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0.1 Abstract

Granular materials are an interesting class of media in that they exhibit many disparate
characteristics depending on conditions. The same set of particles may behave like a
solid, liquid, gas, something in-between, or something completely unique depending on
the conditions. Practically speaking, granular materials are used in many aspects of
manufacturing, therefore any new information gleaned about them may help refine these
techniques. For example, learning of a possible instability may help avoid it in practical
application, saving machinery, money, and even personnel.

To that end, we intend to simulate a granular medium under tornado-like vortex
airflow by varying particle parameters and observing the behaviors that arise. The simu-
lation itself was written in Python from the ground up, starting from the basic simulation
equations in Pöschel [1]. From there, particle spin, viscous friction, and vertical and tan-
gential airflow were added. The simulations were then run in batches on a local cluster
computer, varying the parameters of radius, flow force, density, and friction. Phase plots
were created after observing the behaviors of the simulations and the regions and borders
were analyzed.

Most of the results were as expected: smaller particles behaved more like a gas, larger
particles behaved more like a solid, and most intermediate simulations behaved like a
liquid. A small subset formed an interesting crossover region in the center, and under
moderate forces began to throw a few particles at a time upward from the center in
a fountain-like effect. Most borders between regions appeared to agree with analysis,
following a parabolic critical rotational velocity at which the parabolic surface of the
material dips to the bottom of the mass of particles. The fountain effects seemed to
occur at speeds along and slightly faster than this division.
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1 INTRODUCTION

The goal of this master’s thesis project is to create a particle-dynamics simulation de-
signed to study interesting behavior in a granular medium subject to tangential (vortex)
and vertical flows. The simulation and analysis scripts are written in Python completely
from scratch and make extensive use of the Numpy package for array operations [2,3].
Simulation visualization is done using VMD (Visual Molecular Dynamics), and phase
plots and other final analysis are done using Mathematica.

Outputs such as xyz coordinates and angular velocities are stored in large matrices
(50,000 × 256 × 3 in the case of position), and the Numpy package makes operating on
these matrices possible. Without it, instead of each single matrix operation we would
have to loop through each dimension and address each particle individually. This would
make the whole process slow to the point of impracticality, with each simulation taking
exponentially more time.

The simulation itself always consists of 256 macroscopic hard-sphere interacting par-
ticles in a cylindrical tank subject to various interparticle and flow forces. Parameters
open to manipulation include particle size, particle density, particle hardness, vortex ve-
locity, collision damping factors, coefficients of friction, and an α scaling fraction used
in the vertical flow force. With enough time, it would be interesting to run simulations
varying all parameters, but because of the time requirements of running a useful array
of simulations we decided to vary the primary factors of particle size and vortex velocity
hoping they would have the most visible impact on the system. These seemed to be the
types of parameters that would have the most influence on the system. Other factors
were set to realistic values where possible, for example density and hardness were set to
approximately that of steel, and damping and friction factors were set high enough to
avoid total chaos while still allowing for interesting behavior.

The motivation for this project is twofold: theoretical and practical. Theoretically,
granular materials are interesting in that they exhibit characteristics of solids, liquids,
and gases (sometimes simultaneously), as well as their own unique behaviors. Sometimes
they do exactly what classical mechanics expects them to do, and sometimes they do
something completely different. In this simulation, most configurations behave somewhat
like liquids, but each end of the size scale shows elements of a gas or solid. Also, unique
fountain-like effects were discovered for specific combinations of parameters.

Practically, granular materials are everywhere from sand to cereal. More specifically,
granular materials are exposed to all kinds of forces and fields in industrial applications.
Cast and forged metal parts are polished in vibrating tanks filled with abrasive ceramic
stones, and construction crews excavate and haul various soils around the globe nonstop.
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Edible examples include grain particles draining from silos, and candies like jelly beans
spinning in their coating drums. This simulation does not pretend to have anywhere near
the nuance and complexity of the physical world, but even limited as it may be, any bit
of understanding that can be added to such a ubiquitous class of materials helps form a
base of knowledge.
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2 SIMULATION

2.1 Basic Setup

We wanted to model macroscopic particles interacting in an enclosed tank while in the
spinning wind of a vortex. A cylindrical tank was created and collisions with it are
governed by the same interaction routines as between the particles themselves. 256
particles were added to the tank. This number was chosen because it was enough to still
give a usefully-sized total volume of particles at small particle radii without overfilling
the tank for larger particle sizes. In future versions of the simulation it may be useful
to vary the number of particles with size to maintain a constant total particle volume
inside the tank.

We added a vertical wind force to lift particles upward, and a tangential vortex to
rotate them around the tank much like a small tornado. The upward component of the
flow is scaled in such a way that particles rest on a cushion of air rather than the tank
bottom, and the tank has no top. In the rendered output video and stills, the bottom
half of the tank can be seen as a green grid, though the grid itself is not in the simulation
trajectory files.

Mathematically the flow field inside the tank at position ~x = (xr, xθ, xz) is

~vf = ~vf,⊥ + ~vf,z = ~xr × ~Ω + |~vf,z|e−βxz (1)

Here, ~Ω is the angular velocity of the flow field, and one of the two primary parameters we
will be varying in our simulation runs. The base magnitude of the vertical wind speed,
|~vf,z|, does not vary with the radial coordinate of the tank, and is constant across all
simulations. The exponential factor assures that there is a vertical equilibrium position.
Physically this would be justified by saying that the momentum loss in the fluid occurs
due to viscosity effects, and where the wind field is concerned, the tank is modeled as
somewhat wider than it is tall. This and the fact that the tank is open at the top results
in a lowering the wind velocity with z. All of this is further explained in later sections.

The bulk of the simulations analyzed here have parameters chosen to give maximum
stability in the simulations, rather than being scaled to realistic material values. Eventu-
ally these were modified to match known materials, but this had its own problems as we
will see in a later section. In making the phase plots, particle radii ranged from 1/30th
the tank size to 1/10th. Anything smaller has so little mass that the simulations take
far too long to reach a steady state, and anything larger has too little resolution (is too
chunky) to read any useful surface contours.
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Figure 1: Flow field inside the simulation tank.

To help visualize the behavior of our particle system, we tried to figure out what
our chosen material parameters correspond to in the real world. Setting the material
viscosity to that of air and then backing-out the parameters that correspond to the
forces experienced in simulation, it turns out that our default setup is an approximate
match for very hard, very low density balls of about 3 cm in size. This means that we
can think of our first couple of simulations as something like ping-pong balls spinning
about and colliding in air.

2.2 Interaction Forces

2.2.1 Central and Normal Forces

Unlike aerosols [4], our macroscopic particles do not neglect particle-particle interactions.
Rather than integrate equations of motion, this simulation elects to use a common granu-
lar computational shortcut to calculate hard-sphere interaction forces between particles,
as outlined in Computational Granular Dynamics by Pöschel and Schwager [1]. The nor-
mal conservative elastic and dissipative forces on particle i normal to the collision point
with particle j (or a wall) are given by

f
(el)
n,ij =

2Y
√
reff,ij

3(1− ν2)
ξ

3/2
ij (2)
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f
(dis)
n,ij =

2Y
√
reff,ij

3(1− ν2)
A
√
ξij
dξij
dt

(3)

where Y and ν are properties of the material (Young’s modulus and Poisson’s ratio,
respectively), reff is an effective radius between the two colliding particles or a particle
and a wall, A is a damping coefficient related to the deformation of the particles, and ξ
is an overlap factor created by subtracting the distance between two particles from their
summed radii:

ξij = ri + rj − |~xi − ~xj| (4)

A =
1

3

(3η2 − η1)2

(3η2 + 2η1)

[
(1− ν2)(1− 2ν)

Y ν2

]
(5)

The parameters η1/2 are viscous constants of the material and have units of kg ·m−1.
Just to confirm the math we will examine the units involved in these force equations.

A→
[

(kgm−1 − kgm−1)2

(kgm−1 + kgm−1)

(
(1− ν2)(1− 2ν)

kgm−1s−2

)]
= [s] (6)

f
(el)
n,ij →

[
kg

ms2

√
mm3/2

]
=

[
kgm

s2

]
= [N] (7)

f
(dis)
n,ij →

[
kg

ms2

√
ms
√

m
m

s

]
=

[
kgm

s2

]
= [N] (8)

For a full derivation of these relations see Brilliantov [5]. Now that we believe that
the two components of the normal force are indeed forces, we can write out the complete
force equation for normal interactions,

fn,ij =
2Y
√
reff,ij

3(1− ν2)

(
ξ

3/2
ij + A

√
ξij
dξij
dt

)
(9)

{
for |~xi − ~xj| < ri + rj

0 Otherwise

Right now all of these parameters are the same for all interactions (meaning the
walls are made of the same material as the particles). Because we scale the force using
this overlap factor, we don’t actually need to track velocities at this point. Later in
the simulation we will use the various forces to calculate velocities and, in turn, new
displacements, but for the immediate purpose of calculating the normal force during a
collision we do not need to know the particle’s velocity before the collision. If a particle
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is moving faster and therefore generating more reaction force on impact, it will merely
overlap more when we increment the timestep. Even later when we do have velocities
calculated, because they are not needed here we do not have to save them for use in the
next step. This saves processing time and memory, since there is no need to create and
store another n × 3 array. This only works well if the timesteps are short enough to
give good resolution during collisions. Tests on a sparsely populated energetic system
show collision durations ranging from 13 to 400 timesteps, with most in the twenties and
thirties.

The implementation of this interaction is the heart of the simulation. At its core
is the main distance matrix. Overlap ξ factors are calculated from an n × n master
distance matrix containing the distances from each particle to each other particle in the
case of interactions, and directly calculated from known boundary positions in the case
of wall and floor collisions.

220 # Distance matrix

221 dist = numpy.sqrt(pow(xx1 - xx2, 2) + pow(xy1 - xy2, 2) + pow(xz1 - xz2, 2))

222 dist = numpy.where(dist == 0, 1e-6, dist)

Here a divide-by-zero error is avoided by setting the self-distance terms to 10−6 instead
of zero,

224 # Overlap factor (>0 means collision)

225 xi = xr1 + xr2 - dist

226 xi = numpy.where(xi > 0, xi, 0)

227 diag_zero = numpy.ones((n,n)) - numpy.diag((1,)*n)

228 xi = xi * diag_zero

and the diagonal elements of ξ are removed as well to avoid self-collisions.
The main calculation above for fn,ij in Eq. 9 is only the magnitude of the normal

force; a normal vector must also be calculated independently. This is similar to the
distance calculation in structure, only it keeps components separate and has an output
that is either n × n × 3 containing unit vectors from the center of every particle to the
center of every other particle, or n × n containing unit vectors from every particle to
the nearest wall in r and z separately. Now we know the direction in which to aim the
normal force.

230 # Normal vector matrix

231 nhat = numpy.array([(xx1 - xx2),(xy1 - xy2),(xz1 - xz2)] / dist)

232 nhat_sign = numpy.where(nhat == 0, 0, numpy.sign(nhat))

292 # Normal vector matrix

293 normfactor = numpy.sqrt(numpy.sum(pow(x[i], 2), axis=1))

294 normfactor = numpy.where(normfactor == 0, 1e-6, normfactor)

295 nhat = (-x[i,:, 0], -x[i,:, 1], [0.0] * n) / normfactor

6



(a) Particle-Particle (b) Particle-Wall

Figure 2: Quantities involved in calculating rotational collision forces.

334 # Normal vectors

335 nhat = numpy.zeros ((3, n))

336 nhat[2, :] = numpy.ones(n)

All that is left now is to calculate the magnitude of the interaction force, which is
straightforward.

