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Abstract

This thesis considers a Ramsey Theory question for graphs and regular matroids. Specif-

ically, how many elements N are required in a 3-connected graphic or regular matroid to

force the existence of certain specified minors in that matroid? This question cannot be

answered for an arbitrary collection of specified minors. However, there are results from the

literature for which the number N exists for certain collections of minors. We first encode to-

tally unimodular matrix representations of certain matroids. We use the computer program

MACEK [9] to investigate this question for certain classes of specified minors.
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CHAPTER 1

Introduction

This thesis is organized into three chapters. The first chapter outlines the classical results

on Ramsey Theory that motivate this research as well as providing some basic concepts of

Graph and Matroid Theory. The second chapter defines some new Ramsey numbers for

graphs and matroids and gives results from the literature that establish that these numbers

are well-defined. The third chapter of the thesis computes some exact values and lower

bounds of these numbers.

Ramsey Theory is an area of mathematics in which a typical result is of the form that

a sufficiently large mathematical system contains a highly ordered subsystem of a certain

cardinality. This theory is named after Frank Plumpton Ramsey who first established that

the numbers exist. Let k and ` be positive integers. The Ramsey number r(k, `) is the

least positive integer r such that every graph with r vertices contains either k mutually

m n R(m,n) Reference
3 3 6 [7]
3 4 9 [7]
3 5 14 [7]
3 6 18 [6]
3 7 23 [10]
3 8 28 [12]
3 9 36 [8]
4 4 18 [7]
4 5 25 [13]

Table 1. Some Small Known Ramsey Numbers
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adjacent vertices or ` mutually non-adjacent vertices. This number is among the most

studied parameters in graph theory. Erdös and Szekeres [5] gave the following fundamental

result on these numbers that establishes their existence.

Theorem 1. Let k and ` be positive integers exceeding one. Then:

(1) r(k, `) ≤ r(k-1, `) + r(k, `-1);

(2) r(k, `) < r(k-1, `) + r(k, `-1) if r(k-1, `) and r(k, `-1) are even;

(3) r(k, `) ≤
(
k+`−2
k−1

)
.

Known exact values for Ramsey numbers are rare. Some of the values are summarized

in Table 1. At the 1991 Seattle Conference on Graph Minors, Robin Thomas asked whether

a connected matroid with bounded cardinality for both its circuits and cocircuits has a

bounded number of elements. Lovász, Schrijver and Seymour provided an argument to show

that such a matroid does have a bounded number of elements. Motivated by this observation,

Reid [17] defined a matroid Ramsey number as follows and showed that these numbers satisfy

conditions similar to the ones given in Theorem 1.

Definition 1. Let k and ` be positive integers. Then n(k, `) is the least positive integer

n such that every connected matroid M with n elements contains either a circuit with at least

k elements or a cocircuit with at least ` elements.

Pou-lin Wu [23] computed these numbers precisely for connected graphic matroids.

Lemos and Oxley [11] computed these numbers precisely for all connected matroids. The

result of Lemos and Oxley is given below.

2



Theorem 2. Let M be a connected matroid with at least two elements. If a largest circuit

of M has k elements and a largest cocircuit of M has ` elements, then |E(M)| ≤ bk`
2
c+ 1.

Before exploring other Ramsey numbers associated with graphs and matroids, we conclude

this section of the thesis with some basic concepts and classes of matroids and some funda-

mental results associated with them.

First we will give some graph and matroid terminology that will be used throughout the

thesis. The graph terminology generally follows West [22], while the matroid terminology

follows Oxley [15] for the most part. Let G be a graph throughout this chapter. A graph

H is a minor of G if an isomorphic copy of H can be obtained from G by deleting and/or

contracting edges and deleting isolated vertices from G [22]. Many properties of graphs are

closed under minors; i.e., if G has property P , then a minor H of G also has property P .

Equivalently, the contrapositive of this statement is that if H does not have property P ,

then G does not have property P . Many important classes of graphs are determined by their

excluded minors ; i.e., the minors that graphs in the class do not have. One of the first results

of this type is Kuratowski’s characterization of planar graphs. Note that the complete graph

on k vertices is denoted by Kk while the complete bipartite graph with partite classes of

cardinality k and ` is denoted by Kk,`.

Theorem 3. A finite graph is planar if and only if it contains no subgraph that is

isomorphic to or is a subdivision of K5 or K3,3.
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Wagner [21] gave the following excluded-minor version of Kuratowski’s result. The Ram-

sey results presented in Section 1 of this thesis can be considered as a variation of this

classical excluded minor result.

Theorem 4. A graph is planar if and only if it contains no minor isomorphic to K5 or

K3,3.

The formal definition of a matroid as a set system is given below.

Definition 2. A matroid M is an ordered pair (E, I) consisting of a finite set E and a

collection I of subsets of E satisfying the following three conditions:

(I1) ∅ ∈ I.

(I2) If I ∈ I and I
′ ⊆ I, then I

′ ∈ I.

(I3) If I1, I2 ∈ I and |I1| < |I2|, then there is an element e of I2−I1 such that I1∪e ∈ I.

Let M = (E, I) be a matroid. The members of I are called the independent subsets of

M . The subsets of E that are not in I are called the dependent subsets of M . The minimal

dependent sets are said to be circuits of M . Let X ⊂ E. The rank of X, denoted by r(X),

is the cardinality of any maximal independent subset of X. These sets all have the same

cardinality. A basis for M is a maximal independent subset of E. These sets again all have

the same cardinality. The rank of M is the rank of E. There is a dual matroid, denoted

by M∗, associated with M on the set E defined by letting the bases of M∗ be precisely the

complements of bases of M .
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We next describe three important classes of matroids: the graphic matroids, matroids

representable over a given field, and the regular matroids. The cycle matroid of the graph

G, denoted by M(G), has element set E(G). A circuit of this matroid is precisely the edge

set of a cycle of G. A matroid that is isomorphic to the cycle matroid of some graph is said

to be graphic. Graphic matroids can also be defined by their excluded minors, as shown in

the following theorem attributed to Tutte.

Theorem 5. A matroid is graphic if and only if it has no minor isomorphic to any of

the matroids U2,4, F7, F
∗
7 , M∗(K5), and M∗(K3,3). [20]

Let E be the set of column labels of a k × ` matrix A over a field F. Let I be the set

of subsets X of E for which the multiset of columns labelled by X is linearly independent

in the vector space V (k,F). Then I is the set of independent sets of a matroid on E called

the vector matroid of A. This matroid is denoted by M [A]. If M is isomorphic to the

vector matroid of a matrix D over a field F, then M is said to be representable over F or

F-representable and D is called a representation for M over F or an F-representation for M

[15]. One such class of representable matroids is the class of regular matroids. Such a matroid

is the vector matroid of a totally unimodular matrix. A unimodular matrix is a matrix over

R for which every square submatrix has determinant in {0, 1,−1}. Some authors refer to a

regular matroid as a totally unimodular matroid [20]. These characterizations of regular and

graphic matroids will be fundamental to our work.
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Theorem 6. A matroid is regular if and only if it has no minor isomorphic to U2,4, F7

or F ∗7 . [24]

One tool that is important in the study of matroid representability is the concept of

connectivity. We motivate this concept first for the class of graphs. A vertex cut of a

graph G is a set S ⊆ V (G) such that G − S has more connected components than G. The

connectivity of G, written κ(G), is defined as follows. If G is disconnected, then κ(G) = 0.

If G is connected and contains a pair of non-adjacent vertices, then κ(G) is the smallest

integer j such that G has a j-element vertex cut. If G is connected and contains no pair of

non-adjacent vertices, then κ(G) = |V (G)|-1. For k ∈ Z+, a graph G is k-connected if its

connectivity is at least k.

In order to illustrate graph connectivity consider the graph H given in Figure 1.1. This

graph is connected so that κ(H) ≥ 1. This graph contains many vertex-cuts. For example,

the sets {c, d} and {d, f} are 2-vertex cuts, that is each is a vertex cut of cardinality two.

The graph H does have pairs of non-adjacent vertices so κ(H) is the smallest integer j such

that H has a j-element vertex cut. It follows from H having no vertex cut of cardinality

one that κ(H) ≥ 2. The graph H has a 2-vertex cut {c, d}. Hence κ(H) ≤ 2. So κ(H) = 2.

Then κ(H) ≥ 2 so we may say that H is a 2-connected graph. However, κ(H) � 3 so H is

not a 3-connected graph.

The concept of k-connectedness for a matroid is less straightforward than that for a

graph. The reason for this difference is that a matroid lacks the concept of a vertex. First

we will describe motivation for the definition. Let M be the cycle matroid of the graph H

6



a

b c

d

e

f

g

Figure 1.1. Graph Connectivity in the Graph H

given in Figure 1.1. Suppose X is the set of edges of the subgraph of H induced by the

vertex set {a, b, c, d} and Y is the set of edges of the subgraph of H induced by the vertex

set {c, d, e, f, g}, except for the edge cd. Then (X, Y ) is a partition of the element set of M .

