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ABSTRACT 

 Advances in two-dimensional numerical modeling have allowed dam break floods to be 

simulated with larger domains than ever before.  These types of simulations are important to 

meet the needs of inundation mapping, consequence analysis, and emergency planning for the 

large number of significant and high-hazard dams in the United States.  Globally refining the 

mesh to the small cell sizes necessary to resolve small features such as dam breach geometry 

result in significant computational burden for these types of simulations.  This manuscript details 

the research done to facilitate the implementation of quadtree local mesh refinement to represent 

dam breach geometry in an existing two-dimensional flood model and to test the model's results 

and performance with several test cases.  Results using local refinement  agree with the results of 

global refinement with a significant reduction in computational burden. 
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I. SCOPE AND MOTIVATION 

 Dams are manmade structures used to impound water for irrigation, consumption, energy 

generation, flood control, or a host of other uses.  They can often be large and hold back a large 

amount of water; therefore, they present an inherent risk to people or infrastructure downstream 

in the event of a failure.  Failure is an uncontrolled flow of water which can be caused by 

structural damage of the dam body or appurtenance by natural or unnatural means, which may be 

overtopping due to excessive inflow into the reservoir, failure of operation of gates or outlet 

structures, piping, or design or construction flaws.  The United States National Inventory of 

Dams lists dams as low hazard, where failure or incorrect operation results in no probable loss of 

life and low economic or environmental losses; significant hazard, where no loss of life occurs 

but environmental damage and economic loss may result; and high hazard, where loss of human 

life is probable.  As of 2011, there are a total of about 84,000 dams in the United States, of which 

57,000 are low hazard, 13,000 are significant hazard, and 14,000 are high hazard.  About one-

fifth of significant and high-hazard dams do not have an emergency action plan although it is 

required by law. 

 Emergency management efforts involving dam failures cover several phases, including 

preparedness, response, and recovery.  The preparedness phase occurs before the emergency, and 

this allows more time to consider many options and potential failure scenarios.  Emergency 

Action Plans (EAPs) created during the preparedness phase are a requirement for high hazard 

dams, and a basic part of the EAP is an understanding of the area inundated by a potential flood 
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caused by a dam failure.  Data from previous dam break floods may be used as a general guide to 

delineate a rough estimate of the inundation zone, but simulating specific failure events with 

physical or numerical models gives a more accurate solution.  Many sets of results for different 

scenarios may be required during the preparedness phase of planning for a dam failure, and 

results may be required much quicker during the response phase, when the dam failure event is 

actually happening.  Therefore, the model upon which the flood inundation maps are based must 

be able to generate results with adequate accuracy in a timely manner. 

 Recent advancements in computer technology have allowed numerical models to become 

a useful tool for solving dam break problems and problems involving fluid flows in general.  

Dam break models must account for the dam failure, the outflow of water from behind the dam, 

and the spread of water over the terrain downstream.  Due to past limited computational 

resources, one-dimensional models such as Hydrologic Engineering Centers River Analysis 

System (HEC-RAS) were developed and remain popular.  These models require the generation 

of cross sections from the terrain and an estimation of the time-varying outflow of water through 

the dam breach.  Non-channelized flow over flat areas is difficult to simulate because of the 1D 

nature of the models.  In addition, 1D models assume that the flood wave arrives at the entire 

width of each cross section at the same time, leading to errors in arrival time calculation.  For 

consequence analysis, the results simulated using 1D models need to be converted into a two-

dimensional inundation map using painstaking and time consuming interpolation procedures on a 

Geographic Information System (GIS) platform. 
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 As computing power increased, two-dimensional models became more feasible.  These 

models improved upon some of the difficulties encountered by 1D models, but early numerical 

schemes had problems with mixed flow regimes and discontinuous flows.  The emergence of 

GIS and remote sensing technologies facilitated setting up simulations and visualizing results.  

These GIS platforms simplify data preparation by importing bed elevation and roughness data, 

spatial layers of infrastructure, and by allowing the user to quickly define modeling feature such 

as dams, roads, levees, embankments, and source or sink areas.  One such modeling software 

package based on a GIS platform is the Decision Support System for Water Infrastructural 

Security (DSS-WISE™) with a numerical model called CCHE2D-FLOOD, developed at the 

National Center for Computational Hydroscience at the University of Mississippi. 