234 # Damping factor

235 d_xi = (xi - xi_old) / dt

236 damp = (pow(xi, 1.5) + A * numpy.sqrt(xi) * d_xi)

237 damp = numpy.where(damp < 0.0, 0.0, damp)

238

239 # Effective radius

240 reff = 1.0 / (1.0 / xr1 + 1.0 / xr2)

241

242 # Scalar normal force matrix

243 fn = (2.0 * Y * numpy.sqrt(2.0 * reff)) / (3.0 * (1.0 -

244 pow(nu, 2))) * damp

2.2.2 Tangential Forces and Torques

Because the particles are macroscopic, we take spin into account as well. This includes
the effect of trajectory at impact on spin, and conversely, the effect of spin at impact
on trajectory. Here we work in terms of surface and rotational velocities. A diagram of
two types of particle collision and the various quantities involved is given in Fig. 2. The
velocity on the surface of a spinning sphere at the point of impact is given by
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~vs,i = ~ωi × ~ri (10)

where ~ωi is the angular velocity of the particle and ~ri is a vector from the center of the
particle to the point on its surface where contact occurs.

The relative velocity between the two surfaces at that point is

∆~vs,ij = ~vs,i − ~vs,j (11)

and using a coefficient of friction, µ, the tangential force on the particle is therefore
simply

~ft,ij =
µmi∆~vs,ij

∆t
(12)

The factors µ and mi are a coefficient of friction and the mass of particle i respectively.
For the torque we need the difference in rotational velocities, but only in the plane

perpendicular to the collision.

∆~ω⊥,ij = ∆~ωij −∆~ωij · n̂ij (13)

We then set a simple vector torque based on this maximum change in rotational velocity
and scaled by a friction coefficient,

~τi =
µIi∆~ω⊥,ij

∆t
(14)

with Ii being the moment of inertia of particle i.
Computationally, we use another set of grand interaction matrices, this time in ~ω and

~v. These contain the relative rotational and translational velocities between all particles,
or between particles and boundaries.

258 # Delta-w and delta-v matrces

259 dw_m = numpy.array([(wx1+wx2),(wy1+wy2),(wz1+wz2)])

260 dw_m = (dw_m*collide)

261 dv_m = numpy.array([(vx1-vx2),(vy1-vy2),(vz1-vz2)])

262 dv_m = (dv_m*collide).T

Surface speeds at points of impact are calculated using the previous normal vector
matrices and the two matrices in the previous step. The difference in surface speeds
is taken for colliding particles only, crossed with the normal vector to get the change
in rotational velocity, and then the torque to be applied is calculated using Eq. 14.
Boundary collisions are handled the same way, being a simplification where the second
particle is considered flat and stationary.

8



265 # Surface speed

266 dv_s = numpy.cross(dw_m.T, nhat.T) * r_m

267 dv_s = (dv_s.T*collide).T

The tangential particle forces, Eq. 12 are then only a one-line calculation,

275 # Tangential force due to spin

276 ft1 = numpy.sum(mu * (-dv_s * m_m) / dt, axis=1)

All that is left to do now is compute the perpendicular change in ~ω and compute the
torque per Eq. 14,

263 dw_m2 = dw_m - abs(nhat)*dw_m

264

269 # Torque from spin-contact

270 tau1 = numpy.sum(mu * (-dw_m2.T * I) / dt, axis=1)

2.2.3 Total Interaction Forces

Impacting at an angle causes rotation, and rotation can store energy from a collision.
Our final force equation takes this into account through Eq. 12.

~fij = fn,ijn̂+ ~ft,ij (15)

expands out to

~fij =
2Y
√
reff,ij

3(1− ν2)

(
ξ

3/2
ij + A

√
ξij
dξij
dt

)
n̂+

µmi∆~vs,ij
∆t

(16)

forming the final, complete force equation for our simulations.
The first term in (16) is the force of the collision antiparallel to the collision itself,

while the second term is the influence of rotation on the trajectory. Each step that
calculates forces and torques due to an interaction adds them to overall force and torque
arrays, f and τ , which are applied at the end and reset at the beginning of each timestep.

9



2.3 Vortex Forces

An object moving through air experiences a drag force proportional to its velocity (rel-
ative to the air) that opposes its motion. In our case the drag forces are driving the
motion of the system, but that is because the air itself is moving. Typically this drag
force is approximated as having linear and quadratic components (Fowles and Landau
[6, 7]):

f(v) = c1v + c2v
2 (17)

In these simulations, we separate the linear and quadratic portions of the drag force
and run them separately, then compare the differences this creates in the phase plots
as well as attempt to determine which of the two is of greater importance. Classically
for lower velocities the linear term takes precedence, and at higher speeds the quadratic
takes over. We also separated horizontal and vertical drag components such that only
horizontal velocities contribute to horizontal drag likewise for the vertical. This leaves
off the cross term that is technically necessary for complete physical accuracy.

One thing that came to our attention after these simulations were run is that mathe-
matically, a quadratic-only drag force will never reach equilibrium. Solving the differential
equation

m
dv

dt
= −c2v

2 (18)

yields position and velocity functions of the form

v(t) =
v0

1 + t
τ

(19)

x(t) = v0τ ln

(
1 +

t

τ

)
(20)

where τ = m/cv0. The velocity approaches zero asymptotically, never actually coming
to a complete stop. Physically, the linear portion of the drag force is needed to take over
in the small v domain and bring the system to equilibrium. This reason, among others,
is why we have both terms in the third iteration of the simulation method.

2.3.1 Linear Drag

The primary feature of the simulation is that the particles are in a spinning airflow field.
To do this, let us first consider only the flow forces tangential to the tank. An angular
flow velocity is set and a force tangential to the tank is calculated based on the difference
between the particle velocity and the flow velocity. The flow velocity increases with the
radial component of ~xi to maintain a constant angular velocity, ~Ω. The force of the
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vortex on a particle is then simply proportional to this velocity difference and the surface
area of the particle, as well as the density of the fluid, ρf , another coefficient of friction,

~vf⊥,i = ~xr,i × ~Ω (21)

~ff⊥,i = µπr2
i ρf (~vf⊥,i − ~v⊥,i). (22)

Setting an effective wind speed in this way eliminates the need for a separate viscous
friction term, as the particles will eventually reach the flow velocity and stop accelerating.
At first this drag force scaled linearly with the velocity difference.

2.3.2 Quadratic Drag

Upon further analysis we decided that a dependence on the square of the velocity would
be more physically accurate. When researching aerodynamic drag, we found that the
quadratic relation was the standard approach, with this form of the drag equation having
been attributed to Lord Rayleigh and Sir Isaac Newton himself. As stated before, our
drag force is simplified somewhat, but is still based on the classical drag equation. Only
for extremely slow speeds and no turbulence is drag linearly proportional to velocity
(Stokes’ drag). Certain that our velocities were above this threshold, we changed the
code and ran another batch of simulations. The actual relation between linear and
quadratic is explored further in section 2.5. The new drag force looks like this:

~ff⊥,i = µπr2
i ρf (~vf⊥,i − ~v⊥,i)|~vf⊥,i − ~v⊥,i| (23)

It will be shown later in the analysis section that this change in flow force had a quite
easily observable impact on the phase boundaries of the system. Both drag models use
the same coefficient of friction, so for a given velocity difference the quadratic version
will be larger. This should not be a concern because we care about what behaviors the
systems exhibit at a steady state. Both of the drag forces should go to zero in the time
frame of the simulations we will be considering. The difference should only be visible in
how the systems to reach equilibrium and in how well the particles are held to the flow
velocity.

2.4 Rectangular Counting Force

Now we will consider the vertical component of the flow field. The goal is to simulate
flow through particulate matter, so the particles need to be able to interact with the
airflow and shield each other. To accomplish this, we devised a “counting” force,
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Figure 3: Rectangular counting force diagram.

f
(stack)
z,i = f

(drag)
z,i αne−βxz,i . (24)

We start with a form of the drag equation that includes both linear and quadratic
terms (more on this in section 2.5), then we scale it in what we believe to be a novel
manner. Here α is some scaling fraction, and n is the number of particles below particle
i in a rectangular prism of shape 2ri × 2ri × zi as shown in Fig. 3. Particles are counted
if any part of their volume is inside the prism, not just the center. This way the vertical
force on each particle is reduced by a factor of alpha for every particle below it inside the
prism. For example, if α is 1

2
as it was in the final simulations, a stack of particles will

experience forces scaled by a factor of 1, 1/2, 1/4, and 1/8 respectively from bottom to
top. This allows a solid block of particles to form with the weight of the upper particles
resting on the lower ones, which are held up by air pressure. If a particle doesn’t have
enough other particles above it to weigh it down or below it to shield it from the vertical
wind, it moves upward.

The vertical flow speed is the same for every simulation, and we let the force trail
off in z as an exponential, providing the particles an equilibrium point in which to sit.
Leaving this exponential off results in either particles sitting on the floor of the cylinder
(insufficient vertical force), or particles exiting the top of the cylinder (excessive vertical
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force). It is worth mentioning that this exponential is only present in the vertical flow
forces and the vortex flow does not decrease with height.

380 # Box footprint of particle

381 dx = numpy.abs(xx1 - xx2)

382 dy = numpy.abs(xy1 - xy2)

383 dz = (xz1 - xz2)

384

385 rect_zx = numpy.where(dx < 2.0*r, 1, 0)

386 rect_zy = numpy.where(dy < 2.0*r, 1, 0)

387

388 fzx = numpy.where(dz < 0, rect_zx, 0)

389 fzy = numpy.where(dz < 0, rect_zy, 0)

390

391 # Scales by alpha for every particle in dx x dy x dz

392 v_flow = 8.0

393 fz = (-c1*(v[:,2] - v_flow).T - c2*((v[:,2] - v_flow)*abs(v[:,2] - v_flow)).T)

394 fz *= pow(alpha, numpy.sum((fzx * fzy), axis = 0))

471 # Flow forces

472 beta2 = 25.0 # 50.0

473 ffz = numpy.exp(-beta2 * (x[dt1-1,:,2] + (tank[2]/1.5)))

474 f_stack = 100.0 * ffz * flow_rect(dt1-1,x,v,r,alpha,c1,c2,tank)

The code for this section just scans the coordinate matrix for particles that meet the
location conditions and multiplies by the α factor.

2.5 Realistic Parameter Conversion

The simulation thus far has one limitation: particle parameters were chosen and scaled
based on what created nicely-behaved simulations that reached steady-state quickly;
these parameters were not chosen to match any realistic values. Late in the cycle of this
project the simulation script was completely overhauled to use parameters that matched
known materials. Particles were rescaled to the hardness and density of steel, the vortex
flow viscosity was lowered to that of actual air, and the tank radius was set at 6 cm.

Mathematically nearly everything was the same, but, for example, instead of a radius
of 0.6 and density of 5, particles now had radii of 0.006 meters and densities of 10,000
kg/m3. This drastically rescaled everything and it took several days to recalibrate into a
working system. Even so, the phase plot for our realistic system is far messier than any
of the idealized simulations.

The one major difference in the realistic version is the new drag force. Based on
the velocity-dependent fluid force from Fowles [6], it combines both the linear and the
quadratic terms, and has drag coefficients based on real-world physics,
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~ff⊥,i = −c1(~v⊥,i − ~vf⊥,i)− c2(~v⊥,i − ~vf⊥,i)|~v⊥,i − ~vf⊥,i|. (25)

Here,

c1 = 3πηD ≈ 1.55× 10−4 kg

m · s
D (26)

c2 =
1

2
cdρfA ≈ 0.22

kg

m
D2 (27)

with

η : fluid viscosity
D : particle diameter
cd : drag coefficient (0.47 for a sphere)
ρf : fluid density
A : cross-sectional area

All approximations are for spheres in air.
Again, in the code only a few lines change.