Now for any edge set Z of the graph H,

rM(H)(Z) = |V (H[Z])| − ω(H[Z])

where H[Z] is the subgraph of H induced by Z and ω(H[Z]) is the number of connected

components of H[Z]. Then

rM(H)(X) + rM(H)(Y )− r(M(H)

= |V (H[X])| − ω(H[X]) + |V (H[Y ])| − ω(H[Y ])−
[
|V (H)| − ω(H)

]
=
∣∣V (H[X]) ∩ V (H[Y ])

∣∣− 1 = 2− 1 = 1

Hence the 2-vertex cut {c, d} of H is modeled by the edge partition (X, Y ) as

rM(H)(X) + rM(H)(Y )− r(M(H)) = 1

7



Let M be a matroid with ground set E and X ⊆ E. Then

λM(X) = r(X) + r(E −X)− r(M)

We say that λM is the connectivity function of M , often abbreviated as λ. If λM(X) < k for

k ∈ Z+, then both X and E-X are called k-separating sets. Note that λM(X) = λM(E-X).

A k-separation of M is a pair (X,E-X) such that both X and E-X are k-separating sets

and each set has at least k elements. For an integer n exceeding one, the matroid M is

n-connected if M has no k-separations for any k ∈ {1, 2, . . . , n-1}.

The cycle matroid of the graph G is representable over any field F. In order to see this

fact we next state the procedure for finding such a representation given in [16, p. 141]. We

begin with a spanning tree of the graph G, say with r edges. Each edge of the spanning tree

is assigned to precisely one of the r columns of the r× r identity matrix. We then define an

arbitrary orientation D(G) of G, and then assign a column of length r to each edge not in

the spanning tree as follows. Let e be such an edge. There is a unique cycle using the edge e

and edges of the spanning tree. Follow the direction of edge e along this cycle. The column

representing e contains only 0’s, 1’s, and −1’s. Each entry in this column corresponds to the

corresponding edge of the spanning tree. If the corresponding edge is not in the cycle, then

0 is recorded in the entry. If the corresponding edge is in the cycle in the same direction as

e, then 1 is recorded in the entry. If the corresponding edge is in the cycle in the opposite

direction as e, then −1 is recorded in the entry. The resulting matrix represents the matroid

over any field F. Often, the identity part of the matrix is omitted. For example, several such

8



F-representations for given graphs used in this research are given in Figures 1.3, 1.5, 1.7,

and 1.9. These regular representations were created using the UNIX text editor “vi” so that

the resulting matroids could be utilized by the program MACEK. In each graph the edges

of a spanning tree are shown as dashed lines, while the basis is represented by a solid line.

In order to study properties of representable matroids, sophisticated connectivity tools

are necessary. We next mention two such results from the literature that are needed in this

research. The first such result is Seymour’s Splitter Theorem [18].

Theorem 7. Let M and N be 3-connected matroids such that N is a minor of M with at

least four elements and if N is a wheel, then M has no larger wheel as a minor, while if N is

a whirl, then M has no larger whirl as a minor. Then there is a sequence M0,M1, · · · ,Mn of

3-connected matroids with M0
∼= N and Mn = M such that Mi is a single-element deletion

or a single-element contraction of Mi+1 for all i ∈ {0, 1, · · · , n− 1}.

For graphs, Seymour’s result reads as follows. A simple graph G is obtained from a simple

graph H by splitting a vertex if H is obtained from G by contracting an edge (see [19]) with

both endvertices of e having degree at least three in G.

Theorem 8. [18] Let H be a simple 3-connected minor of a simple 3-connected graph G

such that if H is a wheel, then H is the largest wheel minor of G. Then a graph isomorphic

to G can be obtained from H by repeatedly applying the operations of adding an edge between

two nonadjacent vertices and splitting a vertex.

9
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7
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Figure 1.2. The Cube Graph

−1 −2 −3 −4 −5



1 0 1 −1 0 1
2 1 1 −1 0 1
3 0 0 −1 1 1
4 1 1 0 −1 0
5 1 1 0 0 0
6 0 0 1 −1 0
7 0 1 −1 0 0

Figure 1.3. Matrix Representation for Cube
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Figure 1.4. The Octahedron Graph
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−1 −2 −3 −4 −5 −6 −7


1 1 −1 0 1 0 0 0
2 1 −1 0 1 0 1 −1
3 0 −1 1 1 0 1 −1
4 0 −1 1 1 1 0 −1
5 0 0 0 1 1 0 −1

Figure 1.5. Matrix Representation for Octahedron

A

B
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D
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F

G

9
10 11

12

7

8

3

4

5

6

21

Figure 1.6. The Pyramid Graph

−1 −2 −3 −4 −5 −6


1 0 0 1 −1 0 1
2 −1 1 0 0 −1 1
3 −1 1 0 0 0 0
4 0 −1 1 −1 1 0
5 0 −1 0 −1 1 0
6 0 0 0 −1 1 0

Figure 1.7. Matrix Representation for Pyramid
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1 3

Figure 1.8. The Graph K⊥5

−1 −2 −3 −4 −5 −6


1 −1 0 0 0 1 −1
2 −1 1 0 0 1 −1
3 −1 1 −1 0 1 −1
4 0 0 −1 1 1 0
5 −1 1 0 −1 0 0

Figure 1.9. Matrix Representation for K⊥5
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CHAPTER 2

Some New Ramsey Numbers

We use results of Ding and Liu, Oporowski, Oxley, and Thomas, and others to define

some new Ramsey numbers associated with matroids in this section of the thesis. Some

exact values and lower bounds for these numbers are computed in the last section of the

thesis. For related asymptotic numbers to these values see [1]. The result that motivates

this work is the following theorem of Oporowski, Oxley, and Thomas [14] (see also [2; 3]

for other results of this type). The graph Vk is shown in Figure 2.1. The graph Wk is the

wheel-graph with k spokes for k ≥ 3, and the graph K3,k is the complete bipartite graph

with partite classes of cardinality 3 and k, respectively.

Theorem 9. For every integer k ≥ 3, there is an integer ak such that every 3-connected

simple graph with at least ak vertices contains a subgraph isomorphic to a subdivision of one

of Wk, Vk, and K3,k.

a

u1 u2 u3 · · · uk−1

v1 v2 v3 · · · vk−1

b

Figure 2.1. The Graph Vk
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a

u1 u2 u3

v1 v2 v3

b

Figure 2.2. The Graph V4

We now define some Ramsey numbers for classes of graphs C. For most such classes C,

these numbers will not exist.

Definition 3. Let C be a class of graphs and m be the fewest number of edges of a graph

in C. Then Ngr(C) is the smallest positive integer exceeding m−1 such that every 3-connected

simple graph with at least Ngr(C) edges contains a minor that is isomorphic to a member of

C (provided this number exists).

We next show that the numbers Ngr({Wk, K3,`}) are well-defined for integers k and ` ex-

ceeding two. If the path v1, v2, . . . , vk−1 of Vk is contracted to a single vertex, then a graph

isomorphic to Wk+1 is obtained (see Figure 2.2 where the contraction of the edges (v1, v2)

and (v2, v3) yields a graph that is isomorphic to W5). So the graph Vk has a Wk+1-minor for

all k ∈ {3, 4, 5, . . .}. A simple graph with at least
(
n−1
2

)
+ 1 edges has at least n vertices.

Thus the word “vertices” in Theorem 9 could be replaced by the word “edges”. Note that if

a graph G contains a subgraph that is a subdivision of a graph H, then H is a minor of G.

Larger wheels and bipartite graphs contain smaller wheels and bipartite graphs as minors.

Hence it follows from Theorem 9 and these observations that the numbers Ngr({Wk, K3,`})

are well-defined for integers k and ` exceeding two.

14



Figure 2.3. The Graph W5




1 0 0 0 0 0 0 1 1 1 1 1
0 1 0 0 0 0 1 0 1 1 1 1
0 0 1 0 · · · 0 1 1 0 1 · · · 1
... 0 0 1

. . .
...

... 1 1 0
. . .

...

Figure 2.4. Matrix Representation for Sk

Ding, Oporowski, Oxley, and Vertigan [3] generalized Theorem 9 to binary matroids with

the following result. A binary representation for Sk is [Ik | D] where Ik is the k× k identity

matrix and D is the k×k matrix with a zero on each diagonal entry and ones elsewhere (see

Figure 2.4).

Theorem 10. For every integer k greater than two, there is an integer bk such that

every 3-connected binary matroid with more than bk elements contains a minor isomorphic

to one of M(K3,k), M∗(K3,k), M(Wk), and Sk.