 The research efforts described in this thesis document pertain to improving the numerical 

model to better predict the inundation from dam break flood simulations.  The original 

CCHE2D-FLOOD code operates on a two-dimensional regular grid of cells covering the 

domain, with terrain elevations and flow variables defined at the center of these equal-size 

square cells.  The dam and its associated breach geometry are modeled by directly imposing their 

elevations onto the cells in the domain.  Even with current computer technology, it may not 

possible to solve large flood inundations in an agreeable amount of time because of limitations in 

cell size required by modeling small features in the domain and the associated time step imposed 

by the small cells.  The potential inundation area may be thousands of square kilometers, and the 

desired cell size may be less than 10m, resulting in hundreds of millions of cells.  Another 

challenge may be that the terrain data does not exist in the desired detail.  Small features such as 

levees, channels, and dam breaches may not be captured adequately in the existing DEM data.  

To model a large flood in a reasonable amount of time, concessions may be made by increasing 
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the cell size, thereby reducing the total number of cells to cover the given area and reducing the 

associated computational burden.  However, since the dam breach is modeled directly by 

modifying the terrain elevation of the cells covering the breach area, the cells may be too large to 

properly model the breach and resulting outflow of water.  Adding to the difficulty is the fact that 

dam orientation may not align with gridlines in the domain.   This results in the need to use a 

larger breach width to provide a minimum opening in the dam through which water can flow, 

and this may not depict the desired breach geometry correctly. 

 To model the dam breach properly, one option is to simply model the entire domain with 

more detail using smaller cells and accept the longer time requirements for computation.  

Another option is to model the breach process and flow discharge with some other software and 

use the results as input for the inflow of water into the area just downstream of the dam.  The 

method undertaken for this research involves a third option using local refinement- modeling the 

breach with greater detail simultaneously with the coarser cells in the rest of the domain.  This 

quadtree local refinement technique involves data structures and computational algorithms for 

calculating a hierarchy of refined cells, where one larger cell is split into four smaller cells, each 

of which may be refined in turn until the desired level is achieved.  This allows the breach to be 

modeled by changing the elevations of the small cells in the dam while keeping the cells in the 

rest of the domain at their regular size.  This is beneficial since dam break floods can cover a 

large area compared to the size of the breach itself.   

 In order to implement the quadtree local refinement technique, the numerical solver was 

changed from its original first-order upwinding scheme to an HLLC scheme.  Several parts of the 

code were rewritten to accommodate the new computational mesh, including data structures, flux 

solver, input and output subroutines, automatic calculation of the required dam refinement level, 
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and automatic refinement of cells near the dam to the appropriate level.  The HLLC solver was 

tested with classical cases, and gives good agreement with the known analytical solutions.  

Several test cases involving the breaching of dams with different orientations relative to the grid 

lines and different refinement levels were then carried out.  For each orientation, a control case 

was simulated where all cells in the domain were the minimum size (global refinement).  The 

time to compute the control case and the discharge hydrograph of water going through the breach 

were calculated.  Then for each given dam orientation, the cells in the domain were coarsened 

while using local refinement to keep the cells near the dam breach at approximately the original 

small size.  This method allows the breach to be represented with sufficient detail while reducing 

the number of cells in the rest of the domain.  The computational time and breach discharge were 

then compared with the control case.  In each case the intended breach geometry was the same, 

matched as closely as possible by the refinement technique.  It is the aim of the research 

presented here to show that local refinement allows the cell size in the domain to become 

independent of the breach geometry size, and that the quadtree local refinement method offers 

improvement in computational time over global refinement while maintaining accuracy in breach 

discharge. 

 Chapter 2 of this document gives some background and context for this research.  

Chapter 3 details the existing CCHE2D-FLOOD model and the incorporation of the HLLC 

numerical scheme.  Chapter 4 describes the implementation of the quadtree local refinement 

method into the model.  Chapter 5 presents cases used to test the quadtree refinement method 

and their results along with the performance of the model.  Conclusions from this research are 

drawn in Chapter 6. 
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II. BACKGROUND AND THEORY 

 Water covers the majority of the surface of the Earth and is required for life, so it is only 

natural that humankind has made attempts to study and control it through the ages.  Ancient 

Chinese built dikes along rivers thousands of years ago, and Leonardo Da Vinci wrote about the 

study of it in the fifteenth century.  We have built our knowledge and understanding of water 

over time to help us use it for our purposes, be they for drinking and irrigation, controlling 

floods, recreational activities, or to use its energy to do useful work.  One of the key ways to 

accomplish this task is the construction of dams. 

