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ABSTRACT 

 

 Opioid analgesics such as morphine and its derivatives are the most frequently 

prescribed narcotics for the treatment of severe and chronic pain. Among other side 

effects caused by the administration of these opioid analgesics, physical dependence and 

addiction are the most undesirable ones. Currently, pharmacological approaches to treat 

opioid dependence include mainly methadone and LAAM (μ-agonists), buprenorphine 

(μ-partial agonist) and clonidine (α2-adrenergic agonist). Considering the negative 

aspects of the relapsing nature correlated to opioid dependence, it is important to search 

for new ways to overcome this problem. The scope of this work is to study novel 

compounds based on the alkaloids present in Mitragynina speciosa (Korth), a tree 

indigenous to Southeast Asia. Consumption of leave extracts of this plant have been 

linked to the attenuation of the withdrawal syndrome associate with opioid dependence. 

Taking into consideration the structure of the major alkaloid, mitragynine, two classes of 

compounds were designed and synthesized: phenylpiperidines, including 

phenylaminopiperidines and phenylamidopiperidines, and tetrahydro-β-carbolines. They 

were further submitted to in vitro evaluation on μ-, δ- and κ-opioid receptors for their 

binding affinities. Out of six piperidines submitted to biological evaluation, four revealed 

significant affinity with Ki values in the micromolar range on either μ- and δ-receptors or 

κ-opioid receptors. On the other hand, out of five tetrahydro-β-carbolines tested, two 

showed κ-receptors affinities in the nanomolar range. Although none of the compounds 

displayed binding affinities as high as mitragynine, it is possible to say that distinct 

moieties attached to the piperidines had different selectivities among μ-, δ- and κ-opioid 
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receptors. Tetrahydro-β-carbolines, which mimics the four-ringed structure of 

mitragynine, showed only relevant affinity towards κ-receptors. The important factor for 

the higher affinity of tetrahydro-β-carbolines, when compared to piperidines, is that their 

less flexible structure is responsible for their greater affinity. More specifically, the 

methyl acetyl moiety at the C15 position had higher affinity than the methyl 

methoxyacrylate on κ-receptors. Unfortunately, this work did not focus on stereoselective 

syntheses or chiral separations, which in the case of the chiral tetrahydro-β-carbolines 

could have given valuable insights about the spatial requirements for affinity among the 

three main opioid receptors. 
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1. Pain 

 The perception of pain is an intrinsic part of life that is only perceived during 

consciousness. Although uncomfortable to the individual, it is essential to protect the 

body from harm. Hereditary insensitivity to pain, a rare syndrome, can lead to multiple 

injuries such as biting ones tongue, burning or bone fractures without the person realizing 

them. It is evident that not only human beings are capable of perceiving pain, but other 

vertebrates can also experience it. Theories seeking explanations of the origin of pain 

have followed mankind. It is not difficult to explain the pain caused by an accidental 

injury; however pain sensation caused by an internal disease was not easy to understand. 

Ancient cultures such as in Egypt usually tried to explain the causes of pain that was not 

derived from an injury through the acts of gods and spirits of death
1
. Several medical 

treatises written in Greek between 430 and 380 BC known as the Hippocratic Collection 

gave attention to the causes of pain. There was some disagreement about the distinction 

of humors, but the School of Cos considered that pain was caused by an imbalance of 

four humors: phlegm, blood, yellow and black bile
2
. In the 17

th
 and 18

th
 centuries based 

on the discoveries of natural sciences, medicine and physics, physicians began to treat the 

parts of the human body as parts in a machine. One of the earliest concepts of modern 

physiology proposed by René Descartes (1596 - 1650) depicted a touch that produces a 

painful stimulus traveling from the peripheral endings all the way to the brain, where it 

brings about an image of the stimulus in the soul
1
.  

 The development of modern physiology led not only to a better understanding of 

the mechanisms that cause pain, but also to pathological states, such as increased 

sensation of pain (hyperalgesia).  Melzack and Wall proposed in the 1960's a gate control 
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theory of pain
3
. The cells in the substantia gelatinosa (a functional unit that extends the 

length of the spinal cord) connect with one another by small and long fibers, but do not 

project to other parts of the brain. Even in the absence of stimulus, the spinal cord is 

bombarded by incoming nerve impulses carried predominantly by small fibers. As the 

stimulus increase, more fibers are recruited to fire at a higher frequency, which produces 

a change in the ratio between long and small fibers. The inhibitory effect of the substantia 

gelatinosa is increased by the activity of long fibers and decreased by small fibers. A 

gentle pressure in the skin leads not only to the firing of T cells (cells that connect to 

other parts of the brain), but also close the presynaptic gate. If the stimulus is increased, 

the gate opens further and the output of the T cells rises. The perception of pain is thus 

marked by the actions of the T cells that interacts with the gate control system
3
. Although 

the gate control theory of pain is probably wrong in various details, the authors believed 

that their most important contribution was the emphasis on central nervous system (CNS) 

mechanisms instead of explaining pain exclusively in terms of peripheral factors
1
.  

 From the periphery, painful stimuli trigger neurons to send signals to the dorsal 

horn ganglia in the spinal cord, forming along with the brainstem and thalamus, the 

spinothalamic tract. There are basically two types of connections: a direct spinothalamic 

system, which carries sensory signals right to the thalamus, and a more diffuse system 

called spinoreticulothalamic pathway that terminates in the brainstem and reticular 

nuclei
4
. The direct spinothalamic pathway ends in the thalamus and it is responsible for 

the discriminatory aspects of pain, such as location, intensity and nature. Cells in the 

more dispersed spinoreticulothalamic system are probably involved in the arousal for 

painful stimulus and reflex. The ascending pathway depicted above can be suppressed by 
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a descending analgesic pathway that is, in part, mediated in the spinal cord, rich in opioid 

receptors and endogenous opioid peptide agonists. Other areas that are involved in the 

suppression of nociception (perception of pain) include periaqueductal gray, medullary 

raphe and thalamus, which also contain large amounts of opioid receptors and 

endogenous opioid peptides
4,32

. A more detailed discussion of the effects of opioid 

receptors and endogenous opioid peptides will be given in subsequent sections. 

 Pain can be classified according to its nature: somatic pain and neuropathic pain. 

Somatic pain can be described as well-localized, when the location is easily pointed by 

the patient, and visceral pain, when pain is diffused, e.g. myocardial pain which is usually 

referred to the left arm and shoulder. Neuropathic pain arises from injury or changes in 

sensory pathways in the periphery or in more central structures that include exaggerated 

response to noxious stimulus (hyperalgesia) or touch (hyperesthesia), spontaneous 

burning or aching sensation (dysesthesia) and painful sensation from non-painful 

stimulus (allodynia)
4
. 

 As old as attempts to explain the origins of pain are the methods to alleviate it. 

Egyptian papyri describe ceremonies and rituals as well as vomiting, sneezing and 

urinating as therapeutic strategies aimed to expel the bad spirits that caused pain. The 

Roman physician Galen in the second century recommended theriac, a mixture that 

included opium, saffron, cinnamon, rhubarb, pepper and ginger mixed with wine and 

honey
2
. In the Middle Ages ointments containing opium and mandrake as well as theriac 

were used to treat pain. Willow bark extracts have also been used since antiquity as 

source of salicylates for the treatment of pain caused by inflammation.  In the 19
th

 

Century, the discovery of cocaine and its industrial production gave rise to a widespread 



4 

 

use of the drug as a local anesthetic and stimulant. Electricity produced by electric fish 

was used by Greeks and Romans for treatment of rheumatoid arthritis, headaches and 

other types of chronic pain. After the development of techniques to produce and 

accumulate electricity in the 18
th

 and 19
th

 centuries, a better understanding of the 

relationship between electricity and the neurophysiology of pain gave opportunities to 

modern explanations of electrotherapy to alleviate pain such as TENS (transcutaneous 

electric nerve stimulation), SCS (spinal cord stimulation) and DBS (deep brain 

stimulation)
1
.  

 Different causes of pain require distinct remedies. Alleviation of mild and 

moderate pain can generally be achieved with non-narcotic analgesics such as aspirin, 

acetaminophen or ibuprofen. Nevertheless, one of the most efficacious ways to treat 

intense and chronic pain is the use of narcotic analgesics such as morphine and its 

derivatives
32

.  
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2. Poppy, opium and morphine 

 The use of opium for its pain relief and euphoric properties has been known for 

centuries. Ancient Babylonians knew over 6000 years ago the psychological effects of 

the extracts of the poppy plant (Papaver somniferum L.) and related species of Papaver 

genera. Sumerian clay tablets dated about 3000 BC described the cultivation and opium 

extraction from poppy plants, which they called "joy plant". Since the third century BC 

opium has been used to assuage pain and promote sleep. Gastrointestinal problems such 

as dysentery and diarrhea were also targeted by opium
5
. The word opium is derived from 

"opos" and "opion", Greek names for juice and poppy juice respectively, whereas 

morphine comes from Morpheus, the Greek god of dreams and sleep. Opium found its 

way to Europe as a part of several formulations like laudanum, popularly useful for 

treating plague. Historically associated with China, where by the end of the 17
th

 century 

25 percent of the population was smoking opium, the plant was widely cultivated in India 

and smuggled into China. Although prohibited in China, in the 19
th

 century British opium 

traders had the monopoly of transportation, which led to two wars between these nations. 

In order to control opium production, the International Opium Commission was created 

in 1909 and by 1924, sixty-two countries were participating in agreements to decrease 

opium production. Laws regulating importation, exportation, sales and distribution for 

medical and scientific purposes were passed afterwards by signatory countries of the 

League of Nations. Nowadays, international opium regulation is carried out by the 

International Narcotics Control Board of the United Nations, with India being the larger 

supplier of world demands. In the United States opium is considered a pharmaceutical 

necessity and it is designated as Schedule II by the Drug Enforcement Agency
6
.  
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 The dried latex exuded from immature poppy capsules is composed of about 12% 

morphine and other alkaloids such as codeine (0.7 - 5%) , thebaine (0.1 - 2.5%)  (Figure 

1), papaverine (0.5 - 1.5%) and noscapine (1 - 10%)
7
, but some crops can produce 

morphine in concentrations as low as 0.03%.  More than 40 alkaloids have been 

identified which are normally classified into 12 main groups: benzylisoquinolines, 

benzyltetrahydroisoquinolines, proaporphines, aporphines, promorphinanes, 

morphinanes, protopines, protoberberines, berberines, phtalideisoquinolines, 

rhoeadine/papaver-rubines and benzophenanthridines
8
.  Morphine was first isolated in 

1804 by Sertüner, a pharmacist in Germany, but its structure was first elucidated more 

than a century later in 1925
9
. Albeit the complicated pentacyclic skeleton of 

morphinanes, the first laboratory synthesis of morphine was achieved by Gates et al. in 

1952
10

. Although a number of synthetic studies and total syntheses of have been reported 

to date
11

, industrial scale production of morphine and its derivatives are not considered 

economically advantageous and therefore the plant is still the major source of opium 

alkaloids
7
. 

 

Figure 1 - Morphinan alkaloids. 

 Benzylisoquinoline alkaloids are a structurally diverse group of nitrogen-

containing secondary metabolites comprised of approximately 2500 identified 

substances, including morphinan alkaloids
12

. Opium alkaloids are biosynthetically 
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derived from the aromatic amino acids phenylalanine, tyrosine and 3,4-

dihydroxyphenylalanine, which in turn are obtained via the shikimic acid pathway in the 

plant
8
 (Figure 2).  

 

Figure 2 - Benzylisoquinoline alkaloid biosynthesis. 4-HPAA, p-hydroxyphenyl 

acetaldehyde; TYDC, tyrosine decarboxylase; NCS, (S)-norcoclaurine synthase; 6'OMT, 

(S)-norcoclaurine 6-O-methyltransferase; CNMT, (S)-coclaurine N-methyltransferase; 

NMCH, (S)-N-methylcoclaurine 3'-hydroxylase (CYP80B subfamily); 40OMT, (S)30-

hydroxy N-methylcoclaurine 4'-O-methyltransferase; DRS, 1,2-dehydroreticuline 

synthase; DRR, 1,2-dehydroreticuline reductase. (Adapted from ref. 12) 

  

 Despite the fact that poppy-derived opiates are major drugs of abuse with an illicit 

market totaling around 4.8 million kilograms annually
7
, production of morphine 

derivatives is only economically feasible by obtaining morphinan compounds through 
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plant cultivation.  The majority of morphine naturally obtained from the poppy plant is 

used in the production of codeine, which is present in the opium extract in low quantities 

and is medically employed as a mild analgesic and cough suppressant. However, simple 

O,O-diacetylation of morphine affords the highly addictive and illegal heroin. Although 

illicit poppy production might be difficult, if not impossible to eradicate, genetically 

engineered or mutagenized plants that give low morphine levels and are rich in codeine, 

thebaine and oripavine content might be useful to circumvent the problem of heroin 

manufacturing. Indeed, thebaine and oripavine are the starting materials for the synthesis 

of valuable and powerful drugs in the market such as oxycodone (OxyContin), 

buprenorphine (Subutex), naloxone (Narcan) and natrexone (ReVia)
13

. One of the key 

enzymes necessary to biosynthesize morphinan alkaloids is salutaridine reductase (SalR), 

which is a member of a class of short chain dehydrogenase/reductases overexpressed in 

Papaver species (Figure 3)
12

. Studies have demonstrated that gene knockout of codeinone 

reductase (COR1 - enzyme that converts condeinone to codeine and morphinone to 

morphine) may be used for metabolic engineering of the opium poppy, circumventing the 

biosynthesis of morphine and codeine, but maintaining the levels of other useful 

morphinanes such like thebaine
7
. 

 

 

 



9 

 

 

Figure 3 - Morphinan alkaloids biosynthesis. SalSyn, salutaridine synthase; SalR, 

salutaridine reductase; SalAT, 7(S)-salutaridinol 7-O-acetyltransferase; THS, thebaine 

synthase; CoR1, codeinone reductase 1 (Adapted from ref. 12).  
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3. Opioid receptors and their actions 

 The concept that drugs, hormones and neurotransmitters perform their functions 

by binding to highly specific sites called receptors was developed in the twentieth 

century.  Specific receptors that mediate opioid actions were postulated based on the 

stereospecificity of analgesic compounds and on the observation that minor structural 

changes resulted in substances that can antagonize the action of opioids. By the 1970's, 

the first endogenous opioid peptides were isolated and sequenced. These peptides were 

named enkephalins, dynorphins, β-neoendorphin, β-endorphin, dermophins and 

deltorphins. In 1973, Simon et al. described the highly specific binding of radiolabeled 

etorphine (an opioid with a molar potency of 3200 greater than morphine
14

) in rat brain 

homogenate supporting the existence of opioid receptors
15

. In same year, other groups 

corroborated independently these findings in mammalian brain (Pert and Snyder; 

Terenius)
18

. The concept of multiple opioid receptors rose after observations of the 

actions of opioid agonists, antagonists and mixed agonist-antagonists. Neurophysiologic 

observations in the dog spinal cord led to the proposal of three opioid receptors, named in 

Greek letters after the drugs used in the studies: μ (for morphine, which induces 

analgesia, miosis, bradycardia, hypothermia), κ (for ketocyclazocine, which causes 

miosis, general sedation, depression of flexor reflexes) and σ (for SKF 10,047 or N-

allylnormetazocine, which induces mydriasis, increased respiration, tachycardia and 

delirium). A fourth type of opioid receptor was proposed after observing the effects of 

opioid peptides in the mouse vas deferens and named δ (for deferens). After observations 

that the σ-receptor is non-opioid in nature, there are thus three main types of 

pharmacologically defined receptors: μ, δ and κ. Molecular biology approaches have also 
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confirmed their existence mid-1990's by cloning, with binding and functional properties 

compatible with their identities. In addition to the well-established three types of opioid 

receptors, an orphan opioid receptor-like (ORL1) receptor was cloned. Although the use 

of Greek letters is generally accepted by pharmacologists, molecular biologists usually 

employ DOR, KOR, MOR, meaning delta, kappa and mu opioid receptor respectively. 

To complicate the matter, the International Union of Pharmacology has proposed that the 

receptors should be numbered after the chronological order of their cloning and 

sequencing: OP1, OP2 and OP3 for δ-, κ- and μ-receptor respectively
17

. The three classes 

of receptors can be further subdivided into their subtypes and their analgesic action 

localization. Spinal and supraspinal antinociception  is mediated by δ2 and κ1; spinal 

analgesia is produced by activation of μ2; supraspinal analgesia is caused by μ1 and κ3
16

.  