As we defined some Ramsey numbers for graphs based on Theorem 9, we now define some

Ramsey numbers for regular matroids based on Theorem 10. These numbers may be defined

for regular matroids as a regular matroid is also a binary matroid. Again, for most classes

of regular matroids C these numbers will not exist.

15



Figure 2.5. The Graphs K ′3,4, K
′′
3,4, and K ′′′3,4

Definition 4. Let C be a class of regular matroids and m be the fewest number of

elements of a matroid in C. Let Nreg(C) be the smallest positive integer exceeding m− 1 such

that every 3-connected regular matroid with at least Nreg(C) elements contains a minor that

is isomorphic to a member of C (provided this number exists).

The matroid Sk has a Fano-minor for k exceeding three and therefore is not regular.

Hence Theorem 10 implies that the numbers Nreg({M(K3,k),M∗(K3,`),M(Wm)}) are well-

defined for integers k, `, and m exceeding three. The previous two results are Ramsey in

nature and not exact. The following exact result of Oxley is fundamental in the program of

discovering exact values for Ramsey numbers.

Theorem 11. Let G be a graph. Then G is simple and 3-connected having no W5-minor

if and only if

(1) G ∼= W3 or W4;

(2) G is isomorphic to a simple 3-connected minor of K⊥5 , the cube, the octahedron, or

the pyramid; or

(3) for some k ≥ 3, H is isomorphic to one of K3,k, K ′3,k, K ′′3,k, or K ′′′3,k.

16



CHAPTER 3

Thesis Results

This section begins with five results of Ding, Dziobiak, and Wu on graphs that contain

either a Wk or a K3,t minor. Then some related exact values and lower bounds to these

results are given for small k and t. The first such result of Ding et al. establishes that a

sufficiently large graph must have either a large wheel or a large complete bipartite graph as

a minor.

Theorem 12. [1] If G is a k-connected graph (k ≥ 3) on n vertices, then for any

1
2
≤ c < 1 and any integer p ≥ 1, G has a Ws-minor with s = b

√
2c
12

√
log(log n)c, or a

Kk,t-minor with t = Ω((log n)p).

We are particularly interested in 3-connected graphs and matroids in this work. Ding et

al. sharpened the above result for such graphs as follows.

Theorem 13. [1] If G is a 3-connected graph on n vertices, then G has a K3,t-minor

with t = Ω(
√

log n), or a Wk-minor with k = Ω(
√

log n).

The next result of Ding, Dziobiak, and Wu found a large wheel-minor in a cubic graph.

Theorem 14. [1] Let G be a 3-connected planar or cubic graph on n vertices. Then G

has a Wk-minor with k = b
√

(2c)

12

√
log nc, where 0.63 < c < 0.7 is a fixed constant.

17



Finally, we give a result of Ding, Dziobiak, and Wu that finds a large bond (minimal

edge-cut) in a 3-connected graph with many vertices.

Theorem 15. [1] If G is a 3-connected graph on n vertices, then c∗(G) ≥ 1
12

√
log n for

sufficiently large n.

The above results are all asymptotic in nature. We now compute some exact values of Ramsey

numbers for graphs and matroids when possible. When it is not possible to compute the

values precisely, we give lower bounds on these numbers so the results that follow complement

the above results.

Theorem 16. Ngr(W3) = 6.

Proof. It follows from the definition that Ngr(W3) ≥ 6. If G is a 3-connected simple

graph, then Theorem 8 can be used to show that G has a wheel-minor with at least three

spokes. Hence G has a W3-minor. Thus Ngr(W3) ≤ 6. Hence Ngr(W3) = 6. �

We obtain the following corollary to Theorem 16.

Corollary 1. If C is a class of 3-connected simple graphs that contains W3, then

Ngr(C) = 6.

Theorem 17. Ngr(W4) = 8.

Proof. It follows from the definition that Ngr(W4) ≥ 8. If G is a 3-connected simple

graph with at least eight edges, then Theorem 8 implies thatG has either aW3 or aW4-minor.
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If the latter does not hold, but the former does, then G has a minor that is isomorphic to a

3-connected simple graph obtained by adding an edge or splitting a vertex of the W3-minor.

There is no such graph. Hence Ngr(W4) ≤ 8. Thus Ngr(W4) = 8. �

We obtain the following corollary to Theorem 17.

Corollary 2. If C is a class of 3-connected simple graphs that contains W4 but not W3,

then Ngr(C) = 8.

An immediate consequence of Corollaries 1 and 2 is that Ngr({V3,W3, K3,3}) = 6 and

Ngr({V4,W4, K3,4}) = 8. Thus Ngr({W3, K3,3}) = 6 and Ngr({W4, K3,4}) = 8. Notice that

these two families of graphs are related to the cases k = 3 and k = 4 of Theorem 9. The

next case of interest of Theorem 9 is the case k = 5. We will consider some related cases

before determining this number. We now describe the use of MACEK [9] to calculate some

matroid Ramsey numbers for graphs with more edges than those considered previously.

Consider the command (†) used by the computer program MACEK [9]. The “ -pREG

’!extend b” option yields the 3-connected regular extensions and coextensions M of a spec-

ified matroid. Here, the specified matroid is M(W4) as listed at the end of command †.

The options ext-forbid ”grK33;!dual” ”grK5;!dual” ensure that the regular matroid M has

neither a M∗(K3,3)- nor a M∗(K5)-minor. Hence the matroids M are graphic. The options

“ext-forbid K34 W5” ensure that the matroid M has neither M(K3,4) nor M(W5) as a mi-

nor. Hence this command gives all 3-connected graphic matroids with nine elements that

are extensions or coextensions of M(W4) and that do not have M(K3,4) and M(W5) as a
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Line Extending Number of
Extensions

Forbidding ≤ Size Number of
Matroids
Produced

1 W4 1 K3,4, W5 9 3
2 2 10 6
3 3 11 10
4 4 12 14
5 5 13 14
6 W4 1 K3,5, W5 9 3
7 2 10 6
8 3 11 10
9 4 12 15
10 5 13 16
11 6 14 17
12 7 15 18
13 8 16 18
14 W4 1 K3,6, W5 9 3
15 2 10 6
16 3 11 10
17 4 12 15
18 5 13 16
19 6 14 17
20 7 15 19
21 8 16 20
22 9 17 21
23 10 18 22
24 11 19 22

Figure 3.1. The 3-connected graphic Matroids with an M(W4)-minor but
neither M(W5) nor M(K3,n) as minors

minor. The “!print”’ option outputs matrix representations for all such matroids.

(†) -pREG ’!extend b;@ext-forbid ”grK33;!dual” ”grK5;!dual” K34 W5;!print’ W4

Consider the command ‡. This command is almost identical to command † except for the

inclusion of the option “bb” versus the option “b”. This command gives all 3-connected

graphic matroids that have M(W4) as a minor but do not have M(K3,4) and M(W5) as a

minor. In general, each extra option “b” in these two commands adds an extension and
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coextension to the class of matroids previously generated.

(‡) -pREG ’!extend bb;@ext-forbid ”grK33;!dual” ”grK5;!dual” K34 W5;!print’ W4

Graphic and regular matroids that are 3-connected can be constructed from wheel-matroids

with rank at least four by 3-connected extensions and coextensions. We produce the results

in the table of Figure 3.1, and the tables in the figures that follow, by using commands such

as that given in †. This table is interpreted as follows. Line 1 of the table yields the number

of 3-connected graphs that are obtained by extensions and coextensions of W4 with at most

nine edges, but that have neither K3,4 nor W5 as a minor. There are three such graphs up to

isomorphism. Line 2 of the table yields that there are six such graphs, so there are exactly

6−3 = 3 graphs with ten edges that are 3-connected, constructed from W4 by extensions and

coextensions, and have neither K3,4 nor W5 as a minor. What is significant about the last

column of lines 4 and 5 is that the numbers obtained in those cells are identical, namely 14.

It follows that there are no 3-connected graphs with thirteen edges that are obtained from

W4 by extensions and coextensions that have neither K3,4 nor W5 as a minor. Moreover, by

Seymour’s Splitter theorem there are no such graphs with more than thirteen edges. We

next give a result of Oxley from Theorem 11 in the matroid Ramsey notation and verify this

result for some small values of n using MACEK [9].

Theorem 18. Ngr(W5, K3,n) = 3n+ 1 for n ∈ {4, 5, 6, · · · }.

Proof. The graph K ′′′3,n−1 is 3-connected and has no K3,n-minor for any n ∈ {4, 5, 6, · · · }.