399 # Tangential airflow

400 v_flow = numpy.zeros(numpy.shape(v))

401 v_flow[:,0] = W * x[:, 1]

402 v_flow[:,1] = -W * x[:, 0]

403

404 f_flow = (-c1*(v-v_flow).T - c2*((v-v_flow)*abs(v-v_flow)).T)

In order to justify which type of drag force is most appropriate for this simulation,
we must first examine the velocities involved. For low velocities typically the first order
drag force would dominate, and for higher velocities the second order term takes over.
We can use a plot of flow and particle velocities for various simulations to figure exactly
the ratio of the quadratic to linear drag terms.

Fig. 4 shows the averaged velocity magnitudes for both the particles themselves as
well as the spinning wind force at the particle locations. These values mostly represent
movement in the horizontal plane, as the simulations settle vertically and nearly all
relative motion is in the rotation about the tank. Note that because the flow force is
calculated for each particle at each particle location and does not exist independently,
the net flow force on the particles is dependent on time and increases as the system is
pushed outward. Immediately apparent is that the particles never reach the actual flow
velocity, and that some sets of particles continue to increase in velocity through the end
of the simulation. Simulations that do not appear to be gaining speed are likely losing
vast amounts of energy due to internal friction, which can be much stronger than the flow
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force at low velocities. Fig. 15(d) is an example of such a case, since it has relatively large
particles and a slow rotational velocity, and does not appear to be gaining energy. Given
enough time, it likely that these simulations will eventually reach some equilibrium state
that is closer to the flow velocity, but the amount of time required is simply impractical.

Using the average particle velocities from these plots we calculated the importance of
the quadratic drag term relative to the linear term,

0.22v2D2

1.55× 10−4vD
= 1.4× 103vD. (28)

For a range of flow velocities across both the smallest and largest particle sizes we get
these values:

r Ω ∆v Ratio
2 mm 30 s−1 1.18797 ms−1 0.59398
2 mm 90 s−1 4.10134 ms−1 2.05067
2 mm 150 s−1 5.90051 ms−1 2.95026
6 mm 30 s−1 1.14316 ms−1 1.71474
6 mm 90 s−1 3.31572 ms−1 4.97358
6 mm 150 s−1 5.88083 ms−1 8.82125

Judging from these values, the quadratic version of the flow force would be the larger
of the two for all but the slowest small-particle simulations, but it almost never quite
dominates in a way that would let us completely disregard the linear term. This would
seem to make the quadratic phase plot the more useful of the two, but in the end what
we need is a flow force that has both first and second order dependencies on flow and
particle velocities.

Also worth pointing out is that few of the example simulations used in these calcu-
lations are at any kind of equilibrium velocity. The particles will continue to increase in
speed, but since that would only serve to increase the dominance of the quadratic term
in our flow force relation, the use of Fig. 4 as a source of velocity data is still justified.
These velocities are only relevant to the previous table and Fig. 14, and have nothing to
do with the better-behaved systems in Fig. 13.

Another thing to note is that with steel particles, the vertical flow velocity required
to lift the particles up has to be so large that it becomes turbulent, thus making this
aspect of the simulation inaccurate.

2.6 Simulation Procedure

The simulation itself can be broken down into three main phases: initialization, timesteps,
and finalization.
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(a) r = 2mm, Ω = 30rads−1 (b) r = 2mm, Ω = 90rads−1

(c) r = 2mm, Ω = 150rads−1 (d) r = 6mm, Ω = 30rads−1

(e) r = 6mm, Ω = 90rads−1 (f) r = 6mm, Ω = 150rads−1

Figure 4: Sample realistic parameter simulation velocity plots for various values of r and Ω.
Velocity magnitudes are averaged and plotted for the flow at particle locations as well as the
particles themselves.
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Figure 5: Initial random particle configuration.

2.6.1 Initialization

At the beginning of a simulation, the code first sets all the main physical parameters,
then generates a random set of particle positions. The placement algorithm itself makes
sure no particles overlap, and is capable of restarting itself should it be unable to find
space for all of the required particles. Each particle starts with a small random linear
and angular velocity, and the function also generates all the various arrays related to the
particles themselves such as moments of inertia and masses,

48 # Generate a random position

49 position = numpy.random.rand(3) * 2.0 * scale - [tank[0], tank[0], tank[2]/2]

50 count+=1

51 xradial = numpy.sqrt(pow(position[0],2)+pow(position[1],2))

52

53 # Test for tank fit and particle overlap

54 if xradial < (tank[0] - r1):

55 distance = numpy.sqrt(pow(position[0] - x[0,:,0], 2) +

56 pow(position[1] - x[0,:,1], 2) +

57 pow(position[2] - x[0,:,2], 2))

58 if numpy.all(distance > 2.0 * r1):

59 x[0,j,:] = position

74 # Generate other attributes

75 for i in xrange (0, n):

76 v[i] = numpy.random.rand(3) - 0.5

77 w[i] = numpy.random.rand(3) - 0.5

78 m[i] = 4/3 * rho * math.pi * pow(r1,3)
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79 r[i] = r1

80 I_sph = (0.4) * m[i] * pow(r[i], 2)

81 I[i] = ([I_sph, I_sph, I_sph])

Fig. 5 shows an example of a random starting set of particle coordinates. Originally
particles started out in a grid, but this caused various wave and compression effects as
the square simulation settled into a round tank that took far too many timesteps to
dampen out. Checking for initial particle overlap is crucial. Without it, larger particles
would start the simulation partially overlapped, generating huge forces and causing minor
explosions that ruin the result.

After the particles are placed and a few other arrays are initialized, the main simula-
tion timesteps begin.

2.6.2 Timestep

The main timestep is where everything happens. At the beginning of each step, the force
and torque arrays are zeroed, and then the three main particle interaction functions are
run. These calculate the forces and torques generated by the interactions of particle and
particle, wall, and floor. These are then added to the main force and torque arrays for
the step.

358 # Normal force due to collision

359 fn1 = fn * nhat

360

361 # Tangential force due to spin

362 ft1 = mu * dv_s * m_m / dt

Now the environmental flow forces are calculated using Eqs. 24 and 22, and are added
to the force array along with gravity.

471 # Flow forces

472 beta2 = 25.0 # 50.0

473 ffz = numpy.exp(-beta2 * (x[dt1-1,:,2] + (tank[2]/1.5)))

474 f_stack = 100.0 * ffz * flow_rect(dt1-1,x,v,r,alpha,c1,c2,tank)

475 f_xi = 10.0 * ffz * flow_xi(xi_p)

476

477 f[2, :] += (-ag*m) + f_stack + f_xi

478 f += flow_tan_phys(x[dt1-1],v,m,W,c1,c2,tank,dt)

Using the now-complete force array, new velocities for each particle are calculated
using a basic Euler step,

480 # Calculate new velocities

481 v[:,0] += f.T[:,0] * dt / m

482 v[:,1] += f.T[:,1] * dt / m

483 v[:,2] += f.T[:,2] * dt / m
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as are new positions from the velocities. Positions for the current step are stored in the
proper ith slice of a giant i × n × 3 array. Likewise we get a change in rotational velocity
for each particle based on the torque array (Fetter [8]).

485 # Apply movements

486 x[dt1] = x[dt1-1] + (v * dt)

487 w += tau.T / I * dt

Whereas translational motion has the viscous flow function to dampen it, we have
to add something to dampen spin here. According to Schiffrik [9], rotational velocity of
a spinning sphere in air dampens linearly with ~ω. In the code, we set a small torque
proportional to ~ω that pushes counter to the direction of rotation.

489 # Viscous rotational friction

490 w += -(6e-8 * w.T).T / I * dt

The same effect could be accomplished by simply scaling ~ω back by some small percent-
age.

For use later in the analysis script, we also store translational, rotational, and poten-
tial energies separately at this point (Fetter [8]). They will be later output along with
position into the coordinate file.

492 # Energies

493 E_tns = numpy.sum(0.5 * numpy.array((m,m,m)).T * pow(v,2),axis=1)

494 E_rot = numpy.sum(0.5 * I * pow(w,2),axis=1)

495 E_pot = ag*m * x[dt1,:,2] - group_dot(f.T,x[dt1]-x[dt1-1])

496

497 E[dt1,:,0] = E_tns

498 E[dt1,:,1] = E_rot

499 E[dt1,:,2] = E_pot

Finally, a few safety checks are run. The simulation will continue until it reaches its
predetermined timestep limit regardless of malfunction, so it is worthwhile to check a few
things at the end of each timestep to keep from wasting time on a ruined simulation.

First all arrays are checked for “NaN” values that are usually the result of attempting
to divide by zero, and then the coordinate files are checked to make sure no particles
have strayed too far outside the bounds of the tank. This occasionally happens in the
event of extreme interparticle pressures or overlap glitches.

501 # Safety checks

502 b_flag = test_nan(f)

503 if b_flag == 1:

504 break

505
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506 test_x = abs(x[dt1,:,0]) > 2*tank[0]

507 test_y = abs(x[dt1,:,1]) > 2*tank[0]

508 test_z = abs(x[dt1,:,2]) > 10*tank[2]

509 if (test_x.any() or test_y.any() or test_z.any()):

510 print(’Atom out of bounds at step ’ + str(dt1))

511 break

If all is well, the script returns to the beginning of the timestep section and calculates
the next set of data, continuing to loop until the simulation ends.

2.6.3 Finalization

This step is simply the output. Position and energy arrays are combined and then written
in binary to a file. This is the end of the simulation.

513 # Stepped output array

514 x_out = numpy.zeros((i_max/step, n, 4))

515 x_out[:,:,0:3] = x[::step]

516 x_out[:,:,3] = numpy.sum(E[::step],2)

517

518 # Write dump file

519 numpy.save(dump_name[0:-4],x_out)

2.7 Test Simulations

Before major sets of simulations were started on grids of points, a few tests were con-
ducted to make sure various interactions were working properly. The following tests are
only of collision dynamics and do not involve any of the flow forces of the final simulation.
In fact, half of them don’t even involve gravity.

2.7.1 Spin and Particle Collisions

Fig. 6 is a test to see how two spinning particles react to a collision. The two particles are
given parallel spins (both pointing upward) and are pushed toward each other through
empty space. There is no gravity and the particles are not in contact with any of the
surfaces of the tank. As the trajectory tracks clearly show, the two particles collide and
spin against each other, pushing themselves off at angles. Another test collision (not
shown) with counter-aligned spins has the particles bouncing away along their original
path as expected.

Next (Fig. 7), a spinning particle (horizontal axis) is dropped onto a stationary parti-
cle resting on the floor of the tank. Without spin the two would simply bounce upward,
but here the top particle rolls off in one direction while pushing the stationary particle
in the opposite direction.
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(a) Initial (b) Collision (c) Final

Figure 6: Particles with parallel spins collide and deflect.

(a) Initial fall (b) Collision (c) Rolling off

(d) Falling (e) Rolling away

Figure 7: A spinning particle falls onto a stationary one and the two roll apart.
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(a) Without spin (b) With spin

Figure 8: Particles collide with a wall at an angle. Only the right particle is allowed to spin.

