM AP 143 displays broad peak at about 3400 cm-1 corresponding to 

the quaternary ammonium bending vibration, peaks at 2850 t0 2900 cm-1 were corresponding to 

CH, CH2 and CH3 stretching vibrations and two bands at 1600 and 1500 cm-1 were corresponding 

to the aromatic ring. The N-H bending and C-Cl stretching were observed in DFS-IR complex 

demonstrating no covalent interaction between the drug and IR. (Fig.5.2).  

5.3.2. Assay and content uniformity studies 

DFS content in all the films was observed to be approximately between 94-103 % of the 

theoretical values. DFS was found to be uniformly distributed within the matrix film (RSD<2.3 

%).  

 

Figure 5.2: FTIR spectra of DFS, DuoliteTM AP 143/1083 (IR) and DFS-IR complex. 
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5.3.3. In vitro release and corneal permeability studies 

Release of DFS from 0.1% w/v ophthalmic solution was 80% within 6 h of the study. 

Percent release of DFS from 1:1 (100% DFS in complex form) and 1+1:1 IR-complex (1 part DFS 

free and 1 part bound to the IER) suspensions was 48.8 ± 2.3 and 72.4 ± 2.9, respectively. With 

the 1:1 and 1+1:1 DFS combination loaded in matrix films 52.7 ± 4.9 and 75.5 ± 3.8 percent of 

the DFS, respectively, was released in 24 h (Fig.5.3).  Release kinetics from each formulation is 

presented in table 5.3.  

 

Flux across the cornea was 10.2 ± 0.2 (0.1% w/v DFS ophthalmic solution), 2.0 ± 0.9 (DFS 

matrix film), 0.4 ± 0.05 (DFS:IR::1:1 film) and 0.7 ± 0.04 (DFS:IR::1+1:1 film) µg/min/cm2.  
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Figure 5.3: Percentage release of DFS up to 24 h form various ion exchange resin 
formulations and marketed ophthalmic solution. 
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Under the settings employed, DFS flux across the Spectra/Por® membrane (representing the 

precorneal loss) was 3.0 ± 0.2 and 5.5 ± 0.6 from 1:1 and 1+1:1::DFS:IR film in 6 h respectively. 

Rate and flux of DFS from various formulations is represented in table 5.4.  

5.3.4. In vivo studies 

Initially, ocular tissue concentrations were evaluated in vivo, 4h post topical application of 

the DFS formulations. Ocular tissue concentrations of DFS were analyzed only in the anterior 

segment of the eye (AH and IC) for the initial study. With 0.1% w/v DFS ophthalmic solution, 

181.4 ± 64.8 and 932.4 ± 422.0 ng of DFS/gm of tissue were detected in AH and IC, respectively, 

Table 5.3: Rate constant and Coefficient of correlation of percentage release of DFS from 
different formulations of DFS fitted into Zero order, first order and Higuchi model. 

Table 5.4: Rate and flux of DFS across isolated rabbit cornea from various formulations. 
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at the end of 4 h. Matrix film with uncomplexed/free  DFS was able to deliver 2.68 ± 0.2 µg and 

2.7 ± 0.06 µg of DFS/gm of tissue to AH and IC respectively. As expected, matrix film with IR 

complex delivered lower amounts of DFS to the anterior segment of the eye due to presence of the 

complexed form. Matrix film with DFS:IR complex was able to deliver 0.9  ± 0.2 and 1.02 ± 0.05 

µg of DFS/gm of tissue to AH and IC respectively.  

To evaluate the sustained release effect of the matrix film with DFS and IR complex, the 

study was carried out for 8 h. DFS free and complexed with IR’s such that 3 parts of the total DFS 

dose was in uncomplexed form and 1 part was bound to the IER’s (3+1:1) in solution was used as 

control. All the tissues including RC and VH were analyzed following the 8 h time point.  DFS 

levels were below the limit of detection in VH with all the formulations tested. Matrix film loaded 
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Figure 5.4A: DFS concentrations form various formulations in Aqueous humor (AH) and iris 
ciliary bodies (IC), 4 h post topical application. Conscious animal model. 



95 
 

with free DFS was able to deliver 0.75 ± 0.06 µg/gm of AH, 0.78 ± 0.35 µg/gm of IC, 7.5 ± 3.4 
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Figure 5.4B: DFS concentrations form various formulations in Aqueous humor (AH) and iris 
ciliary bodies (IC), 8 h post topical application. Conscious animal model. 

Table 5.5: Ocular tissue concentration of DFS obtained from various formulations of DFS. 
AH-Aqueous humor, IC-Iris ciliary bodies, RC-Retina-choroid. NA- not analyzed, ND- 
below detection limit. 
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µg/gm of cornea and 14.6 ± 4.8 µg/gm of sclera. DFS-IR film was able to deliver AH: 0.36 ± 0.06 

µg/g of tissue, RC: 89.2 ± 24.2 ng/g of tissue, IC: 662.6 ± 153.5 ng/g of tissue, Cornea: 2.3 ± 1.4 

µg/gm of tissue and Sclera: 7.02 ± 4.03 µg/gm of tissue. At an equivalent dose, DFS-IR complex 

in solution delivered much lower concentrations than the film. Results from in vivo studies are 

presented in table 5.5 and figure 5.4 A and B.  

Rates of elimination for both AH and IC for the DFS film were twice that of DFS-IR film 

(Fig.5.5 A & B). Rate of elimination of DFS in AH and IC from film were 0.2375 and 0.2347 µg/h 

respectively. While for the film loaded with IR complexes AH (0.0623 µg/h) and IC (0.0441 µg/h).  

5.4. Discussion:  

Use of IRs in the field of drug delivery as taste masking and controlled release excipients 

has been reported. Recently, IR’s have also been used in ophthalmic dosage forms to achieve 

sustained release profiles and improved bioavailability. Jain et al developed a suspension 

formulation of betaxalol hydrochloride (Betoptic® S) by binding it to IR’s Betoptic® S retards 

drug release in the tear, increases retention at the ocular surface and enhances drug bioavailability. 

As a result, Betoptic® S 0.25% is found to be bioequivalent to Betoptic Solution 0.5% in terms of 

lowering of intraocular pressure.  

Our aim in this project was to develop a matrix film loaded with IR’s for immediate and 

sustained release profiles, thus providing both loading and maintenance doses. This could be 

achieved by keeping part of drug in the free or uncomplexed state in the matrix film. In the present 

study, an 8 mg matrix film with a 20% w/w drug load (1.6 mg of drug) was prepared. Of this 1.6 

mg, 3 part (1.2 mg) is maintained in uncomplexed for immediate release and the other 0.4 mg (1 

part) is in the complexed state to provide the sustained release profile. The matrix film by itself 
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adds to the sustained release profile. These amounts can be modified accordingly to achieve the 

required drug release profiles. 

Duolite™ AP143 resin is an insoluble, strongly basic, anion exchange resin supplied as a 

dry powder. It is suitable for use in pharmaceutical applications, both as an active ingredient (for 

adsorption of toxic chemicals) and as a carrier for acidic (anionic) drugs [174]. Since DFS is 

negatively charged in the solution, DFS forms a complex with the positively charged Duolite™ 

AP143. In the present study we evaluated the complexation efficiency of DFS with the resin at 

varying weight ratios of DFS and IR as mentioned in table 5.1. No significant differences were 

observed between 1:1 and 1:2 DFS:IR in terms of complexation efficiency. Thus, further studies 

were carried out using the 1:1::DFS:IR complexation ratio. Additional amounts of free DFS was 

added to provide immediate release.  