Thus Ngr(W5, K3,n) ≥ 3n+ 1. Suppose that G is a 3-connected graph with no W5-minor and

no K3,n-minor for n ∈ {4, 5, 6, · · · }. It follows from Theorem 11 that either G has at most
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Line Extending Number of
Extensions

Forbidding ≤ Size Number of
Matroids
Produced

1 W5 1 K3,4, W6 11 3
2 2 12 19
3 3 13 59
4 4 14 148
5 5 15 282
6 6 16 397
7 7 17 454
8 8 18 467
9 9 19 471
10 10 20 472
11 11 21 472
12 W5 1 K3,5, W6 11 3
13 2 12 19
14 3 13 61
15 4 14 159
16 5 15 318
17 6 16 465
18 7 17 547
19 8 18 576
20 9 19 586
21 10 20 589
22 11 21 590
23 12 22 590
24 W5 1 K3,6, W6 11 3
25 2 12 19
26 3 13 61
27 4 14 159
28 5 15 319
29 6 16 472
30 7 17 574
31 8 18 647
32 9 19 716
33 10 20 783
34 11 21 842
35 12 22 882
36 13 23 CRASH

Figure 3.2. The 3-connected graphic Matroids with an M(W5)-minor but
neither M(W6) nor M(K3,n) as a minor.

22



twelve edges or G is isomorphic to K3,k−1, K
′
3,k−1, K

′′
3,k−1, or K ′′′3,k−1 for some integer k ≤ n.

Hence Ngr(W5, K3,n) ≤ 3n+ 1. �

The proof of Theorem 18 requires the use of Theorem 11. This theorem requires a six-

page proof just for the graph case versus the regular matroid case. A quick proof of this

result for the cases n ∈ {4, 5, 6} using MACEK is obtained from the results of Lines 5, 13,

and 24 of the table in Figure 3.1. MACEK cannot establish the previous result of Oxley for

all n. However, results of that type are rare for graphs with nine or more edges so that the

use of a computer becomes an essential tool. We can establish some further Matroid Ramsey

numbers by consideration of the results of the table in Figure 3.2.

Theorem 19.

(A) Ngr(W6, K3,4) = 21.

(B) Ngr(W6, K3,5) = 22.

(C) Ngr(W6, K3,6) ≥ 22.

Proof. The proofs of Theorem 19 (A), (B), (C) follow from Lines 11, 23, and 36 of the

table in Figure 3.2, respectively. We should also note that consideration of extensions and

coextensions of smaller wheels than those considered in this proof have been taken care of

by the table in Figure 3.1. This pattern will be followed throughout the remainder of the

thesis, where smaller wheels are considered before larger wheels in particular theorems. �
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Line Extending Number
of Exten-
sions

Forbidding ≤ Size Number
of Ma-
troids
Produced

1 W6 1 K3,4, W7 13 8
2 2 14 58
3 3 15 359
4 4 16 1594
5 5 17 5431
6 6 18 14734
7 7 running
8 W6 1 K3,5,W7 13 8
9 2 14 60
10 3 15 390
11 4 16 1832
12 5 17 6608
13 6 18 18460
14 7 running
15 W6 1 K3,6, W7 13 8
16 2 14 60
17 3 15 390
18 4 16 1840
19 5 17 6736
20 6 18 19629
20 7 running

Figure 3.3. The 3-connected graphic Matroids with an M(W6)-minor but
neither M(W7) nor M(K3,n) as a minor

The natural extension of Theorem 19 is to exclude the graph W7 instead of the graph W6.

However, the results of the table in Figure 3.3 clearly indicate that it will be computational

infeasible to produce such a result with the current resources.

We now move to the consideration of Matroid Ramsey numbers for regular matroids. It

is interesting to contrast the results of Theorem 20 with those of Theorem 18.
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Line Extending Number
of Ex-
tensions

Forbidding ≤ Size Number
of Ma-
troids
Pro-
duced

1 W4 1 K3,4, K
∗
3,4, W5 9 4

2 2 10 10
3 3 11 16
4 4 12 21
5 5 13 21
6 W4 1 K3,5, K

∗
3,5, W5 9 4

7 2 10 10
8 3 11 16
9 4 12 23
10 5 13 25
11 6 14 27
12 7 15 29
13 8 16 29
14 W4 1 K3,6, K

∗
3,6, W5 9 4

15 2 10 10
16 3 11 16
17 4 12 23
18 5 13 25
19 6 14 27
20 7 15 31
21 8 16 33
22 9 17 35
23 10 18 37
24 11 19 37

Figure 3.4. The 3-connected regular Matroids with an M(W4)-minor but
no M(K3,k), M(K3,k)∗, and M(W5) minors

Theorem 20. Nreg(M(W5),M(K3,n),M∗(K3,n)) = 3n+ 1 for n ∈ {4, 5, 6}.

Proof. The proof of this theorem can be found on Lines 5, 13, and 24 of the table in

Figure 3.4. �
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We next explore the limits of the currently available software and computing power in

the final result of the thesis. These limits are suggested by the results that follow Line 11 in

the table in Figure 3.5 and the results in the table in Figure 3.6.

Theorem 21. Nreg(M(W6),M(K3,4),M
∗(K3,4)) = 21.

Proof. This follows from Line 11 of the table in Figure 3.5. �

We have investigated extensions and coextensions for both graphic and regular matroids

with as many as twenty-two elements. We have established that certain minors must appear

in several classes of these matroids. Thus Ramsey theory for matroid minors is a promising

area of research as the computer software and hardware tools develop as well as the matroid

connectivity theory needed to support these computations. A further area of research would

be to extend the theorems considered from the classes of graphic and regular matroids to the

class of binary matroids. More processing capability will be needed for this effort because

this class is much larger than the two classes considered here.
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Line Extending Number
of Ex-
tensions

Forbidding ≤ Size Number
of Ma-
troids
Pro-
duced

1 W5 1 K3,4, K
∗
3,4, W6 11 4

2 2 12 29
3 3 13 95
4 4 14 243
5 5 15 463
6 6 16 641
7 7 17 727
8 8 18 754
9 9 19 1762
10 10 20 764
11 11 21 764
12 W5 1 K3,5, K

∗
3,5, W6 11 4

13 2 12 29
14 3 13 99
15 4 14 265
16 5 15 537
17 6 16 785
18 7 17 931
19 8 18 1005
20 9 19 1037
21 10 20 1051
22 11 21 1061
23 12 22 1065
24 12 23 CRASH
25 W5 1 K3,6, K

∗
3,6, W6 11 4

26 2 12 29
27 3 13 99
28 4 14 265
29 5 15 539
30 6 16 799
31 7 17 987
32 8 18 1155
33 9 19 1315
34 10 20 1471
35 11 21 running

Figure 3.5. The 3-connected regular Matroids with an M(W5)-minor but
no M(K3,k), M(K3,k)∗, and M(W6) minors
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Line Extending Number
of Ex-
tensions

Forbidding ≤ Size Number
of Ma-
troids
Pro-
duced

1 W6 1 K3,4, K
∗
3,4, W7 13 12

2 2 14 99
3 3 15 655
4 4 16 2999
5 5 17 10399
6 6 18 CRASH
7 W6 1 K3,5, K

∗
3,5, W7 13 12

8 2 14 103
9 3 15 719
10 4 16 3491
11 5 17 12847
12 6 18 CRASH
13 W6 1 K3,6, K

∗
3,6, W7 13 12

14 2 14 103
15 3 15 719
16 4 16 3507
17 5 17 13109
18 6 18 running

Figure 3.6. The 3-connected regular Matroids with an M(W6)-minor but
no M(K3,k), M(K3,k)∗, and M(W6) minors
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Results From Graphic Extensions of W4

Forbidding K3,3 and W5

Script
Sequoia

Job
Command

Matroid
Size

Number of
Matroids
Produced

ext 1 gr .pbs 126532
−pREG ’!extend b;@ext−forbid ”grK33;!dual” ”

grK5;!dual” grK33 W5;!print’ W4
9 2

ext 2 gr .pbs 126534
−pREG ’!extend bb;@ext−forbid ”grK33;!dual”

”grK5;!dual” grK33 W5;!print’ W4
10 4

ext 3 gr .pbs 126535
−pREG ’!extend bbb;@ext−forbid ”grK33;!dual

” ”grK5;!dual” grK33 W5;!print’ W4
11 6

ext 4 gr .pbs 126536
−pREG ’!extend bbbb;@ext−forbid ”grK33;!
dual” ”grK5;!dual” grK33 W5;!print’ W4

12 9

ext 5 gr .pbs 126538
−pREG ’!extend bbbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” grK33 W5;!print’ W4
13 9

Forbidding K3,4 and W5

Script
Sequoia

Job
Command

Matroid
Size

Number of
Matroids
Produced

ext 1 gr .pbs 125960
−pREG ’!extend b;@ext−forbid ”grK33;!dual” ”

grK5;!dual” K34 W5;!print’ W4
9 3

ext 2 gr .pbs 125961
−pREG ’!extend bb;@ext−forbid ”grK33;!dual”