  Opioid receptors are not only present in the central nervous system, but also at the 

periphery: preparations of isolated guinea pig ileum and the vas deferens from mouse, rat, 

rabbit and hamster are routinely used for pharmacological assays of opioid receptors
17

. In 

the central nervous system, there are regional variations: binding of [
3
H]naloxone (a 

compound that blocks opioid action)  is almost negligible in the cerebellum, but it is very 

high in the corpus striatum. The dissection of monkey brain revealed even more drastic 

variations that could explain the pharmacological actions of opioids. Receptors are 

present in the periaqueductal gray, where electrical stimulation produces analgesia that is 

antagonized by naloxone. The density of receptors in the medial thalamus, which takes 

the 'emotional' components of pain to the cerebral cortex, is almost four times higher than 

in the lateral thalamus, which conveys the 'pin prick' pain sensation that is not influenced 

by opiates
18

. 
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 Opioid receptors belong to the large family of rhodopsin-like G-protein (guanine 

nucleotide binding protein) coupled receptors (GPCR), with an overall amino acid 

sequence identity of 60% for all three types of receptors. GPCRs are the most widespread 

of several family of receptors, controlling virtually all known physiological functions in 

mammals
19

. It is estimated that half of the drugs in the market act on GPCRs. Interesting 

noting is that this receptor superfamily can bind to a broad range of substances, including 

monoamines, nucleotides, amino acids, peptides, proteins and pherormones. This class of 

receptors are also referred to as seven-transmembrane receptors (7TM), since their amino 

acid sequence crosses the membrane seven times to make the connection between the 

intracellular and extracellular medium
20

. The odd number of transmembrane spanning 

domains place the N-terminal and C-terminal portions of the receptor protein on opposite 

sides of the membrane, allowing ligand binding and glycosylation at the extracellular N-

terminal and phosphorylation and palmitoylation at the intracellular C-terminal for 

desensitization and internalization. The versatility of functions may be explained by the 

fact that the seven transmembranes form six loops, offering the core sufficient size for 

contact sites, specificities and regulatory mechanisms
21

. Upon ligand binding to the 

receptor, the signal is transduced by guanine nucleotide binding proteins (G-proteins) that 

are coupled to the receptor. The G-protein is a trimeric protein, consisting of α-, β- and γ-

subunits. Conformational changes caused by ligand binding catalyzes the hydrolyzation 

of GTP to GDP in the α-subunit, which leads to its  dissociation from the β- and γ-

subunits. This process modulates downstream effectors such as adenylate cyclase 

inhibition that occur during opioid activity
22

. Other common actions include activation of 

a potassium conductance, inhibition of calcium conductance and inhibition of 
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neurotransmitter release (Figure 4). More recent observations also include activation of 

protein kinase C, release of calcium from extracellular stores and activation of the 

mitogen-activated kinase cascade
23

. All three types of opioid receptors conserve sequence 

similarity in rat mainly in the TM2 (transmembrane 2), TM3, TM7, the first extracellular 

loop, the second and third as well as the fourth intracellular loops, whereas TM1, TM4, 

TM5, TM6, the second and third extracellular loops are less conserved
24

. An interesting 

property of GPCRs is that they can combine to form new functional structures such as 

homodimers (two receptors of the same type) and heterodimers (two receptors of 

different types). It has been observed that heterodimerization of κ-δ-opioid receptors 

modulates their function in a way that is distinct from the properties of single receptors. 

This heterodimer has decreased affinities for their selective ligands, however synergistic 

functional responses can be elicited by selective agonists acting cooperatively
25

. 
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Figure 4 - Illustration of the effects that occur after opioid activation. Three primary 

classes of effectors include inhibition of adenylyl cyclase, inhibition of vesicular release 

and interactions of different ion channels (adapted from reference 23). 

  

 Most opioids have moderate selectivity among different types of opioid receptors, 

eliciting similar pharmacological responses upon their stimulation. Nonetheless, in the 

past 20 years, techniques such as receptor cloning, knockout animals and antisense 

models have helped to investigate their actions separately. Generally, activation of all 

three major classes of opioid receptors produces analgesia, but other agonist actions vary 

depending on the receptor type. Euphoria, slow gastrointestinal motility, respiratory 

depression (in volume), immune suppression and emesis are related to activation of μ-

opioid receptors, whereas activation of δ-opioid receptors brings about respiratory 

depression (rate) and immune stimulation. While μ-opioid receptor stimulation is 

rewarding, inducing euphoria, the effects upon κ-opioid receptors are sometimes the 
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opposite. Indeed, besides producing sedation, miosis and diuresis, κ-agonists cause 

dysphoria and avoidance in animals and humans
32,34

. Increased food intake is also 

affected by administration of μ-, δ- and κ-opioid receptors agonists, whereas antagonists 

such as naltrexone and naloxone are able to diminish feeding response
26

. Other important 

actions of opioids include antitussive properties as well as undesirable tolerance and 

dependency.  
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4. Opioid ligands 

 Opioid ligands, whether they elicit or block pharmacological action, can be 

basically divided into three groups. The first group contains natural products and semi-

synthetic derivatives such as morphine and heroin respectively. Totally synthetic 

compounds are part of the second group, which may have little or no resemblance to the 

natural and semi-synthetic structures. The last group comprises naturally occurring (or 

endogenous) and synthetic peptides
36

.  

4.1. Non-peptide ligands 

 The first and second group of opioids can be aggregated into the non-peptide 

opioids. The prototypical opioid agent is the natural product morphine, from which most 

of the clinically available opioid analgesics are derived by either semi-synthesis or 

simplification of the natural product template. The first synthetic opioid obtained was the 

heroin (3,6-diacetylmorphine) in 1874 through semi-synthesis from morphine. Heroin 

was one of the first examples of a prodrug aimed to reduce the inconveniences of 

respiratory depression and dependency of morphine, but it soon became apparent that 

these claims were unfounded. Synthetic opioids can be broadly grouped into 4,5α-

epoxymorphinans, morphinans, benzomorphinans, phenylpiperidines and 

phenylpropylamines. The progressive simplification from the morphine scaffold to 

morphinans and benzomorphinans as well as phenylpiperidines to phenylpropylamines 

illustrates how other classes of opioids were obtained (Figure 5)
27

. 



17 

 

 

Figure 5 - Illustration of the progressive simplification of morphine-related drugs 

(Adapted from reference 27) 

 

 It is beyond the scope of this work to summarize structure-activity of all classes of 

opioid analgesics. However the basic requirements for opioid activity of morphine and its 

derivatives proposed by Beckett and Casy can be briefly described in Figure 6. At 

physiological pH, the nitrogen atom is protonated and binds to the receptor anionic site. 

The rigid piperidine ring is accommodated in the cavity on the receptor binding site, 

whereas the phenolic ring adhere to the flat surface of the binding site. On the other hand, 

the synthetic (+)-morphine is devoid of opioid activity since it cannot bind to the receptor 

in the same way the natural (-)-morphine does
32,36

. 
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Figure 6 - The opioid binding site model. (Adapted from references 32 and 36) 

 Since the synthesis of heroin, the first semi-synthetic opioid, numerous structural 

modifications have been made to several portions of the morphine molecule. However, 

alterations have been concentrated in three regions: the phenol at position 3, the C ring 

and the nitrogen (Figure 7). Changes in the phenolic hydroxyl usually decrease opioid 

activity. Either methylation (codeine) or acetylation (heroin) diminishes opioid receptor 

activity; however codeine retains around 10% of morphine potency due to in vivo 

demethylation to morphine, whereas heroin is twice as potent as morphine since its fast 

penetration into the blood-brain barrier and further hydrolysis to morphine. Oxidation or 

etherification at the 6-position as well as saturation of the C ring (7-8 position) increase 
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activity. Finally, demethylation of the basic nitrogen decreases activity, while 

introduction of bulky groups at this position leads to antagonists
28

. 

 

Figure 7 - Structure of morphine. 

 The basic three-point requirements for opioid binding as well as a brief structure-

active relationship of the morphine analogues have been previously mentioned. Another 

important aspect worth to be brought up is how different compounds bind preferably to 

distinct opioid receptor types. While common structural features of compounds interact 

with conserved residues among the three main classes of opioid receptors, uncommon 

moieties interact with amino acid residues that are dissimilar.  This can be explained by 

the “message-address” concept, which in a nutshell states that the common portion of 

ligands represents the “message”, whereas the variable moiety acts as the “address”, thus 

conferring selectivity. This concept can be illustrated by comparing the high affinity 

nonspecific opioid antagonist naltrexone against the κ-selective 5-guanidinylnaltrindole 

(GNTI) and the δ-selective naltrindole (NTI) in Figure 8. In the case of nonspecific 

opioids naltrexone and naloxone, both satisfy the 3-point requirement model (Figure 6) 

“message”, but the “address” locus is lacking. The obvious difference regarding the δ-

selective opioids naltrindole and 7-spiroindanyloxmorphone (SIOM) is the presence of a 

hydrophobic group, indole and spiroindane respectively, which acts as the “address” 

portion, therefore giving binding selectivity. Addition of a second basic moiety in the 



20 

 

“address” site of 5-guanidinylnaltrindole (GNTI) and norbinaltorphimine (nor-BNI) 

provides selectivity toward κ receptors, implicating the formation of an ionic bond with a 

glutamate residue (Glu VI:23) unique to this receptor.  Unfortunately, the message-

address concept cannot be verified with  μ-selective compounds such as morphine and the 

irreversible antagonist β-funaltrexamine (β-FNA) because they lack a common “address” 

site
29

. 
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Figure 8 - Message-address moieties of nonspecific (naltrexone and naloxone),              

δ-selective (NTI and SIOM),  κ-selective (GNTI and nor-BNI) and μ-selective (β-FNA) 

opioids. 
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 Pain is the major reason for a patient to seek medical advice, hence analgesics 

represent a huge therapeutic market of over $70 billion in the United States. Opioid sales 

in 2007 were $8.4 billion in the US, which constitutes 70% of the global market for this 

drug class. Sales of opioids have been growing 13% on average since 2001
30

. There are 

about 20 opioid drugs available on the US market that are sold with various trade names 

and routes of administration, ranging from patches to intravenous injections. Besides the 

naturally occurring morphine and the cough suppressant codeine, commercially available 

drugs that represent the five main classes (Figure 5) of non-peptide opioids are depicted 

in Figure 9
31

.  

 

Figure 9 - Commercially available analgesics representing the five main opioid classes. 

 

4.2. Peptide ligands 

 Scientists had postulated that morphine and other synthetic opioids were not the 

natural ligands for opioid receptors and that other analgesic substances must exist in the 
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brain. In the mid-1970's, the first endogenous opioid peptides were discovered and 

collectively named as endorphins, which is a combination of the words endogenous and 

morphine. Endogenous opioid peptides are produced from parts of large precursor 

proteins and the three major types of opioid peptides have their own precursor protein. 

Proopoimelanocortin is the precursor for β-endorphin, whereas proenkephalin A is the 

precursor for met-enkephalin and leu-enkephalin. The pro-opioid peptide proenkephalin 

B is the precursor for dynorphin and α-neoendorphin. All pro-opioid peptides are 

synthesized in the cell nucleus and transported to the nerve terminals where they are 

released. Proteases hydrolyze the pro-opioid peptides into their active form by 

recognition of a double basic amino acid before and after the opioid peptide sequences
32

. 

The analgesic action of peptides is short, since they are rapidly degraded by several 

peptidases such as aminopeptidases and dipeptidyl peptidases
33

. Although selectivity  

towards distinct receptor types is generally considered weak, peptides in the enkephalin 

and β-endorphin groups bind preferably to μ- and δ-receptors, whereas dynorphin is more 

selective towards κ-receptors
34

. The precursors, amino acid sequences and affinities of 

these endogenous peptides are shown in Table 1. 

Table 1. Mammalian endogenous ligands of opioid receptors
35

 

Precursor Endogenous 

peptide 

Amino acid sequence Affinity 

Pro-enkephalin [Met]-enkephalin 

[Leu]-enkephalin 

 
 

Metorphamide 

Tyr-Gly-Gly-Phe-Met 

Tyr-Gly-Gly-Phe-Leu 

Tyr-Gly-Gly-Phe-Met-Arg-Phe 
Tyr-Gly-Gly-Phe-Met-Arg-Gly-Leu 

Tyr-Gly-Gly-Phe-Met-Arg-Arg-Val-NH2 

δ, μ 

 

(δ>> μ) 

Pro-

opiomelanocortin 

β-endorphin Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Leu-Val-Thr-Leu- 

Phe-Lys-Asn-Ala-Ile-Ile-Lys-Asn-Ala-Tyr-Lys-Lys-Gly-Glu 
μ= δ 

Pro-dynorphin Dynorphin A 

Dynorphin A(1-8) 
Dynorphin B 

α-neoendorphin 

β-neoendorphin 
[Leu]-enkephalin 

Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile-Arg-Pro-Lys-Leu-Lys-Trp-Asp-Asn-Gln 

Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile 
Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Gln-Phe-Lys-Val-Val-Thr 

Tyr-Gly-Gly-Phe-Leu-Arg-Lys-Tyr-Pro-Lys 

Tyr-Gly-Gly-Phe-Leu-Arg-Lys-Tyr-Pro 
Tyr-Gly-Gly-Phe-Leu 

κ, μ, δ 

 

(κ>> μ, 

δ) 

Unknown Endomorphin-1 
Endomorphin-2 

Tyr-Pro-Trp-Phe-NH2 
Tyr-Pro-Phe-Phe-NH2 

μ 
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 Although opioid peptides never became marketed drugs due to their poor 

pharmacokinetic properties (very short half life and inability to cross blood-brain barrier), 

several strategies to improve stability have been attempted such as incorporation of 

unnatural D-amino acids, methylated amino acids and conversion of the carboxylic acid 

terminal to amide as well reduction to its alcohol derivatives. Inclusion of β-amino acids 

and cyclic peptides as well as formation of peptide dimers and oligomers have also been 

tried. While in vivo stability of opioid peptides is the concerning issue, peptide analogues 

have been widely employed as pharmacological tools in opioid receptor research. For 

example, radiolabeled DAMGO (Tyr-D-Ala-Gly-N-MePhe-Gly-OH) is used as high 

affinity μ-agonist in binding studies, whereas the cyclic pentapeptide DPDPE (Tyr-D-

Penicillamine-Gly-Phe-D-Penicillamine [2,5-dissulfide bridge]) is considered the 

prototypical δ-selective opioid peptide
36

.  
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5. Opioid tolerance and dependence 

 In addition to respiratory depression, the most serious adverse effect of opioid 

agonists administration is the development of tolerance and dependence. For a long time, 

it was hypothesized that repeated administration of certain drugs can provoke long-

lasting changes in the brain, leading to abuse. In order to investigate the neurophysiologic 

causes of addiction, the National Institute on Drug Abuse (NIDA) was created in 1974, 

which then became part of National Institutes of Health (NIH) in 1992
37

. Tolerance refers 

to a state of diminished responsiveness to a drug, whereas physical dependence arises 

from the cessation of drug administration that leads to withdrawal syndrome; 

administration of the drug is therefore necessary in order to reverse these effects
38

. 

Besides being a devastating disease that can lead to many personal problems and death, 

addiction also puts a huge burden on public health. The American Psychiatric 

Association defines substance abuse in the Diagnostics and Statistical Manual of Mental 

Disorders (DSM-IV) as: "[A] maladaptive pattern of substance use with physiological 

addiction, impaired control of substance taking, and/or adverse consequences (e.g., 

problems in social or occupational functioning)."
39

. 

 The potential factors connected to addiction or abuse are related to dose, route of 

administration, co-administration with other drugs, context of use and expectations. 

Particularly, pain relievers are the most abused prescribed drugs, increasing from 628,000 

initiates in 1990 to 2.4 initiates in 2001
40

. The psychopharmacological elements 

underlying drug-seeking behavior are as complicated as shown in Figure 10.  
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Figure 10 - Factors that influence the psychopharmacological effects of drug abuse.  

5.1. Molecular mechanisms of tolerance and dependence 

 In spite of the fact that almost 40 years have passed since the creation of NIDA, 

the mechanism of addiction is not yet fully understood, though enormous progress has 

been achieved. At the biochemical level, the binding to opioid receptors brings about the 

inhibition of adenylate cyclase, the enzyme responsible for the conversion of cyclic 

adenosine monophosphate (cAMP) from adenosine triphosphate (ATP). Acting as a 

second messenger, cAMP carries the signal from extracellular binding to intracellular 

effectors. Upon repetitive exposure, the late compensatory increase of adenylate cyclase 

counteracts opioid inhibition and rises far above the normal levels. Adenylate cyclase 

induction is responsible for opioid tolerance and withdrawal symptoms that lead 

dependence
41

. An important consequence of adenylate cyclase up-regulation is the 
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increase of cAMP-dependent protein kinase (PKA) responsible for the phosphorylation of 

cAMP response element binding protein (CREB). Functioning as a transcription factor, 

CREB alters gene expression that regulates numerous cellular processes involved in 

tolerance and dependence
42

. It is also worth mentioning that a cascade of events upon 

receptor activation promotes receptor desensitization and endocytosis. Following 

endocytosis, receptors can be recycled and sent back to the membrane, encapsulated in a 

vesicle or degraded. For recycled receptors, like μ-opioid receptors, endocytosis is the 

first step toward resensitization. Tolerance and dependence of chronic morphine 

treatment come from the fact that this opioid receptor does not induce endocytosis, thus 

no resensitization takes place
43

. 