In vitro release of DFS from IR complexed formulations show an immediate release profile 

followed by the sustained release profile. A 100% release was observed with the 0.1% DFS 

ophthalmic solution in 24 h. With 1+1:1 complex in film, unbound DFS was released in first 2 h. 

Due to constant equilibrium between the IR and the DFS, a sustained release of remaining DFS 

was observed from the complex in the later part of the release profile. The release of DFS from 

1+1:1 complex in suspended state was slower compared to the film. This can be attributed to the 

greater concentration gradient from the film than the solution formulation. In film the 1.6 mg of 

DFS is concentrated in 4 mm x 2 mm surface area, where as in a solution it is distributed over a 

greater surface and reducing the concentration gradient. DFS:IR::1:1 film and suspension showed 

approximately 33% less release compared to the 1+1:1 complex. This is because of the absence of 

the free DFS and the total DFS was in complexed state, the release was more sustained. Similarly, 

1:1 film showed slightly higher release than the suspension. All the results when fitted into into 
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zero order, first order and higuchi kinetics, it was observed that the 0.1% ophthalmic solution was 

following first order release kinetics with coefficient of relation (R2) 0.9895. But all other 

formulations (1:1::DFS:IR solution, 1:1::DFS:IR film, 1+1:1::DFS:IR solution and 1+1:1::DFS:IR 

film) were best fitted for Higuchi model with coefficient of relations (R2) 0.9894, 0.9913, 0.9871 

and 0.9567 respectively (Table 5.3). This demonstrates that the release from the IR complexes is 

more controlled.  

In vitro transcorneal permeability studies were performed over a period of 6 h. With 

DFS:IR::1:1 film (total 1.6 mg in complexed state) flux across the isolated cornea was 

approximately half of the flux obtained from 1+1:1::DFS:IR film (Of the total dose, 0.8 mg was 

free and 0.8 mg was in complexed state). Presence of free 1 part of DFS in the 1+1:1::DFS:IR film 

was aiding in the increased flux of DFS across the cornea. Similarly, flux with DFS film was higher 

than that of 1+1:1::DFS:IR film. With 1+1:1::DFS:IR film, flux was 1/3rd of the flux obtained from 

the unbound DFS film (Table 5.4). This was because the total dose (1.6 mg of DFS) was in 

unbound state. In case of ophthalmic solution, the total DFS is in solution without any rate 

controlling material for the permeation of DFS across the cornea resulting in high flux compared 

to all other formulations. 

Based on in vitro release and permeability results, 1+1:1::DFS:IR formulations are holding 

DFS for longer duration. For 50% release of DFS to release from the 1+1:1::DFS:IR formulations, 

it is talking approximately 12 h. To improve the % drug release from the formulations, in vivo 

studies were carried out with 3 parts of unbound DFS (1.2 mg) and 1 part (0.4 mg) of IR bound 

DFS out of 1.6 mg dose. Conscious rabbit models were used for the study to keep the active 

lymphatic drainage and tear turnover rate unaffected. When 3+1::DFS:IR complexes in solution  
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were administered, slight increase in the eye blinking was observed in the rabbits compared to the 

ophthalmic solution. As per USP guidelines, any ophthalmic solution preparation containing 

particles greater than 10 µm would be recognized as foreign particle by the eye causing discomfort 

[196]. As a result 3+1::DFS:IR complexes in suspension formulation was causing discomfort to 

the rabbit eye. Polymeric matrix film did not cause any excessive tearing, redness or allergies to 

the eye as reported in our previous study [192]. When 3+1::DFS:IR film was applied to the eye, 

there was no excess blinking or tearing in the rabbits. This is because the particles were embedded 

in the film and did not cause any discomfort to the eye.  

DFS ophthalmic solution was administered into the rabbits to estimate the minimal basal 

levels of DFS, but not as a control. As expected, with 0.1% w/v ophthalmic solution, ocular tissue 

concentrations in AH and IC were very less at the end of 4h compared to other formulations (181.3 

± 64.8 and 932.4 ± 422.01 ng/gm of tissue respectively). Matrix film with DFS gave very high 

ocular tissue concentrations in the AH and IC. These levels were much higher compared to the 

3+1:1::DFS:IR matrix film. The matrix film transforms into gel and starts releasing the drug much 

faster than an IR film. As a result, we can see both AH and IC loaded with DFS in first the 4h post 

topical application of DFS film.  

On the other hand, as 3+1:1::DFS:IR matrix film transforms into gel it starts releasing the 

free drug. Simultaneously, the bound DFS is also exchanged for the counter ions in the tear fluid 

and released into the tissues. IR’s have the ability to form in situ complexes [175]. As a results 

some of the free DFS again starts forming complex to maintain the equilibrium. Because of this 

constant change in the equilibrium the ocular tissue levels obtained from the 3+1:1::DFS:IR film 

were less compared to the DFS film. 
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DFS and 3+1:1::DFS:IR films were evaluated for ocular tissue distribution, 8h post topical 

administration. Along with the above two formulations, 3+1:1::DFS:IR in suspension (same dose) 

was also tested for ocular distribution to evaluate the effect of polymeric matrix film. When 

3+1:1::DFS:IR was administered in suspension state, ocular tissue concentrations achieved  were 

similar (in AH) and less (in IC). This is because the suspension formulation is getting drained off 

from ocular surface due to precorneal loss even before getting released and absorbed from IR. At 

the end of 8 h, with DFS film the levels in AH and IC were higher than the 3+1:1::DFS:IR in 

suspension and in film. But it is very important to note that the rate of elimination of DFS from 

ocular tissues at the end of 4 h and 8 h was much higher in AH and IC from DFS (3.7 and 3.3 fold 

respectively) compared to 3+1:1::DFS:IR film rate of elimination of DFS was less (2.5 and 1.5 

fold in AH and IC respectively). Since there is a constant release of DFS from IR, ocular tissues 

were supplied with DFS continuously. As a result, rate of elimination in these tissues was much 

Figure 5.5A: Rate of elimination of DFS concentrations form 
Aqueous humor (AH) at the end of 8 h post topical application. 
Conscious animal model. 



101 
 

less compared to the DFS film. The rate of elimination for the film without IR was very high 

compared to IR loaded film (Fig.5.5 A & B).  

With 3+1:1::DFS:IR in suspension state, there was not enough concentration gradient build 

up and most of the DFS was restricted to cornea and sclera. At the end of 8h, posterior segment 

ocular tissues were also evaluated of DFS concentrations. None of the formulations were able to 

deliver detectable levels of DFS in VH. Film with 3+1:1::DFS:IR was able to deliver very minimal 

but detectable levels of DFS to RC (89.2 ± 24.2 ng/gm of tissue).  

According to Blanco et al, half-maximal inhibitory concentration (IC50) values of DFS for 

inhibiting COX-1 and COX-2 enzymes are [197] 0.611 µM (194.4 ng/mL) and 0.63 µM (200.4 

ng/mL). DFS concentrations obtained from both solution formulations in AH were below IC50 

levels. Both films with uncomplexed DFS and with a combination of free and complexed DFS:IRs 

were able to maintain significant levels of DFS in the ocular tissues even at the end of 8 h post 

topical application. Additionally, rate of elimination from the inner ocular tissues with the DFS:IR 

Figure 5.5B: Rate of elimination of DFS concentrations form Iris 
ciliary bodies (IC) at the end of 8 h post topical application. 
Conscious animal model. 