 Dams are built to be safe, but things change over time.  People may move into the 

inundation zone downstream of the dam, and new infrastructure may be built there as well.  The 

dam's construction materials age, and its foundation can settle.  Natural disasters such as 

earthquakes or flooding may strike the dam, or man-made hazards such as explosions or 

mismanagement may affect it as well.  There is a need to prepare for such unknown hazards 

ahead of time, and to be able to plan and respond in a way that minimizes the potential 

consequences should the dam fail.  To understand the consequences of a flood, the areas affected 

by the flood must be known.  The affected area, or inundation zone, is estimated by modeling. 

 As has been very well explained in Altinakar et. al., 2009, a large number of numerical 

models exist for computation of dam break flows, which range from simplified envelope 

methods, to one-dimensional and two-dimensional models of various complexity.  One-

dimensional models are common in engineering practice due to the historical and perceived 
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difficulties in setting up and running 2D models, despite the fact that dam break floods may 

violate the assumptions of the 1D model.  Rapidly-varying flows common in dam breaks may 

lead to stability problems in models designed to simulate slowly-changing fluvial floods, and the 

restriction of using a single value of flow depth at each cross-section may give inaccurate results 

for the arrival time and a misleading envelope of maximum depths for the flood.  Additionally, 

the 1D flow information at the cross sections must be interpolated back to the 2D map in a 

process that can be time consuming and require an experienced engineer to do properly.  In 

contrast, 2D  models directly solve for flow values at each grid cell in the domain, eliminating 

the need for cross-section generation and interpolation of 1D results into a 2D map.  Advances in 

geographical information systems (GIS) have facilitated storage, retrieval, and modification of 

large amounts of geospatial data required by 2D models, including topography, land cover, 

roughness data, etc.  These advances in GIS technology along with ever advancing computing 

speed and storage capabilities of modern hardware have made 2D flood models practical on large 

domains. 

 Flood modeling is accomplished by applying governing equations to a problem domain 

and a set of assumptions.  For fluid flow problems, the solution is governed by the Navier-Stokes 

partial differential equations, named after Claude-Louis Navier and George Stokes.  For open 

channel flow, the Saint Venant Equations, or shallow water equations, are derived from the 

Navier-Stokes equations by making the following assumptions: 

1. Horizontal length scale is much larger than the vertical length scale. 

2. Streamline curvature is small. 

3. Vertical velocity of the fluid is small. 
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4. Vertical accelerations of the fluid are negligible, resulting in vertical pressure gradients 

that are hydrostatic. 

 In one dimension, the shallow water equations can be written as Equations (1) and (2), 

where A  is the wetted cross section area, h  the local flow depth, 
h
R   the hydraulic radius, 

VAQ    the discharge with  V  being the average velocity, 
q  the lateral discharge (which is a 

volume source or sink per unit length per unit time), g the gravitational acceleration, 
b
z  the 

elevation of channel invert, and C represents the Chezy coefficient of roughness. 
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 These nonlinear, hyperbolic equations represent the conservation of mass and 

momentum, respectively.  Analytical solutions of these equations exist only for a limited set of 

simplified cases, so the numerical solution must be used for problems involving irregular 

channels, complex boundary conditions, etc. 

 Numerical solution of the shallow water equations can be done using an implicit scheme, 

where values at all computational nodes are solved simultaneously, or using an explicit scheme.  

The explicit scheme is more straightforward to program, where flow values at the next time step 

are computed based only on known values at the current time step.  However, this time step is 

governed by the Courant–Friedrichs-Lewy (CFL) condition for stability of the solution, and may 

be small. 
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 Dam break flood models must be able to handle the various challenges inherent to the 

flow.  The flow regimes may be mixed between subcritical, transcritical, and supercritical, and 

may evolve over time.  There may be discontinuities in the flow involving hydraulic jumps, 

positive translatory waves, etc.  There may be dry conditions downstream of the dam that 

become flooded and possibly dry out again, requiring the model to handle these cases of wetting 

and drying.  The topography of the domain may be steep or highly irregular.  This may lead to 

large source terms generated by the bed slopes. 

 An effort to address these challenges resulted in shock-capturing finite volume methods 

for solving the shallow water equations.  Since shocks may arise in the solution even with 

smooth initial conditions, models must be able to handle discontinuities and mixed flow regimes.  

This requires the model to take into account the wave structure of the shallow water equations.  

Models must be able to solve smooth regions with high spatial accuracy while capturing 

discontinuities as sharply as possible without generating non-physical oscillations.  Recent 

decades have seen improvements of finite volume high-resolution upwind methods which take 

into account the wave structure of the equations and respect the direction of propagation of 

perturbations while capturing discontinuities in the flow. 