5.2. Neuronal mechanisms of addiction 

 Basically, there are four brain circuits implicated in addiction: reward, motivation, 

memory and control. They are linked to the different concepts: reward, internal state 

(motivation/drive), learned associations (memory) and conflict resolution (control). In the 

addicted brain, the inhibitory control of the prefrontal cortex is overwhelmed by the 

augmented value of the drug in the reward, drive and memory circuits. The lack of 

control participation favors a positive feedback among the three remaining circuits, 

perpetuating drug consumption (Figure 11)
44

. 
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 Functional changes in the mesolimbic dopaminergic (DA) neurons are caused by  

 Functional changes in the mesolimbic dopaminergic (DA) neurons are caused by 

abrupt interruption of opioid administration, which leads to aversive effects like 

dysphoria and anhedonia; therefore, for the addict, the urge to administer the drug again 

is necessary to avoid these symptoms. Chronic use of opioids modifies the activity of the 

nucleus accumbens (NAc), which is targeted by DA neurons and give feelings of 

pleasure. Neurons from NAc project to the ventral pallidum and the ventral tegmental 

area (VTA) and contain GABA, opioid peptides enkephalin and dynorphin as well as 

substance P. It is thought that alterations in these neurons play a role in the negative 

effects of opioid withdrawal. There are two parts in the NAc: the core may be involved in 

drug-seeking behavior, while the shell is related to psychostimulant effects of drugs of 

abuse. Other structure connected to the VTA is the prefrontal cortex, which is responsible 

for behavioral control. The main neural effect of drugs of abuse is the stimulation of 

dopaminergic neurons in the VTA that releases dopamine in the NAc, contributing to the 

 Control 

Reward    Drive 

Memory 

 Control 

Reward    Drive 

Memory 

 

Figure 11 - Proposed model of circuits involved with addiction in nonaddicted and 

addicted brain
44

. 
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reward response. Besides the NAc and VTA, structures that contain opioid peptides and 

may be responsible for opioid reward are: locus coerelus, amygdala, substantia nigra, 

periaqueductal gray and arcuate nucleus
37,42,45

. 

5.3. Treatment of opioid dependence 

 The first step in dependence treatment demands identification of the opioid 

abuser, whether the patient is a street drug user or taking a prescribed opioid. In 2008, 

there were a total of 1,132 facilities offering opioid treatment programs
46

. Treatment 

options include counseling and pharmacologic therapies such as maintenance with opioid 

agonists (e.g. methadone) as well as detoxification with opioid antagonists (e.g. 

naltrexone and naloxone)
47

. Most medications used to treat opioid addiction interact with 

μ-receptors, like the abused opioids themselves, but their actions last longer. Methadone 

and L-alpha acetylmethadol (LAAM) are full μ-agonists with different durations of 

action, whereas buprenorphine is a partial agonist
48

. Non-opioid therapies include 

clonidine, an α2-adrenergic agonist that relieves up to 85% of withdrawal symptoms
49

. 

Another non-narcotic α2-adrenergic agonist closely related to clonidine that is currently in 

phase III clinical trials is lofexidine
50,51

. Along with psychosocial interventions, there are 

basically two pharmacological approaches used to treat opioid addiction: detoxification 

and maintenance.  

Although not life threatening, abrupt termination of opioid use leads to almost 

unbearable withdrawal symptoms, including chills, sweating, diarrhea, nausea, anxiety, 

irritability and insomnia. In order to reduce these symptoms, clonidine and other α2-

adrenergic agonists are employed with fewer side effects than methadone and patient 

participation, though clonidine has been linked to sedation and hypotension
52

. Besides 
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being used to avoid death by overdose, opioid antagonists (naloxone and naltrexone) can 

also be utilized along with deep sedation or anesthesia for rapid recovering from 

withdrawal side effects
53

. Another method of detoxification is called tapering, which is 

the process of substituting the abused opioid for another agonist (methadone or 

buprenorphine) and then slowly decrease the dose
52

. Methadone is the oldest drug used 

for tapering and it still considered the drug of choice (frequently in conjunction with 

buprenorphine) in most opioid addiction treatment programs
46

.  

The main objectives of maintenance treatments are to decrease craving and 

undesired withdrawal symptoms as well as avoid euphoria by carefully dosing the opioid 

agonist, therefore reducing drug-seeking behavior linked to overdose risk, HIV infection 

and criminal activity. Despite the fact that individuals undergoing opioid maintenance 

treatments are still physically addicted, these programs are aimed to reduce drug-related 

activities and allow patients to transition into drug-free programs
52

. Since the 1960’s, 

methadone has been used for maintenance treatment and it is the most well studied, first 

line drug for these therapy. However, LAAM and buprenorphine have two to three times 

the duration of methadone and they can be administered three times a week. The longer 

duration, besides providing fewer plasma level fluctuations between doses, may be 

advantageous over methadone in maintenance treatment programs
54

. Drugs currently 

used for treatment of opioid dependence are shown in Figure 12. 
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Figure 12 - Substances used for opioid addiction treatment: full opioid agonists 

(methadone and LAAM), partial agonist (buprenorphine), antagonists (naltrexone and 

naloxone) and α2-adrenergic agonists (clonidine and lofexidine). 

 
 

5.4. Treatment of opioid dependence and Mitragyna speciosa 

Although several pharmacological and psychological treatment approaches are 

effective, it is clear that, giving the relapsing nature of opioid addiction, many individuals 

will return to an opioid-dependent lifestyle. In order to prevent the negative outcomes 
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related to opioid addiction, it is imperative to search for new ways to help addicted 

patients to overcome opioid dependence. The scope of this work is to study novel 

compounds based on the alkaloids present in Mitragynine speciosa, also known as 

kratom. Descriptions dated back to as early as 1897 show that this plant was indicated  

for treating pain and opium abstinence syndrome. Indeed, a recent case report describes 

that a patient who abused hydromorphone was able to manage the intensity of opioid 

withdrawal by ingesting kratom tea
55

. This finding is also corroborated by several 

individuals depicting modulation of opioid withdrawal by ingesting kratom
56

. 
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6. Mitragyna speciosa and its alkaloids 

 Mitragyna speciosa Korth is a tree member of the Rubiacea family that is 

indigenous to tropical Southeast Asia. Popularly known as kratom in Thailand and Biak-

Biak in Malaysia, the leaves have been consumed by natives to induce opium-like effect 

and coca-like stimulant. The plant has been also used as an opium surrogate to decrease 

withdrawal syndrome in opioid abusers. Although it has been outlawed in those countries 

as well as in Australia, people still ingest the leaves by brewing tea, chewing or 

smoking
57

. In the United States leaves, extracts and powders are legally available through 

an increasing number of websites. Descriptions of preparations and effects of Kratom are 

widely available online through a growing number of testimonials
58,59

. 

 Mitragynine is the major constituent of M. speciosa leaves, making up to 66% of 

the total alkaloidal extract. Other Corynanthe-type alkaloids present in the crude extract 

are paynantheine (8.6%), speciogynine (6.6%) and speciociliantine (0.8%). Another 

minor plant component (2%) of interest regarding opioid activity is 7α-hydroxy-7H-

mitragynine
57

. Figure 13 shows the structures of these five alkaloids. Biosynthetically, 

corynanthe-type alkaloids are derived from a Mannich-like reaction between the 

ethylamine portion of tryptamine and a keto acid to give the tetrahydro-β-carboline 

system
60

.  
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Figure 13 - Structures of alkaloids present in Mitragyna speciosa. 

 Studies have shown that mitragynine has analgesic and antitussive properties 

comparable to codeine, without producing respiratory depression in comparison to this 

classic opioid. In vitro assays using membranes of guinea-pig brain showed that 

mitragynine binds preferably to μ-opioid receptors, with a pKi of 8.14 ± 0.28 as compared 

to 8.46 ± 0.28 of morphine in saturated radioligand ([
3
H]DAMGO). Preparations of 

electrically-stimulated contractions in guinea-pig ileum displayed an inhibitory activity of 

95% relative to morphine, however it showed a relative potency of only 26%. 

Antinociceptive activity in the tail-flick test in mice by intracerebroventricular 

administration of mitragynine revealed an estimated EC50 value of 60 nmol/mouse, 

whereas the average value for morphine was 3.2 nmol/mouse. On the other hand, 7-

hydroxymitragynine showed a relative potency to morphine of over 10-fold, while 
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maintaining its relative inhibitory activity of 99% in the electrically-stimulated guinea-

pig ileum test. Moreover, antinociceptive activity 7-hydroxymitragynine in both tail-flick 

and hot-plate test in mice after either oral or subcutaneous administration was higher than 

of morphine. In fact, 7-hydroxymitragynine antinociceptive effect was elicited after oral 

administration of 5 – 10 mg/kg in the tail-flick test in mice, whereas morphine did not 

produce any analgesia at 20 mg/kg p.o. in either assay
57,61

. 

 Mitragynine obtained by our group was also subjected to binding assays; however 

discrepancies were observed when compared to studies described in the previous 

paragraph. Although there is an agreement that its affinity is higher for μ-opioid 

receptors, the Ki value obtained was 81.97±5.49 nM, around 10-fold greater than the 

result observed in the previous study (7.24±0.52 nM). Opioid receptors are not the solely 

targets of mitragynine; this alkaloid also has affinity for other receptor types (Figure 14). 

It is worth noting that mitragynine binds to α2-adrenergic receptors, which might explain 

its opioid withdrawal attenuation property, since this receptor is agonized by clonidine, 

an α2-adrenergic agonist. 

 

Figure 14 - Percentage of inhibition by mitragynine among different receptors.  
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6.1. Mitragynine SAR 

 Some known structure-activity relationships (SAR) in electrically-stimulated 

guinea-pig ileum preparations are depicted on Figure 15. The 9-methoxy group is optimal 

to affinity and, as discussed above, 7-hydroxylation substantially increases opioid 

activity. Basic nitrogen is also required, since N-oxidation leads to inactivity.  

Speciociliantine, a C3 stereoisomer of mitragynine, has very low potency compared to 

mitragynine (13-fold decrease), which means that the four-ring structure must be on the 

same plane (S-configuration) in order to optimize opioid activity
61

. 

 

Figure 15 - In vivo mitragynine SAR. 
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7. Rationale 

 There are basically two different classes of molecules that were envisioned based 

on mitragynine: phenylpiperdine (including phenylaminopiperidines and 

phenylamidopiperidines) and tetrahydro-β-carboline derivatives. The idea was to simplify 

and increase flexibility of molecules in order to create novel opioid-active compounds 

and potentially comprehend the requisites necessary for opioid receptor affinity and 

activity. In the field of morphine analogue development, this approach has led to several 

marketed compounds with potent opioid activity that possess minimal structural 

requirements for binding and activity
62

. Tetrahydro-β-carboline derivatives are also to be 

explored for their tetracycle similarity to mitragynine and the ability to synthetically 

eliminate some functional groups present in this alkaloid. 

7.1. Phenylpiperidines, phenylaminopiperidines and phenylamidopiperidines 

 Initially, in order to investigate the pharmacophore moiety that may be involved 

in the opioid action of mitragynine, simple compounds 1 - 4 were proposed based on the 

backbone of mitragynine as show in Figure 16. 

 

Figure 16 - Simple phenylaminopiperidines. Common features in red. 
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 In order to investigate the pharmacophore responsible for the opioid activity of 

mitragynine, some moieties were proposed based on the structure of this alkaloid. One of 

the envisaged structures is 5, which resembles mitragynine, but it is designed to alleviate 

the constraints on rings A and C (Figure 13). Since all four rings of mitragynine form a 

planar and rigid structure, it was thought that a more flexible molecule could have more 

contact points with opioid receptors. The highlighted scaffold is depicted in blue in 

Figure 17. 

 

Figure 17 - Mitragynine and proposed phenylaminopiperdine. Common features in blue. 

Fentanyl and structurally related analgesics in the phenylpiperidine family such as 

carfentanyl and sufentanyl as well as meperidine are potent μ-opioid agonists. In fact 

only 0.12 mg of fentanyl is required to produce the same analgesia as 10 mg of 

morphine
63

. By combining some structural elements of mitragynine (blue) and fentanyl 

(orange) along with remifentanil as shown in Figure 18, it was hypothesized that 

compound 6 may have opioid activity. 
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Figure 18 - Proposed phenylamidopiperidine based on mitragynine, fentanyl and 

remifentanil. 

 

 A wide variety of 4-phenylpiperidines have been widely investigated for their 

affinity for opioid receptors
64

. Taking this into account along with the structures of 

mitragynine and its 7-hydroxy derivative, other structures were proposed as shown in 

Figure 19. Compound 7 resembles the backbone of mitragynine (blue), whereas 

compound 8 is similar to the structure of 7-hydroxymitragynine. Both structures were 

planned having in mind the alleviation of constraint of rings A and C (Figure 13). 
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Figure 19 - Mitragynine, 7-hydroxy-mitragynine and phenylpiperidines. Similarities are 

in blue (mitragynine) and red (7-hydroxy- mitragynine). 

 

7.2. Tetrahydro-β-carbolines 

 As previously discussed, phenylpiperidines, phenylaminopiperidines and 

phenylamidopiperidines were planned to mimic mitragynine and its 7-hydroxy derivative, 

while introducing flexibility on the backbone by removing rings A and C. Nonetheless, it 

was thought necessary to explore smaller changes on the natural product structure. To 

this end, tetrahydro-β-carbolines were proposed to closely resemble the four-ring 

structure of mitragynine and explore smaller changes to elucidate some structure-activity 

relationships. These modifications were concentrated on the 15-position of mitragynine 

structure (Figure 13). Another compound of interest is 38, which is based on 

hydroxylated 7-hydroxymitragynine, an alkaloid with in vivo antinociceptive properties 
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in both tail-flick and hot-plate test higher than morphine. For the purpose of synthetic 

simplification, the ethyl group was omitted as illustrated in Figure 20.  

 

Figure 20 - Tetrahydro-β-carbolines based on mitragynine and 7-hydroxymitragynine. 
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8. Synthetic strategies and discussion 

The next section will be subdivided into two classes of compounds: 

phenylpiperidines (inclunding phenylaminopiperidines and phenylamidopiperidines) and 

Tetrahydro-β-carbolines. Schemes and reactions conditions as well as problems 

encountered will be depicted and discussed. Furthermore, stereochemistry considerations 

will be addressed in the end of this section.  

8.1. Phenylpiperidines, phenylaminopiperidines and phenylamidopiperidines 

 The general strategy to obtain 2 – 4 is to first transform N-methyl-3-piperidinol 

into its methanesulfonate ester and further react with the corresponding aniline derivative. 

The overall yield for these reactions were very low (<2%) due to the difficulty of 

sulfonate ester formation. Synthesis of the toluenesulfonyl and trifluoromethanesulfonyl 

esters
65

 were attempted, but they also gave very low yields. To obtain the aniline of 

compound 1, first the hydroxyl group of 4-nitroguaiacol was protected with the acetyl 

group
66

, then the nitro group was reduced using palladium on carbon (10%) under 

pressurized hydrogen atmosphere
67

, which was reacted with N-methyl-3-

piperidinomethanesulfonyl ester.  

 As previously discussed, overall low yields were obtained with sulfonate esters. 

In this case, reductive amination between m-anisidine and a piperidone was considered as 

alternative route. First, the oxidation of N-methyl-3-hydroxypiperidine to the 

corresponding ketone was tried through two different approaches: (a) oxidation by 

aqueous sodium hypochlorite
68

, and (b) oxidation by using Dess-Martin periodinane
69

, 

however both methods gave low yields (less than 7%).  Reductive amination was 

primarily carried out using the readily available N-methyl-4-piperidone and sodium 
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cyanoborohydride in acetonitrile at reflux or applying microwave radiation
70

.  Formation 

of the amine bond was only improved from less than 3% to 12% after employing the less 

polar solvent 1,2-dichloroethane (DCE) at room temperature
71

.  

 

Scheme 1. (a) AcOH, NaBH(OAc)3, DCE (b) H2 (55 psi), Pd/C, MeOH (c) K2CO3, r.t. 

(d) LDA, methylformate, THF -78 ºC (e) p-TsOH, trimethyl orthoformate, MeOH, reflux 

(f) t-BuOK, DMSO 

 

The first step was carried out using m-anisidine and the readily available benzyl-

protected ketone: N-benzyl-4-piperidone
71

 (Scheme 1). The yield was considerably 

higher as compared to the reductive amination described above, from 12% to 70%. Since 

the desired amine bond is at 3-position relative to the piperidine ring, reductive 

amination was accomplished using the commercially available N-benzyl-3-piperidone 

hydrochloride, which was extracted to the corresponding base before reacting with m-

anisidine. Reductive amination was also carried out using sodium triacetoxyborohydride 

and acetic acid in 1,2-dichloroethane
71

 at room temperature for 72h, which after 

purification gave a cleaner product according to NMR analysis with 50% yield. 
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The next step consisted in the removal of the benzyl group. Several approaches 

were used to deprotect the piperidine ring employing palladium on carbon and 

ammonium formate or formic acid
72

 as sources of hydrogen in methanol. Zinc was also 

used as catalyst along with ammonium formate in methanol at room temperature, but no 

reaction took place after 45 hours. Even after irradiating with microwave at 80 ºC for 

one hour, no change in TLC (Thin Layer Chromatography) was observed
73

. Another 

method for debenzylation  employed palladium on carbon and a mixture of ethanol and 

cyclohexene under reflux for 24 hours
74

. Only after using palladium (10%) on carbon 

under hydrogen atmosphere at 55 psi suspended in methanol, the reaction time was 

reduced to 4h. The last approach also provided up to 85% yield after purification 

through chromatography
75

. 