102 
 

film was significantly lower compared to the film loaded with free DFS. Thus, DFS:IR loaded 

matrix films can maintain DFS levels for prolonged period of time and may provide at least a twice 

a day application. Moreover, the IR loaded dosage form avoids the spikes in the ocular tissues 

noted with the other dosage forms including the free drug loaded matrix films. 

5.5. Conclusion:  

Ocular tissue concentrations of DFS from film demonstrated high concentrations in 

aqueous humor and iris-ciliary bodies. Although, DFS film was able to load the tissues with the 

drug, DFS-IR film showed more controlled release across the tissues. Interestingly, only the IR 

film was able to deliver the drug the posterior segment of the eye (retina-choroid). Thus, drug IR 

complexes loaded into a matrix film can be a perfect platform for an immediate and sustained 

release delivery systems. Modification of the IR-film using different resins, different concentration 

of unbound drug and drug IR complexes can be used to meet the requirement of individual drug 

release profiles. 



103 
 

 

 

 

 

 

 

 

 

 

 

BIBILIOGRAPHY



104 
 

1. Kawanishi, K., H. Ueda, and M. Moriyasu, Aldose reductase inhibitors from the nature. 
Curr Med Chem, 2003. 10(15): p. 1353-74. 

2. Arden, G.B., The absence of diabetic retinopathy in patients with retinitis pigmentosa: 
implications for pathophysiology and possible treatment. Br J Ophthalmol, 2001. 85(3): p. 
366-70. 

3. Kowluru, R.A. and S. Odenbach, Role of interleukin-1beta in the development of 
retinopathy in rats: effect of antioxidants. Invest Ophthalmol Vis Sci, 2004. 45(11): p. 
4161-6. 

4. Fong, D.S., et al., Diabetic retinopathy. Diabetes Care, 2003. 26 Suppl 1: p. S99-S102. 
5. Lieth, E., et al., Retinal neurodegeneration: early pathology in diabetes. Clin Experiment 

Ophthalmol, 2000. 28(1): p. 3-8. 
6. Gardner, T.W., et al., New insights into the pathophysiology of diabetic retinopathy: 

potential cell-specific therapeutic targets. Diabetes Technol Ther, 2000. 2(4): p. 601-8. 
7. Wilkinson-Berka, J.L., Vasoactive factors and diabetic retinopathy: vascular endothelial 

growth factor, cycoloxygenase-2 and nitric oxide. Curr Pharm Des, 2004. 10(27): p. 3331-
48. 

8. Watkins, P.J., Retinopathy. BMJ, 2003. 326(7395): p. 924-6. 
9. Watkins, P.J., Diabetic complications: retinopathy. Br Med J (Clin Res Ed), 1982. 

285(6339): p. 425-7. 
10. Fong, D.S., et al., Diabetic retinopathy. Diabetes Care, 2003. 26(1): p. 226-9. 
11. Tout, S., et al., The role of Muller cells in the formation of the blood-retinal barrier. 

Neuroscience, 1993. 55(1): p. 291-301. 
12. Aizu, Y., et al., Degeneration of retinal neuronal processes and pigment epithelium in the 

early stage of the streptozotocin-diabetic rats. Neuropathology, 2002. 22(3): p. 161-70. 
13. Niesman, M.R., K.A. Johnson, and J.S. Penn, Therapeutic effect of liposomal superoxide 

dismutase in an animal model of retinopathy of prematurity. Neurochem Res, 1997. 22(5): 
p. 597-605. 

14. Flynn, J.T., et al., Retinopathy of prematurity. A randomized, prospective trial of 
transcutaneous oxygen monitoring. Ophthalmology, 1987. 94(6): p. 630-8. 

15. Penn, J.S., Oxygen-induced retinopathy in the rat: possible contribution of peroxidation 
reactions. Doc Ophthalmol, 1990. 74(3): p. 179-86. 

16. Chan, P.H., Antioxidant-dependent amelioration of brain injury: role of CuZn-superoxide 
dismutase. J Neurotrauma, 1992. 9 Suppl 2: p. S417-23. 

17. Stanimirovic, D.B., et al., Liposome-entrapped superoxide dismutase reduces 
ischemia/reperfusion 'oxidative stress' in gerbil brain. Neurochem Res, 1994. 19(12): p. 
1473-8. 

18. Nielsen, J.C., M.I. Naash, and R.E. Anderson, The regional distribution of vitamins E and 
C in mature and premature human retinas. Invest Ophthalmol Vis Sci, 1988. 29(1): p. 22-
6. 

19. Kowluru, R.A., et al., Diabetes-induced activation of nuclear transcriptional factor in the 
retina, and its inhibition by antioxidants. Free Radic Res, 2003. 37(11): p. 1169-80. 

20. Kowluru, R.A., Diabetes-induced elevations in retinal oxidative stress, protein kinase C 
and nitric oxide are interrelated. Acta Diabetol, 2001. 38(4): p. 179-85. 

21. Serou, M.J., M.A. DeCoster, and N.G. Bazan, Interleukin-1 beta activates expression of 
cyclooxygenase-2 and inducible nitric oxide synthase in primary hippocampal neuronal 



105 
 

culture: platelet-activating factor as a preferential mediator of cyclooxygenase-2 
expression. J Neurosci Res, 1999. 58(4): p. 593-8. 

22. Tilton, R.G., et al., Vascular dysfunction induced by elevated glucose levels in rats is 
mediated by vascular endothelial growth factor. J Clin Invest, 1997. 99(9): p. 2192-202. 

23. Sone, H., et al., Vascular endothelial growth factor is induced by long-term high glucose 
concentration and up-regulated by acute glucose deprivation in cultured bovine retinal 
pigmented epithelial cells. Biochem Biophys Res Commun, 1996. 221(1): p. 193-8. 

24. Brooks, S.E., et al., Modulation of VEGF production by pH and glucose in retinal Muller 
cells. Curr Eye Res, 1998. 17(9): p. 875-82. 

25. Natarajan, R., et al., Effects of high glucose on vascular endothelial growth factor 
expression in vascular smooth muscle cells. Am J Physiol, 1997. 273(5 Pt 2): p. H2224-
31. 

26. Kuroki, M., et al., Reactive oxygen intermediates increase vascular endothelial growth 
factor expression in vitro and in vivo. J Clin Invest, 1996. 98(7): p. 1667-75. 

27. Plouet, J., J. Schilling, and D. Gospodarowicz, Isolation and characterization of a newly 
identified endothelial cell mitogen produced by AtT-20 cells. Embo J, 1989. 8(12): p. 3801-
6. 

28. Leung, D.W., et al., Vascular endothelial growth factor is a secreted angiogenic mitogen. 
Science, 1989. 246(4935): p. 1306-9. 

29. Williams, B., Vascular permeability/vascular endothelial growth factors: a potential role 
in the pathogenesis and treatment of vascular diseases. Vasc Med, 1996. 1(4): p. 251-8. 

30. Connolly, D.T., et al., Tumor vascular permeability factor stimulates endothelial cell 
growth and angiogenesis. J Clin Invest, 1989. 84(5): p. 1470-8. 

31. Senger, D.R., et al., Tumor cells secrete a vascular permeability factor that promotes 
accumulation of ascites fluid. Science, 1983. 219(4587): p. 983-5. 

32. Dvorak, H.F., et al., Vascular permeability factor/vascular endothelial growth factor, 
microvascular hyperpermeability, and angiogenesis. Am J Pathol, 1995. 146(5): p. 1029-
39. 