 In order to maintain these properties, the 1D form of the shallow water equations must be 

re-written into the conservative form in Equation (3),  where U   is the vector of conserved 

variables, F(U)   is the flux vector and  S(U)  represents forcing function consisting of source 

and sink terms. These terms are defined in Equation (4). 

S(U)
F(U)U











xt  
(3) 
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 The equations above are in differential form, but can be cast into integral form in order to 

capture discontinuities.  Integrating over these equations over the solution space shown in Figure 

II-1 and applying Green's Theorem results in Equation (5). 

  n

iii

i

n

i

n

i
StFF

x

t
UU 










2/12/1

1

 
(5) 

 

 

Figure II-1:  Time-space discretization of solution domain for 1D shallow water equations 

 

 This form of the equations is governed by the time integrals of the numerical fluxes at the 

left and right interfaces of the cell, and depends only on the values of the conserved variables at 

the current time step. 
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 Classical solutions to the flux terms in these equations do not take into account its wave 

structure.  Forward Time Centered Space, Lax-Friedrichs, and Godunov Centered are examples 

of such schemes that can result in unstable solutions that grow without bound in certain 

conditions.  S. K. Godunov  is credited with writing solutions for intercell fluxes in what are 

called Godunov-type upwind methods, which take into account the wave structure of the 

equations to achieve a better representation of the propagation of information in the 

computational domain.  The basic principles of Godunov-type upwind methods are shown in 

Figure II-2.  This figure shows the x-t domain of a 1D problem domain with the conserved 

variable along the x axis and the time domain of the solution in the t axis.  The channel is 

discretized with a cell size of    and a time step of    that respects the CFL condition.   

a) The initial conditions are known everywhere at the beginning in (a).  The goal is to 

advance this solution to the next time step respecting the wave structure and propagation 

direction of the information. 

b) In (b), the average value in each cell is taken by integrating over the control volume. 

c) In (c), the integrated values are assigned as piecewise-constant functions with 

discontinuities at the interfaces.  

d) In (d) the Generalized Riemann Problem (GRP) is included at each cell interface.  The 

GRP is likened to a dam-break problem with different depths and velocities on either side 

of the discontinuity.  The resulting left and right-moving waves can be either shock 

waves or negative waves. 

e) The GRP may be solved exactly or approximately.  Only the conserved variables at the 

cell interfaces are needed to determine the Godunov-type intercell fluxes. 
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f) With the intercell fluxes calculated, the solution at the next time step can be evolved 

using Equation (5). 

 

Figure II-2:  Procedure for computing first-order Godunov-type upwind scheme using the 

Generalized Riemann Problem. 

 

 Two-dimensional solutions involve the same steps as above, but the second dimension is 

solved at each time step along with the first.  The first-order Godunov method is a starting point 

for various other schemes that use different calculations for numerical flux at the cell interfaces.  
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In 1983 Harten, Lax, and Van Leer published the HLL approximate Riemann solver that uses an 

estimation of the local wave speed information to calculate the numerical flux across the cell 

interface.  While stable and having no need for an entropy fix, this scheme ignores the contact 

wave, the possible jump in one of the three conserved variables  in the direction perpendicular to 

the interface being solved.  Toro modified the HLL scheme to include the contact wave, resulting 

in the HLLC numerical scheme that more appropriately handles 2D flow.  Various authors 

describe ways of handling source terms and wetting and drying within the HLLC framework.  

This allows the scheme to be used in complex topography in mixed flow regimes which are 

common in dam break problems. 

 Ever advancing speed and storage capabilities of modern hardware has enabled 

simulating larger and more detailed flood models.  Still, modules using explicit numerical 

schemes have time steps limited by the CFL condition, which is a necessary condition such that 

information moving at the fastest wave speed in the domain will not cross more than a single cell 

in a time step.  Thus decreasing the cell size of the mesh used during computation by a factor of 

two has the effect of doubling the number of cells in both the x- and y- directions as well as 

halving the time step for a total of eight times the computational burden.  In a regular mesh with 

a single global cell size, the cell size must be a compromise between having small enough cells 

to get an adequate level of detail for features of interest while also limiting the computational 

burden so the simulation finishes in a reasonable amount of time. 

 Recently domain decomposition techniques have been applied to flood modeling to 

address the need for locally-varying level of detail while retaining the benefits of using a 

Cartesian mesh.  One such technique is the telescopic mesh, where a region of the domain is 

solved at a different resolution from the rest, and the two meshes are connected via edge fluxes.  
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Quadtree refinement  is another technique which uses the idea of a quadtree, named by Finkel 

and Bentley (1974), to spatially relate cells of different sizes through a hierarchy of parent-child 

relationships.  These ideas are popular in the field of image processing for quickly resampling 

images,  and they have been applied to computational fluid dynamics for the same reasons.  In 

this method, cells are refined according to a set of rules that maintain a strict one parent cell to 

four child cell relationship.  Through careful consideration of refinement rules, time step, flux 

terms, and source terms, the quadtree local refinement technique has been successfully used to 

model areas with greater level of detail than the rest of the domain. 