2.7.2 Spin and Wall Collisions

In Fig. 8 we test the influence of spin on the trajectory of a particle as it bounces off the
walls of the circular tank. The particles start at the beginning of the track, just upward
of the center of the tank traveling rightward, with no initial spin, again through empty
space with no gravity or tank contact. The left image is not allowed to spin; it simply
bounces off the wall at each collision, forming a series of short, straight segments. The
right image is allowed to spin, and with each collision some of the translational energy
is transferred into rotational energy. This causes each rebound to be slightly shallower,
and eventually leaves the particle rolling along the wall of the tank in a circular path at a
constant translational and rotational velocity. This helps to demonstrate the importance
of spin on particle trajectory.

To test rolling conditions and friction, in Fig. 9 a particle with horizontal spin is
placed on the floor of the tank and given an initial velocity against the direction the
particle would roll due to its spin. As it should, the particle moves in the direction of its
initial velocity, slowing as it goes until eventually the rolling friction gets the better of
it, at which point it begins to roll back toward its initial position.
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(a) Initial (b) Begins to slow (c) Velocity reverses (d) Rolls backward

Figure 9: A particle with spin against the direction of motion will slow and roll backwards.

(a) Initial (b) Bounce 1 (c) Bounce 2 (d) Bounce 3 (e) Final

Figure 10: Collision test in the form of a Newton’s cradle.

2.7.3 Newton’s Cradle

Just for fun, we set up a classic one-dimensional Newton’s cradle test in Fig. 10. Four
particles are lined up without gravity or tank contact, and the leftmost particle is given
an initial rightward velocity. The transfer of momentum appears to be perfect, with no
perceptible drift after several cycles.
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3 CLASSIFICATION

Simulations were run varying radius and flow to create a grid of simulations for a set
range of variables. Upon completion of a grid, a separate analysis script is run which
loads the dump files and then makes a judgment as to the final state of the system.
Upon observation, the simulations demonstrated several dynamic phases. Larger particles
tended to dampen out and, under higher forces, formed the standard paraboloidal surface
features of a spinning fluid. This is labeled the fluid phase, Fig. 11(a). Smaller particles
under extreme forces were pushed outward into the tank walls, forming a large void in the
center of the simulation. This is labeled the pinned phase, Fig. 11(b). Most interestingly,
if the particle size and wind velocities were just right for the parabola to be extremely
thin in the center, some particles were accelerated upward from the middle of this region,
well above the heights of the rest of the particle mass. This is labeled the spout state,
Fig. 11(c).

The behavioral analysis script is like a series of sieves. It loads a dump file, and then
passes it through a number of classification functions sequentially, each designed to give
a yes-or-no output concerning whether or not the simulation matches the criteria sought
by the function. A simulation must meet several conditions (each function requiring a
different number) for a certain percentage of a certain number of timesteps before giving
a positive result. For example, to qualify as a pinned state, all particles in a simulation
must be within two radii of the wall for half of 2000 timesteps. This helps avoid false
positives should a simulation happen to meet the requirements for a brief period, and
gives some leeway for noise.

3.1 Steady State Determination

Every simulation starts with a random arrangement of particles and must settle into
some sort of steady state before it can be analyzed. A number of different methods were
tried to determine exactly when this state is attained, but ultimately most were flawed.
The final solution was perhaps the most obvious one: look for the point where the system
reaches a mostly-constant energy.

The simulation script outputs translational, rotational, and potential energies in the
dump file with positions (Fetter [8]).

E
(tns)
i =

1

2
miv

2
i (29)

E
(rot)
i =

1

2
Iiω

2
i (30)
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E
(pot)
i = migxz,i (31)

492 # Energies

493 E_tns = numpy.sum(0.5 * numpy.array((m,m,m)).T * pow(v,2),axis=1)

494 E_rot = numpy.sum(0.5 * I * pow(w,2),axis=1)

495 E_pot = ag*m * x[dt1,:,2] - group_dot(f.T,x[dt1]-x[dt1-1])

64 E1[0:-1] = E

65 E2[1:] = E

66 DE = abs((E1-E2) / (1+E2))

67

68 maxes = numpy.where(x[:,:,2]>=0.20,1,0)

69 maxes = numpy.sum(maxes,axis=1)

70

71 for j in xrange (0,i_max-avg_i):

72 if numpy.sum(maxes[j:j+avg_i]) < 1:

73

74 # Look for small energy change

75 if numpy.average(DE[j:j+avg_i]) <= tolerance:

76 settle_yn = 1

Fig. 12 shows sample averaged energies for each of the various behaviors we discovered,
which will be further explained in the following sections. Since the particles start out
very high in the tank, the potential energy ends up being negative, so we rescaled this
so the zero of the gravitational potential energy occurred at the average height at which

(a) Fluid (b) Pinned (c) Spout

Figure 11: Sample simulation behaviors.
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the particles settled. Since the steady state we’re looking for occurs here, it seemed like
a logical choice. Ultimately we care more about how the energy stabilizes than where it
actually is in the absolute sense.

Here we simply look for a window where the change in energy is below a certain
threshold for 500 timesteps. Just to be a little more on the safe side, the analysis
script uses the midpoint in the 500-frame window for extra stability. Every subsequent
classification function uses this point as the starting timestep for its analysis.

3.2 Fluid State

When a liquid spins slowly, the surface forms a paraboloidal shape due to the apparent
outward centripetal pseudo-force and downward attraction of gravity. Under the right
circumstances the vortex simulation does the same. This can be thought of as the root
state on which all of the other states are variations, as will be explained in the next few
sections.

Computationally, the fluid state classification is the most intensive of the analysis
functions, even after simplification and revision. The difficulty here lies in the fact that
we need to plot out the surface of a collection of particles. The current method involves
dividing the tank into bins radially, finding the topmost particle in that bin, and then
simply checking to see that most of the bins follow a trend of increasing height as the
bins approach the outer wall of the tank. (Due to the complex nature of this task,
there are quite a few bookkeeping lines in the code that do not really contribute to the
understanding of the method. For the full function, see section 7.3 on page 57, lines
93-142.)

104 # Divide simulation into bins

105 bin_tot = int(round(R / (2.0 * r)))

106 bin_width = R / bin_tot

107

114 for j in xrange (0,bin_tot):

115 bins[j,:] = numpy.where((xr > bin_width*j) & (xr <= bin_width*(j+1)),

116 x[:,:,2]+100, 0)

117

118 # Find tops of bins

119 z_max = numpy.amax(bins,axis=2)

125 # Look for rising bin height from center to wall

126 if z_max[j,i] - z_max[j-1,i] >= 0.1*r:

127 check_n[j-1] = 1
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(a) Fluid

(b) Pinned

(c) Flat

(d) Spout

Figure 12: Sample simulation energy plots for various behaviors defined in sections 3.2, 3.3,
and 3.4. The left column runs over the entire simulation, while the right column is zoomed to
the first ten thousand timesteps.
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3.3 Pinned State

If the vortex is too strong, the smoothly curving surface gets pushed outward to the
point that all of the particles in the system are stacked together in a few layers against
the outer wall of the tank. Technically speaking, this is a degenerate form of a parabola
where there is just not enough of the substance to cover the bottom of the tank. While
this is exactly the sort of behavior we would expect from this kind of system, it is not
particularly difficult or interesting.

153 for j in xrange (0,i_max):

154 r_min = numpy.amin(xr[j,:])

155

156 # Look for hole in center of tank

157 if R - r_min < R-2.0*r:

158 check[j%avg_i] = 1

159 if numpy.average(check) >= 0.5:

160 pinned_yn = 1

161 pinned_i = j + (i_full-i_max) - avg_i

162 break

3.4 Spout State

And now we come to the most interesting state. Apparently, if the system’s rotation is
just strong enough, the paraboloid can dip down far enough that only a thin layer of
particles exists in the center of the tank. Since our upward counting force (Eq. 24) is a
balancing act between the air pressure below and the weight of particles from above, this
thin layer is suddenly no longer being held in place. The resulting imbalance actually
propels the particles from the center of the tank upward in a sort of particle fountain.
They then fall outward into the stacks of particles and a new set slides in to take their
place, continuing the convective-like cycle.

This effect can range from a small fountain to a large percentage of the particles at
smaller sizes. Because of this, the phase plots are divided into two spout states, the
smaller case and the larger one. (Again, some of the code is left out for brevity, for the
full text see section 7.3 on page 57, lines 168-209.)

This state is particularly difficult to automatically classify due to its chaotic nature
(it has the most movement of any state), but this approach seems to work well enough.
First we create matrices of all particles in the center 3/4 of the tank and of all the
particles with upward velocity greater than 100th of a radius per timestep. The scaling
of the velocity criteria by radius is necessary to accommodate the difference in speeds
particles of different sizes have when in the spout. The analysis script then counts
particles belonging to both of these categories and decides between small spout, large
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spout, and no spout based on that number. If more than five and less than one eighth of
the particles qualify, the state is a small spout. Between one eighth and one quarter is a
large spout, and anything more is a chaotic state ignored by this portion of the analysis
code.

181 xr = numpy.sqrt(pow(x[:,:,0],2) + pow(x[:,:,1],2))

182 vz = x[1::,:,2] - x[0:-1,:,2]

183 z_avg = numpy.sum(x[:,:,2], axis=1)/n

184 vz_avg = z_avg[1::] - z_avg[0:-1]

185

186 xr_mat = numpy.where(xr <= 3.0*R/4.0, 1, 0)

187 vz_mat = numpy.where(vz.T - vz_avg >= r/100.0, 1, 0)

188

189 sum_over_n = numpy.sum(xr_mat[:-1,:] * vz_mat.T, axis=1)

190

191 # Look for 1/8 of particles in the air (small spout)

192 binary_over_n1 = numpy.where(((sum_over_n >= avg_n)&(sum_over_n < n/8)), 1, 0)

193

194 # Look for 1.4 of particles in air (large spout)

195 binary_over_n2 = numpy.where(((sum_over_n >= avg_n)&(sum_over_n < n/4)), 1, 0)
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4 ANALYSIS

The final goal of these simulations is to produce phase plots mapping different behaviors
to the size and speed variables. The final phase plots presented Fig. 13 and the follow-
ing sections are created by having the analysis routines assign each type of behavior a
value, mapping those values to colors, and plotting the resulting colored regions in the
corresponding space of force versus particle size relative to tank size.

(a) Linearly-dependent. (b) Quadratically-dependent.

Figure 13: Primary theoretical phase plots.

Upon visual inspection, the phase borders in Fig. 13 seem to follow fairly well-behaved
curves, and in section 4.1 we present a physical rationale that we believe explains one
of these borders. Further exploration of these phase borders had to be left for future
research again due to time constraints.

30



Figure 14: Incomplete realistic parameter drag force phase plot.
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4.0.1 Realistic Parameter Conversion

While the third iteration of the simulation is important because of both its relation to
properly-scaled parameters and the fact that it was the only version that included both
linear and quadratic terms in the drag force, it becomes apparent when comparing the
phase plots (Fig. 14) that the realistic system is far less cleanly resolved. Indeed, Fig. 14
can hardly be called a phase plot at all, since far too few of the simulations reached a
classifiable state. The shapes are roughly the same, but the borders are fuzzy and most
simulations with values of r/R greater than 0.10 are showing a garbled mess of various
states and unresolved simulations. Since the basic structure of the simulations remained
unchanged, we have to conclude that this is due to the changes in the flow force, and
specifically the change to a realistic air medium. Previously the density of the fluid was
set to what was apparently a relatively high value. The realistic version now has much
smaller cross-sections for air resistance (though relatively the same, of course) and the
air itself has a much smaller effect on particle behavior. Where originally particles were
able to very quickly reach a terminal velocity that was near that of the fluid, they now
accelerate to terminal velocity much more slowly.