33. Schmedtje, J.F., Jr., et al., Hypoxia induces cyclooxygenase-2 via the NF-kappaB p65 
transcription factor in human vascular endothelial cells. J Biol Chem, 1997. 272(1): p. 
601-8. 

34. Michiels, C., et al., Stimulation of prostaglandin synthesis by human endothelial cells 
exposed to hypoxia. Am J Physiol, 1993. 264(4 Pt 1): p. C866-74. 

35. Ji, Y.S., Q. Xu, and J.F. Schmedtje, Jr., Hypoxia induces high-mobility-group protein I(Y) 
and transcription of the cyclooxygenase-2 gene in human vascular endothelium. Circ Res, 
1998. 83(3): p. 295-304. 

36. Bazan, N.G. and W.J. Lukiw, Cyclooxygenase-2 and presenilin-1 gene expression induced 
by interleukin-1beta and amyloid beta 42 peptide is potentiated by hypoxia in primary 
human neural cells. J Biol Chem, 2002. 277(33): p. 30359-67. 

37. Lukiw, W.J. and N.G. Bazan, Strong nuclear factor-kappaB-DNA binding parallels 
cyclooxygenase-2 gene transcription in aging and in sporadic Alzheimer's disease superior 
temporal lobe neocortex. J Neurosci Res, 1998. 53(5): p. 583-92. 

38. Baeuerle, P.A. and D. Baltimore, NF-kappa B: ten years after. Cell, 1996. 87(1): p. 13-20. 
39. Takahashi, K., et al., Topical nepafenac inhibits ocular neovascularization. Invest 

Ophthalmol Vis Sci, 2003. 44(1): p. 409-15. 



106 
 

40. Ayalasomayajula, S.P. and U.B. Kompella, Celecoxib, a selective cyclooxygenase-2 
inhibitor, inhibits retinal vascular endothelial growth factor expression and vascular 
leakage in a streptozotocin-induced diabetic rat model. Eur J Pharmacol, 2003. 458(3): p. 
283-9. 

41. Dodge, A.B., H.B. Hechtman, and D. Shepro, Microvascular endothelial-derived 
autacoids regulate pericyte contractility. Cell Motil Cytoskeleton, 1991. 18(3): p. 180-8. 

42. Murohara, T., et al., Vascular endothelial growth factor/vascular permeability factor 
enhances vascular permeability via nitric oxide and prostacyclin. Circulation, 1998. 97(1): 
p. 99-107. 

43. Eakins, K.E., Prostaglandin and non-prostaglandin mediated breeakdown of the blood-
aqueous barrier. Exp Eye Res, 1977. 25 Suppl: p. 483-98. 

44. Hardy, P., et al., Oxidants, nitric oxide and prostanoids in the developing ocular 
vasculature: a basis for ischemic retinopathy. Cardiovasc Res, 2000. 47(3): p. 489-509. 

45. Ziche, M., J. Jones, and P.M. Gullino, Role of prostaglandin E1 and copper in 
angiogenesis. J Natl Cancer Inst, 1982. 69(2): p. 475-82. 

46. Form, D.M. and R. Auerbach, PGE2 and angiogenesis. Proc Soc Exp Biol Med, 1983. 
172(2): p. 214-8. 

47. Gately, S., The contributions of cyclooxygenase-2 to tumor angiogenesis. Cancer 
Metastasis Rev, 2000. 19(1-2): p. 19-27. 

48. Dannenberg, A.J., et al., Cyclo-oxygenase 2: a pharmacological target for the prevention 
of cancer. Lancet Oncol, 2001. 2(9): p. 544-51. 

49. Gasparini, G., et al., Inhibitors of cyclo-oxygenase 2: a new class of anticancer agents? 
Lancet Oncol, 2003. 4(10): p. 605-15. 

50. Lukiw, W.J., et al., Coordinate activation of HIF-1 and NF-kappaB DNA binding and 
COX-2 and VEGF expression in retinal cells by hypoxia. Invest Ophthalmol Vis Sci, 2003. 
44(10): p. 4163-70. 

51. Salgo, M.G., et al., Peroxynitrite causes DNA damage and oxidation of thiols in rat 
thymocytes [corrected]. Arch Biochem Biophys, 1995. 322(2): p. 500-5. 

52. Salgo, M.G., G.L. Squadrito, and W.A. Pryor, Peroxynitrite causes apoptosis in rat 
thymocytes. Biochem Biophys Res Commun, 1995. 215(3): p. 1111-8. 

53. Zhuang, S. and G. Simon, Peroxynitrite-induced apoptosis involves activation of multiple 
caspases in HL-60 cells. Am J Physiol Cell Physiol, 2000. 279(2): p. C341-51. 

54. Halliwell, B., What nitrates tyrosine? Is nitrotyrosine specific as a biomarker of 
peroxynitrite formation in vivo? FEBS Lett, 1997. 411(2-3): p. 157-60. 

55. Mancino, R., et al., Lipid peroxidation and total antioxidant capacity in vitreous, aqueous 
humor, and blood samples from patients with diabetic retinopathy. Mol Vis. 17: p. 1298-
304. 

56. Kansagara D, G.K., Gillingham M, Freeman M, Quiñones A., Nutritional Supplements for 
Age-Related Macular Degeneration: A Systematic Review [Internet]. VA Evidence-based 
Synthesis Program Reports., 2012. 

57. Buschini, E., et al., Age related macular degeneration and drusen: neuroinflammation in 
the retina. Prog Neurobiol. 95(1): p. 14-25. 

58. Khandhadia, S. and A. Lotery, Oxidation and age-related macular degeneration: insights 
from molecular biology. Expert Rev Mol Med. 12: p. e34. 

59. Cano, M., et al., Cigarette smoking, oxidative stress, the anti-oxidant response through 
Nrf2 signaling, and Age-related Macular Degeneration. Vision Res. 50(7): p. 652-64. 



107 
 

60. Ding, X., M. Patel, and C.C. Chan, Molecular pathology of age-related macular 
degeneration. Prog Retin Eye Res, 2009. 28(1): p. 1-18. 

61. Olofsson, E.M., S.L. Marklund, and A. Behndig, Enhanced diabetes-induced cataract in 
copper-zinc superoxide dismutase-null mice. Invest Ophthalmol Vis Sci, 2009. 50(6): p. 
2913-8. 

62. Tornquist, P., A. Alm, and A. Bill, Permeability of ocular vessels and transport across the 
blood-retinal-barrier. Eye, 1990. 4 ( Pt 2): p. 303-9. 

63. Cunha-Vaz, J.G., The blood-retinal barriers. Doc Ophthalmol, 1976. 41(2): p. 287-327. 
64. Cunha-Vaz, J., The blood-ocular barriers. Surv Ophthalmol, 1979. 23(5): p. 279-96. 
65. Peng, S., C. Rahner, and L.J. Rizzolo, Apical and basal regulation of the permeability of 

the retinal pigment epithelium. Invest Ophthalmol Vis Sci, 2003. 44(2): p. 808-17. 
66. Altunay, H., Fine structure of the retinal pigment epithelium, Bruch's membrane and 

choriocapillaris in the horse. Anat Histol Embryol, 2000. 29(3): p. 135-9. 
67. Rizzolo, L.J., Polarity and the development of the outer blood-retinal barrier. Histol 

Histopathol, 1997. 12(4): p. 1057-67. 
68. Konari, K., et al., Development of the blood-retinal barrier in vitro: formation of tight 

junctions as revealed by occludin and ZO-1 correlates with the barrier function of chick 
retinal pigment epithelial cells. Exp Eye Res, 1995. 61(1): p. 99-108. 