”grK5;!dual” K34 W5;!print’ W4
10 6

ext 3 gr .pbs 104644
−pREG ’!extend bbb;@ext−forbid ”grK33;!dual

” ”grK5;!dual” K34 W5;!print’ W4
11 10

ext 4 gr .pbs 104645
−pREG ’!extend bbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” K34 W5;!print’ W4
12 14

ext 5 gr .pbs 117669
−pREG ’!extend bbbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” K34 W5;!print’ W4
13 14
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Forbidding K3,5 and W5

Script
Sequoia

Job
Command

Matroid
Size

Number of
Matroids
Produced

ext 1 gr more.pbs 123412
−pREG ’!extend b;@ext−forbid ”grK33;!dual” ”

grK5;!dual” K35 W5;!print’ W4
9 3

ext 2 gr more.pbs 123413
−pREG ’!extend bb;@ext−forbid ”grK33;!dual”

”grK5;!dual” K35 W5;!print’ W4
10 6

ext 3 gr more.pbs 123414
−pREG ’!extend bbb;@ext−forbid ”grK33;!dual

” ”grK5;!dual” K35 W5;!print’ W4
11 10

ext 4 gr more.pbs 123415
−pREG ’!extend bbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” K35 W5;!print’ W4
12 15

ext 5 gr more.pbs 123416
−pREG ’!extend bbbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” K35 W5;!print’ W4
13 16

ext 6 gr more.pbs 123417
−pREG ’!extend bbbbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” K35 W5;!print’ W4
14 17

ext 7 gr more.pbs 123418
−pREG ’!extend bbbbbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” K35 W5;!print’ W4
15 18

ext 8 gr more.pbs 123419
−pREG ’!extend bbbbbbbb;@ext−forbid ”grK33

;!dual” ”grK5;!dual” K35 W5;!print’ W4
16 18

Forbidding K3,6 and W5

Script
Sequoia

Job
Command

Matroid
Size

Number of
Matroids
Produced

ext 1 gr no w7.pbs 123424
−pREG ’!extend b;@ext−forbid ”grK33;!dual” ”

grK5;!dual” K36 W5;!print’ W4
9 3

ext 2 gr no w7.pbs 123425
−pREG ’!extend bb;@ext−forbid ”grK33;!dual”

”grK5;!dual” K36 W5;!print’ W4
10 6

ext 3 gr no w7.pbs 125962
−pREG ’!extend bbb;@ext−forbid ”grK33;!dual

” ”grK5;!dual” K36 W5;!print’ W4
11 10

ext 4 gr no w7.pbs 125964
−pREG ’!extend bbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” K36 W5;!print’ W4
12 15

ext 5 gr no w7.pbs 125965
−pREG ’!extend bbbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” K36 W5;!print’ W4
13 16

ext 6 gr no w7.pbs 125966
−pREG ’!extend bbbbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” K36 W5;!print’ W4
14 17

ext 7 gr no w7.pbs 125967
−pREG ’!extend bbbbbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” K36 W5;!print’ W4
15 19

ext 8 gr no w7.pbs 125968
−pREG ’!extend bbbbbbbb;@ext−forbid ”grK33

;!dual” ”grK5;!dual” K36 W5;!print’ W4
16 20

ext 9 gr no w7.pbs 125969
−pREG ’!extend bbbbbbbbb;@ext−forbid ”

grK33;!dual” ”grK5;!dual” K36 W5;!print’ W4
17 21

ext 10 gr no w7.pbs 125976
−pREG ’!extend bbbbbbbbbb;@ext−forbid ”
grK33;!dual” ”grK5;!dual” K36 W5;!print’ W4

18 22

ext 11 gr no w7.pbs 125977
−pREG ’!extend bbbbbbbbbbb;@ext−forbid ”
grK33;!dual” ”grK5;!dual” K36 W5;!print’ W4

19 22
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Appendix B: Results From Graphic Extensions of W5
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Results From Graphic Extensions of W5

Forbidding K3,4 and W6

Script
Sequoia

Job
Command

Matroid
Size

Number of
Matroids
Produced

ext 1 nok34w6.pbs 123763
−pREG ’!extend b;@ext−forbid ”grK33;!dual” ”

grK5;!dual” K34 W6;!print’ W5
11 3

ext 2 nok34w6.pbs 123764
−pREG ’!extend bb;@ext−forbid ”grK33;!dual”

”grK5;!dual” K34 W6;!print’ W5
12 19

ext 3 nok34w6.pbs 123765
−pREG ’!extend bbb;@ext−forbid ”grK33;!dual

” ”grK5;!dual” K34 W6;!print’ W5
13 59

ext 4 nok34w6.pbs 123766
−pREG ’!extend bbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” K34 W6;!print’ W5
14 148

ext 5 nok34w6.pbs 123767
−pREG ’!extend bbbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” K34 W6;!print’ W5
15 282

ext 6 nok34w6.pbs 123770
−pREG ’!extend bbbbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” K34 W6;!print’ W5
16 397

ext 7 nok34w6.pbs 123771
−pREG ’!extend bbbbbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” K34 W6;!print’ W5
17 454

ext 8 nok34w6.pbs 123772
−pREG ’!extend bbbbbbbb;@ext−forbid ”grK33

;!dual” ”grK5;!dual” K34 W6;!print’ W5
18 467

ext 9 nok34w6.pbs 123785
−pREG ’!extend bbbbbbbbb;@ext−forbid ”

grK33;!dual” ”grK5;!dual” K34 W6;!print’ W5
19 471

ext 10 nok34w6.pbs 123787
−pREG ’!extend bbbbbbbbbb;@ext−forbid ”
grK33;!dual” ”grK5;!dual” K34 W6;!print’ W5

20 472

ext 11 nok34w6.pbs 123788
−pREG ’!extend bbbbbbbbbbb;@ext−forbid ”
grK33;!dual” ”grK5;!dual” K34 W6;!print’ W5

21 472
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Forbidding K3,5 and W5

Script
Sequoia

Job
Command

Matroid
Size

Number of
Matroids
Produced

ext 1 gr .pbs 104735
−pREG ’!extend b;@ext−forbid ”grK33;!dual” ”

grK5;!dual” K35 W6;!print’ W5
11 3

ext 2 gr .pbs 104736
−pREG ’!extend bb;@ext−forbid ”grK33;!dual”

”grK5;!dual” K35 W6;!print’ W5
12 19

ext 3 gr .pbs 104737
−pREG ’!extend bbb;@ext−forbid ”grK33;!dual

” ”grK5;!dual” K35 W6;!print’ W5
13 61

ext 4 gr .pbs 104738
−pREG ’!extend bbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” K35 W6;!print’ W5
14 159

ext 5 gr .pbs 104739
−pREG ’!extend bbbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” K35 W6;!print’ W5
15 318

ext 6 gr .pbs 104839
−pREG ’!extend bbbbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” K35 W6;!print’ W5
16 465

ext 7 gr .pbs 104740
−pREG ’!extend bbbbbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” K35 W6;!print’ W5
17 547

ext 8 gr .pbs 104840
−pREG ’!extend bbbbbbbb;@ext−forbid ”grK33

;!dual” ”grK5;!dual” K35 W6;!print’ W5
18 576

ext 9 gr .pbs 104841
−pREG ’!extend bbbbbbbbb;@ext−forbid ”

grK33;!dual” ”grK5;!dual” K35 W6;!print’ W5
19 586

ext 10 gr .pbs 105056
−pREG ’!extend bbbbbbbbbb;@ext−forbid ”
grK33;!dual” ”grK5;!dual” K35 W6;!print’ W5

20 589

ext 11 gr .pbs 105057
−pREG ’!extend bbbbbbbbbbb;@ext−forbid ”
grK33;!dual” ”grK5;!dual” K35 W6;!print’ W5

21 590

ext 12 gr .pbs 105156
−pREG ’!extend bbbbbbbbbbbb;@ext−forbid ”
grK33;!dual” ”grK5;!dual” K35 W6;!print’ W5

22 590
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Forbidding K3,6 and W6

Script
Sequoia

Job
Command

Matroid
Size

Number of
Matroids
Produced

ext 1 gr nok36w6.pbs 123790
−pREG ’!extend b;@ext−forbid ”grK33;!dual” ”

grK5;!dual” K36 W6;!print’ W5
11 3

ext 2 gr nok36w6.pbs 123792
−pREG ’!extend bb;@ext−forbid ”grK33;!dual”