For comparison, Fig. 15 shows simulation energies for six example simulations. Only
half of these seem to reach a steady state; the other three show exponential gain in kinetic
energy to varying degrees. This means that more than likely most of the points in the
phase diagram that show as a classifiable state are in fact not at any kind of equilibrium.
What is probably happening is that the energy gain is low enough that it falls within
the tolerances for what the classification scripts look for as “constant energy,” and they
are being classified based on their behavior at that time. Given more time, many of the
simulation points in the phase plot will probably change type as their energy increases
and their behavior shifts as a result.

Another place this difference is visible is in how long the simulations take to settle
into a steady state, as shown in Fig. 16. In the linear and quadratic flow models, large
particles settle quickly and smaller ones tend to bounce around much longer before reach-
ing equilibrium. In the new simulations due to the slow acceleration, larger particles with
their greater mass take longer to settle, continuing to gain speed long after the smaller
ones have calmed.

4.1 Fluid Dynamics Approach

For now, let us constrain our analysis to the first two simulation methods because of
their much more stable behavior. We can derive the surface geometry of a rotating fluid
fairly simply starting from the equation of motion for a small volume of fluid within a
larger fluid mass, as given by Marshall and Plumb [10].

32



(a) r = 2mm, Ω = 30ms−1 (b) r = 2mm, Ω = 90s−1

(c) r = 2mm, Ω = 150s−1 (d) r = 6mm, Ω = 30s−1

(e) r = 6mm, Ω = 90s−1 (f) r = 6mm, Ω = 150s−1

Figure 15: Sample realistic parameter drag force simulation energy plots for various values of
r and Ω.
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(a) Linearly-dependent settle time (b) Quadratically-dependent settle time

(c) Realistic parameter settle time

Figure 16: Settle times for three flow models.
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D~v

Dt
+

1

ρ
∇p+∇φ = Fext (32)

φinertial = gxz (33)

Here, ~v is the vector velocity of the fluid volume, ρ is its density, p is the pressure
acting on it, φ is the potential (such as gravity), and Fext is any external force acting on
the fluid. Of course, our fluid simulation is rotating. The centripetal acceleration in a
reference frame rotating with the fluid at rotational velocity ~Ω is

~acentripetal = −~Ω× ~Ω× ~xr = ∇Ω2x2
r

2
(34)

If the fluid is in solid-body rotation (it appears to be still when viewed from its
rotating reference frame) then ~v and Fext are both zero. In the rotating reference frame,
the potential is no longer only that due to gravity, but now includes the centripetal force
from before. This can be thought of as a sort of effective gravity in the rotating frame.

φrotating = gxz −
Ω2x2

r

2
(35)

In this case, ~Ω is the rotational velocity of the mass of particles inside the tank. If
the simulation is at equilibrium and the particles have reached terminal velocity, then
this ~Ω is also the rotational speed of the vortex flow itself. We are assuming that this is
indeed the case and that the two angular velocities are one and the same.
This leads us to the equation of motion for our rotating fluid in the rotating reference
frame

D~v

Dt
+

1

ρ
∇p+∇

(
gxz −

Ω2x2
r

2

)
= Fext (36)

1

ρ
∇p+∇

(
gxz −

Ω2x2
r

2

)
= 0 (37)

Now consider the surface of our rotating fluid. For Eq. 37 to hold,

p

ρ
+ gxz −

Ω2x2
r

2
= constant (38)

and at the surface there is no pressure, which only leaves

gxz −
Ω2x2

r

2
= constant (39)

Now simply solve for xz to get the shape of the surface.
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Figure 17: Downward force due to gravity and particle interactions cause the paraboloidal
arrangement to relax into a lower energy state.

xz(xr) = xz(0) +
Ω2x2

r

2g
(40)

In this case, xz(0) is the height of the fluid surface at xr = 0. This is quite clearly a
parabola.

The paraboloid structure of a spinning particle simulation tends to relax into a lower
energy state due to a combination of the gravitational force and particle interactions.
Gravity pulls particles downward, and due to the arrangement, the net force on a particle
in contact with other particles in a sloped arrangement tends to be “downhill” toward
the center of the simulation tank, as shown in Fig. 17. In this way the downward force
due to gravity nets an inward restorative force causing the simulation to flatten out.

4.1.1 Critical Rotation

The most interesting behavior in our simulations tends to occur when the parabolic
cross-section of the simulation dips down to the bottom of the collection of particles.
We can solve for this condition as a function of rotational velocity and particle size by
integrating Eq. 40 to find the total volume in the parabola. We know the simulation has
dipped sufficiently in the center when this volume is roughly equal to the entire volume
of particles in the simulation.
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Figure 18: Parabolic cross-section of a simulation.

Vp =

∫ 2π

0

∫ R

0

Ω2x2
r

2g
xr dxrdθ =

πΩ2R4

4g
(41)

V0 ≈
n∑
i=1

Vi
4

3
π =

n∑
i=1

4

3
πr3

i

3
√

2

π
= n4r3

i

√
2 (42)

Here xr is the radial coordinate of the simulation, R is the radius of the tank, and
Vi and ri are the volume and radius of particle i. We are also estimating V0 as the sum
of all the individual particle volumes multiplied by a packing fraction for close-packed
spheres.

If we set Eqs. 41 and 42 equal to each other and solve for Ω we find the critical
rotation speed at which the parabola touches the bottom of the particle collection,

Ωc =
2

R2

√
V0g

π
=

4

R2

√√
2

π
nr3

i g (43)

Since this condition is what separates the fluid state from the pinned state, and we
believe the spout state to occur below this division, this contour, (Fig. 19), should be the
primary feature of our phase plots. Comparing to Fig. 13 we see that this does indeed
match except for simulations with low rotational velocities. This can be explained by
remembering that we are modeling these simulations as fluids when they are in fact not.
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(a) Linearly-dependent. (b) Quadratically-dependent.

Figure 19: Critical rotational velocities as a function of particle radius.

For low rotational velocities there simply is not enough energy in the rotation to break the
settled particle arrangement apart. An energy barrier exists due to the “lumpiness” of
the medium; static friction holds the particles together and does not allow any parabolic
structure to emerge. As we increase the speed the fluid approximation becomes more
valid, and the quadratically-dependent version’s weaker dependence on radius can be
seen in the way its phase plot requires more energy to overcome that initial static clump.

4.1.2 Upward Force

We’ve shown that there is a critical rotation speed at which the simulation parabola
contacts the bottom of the particle mass. We must now find an explanation for where in
the phase plots we find the spout state.

The spout state is a vertical phenomenon, and is therefore simply a result of the sum
of vertical forces on a particle for a given set of parameters. These vertical forces are as
follows.

F (stack)
z ∝ AiΩ

2αne−βxz,i = πr2
iΩ

2αne−βxz,i (44)
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Figure 20: Diagram of the vertical forces on a particle that has just entered the single-layer
thin zone in the center of the tank.

F (grav)
z ∝ mig = Viρig =

4

3
πr3

i ρig (45)

If we only consider the net force on the bottom layer of particles (as would be appro-
priate in the region below the critical rotation speed discussed in the previous section)
we see that the total vertical force on a particle that has just entered the single-layer thin
zone in the center of the tank as shown in Fig. 20 is

F (net)
z ∝ πr2

iΩ
2e−βxz,i − 4

3
πr3

i ρig (46)

As shown in Fig. 21, for a given value of Ω the net vertical force rises at first as the
term dependent on cross-sectional area (r2) is greater, then falls as the volume term (r3)
catches up. This means that at a particular rotational velocity, beyond a certain size
particles become simply too heavy to be lifted by the stacking force at all. We believe
that this and the fact that at larger particle sizes the tank becomes too full to reach Ωc

effectively explain why larger particles exhibit much less vertical motion. This leaves the
spout state exclusively in the lower regions of the r/R scale.

39



Figure 21: Net vertical force on a particle that has just entered the single-layer thin zone in
the center of the tank as a function of radius for three rotational velocities.
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5 CONCLUSION

As initially planned, we’ve built a macroscopic particle simulation with interparticle
collisions, particle spin, viscous friction, and vortex airflow and classified its behavior
as the parameters of particle radius and flow force were varied. The resulting phase
plot shows boundaries that correlate with what our mathematical models predict, and
interesting behaviors we did not expect. For low particle size and moderate force, the
system enters a spout-like state, propelling a few particles at a time upward from the
center. For large particle size the system has very little interparticle motion, with the
spheres mostly locking together forming what we called the fluid state. For higher speeds,
the particles are flung outward and held against the walls in the pinned state. Lastly in
the region where the borders between fluid and spout overlap we have a convective flat
state where the spout pushes particles upward just enough to fill in the parabola created
by the fluid state, and the particles circulate throughout the tank.

Inspection and comparison to the well-known dynamics of a rotating fluid show state
boundaries closely following the critical angular velocity Ωc at which the fluid parabola
dips to contact the bottom of the particle mass. In both cases, the difference between
border and curve at low rotational velocities is explained by the frictional energy barrier
caused by particle “lumpiness” that is inherent to granular media and not present in
actual fluids.

Though the motivation behind this work is purely academic, the crafting of a complex
system and study of its interesting behaviors, in terms of useful applications we believe
that these simulations shed light on both behaviors that may require avoidance as well
as desirable behaviors in the many and varied industries where granular materials are
present. For example, if what was explored here holds true, convection corresponding
to our flat region can be achieved at low rotational speeds and low vertical forces for
particles larger than 0.04 mm or 6% the size of the tank. The high-speed pinning and
low-speed parabolas are no surprise, but the fountaining behavior we discovered outside
the flat region and below the pinned could be used to enhance convection, or avoided
lest it cause problems with machinery. On the other hand, this behavior may find its
way into more novel applications, such as next-generation lottery machines, or be used
as a curiosity or for purely aesthetic displays, with particle fountains becoming sandy
counterparts to today’s water fountains.
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7 APPENDIX

7.1 Control

This is the control script which supplies parameters to the main simulation.

1 #!/usr/bin/env python

2

3 import numpy

4 import Vortex_0_48_11 as simfile

5

6 # Settings

7 #i = 50000

8 i = 50000

9 n = 256

10

11 # Density

12 p = numpy.array((10000.0))

13

14 # Radii

15 #r = numpy.array((0.20, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29,

16 # 0.30, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39,

17 # 0.40, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49,

18 # 0.50, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59,

19 # 0.60))

20

21 r = numpy.array((0.0020, 0.0030, 0.0040, 0.0050, 0.006,

22 0.0025, 0.0035, 0.0045, 0.0055))

23

24 # Flow velocities

25 #f = numpy.array((00.0, 01.0, 02.0, 03.0, 04.0, 05.0, 06.0, 07.0, 08.0, 09.0,

26 # 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0,

27 # 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0,

28 # 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0, 37.0, 38.0, 39.0,

29 # 40.0))

30

31 W = numpy.array((000.0, 050.0, 100.0, 150.0, 200.0,

32 025.0, 075.0, 125.0, 175.0))

33

34 # Run simulation

35 simfile.pprun(i,n,r,p,W)
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7.2 Vortex 1.48.12

This is the main simulation script.

1 #!/usr/bin/env python

2

3 ## Python Particle Vortex Simulation

4 import numpy, numpy.random, math, os, sys, time, pp

5

6 def cyl_to_cart (array):

7 r = array[0]

8 theta = array[1]

9 z = array[2]

10 x = r * math.cos(theta)

11 y = r * math.sin(theta)

12 z = z

13 return numpy.array([x, y, z])

14

15 def group_dot (a,b):

16 # Take the dot product of 2n vectors in two n x 3 arrays.