69. Cunha-Vaz, J.G., The blood-ocular barriers: past, present, and future. Doc Ophthalmol, 
1997. 93(1-2): p. 149-57. 

70. Duvvuri, S., M.D. Gandhi, and A.K. Mitra, Effect of P-glycoprotein on the ocular 
disposition of a model substrate, quinidine. Curr Eye Res, 2003. 27(6): p. 345-53. 

71. Constable, P.A., et al., P-Glycoprotein expression in human retinal pigment epithelium cell 
lines. Exp Eye Res, 2006. 83(1): p. 24-30. 

72. Steuer, H., et al., Functional characterization and comparison of the outer blood-retina 
barrier and the blood-brain barrier. Invest Ophthalmol Vis Sci, 2005. 46(3): p. 1047-53. 

73. Aukunuru, J.V., et al., Expression of multidrug resistance-associated protein (MRP) in 
human retinal pigment epithelial cells and its interaction with BAPSG, a novel aldose 
reductase inhibitor. Pharm Res, 2001. 18(5): p. 565-72. 

74. Duvvuri, S., S. Majumdar, and A.K. Mitra, Drug delivery to the retina: challenges and 
opportunities. Expert Opin Biol Ther, 2003. 3(1): p. 45-56. 

75. Kowluru, R.A. and P.S. Chan, Oxidative stress and diabetic retinopathy. Exp Diabetes 
Res, 2007. 2007: p. 43603. 

76. Agrawal, S., M. Joshi, and J.B. Christoforidis, Vitreous inflammation associated with 
intravitreal anti-VEGF pharmacotherapy. Mediators Inflamm, 2013. 2013: p. 943409. 

77. Limtrakul, P., O. Khantamat, and K. Pintha, Inhibition of P-glycoprotein function and 
expression by kaempferol and quercetin. J Chemother, 2005. 17(1): p. 86-95. 

78. Adelli, G., R. Srirangam, and S. Majumdar, Phytochemicals in ocular health: Therapeutic 
potential and delivery challenges. World Journal of Pharmacology, 2013. 2(1): p. 18-34. 

79. Hingorani, T., et al., Effect of ion pairing on in vitro transcorneal permeability of a 
Delta(9) -tetrahydrocannabinol prodrug: potential in glaucoma therapy. J Pharm Sci. 
101(2): p. 616-26. 

80. Choi, E.J., Antioxidative effects of hesperetin against 7,12-dimethylbenz(a)anthracene-
induced oxidative stress in mice. Life Sci, 2008. 82(21-22): p. 1059-64. 

81. Hwang, S.L. and G.C. Yen, Neuroprotective effects of the citrus flavanones against H2O2-
induced cytotoxicity in PC12 cells. J Agric Food Chem, 2008. 56(3): p. 859-64. 



108 
 

82. Kim, J.Y., et al., Hesperetin: a potent antioxidant against peroxynitrite. Free Radic Res, 
2004. 38(7): p. 761-9. 

83. Miyake, Y., et al., New potent antioxidative hydroxyflavanones produced with Aspergillus 
saitoi from flavanone glycoside in citrus fruit. Biosci Biotechnol Biochem, 2003. 67(7): p. 
1443-50. 

84. Jung, H.A., et al., Inhibitory activity of flavonoids from Prunus davidiana and other 
flavonoids on total ROS and hydroxyl radical generation. Arch Pharm Res, 2003. 26(10): 
p. 809-15. 

85. Pollard, S.E., M. Whiteman, and J.P. Spencer, Modulation of peroxynitrite-induced 
fibroblast injury by hesperetin: a role for intracellular scavenging and modulation of ERK 
signalling. Biochem Biophys Res Commun, 2006. 347(4): p. 916-23. 

86. Hirata, A., et al., Kinetics of radical-scavenging activity of hesperetin and hesperidin and 
their inhibitory activity on COX-2 expression. Anticancer Res, 2005. 25(5): p. 3367-74. 

87. Olszanecki, R., et al., Flavonoids and nitric oxide synthase. J Physiol Pharmacol, 2002. 
53(4 Pt 1): p. 571-84. 

88. Dansky, K.H., et al., Qualitative analysis of telehomecare nursing activities. J Nurs Adm, 
2003. 33(7-8): p. 372-5. 

89. Chiou, G.C. and X.R. Xu, Effects of some natural flavonoids on retinal function recovery 
after ischemic insult in the rat. J Ocul Pharmacol Ther, 2004. 20(2): p. 107-13. 

90. Ameer, B., et al., Flavanone absorption after naringin, hesperidin, and citrus 
administration. Clin Pharmacol Ther, 1996. 60(1): p. 34-40. 

91. Srirangam, R., et al., Evaluation of the intravenous and topical routes for ocular delivery 
of hesperidin and hesperetin. J Ocul Pharmacol Ther. 28(6): p. 618-27. 

92. Yanez, J.A., et al., Pharmacokinetics of selected chiral flavonoids: hesperetin, naringenin 
and eriodictyol in rats and their content in fruit juices. Biopharm Drug Dispos, 2008. 29(2): 
p. 63-82. 

93. Srirangam, R., K. Hippalgaonkar, and S. Majumdar, Intravitreal kinetics of hesperidin, 
hesperetin, and hesperidin G: effect of dose and physicochemical properties. J Pharm Sci. 
101(4): p. 1631-8. 

94. Loftssona, T. and T. Jarvinen, Cyclodextrins in ophthalmic drug delivery. Adv Drug Deliv 
Rev, 1999. 36(1): p. 59-79. 

95. Geroski, D.H. and H.F. Edelhauser, Drug delivery for posterior segment eye disease. Invest 
Ophthalmol Vis Sci, 2000. 41(5): p. 961-4. 

96. Wu, Y., et al., Enhanced and sustained topical ocular delivery of cyclosporine A in 
thermosensitive hyaluronic acid-based in situ forming microgels. Int J Nanomedicine, 
2013. 8: p. 3587-601. 

97. Fathi, M., et al., Hesperetin-Loaded Solid Lipid Nanoparticles and Nanostructure Lipid 
Carriers for Food Fortification: Preparation, Characterization, and Modeling. Food 
Bioprocess Technol, 2013. 

98. Ficarra, R., et al., Study of flavonoids/beta-cyclodextrins inclusion complexes by NMR, FT-
IR, DSC, X-ray investigation. J Pharm Biomed Anal, 2002. 29(6): p. 1005-14. 

99. Gaudana, R., et al., Ocular drug delivery. AAPS J, 2010. 12(3): p. 348-60. 
100. Maiti, K., et al., Exploring the effect of Hesperetin-HSPC complex--a novel drug delivery 

system on the in vitro release, therapeutic efficacy and pharmacokinetics. AAPS 
PharmSciTech, 2009. 10(3): p. 943-50. 



109 
 

101. Adelli, G.R., et al., Evaluation of topical hesperetin matrix film for back-of-the-eye 
delivery. Eur J Pharm Biopharm, 2015. 

102. Fathi., M., et al., Hesperetin-Loaded Solid Lipid Nanoparticles and Nanostructure Lipid 
Carriers for Food Fortification: Preparation, Characterization, and Modeling. Food 
Bioprocess Technol, 2012. 

103. Majumdar, S., et al., Transcorneal permeation of L- and D-aspartate ester prodrugs of 
acyclovir: delineation of passive diffusion versus transporter involvement. Pharm Res, 
2009. 26(5): p. 1261-9. 