 The current work replaces the numerical scheme in an existing model with HLLC and 

uses quadtree local refinement techniques to model dam breach geometry.  This enhanced model 

inherits the benefits of the HLLC numerical scheme, including being able to handle rapidly-

varying flows over discontinuous areas with different flow regimes over complex bed 

topography with wetting and drying.  These properties are essential to a fast and robust flood 

model solving dam break flows.  In addition, the model can resolve the dam breach geometry 

with greater level of detail using quadtree refinement without having to increase the resolution of 

the much larger inundation area.  This combination retains the benefits of a regular Cartesian 

mesh while being able to decouple the size of the dam breach geometry from the global cell size. 
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III. DISCUSSION OF EXISTING MODEL 

1. INTRODUCTION 

 The computational engine of DSS-WISE™ is the CCHE2D-FLOOD program.  This 

state-of-the-art numerical model, written in modern Fortran, solves the conservative form of two-

dimensional (2D) shallow water equations (SWE) over complex natural topography using a first-

order, finite volume, shock-capturing scheme.  It can handle mixed flow regimes, wetting and 

drying, and spatially-varied roughness values.  It is relatively easy to set up because it uses a 

DEM (digital elevation model) directly as its computational domain. CCHE2D-FLOOD contains 

an assortment of engineering capabilities, including modeling of controlled release of water 

using source and sink areas, calculation of partial dam breaches, delineation of sub-grid linear 

features through the cut-cell immersed boundary method, and numerous forms of output 

including time history of flow values at specified points or discharges across arbitrary 

observation lines in the domain.  The current work inherited this existing code base with the 

intent of improving the representation of partial dam breaches.  However, the existing first-order 

upwinding numerical scheme proved to be incompatible with the design goals and had to be 

replaced before quadtree local refinement could be introduced.  The new scheme had to fulfill 

the same requirements as the original scheme while reducing complexity and improving speed 

wherever possible.  The HLLC numerical flux solver was selected to fulfill these requirements.  

A general description of the numerical scheme in CCHE2D-FLOOD will be discussed, followed 
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by a description of the original first-order upwinding scheme.  Finally the new HLLC scheme 

will be discussed, and its verification presented. 

 

2. FIRST-ORDER UPWINDING NUMERICAL SCHEME 

 In general, the computational domain is a rectangular area divided into a regular grid of 

square cells.  Each cell has four neighbors with which it shares an edge.  The cell and its four 

immediate neighbors form the computational stencil, shown in Figure III-1, for both schemes 

referenced above. 

 

Figure III-1. Cartesian regular mesh and the computational stencil used by CCHE2D-FLOOD. 

White area is the computed domain and orange cells are boundary cells. 

 

 This domain represents the natural topography of the modeled area, which may be 

complex, as shown in Figure III-2. 
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Figure III-2: Definition sketch for two-dimensional shallow water flow over complex topography 

 

Referring to Figure III-2, the vector form of conservative 2D shallow water equations is given as: 

  

  
 
     

  
 
     

  
      (6) 

 In the above equation,   is the vector of conserved variables,      and      are the 

fluxes in   and   directions, respectively, and      represents the vector of source and sink 

terms. 

 Finite volume discretization of Equation (1) over a regular Cartesian mesh depicted in 

Figure III-1, such as a DEM, provides an explicit equation for computing the values of the 

conserved variables at the next time step     using the values known at the current time step 

 : 

    
        

   
  

  
   

  
 
   
  

  
 
   
   

  

  
   

    
 
 
  

    
 
 
         (7) 
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where    and    define cell size in   and   directions, respectively, and    represents the time 

step.   

 The computational stencil for Equation (7) is shown in the right image in Figure III-1. To 

develop an upwind scheme that takes into account the wave structure of the 2D SWE, we adopt 

the Godunov approach (Godunov et al., 1976) to express the fluxes through east and west 

intercell boundaries,          and         , and north and south boundaries,          and         . 

The Godunov approach computes the intercell fluxes by solving a Generalized Riemann Problem 

(GRP) at each cell interface. The exact solution of GRP is iterative and time consuming. 

Consequently, it is rarely used in numerical models. A large number of approximate methods 

have been proposed. Detailed information about GRP and its approximate solution methods can 

be found in LeVeque (2002) and Toro (2010). 