”grK5;!dual” K36 W6;!print’ W5
12 19

ext 3 gr nok36w6.pbs 123794
−pREG ’!extend bbb;@ext−forbid ”grK33;!dual

” ”grK5;!dual” K36 W6;!print’ W5
13 61

ext 4 gr nok36w6.pbs 123795
−pREG ’!extend bbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” K36 W6;!print’ W5
14 159

ext 5 gr nok36w6.pbs 123797
−pREG ’!extend bbbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” K36 W6;!print’ W5
15 319

ext 6 gr nok36w6.pbs 123798
−pREG ’!extend bbbbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” K36 W6;!print’ W5
16 472

ext 7 gr nok36w6.pbs 123799
−pREG ’!extend bbbbbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” K36 W6;!print’ W5
17 574

ext 8 gr nok36w6.pbs 123800
−pREG ’!extend bbbbbbbb;@ext−forbid ”grK33

;!dual” ”grK5;!dual” K36 W6;!print’ W5
18 647

ext 9 gr nok36w6.pbs 123801
−pREG ’!extend bbbbbbbbb;@ext−forbid ”

grK33;!dual” ”grK5;!dual” K36 W6;!print’ W5
19 716

ext 10 gr nok36w6.pbs 123885
−pREG ’!extend bbbbbbbbbb;@ext−forbid ”
grK33;!dual” ”grK5;!dual” K36 W6;!print’ W5

20 783

ext 11 gr nok36w6.pbs 123887
−pREG ’!extend bbbbbbbbbbb;@ext−forbid ”
grK33;!dual” ”grK5;!dual” K36 W6;!print’ W5

21 842

ext 12 gr nok36w6.pbs 124257
−pREG ’!extend bbbbbbbbbbbb;@ext−forbid ”
grK33;!dual” ”grK5;!dual” K36 W6;!print’ W5

22 882

ext 13 gr nok36w6.pbs 126138
−pREG ’!extend bbbbbbbbbbbbb;@ext−forbid ”
grK33;!dual” ”grK5;!dual” K36 W6;!print’ W5

23
MACEK
crashed
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Results From Graphic Extensions of W6

Forbidding K3,4 and W7

Script
Sequoia

Job
Command

Matroid
Size

Number of
Matroids
Produced

ext 1 gr nok34w7.pbs 123890
−pREG ’!extend b;@ext−forbid ”grK33;!dual” ”

grK5;!dual” K34 W7;!print’ W6
13 8

ext 2 gr nok34w7.pbs 123892
−pREG ’!extend bb;@ext−forbid ”grK33;!dual”

”grK5;!dual” K34 W7;!print’ W6
14 58

ext 3 gr nok34w7.pbs 123893
−pREG ’!extend bbb;@ext−forbid ”grK33;!dual

” ”grK5;!dual” K34 W7;!print’ W6
15 359

ext 4 gr nok34w7.pbs 123896
−pREG ’!extend bbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” K34 W7;!print’ W6
16 1594

ext 5 gr nok34w7.pbs 123897
−pREG ’!extend bbbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” K34 W7;!print’ W6
17 5431

ext 6 gr nok34w7.pbs 124012
−pREG ’!extend bbbbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” K34 W7;!print’ W6
18 14734

ext 7 gr nok34w7.pbs 126781
−pREG ’!extend bbbbbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” K34 W7;!print’ W6
19 running

Forbidding K3,5 and W7

Script
Sequoia

Job
Command

Matroid
Size

Number of
Matroids
Produced

ext 1 gr nok35w7.pbs 124013
−pREG ’!extend b;@ext−forbid ”grK33;!dual” ”

grK5;!dual” K35 W7;!print’ W6
13 8

ext 2 gr nok35w7.pbs 124014
−pREG ’!extend bb;@ext−forbid ”grK33;!dual”

”grK5;!dual” K35 W7;!print’ W6
14 60

ext 3 gr nok35w7.pbs 124015
−pREG ’!extend bbb;@ext−forbid ”grK33;!dual

” ”grK5;!dual” K35 W7;!print’ W6
15 390

ext 4 gr nok35w7.pbs 124016
−pREG ’!extend bbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” K35 W7;!print’ W6
16 1832

ext 5 gr nok35w7.pbs 124020
−pREG ’!extend bbbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” K35 W7;!print’ W6
17 6608

ext 6 gr nok35w7.pbs 124152
−pREG ’!extend bbbbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” K35 W7;!print’ W6
18 18640

ext 7 gr nok35w7.pbs 127905
−pREG ’!extend bbbbbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” K35 W7;!print’ W6
19 running
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Forbidding K3,6 and W7

Script
Sequoia

Job
Command

Matroid
Size

Number of
Matroids
Produced

ext 1 gr .pbs 107735
−pREG ’!extend b;@ext−forbid ”grK33;!dual” ”

grK5;!dual” K36 W7;!print’ W6
13 8

ext 2 gr .pbs 107736
−pREG ’!extend bb;@ext−forbid ”grK33;!dual”

”grK5;!dual” K36 W7;!print’ W6
14 60

ext 3 gr .pbs 107737
−pREG ’!extend bbb;@ext−forbid ”grK33;!dual

” ”grK5;!dual” K36 W7;!print’ W6
15 390

ext 4 gr .pbs 107739
−pREG ’!extend bbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” K36 W7;!print’ W6
16 1840

ext 5 gr .pbs 107741
−pREG ’!extend bbbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” K36 W7;!print’ W6
17 6736

ext 6 gr .pbs 107742
−pREG ’!extend bbbbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” K36 W7;!print’ W6
18 19629

ext 7 gr .pbs 117672
−pREG ’!extend bbbbbbb;@ext−forbid ”grK33;!

dual” ”grK5;!dual” K36 W7;!print’ W6
19 running
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Results From Regular Extensions of W4

Forbidding K3,3, K
∗
3,3 and W5

Script
Sequoia

Job
Command

Matroid
Size

Number of
Matroids
Produced

ext 1 reg .pbs 126988
−pREG ’!extend b;@ext−forbid ”K33;!dual”

K33 W5;!print’ W4
9 2

ext 2 reg .pbs 126989
−pREG ’!extend bb;@ext−forbid ”K33;!dual”

K33 W5;!print’ W4
10 5

ext 3 reg .pbs 126990
−pREG ’!extend bbb;@ext−forbid ”K33;!dual”

K33 W5;!print’ W4
11 7

ext 4 reg .pbs 126991
−pREG ’!extend bbbb;@ext−forbid ”K33;!dual”

K33 W5;!print’ W4
12 10

ext 5 reg .pbs 126992
−pREG ’!extend bbbbb;@ext−forbid ”K33;!dual

” K33 W5;!print’ W4
13 10

Forbidding K3,4, K
∗
3,4 and W5

Script
Sequoia

Job
Command

Matroid
Size

Number of
Matroids
Produced

ext 1 reg .pbs 124565
−pREG ’!extend b;@ext−forbid ”K34;!dual”

K34 W5;!print’ W4
9 4

ext 2 reg .pbs 124566
−pREG ’!extend bb;@ext−forbid ”K34;!dual”

K34 W5;!print’ W4
10 10

ext 3 reg .pbs 124568
−pREG ’!extend bbb;@ext−forbid ”K34;!dual”

K34 W5;!print’ W4
11 16

ext 4 reg .pbs 124569
−pREG ’!extend bbbb;@ext−forbid ”K34;!dual”

K34 W5;!print’ W4
12 21

ext 5 reg .pbs 124570
−pREG ’!extend bbbbb;@ext−forbid ”K34;!dual

” K34 W5;!print’ W4
13 21
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Forbidding K3,5, K
∗
3,5 and W5

Script
Sequoia

Job
Command

Matroid
Size

Number of
Matroids
Produced

ext 1 reg .pbs 124573
−pREG ’!extend b;@ext−forbid ”K35;!dual”

K35 W5;!print’ W4
9 4

ext 2 reg .pbs 124595
−pREG ’!extend bb;@ext−forbid ”K35;!dual”

K35 W5;!print’ W4
10 10

ext 3 reg .pbs 124596
−pREG ’!extend bbb;@ext−forbid ”K35;!dual”

K35 W5;!print’ W4
11 16

ext 4 reg .pbs 124597
−pREG ’!extend bbbb;@ext−forbid ”K35;!dual”

K35 W5;!print’ W4
12 23

ext 5 reg .pbs 124598
−pREG ’!extend bbbbb;@ext−forbid ”K35;!dual

” K35 W5;!print’ W4
13 25

ext 6 reg .pbs 124599
−pREG ’!extend bbbbbb;@ext−forbid ”K35;!

dual” K35 W5;!print’ W4
14 27

ext 7 reg .pbs 124600
−pREG ’!extend bbbbbbb;@ext−forbid ”K35;!

dual” K35 W5;!print’ W4
15 29

ext 8 reg .pbs 124600
−pREG ’!extend bbbbbbbb;@ext−forbid ”K35;!

dual” K35 W5;!print’ W4
16 29

Forbidding K3,6, K
∗
3,6 and W5

Script
Sequoia

Job
Command

Matroid
Size

Number of
Matroids
Produced

ext 1 reg .pbs 124602
−pREG ’!extend b;@ext−forbid ”K36;!dual”

K36 W5;!print’ W4
9 4

ext 2 reg .pbs 124603
−pREG ’!extend bb;@ext−forbid ”K36;!dual”