Alkylation of the secondary amine formed after the elimination of the benzyl 

group was attempted by reacting methyl 5-bromovalerate using potassium carbonate and 

a phase transfer catalyst
76

 such as tetrabutylammonium iodide or bromide in DMF. 

Different reaction temperatures ranging from room temperature to 55 °C were tried; yet 

concomitant alkylation of the aromatic amine probably took place as a byproduct 

according to mass spectroscopy. The formation of the this derivative could be 

circumvented by not employing a phase transfer catalyst and simply using potassium 

carbonate in DMF at room temperature, giving a yield of 53%. 

In order to introduce the formyl group alpha to the ester 15, it was found 

necessary to first protect the aromatic amine, as lithium diisopropylamine reacts with the 

amino hydrogen, giving compound 16 according to mass spectroscopy (Scheme 2). This 

should have been expected, since the aromatic amine is more acidic than the methylene 
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next to the carbonyl group. The first attempt to benzylate the amino group used benzyl 

bromide in DMF and different bases (K2CO3 or KH)
77

; however it was observed through 

TLC that formation of a quaternary amine in the piperidine ring took place. Introduction 

of the benzyl group through reductive amination using benzaldehyde and NaBH(OAc)3 

in acidic conditions was not successful. Protection of the aromatic amine was also 

attempted using di-tert-butyl dicarbonate
78

, but the product recovered by flash 

chromatography was the starting material. Carbamate protection using ethyl 

chloroformate
79

 in DCE or DMF at temperatures up to 85 ºC was not successful after 

several hours. Although some product was identified by mass spectroscopy, it was 

observed by TLC that the yield was very low, even after addition of up to 15 equivalents 

of ethyl chloroformate. 

 

Scheme 2. LDA, THF, -70 °C. Unsuccessful introduction of the formyl group alpha to 

the ester 15. 

   



46 

 

 The phenylamidopiperidine 6 based on structural similarities among potent 

opioids such as fentanyl and remifentanyl as well as the alkaloid mitragynine (Figure 18) 

was easily obtained as shown on scheme 3. Compound 15 was treated with propionyl 

chloride and triethylamine in refluxing DCE under argon, yielding 95% after purification 

by silica gel chromatography
80

.  

 
Scheme 3. Propionyl chloride, Et3N, DCE, reflux. 

 

 Regarding the rationale depicted in Figure 19, the phenylpiperidine 7 was 

obtained as shown in scheme 4. The tertiary alcohol 17 was obtained by transforming 2-

bromoanisole into the corresponding Grignard reagent and then adding N-benzyl-4-

piperidone, yielding 27% along with three byproducts
81

. Intramolecular elimination of 

water using acidic condition in refluxing toluene yielded 56% of pale yellow oil (18). 

Posterior debenzylation and olefin reduction was catalyzed by palladium under hydrogen 

atmosphere to give the secondary amine 19. When compared to the conditions used to get 

15, alkylation of the secondary amine 19 was improved both on yield (81%) and time (2 

hours) by heating to 60 ºC and using NaHCO3 (20). Introduction of the formyl group 

alpha to the ester was achieved by treating with lithium diisopropylamide in THF at         

-70 ºC and then adding methyl formate. The product obtained (21) with 70% yield was a 

mixture of aldehyde and enol tautomers, which was verified by both TLC and NMR 

analysis. The three spots on the TLC are compatible to a mixture of the aldehyde form as 
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well as two enolic geometric isomers. Taking into account the proton NMR spectrum, the 

aldehyde form was predominantly present in a 2/3 ratio.  As it will be described later in 

the case of tetrahydro-β-carbolines, it was thought that in order to obtain the 

methoxyacrylate 7, compound 21 would have to be converted to the acetal 22 and then 

submitted to basic treatment with potassium tert-butoxide. Interestingly, the last step 

could be circumvented by extending the reaction time and adding an excess of tosic acid 

and trimethyl orthoformate, without affecting the yield (23%)
82

. Regarding the methyl 

methoxyacrilate isomer, it was expected that the (E)-isomer was obtained
83

 due to the 

high repulsion energy of oxygen atoms while in (Z)-configuration (4.46 kcal/mol 

according to ChemBio3D software MM2 energy minimization). 
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Scheme 4. (a) Mg, THF, I2 (b) p-TsOH, toluene, reflux (c) H2, Pd/C, EtOH (d) methyl 5-

bromovalerate, NaHCO3, DMF, 60 ºC (e) LDA, methyl formate, THF (f) TsOH, 

trimethyl orthoformate, MeOH, reflux 

 

 

 Compounds 17, 23 and 24 (Scheme 5) where again prepared with similar yields as 

previously described in Scheme 4. Nevertheless, it was found to be necessary to protect 

the tertiary alcohol 24 to obtain 8, as two key steps are incompatible with this hydroxyl 

group. First, formyl group introduction requires a strong base, lithium diisopropylamide, 

which easily deprotonates the tertiary alcohol; second, tertiary alcohols readily undergo 

intramolecular dehydration under acidic conditions, like the one employed to obtain the 

methoxyvinyl moiety. 
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Scheme 5. (a) H2, Pd/C, EtOH (b) methyl 5-bromopentanoate, NaHCO3, DMF, 60 ºC. 

PG: protective group. 

 

 Since formation of the methoxyvinyl moiety requires the use of tosic acid, the 

chosen protecting group would have to survive this condition. Silyl ethers are among the 

most commonly used protective groups for the alcohol function, but are susceptible 

toward acid hydrolysis
84

. Protection by the benzyl group was thought as an alternative, as 

his ether are resistant toward acid hydrolysis. Nevertheless, by submitting compound 7 to 

the deprotection conditions (H2, Pd/C in EtOH), it was observed that the methoxyvinyl 

double bond underwent reduction according to mass spectroscopy. Another possible 
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choice to protect the tertiary alcohol explored the advantage of the acidic stability of 

methylthiomethyl (MTM) ether, which can be removed with the neutral mercuric 

chloride
84

. The first method to introduce the MTM group in 24 employed DMSO and 

acetic anhydride at room temperature
85,86

, which gave the protected MTM ether in minor 

quantities along with the acetate ester and intramolecular water elimination product. 

Besides the evidence by mass spectroscopy and TLC of MTM ether and byproducts 

formation, the reaction mixture was submitted to deprotection using HgCl2 in 

water/acetonitrile
87

, which gave back the starting material 24 (according to TLC). The 

difficulty to introduce the MTM group to a tertiary alcohol was evident, as different 

methods were attempted without success: (a) methylthiomethyl chloride, NaH, NaI, 

THF
87

; (b) methylthiomethyl chloride, AgNO3, triethylamine, benzene
86

; (c) 

methylthiomethyl chloride, AgNO3, triethylamine, toluene. As the only method that 

looked promising used dimethyl sulfoxide and acetic anhydride  to form a sulfonium ion, 

which then reacts with the hydroxyl group to give the MTM ether
88

, the rest of starting 

material 24 was submitted to this procedure. However, the only compound obtained after 

purification was the acetate ester 25. Scheme 6 exemplifies the different strategies 

pursued to obtain the protected hydroxyl group by MTM ether. 
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Scheme 6. (a) Ac2O, DMSO (b) Cl-CH2SCH3, NaH, NaI, THF (c) Cl-CH2SCH3, AgNO3, 

Et3N, benzene, 60 ºC (d) Cl-CH2SCH3, AgNO3, Et3N, toluene, 70 ºC. 

 

8.2. Tetrahydro-β-carbolines 

 The tryptamine 28 was obtained as shown in scheme 7. Commercially available 

4-methoxyindole 26 underwent nitro olefination at 3-position with N,N-dimethylamino-2-

nitroethylene in trifluoroacetic acid
89

. Reduction of both ethylene and nitro groups in 27 

was carried out employing lithium aluminum hydride in THF to give 28 with 15.5% yield 

(two steps). 

 

Scheme 7. (a) N,N-dimethylamino-2-nitroethylene, TFA, 0 ºC then r.t. (b) LAH, THF,     

-78 ºC then r.t. 
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 Scheme 8 shows that after obtaining the formamide 29 with a refluxing mixture of 

ethyl formate in methanol (90% yield), phosphoryl chloride was employed to cyclize ring 

B to give the imine 30 via Bischler-Naperalski reaction
90,91,92 

. Without isolating the 

dihydro-β-carboline 30, the fourth ring in 31 was constructed by using methylvinyl 

ketone and zinc chloride in methanol at reflux temperature (64% yield)
93

. Horner-

Wadsworth-Emmons reaction, i.e. replacement of ketone with olefinic methyl ester 32, 

was accomplished by using trimethyl phosphonoacetate and sodium hydride in THF, 

yielding 98%
94,95

. The reduced compound 33 was obtained by simply employing 

hydrogen and palladium as catalyst with 55% yield. 

 

 

Scheme 8. (a) ethyl formate, MeOH, reflux (b) POCl3, 50 ºC (c) methylvinyl ketone, 

ZnCl2, methanol, relux (d) trimethyl phosphonoacetate, NaH, THF, 0 ºC than r.t. (e) H2, 

Pd/C, MeOH. 

 

 Wolff-Kishner reduction of ketone 31 was first carried out with hydrazine sulfate 

and potassium hydroxide in ethylene glycol at 190 ºC without success
96

. Only after 
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substituting hydrazine hydrate for hydrazine sulfate, it was possible to obtain 34 with 

86% yield as depicted in Scheme 9. 

 

 

Scheme 9. NH2NH2.H2O, KOH, ethylene glycol, 190 ºC. 

 

 The final three steps to obtain the tetrahydro-β-carboline 37 are shown in Scheme 

10. As described previously in relation with phenylpiperidines, formyl group introduction 

alpha to the methyl ester 33 was carried out with lithium diisopropylamide and methyl 

formate in THF; however the yield was significantly low when compared to 21 (10%). 

After obtaining 35 as a mixture of tautomers, the next step was to form the acetal moiety 

with timethyl orthoformate and tosic acid in refluxing methanol, which gave 36 with 69% 

yield
82

. Elimination of one acetal methoxyl group using a strong base, potassium tert-

butoxide, in dimethylformamide gave the methoxyvinyl moiety in 37 with 31% yield. As 

discussed earlier, it is expected that the (E)-isomer was obtained
83

 due to higher repulsion 

energy of oxygen atoms while in (Z)-configuration.  
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Scheme 10. (a) LDA, methyl formate, THF, -78 ºC then r.t. (b) trimethylorthoformate, 

PTSA, MeOH (c) t-BuOK, DMF, 60 ºC 

 

 Oxidation at 7-position of 33 was carried out by [bis-(trifluoroacetoxy)-iodo]-

benzene (PIFA) as the oxidizer in a mixture of acetonitrile and water at 0 ºC under 

argon
97

 (Scheme 11). The presence of the oxidized compound was confirmed by mass 

spectroscopy and proton NMR, that is, the absence of indolic proton and the appearance 

of a signal upfield in the 
13

C spectrum (C2).  The reaction was performed four times 

under similar conditions; however after six attempts to purify 38 by silica gel column 

using different mobile phases, the compound could not be isolated with sufficient purity 

for testing. Only after using preparative HPLC to isolate 38, it was possible to obtain it 

with reasonable purity according to analytical HPLC (94.3%) at 15% yield. 
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Scheme 11. PIFA, MeCN, H2O. 

 

8.3 Sterereochemistry considerations 

 Previously, the focus on the discussion was based on the synthetic strategies and 

the problems encountered as well as how to circumvent them. Notwithstanding, besides 

mentioning which methoxyacrylate geometric isomer was obtained, nothing was said 

about the absolute configuration of the different stereogenic centers observed during the 

course of these syntheses, especially regarding the final products submitted for biological 

evaluation. Synthesis of piperidines 6 and 15 were carried out by reductive amination 

between m-anisidine and 1-benzyl-3-piperidone employing the non-stereoselective 

reducing agent NaBH(OAc)3, therefore it is expected that they were obtained as racemic 

mixtures. On the other hand, synthesis of tetrahydro-β-carbolines generated up to three 

chiral centers, thus they deserve a more detailed discussion.  

 Compound 31 and its derivative 34 have one chiral center (see position 3 in 

Figure 21) and they were first analyzed by analytical HPLC using a chiral column with 

cellulose tris-(4-methoxybenzoate) coated on silica gel. Moreover, the chromatograms 

showed two distinct peaks, which says that they were obtained as a mixture of 

enantiomers. Moreover, the specific rotation for 31 was zero, proving that both 

compounds were obtained as racemic mixtures. In regard to compound 33, more 

extended considerations are necessary since it has two stereocenters (see positions 3 and 

15 in Figure 21). As in the case of compounds 31 and 34, it was observed that the chiral 
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separation of  33 showed two peaks and the specific rotation was zero, which means that 

this compound was obtained as a racemic mixture. Fact also confirmed by the single TLC 

spot isolated during the course of the synthesis. 

 

Figure 21 - Compound 33 ring numbering. 

 

 As it is displayed in Figure 22, there are four diastereoisomers that could be 

obtained. Since the optical rotation of the tested substance was zero, they must be a pair 

of either 3S, 15R and 3R, 15S or 3S, 15S and 3R, 15R isomers. The question that remains 

is what pair of enantiomers were submitted to biological testing. In order to answer this 

question, different NMR techniques were performed, namely DEPT135, COSY, HMQC 

and NOESY as well as the commonly used proton and carbon ones. After carefully 

analyzing these spectra, it was possible to draw some conclusions about which pair of 

enantiomers was produced. Following chemical shifts assignments of each carbon and the 

hydrogens connected to these carbons, NOESY spectrum showed a correlation between 

the indolic proton at 1-position and the proton attached to carbon 15, which means that 

the distance separating these protons must be less than 5 Å in order to this correlation to 

be observed. By employing molecular mechanics energy minimization (MM2; 

ChemBioDraw 12.0), it was visible that the only pair of enantiomers that fulfilled the less 
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than 5 Å requirement was 3S, 15R and 3R, 15S isomers, as opposed to the other pair (3S, 

15S and 3R, 15R), which showed distances greater than 5 Angstroms. 

 

Figure 22 - Four diastereomers of compound 33 and the distances between position 1 and 

position 15. 

 Indeed, not only NMR techniques, but also the crystal structure, obtained by 

solubilizing the hydrochloride salt of compound 37 (a derivative of 33) in ethanol and 

then evaporate the solvent, corroborates the conclusion about which pair of enantiomers 

underwent biological evaluation. Although only one isomer was crystallized, it is evident 

in Figure 23 that the recovered crystal was the 3S, 15R isomer of 33, which belongs to the 

same pair examined before by NMR techniques. Interestingly, the crystal structure also 

confirmed that the methoxyacrylate geometric isomer (37) acquired was, as discussed 

above, the trans-compound. Moreover, despite the fact that no crystal structure of 7 was 

analyzed, it is possible, taking into account the energy minimization differences between 

cis and trans isomers as previously considered, to infer that the isomer produced was the 

trans compound.  
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Figure 23 - X-ray crystal structure of compound 37. Carbons in gray, nitrogens in blue 

and oxygens in red. 
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9. Biological results and discussion 

 Initially, compounds in table 2 were pre-screened to compare their percentage of 

binding with the reference compound, the opioid receptor antagonist naloxone, for each 

human opioid receptor. The constant of inhibition (Ki) and the half maximum inhibitory 

concentration (IC50) where further evaluated for compounds that displayed a percentage 

greater than 50%, as highlighted in table 2. Most of compounds were tested as either 

hydrochloride salt (HCL) or monobasic oxalate salt (OXA); the remaining substances 

were evaluated as free bases. 

Table 2- Percentage of binding compared to the reference compounds. OXA: monobasic 

oxalate salt; HCL: hydrochloride salt. 

Compound μ % binding δ % binding κ % binding 

 

Mitragynine 

 

88.16 75.52 90.21 

 
MA66 OXA 

2.22 

 

-16.97 

 

1.48 

 

 
MA71 OXA 

3.73 

 
0.47 

52.23 
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MA92 OXA 

15.72 

 

-8.32 

 

31.03 

 

 
MA94 OXA 

29.58 -7.66 51.35 

 
MA114 

80.93 87.80 25.95 

 
MA127 

72.59 58.30 10.79 

 
MA103 

-7.59 

-7.51 (HCL) 

46.81 

42.01 (HCL) 

5.14 

7.79 (HCL) 
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MA104 HCL 

14.55 8.33 8.64 

 
MA91 OXA 

0.78 -16.64 90.84 

 
MA108 HCL 

14.86 11.56 75.58 

 
MA116 

2.43 48.82 26.48 

 

From the preliminary qualitative binding assays depicted above, two compounds 

had significant displacement on human μ-receptors, two on δ-receptors and four on κ-

receptors. Phenylaminopiperdine 15 and phenylpiperidine 20 lack binding affinity, 

however the flexible phenylamidopiperdine 6 as well as phenylpiperidines 7, 24 and 25 

had noticeable displacement on at least one type of opioid receptor. One explanation for 6 

having κ-opioid affinity, when compared to 15, is that it possesses a propyl group in the 

anilinic nitrogen, as it is also the case in fentanyl, which has κ- and μ-opioid affinity. The 
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methoxyvinyl group alpha to the methyl ester in 7 is important for the affinity for μ- and  

δ-receptors, since a similar compound 20 does not have affinity for any receptor. 