 The explicit scheme used in CCHE2D-FLOOD to solve the 2D SWE is subjected to 

Courant-Friedrichs-Lewy (CFL) condition for stability and convergence. The CFL condition 

states that during a time step, the fastest wave in the domain should not travel a distance longer 

than the cell size. Given a computational mesh with a specified cell size (     ), the CFL 

condition places an upper bound on the time step (  ) as follows: 

         
  

  
          

  

  
             (8) 

 This property is used to automatically select the time step,   , at the beginning of each 

new time step. The CFL number is a necessary but not sufficient condition to ensure model 

stability, therefore, in order to address other concerns for stability and convergence, such as 
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conserving positivity of depth in drying cells and large source terms, a CFL number significantly 

less than one is used. 

 The original first-order upwinding scheme defined the vectors in Equations (1) and (7) as 

follows: 

   
 
  
  
       

 
 
 
 
 
  
  
 

 
    
  

 
 
 
 

      

 
 
 
 
 
  
    
 
  
 

  
 
 
 
 

       

  
                
                

  

 

(9) 

 In Equations (8) and (9),   and   are the local velocity components in   and   directions, 

   is the unit discharge in the x-direction,    is the unit discharge in the y-direction,    the flow 

depth,    the bed elevation,   the gravitational acceleration and    the net source/sink discharge 

(or mass per cell area per unit time) added without momentum input. The system of equations is 

closed by assuming that the source terms due to friction can be expressed using the Manning’s 

equation: 

    
         

    
    and        

         

    
 (10) 

where n is the Manning roughness coefficient.  

 The original numerical flux solver utilized these formulations to determine the intercell 

fluxes using the upwinding direction: 
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 Essentially, if the flow normal to the edge on either side has the same direction, the 

values are taken from the upstream direction.  If the flow on either side of an edge have different 

directions (contrary flow), then flux values are a combination of the upstream and downstream 

flow values.  However, there is little mathematical justification for the latter case and the factor 

of one-third.  Also, these equations do not allow for the influence of the downstream  flow values 

in unidirectional sub-critical flow.  Finally, the movement of part of the bed slope source term to 

the left hand side of the equation in the contrary flow case creates a difficult situation to handle if 

the edges are allowed to be split as in the case of quadtree refinement. 

 In this method during a time step, the fluxes on each cell edge are calculated and stored.  

The values of the conserved variables are then updated according to Equation (7) with the time 

step limited by the global limiting flow values in Equation (8).  Despite a CFL value of only 0.2, 

an additional sweep over all cells is required to ensure the depth-positivity requirement.  If a 

cell's depth becomes negative during a single time step, then either the time step was too large or 

the combination of its calculated intercell edge fluxes was too large.  Therefore, a complicated 

method of reducing outgoing fluxes by some factor is applied to those cells with negative depths.  

Each edge with a mass flux that carries water out of a cell has all its fluxes scaled down by a 

factor.  The factor is the total available mass (depth) in the cell divided by the total outgoing 

mass fluxes.  However, this flux-reduction procedure does not guarantee an acceptable solution, 

since reducing the outgoing fluxes from one cell also reduces the incoming fluxes to its 

neighbors.  This reduction strategy might induce negative depths in neighboring cells, which in 

turn would require adjustment of their fluxes. 
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 This flow solver has certain features that make it undesirable for the implementation of 

local refinement.  The first is that the updating of a cell’s flow values uses upwinding, and a 

decision on the upwinding direction requires information about cells on both sides of a given 

cell.  This is not a problem in cases with a uniform cell size, but decision becomes difficult when 

there is more than one adjacent cell on a on a given side as in the case of local refinement.  In 

fact, with quadtree local mesh refinement, a cell can have up to 8 neighbors.  This would make it 

very difficult to determine the upwinding direction in a robust way or to implement the flux 

reduction scheme mentioned above  These drawbacks to the first-order upwinding numerical 

scheme made the implementation of quadtree local refinement impractical.  These limitations 

could be removed and results made more accurate by replacing the numerical scheme with one 

that is more robust, and HLLC was introduced as a result. 

 

3. HLLC NUMERICAL SCHEME 

 CCHE2D-FLOOD has been adapted to use the first order HLLC Riemann solver (Toro et 

al., 1992, and 1994), which is a modified version of the HLL (Harten, Lax and van Leer) 

Riemann solver originally proposed by Harten, Lax and van Leer (1983). The C in HLLC 

method stands for the contact wave (when solving for one direction, the changes in the 

perpendicular direction behave as contact waves). The implementation of HLLC in CCHE2D-

FLOOD follows the methodology presented in Kim et al. (2007). 