104. Becker, U., et al., A comparative evaluation of corneal epithelial cell cultures for assessing 
ocular permeability. Altern Lab Anim, 2008. 36(1): p. 33-44. 

105. Majumdar, S. and R. Srirangam, Solubility, stability, physicochemical characteristics and 
in vitro ocular tissue permeability of hesperidin: a natural bioflavonoid. Pharm Res, 2009. 
26(5): p. 1217-25. 

106. Fruijtier-Polloth, C., Safety assessment on polyethylene glycols (PEGs) and their 
derivatives as used in cosmetic products. Toxicology, 2005. 214(1-2): p. 1-38. 

107. Law, D., et al., Properties of rapidly dissolving eutectic mixtures of poly(ethylene glycol) 
and fenofibrate: the eutectic microstructure. J Pharm Sci, 2003. 92(3): p. 505-15. 

108. Craig, D.Q., The mechanisms of drug release from solid dispersions in water-soluble 
polymers. Int J Pharm, 2002. 231(2): p. 131-44. 

109. Srirangam, R. and S. Majumdar, Passive asymmetric transport of hesperetin across 
isolated rabbit cornea. Int J Pharm. 394(1-2): p. 60-7. 

110. Srirangam, R., et al., Evaluation of the intravenous and topical routes for ocular delivery 
of hesperidin and hesperetin. J Ocul Pharmacol Ther, 2012. 28(6): p. 618-27. 

111. Rainey-Smith, S., et al., Neuroprotective effects of hesperetin in mouse primary neurones 
are independent of CREB activation. Neurosci Lett, 2008. 438(1): p. 29-33. 

112. Yang, H.L., et al., Antioxidant and anti-inflammatory potential of hesperetin metabolites 
obtained from hesperetin-administered rat serum: an ex vivo approach. J Agric Food 
Chem. 60(1): p. 522-32. 

113. Gabelt BT, K.P., Aqueous humor hydrodynamics, in Adler's Physiology of the Eye, H. WM, 
Editor. 2003: St. Louis. 

114. Cook, C. and P. Foster, Epidemiology of glaucoma: what's new? Can J Ophthalmol, 2012. 
47(3): p. 223-6. 

115. Kwon, Y.H., et al., Primary open-angle glaucoma. New England Journal of Medicine, 
2009. 360(11): p. 1113-1124. 

116. Gupta, N. and Y.H. Yucel, Glaucoma as a neurodegenerative disease. Current opinion in 
ophthalmology, 2007. 18(2): p. 110-114. 

117. Schwartz, M. and E. Yoles, Optic nerve degeneration and potential neuroprotection: 
implications for glaucoma. Eur J Ophthalmol, 1999. 9 Suppl 1: p. S9-11. 

118. Levin, L.A. and P. Peeples, History of neuroprotection and rationale as a therapy for 
glaucoma. Am J Manag Care, 2008. 14(1 Suppl): p. S11-4. 

119. Pita-Thomas, D.W. and J.L. Goldberg, Nanotechnology and glaucoma: little particles for 
a big disease. Curr Opin Ophthalmol, 2013. 24(2): p. 130-5. 

120. Almasieh, M., et al., The molecular basis of retinal ganglion cell death in glaucoma. Prog 
Retin Eye Res, 2012. 31(2): p. 152-81. 

121. Nakazawa, T., [Mechanism of N-methyl-D-aspartate-induced retinal ganglion cell death]. 
Nihon Ganka Gakkai Zasshi, 2009. 113(11): p. 1060-70. 



110 
 

122. Qu, J., D. Wang, and C.L. Grosskreutz, Mechanisms of retinal ganglion cell injury and 
defense in glaucoma. Exp Eye Res, 2010. 91(1): p. 48-53. 

123. Crandall, J., et al., Neuroprotective and intraocular pressure-lowering effects of (-)Delta9-
tetrahydrocannabinol in a rat model of glaucoma. Ophthalmic Res, 2007. 39(2): p. 69-75. 

124. El-Remessy, A.B., et al., Neuroprotective effect of (-)Delta9-tetrahydrocannabinol and 
cannabidiol in N-methyl-D-aspartate-induced retinal neurotoxicity: involvement of 
peroxynitrite. Am J Pathol, 2003. 163(5): p. 1997-2008. 

125. Hampson, A.J., et al., Cannabidiol and (-)Delta9-tetrahydrocannabinol are 
neuroprotective antioxidants. Proc Natl Acad Sci U S A, 1998. 95(14): p. 8268-73. 

126. Montero, C., et al., Homology models of the cannabinoid CB1 and CB2 receptors. A 
docking analysis study. Eur J Med Chem, 2005. 40(1): p. 75-83. 

127. Wu, Y., et al., Enhanced and sustained topical ocular delivery of cyclosporine A in 
thermosensitive hyaluronic acid-based in situ forming microgels. Int J Nanomedicine. 8: 
p. 3587-601. 

128. Jarho, P., et al., Hydroxypropyl-beta-cyclodextrin and its combination with hydroxypropyl-
methylcellulose increases aqueous solubility of delta9-tetrahydrocannabinol. Life Sci, 
1998. 63(26): p. PL381-4. 

129. Green, K. and M. Roth, Ocular effects of topical administration of delta 9-
tetrahydrocannabinol in man. Arch Ophthalmol, 1982. 100(2): p. 265-7. 

130. Green, K., et al., Cannabinoid penetration and chronic effects in the eye. Exp Eye Res, 
1977. 24(2): p. 197-205. 

131. John C. Merrit M.D.*, D.D.P.M.D., David N. Russel M.D. and Brenda F. Jones M.D., 
Topical Δ9-Tetrahydrocannabinol and Aqueous Dynamics in Glaucoma. The Journal of 
Clinical Pharmacology, 2013. 21(S1): p. 467S-471S. 

132. Merritt, J.C., et al., Effect of marihuana on intraocular and blood pressure in glaucoma. 
Ophthalmology, 1980. 87(3): p. 222-8. 

133. Muchtar, S., et al., A submicron emulsion as ocular vehicle for delta-8-
tetrahydrocannabinol: effect on intraocular pressure in rabbits. Ophthalmic Res, 1992. 
24(3): p. 142-9. 

134. Fischer, K.M., D.A. Ward, and D.V. Hendrix, Effects of a topically applied 2% delta-9-
tetrahydrocannabinol ophthalmic solution on intraocular pressure and aqueous humor 
flow rate in clinically normal dogs. Am J Vet Res, 2013. 74(2): p. 275-80. 

135. Colasanti, B.K., C.R. Craig, and R.D. Allara, Intraocular pressure, ocular toxicity and 
neurotoxicity after administration of cannabinol or cannabigerol. Exp Eye Res, 1984. 
39(3): p. 251-9. 

136. Jay, W.M. and K. Green, Multiple-drop study of topically applied 1% delta 9-
tetrahydrocannabinol in human eyes. Arch Ophthalmol, 1983. 101(4): p. 591-3. 

137. Elsohly, M.A., et al., Cannabinoids in glaucoma: a primary screening procedure. J Clin 
Pharmacol, 1981. 21(8-9 Suppl): p. 472S-478S. 

138. From the NIH: Reports of marihuana for glaucoma treatment are misleading; researchers 
will study. JAMA, 1979. 242(18): p. 1962. 

139. Majumdar, S., T. Hingorani, and R. Srirangam, Evaluation of active and passive transport 
processes in corneas extracted from preserved rabbit eyes. J Pharm Sci, 2010. 99(4): p. 
1921-30. 