Selectivity change from κ-receptor to μ- and  δ-receptors was observed by transforming 

the tertiary hydroxyl group in the piperidine ring of 24 into the acetoxy moiety in 25. In 

the case of the more rigid tetrahydro-β-carbolines, only two out of five substances had 

considerable displacement on κ-receptors. The methyl ester in 33 and 37 seems to be 

important for  κ-receptor affinity, since the tetrahydro-β-carbolines 31 and 34 did not 

show significant displacement. Surprisingly, compound 38, which is similar to the 

efficacious antinociceptive agent 7-hydroxymitragynine (about 10 times the relative 

potency of morphine), did not display substantial displacement of naloxone in any 

receptor type. 

 Compounds that had a percentage of displacement greater than 50% in relation to 

naloxone were further incubated with radioligands specific for each opioid receptor: 

[
3
H]DAMGO (µ), [

3
H]Enkephlin (δ) and [

3
H]U-69,593 (κ). Unfortunately, none of the 

compounds synthesized showed binding affinity as low as mitragynine (determined by 

our group), as displayed in table 3. With the exception of compounds 33 and 37, all 

compounds showed values in the micromolar range. The compound with the highest 

binding affinity was the tetrahydro-β-carboline 33, with a Ki value of 391.4 nM for κ-

receptor. Introduction of a methoxyvinyl moiety alpha to the methyl ester in 33 afforded 

37, which caused an almost two-fold decrease in affinity for κ-receptor. On the other 

hand, installation of the same moiety in the flexible phenylpiperidine 20, which did not 

show significant naloxone displacement, provided 7, with a binding affinity for μ- and δ-

receptors of 2.097 μM and 8.836 μM, respectively. Neither the methoxyvinyl in 7, nor the 
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acetoxy group in 25 had impact on μ affinity, nevertheless the binding affinity of 25 for 

the δ-receptor diminished by a factor of four. When comparing κ-receptor affinities, 

tetrahydro-β-carbolines revealed higher binding affinity than piperidines. Conversely, 

some piperidines displayed μ- and δ-receptors affinity, but no tetrahydro-β-carboline 

demonstrated significant affinity for those receptors.  

 It is also worth bringing into attention the absolute configuration of the 

compounds tested. Out of the two piperidine derivatives with a stereocenter, the one that 

had considerable inhibition, compound 6, was obtained in a racemic fashion. 

Unfortunately, nothing can be said about which isomer is the major responsible for the 

activity, since they were not evaluated independently. On the other hand, the more 

complex tetrahydro-β-carbolines, have up to three stereocenters. As none of the 

tetrahydro-β-carbolines, 33 and 37, had significant displacement in μ- and δ-receptors 

compared to mitragynine, it is possible to say that not only the ethyl group at position 20 

in mitragynine (Figure 13) may play an role in the activity on these receptors, but also the 

absolute configuration of the pair of enantiomers tested. Indeed, though one compound 

shows identical configuration as mitragynine (see 3S,15R in Figure 22), the other displays 

the opposite on both positions. The same can be said about the Ki values of 33 and 37 on 

κ-receptors, which were not as low as for mitragynine. Interestingly, the mixture of 

enantiomers 33 reveals a two-fold decrease in affinity on κ-receptors when compared to 

mitragynine, which can be explained by the fact that 50% of the composition is 

composed by the 3R,15S isomer. In fact, the natural product speciociliantine also has the 

opposite configuration on position 3 and it has an 13-fold decreased affinity when 

confronted with mitragynine. Finally, the reason why compound 38, which was based on 
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the efficacious antinociceptive substance 7-hydroxymitragynine, did not show significant 

naloxone displacement is that it was evaluated as a mixture of enantiomers. It can also be 

added that the hydroxyl group configuration at the 7-position, which in 7-

hydroxymitragynine is α, was not determined in 38, thus there may be a chance that this 

is another justification for why this compound was not significantly active. 

 Figures 24 through 27 show the binding curves as well as Ki and IC50 values of 

compounds that showed significant displacement.  

Table 3 - Inhibition constant values for each receptor type. N.D.: Not determined 

Compound 
μ [

3
H]DAMGO δ [

3
H]Enkephlin κ [

3
H]U-69,593 

Ki (μM) Ki (μM) Ki (μM) 

Mitragynine 
0.0820 ± 0.0055 0.3828 ± 0.0580 0.2156 ± 0.0149 

6 

(MA71 OXA) N.D. N.D. 1.885 ± 0.209 

7 

(MA114) 2.097 ± 0.190 8.836 ± 1.127 N.D. 

24 

(MA94 OXA) N.D. N.D. 8.347 ± 2.607 

25 

(MA127) 1.982 ± 0.327 38.92 ± 9.19 N.D. 

33 

(MA91 OXA) N.D. N.D. 0.3914 ± 0.0300 

37 

(MA108 HCL) N.D. N.D. 0.7257 ± 0.1548 
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Figure 24 - Binding curves for compound 7 (μ- and δ-receptors).   

 

Figure 25 - Binding curves for compound 25 (μ- and δ-receptors).   
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Figure 26 - Binding curves for compound 6 (MA71 OXA) and 24 (MA94 OXA)           

(κ-receptor). 

 

 
Figure 27 - Binding curves for compounds 33 (MA91 OXA) and 37 (MES147 HCL; 

obtained by the same method employed for MA108 HCL) (κ-receptor). 
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10. Final considerations 

 The biological results discussed above clearly show that piperidines 

(phenylpiperidines, phenylaminopiperidines and phenylamidopiperidines) displayed 

binding affinities that are lower than tetrahydro-β-carbolines affinities. Moreover, none of 

the compounds synthesized exhibited binding affinities lower than mitragynine. 

However, those binding studies demonstrated that these compounds showed moderate 

selectivity among μ-, δ- and κ-opioid receptors. Although piperidines had affinities in the 

micromolar range, two of them had significant inhibition constant on κ-receptors, but no 

expressive inhibition on μ- and δ-receptors was observed. Conversely, the other two 

piperidines with significant affinity for μ- and δ-receptors did not show important affinity 

for κ-receptors. In the case of tetrahydro-β-carbolines, they revealed higher binding 

affinities for κ-receptors than the piperidines. A general conclusion that can be drawn is 

that the higher flexibility of the piperidines and less similarity to mitragynine are 

detrimental to the overall binding affinity for opioid receptors. Indeed, tetrahydro-β-

carbolines, which are structurally closer to mitragynine, showed affinities in the 

nanomolar range for at least one opioid receptor. It is also worth pointing out that the 

synthetic methods used to obtain these compounds did not take into consideration the 

stereoisomers produced during the synthesis. This drawback was more evident in the case 

of tetrahydro-β-carbolines synthesis, which generated multiple diastereoisomers. 

Isolation of these stereoisomers by preparative chiral chromatography, for instance, could 

have provided more insights about the requirements for opioid receptor binding.   

 As it was said before, the flexibility related to piperidines did not produce any 

significant affinity towards any opioid receptors when compared to mitragynine, since 
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molecules with more degrees of freedom are supposed to have less affinity. Indeed, the 

structurally rigid four-ringered terahydro-β-carbolines had the highest affinity on at least 

one type of opioid receptors, namely κ-receptors. Although no functional tests were 

performed, the higher affinity on κ-opioid receptors when compared to the other two 

receptor types may be advantageous in the future, as κ-receptors agonists are linked to the 

suppression of the rewarding effects induced by morphine
98

.  

 Regarding the tetrahydro-β-carbolines biologically tested, it is worth noting that 

some portions of the four-ringered molecule play an important part on κ-opioid affinity, 

that is the methyl ester and the methyl methoxyacrylate moiety. While the methoxy allyl 

group is detrimental to affinity, the methyl ester at C15 revealed κ-affinity very close to 

mitragynine. In fact, unsubstituted and ketone substituted compounds at 15-position did 

not show any significant affinity for κ-receptors. From these observations, it is plausible 

to say that some portions of the designed compounds might not be necessary for affinity. 

Therefore, it is possible to address that the indolic portion is not essential, whereas the 

double-ringed heterocycle, octahydro-1H-quinolizine is the common feature between the 

active and not active tetrahydro-β-carbolines. Moreover, this multi-substituted moiety 

(mainly phenyl and methyl substitutions) is present in recent studies that show opioid 

affinity
99

. Consequently, octahydro-1H-quinolizine derivatives might be worthwhile to 

investigate in the future for opioid affinity. Furthermore, this work demonstrated that 

variations at the 15-position change opioid affinities dramatically, hence different groups 

at this position could be also explored for general opioid affinity. 
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11. Experimental section 

Chromatography was performed with silica gel 60 (230 x 400 mesh). Mass 

spectra were obtained on a Waters micromass ZQ detector. NMR spectra were recorded 

on either a Bruker AVIII 400 spectrometer or Bruker DRX500. HPLC analyses were 

performed on a reverse phase XTerra R8 (5 m) column (4.6 X 100 mm) with 30% water, 

10% NH4OH solution in H2O and 60% of CH3CN as the mobile phase for 5 minutes, then 

the gradient changed to 100% CH3CN in 5 minutes and the column was washed with 

CH3CN for another 5 minutes. The flow rate was maintained at 1 mL/min on a Waters 

apparatus (Photodiode Array detector 996 and Separation Module 2695). Peaks were 

monitored at maximum absorbance from 210 to 400 nm. Chiral separations were 

performed on the same Waters apparatus with a Daicel Chemical Industries Chiracel OJ-

H column (250 X 4.6 mm) using isopropanol with 0.5% diethylamine and hexane as 

eluents. Initial condition was 23% of isopropanol for 5 minutes at 1.45 mL/min, then a 

gradient to 10% isopropanol from 5 to 10 minutes, and finally maintaining 10% for the 

rest of chromatography analysis. Optical rotations were measured with Rudolph Research 

Analytical Autopol IV at 589 nm and concentration of 10% (m/v) in chloroform.  

1-benzyl-N-(3-methoxyphenyl)piperidin-3-amine (13; MA62): 5.006 g (22.18 mmol) 

of 1-benzyl-3-piperidone hydrochloride was dissolved in water, basified with K2CO3, 

extracted three times with ethyl acetate and washed with brine. The organic phase was 

dried over MgSO4 and the solvent was evaporated using reduced pressure, giving 4.0520 

g (21.42 mmol) of an oily product (97% yield).  In a round-bottom flask was added 75 

mL of 1,2-dichloroethane, 2.51 mL  (21.42 mmol) of m-anisidine and 4.0520 g (21.42 

mmol) of 1-benzyl-3-piperidone. To the stirring solution under argon atmosphere was 
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added 1.22 mL (21.42 mmol) of acetic acid and 6.651 g (31.49 mmol) of NaBH(OAc)3. 

The reaction mixture was stirred for 72 h at room temperature and then quenched with 

1N NaOH, extracted with three portions of DCM, dried over MgSO4, filtered and the 

solvent was evaporated under reduced pressure. The crude extract was purified by a silica 

column using a gradient of ethyl acetate/hexanes (from 10% to 70% ethyl acetate). It was 

obtained 3.17 g (10.7 mmol) of a yellowish oily liquid (50% yield). MS (ESI) m/z 296 (M
 

+ 1).  

1
H NMR (400MHz, CDCl3): δ ppm 7.36 (d, J = 4.5 Hz, 4H ,Ar), δ 7.29 (dd, J = 8.5, 4.2, 

1H, Ar), δ  7.09 (t, 1H, J = 8 Hz, Ar), δ 6.28 – 6.24 (m, 2H, Ar), δ 6.19 (t, 1H, J = 4 Hz, 

Ar), δ 3.78 (s, 3H), δ 3.58 (s, 1H), δ  3.55 (d, 2H, J = 4 Hz), δ 2.76 (s, 1H), δ 2.43 (s, 2H), 

δ 2.31 (s, 1H), δ 1.76 (m, 2H), δ 1.58 (m, 2H). 

13
C NMR (101 MHz, CDCl3): δ ppm 160.94 (Cq), 148.53 (Cq), 138.32 (Cq), 129.01 

(CHar), 128.25 (2 CHar), 128.24 (2 CHar), 127.04 (CHar), 106.38 (CHar),  102.17, 

99.04, 63.19 (CH2), 59.07 (CH2),  55.08, 53.70, 48.78, 47.70, 22.73 (CH2). 

N-(3-methoxyphenyl)piperidin-3-amine (14; MA64): In a flask designed for a Parr 

apparatus, approximately 150 mL of methanol was added along with 2.76 g (9.3 mmol) 

of 1-benzyl-N-(3-methoxyphenyl)piperidin-3-amine (13) and 690 mg of palladium on 

carbon (10%). The mixture was submitted to hydrogen atmosphere at 55 psi for 4 hours 

at room temperature and then the catalyst was filtered off with Celite in a fritted funnel 

under vacuum and the solvent was evaporated.  Purification was performed using flash 

chromatography with a gradient of dichloromethane and methanol with ammonia (from 

5% to 10% methanol). It was obtained a yellow oil with 85% yield (1.83 g; 7.9 mmol). 

MS (ESI) m/z 207.2 (M + 1). 



71 

 

1
H NMR (400 MHz, CDCl3): δ ppm 7.06 (t, J = 8.1, 1H), 6.24 (dt, J = 8.0, 1.9, 2H), 6.18 

(t, J = 2.2, 1H), 3.76 (s, 3H), 3.45 (s, 2H), 3.22 (d, J = 11.7, 1H), 2.88 – 2.91 (m, 1H), 

2.71 (d, J = 8.5, 1H), 2.55 (dd, J = 11.7, 7.6, 1H), 2.48 (s, 1H), 1.93 (d, J = 11.7, 1H), 

1.79 – 1.72 (m, 1H), 1.56 – 1.47 (m, 2H). 

13
C NMR (101 MHz, CDCl3) δ 160.91, 148.43, 130.05, 106.27, 102.28, 99.09, 55.07, 

51.91, 50.40(2C) 49.15(2C), 46.44, 30.57, 24.19. 

methyl 5-(3-(3-methoxyphenylamino)piperidin-1-yl)pentanoate (15; MA66): To a 

round-bottom flask equipped with a stirring bar, it was added 1.67 g (8.08 mmol) of N-(3-

methoxyphenyl)piperidin-3-amine (14) dissolved in 20 mL of DMF, 1.39 mL (1.89 g; 9.7 

mmol) of methyl 5-bromovalerate and 3.34 g (24.2 mmol) of anhydrous potassium 

carbonate. The mixture was stirred overnight at room temperature, poured in a sodium 

carbonate solution (pH = 9), extracted with three 50 mL portions of ethyl acetate, washed 

with three portions of brine, dried with Na2SO4, filtered and evaporated. The product was 

isolated by flash chromatography starting with dichloromethane and then a gradient of 

methanol/dichloromethane. It was obtained an yellow syrup with 53% yield (1.39 g; 4.33 

mmol). MS (ESI) m/z 321.1 (M
+
 + 1). 

1
H NMR (400 MHz, CDCl3) δ 7.05 (t, J = 8.1, 1H), 6.23 (d, J = 8.2, 2H), 6.17 (t, J = 2.2, 

1H), 4.04 (s, 1H), 3.76 (s, 3H), 3.67 (s, 3H), 3.54 (s, 1H), 2.68 (s, 1H), 2.36 – 2.30 (m, 

6H), 2.23 (s, 1H), 1.70 (d, J = 10.9, 2H),  1.64 (dd, J = 15.1, 7.6, 2H), 1.51 (tt, J = 9.0, 

4.5, 4H).   

13
C NMR (101 MHz, CDCl3) δ 174.00, 160.90, 148.49, 129.99, 106.26, 102.16, 99.98, 

99.03, 59.19, 58.19, 55.02, 53.97, 51.46, 48.65, 33.87, 26.29, 22.90, 22.76. 
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methyl 5-(3-(3-methoxyphenylamino)piperidin-1-yl)pentanoate oxalate (MA66 

OXA): A solution of 72 mg (0.225 mmol) of methyl 5-(3-(3-

methoxyphenylamino)piperidin-1-yl)pentanoate in approximately 4 mL of THF was put 

to stir at room temperature in a 20 mL vial when another solution of 62 mg (0.69 mmol) 

oxalic acid in THF (approximately 4 mL) was added dropwise. It was observed that after 

each drop a suspension was formed and soon disappeared into the yellowish solution. The 

precipitate was visible only by addition of diethyl ether. The suspension was stirred for 1 

h, filtered under reduced pressure in a fritted funnel, rinsed with approximately 180 mL 

of ether and dried in high vacuum. A white powder was obtained with quantitative yield. 