The vectors of conserved variables become: 
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(13) 

 The variable meanings are the same as in Equation (9), and    ,    ,    , and     are the 

depths computed and the left, right, bottom, and top cell interfaces, respectively. 

 To compute the HLLC fluxes, first the maximum and minimum wave speeds and the 

speed of the contact wave are determined using the Equations (14) to (17): 

If the left cell is dry 

           
     

          

 (14) 

If the right cell is dry 

          
     

           

 (15) 

Otherwise 

                         

       
     

 
           

                        

 (16) 

where 

   
 

 
 
 

 
            

 

 
        

 

 (17) 
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 Based on the wave speeds given by Equations (14) to (17), the intercell flux can be 

directly computed from one of the four expressions given below: 

 

   

  for     
  
           

      for        
   
           

      for        
  for     

  (18) 

with 

  
     

     
     

  
 
  
  

  (19) 

where      . 

 

 

Figure III-3:  Procedure for calculating the intercell flux by taking into account differences in bed elevation 
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 As it can be seen, in this implementation the wet/dry interface is considered explicitly 

and the computations are done accordingly. A special procedure is implemented to take into 

account the bed elevation differences between the left and right cells. Consider the situation 

depicted in Figure III-3. Let the interface   be located between the left cell ( ) and the right cell 

( ). The bed elevation at the interface is defined as: 

                 (20) 

The following temporary values of variables are used for the left (L) and right (R) cells in 

computing the fluxes: 

if                  
             

otherwise   
    

    
   

 (21) 

if                               

otherwise   
    

    
   

 (22) 

 Computation of the gradients of the bed elevation, which appear in the source terms, also 

requires a special consideration.  For the cell (i,j), the gradients of bed elevation in   and   

directions are carried out using the following expressions: 

   
  

 
           

  
  and   

   
  

 
           

  
 (23) 

in which the up and down bed elevations are defined by 
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in   direction  
                             

                           

 

in   direction  
                             

                           

 

 (24) 

 The depth part of the bed slope source term,           in the x-direction and      

     in the y-direction, are the sums of the depths at a cell's left and right interfaces, or bottom 

and top interfaces, respectively. 

 

 It is also important to note that when the computed depth in a cell becomes less than or 

equal to a very small value, say        m, the cell is assumed to be dry and the velocity 

components are set to zero.  Otherwise, the velocities in the cell c can be computed from its 

conserved variables: 

   
   
  

  

   
   
  

 

(25) 

 To prevent oscillations caused by the friction term, that part of the source term is 

linearized.  Detailed below is the linearization of the friction term in the x-direction momentum 

equation, but the y-direction is handled in a similar fashion.  Writing out the x-direction 

momentum equation from Equation (13) gives Equation (26) below. 
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(26) 

The variable   is the manning roughness coefficient for the cell, with units of 
 
 
 
 

 
.  Gathering the 

   
    and    

    terms in the friction term to the left hand side of the equation gives Equation 

(27): 

      
          

     

 

  
     

 
     

  
 
     

  
 

    
    

 
 

 

 

       
  

  

  
  

  
 
   
  

  
 
   
  

  

  
  

    
 
 
  

    
 
 
 

      
 

 
  

  
 
   
  

  
 
   
  
           

  
   

(27) 

Factoring       
    gives Equation (28): 
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(28) 

Finally, by dividing the term SF on both sides of Equation (28) gives Equation (29): 

      
           

  
  

  
  

  
 
   
  

  
 
   
  

  

  
  

    
 
 
  

    
 
 
 

      
 

 
  

  
 
   
  

  
 
   
  
           

  
    

 

  
 

(29) 

where 

   

 

 
 
    

 

  
     

 
     

  
 
     

  
 

    
    

 
 

 

 

 

 
 

 (30) 

 

 

4. MODEL VERIFICATION 

 The verification of the HLLC numerical scheme is presented using three categories of 

common test cases.  The first category is a simple dam break over a flat, dry, frictionless surface.  

The second category involves steady-state flow with different upstream and downstream 
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boundary conditions on another flat, frictionless domain.  The selection of boundary conditions 

in each test is designed to result in a subcritical, transcritical, or supercritical flow regime.  The 

third category tests the so-called "C-Property" of the model:  the tendency of a flat, still water 

surface to remain undisturbed over a complicated bed surface.  If the water surface remains still 

after some amount of time, then it means the source terms properly balance the flux terms  These 

test cases are presented as one-dimensional, but the second dimension for the 2D model is 

represented as being a single cell wide.  The results of these verification tests are presented 

below. 