17 c = numpy.sum(a * b, axis=1)

18 return c

19

20 def test_nan (f):

21 # Tests array for NaN values and reports error

22 b_flag = 0

23 test = numpy.isnan(f)

24 if test.any() == 1:

25 print(’NaN error’)

26 b_flag = 1

27 return b_flag

28

29 def particles (i,n,r1,rho,tank,dt):

30 # Generate n random particles

31 x = numpy.ones ((i,n,3))

32 v = numpy.zeros ((n,3))

33 w = numpy.zeros ((n,3))

34 I = numpy.zeros ((n,3))

35 r = numpy.zeros ((n))

36 m = numpy.zeros ((n))

37 E = numpy.zeros ((i,n,3))

38 V = numpy.zeros ((i,n,3))

39

40 # Scale (0,1) random value generators to tank size

41 scale = tank[0], tank[0], tank[2]

42

43 j = 0

44 count = 0
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45 retry = 0

46 while j < n:

47

48 # Generate a random position

49 position = numpy.random.rand(3) * 2.0 * scale - [tank[0], tank[0], tank[2]/2]

50 count+=1

51 xradial = numpy.sqrt(pow(position[0],2)+pow(position[1],2))

52

53 # Test for tank fit and particle overlap

54 if xradial < (tank[0] - r1):

55 distance = numpy.sqrt(pow(position[0] - x[0,:,0], 2) +

56 pow(position[1] - x[0,:,1], 2) +

57 pow(position[2] - x[0,:,2], 2))

58 if numpy.all(distance > 2.0 * r1):

59 x[0,j,:] = position

60 j+=1

61 count = 0

62

63 # If all particles cannot be placed, start over and try again

64 if count > 10000:

65 if retry < 5:

66 x = numpy.ones ((i,n,3))

67 j = 0

68 count = 0

69 retry +=1

70 else:

71 print ’Retry limit’

72 sys.exit(1)

73

74 # Generate other attributes

75 for i in xrange (0, n):

76 v[i] = numpy.random.rand(3) - 0.5

77 w[i] = numpy.random.rand(3) - 0.5

78 m[i] = 4/3 * rho * math.pi * pow(r1,3)

79 r[i] = r1

80 I_sph = (0.4) * m[i] * pow(r[i], 2)

81 I[i] = ([I_sph, I_sph, I_sph])

82

83 return x, v, w, m, r, I, E, V

84

85 def manual (i,n,r1,rho):

86 # Manual particle placement for testing

87 x = numpy.ones ((i,n,3))

88 v = numpy.zeros ((n,3))

89 w = numpy.zeros ((n,3))

90 I = numpy.zeros ((n,3))

91 r = numpy.zeros ((n))

92 m = numpy.zeros ((n))
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93 E = numpy.zeros ((i,n,3))

94 V = numpy.zeros ((i,n,3))

95

96 # Test Configurations

97 # Direct impact, no spin

98 x[0,0,:] = ([-0.02, 0.0, -0.1])

99 v[0] = ([1.0, 0.0, 0.0])

100 w[0] = ([0.0, 0.0, 0.0])

101 r[0] = r1

102 m[0] = 4/3 * rho * math.pi * pow(r1,3)

103 I_sph = (0.4) * m[0] * pow(r[0], 2)

104 I[0] = ([I_sph, I_sph, I_sph])

105

106 x[0,1,:] = ([0.02, 0.0, -0.1])

107 v[1] = ([-1.0, 0.0, 0.0])

108 w[1] = ([0.0, 0.0, 0.0])

109 r[1] = r1

110 m[1] = 4/3 * rho * math.pi * pow(r1,3)

111 I_sph = (0.4) * m[1] * pow(r[1], 2)

112 I[1] = ([I_sph, I_sph, I_sph])

113

114 # Direct impact, counter spin

115 x[0,2,:] = ([0.0, -0.02, -0.08])

116 v[2] = ([0.0, 1.0, 0.0])

117 w[2] = ([0.0, 0.0, -1000.0])

118 r[2] = r1

119 m[2] = 4/3 * rho * math.pi * pow(r1,3)

120 I_sph = (0.4) * m[2] * pow(r[2], 2)

121 I[2] = ([I_sph, I_sph, I_sph])

122

123 x[0,3,:] = ([0.0, 0.02, -0.08])

124 v[3] = ([0.0, -1.0, 0.0])

125 w[3] = ([0.0, 0.0, 1000.0])

126 r[3] = r1

127 m[3] = 4/3 * rho * math.pi * pow(r1,3)

128 I_sph = (0.4) * m[3] * pow(r[3], 2)

129 I[3] = ([I_sph, I_sph, I_sph])

130

131 # Direct impact, aligned spin

132 x[0,4,:] = ([-0.02, -0.02, -0.06])

133 v[4] = ([1.0, 1.0, 0.0])

134 w[4] = ([0.0, 0.0, 1000.0])

135 r[4] = r1

136 m[4] = 4/3 * rho * math.pi * pow(r1,3)

137 I_sph = (0.4) * m[4] * pow(r[4], 2)

138 I[4] = ([I_sph, I_sph, I_sph])

139

140 x[0,5,:] = ([0.02, 0.02, -0.06])
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141 v[5] = ([-1.0, -1.0, 0.0])

142 w[5] = ([0.0, 0.0, 1000.0])

143 r[5] = r1

144 m[5] = 4/3 * rho * math.pi * pow(r1,3)

145 I_sph = (0.4) * m[5] * pow(r[5], 2)

146 I[5] = ([I_sph, I_sph, I_sph])

147

148 # Glancing blow, no spin

149 x[0,6,:] = ([-0.02, -0.005, -0.04])

150 v[6] = ([1.0, 0.0, 0.0])

151 w[6] = ([0.0, 0.0, 0.0])

152 r[6] = r1

153 m[6] = 4/3 * rho * math.pi * pow(r1,3)

154 I_sph = (0.4) * m[6] * pow(r[6], 2)

155 I[6] = ([I_sph, I_sph, I_sph])

156

157 x[0,7,:] = ([0.02, 0.005, -0.04])

158 v[7] = ([-1.0, 0.0, 0.0])

159 w[7] = ([0.0, 0.0, 0.0])

160 r[7] = r1

161 m[7] = 4/3 * rho * math.pi * pow(r1,3)

162 I_sph = (0.4) * m[7] * pow(r[7], 2)

163 I[7] = ([I_sph, I_sph, I_sph])

164

165 # Wall impact, no spin

166 x[0,8,:] = ([-0.04, 0.0, -0.02])

167 v[8] = ([-1.0, 0.0, 0.0])

168 w[8] = ([0.0, 0.0, 0.0])

169 r[8] = r1

170 m[8] = 4/3 * rho * math.pi * pow(r1,3)

171 I_sph = (0.4) * m[8] * pow(r[8], 2)

172 I[8] = ([I_sph, I_sph, I_sph])

173

174 x[0,9,:] = ([0.04, 0.0, -0.02])

175 v[9] = ([1.0, 0.0, 0.0])

176 w[9] = ([0.0, 0.0, 0.0])

177 r[9] = r1

178 m[9] = 4/3 * rho * math.pi * pow(r1,3)

179 I_sph = (0.4) * m[9] * pow(r[9], 2)

180 I[9] = ([I_sph, I_sph, I_sph])

181

182 # Wall impact, spin

183 x[0,10,:] = ([0.0, -0.04, 0.0])

184 v[10] = ([0.0, -1.0, 0.0])

185 w[10] = ([0.0, 0.0, 1000.0])

186 r[10] = r1

187 m[10] = 4/3 * rho * math.pi * pow(r1,3)

188 I_sph = (0.4) * m[10] * pow(r[10], 2)
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189 I[10] = ([I_sph, I_sph, I_sph])

190

191 x[0,11,:] = ([0.0, 0.04, 0.0])

192 v[11] = ([0.0, 1.0, 0.0])

193 w[11] = ([0.0, 0.0, 1000.0])

194 r[11] = r1

195 m[11] = 4/3 * rho * math.pi * pow(r1,3)

196 I_sph = (0.4) * m[11] * pow(r[11], 2)

197 I[11] = ([I_sph, I_sph, I_sph])

198

199 # Wall impact, offset

200 x[0,12,:] = ([0.02, 0.04, 0.02])

201 v[12] = ([1.0, 0.0, 0.0])

202 w[12] = ([0.0, 0.0, 0.0])

203 r[12] = r1

204 m[12] = 4/3 * rho * math.pi * pow(r1,3)

205 I_sph = (0.4) * m[12] * pow(r[12], 2)

206 I[12] = ([I_sph, I_sph, I_sph])

207

208

209 return x, v, w, m, r, I, E, V

210

211 def interact_pp (i,n,x,w,v,r,r_m,m_m,I,Y,nu,A,mu,dt,xi_old):

212 # Particle-particle collisions

213

214 # Permutation matrices for add/sub

215 xx1, xx2 = numpy.ix_(x[i,:,0], x[i,:,0])

216 xy1, xy2 = numpy.ix_(x[i,:,1], x[i,:,1])

217 xz1, xz2 = numpy.ix_(x[i,:,2], x[i,:,2])

218 xr1, xr2 = numpy.ix_(r,r)

219

220 # Distance matrix

221 dist = numpy.sqrt(pow(xx1 - xx2, 2) + pow(xy1 - xy2, 2) + pow(xz1 - xz2, 2))

222 dist = numpy.where(dist == 0, 1e-6, dist)

223

224 # Overlap factor (>0 means collision)

225 xi = xr1 + xr2 - dist

226 xi = numpy.where(xi > 0, xi, 0)

227 diag_zero = numpy.ones((n,n)) - numpy.diag((1,)*n)

228 xi = xi * diag_zero

229

230 # Normal vector matrix

231 nhat = numpy.array([(xx1 - xx2),(xy1 - xy2),(xz1 - xz2)] / dist)

232 nhat_sign = numpy.where(nhat == 0, 0, numpy.sign(nhat))

233

234 # Damping factor

235 d_xi = (xi - xi_old) / dt

236 damp = (pow(xi, 1.5) + A * numpy.sqrt(xi) * d_xi)
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237 damp = numpy.where(damp < 0.0, 0.0, damp)

238

239 # Effective radius

240 reff = 1.0 / (1.0 / xr1 + 1.0 / xr2)

241

242 # Scalar normal force matrix

243 fn = (2.0 * Y * numpy.sqrt(2.0 * reff)) / (3.0 * (1.0 -

244 pow(nu, 2))) * damp

245

246 # Matrix to remove values for non-interacting particles

247 collide = numpy.where(fn == 0, 0, 1)

248

249 # Rotational Component

250 wx1, wx2 = numpy.ix_(w[:,0], w[:,0])

251 wy1, wy2 = numpy.ix_(w[:,1], w[:,1])

252 wz1, wz2 = numpy.ix_(w[:,2], w[:,2])

253

254 vx1, vx2 = numpy.ix_(v[:,0], v[:,0])

255 vy1, vy2 = numpy.ix_(v[:,1], v[:,1])

256 vz1, vz2 = numpy.ix_(v[:,2], v[:,2])

257

258 # Delta-w and delta-v matrces

259 dw_m = numpy.array([(wx1+wx2),(wy1+wy2),(wz1+wz2)])

260 dw_m = (dw_m*collide)

261 dv_m = numpy.array([(vx1-vx2),(vy1-vy2),(vz1-vz2)])

262 dv_m = (dv_m*collide).T

263 dw_m2 = dw_m - abs(nhat)*dw_m

264

265 # Surface speed

266 dv_s = numpy.cross(dw_m.T, nhat.T) * r_m

267 dv_s = (dv_s.T*collide).T

268

269 # Torque from spin-contact

270 tau1 = numpy.sum(mu * (-dw_m2.T * I) / dt, axis=1)