140. Elsohly, M.A., et al., Compositions containing delta-9-thc-amino acid esters and process 
of preparation. Google Patents. 



111 
 

141. Hingorani, T., et al., Ocular disposition of the hemiglutarate ester prodrug of (9)-
Tetrahydrocannabinol from various ophthalmic formulations. Pharm Res, 2013. 30(8): p. 
2146-56. 

142. Bhagav, P., et al., Sustained release ocular inserts of brimonidine tartrate for better 
treatment in open-angle glaucoma. Drug Deliv Transl Res, 2011. 1(2): p. 161-74. 

143. Percicot, C.L., et al., Continuous intraocular pressure measurement by telemetry in alpha-
chymotrypsin-induced glaucoma model in the rabbit: effects of timolol, dorzolamide, and 
epinephrine. J Pharmacol Toxicol Methods, 1996. 36(4): p. 223-8. 

144. Atta-ur-Rahman, M.I. Choudhary, and J.T. William, Bioassay techniques for drug 
development. 1 Edition ed. 2001: Harwood Academic Publisher, . 

145. Majumdar, S., et al., Dipeptide monoester ganciclovir prodrugs for treating HSV-1-
induced corneal epithelial and stromal keratitis: in vitro and in vivo evaluations. J Ocul 
Pharmacol Ther, 2005. 21(6): p. 463-74. 

146. Katragadda, S., et al., Ocular pharmacokinetics of acyclovir amino acid ester prodrugs in 
the anterior chamber: evaluation of their utility in treating ocular HSV infections. Int J 
Pharm, 2008. 359(1-2): p. 15-24. 

147. E.J.Ariens, Modulation of pharmacokinetics by molecular manipulation, in Drug Design: 
Medicinal Chemistry: A series of Monographs, E.J. Ariens, Editor. 2013, Elsevier. p. 109. 

148. Andermann, G., G. de Burlet, and C. Cannet, [Comparative study of the antiglaucomatous 
activity of Glauplex 2 and pilocarpine nitrate on alpha-chymotrypsin-induced 
experimental glaucoma]. J Fr Ophtalmol, 1982. 5(8-9): p. 499-504. 

149. Chiang, C.H., J.I. Ho, and J.L. Chen, Pharmacokinetics and intraocular pressure lowering 
effect of timolol preparations in rabbit eyes. J Ocul Pharmacol Ther, 1996. 12(4): p. 471-
80. 

150. Skalka, H.W., Alpha-chymotrypsin glaucoma. Ann Ophthalmol, 1976. 8(2): p. 149-51. 
151. Vareilles, P., et al., Comparison of the effects of timolol and other adrenergic agents on 

intraocular pressure in the rabbit. Invest Ophthalmol Vis Sci, 1977. 16(11): p. 987-96. 
152. Housley, G.D., Nucleotide and nucleoside signalling in the ciliary ganglion, in Purinergic 

and Pyrimidinergic Signalling: Molecular, Nervous and Urogenitary System Function, 
M.W. Maria P. Abracchio, Editor. 2001, Springer Science & Business Media. 

153. S Panchal, A.M., D Santani, Occulohypotensive Effect Of Torasamide In Experimental 
Glaucoma. The Internet Journal of Pharmacology, 2008. 5(2). 

154. Zimmerman, T.J. and H.E. Kaufman, Timolol, dose response and duration of action. Arch 
Ophthalmol, 1977. 95(4): p. 605-7. 

155. Loftsson, T. and M.E. Brewster, Pharmaceutical applications of cyclodextrins. 1. Drug 
solubilization and stabilization. J Pharm Sci, 1996. 85(10): p. 1017-25. 

156. Siefert, B. and S. Keipert, Influence of alpha-cyclodextrin and hydroxyalkylated beta-
cyclodextrin derivatives on the in vitro corneal uptake and permeation of aqueous 
pilocarpine-HCl solutions. J Pharm Sci, 1997. 86(6): p. 716-20. 

157. Masson, M., et al., Cyclodextrins as permeation enhancers: some theoretical evaluations 
and in vitro testing. J Control Release, 1999. 59(1): p. 107-18. 

158. T. Higuchi, K.A.C., Phase-solubility techniques. Advanced analytical chemistry, 1965. 4: 
p. 117-212. 

159. Adelli, G.R., S.P. Balguri, and S. Majumdar, Effect of Cyclodextrins on Morphology and 
Barrier Characteristics of Isolated Rabbit Corneas. AAPS PharmSciTech, 2015. 



112 
 

160. Salem, L.B., et al., Sparing methylation of beta-cyclodextrin mitigates cytotoxicity and 
permeability induction in respiratory epithelial cell layers in vitro. J Control Release, 2009. 
136(2): p. 110-6. 

161. D. Duchene, D.W., M.C. Poelman, New Trends in Cyclodextrins and Derivatives. Dermal 
uses of cyclodextrins and derivatives, ed. d. Santé. 1991, Paris. 

162. Van Der Bijl, P., et al., Comparative permeability of human and rabbit corneas to 
cyclosporin and tritiated water. J Ocul Pharmacol Ther, 2002. 18(5): p. 419-27. 

163. Saarinen-Savolainen, P., et al., Evaluation of cytotoxicity of various ophthalmic drugs, eye 
drop excipients and cyclodextrins in an immortalized human corneal epithelial cell line. 
Pharm Res, 1998. 15(8): p. 1275-80. 

164. Lopez, C.A., A.H. de Vries, and S.J. Marrink, Computational microscopy of cyclodextrin 
mediated cholesterol extraction from lipid model membranes. Sci Rep. 3: p. 2071. 

165. Williams, R.O., 3rd, V. Mahaguna, and M. Sriwongjanya, Characterization of an inclusion 
complex of cholesterol and hydroxypropyl-beta-cyclodextrin. Eur J Pharm Biopharm, 
1998. 46(3): p. 355-60. 

166. Lopez, C.A., A.H. de Vries, and S.J. Marrink, Molecular mechanism of cyclodextrin 
mediated cholesterol extraction. PLoS Comput Biol. 7(3): p. e1002020. 

167. Tsamaloukas, A., et al., Interactions of cholesterol with lipid membranes and cyclodextrin 
characterized by calorimetry. Biophys J, 2005. 89(2): p. 1109-19. 

168. Duncker, G. and J. Reichelt, Effects of the pharmaceutical cosolvent hydroxypropyl-beta-
cyclodextrin on porcine corneal endothelium. Graefes Arch Clin Exp Ophthalmol, 1998. 
236(5): p. 380-9. 

169. Huang, A.J., S.C. Tseng, and K.R. Kenyon, Paracellular permeability of corneal and 
conjunctival epithelia. Invest Ophthalmol Vis Sci, 1989. 30(4): p. 684-9. 

170. Bozkir, A., Z.F. Denli, and B. Basaran, Effect of hydroxypropyl-beta-cyclodextrin on the 
solubility, stability and in-vitro release of ciprofloxacin for ocular drug delivery. Acta Pol 
Pharm. 69(4): p. 719-24. 

171. Hippalgaonkar, K., et al., Indomethacin-loaded solid lipid nanoparticles for ocular 
delivery: development, characterization, and in vitro evaluation. J Ocul Pharmacol Ther. 
29(2): p. 216-28. 

172. Reer, O., T.K. Bock, and B.W. Muller, In vitro corneal permeability of diclofenac sodium 
in formulations containing cyclodextrins compared to the commercial product voltaren 
ophtha. J Pharm Sci, 1994. 83(9): p. 1345-9. 