1
H NMR (400 MHz, DMSO) δ 6.96 (t, J = 7.9, 1H), 6.22 (d, J = 9.2, 2H), 6.13 (d, J = 

8.3, 1H), 5.74 (br-s, 1H), 3.66 (s, 4H), 3.57 (s, 3H), 3.38 (d, J = 10.2, 1H), 3.29 (d, J = 

8.4, 1H), 2.98 (t, J = 8.0, 2H), 2.78 (s, 1H), 2.49 (s, 2H), 2.33 (t, J = 7.0, 2H), 1.88 (s, 

2H), 1.77 (d, J = 10.3, 1H), 1.63 (s, 2H), 1.53 – 1.49 (m, 2H), 1.40 (d, J = 10.3, 1H). 

methyl 5-(3-(N-(3-methoxyphenyl)propionamido)piperidin-1-yl)pentanoate (6; 

MA71): methyl 5-(3-(3-methoxyphenylamino)piperidin-1-yl)pentanoate (15) (100 mg; 

0.312 mmol) was dissolved in 4 mL of 1,2-dichloroethane (DCE) in a round-bottom flask 

equipped with a condenser and stirring bar. To this solution, it was added 82 μL (0.936 

mmol) of propionyl chloride and the mixture was refluxed for 3 hours. After this period 

90 μL (0.65 mmol) of triethylamine in 1 mL of DCE was added dropwise over 5 minutes 

and the reaction mixture was refluxed for another 2 hours. The mixture was poured into 

K2CO3 solution and extracted with 3 portions of DCM, washed with brine, dried over 

Na2SO4, filtered and evaporated. Purification took place by flash chromatography with 



73 

 

silica gel and a gradient of methanol/DCM to give orange oil with 95% yield (111.4 mg; 

0.296 mmol). MS (ESI) m/z 377.1 [M
+
 + H]. HRMS m/z 277.2433 (calculated 277.2440). 

1
H NMR (400 MHz, CDCl3) δ 7.25 (t, J = 8.0, 1H), 6.87 (dd, J = 8.3, 2.1, 1H), 6.62 (d, J 

= 7.7, 1H), 6.57 (s, 1H), 3.77 (s, 3H), 3.61 (s, 3H), 2.77 (d, J = 7.1, 1H), 2.32 - 2.22 (m, 

5H), 1.90 (dd, J = 14.5, 7.1, 2H), 1.76 (t, J = 10.4, 2H), 1.59 – 1.56 (m, 2H), 1.57 (dd, J = 

14.9, 7.4, 3H), 1.47 (dd, J = 15.1, 8.0, 2H), 1.06 (t, J = 7.5, 2H), 0.96 (t, J = 7.4, 3H). 

13
C NMR (101 MHz, CDCl3) δ 173.83, 173.35, 160.15, 140.68, 129.76, 122.26, 116.17, 

113.30, 57.75, 56.92, 55.34, 52.84, 51.82, 51.29, 33.74, 29.07, 28.26, 26.04, 24.30, 22.81, 

9.48. 

methyl 5-(3-(N-(3-methoxyphenyl)propionamido)piperidin-1-yl)pentanoate oxalate 

(MA71 OXA): methyl 5-(3-(N-(3-methoxyphenyl)propionamido)piperidin-1-

yl)pentanoate was dissolved in 2 mL of THF and put to stir in a 20 mL vial. Oxalic acid 

(100 mg) dissolved in 2 mL of THF was added, but no precipitate was observed. A 

suspension was only formed after adding few milliliters of anhydrous diethyl ether. The 

precipitate was filtered with a fritted funnel under reduced pressure and the excess of 

oxalic acid was rinsed with 200 mL of ether. A white solid was obtained (50.4 mg). 

(Yield not calculated). 

1
H NMR (400 MHz, DMSO) δ 7.37 (s, 1H), 7.01 (s, 1H), 6.83 (s, 2H), 4.71 (s, 1H), 3.77 

(s, 3H), 3.58 (s, 3H), 3.46 (s, 1H), 3.37 (s, 1H), 3.21 (s, 1H), 2.88 (s, 2H), 2.49 (s, 3H), 

2.34 (s, 2H), 1.83 (d, J = 25.9, 4H), 1.56 (d, J = 26.1, 4H), 1.08 (s, 2H), 0.88 (s, 3H). 

1-benzyl-4-(2-methoxyphenyl)piperidin-4-ol (17; MA109): To an oven-dried 250 mL 

two-neck round-bottom flask equipped with a condenser was added 989 mg (40.7 mmol) 

of magnesium turnings, 50 mL of freshly dried THF, two crystals of iodine and 
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approximately 5 mL of 1-bromo-2-methoxybenzene dissolved in 125 mL of THF. Using 

a heat gun and vigorous agitation, the solution was heated until it became colorless. The 

remaining solution of 1-bromo-2-methoxybenzene was added and the mixture was 

refluxed for 2.5 hours and brought to room temperature. It was observed that the solution 

turned into dark green over time and the magnesium disappeared after only one hour. In a 

500 mL round-bottom flask, 6.60 mL (37.0 mmol) of N-benzyl-4-piperidone was 

dissolved in 125 mL of THF at 0 °C. The Grignard reagent was then slowly transferred to 

the piperidone solution and stirred for two hours. A solution of ammonium chloride was 

added and the crude obtained by extracting with ethyl acetate, washing with brine, drying 

with anhydrous sodium sulfate and concentrating. After purification using a 

methanol/dichloromethane gradient in silica, it was obtained 2.97 g (10 mmol; 27% 

yield). MS (ESI) m/z 298.3 [M
+
]. 

1
H NMR (400 MHz, CDCl3) δ 7.42 – 7.29 (m, 7H), 6.99 (td, J = 7.6, 1.0, 1H), 6.95 (d, J 

= 8.2, 1H), 4.06 (s, 1H, OH), 3.89 (s, 3H), 3.63 (s, 2H), 2.81 (d, J = 10.8, 2H), 2.65 (td, J 

= 11.8, 2.6, 2H), 2.17 (td, J = 12.8, 4.3, 2H), 2.07 (dd, J = 13.9, 2.5, 2H).  

13
C NMR (101 MHz, CDCl3) δ 157.35, 138.71, 135.24, 129.34, 128.24, 126.98, 125.66, 

121.19, 111.42, 71.15,63.38, 63.34, 63.30, 55.36, 55.32, 55.27, 55.23, 55.27, 49.30, 

36.25. 

1-benzyl-4-(2-methoxyphenyl)-1,2,3,6-tetrahydropyridine (18; MA110): Dehydration 

of the tertiary alcohol took place by refluxing 40 mL of toluene with 2.97 g (10 mmol) of 

1-benzyl-4-(2-methoxyphenyl)piperidin-4-ol (17) and 2.28 g (12 mmol) of p-

toluenesulfonic acid for 27h. The mixture was poured into a potassium carbonate 

solution, extracted with three portions (60 mL) of ethyl acetate and dried over sodium 
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sulfate. After purification with methanol/dichloromethane in silica gel, 1.67 g (5.6 mmol) 

of yellowish viscous oil with 56% yield was obtained. MS (ESI) m/z 280.3 [M
+
]. 

1
H NMR (400 MHz, CDCl3) δ 7.45 (d, J = 7.6, 2H), 7.39 (d, J = 7.1, 2H), 7.34 – 7.28 (m, 

1H), 7.26 – 7.22 (m, 2H), 6.96 (t, J = 7.4, 1H), 6.90 (d, J = 8.1, 1H), 5.84 (s, 1H), 3.84 (s, 

3H), 3.70 (s, 2H), 3.22 (s, 2H), 2.74 (t, J = 5.6, 2H), 2.61 (s, 2H). 

13
C NMR (101 MHz, CDCl3) δ 156.85, 138.31, 129.45, 129.31, 129.27, 128.45, 

128.23,128.13, 127.06, 120.56, 111.13, 110.83, 110.79, 84.72, 62.84, 55.36, 53.27, 49.94, 

29.52. 

4-(2-methoxyphenyl)-piperidine (19; MA111): To a hydrogenation flask with 130 mL 

of ethanol was added 1.48 g (5.3 mmol) of 1-benzyl-4-(2-methoxyphenyl)-1,2,3,6-

tetrahydropyridine (18) and 300 mg of 10% w/w of palladium on carbon. The mixture 

was shaken in a Parr hydrogenation apparatus under 55 psi of hydrogen for 47 hours. 

Palladium and carbon were filtered off using Celite under reduced pressure. After 

purification by chromatography with methanol with ammonia/dichloromethane, it was 

obtained 726 mg (3.8 mmol) of a pale yellow solid with 72% yield. MS (ESI) m/z 192.3 

[M
+
]. 

1
H NMR (400 MHz, CDCl3) δ 7.19 (dd, J = 13.3, 7.0, 2H), 6.94 (t, J = 7.4, 1H), 6.86 (d, 

J = 8.0, 1H), 3.83 (s, 3H), 3.22 (d, J = 11.3, 2H), 3.13 – 3.07 (m, 2H), 2.80 (t, J = 11.6, 

2H), 1.82 (d, J = 12.1, 2H), 1.66 (qd, J = 12.1, 3.1, 2H). 

13
C NMR (101 MHz, CDCl3) δ 156.70, 134.52, 126.88, 126.62, 120.65, 110.35, 55.31, 

47.04 (2C), 35.35, 32.73 (2C). 

Methyl 5-(4-(2-methoxyphenyl)piperidin-1-yl)pentanoate (20; MA112): To 10 mL of 

N,N-dimethylformamide was added 716 mg (3.74 mmol) 4-(2-methoxyphenyl)-
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piperidine (19) and 943 mg (11.2 mmol) of anhydrous sodium bicarbonate  along with 

0.591 mL (4.12 mmol) of methyl 5-bromovalerate. The mixture was stirred for two hours 

at 60 °C. It was then extracted with ethyl acetated in aqueous potassium carbonate 

(pH=9), washed with brine and dried over sodium sulfate. After flash column 

chromatography using methanol/dichloromethane as eluents, 81.6% (930 mg; 3.05 mmol) 

yield was obtained. MS (ESI) m/z 306.3 [M + 1]. 

1
H NMR (400 MHz, CDCl3) δ 7.21 (dd, J = 7.6, 1.5, 1H), 7.16 (td, J = 7.7, 1.5, 1H), 6.92 

(t, J = 7.4, 1H), 6.84 (d, J = 8.2, 1H), 3.81 (s, 3H), 3.66 (s, 3H), 3.04 (d, J = 11.5, 2H), 

2.99 - 2.92 (m, 1H), 2.41 -2.33 (m, 4H), 2.08 (td, J = 11.2, 3.7, 2H), 1.79 (dd, J = 9.8, 

3.5, 3H), 1.75 - 1.70 (m, 1H), 1.68 – 1.54 (m, 4H). 

13
C NMR (101 MHz, CDCl3) δ 174.01, 156.81, 134.36, 126.81, 126.56, 120.63, 110.28, 

58.62, 55.31, 55.28, 54.58, 51.47, 51.45, 35.07, 33.95, 31.99, 26.50, 23.10. 

Methyl 2-formyl-5-(4-(2-methoxyphenyl)piperidin-1-yl)pentanoate (21; MA113): It 

was added 911 mg (2.98 mmol) of methyl 5-(4-(2-methoxyphenyl)piperidin-1-

yl)pentanoate (20) to an oven dried three-neck round-bottom flask with 40 mL of freshly 

distilled THF in argon atmosphere. While maintaining the solution stirring at -70 °C, 3.7 

mL (7.4 mmol) of lithium diisopropylamide in a 2 M solution was added dropwise. After 

40 minutes, 0.922 mL (14.9 mmol) of methyl formate was added and the mixture was 

agitated for one hour at -70 °C and for two hours at room temperature. The reaction 

mixture was poured into a solution of ammonium chloride, extracted with ethyl acetate 

and dried over Na2SO4. Purification with flash chromatography using 

methanol/dichloromethane afforded 694 mg (2.08 mmol; 70%) of an orange sticky syrup. 

MS (ESI-) m/z 332.3 [M -1]. 
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1
H NMR (400 MHz, CDCl3) δ 11.68 (s, 1H), 7.99 (s, 1H), 7.19 (dd, J = 12.9, 7.4, 2H), 

6.92 (t, J = 7.5, 1H), 6.85 (d, J = 8.1, 1H), 3.82 (s, 3H), 3.67 (s, 3H), 3.14 (d, J = 11.7, 

2H), 3.09 – 3.01 (m, 1H), 2.46 (t, J = 6.2, 2H), 2.40 – 2.37 (m, 2H), 2.28 – 2.21 (m, 2H), 

1.93 – 1.89 (m, 4H), 1.76 (dt, J = 12.5, 6.3, 2H). 

13
C NMR (101 MHz, CDCl3) δ 169.94, 156.70, 132.90, 127.27, 126.55, 120.77, 110.32, 

55.26, 54.30, 53.77, 53.19, 51.52, 50.76, 34.66, 30.47, 23.70, 19.64. 

(E)-methyl 2-(methoxymethylene)-5-(4-(2-methoxyphenyl)piperidin-1-yl)pentanoate 

(7; MA114): In 125 mL of methanol in a round-bottom flask with a condenser was 

dissolved 668 mg (2.0 mmol) of methyl 2-formyl-5-(4-(2-methoxyphenyl)piperidin-1-

yl)pentanoate (21) and added a total of 6.54 mL (30 mmol) of trimethyl orhoformate and 

2.28 g (12.0 mmol) of p-toluenesulfonic acid. The mixture was refluxed for 12 hours and 

extracted with three portions of ethyl acetate in aqueous K2CO3, washed with brine, dried 

with Na2SO4, filtered and evaporated. After purifying three times with flash 

chromatography employing methanol/dichloromethane as eluents, 114 mg (0.33 mmol; 

16.5%) of pale yellow solid was obtained. MS (ESI
+
) m/z 348.3 [M + H]. HPLC analysis 

showed 98% purity.  

1
H NMR (400 MHz, CDCl3) δ 7.29 (s, 1H), 7.22 (dd, J = 7.5, 1.5, 1H), 7.23 – 7.14 (m, 

1H), 6.92 (t, J = 7.5, 1H), 6.85 (d, J = 8.2, 1H), 3.81 (s, 3H), 3.80 (s, 3H), 3.70 (s, 3H), 

3.05 (d, J = 11.5, 2H), 2.98 – 2.91 (m, 1H), 2.40 – 2.36 (m, 2H), 2.26 (t, J = 7.2,  2H), 

2.11 – 2.04 (m, 2H), 1.80 – 1.75 (m, 4H), 1.70 – 1.62 (m, 2H). 

13
C NMR (101 MHz, CDCl3) δ 168.88, 158.89, 156.80, 134.51, 126.75, 126.58, 120.62, 

110.66, 110.27,  61.20, 58.75, 55.31, 54.51, 51.13, 35.09, 32.06, 26.03, 21.99. 
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(E)-methyl 2-(methoxymethylene)-5-(4-(2-methoxyphenyl)piperidin-1-yl)pentanoate 

hydrochloride (MA114 HCL): (E)-methyl 2-(methoxymethylene)-5-(4-(2-

methoxyphenyl)piperidin-1-yl)pentanoate (73.7mg; 0.212 mmol) was dissolved in THF 

and a saturated solution of hydrochloric acid in diethyl ether as added. After stirring for 

few minutes, the solvent was evaporated under reduced pressure and 57 mg (0.14 mmol) 

a pale yellow solid was obtained by drying in high vacuum.  

1
H NMR (400 MHz, DMSO) δ 10.34 (s, 1H), 7.20 (t, J = 7.7, 1H), 7.11 (d, J = 7.1, 1H), 

6.97 (d, J = 8.2, 1H), 6.92 (t, J = 7.4, 1H), 3.77 (s, 3H), 3.73 – 3.66 (m, 2H), 3.62 – 3.59 

(m, 1H), 3.48 (d, J = 9.7, 2H), 3.37 (s, 6H), 3.27 – 3.13 (m, 2H), 3.02 (s, 3H), 2.01 (d, J = 

11.5, 2H), 1.85 (d, J = 13.7, 2H), 1.74 (d, J = 5.6, 2H). 

4-(2-methoxyphenyl)-4-hydroxypiperidine (23; MA118): In a pressure flask for a Parr 

hydrogenation apparatus was added 1.40 g (4.7 mmol) of 1-benzyl-4-(2-

methoxyphenyl)piperidin-4-ol (17) dissolved in 100 mL of ethanol. Palladium on carbon 

(700 mg; 10%) was slowly added to the solution and the flask was shaken for 15 hours 

under 55 psi of hydrogen at room temperature. The palladium and carbon were filtered 

off under reduced pressure using Celite as a filter aid. The product was purified by 

column chromatography using a gradient of methanol/dichloromethane. A white solid 

was obtained (747.7 mg; 3.61 mmol) with 76.8% yield. MS (ESI) m/z 208.2 [M + 1]. 

1
H NMR (400 MHz, DMSO) δ 7.53 (d, J = 7.6, 1H), 7.18 (t, J = 7.7, 1H), 6.95 (d, J = 

8.2, 1H), 6.89 (t, J = 7.5, 1H), 4.55 (br s, 1H), 3.78 (s, 3H), 2.94 (t, J = 11.7, 3H), 2.69 (d, 

J = 10.4, 2H), 2.28 (td, J = 12.8, 4.5, 2H), 1.35 (d, J = 12.6, 2H). 

13
C NMR (101 MHz, DMSO) δ 171.84, 156.85, 137.69, 136.39, 128.12, 126.72, 120.59, 

112.20, 71.27, 55.69, 42.28, 36.15. 
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Methyl 5-(4-hydroxy-4-(2-methoxyphenyl)piperidin-1-yl)pentanoate (24; MA94): In 

a 35 mL round-bottom flask was put a solution of 612.8 mg (2.95 mmol) of 4-(2-

methoxyphenyl)-4-hydroxypiperidine (23) in 7 mL N,N-dimethylformamide, 0.464 mL 

(3.24 mmol) of methyl 5-bromovalerate and 734 mg (8.85 mmol) of sodium bicarbonate. 