K36 W5;!print’ W4
10 10

ext 3 reg .pbs 124604
−pREG ’!extend bbb;@ext−forbid ”K36;!dual”

K36 W5;!print’ W4
11 16

ext 4 reg .pbs 124605
−pREG ’!extend bbbb;@ext−forbid ”K36;!dual”

K36 W5;!print’ W4
12 23

ext 5 reg .pbs 124606
−pREG ’!extend bbbbb;@ext−forbid ”K36;!dual

” K36 W5;!print’ W4
13 25

ext 6 reg .pbs 124609
−pREG ’!extend bbbbbb;@ext−forbid ”K36;!

dual” K36 W5;!print’ W4
14 27

ext 7 reg .pbs 104610
−pREG ’!extend bbbbbbb;@ext−forbid ”K36;!

dual” K36 W5;!print’ W4
15 31

ext 8 reg .pbs 124611
−pREG ’!extend bbbbbbbb;@ext−forbid ”K36;!

dual” K36 W5;!print’ W4
16 33

ext 9 reg .pbs 124612
−pREG ’!extend bbbbbbbbb;@ext−forbid ”K36

;!dual” K36 W5;!print’ W4
17 35

ext 10 reg .pbs 124614
−pREG ’!extend bbbbbbbbbb;@ext−forbid ”

K36;!dual” K36 W5;!print’ W4
18 37

ext 11 reg .pbs 124616
−pREG ’!extend bbbbbbbbbbb;@ext−forbid ”

K36;!dual” K36 W5;!print’ W4
19 37
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Results From Regular Extensions of W5

Forbidding K3,4, K
∗
3,4 and W6

Script
Sequoia

Job
Command

Matroid
Size

Number of
Matroids
Produced

ext 1 reg .pbs 124672
−pREG ’!extend b;@ext−forbid ”K34;!dual”

K34 W6;!print’ W5
11 4

ext 2 reg .pbs 124673
−pREG ’!extend bb;@ext−forbid ”K34;!dual”

K34 W6;!print’ W5
12 29

ext 3 reg .pbs 124674
−pREG ’!extend bbb;@ext−forbid ”K34;!dual”

K34 W6;!print’ W5
13 95

ext 4 reg .pbs 124677
−pREG ’!extend bbbb;@ext−forbid ”K34;!dual”

K34 W6;!print’ W5
14 243

ext 5 reg .pbs 124681
−pREG ’!extend bbbbb;@ext−forbid ”K34;!dual

” K34 W6;!print’ W5
15 463

ext 6 reg .pbs 124682
−pREG ’!extend bbbbbb;@ext−forbid ”K34;!

dual” K34 W6;!print’ W5
16 641

ext 7 reg .pbs 124879
−pREG ’!extend bbbbbbb;@ext−forbid ”K34;!

dual” K34 W6;!print’ W5
17 727

ext 8 reg .pbs 125301
−pREG ’!extend bbbbbbbb;@ext−forbid ”K34;!

dual” K34 W6;!print’ W5
18 754

ext 9 reg .pbs 126139
−pREG ’!extend bbbbbbbbb;@ext−forbid ”K34

;!dual” K34 W6;!print’ W5
19 762

ext 10 reg .pbs 126436
−pREG ’!extend bbbbbbbbbb;@ext−forbid ”

K34;!dual” K34 W6;!print’ W5
20 764

ext 11 reg .pbs 126782
−pREG ’!extend bbbbbbbbbbb;@ext−forbid ”

K34;!dual” K34 W6;!print’ W5
21 764
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Forbidding K3,5, K
∗
3,5 and W6

Script
Sequoia

Job
Command

Matroid
Size

Number of
Matroids
Produced

ext 1 reg .pbs 124692
−pREG ’!extend b;@ext−forbid ”K35;!dual”

K35 W6;!print’ W5
11 4

ext 2 reg .pbs 124695
−pREG ’!extend bb;@ext−forbid ”K35;!dual”

K35 W6;!print’ W5
12 29

ext 3 reg .pbs 124697
−pREG ’!extend bbb;@ext−forbid ”K35;!dual”

K35 W6;!print’ W5
13 99

ext 4 reg .pbs 124699
−pREG ’!extend bbbb;@ext−forbid ”K35;!dual”

K35 W6;!print’ W5
14 265

ext 5 reg .pbs 124702
−pREG ’!extend bbbbb;@ext−forbid ”K35;!dual

” K35 W6;!print’ W5
15 537

ext 6 reg .pbs 124703
−pREG ’!extend bbbbbb;@ext−forbid ”K35;!

dual” K35 W6;!print’ W5
16 785

ext 7 reg .pbs 124880
−pREG ’!extend bbbbbbb;@ext−forbid ”K35;!

dual” K35 W6;!print’ W5
17 931

ext 8 reg .pbs 125303
−pREG ’!extend bbbbbbbb;@ext−forbid ”K35;!

dual” K35 W6;!print’ W5
18 1005

ext 9 reg .pbs 126141
−pREG ’!extend bbbbbbbbb;@ext−forbid ”K35

;!dual” K35 W6;!print’ W5
19 1037

ext 10 reg .pbs 126437
−pREG ’!extend bbbbbbbbbb;@ext−forbid ”

K35;!dual” K35 W6;!print’ W5
20 1051

ext 11 reg .pbs 126783
−pREG ’!extend bbbbbbbbbbb;@ext−forbid ”

K35;!dual” K35 W6;!print’ W5
21 1061

ext 12 reg .pbs 127562
−pREG ’!extend bbbbbbbbbbbb;@ext−forbid ”

K35;!dual” K35 W6;!print’ W5
22 1065

ext 13 reg .pbs 127907
−pREG ’!extend bbbbbbbbbbbbb;@ext−forbid ”

K35;!dual” K35 W6;!print’ W5
23

MACEK
crashed
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Forbidding K3,6, K
∗
3,6, and W6

Script
Sequoia

Job
Command

Matroid
Size

Number of
Matroids
Produced

ext 1 reg .pbs 124881
−pREG ’!extend b;@ext−forbid ”K36;!dual”

K36 W6;!print’ W5
11 4

ext 2 reg .pbs 124882
−pREG ’!extend bb;@ext−forbid ”K36;!dual”

K36 W6;!print’ W5
12 29

ext 3 reg .pbs 124883
−pREG ’!extend bbb;@ext−forbid ”K36;!dual”

K36 W6;!print’ W5
13 99

ext 4 reg .pbs 124884
−pREG ’!extend bbbb;@ext−forbid ”K36;!dual”

K36 W6;!print’ W5
14 265

ext 5 reg .pbs 124885
−pREG ’!extend bbbbb;@ext−forbid ”K36;!dual

” K36 W6;!print’ W5
15 539

ext 6 reg .pbs 124886
−pREG ’!extend bbbbbb;@ext−forbid ”K36;!

dual” K36 W6;!print’ W5
16 799

ext 7 reg .pbs 124892
−pREG ’!extend bbbbbbb;@ext−forbid ”K36;!

dual” K36 W6;!print’ W5
17 987

ext 8 reg .pbs 125305
−pREG ’!extend bbbbbbbb;@ext−forbid ”K36;!

dual” K36 W6;!print’ W5
18 1155

ext 9 reg .pbs 126144
−pREG ’!extend bbbbbbbbb;@ext−forbid ”K36

;!dual” K36 W6;!print’ W5
19 1315

ext 10 reg .pbs 126438
−pREG ’!extend bbbbbbbbbb;@ext−forbid ”

K36;!dual” K36 W6;!print’ W5
20 1471

ext 11 reg .pbs 126783
−pREG ’!extend bbbbbbbbbbb;@ext−forbid ”

K36;!dual” K36 W6;!print’ W5
21

MACEK
crashed
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Results From Regular Extensions of W6

Forbidding K3,4, K
∗
3,4, and W7

Script
Sequoia

Job
Command

Matroid
Size

Number of
Matroids
Produced

ext 1 reg .pbs 125312
−pREG ’!extend b;@ext−forbid ”K34;!dual”

K34 W7;!print’ W6
13 12

ext 2 reg .pbs 125313
−pREG ’!extend bb;@ext−forbid ”K34;!dual”

K34 W7;!print’ W6
14 99

ext 3 reg .pbs 125314
−pREG ’!extend bbb;@ext−forbid ”K34;!dual”

K34 W7;!print’ W6
15 655

ext 4 reg .pbs 125323
−pREG ’!extend bbbb;@ext−forbid ”K34;!dual”

K34 W7;!print’ W6
16 2999

ext 5 reg .pbs 126145
−pREG ’!extend bbbbb;@ext−forbid ”K34;!dual

” K34 W7;!print’ W6
17 10399

ext 6 reg .pbs 126784
−pREG ’!extend bbbbbb;@ext−forbid ”K34;!