271

272 # Normal force due to collision

273 fn1 = -numpy.sum(fn * nhat, axis=1)

274

275 # Tangential force due to spin

276 ft1 = numpy.sum(mu * (-dv_s * m_m) / dt, axis=1)

277

278 xi_old = xi

279

280 return fn1 + ft1.T, tau1.T, xi_old

281

282 def interact_r (i,n,x,w,v,r,r_m,m_m,I,Y,nu,A,mu,dt,xi_old,tank):

283 # Particle-wall collisions in r

284
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285 # Distance matrix

286 dist = numpy.sqrt(numpy.sum(pow(x[i,:, 0:2], 2), axis=1))

287

288 # Overlap factor (>0 means collision)

289 xi = r - (tank[0] - dist)

290 xi = numpy.where(xi > 0, xi, 0)

291

292 # Normal vector matrix

293 normfactor = numpy.sqrt(numpy.sum(pow(x[i], 2), axis=1))

294 normfactor = numpy.where(normfactor == 0, 1e-6, normfactor)

295 nhat = (-x[i,:, 0], -x[i,:, 1], [0.0] * n) / normfactor

296

297 # Damping factor

298 d_xi = (xi - xi_old) / dt

299 damp = (pow(xi, 1.5) + A * numpy.sqrt(xi) * d_xi)

300 damp = numpy.where(damp < 0.0, 0.0, damp)

301

302 # Scalar normal force array

303 fn = (2.0 * Y * numpy.sqrt(2.0 * r)) / (3.0 * (1.0 -

304 pow(nu, 2))) * damp

305

306 # Matrix to remove values for non-interacting particles

307 collide = numpy.where(fn == 0, 0, 1)

308

309 # Surface speeds

310 dv_s = numpy.cross(w, nhat.T) * r_m

311 dv_s = (dv_s.T*collide).T

312 dw = (w - abs(nhat.T) * w).T * collide

313

314 # Torque from spin-contact

315 tau1 = mu * -dw.T * I / dt

316

317 # Normal force due to collision

318 fn1 = fn * nhat

319

320 # Tangential force due to spin

321 ft1 = mu * dv_s * m_m / dt

322

323 xi_old = xi

324

325 return fn1 + ft1.T, tau1.T, xi_old

326

327 def interact_z (i,n,x,w,v,r,r_m,m_m,I,Y,nu,A,mu,dt,xi_old,tank):

328 # Particle-wall collisions in z

329

330 # Overlap factor (>0 means collision)

331 xi = r + (-x[i,:,2] - tank[2])

332 xi = numpy.where(xi > 0, xi, 0)
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333

334 # Normal vectors

335 nhat = numpy.zeros ((3, n))

336 nhat[2, :] = numpy.ones(n)

337

338 # Damping factor

339 d_xi = (xi - xi_old) / dt

340 damp = (pow(xi, 1.5) + A * numpy.sqrt(xi) * d_xi)

341 damp = numpy.where(damp < 0.0, 0.0, damp)

342

343 # Scalar normal force array

344 fn = (2.0 * Y * numpy.sqrt(2.0 * r)) / (3.0 * (1.0 -

345 pow(nu, 2))) * damp

346

347 # Matrix to remove values for non-interacting particles

348 collide = numpy.where(fn == 0, 0, 1)

349

350 # Surface speeds

351 dv_s = numpy.cross(w, nhat.T) * r_m

352 dv_s = (dv_s.T*collide).T

353 dw = (w - abs(nhat.T) * w).T * collide

354

355 # Torque from spin-contact

356 tau1 = mu * -dw.T * I / dt

357

358 # Normal force due to collision

359 fn1 = fn * nhat

360

361 # Tangential force due to spin

362 ft1 = mu * dv_s * m_m / dt

363

364 xi_old = xi

365

366 return fn1 + ft1.T, tau1.T, xi_old

367

368 def flow_xi (xi):

369 # Contact-based flow force

370 fz = numpy.sum(xi,axis=0)

371

372 return fz

373

374 def flow_rect (i,x,v,r,alpha,c1,c2,tank):

375 # Rectangular counting flow force

376 xx1, xx2 = numpy.ix_(x[i,:,0], x[i,:,0])

377 xy1, xy2 = numpy.ix_(x[i,:,1], x[i,:,1])

378 xz1, xz2 = numpy.ix_(x[i,:,2], x[i,:,2])

379

380 # Box footprint of particle
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381 dx = numpy.abs(xx1 - xx2)

382 dy = numpy.abs(xy1 - xy2)

383 dz = (xz1 - xz2)

384

385 rect_zx = numpy.where(dx < 2.0*r, 1, 0)

386 rect_zy = numpy.where(dy < 2.0*r, 1, 0)

387

388 fzx = numpy.where(dz < 0, rect_zx, 0)

389 fzy = numpy.where(dz < 0, rect_zy, 0)

390

391 # Scales by alpha for every particle in dx x dy x dz

392 v_flow = 8.0

393 fz = (-c1*(v[:,2] - v_flow).T - c2*((v[:,2] - v_flow)*abs(v[:,2] - v_flow)).T)

394 fz *= pow(alpha, numpy.sum((fzx * fzy), axis = 0))

395

396 return fz

397

398 def flow_tan_phys (x,v,m,W,c1,c2,tank,dt):

399 # Tangential airflow

400 v_flow = numpy.zeros(numpy.shape(v))

401 v_flow[:,0] = W * x[:, 1]

402 v_flow[:,1] = -W * x[:, 0]

403

404 f_flow = (-c1*(v-v_flow).T - c2*((v-v_flow)*abs(v-v_flow)).T)

405

406 return f_flow

407

408 def dirscan ():

409 # Scans directory for .npy files

410 directory = os.getcwd()

411 files = os.listdir(directory)

412 npys = []

413

414 for i in xrange (0,len(files)):

415 if files[i][len(files[i])-4:len(files[i])] == ’.npy’:

416 npys.append(files[i])

417

418 return npys

419

420 def runsim (i_max,n,r1,rho,W,dump_name):

421 # Main simulation

422 npys = dirscan()

423

424 # Avoid overwriting completed simulations

425 if dump_name not in npys:

426 #if 1:

427

428 # Manual Settings
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429 dt = 0.0001 # Timestep

430 Y = 2e5 # Young’s modulus

431 nu = 0.3 # Poisson ratio

432 A = 0.001 # Normal dissipative constant

433 mu = 0.01 # Spin friction coefficient

434 ag = 9.8 # Acceleration due to gravity

435 alpha = 0.5 # Multiplier for flow force

436 c1 = 1.55e-4 * 2*r1 # Linear drag constant

437 c2 = 0.22 * pow(2*r1,2) # Quadratic drag constant

438 step = 10 # Output step

439

440 # Cylinder dimensions with (0,0,0) at center

441 tank = numpy.array([0.06, 2.0*math.pi, 0.20])

442

443 # Particle Placement

444 x, v, w, m, r, I, E, V = particles (i_max,n,r1,rho,tank,dt)

445 #x, v, w, m, r, I, E, V = manual (i_max,n,r1,rho)

446

447 # Array Initialization

448 f = numpy.zeros ((3,n))

449 xi_p = numpy.zeros ((n,n))

450 xi_r = numpy.zeros ((n))

451 xi_z = numpy.zeros ((n))

452 m_m = numpy.array([m,m,m]).T

453 r_m = numpy.array([r,r,r]).T

454

455 # Main Loop

456 for dt1 in xrange (1, i_max):

457

458 # Zero arrays

459 tau = numpy.zeros ((3, n))

460 f = numpy.zeros ((3, n))

461

462 # Interactions

463 fp, taup, xi_p = interact_pp (dt1-1,n,x,w,v,r,r_m,m_m,I,Y,nu,A,mu,dt,xi_p)

464 fr, taur, xi_r = interact_r (dt1-1,n,x,w,v,r,r_m,m_m,I,Y,nu,A,mu,dt,xi_r,tank)

465 fz, tauz, xi_z = interact_z (dt1-1,n,x,w,v,r,r_m,m_m,I,Y,nu,A,mu,dt,xi_z,tank)

466

467 # Set for this step

468 f += fp + fr + fz

469 tau += taup + taur + tauz

470

471 # Flow forces

472 beta2 = 25.0 # 50.0

473 ffz = numpy.exp(-beta2 * (x[dt1-1,:,2] + (tank[2]/1.5)))

474 f_stack = 100.0 * ffz * flow_rect(dt1-1,x,v,r,alpha,c1,c2,tank)

475 f_xi = 10.0 * ffz * flow_xi(xi_p)

476
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477 f[2, :] += (-ag*m) + f_stack + f_xi

478 f += flow_tan_phys(x[dt1-1],v,m,W,c1,c2,tank,dt)

479

480 # Calculate new velocities

481 v[:,0] += f.T[:,0] * dt / m

482 v[:,1] += f.T[:,1] * dt / m

483 v[:,2] += f.T[:,2] * dt / m

484

485 # Apply movements

486 x[dt1] = x[dt1-1] + (v * dt)

487 w += tau.T / I * dt

488

489 # Viscous rotational friction

490 w += -(6e-8 * w.T).T / I * dt

491

492 # Energies

493 E_tns = numpy.sum(0.5 * numpy.array((m,m,m)).T * pow(v,2),axis=1)

494 E_rot = numpy.sum(0.5 * I * pow(w,2),axis=1)

495 E_pot = ag*m * x[dt1,:,2] - group_dot(f.T,x[dt1]-x[dt1-1])

496

497 E[dt1,:,0] = E_tns

498 E[dt1,:,1] = E_rot

499 E[dt1,:,2] = E_pot

500

501 # Safety checks

502 b_flag = test_nan(f)

503 if b_flag == 1:

504 break

505

506 test_x = abs(x[dt1,:,0]) > 2*tank[0]

507 test_y = abs(x[dt1,:,1]) > 2*tank[0]

508 test_z = abs(x[dt1,:,2]) > 10*tank[2]

509 if (test_x.any() or test_y.any() or test_z.any()):

510 print(’Atom out of bounds at step ’ + str(dt1))

511 break

512

513 # Stepped output array

514 x_out = numpy.zeros((i_max/step, n, 4))

515 x_out[:,:,0:3] = x[::step]

516 x_out[:,:,3] = numpy.sum(E[::step],2)

517

518 # Write dump file

519 numpy.save(dump_name[0:-4],x_out)

520

521 print dump_name

522 return dump_name

523

524 def pprun (i,n,r,p,W):
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525 # Create job server

526 ppservers = ()

527 ncpus = 20

528 job_server = pp.Server(ncpus, ppservers=ppservers)

529

530 print ’Starting pp with’, ncpus, ’workers’

531 print ’---’

532 print ’i ’, i

533 print ’n ’, n

534

535 nr = numpy.size(r)

536 if nr == 1:

537 r = numpy.array((r,0.0))

538 np = numpy.size(p)

539 if np == 1:

540 p = numpy.array((p,0.0))

541 nW = numpy.size(W)

542 if nW == 1:

543 W = numpy.array((W,0.0))

544

545 print ’Detecting’, (nr*np*nW), ’jobs’

546 print ’Working...’