The reaction mixture was stirred at 60 °C and followed by TLC. After 1:15 h no starting 

material could be observed. The product was poured in aqueous NaHCO3 and extracted 

with three portions (35 mL) of ethyl acetate, washed three times with brine, dried over 

Na2SO4, filtered and evaporated. Purification took place by using a silica gel column and 

methanol/dichloromethane gradient (2 - 20% of methanol). A yellow oil was obtained 

with 70% yield (664.9 mg; 2.07 mmol).  

1
H NMR (400 MHz, CDCl3) δ 7.28 (dd, J = 7.8, 1.5, 1H), 7.26 – 7.22 (m, 1H), 6.96 (dd, 

J = 7.6, 1.1, 1H), 6.92 (d, J = 7.4, 1H), 4.06 (s, 1H), 3.89 (s, 3H), 3.66 (s, 3H), 2.86 (d, J 

= 11.3, 2H), 2.64 (t, J = 10.7, 2H), 2.50 (t, J = 7.3, 2H), 2.35 (t, J = 7.0, 2H), 2.20 (td, J = 

13.5, 4.7, 2H), 2.05 (dd, J = 14.1, 2.6, 2H), 1.64 (m, 4H). 

13
C NMR (101 MHz, CDCl3) δ 173.94, 157.20, 136.39, 134.57, 128.37, 125.59, 121.23, 

111.34, 70.80, 58.13, 55.29, 51.50, 49.15, 35.72, 33.83, 26.08, 22.96. 

methyl 5-(4-hydroxy-4-(2-methoxyphenyl)piperidin-1-yl)pentanoate oxalate (MA94 

OXA) : A solution of approximately 180 mg (0.56 mmol) of methyl 5-(4-hydroxy-4-(2-

methoxyphenyl)piperidin-1-yl)pentanoate in THF was stirring when 178 mg (1.98 mmol) 

of oxalic acid dissolved in 10 mL of diethyl ether was added. The suspension was stirred 

for one hour and then filtered under reduced pressure and washed with 200 mL of ether to 

remove the excess of oxalic acid. A white solid was obtained (244 mg; 0.59 mmol). 
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1
H NMR (400 MHz, DMSO) δ 7.54 (d, J = 7.5, 1H), 7.24 (t, J = 7.1, 1H), 7.00 (d, J = 

8.1, 1H), 6.95 (t, J = 7.0, 1H), 5.18 (s, 7H), 3.84 (s, 3H), 3.63 (s, 3H), 3.26 (d, J = 7.8, 

4H), 3.03 (m, 2H), 2.70 (dd, J = 19.7, 11.3, 2H), 2.37 (t, J = 7.0, 2H), 1.76 (d, J = 11.0, 

4H), 1.65 (m, 2H). 

Methyl 5-(4-acetoxy-4-(2-methoxyphenyl)piperidin-1-yl)pentanoate (25; MA127): In 

a 10 mL round-bottom flask dried with an heat gun was added 1.3 mL (18 mmol) of 

dimethylsulfoxide and 1.6 mL of acetic anhydride (17 mmol). The solution was stirred 

under argon atmosphere for 30 min. After this period, a solution of 249.5 mg (0.776 

mmol) of methyl 5-(4-hydroxy-4-(2-methoxyphenyl)piperidin-1-yl)pentanoate (24) in 1.0 

mL (14 mmol) of dimethylsulfoxide was added and the stirring mixture turn into yellow. 

The reaction mixture was followed by TLC for 21 hours, but no progress was observed 

after 5 hours. The solution turned into orange and it was extracted with an aqueous 

solution of K2CO3 (pH=9) and three portions of 25 mL of ethyl acetate, dried over 

anhydrous Na2SO4 and evaporated under reduced pressure. The product was purified by 

flash chromatography using a gradient of MeOH (saturated with NH3)/DCM (2 – 4% of 

MeOH). A yellow solid was obtained with a yield of 41.4% (116.5 mmol; 0.321 mmol). 

MS (ESI+) m/z 264.2 [M + H]
+
. HPLC analysis showed 95.8% purity. 

1
H NMR (400 MHz, CDCl3) δ 7.28 (d, J = 6.8, 1H), 7.25 – 7.21 (m, 1H), 6.93 (t, J = 7.6, 

1H), 6.88 (d, J = 8.2, 1H), 3.81 (s, 3H), 3.67 (s, 3H), 2.87 (d, J = 11.4, 2H), 2.67 – 2.60 

(m, 2H), 2.45 (dd, J = 15.0, 8.7, 3H), 2.37 (dd, J = 13.7, 6.8, 3H), 2.27 – 2.20 (m, 2H), 

2.04 (s, 3H), 1.71 – 1.58 (m, 4H). 

13
C NMR (101 MHz, CDCl3) δ 173.96, 169.42, 156.83, 136.39, 128.65, 126.72, 120.47, 

111.61, 99.99, 79.87, 63.60, 58.10, 55.20, 51.51, 49.38, 33.81, 33.57, 26.19, 22.92, 21.71. 
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(E)-4-methoxy-3-(2-nitrovinyl)-1H-indole (27; MA81): Trifluoroacetic acid (20 mL) 

was poured  into a round-bottom flask and brought to 0° C under agitation in argon 

atmosphere when 4.34 g (37.4 mmol) of (E)-N,N-dimethyl-2-nitroethenamine was 

introduced. To this solution, 5.00 g (34.0 mmol) of 4-methoxyindole was added and 

stirred for 15 minutes. Since 4-methoxyindole did not dissolve, 20 mL of DCM was 

added, bringing it to solution, which was stirred for another 30 minutes at room 

temperature. The reaction mixture was poured into ice-water and extracted with three 120 

mL portions of ethyl acetate. The organic phase was then put in a conical flask and a 

saturated solution of NaHCO3 was slowly added under vigorous agitation until no CO2 

formation was observed. The crude extract was washed with brine, dried over Na2SO4, 

filtered and evaporated to obtain a dark orange solid (yield not calculated). 

1
H NMR (400 MHz, DMSO) δ 12.23 (s, 1H), 8.56 (d, J = 13.3, 1H), 8.25 (s, 1H), 8.10 (d, 

J = 13.3, 1H), 7.16 (t, J = 7.9, 1H), 7.10 (d, J = 8.0, 1H), 6.73 (d, J = 7.7, 1H), 3.95 (s, 

3H). 

13
C NMR (101 MHz, DMSO) δ 154.11, 139.26, 135.97, 132.71, 124.72, 115.60, 108.42, 

106.44, 102.95, 99.99, 55.79. 

4-methoxytryptamine (28; MA83): Freshly distilled THF (250 mL) was put in a round-

bottom flask along with 7.41 g  (34 mmol) of  (E)-4-methoxy-3-(2-nitrovinyl)-1H-indole. 

The solution was brought to -78° C with acetone/dry ice bath and stirred under argon 

atmosphere for 20 minutes. After this period, 28.3 mL (68 mmol) of lithium aluminum 

hydride in THF (2.4  M) was added dropwise over 20 minutes and agitated for another 30 

minutes.  The reaction mixture was brought to room temperature, stirred overnight and 

quenched with 2.7 mL of water, 2.7 mL of aqueous NaOH (15%) and 2.7 mL of water 
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until no hydrogen formation was observed. The precipitate was filtered off and rinsed 

with ethyl acetate. The solvents were evaporated and the solid was dissolved in ethyl 

acetate, dried over Na2SO4, filtered and evaporated. The compound was purified with a 

silica gel column using a gradient of methanol (with dissolved NH3)/DCM. It was 

obtained 1.0 g of an orange solid with an overall yield (2 steps) of 15.5 %. MS (ESI) m/z 

191.1 [M
+
 + H]. 

1
H NMR (400 MHz, CDCl3) δ 8.63 (s, 1H), 7.07 (t, J = 7.9, 1H), 6.94 (d, J = 8.1, 1H), 

6.84 (s, 1H), 6.47 (d, J = 7.7, 1H), 3.90 (s, 3H), 3.01 (s, 4H), 2.01 (s, 2H). 

13
C NMR (101 MHz, CDCl3) δ 154.81, 138.30, 122.64, 121.21, 117.32, 113.73, 104.60, 

99.25, 55.09, 43.10, 30.82. 

N-(2-(4-methoxy-1H-indol-3-yl)ethyl)formamide (29; MA95): In a round-bottom flask 

equipped with a condenser was added 5.03 g (26.4 mmol) of 4-methoxytryptamine (28), 

30 mL of ethyl formate and 10 mL of methanol (4-methoxytryptamine is not soluble in 

ethyl formate). The solution was refluxed for 20 hours and solvents evaporated. The 

product was purified with flash chromatography using silica gel and 3% methanol/DCM 

as eluent to obtain 5.20 g (24.0 mmol) with 90% yield. 

1
H NMR (400 MHz, CDCl3) δ 8.59 (s, 1H), 8.04 (s, 1H), 7.10 (t, J = 8.0, 1H), 6.96 (dd, J 

= 8.2, 3.1, 1H), 6.84 (d, J = 2.3, 1H), 6.51 (d, J = 7.8, 1H), 6.08 (s, 1H), 3.93 (d, J = 1.9, 

3H), 3.62 (q, J = 6.2, 2H), 3.09 (t, J = 6.5, 2H). 

13
C NMR (101 MHz, CDCl3) δ 161.49, 154.40, 138.29, 122.82, 121.55, 117.17, 112.79, 

104.92, 99.44, 55.14, 39.81, 26.29. 

5-methoxy-4,9-dihydro-3H-pyrido[3,4-b]indole (30; MA97): To a round-bottom flask 

were added 4.1 g (18.8 mmol) of N-(2-(4-methoxy-1H-indol-3-yl)ethyl)formamide (29) 
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and 25 mL of phosphorus oxychloride (26.9 mmol). The mixture was stirred at 50 °C for 

1:20 h, POCl3 was partially evaporated under reduced pressure (15 minutes) and then 

quenched with ice/water (caution: very reactive!). The dark green mixture was poured 

into a conical flask and ammonium hydroxide was added under agitation, making the 

color change to orange. The product was extracted with 4 portions of DCM, washed with 

brine, dried over Na2SO4, filtered and evaporated.  

1
H NMR (400 MHz, DMSO) δ 11.29 (s, 1H), 8.30 (s, 1H), 7.07 (t, J = 7.9, 1H), 6.97 (d, J 

= 8.2, 1H), 6.47 (d, J = 7.7, 1H), 3.83 (s, 3H), 3.72 (t, J = 7.6, 2H), 2.92 (m, 2H). 

13
C NMR (101 MHz, DMSO) δ 155.23, 151.72, 138.31, 127.71, 125.03, 114.03, 110.53, 

105.94, 99.87, 55.52, 48.64, 20.97. 

8-methoxy-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12H)-one (31; MA103 

[MA88]): To a round-bottom flask equipped with a condenser were added 2.36 g (11.8 

mmol) of 5-methoxy-4,9-dihydro-3H-pyrido[3,4-b]indole (30) dissolved in 400 mL of 

methanol, 236 mg (1.73 mmol) of zinc chloride and 2.9 mL (35.4 mmol)mg of 

methylvinylketone. The mixture was refluxed under agitation for 4 hours and then the 

solvent was evaporated. The crude material was basified with aqueous K2CO3, extracted 

with ethyl acetate, dried over Na2SO4, filtered and evaporated. Product isolation was 

carried out by flash chromatography in silica gel using a gradient of ethyl 

acetate/hexanes. After evaporating the solvent, 2.73 g (10.1 mmol) of white powder was 

obtained with a 64% yield. MS (ESI) m/z 271 (M + 1). HPLC purity 99%. 

1
H NMR (400 MHz, CDCl3) δ 8.06 (s, 1H), 7.06 (t, J = 8.0, 1H), 6.93 (d, J = 8.1, 1H), 

6.50 (d, J = 7.7, 1H), 3.90 (s, 3H), 3.59 (d, J = 10.9, 1H), 3.34 – 3.30 (m, 1H), 3.32 – 3.15 
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(m, 2H), 3.12 – 3.17 (m, 1H), 2.82 -2.76 (m, 2H), 2.72 (dd, J = 12.4, 2.7, 1H), 2.68 (d, J 

= 4.5, 1H), 2.63 – 2.57 (m, 1H), 2.51 – 2.46 (m, 1H). 

13
C NMR (101 MHz, CDCl3) δ 208.17, 154.49, 137.61, 131.20, 122.57, 117.13, 108.32, 

104.46, 99.87, 58.53, 55.26, 54.26, 52.14, 45.76, 41.59, 23.77. 

Methyl 2-(8-methoxy-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12H)-

ylidene)acetate (32; MA89): In a round-bottom flask, 350 mg of NaH in 60% of mineral 

oil (8.76 mmol of NaH) was suspended in 20 mL of freshly dried THF and cooled to 0 °C 

under argon atmosphere. Trimethylphosphonoacetate (1.27 mL; 8.76 mmol) was added 

dropwise, forming a thick suspension that blocked magnetic stirring. This problem was 

circumvented by addition of 40 mL of THF and the mixture was agitated for 30 minutes. 

After this period, 8-methoxy-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12H)-one 

(31) (790 mg; 2.92 mmol) dissolved in THF was added and the reaction mixture was 

stirred for 2 hours at room temperature. The excess of NaH was quenched with water and 

the product was extracted with ethyl acetate, dried with Na2SO4, filtered and evaporated. 

Isolation was carried out with flash chromatography employing a gradient of ethyl 

acetate/hexanes to obtain 932 mg of a mixture of diastereomers (2.86 mmol; 98% yield). 

MS [ESI] m/z 327.1 [M
+
 + H] for both diastereomers. 

(Top spot on the TLC) 
1
H NMR (400 MHz, CDCl3) δ 8.00 (s, 1H), 7.03 (t, J = 8.0, 1H), 

6.92 (d, J = 8.1, 1H), 6.47 (d, J = 7.8, 1H), 5.76 (s, 1H), 3.88 (s, 3H), 3.84 (d, J = 12.2, 

1H), 3.73 (s, 3H), 3.35 (d, J = 11.2, 1H), 3.21 – 3.10 (m, 3H), 3.04 (dd, J = 16.1, 4.0, 

1H), 2.65 – 2.59 (m, 2H), 2.50 – 2.44 (m, 3H). 
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(Top spot on the TLC) 
13

C NMR (101 MHz, CDCl3) δ 166.79, 154.52, 137.51, 131.25, 

122.44, 117.30, 114.97, 108.36, 104.35, 99.87, 60.09, 55.26, 55.02, 52.47, 51.08, 40.58, 

29.71, 29.18, 23.41. 

Methyl 2-(8-methoxy-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizin-2-

yl)acetate (33; MA91): In a flask designed for  hydrogenation was put 100 mL of 

methanol, 90 mg of palladium on carbon (10%) and then 882 mg (2.7 mmol) of methyl 2-

(8-methoxy-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12H)-ylidene)acetate (32) 

dissolved in methanol. The mixture was agitated for 5 hours under hydrogen at 40 psi, 

filtered under reduced pressure using Celite to remove the catalyst and the solvent 

evaporated. Isolation was carried out by flash chromatography using a gradient of ethyl 

acetate/hexanes. Yield 55% (490 mg; 1.49 mmol). MS (ESI) m/z 329.1 [M
+
 + H]. HPLC 

purity 93%.  

1
H NMR (400 MHz, CDCl3) δ 7.92 (s, 1H), 7.01 (t, J = 7.9, 1H), 6.89 (d, J = 8.0, 1H), 

6.47 (d, J = 7.7, 1H), 3.88 (s, 3H), 3.73 (s, 3H), 3.20 (d, J = 11.3,  1H), 3.18 – 3.11 (m, 

1H), 3.05 (d, J = 6.5, 1H), 3.00 (dd, J = 15.9, 4.8, 2H), 2.58 (td, J = 11.5, 4.6, 1H), 2.44 – 

2.36 (m, 1H), 2.32 (dd, J = 13.4, 7.0, 2H), 2.26 (d, J = 7.5, 1H), 2.14 (d, J = 12.3, 1H), 

1.78 (d, J = 11.6, 1H), 1.52 (qd, J = 12.3, 4.2, 1H), 1.34 – 1.25 (m, 1H). 

13
C NMR (101 MHz, CDCl3) δ 173.14 (C19), 154.52 (C9), 137.40 (C13), 132.71 (C2), 

122.02 (C11), 117.55 (C7), 108.03 (C8), 104.27 (C12), 99.81 (C10), 59.54 (C3), 55.33 

(9-OCH3), 55.26 (C17), 53.44 (C5), 51.61 (19-OCH3), 40.98 (C18), 36.13 (C14), 33.04 

(C15), 32.04 (C16), 23.76 (C6). 