dual” K34 W7;!print’ W6
18

MACEK
crashed

Forbidding K3,5, K
∗
3,5, and W7

Script
Sequoia

Job
Command

Matroid
Size

Number of
Matroids
Produced

ext 1 reg .pbs 125349
−pREG ’!extend b;@ext−forbid ”K35;!dual”

K35 W7;!print’ W6
13 12

ext 2 reg .pbs 125351
−pREG ’!extend bb;@ext−forbid ”K35;!dual”

K35 W7;!print’ W6
14 103

ext 3 reg .pbs 125352
−pREG ’!extend bbb;@ext−forbid ”K35;!dual”

K35 W7;!print’ W6
15 719

ext 4 reg .pbs 125355
−pREG ’!extend bbbb;@ext−forbid ”K35;!dual”

K35 W7;!print’ W6
16 3491

ext 5 reg .pbs 126146
−pREG ’!extend bbbbb;@ext−forbid ”K35;!dual

” K35 W7;!print’ W6
17 12847

ext 6 reg .pbs 126785
−pREG ’!extend bbbbbb;@ext−forbid ”K35;!

dual” K35 W7;!print’ W6
18

MACEK
crashed
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Forbidding K3,6, K
∗
3,6, and W7

Script
Sequoia

Job
Command

Matroid
Size

Number of
Matroids
Produced

ext 1 reg .pbs 126788
−pREG ’!extend b;@ext−forbid ”K36;!dual”

K36 W7;!print’ W6
13 12

ext 2 reg .pbs 126789
−pREG ’!extend bb;@ext−forbid ”K36;!dual”

K36 W7;!print’ W6
14 103

ext 3 reg .pbs 126792
−pREG ’!extend bbb;@ext−forbid ”K36;!dual”

K36 W7;!print’ W6
15 719

ext 4 reg .pbs 126798
−pREG ’!extend bbbb;@ext−forbid ”K36;!dual”

K36 W7;!print’ W6
16 3507

ext 5 reg .pbs 126818
−pREG ’!extend bbbbb;@ext−forbid ”K36;!dual

” K36 W7;!print’ W6
17 13109

ext 6 reg .pbs 127573
−pREG ’!extend bbbbbb;@ext−forbid ”K36;!

dual” K36 W7;!print’ W6
18

MACEK
crashed
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MACEK Commands and Examples

The computer program MACEK [9] has been mentioned often throughout this thesis. In

this section, some background information as well as some sample commands and output

used in this thesis will be provided. The MACEK program was developed by Petr Hliněný

in 2001 to assist in the research of Matroid Theory. Since that time, many upgrades have

been made to make this software a powerful computational tool. The program allows the

user to test for minors and isomorphisms, as well as to extend and coextend matroids while

avoiding certain minors. For a complete guide to MACEK, see [9].

MACEK can be used to view matroids over different fields. For example, a binary and

a regular representation of M(W3) can be found by including the command ”-pGF2” or

”-pREG”. When no field is specified, MACEK defaults to the finite field over two elements,

GF(2). Note that throughout this section, some of the non-essential output will be omitted

to save space. The output given next shows a matrix representation of M(W3) over GF(2).

./macek -pGF2 print W3

vv========================================================================vv

~162~ Output of the command "!print (S) [1]":

~162~ Matrix of the frame 0x204620 [W3] in GF(2): "the matroid W_3, wheel of 3 spokes"

~ --------------------------------------------------------------

~ matrix 0x204b70 [W3], r=3, c=3, tr=0, ref=0x0

~ ’-1’) ’-2’) ’-3’)

~

~ ’1’) 1 o 1

~ ’2’) 1 1 o

~ ’3’) o 1 1

~ --------------------------------------------------------------

^^========================================================================^^
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The following output shows a regular representation of M(W3).

./macek -pREG print W3

vv========================================================================vv

~258~ Output of the command "!print (S) [1]":

~258~ Matrix of the frame 0x2025a0 [W3] in regular: "the matroid W_3, wheel of 3 spokes"

~ --------------------------------------------------------------

~ matrix 0x200ea0 [W3], r=3, c=3, tr=0, ref=0x0

~ ’-1’) ’-2’) ’-3’)

~

~ ’1’) 1 o -1

~ ’2’) -1 1 o

~ ’3’) o -1 1

~ --------------------------------------------------------------

^^========================================================================^^

The capability of MACEK to check for minors is displayed next. Multiple matroids can

be tested for a specific minor using the ”minor” command. The next example shows that

M(F7) is a minor of S5 but not a minor of W5.

./macek minor S5 W5 F7

~ matrix 0x200d30 [S5], r=5, c=5, tr=0, ref=0x0

~ ’-1’) ’-2’) ’-3’) ’-4’) ’-5’)

~ ’1’) o 1 1 1 1

~ ’2’) 1 o 1 1 1

~ ’3’) 1 1 o 1 1

~ ’4’) 1 1 1 o 1

~ ’5’) 1 1 1 1 o

~ matrix 0x200d30 [W5], r=5, c=5, tr=0, ref=0x0

~ ’-1’) ’-2’) ’-3’) ’-4’) ’-5’)

~ ’1’) 1 o o o 1

~ ’2’) 1 1 o o o

~ ’3’) o 1 1 o o

~ ’4’) o o 1 1 o

~ ’5’) o o o 1 1

~ matrix 0x209c60 [F7], r=3, c=4, tr=0, ref=0x0

~ ’-1’) ’-2’) ’-3’) ’-4’)

~ ’1’) 1 1 1 o

~ ’2’) 1 1 o 1

~ ’3’) 1 o 1 1

~Output of the command "!minor ((-1T)) ((-1)(T)) [2]":

~The #1 matroid [S5] +HAS+ minor #1 [F7] in the list {F7 }.

~The #2 matroid [W5] has -NO- minor #0 [] in the list {F7 }.
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The capability of MACEK [9] to extend and coextend matroids while avoiding certain

minors was instrumental in this dissertation. This function of MACEK enabled us to find

all of the internally 3-connected graphic K3,4- and W5-free matroids. By hand, this is a

challenging computation. With MACEK, we were able to determine all of these matroids.

An example of the command used to extend and coextend W4 while avoiding K∗3,3 and K∗5

in order to insure a graphic result, as well as K3,4 and W5, is given below. Note that the

command ”!extend b” means to extend and coextend in one command. We use ”!extend r”

and ”!extend c” to add rows and columns, respectively.

./macek -pREG ’!extend bb;@ext-forbid "grK33;!dual" "grK5;!dual" K34 W5;!print’ W4

~ ’-1’) ’-2’) ’-3’) ’-4’)

~ ’1’) 1 o o -1

~ ’2’) -1 1 o o

~ ’3’) o -1 1 o

~ ’4’) o o -1 1

~ ’5’) o 1 o -1

~ matrix 0x208000 [W4_r2], r=5, c=4, tr=0, ref=0x0

~ ’-1’) ’-2’) ’-3’) ’-4’)

~ ’1’) 1 o o -1

~ ’2’) -1 1 o o

~ ’3’) o -1 1 o

~ ’4’) o o -1 1

~ ’5’) 1 -1 1 -1

~ matrix 0x208000 [W4_c1], r=4, c=5, tr=0, ref=0x0

~ ’-1’) ’-2’) ’-3’) ’-4’) ’-5’)

~ ’1’) 1 o o -1 o

~ ’2’) -1 1 o o 1

~ ’3’) o -1 1 o o

~ ’4’) o o -1 1 -1

~ matrix 0x208000 [W4_r1_c1], r=5, c=5, tr=0, ref=0x0

~ ’-1’) ’-2’) ’-3’) ’-4’) ’-5’)

~ ’1’) 1 o o -1 o

~ ’2’) -1 1 o o o

~ ’3’) o -1 1 o o

~ ’4’) o o -1 1 1

~ ’5’) o 1 o -1 -1

~ matrix 0x208000 [W4_r2_c1], r=5, c=5, tr=0, ref=0x0

~ ’-1’) ’-2’) ’-3’) ’-4’) ’-5’)
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~ ’1’) 1 o o -1 o

~ ’2’) -1 1 o o o

~ ’3’) o -1 1 o o

~ ’4’) o o -1 1 1

~ ’5’) 1 -1 1 -1 -1

~ matrix 0x208000 [W4_c1_c1], r=4, c=6, tr=0, ref=0x0

~ ’-1’) ’-2’) ’-3’) ’-4’) ’-5’) ’-6’)

~ ’1’) 1 o o -1 o 1

~ ’2’) -1 1 o o 1 o

~ ’3’) o -1 1 o o -1

~ ’4’) o o -1 1 -1 o

MACEK 1.2.12 finished OK

As shown in the examples provided, MACEK is a powerful tool for researchers in the

field of Matroid Theory. A complete guide to MACEK as well as instructions on how to

download this program can be found in [9].
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