173. Tirucherai, G.S. and A.K. Mitra, Effect of hydroxypropyl beta cyclodextrin complexation 
on aqueous solubility, stability, and corneal permeation of acyl ester prodrugs of 
ganciclovir. AAPS PharmSciTech, 2003. 4(3): p. E45. 

174. Guo, X., R.K. Chang, and M.A. Hussain, Ion-exchange resins as drug delivery carriers. J 
Pharm Sci, 2009. 98(11): p. 3886-902. 

175. Sriwongjanya, M. and R. Bodmeier, Effect of ion exchange resins on the drug release from 
matrix tablets. Eur J Pharm Biopharm, 1998. 46(3): p. 321-7. 

176. CL, M., Ion exchangers. 1951: p. 185-216. 
177. Company, T.D.C. Applications for AMBERLITE™ & DUOLITE™ Ion Exchange Resins: 

Drug Formulation Applications of Dow Ion Exchange Resins. Available from: 
http://pharmaandfood.dow.com/en/pharma-solutions/products/amberlite-and-
duolite/applications. 

http://pharmaandfood.dow.com/en/pharma-solutions/products/amberlite-and-duolite/applications
http://pharmaandfood.dow.com/en/pharma-solutions/products/amberlite-and-duolite/applications


113 
 

178. Patra, S., et al., Taste masking of Etoricoxib by using ion-exchange resin. Pharm Dev 
Technol, 2010. 15(5): p. 511-7. 

179. Bhise, K., S. Shaikh, and D. Bora, Taste mask, design and evaluation of an oral formulation 
using ion exchange resin as drug carrier. AAPS PharmSciTech, 2008. 9(2): p. 557-62. 

180. Kankkunen, T., et al., Improved stability and release control of levodopa and metaraminol 
using ion-exchange fibers and transdermal iontophoresis. Eur J Pharm Sci, 2002. 16(4-5): 
p. 273-80. 

181. Halder, A. and B. Sa, Sustained release of propranolol hydrochloride based on ion-
exchange resin entrapped within polystyrene microcapsules. J Microencapsul, 2006. 23(8): 
p. 899-911. 

182. Chaudhry, N.C. and L. Saunders, Sustained release of drugs from ion exchange resins. J 
Pharm Pharmacol, 1956. 8(11): p. 975-83; discussion, 983-6. 

183. Herbort, C.P., et al., Diclofenac drops to treat inflammation after cataract surgery. Acta 
Ophthalmol Scand, 2000. 78(4): p. 421-4. 

184. Fawzi, A.A., et al., Drugs in Ophthalmology. 2005: Springer Berlin Heidelberg. 
185. Incorporated, B.L., Diclofenac Sodium Ophthalmic Solution, 0.1%, B.L. Incorporated, 

Editor. 
186. Lee, V.H. and J.R. Robinson, Topical ocular drug delivery: recent developments and future 

challenges. J Ocul Pharmacol, 1986. 2(1): p. 67-108. 
187. Edelhauser, H.F., et al., Ophthalmic drug delivery systems for the treatment of retinal 

diseases: basic research to clinical applications. Invest Ophthalmol Vis Sci, 2010. 51(11): 
p. 5403-20. 

188. Kompella, U.B., et al., Nanomedicines for back of the eye drug delivery, gene delivery, and 
imaging. Prog Retin Eye Res, 2013. 36: p. 172-98. 

189. Suk, J.S., et al., PEGylation as a strategy for improving nanoparticle-based drug and gene 
delivery. Adv Drug Deliv Rev, 2015. 

190. Honda, M., et al., Liposomes and nanotechnology in drug development: focus on ocular 
targets. Int J Nanomedicine, 2013. 8: p. 495-503. 

191. Swaminathan, J. and C. Ehrhardt, Liposomal delivery of proteins and peptides. Expert Opin 
Drug Deliv, 2012. 9(12): p. 1489-503. 

192. Adelli, G.R., et al., Evaluation of topical hesperetin matrix film for back-of-the-eye 
delivery. Eur J Pharm Biopharm, 2015. 92: p. 74-82. 

193. Kaur, I.P. and M. Kanwar, Ocular preparations: the formulation approach. Drug Dev Ind 
Pharm, 2002. 28(5): p. 473-93. 

194. Maichuk Iu, F. and A.M. Iuzhakov, [Ocular therapeutic films: long-term results and 
perspectives of use]. Med Tekh, 1994(2): p. 34-6. 

195. Company, T.D.C. Introduction & Ion Exchange Principles. 2013. 
196. Dale S. Aldrich, C.M.B., William Brown, Wiley Chambers, Jeffrey Fleitman, Desmond 

Hunt, Margareth R. C. Marques, Yana Mill, Ashim K. Mitra, Stacey M. Platzer, Tom Tice, 
George W. Tin, Ophthalmic Preparations. USP, 2013. 39(5): p. 1-21. 

197. Blanco, F.J., et al., Effect of antiinflammatory drugs on COX-1 and COX-2 activity in 
human articular chondrocytes. J Rheumatol, 1999. 26(6): p. 1366-73. 



 

 

114 

 

 

 

 

 

 

 

 

LIST OF APPENDICES 



 

 

115 
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DICLOFENAC SODIUM AND ION EXCHANGE RESIN COMPLEX LOADED MELT 

CAST FILMS FOR SUSTAINED RELEASE OCULAR DELIVERY 
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Ion exchange resins ↔ Water insoluble cross linked polymers with ionizable groups that can be 

exchanged to form complexes. Ion exchange resin (IR) in the present study represent DuoliteTM 

AP 143/1083. 

1:1::DFS:IR ↔ 1 part by weight of DFS is bound to 1 part by weight of IR. 

1:2::DFS:IR ↔ 1 part by weight of DFS is bound to 2 part by weight of IR. 

2:1::DFS:IR ↔ 2 part by weight of DFS is bound to or used to form complexes with 1 part by 

weight of IR. 

DFS Film ↔ Matrix film with unbound/free from of DFS without any IR. 

1+1:1::DFS:IR ↔ 1 part by weight of DFS is bound to 1 part by weight of IR (for sustained 

release) and remaining 1 part by weight of DFS is in unbound or free state (for immediate release). 

For example, in a film with 1.6 mg of total DFS, 0.8 mg is bound or complexed with IR 0.8 mg of 

IR and remaining 0.8 mg of DFS is in free or unbound state. 

3+1:1::DFS:IR ↔ 1 part by weight of DFS is bound to 1 part by weight of IR (for sustained 

release) and 3 parts by weight of DFS is in unbound or free state (for immediate release). For 

example, in a film with 1.6 mg of total DFS, 0.4 mg is bound or complexed with IR 0.4 mg of IR 

and remaining 1.2 mg of DFS is in free or unbound state. 
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APPENDIX B: GRAPHICAL ABSTRACT FOR THE DEVELOPMENT OF HT FILM AND 

OVERVIEW OF IN VITRO PERMEABILITY, EX VIVO & IN VIVO OCULAR 

DISTRIBUTION 
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Graphical abstract 9.1: Development of HT film and overview of in vitro permeability, ex vivo & in vivo ocular distribution.  
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APPENDIX C: GRAPHICAL ABSTRACT FOR THE DEVELOPMENT OF DFS-IR-FILM 

USING DUOLITETM AP 143/1089 RESIN AND MELT-CAST TECHNOLOGY 



 

 

Graphical abstract 9.2: Development of DFS-IR-Film using DuoliteTM AP 143/1089 resin and melt-cast technology. 
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