Methyl 2-(8-methoxy-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizin-2-

yl)acetate oxalate (MA91 OXA): In a 20 mL vial were added a solution of 51.0 mg 
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(0.155 mmol) of methyl 2-(8-methoxy-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-

a]quinolizin-2-yl)acetate dissolved in diethyl ether and a solution of 114 mg (1.27 mmol) 

of oxalic acid in ether. After addition of the oxalic acid solution, precipitation followed 

immediately and the mixture was stirred for 30 minutes. The salt was filtered off under 

reduced pressure and rinsed with ether to remove the excess of oxalic acid. It was 

obtained 45.6 mg (0.109 mmol; 70% yield) of a white solid. 

1
H NMR (400 MHz, DMSO) δ 11.06 (s, 1H), 6.97 (t, J = 7.8, 1H), 6.91 (d, J = 8.0, 1H), 

6.46 (d, J = 7.5, 1H), 4.34 (br-s, 1H), 3.80 (s, 3H), 3.64 (s, 3H), 3.50 (br-s, 1H), 3.41 (d, J 

= 10.9, 1H), 3.16 – 3.04 (m, 4H), 2.49 (s, 3H), 2.37 (ddd, J = 34.7, 15.7, 7.0, 2H), 2.17 

(br-s, 1H), 1.86 (d, J = 13.7, 1H), 1.54 (dd, J = 23.4, 10.6, 1H), 1.41 (dd, J = 24.6, 11.8, 

1H). 

8-methoxy-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizine (34; MA104): To a 

10 mL round-bottom flask equipped with a condenser with 4 mL of ethylene glycol, 100 

mg (0.34 mmol) of 8-methoxy-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12H)-

one (31) was dissolved along with 190 mg (3.4 mmol) of crushed KOH and 0.13 mL (2.7 

mmol ) of hydrazine hydrate. The mixture was stirred at 190 °C for one hour before the 

condenser was removed and then stirred for two hours. A solution of ammonium chloride 

was poured into the flask and the crude extract obtained by extracting with three portions 

of 30 mL of ethyl acetate, washing with brine. The solution was dried over anhydrous 

sodium sulfate, filtered and evaporated. After purification with flash chromatography 

(methanol/dichloromethane), it was obtained 78 mg (0.30 mmol; 84%) of solid. MS (ESI) 

m/z 279.3 [M + Na
+
]. HPLC purity 94%.  
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1
H NMR (400 MHz, CDCl3) δ 7.75 (s, 1H), 7.02 (t, J = 7.9, 1H), 6.91 (d, J = 8.1, 1H), 

6.48 (d, J = 7.7, 1H), 3.89 (s, 3H), 3.21 (d, J = 11.4, 1H), 3.20 – 3.14 (m, 1H), 3.05 – 2.98 

(m, 2H), 2.61 (td, J = 11.5, 4.5, 1H), 2.37 (td, J = 11.2, 3.5, 1H), 2.02 (d, J = 16.8, 2H), 

1.89 (d, J = 12.2, 1H), 1.77 – 1.73 (m, 2H), 1.59 (ddd, J = 15.2, 12.5, 3.2, 1H), 1.52 – 

1.44 (m, 1H). 

13
C NMR (101 MHz, CDCl3) δ 154.50, 137.32, 133.14, 121.93, 117.61, 107.92, 104.22, 

99.80, 60.24,  55.33, 53.86, 30.04, 29.96, 25.67, 24.28, 23.56. 

8-methoxy-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizine hydrochloride 

(MA104 HCL): 8-methoxy-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12H)-one 

was dissolved in diethyl ether before a solution of HCl in ether was added and stirred for 

approximately 30 minutes. A pale yellow solid (23 mg) was obtained after filtering, 

washing with ether and dried under high vacuum.  

1
H NMR (400 MHz, DMSO) δ 11.17 (s, 1H), 10.77 (s, 1H), 6.99 (t, J = 7.9, 1H), 6.93 (d, 

J = 7.9, 1H), 6.47 (d, J = 7.5, 1H), 4.55 (t, J = 11.1, 1H), 3.81 (s, 3H), 3.56 (d, J = 6.4, 

1H), 3.46 (d, J = 11.4, 1H), 3.34 (d, J = 13.7, 3H), 3.17 (dd, J = 23.1, 10.8, 1H), 3.06 (d, 

J = 11.7, 1H), 2.57 (d, J = 13.0, 1H), 1.99 (dd, J = 26.1, 13.2, 1H), 1.91 – 1.82 (m, 1H), 

1.73 (dd, J = 26.8, 13.6, 1H), 1.62 (dd, J = 24.8, 13.0, 1H). 

Methyl 2-(8-methoxy-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizin-2-yl)-3-

oxopropanoate (35; MA106): To an oven-dried three-neck round-bottom flask equipped 

with a thermometer was added 40 mL of anhydrous THF was dissolved 0.9 g (2.7 mmol) 

of methyl 2-(8-methoxy-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizin-2-yl)acetate 

(33). The solution was brought to -78 °C with a bath of dry ice in acetone while stirring 

under argon. A solution of lithium diisopropylamide (3.4 mL; 6.8 mmol; 2M in THF) 



88 

 

was added dropwise over 10 minutes while it was observed that the internal temperature 

did not rise above -65 °C. The mixture was stirred for 30 minutes before the addition of 

0.85 mL (13 mmol) of methyl formate and agitation for 3.5 hours at room temperature. A 

solution of ammonium chloride was poured into the flask and the material was extracted 

with three portions (30 mL) of ethyl acetate. The solvent was then evaporated and the 

product purified using silica gel and a gradient of methanol/dichloromethane. After two 

purifications by chromatography, the solid obtained weighed 93 mg (0.26 mmol; 9.6%). 

MS (ESI) m/z 357.3 [M + 1]. 

1
H NMR (400 MHz, DMSO) δ 10.58 (s, 1H), 7.65 (s, 1H), 6.85 (dt, J = 15.2, 7.5, 2H), 

6.39 (d, J = 7.4, 1H), 3.78 (s, 3H), 3.56 (s, 3H), 3.53 (s, 1H), 3.22 (s, 1H), 3.12 (d, J = 

11.0, 1H), 2.93 - 2.88 (m, 2H), 2.82 – 2.78 (m, 2H),  2.44 – 2.38 (m, 1H), 2.33 – 2.28 (m, 

1H), 2.19 - 2.09 (m, 1H) , 2.03 – 1.98 (m, 1H), 1.95 (t, J = 12.2, 1H), 1.39 (d, J = 12.5, 

1H). 

Methyl 3,3-dimethoxy-2-(8-methoxy-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-

a]quinolizin-2-yl)propanoate (36; MA107): To a round-bottom flask with a condenser 

was dissolved 93 mg (0.26 mmol) of methyl 2-(8-methoxy-1,2,3,4,6,7,12,12b-

octahydroindolo[2,3-a]quinolizin-2-yl)-3-oxopropanoate (35) in 25 mL of methanol 

along with 148 mg (0.78 mmol) of p-toluenesulfonic acid monohydrate and  0.28 mL (2.6 

mmol) of trimethyl orthoformate. The mixture was stirred at reflux temperature under 

argon for 2.5 hours and the solvent was evaporated under reduced pressure. Extraction 

with ethyl acetate and aqueous sodium carbonate and purification with silica gel column 

(3% methanol/dichloromethane) afforded 73 mg (0.18 mmol; 69% yield) of material. MS 

(ESI) m/z 403.2 [M + 1]. 
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1
H NMR (400 MHz, CDCl3) δ 7.96 (d, J = 7.2, 1H), 7.01 (t, J = 7.9, 1H), 6.90 (d, J = 8.1, 

1H), 6.46 (d, J = 7.8, 1H), 4.75 (dd, J = 16.5, 8.5, 1H), 3.87 (s, 3H), 3.67 (d, J = 10.4, 

3H), 3.41 (s, 3H), 3.38 (d, J = 8.2, 3H), 3.21 (d, J = 11.0, 1H), 3.16 – 3.11 (m, 1H), 3.04 

– 2.97 (m, 3H), 2.78 (dd, J = 8.5, 5.3, 1H), 2.55 (td, J = 11.4, 4.5, 1H), 2.43 - 2.34 (m, 

1H), 2.17 (d, J = 12.8, 1H), 1.83 (d, J = 13.8, 1H), 1.72 – 1.63 (m, 1H), 1.57 – 1.52 (m, 

1H), 1.43 - 1.37 (m, 1H). 

13
C NMR (101 MHz, CDCl3) δ 171.86, 154.47, 137.42, 132.67, 121.97, 117.48, 107.82, 

104.35, 99.73, 60.42, 55.28, 55.27, 55.19, 52.88, 51.63, 35.49, 34.61, 32.52, 30.54, 28.24, 

23.68, 21.03. 

(E)-methyl 3-methoxy-2-(8-methoxy-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-

a]quinolizin-2-yl)acrylate (37; MA108): In approximately 1 mL of N,N-

dimethylformamide was dissolved 70.8 mg (0.178 mmol) of methyl 3,3-dimethoxy-2-(8-

methoxy-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizin-2-yl)propanoate (36) and a 

total of 74 mg (0.6 mmol) of potassium tert-butoxide. The reaction was maintained under 

agitation at approximately 60 °C for 6 hours before aqueous solution of ammonium 

chloride was added. The mixture was extracted with three portions of ethyl acetate and 

washed twice with brine. After drying with sodium sulfate, filtering and purifying twice 

by chromatography, it was obtained 20.1 mg (0.054 mmol) with a 31% yield. MS (ESI) 

m/z 371.2 [M + 1]. 

1
H NMR (400 MHz, CDCl3) δ 8.21 (s, 1H), 7.32 (s, 1H), 6.99 (t, J = 7.8, 1H), 6.87 (d, J 

= 8.1, 1H), 6.44 (d, J = 7.6, 1H), 3.84 (s, 3H), 3.75 (s, 3H), 3.70 (s, 3H), 3.25 (d, J = 11.6, 

1H), 3.11 (d, J = 11.5, 2H), 3.00 (d, J = 17.4, 1H), 2.87 (t, J = 11.8, 1H), 2.61 - 2.55 (m, 
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1H), 2.42 (t, J = 11.8, 1H), 2.34 - 2.25 (m, 1H), 2.14 (dd, J = 23.8, 11.8, 1H), 1.92 (d, J = 

13.4, 1H), 1.61 - 1.56 (m, 2H). 

13
C NMR (101 MHz, CDCl3) δ 169.16, 159.99, 154.47, 137.52, 132.64, 121.90, 117.48, 

112.94, 107.50, 104.40, 99.65, 61.59, 60.13, 55.67, 55.23, 51.31, 33.68,  33.92, 29.69, 

23.35, 22.68. 

(E)-methyl 3-methoxy-2-(8-methoxy-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-

a]quinolizin-2-yl)acrylate hydrochloride: A few milligrams of (E)-methyl 3-methoxy-

2-(8-methoxy-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizin-2-yl)acrylate (37) was 

dissolved in THF before a solution of hydrochloric acid in diethyl ether was added 

dropwise. The suspension formed was stirred and then the solvents evaporated under 

reduced pressure to afford an yellowish solid. 

1
H NMR (500 MHz, DMSO) δ 11.17 (s, 1H), 10.57 (s, 1H), 7.50 (s, 1H), 7.01 (t, J = 7.8, 

1H), 6.93 (d, J = 8.1, 1H), 6.50 (d, J = 7.6, 1H), 4.71 (t, J = 8.0, 1H), 3.88 (s, 3H), 3.84 

(s, 3H), 3.65 (s, 3H), 3.63 (s, 1H), 3.53 (d, J = 11.1, 1H), 3.36 - 3.27 (m, 3H), 3.12 - 3.10 

(m, 2H), 2.47 (d, J = 11.6, 2H), 2.30 (dd, J = 25.2, 12.4, 1H), 1.71 (d, J = 12.6, 1H).  

methyl 2-((7a)-7a-hydroxy-8-methoxy-1,2,3,4,6,7,7a,12b-octahydroindolo[2,3-

a]quinolizin-2-yl)acetate (38; MA116): To a mixture of 2.5 mL of acetonitrile and 

0.8mL of water was added 61.0 mg (0.186 mmol) of methyl 2-(8-methoxy-

1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizin-2-yl)acetate (33). The solution was 

brought to 0 °C and stirred under argon before a solution of 79.9 mg (0.186 mmol) of 

[bis(trifluoroacetoxy)iodo]benzene (PIFA) in 0.75 mL of acetonitrile was added dropwise 

over a period of five minutes. After stirring for two hours, the mixture was poured into an 

aqueous solution of K2CO3 (pH=9), extracted with three portions of 25 mL of ethyl 
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acetate, washed with brine, dried with anhydrous sodium sulfate, filtered and evaporated 

under reduced pressure. The product was purified by preparative HPLC, giving 9.8 mg 

(0.028 mmol; 15% yield) of an orange solid. HPLC analysis showed 94.3% purity. MS 

(ESI) m/z 345.04 [M + H]
+
. 

1
H NMR (400 MHz, CDCl3) δ 7.31 (t, J = 8.0, 1H), 7.20 (d, J = 7.6, 1H), 6.75 (d, J = 8.2, 

1H), 3.87 (s, 3H), 3.68 (s, 3H), 3.16 (dd, J = 11.0, 2.3, 1H), 3.00 (dt, J = 11.2, 3.0, 1H), 

2.83 (td, J = 12.2, 2.6, 1H), 2.72 – 2.70 (m, 1H), 2.68 (s, 1H), 2.64 (t, J = 2.2, 1H), 2.45 – 

2.37 (m, 2H), 2.27 (dd, J = 15.6, 7.6, 1H), 2.15 (dd, J = 13.1, 2.9, 1H), 2.05 – 1.95 (m, 

1H), 1.78 (d, J = 12.6, 1H), 1.68 – 1.59 (m, 2H), 1.37 (td, J = 12.6, 3.8, 1H).
 

13
C NMR (101 MHz, CDCl3) δ 183.52, 173.02, 155.91, 154.68, 131.03, 126.31, 114.23, 

109.10, 80.88, 59.43, 55.46, 55.38, 51.54, 49.74, 40.96, 35.91, 32.93, 32.39, 29.71. 
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12. General bioassay procedure 

12.1. Materials 

All chemicals used were from Sigma-Aldrich (Poole, Dorset, U.K.) with the 

following exceptions. For the binding experiments, [
3
H]DAMGO (53.4 Ci/mmol), [

3
H]U-

69,593 (42.7 Ci/mmol), [
3
H]Enkephlin (45 Ci/mmol),  were obtained from Perkin-Elmer 

Life Sciences Inc. (Boston, MA, U.S.A.). DAMGO, DPDPE, nor-Binaltorphimine were 

obtained from Tocris Bioscience (Ellisville, Missouri, U.S.A.). 

12.2. Cell culture 

CHO-K1 cells stably transfected with opioid receptor subtypes µ, δ, and κ were a 

generous gift from Roth labs. (University of North Carolina at Chapel Hill, Chapel Hill, 

N.C., U.S.A.). These cells were maintained at 37
o
C and 5% CO2 in a DMEM nutrient 

mixture supplemented with 2 mM L-glutamine, 10% fetal bovine serum, 0.5% penicillin–

streptomycin, and either G418 (600 mg/mL) or hygromycin B (300 mg/mL). 

Membranes were prepared by scraping the cells in a 50mM Tris buffer, homogenized via 

sonication and centrifuged for 40 minutes at 13650 rpm at 4
o
C. These were kept at -80

o
C.  

Protein concentration was found via Bio-Rad Protein Assay (Hercules, California, 

U.S.A), an adaptation of the Bradford method of protein determination
100

. 

12.3. Radio-ligand binding for opioid receptor subtypes 

Opioid binding took place under the following conditions: 10μM of each 

compound was incubated with [
3
H]DAMGO (µ), [

3
H]U-69,593 (κ),or [

3
H]Enkephlin (δ) 

for 60 minutes in a 96-well plate .  Tritium and membrane concentration for each cell line 

is determined by saturation experiments performed after each batch of membrane is 
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scraped.   The reaction was terminated via rapid vacuum filtration through GF/B filters 

presoaked with 0.3% BSA using a Perkin Elmer 96-well Unifilter followed by 10 washes 

of 50 mM Tris. Plates were read using a Perkin Elmer Topcount. Total binding was 

defined as binding in the presence of 0.1% DMSO. Non-specific binding was defined as 

binding observed in the presence of 10μM DAMGO (µ), nor-Binaltorphimine (κ),or 

DPDPE (δ). Specific binding was the difference between total and non-specific binding. 

Percent binding was found with the following formula:  

100-(Binding of compound- non-specific binding)*100/Specific Binding 

 To obtain a dose response curve, concentrations of compound ranging from 

100µM to 48nM were incubated for 60 minutes in a 96-well plate with a predetermined 

amount of [
3
H] specific to each membrane type.  Optimal membrane concentration was 

also predetermine by a saturation experiment.  The reaction was terminated via rapid 

vacuum filtration through GF/B filters presoaked in 0.3% BSA using a Perkin Elmer 96-

well Unifilter followed by 10 washes of 50mM Tris. Plates were read using a Perkin 

Elmer Topcount . Total binding was defined as binding in the presence of 0.1% DMSO. 

Non-specific binding was defined as binding observed in the presence of 10 μM of the 

control specific for the receptor of interest. Specific binding was the difference between 

total and non-specific binding. Ki and IC50 values were calculated using the software 

Graph-Pad Prism 5. 
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