547

548 # Main parallel job command

549 jobs = [(job_server.submit(runsim,

550 (i, n, r[j], p[k], W[l], (’dump_r’ + str(r[j]).zfill(6) + ’_p’ +

551 str(p[k]).zfill(7) + ’_f’ + str(W[l]).zfill(5) + ’.npy’),),

552 (cyl_to_cart, group_dot, test_nan, particles, manual, interact_pp,

553 interact_r, interact_z, flow_xi, flow_rect, flow_tan_phys, dirscan),

554 ("numpy", "math", "os", "sys", "time",)))

555 for j in xrange (0, nr) for k in xrange (0, np) for l in xrange (0, nW)]

556

557 job_server.wait()

558 job_server.print_stats()

559

560 # Serial Command Single

561 # runsim(i, n, r[0], p[0], W[0], (’dump_r’ + str(r[0]).zfill(6) +

562 # ’_p’ + str(p[0]).zfill(7) + ’_f’ + str(W[0]).zfill(5) + ’.npy’))

7.3 Analysis 1.09.01

This is the analysis program which loads dump files and classifies behaviors.

1 #!/usr/bin/env python

2

3 import numpy, os, math, sys, pp, time

4
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5 def dirscan ():

6 # Scan directory for .npy files

7 directory = os.getcwd()

8 files = os.listdir(directory)

9 dumps = []

10

11 for i in xrange (0,len(files)):

12 if files[i][len(files[i])-4:len(files[i])] == ’.npy’:

13 dumps.append(files[i])

14

15 if dumps == []:

16 print ’No dump files found’

17 sys.exit(1)

18 else:

19 print ’Detecting’,len(dumps),’dump files’

20 dumps = numpy.sort(dumps)

21

22 return dumps

23

24 def write_pplot (array, filename):

25 # Write the main plot file

26 file = open(filename,’w’)

27 for i in xrange (0, numpy.shape(array)[0]):

28 for j in xrange (0, numpy.shape(array)[1]):

29 file.write(str(array[i,j]) + ’, ’)

30 file.write(’\n’)

31 file.close()

32 return

33

34 def get_values (dump_name):

35 # Get simuation values from filename

36 values = numpy.zeros(3)

37

38 values[0] = dump_name[6:11]

39 values[1] = dump_name[13:20]

40 values[2] = dump_name[22:27]

41

42 return values

43

44 def settled (x,E,r,R):

45 # Determine settling point from which to start analysis

46 tolerance = 3e-5

47

48 # Hold criteria for avg_i timesteps

49 avg_i = 500

50 i_max = numpy.shape(x)[0]

51 n = numpy.shape(x)[1]

52 settle_i = i_max
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53 settle_yn = 0

54 check = numpy.zeros(avg_i)

55

56 # Check for out of bounds error (all coordinates go to [1,1,1])

57 aob = numpy.where(x[-1,:,:] == [1,1,1])

58 if numpy.sum(aob) < 2:

59

60 E1 = numpy.zeros((i_max+1))

61 E2 = numpy.zeros((i_max+1))

62

63 # Differences in energy across steps

64 E1[0:-1] = E

65 E2[1:] = E

66 DE = abs((E1-E2) / (1+E2))

67

68 maxes = numpy.where(x[:,:,2]>=0.20,1,0)

69 maxes = numpy.sum(maxes,axis=1)

70

71 for j in xrange (0,i_max-avg_i):

72 if numpy.sum(maxes[j:j+avg_i]) < 1:

73

74 # Look for small energy change

75 if numpy.average(DE[j:j+avg_i]) <= tolerance:

76 settle_yn = 1

77

78 # Start analyzing midway through avg_i timesteps

79 settle_i = j + (avg_i)/2

80 break

81

82 else:

83 settle_yn = -1

84 settle_i = -i_max

85 print ’Out of bounds’

86

87 return settle_yn, settle_i

88

89 def fluid (x,r,R,i_full):

90 # Look for fluid state

91 fluid_yn = 0

92 fluid_i = i_full

93

94 i_max = numpy.shape(x)[0]

95 n = numpy.shape(x)[1]

96

97 if i_max != 0:

98

99 # Hold criteria for avg_i timesteps

100 avg_i = 1500
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101 check_i = numpy.zeros(avg_i)

102 check = numpy.zeros(avg_i)

103

104 # Divide simulation into bins

105 bin_tot = int(round(R / (2.0 * r)))

106 bin_width = R / bin_tot

107

108 bins = numpy.zeros((bin_tot, i_max,n))

109 bin_n = numpy.zeros((bin_tot, i_max,n))

110

111 xr = numpy.sqrt(pow(x[:,:,0],2)+pow(x[:,:,1],2))

112

113 # Sort particles into bins

114 for j in xrange (0,bin_tot):

115 bins[j,:] = numpy.where((xr > bin_width*j) & (xr <= bin_width*(j+1)),

116 x[:,:,2]+100, 0)

117

118 # Find tops of bins

119 z_max = numpy.amax(bins,axis=2)

120

121 for i in xrange (0,i_max):

122 check_n = numpy.zeros(bin_tot-1)

123 for j in xrange (1,bin_tot):

124

125 # Look for rising bin height from center to wall

126 if z_max[j,i] - z_max[j-1,i] >= 0.1*r:

127 check_n[j-1] = 1

128

129 # Allow one bin to be out of order

130 if numpy.average(check_n) >= (bin_tot-2.0)/(bin_tot-1.0):

131 check_i[i%avg_i] = 1

132 else:

133 check_i[i%avg_i] = 0

134 if numpy.average(check_i) >= 0.9:

135 fluid_i = i + (i_full-i_max) - (avg_i/2.0)

136 fluid_yn = 1

137 break

138

139 return fluid_yn, fluid_i

140

141 def pinned (x,r,R,i_full):

142 # Look for pinned state

143 # Hold criteria for avg_i timesteps

144 avg_i = 2000

145 i_max = numpy.shape(x)[0]

146 n = numpy.shape(x)[1]

147 pinned_i = i_full

148 pinned_yn = 0
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149 check = numpy.zeros(avg_i)

150

151 xr = numpy.sqrt(pow(x[:,:,0],2)+pow(x[:,:,1],2))

152

153 for j in xrange (0,i_max):

154 r_min = numpy.amin(xr[j,:])

155

156 # Look for hole in center of tank

157 if R - r_min < R-2.0*r:

158 check[j%avg_i] = 1

159 if numpy.average(check) >= 0.5:

160 pinned_yn = 1

161 pinned_i = j + (i_full-i_max) - avg_i

162 break

163

164 return pinned_yn, pinned_i

165

166 def spout (x,r,R,i_full):

167 # Look for spout state

168 spout_yn = 0

169 spout_i = i_full

170

171 i_max = numpy.shape(x)[0]

172 n = numpy.shape(x)[1]

173

174 if i_max != 0:

175

176 # Find avg_n particles in the air at one time

177 avg_n = 5

178 # Hold criteria for avg_i timesteps

179 avg_i = 2000

180

181 xr = numpy.sqrt(pow(x[:,:,0],2) + pow(x[:,:,1],2))

182 vz = x[1::,:,2] - x[0:-1,:,2]

183 z_avg = numpy.sum(x[:,:,2], axis=1)/n

184 vz_avg = z_avg[1::] - z_avg[0:-1]

185

186 xr_mat = numpy.where(xr <= 3.0*R/4.0, 1, 0)

187 vz_mat = numpy.where(vz.T - vz_avg >= r/100.0, 1, 0)

188

189 sum_over_n = numpy.sum(xr_mat[:-1,:] * vz_mat.T, axis=1)

190

191 # Look for 1/8 of particles in the air (small spout)

192 binary_over_n1 = numpy.where(((sum_over_n >= avg_n)&(sum_over_n < n/8)), 1, 0)

193

194 # Look for 1.4 of particles in air (large spout)

195 binary_over_n2 = numpy.where(((sum_over_n >= avg_n)&(sum_over_n < n/4)), 1, 0)

196
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197 for i in xrange (0,i_max-avg_i):

198 if numpy.average(binary_over_n1[i:i+avg_i]) >= 1.0:

199 spout_i = i + (i_full-i_max)

200 spout_yn = 1

201 break

202 if numpy.average(binary_over_n2[i:i+avg_i]) >= 1.0:

203 spout_i = i + (i_full-i_max)

204 spout_yn = 2

205 break

206

207 return spout_yn, spout_i

208

209 def bounce (x):

210 # Find periods of bouncing simulations

211 z_avg = numpy.average(x[:,:,2],axis=1)

212

213 # Only look at the last 1000 steps

214 if len(z_avg) > 1000:

215 z_avg = z_avg - numpy.average(z_avg[-1000:-1])

216

217 # Look for sign change in height about average

218 sign_change = []

219 for i in xrange (1,len(z_avg)):

220 if numpy.sign(z_avg[i-1]) != numpy.sign(z_avg[i]):

221 sign_change = numpy.append(sign_change,i)

222

223 changes = len(sign_change)

224 if changes >= 4:

225 if changes%2 != 0:

226 sign_change = sign_change[0:-1]

227

228 sign_change.shape = (changes/2,2)

229 periods = numpy.zeros((changes/2-1,2))

230

231 for i in xrange (0,changes/2-1):

232 periods[i] = sign_change[i+1] - sign_change[i]

233

234 avg_period = numpy.average(periods)

235

236 else:

237 avg_period = -1

238

239 return avg_period

240

241 def analyze (dump):

242 # Main Analysis

243 tank = numpy.array([0.06, 2.0*math.pi, 0.2])

244 values = get_values(dump)
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245 x = numpy.load(dump)

246 i_full,n,d = numpy.shape(x)

247

248 # Separate out energy and position values

249 E = x[:,:,3]

250 x = x[:,:,0:3]

251

252 E_avg = numpy.average(E, axis=1)

253

254 # Apply filters

255 settle_yn, settle_i = settled(x,E_avg,values[0],tank[0])

256 if settle_yn > 0:

257 fluid_yn, fluid_i = fluid(x[settle_i:,:,:],values[0],tank[0],i_full)

258 pinned_yn, pinned_i = pinned(x[settle_i:,:,:],values[0],tank[0],i_full)

259 spout_yn, spout_i = spout(x[settle_i:,:,:],values[0],tank[0],i_full)

260 #period = bounce(x[settle_i:,:,:])

261

262 else:

263 fluid_yn = -1

264 fluid_i = -i_full

265 pinned_yn = -1

266 pinned_i = -i_full

267 spout_yn = -1

268 spout_i = -i_full

269 #period = -1

270

271 # Set final exclusive state

272 if spout_yn == 2:

273 final = 5

274 elif spout_yn == 1:

275 final = 4

276 elif pinned_yn == 1:

277 final = 3

278 elif fluid_yn == 1:

279 final = 2

280 elif settle_yn == 1:

281 final = 1

282 else:

283 final = 0

284

285 # Final values

286 out = (round(values[0]/0.006,4), round(values[2],4), settle_yn, settle_i,

287 fluid_yn, fluid_i, pinned_yn, pinned_i, spout_yn, spout_i, final)

288 print out

289 return out

290

291 # Settings

292 print ’Analyzing grid’
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293 dumps = dirscan()

294

295 pplot = numpy.zeros((len(dumps),11))

296

297 # Start job server

298 ppservers = ()

299 ncpus = 3

300 job_server = pp.Server(ncpus, ppservers=ppservers)

301 print ’Starting pp with’, ncpus, ’workers’

302

303 # Main parallel job command

304 jobs = [(job_server.submit(analyze,(dump,),

305 (settled,fluid,pinned,spout,bounce,get_values),

306 ("numpy","os","sys","math",))) for dump in dumps]

307

308 for i in xrange (0, len(jobs)):

309 pplot[i,:] = jobs[i]()

310

311 job_server.wait()

312

313 # Write output file

314 write_pplot(pplot, ’stats.csv’)

315

316 job_server.print_stats()

317

318 # Serial job command

319 #for dump in dumps:

320 # analyze(dump)
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