 

A. Simple Dam Break 

 A one-dimensional or pseudo-two-dimensional dam break test case is commonly used to 

verify that the water surface elevation profile, velocity profile, and arrival time of the wave 

match the analytical results obtained from an exact Riemann solver.  The domain, shown in 

Figure III-4, consists of a frictionless area 1,200m long with a dam at x= 500m, with one of two 

initial conditions.  The first is with 10m of water upstream and dry downstream while the second 

is 10m of water upstream and 2m of water downstream.  In both cases the water has no initial 

velocity, and the dam is removed instantaneously at the very beginning. 
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Figure III-4: Initial Depths.  Left:  Dry downstream.  Right:  2m depth downstream 

 

 After 10 seconds, the velocity of the water with dry downstream conditions is shown in 

Figure III-5.  Some numerical diffusion is present in the depth profile, but overall the results 

match rather well.  The velocity profile shows that the tip of the wave has advanced farther than 

the exact solution to about 800m.  The velocities in the leading edge of the wave remain high, 

but depths at these locations remain very small.  This small error is likely exacerbated by the fact 

that there is no bed friction in this case.  The velocity of water with wet downstream conditions 

is shown in Figure III-6.  The depth profile again shows some numerical diffusion, but the 

velocity profile matches much better.  Overall, these results show an acceptable match to the 

exact solution. 
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Figure III-5:  Water depth and velocity 10s after dam break with dry downstream conditions 

 

 

  

Figure III-6:  Water depth and velocity 10s after dam break with wet downstream conditions 
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B. Flow regime tests 

 The second set of verification tests involve subcritical, transcritical, and supercritical 

flow regimes to verify the shock-capturing properties of the numerical scheme.  For these tests, a 

frictionless domain 25m long has a 0.2m high bump centered at x= 10m.  There are three types 

of upstream and downstream boundary conditions designed to give different steady-state 

solutions. 

 Figure III-7 shows the results of the first test case.  The left or upstream side of the 

domain has a constant unit inflow discharge of 4.42 m³/s/m while the downstream boundary is 

set to a constant depth of 2.0m.  This discharge causes the flow to remain subcritical throughout 

the domain.  The bump causes a depression in the flow depths, but the cell-center discharge 

remains constant, save for a well-documented local deviation near the bump. 
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Figure III-7:  Subcritical Flow. 

 

 Figure III-8 shows the second test simulation where the left or input unit discharge is 0.18 

m³/s/m, and the downstream depth is set to 0.33m.  These conditions result in subcritical flow 

upstream of the bump, supercritical flow over the bump, followed by a hydraulic jump back to 

subcritical flow downstream of the bump.  This is clearly shown in the plot of water surface in 

Figure III-8.  Again, the cell-center discharge is constant except for the local deviation near the 

bump.  A small bump in the water surface elevation is observed at the upstream edge of the bed 

bump, but this is commonly seen in other models with this test case as well. 
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Figure III-8:  Transcritical Flow with a Shock 

 

 Figure III-9 shows the third test case with an upstream unit discharge of 1.53 m³/s/m, and 

an open boundary downstream.  The water enters the domain in the subcritical regime, then 

passes through the critical depth over the bump, and remains supercritical until it exits.  The cell-

center discharge remains constant through the domain except for the local deviation near the 

bump.  A small bump in water surface elevation is seen at the upstream edge of the bump in the 

bed, just as in the previous test case. 
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Figure III-9:  Transcritical Flow Without Shock 
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C. Still-water Property 

 The final verification test shows that the source terms are properly balanced and that they 

generate no spurious oscillations in a flat water surface with sloping bed elevations.  Figure 

III-10 shows a domain 50m wide with a complicated bed.  The water depths over the domain 

were set such that when added to the bed elevation, the water surface elevation was everywhere 

equal to 10m.  The simulation was run for 100 seconds with these water depths and no initial 

velocity.  At the end of 100 seconds, the water surface remained undisturbed with no spurious 

velocities, thus showing that the source terms are properly balanced.  

 

Figure III-10:  Flat water surface with complicated bed. 
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5. DISCUSSION 

 The existing numerical flood model, CCHE2D-FLOOD, represents a collection of tools 

and procedures aimed at solving dam break and other flooding simulations.  It represents a body 

of engineering knowledge and effort that allows flood inundation maps, discharge data, and other 

crucial information to be calculated quickly and with minimal setup required.  It is for this reason 

that the current work was done within the existing framework utilizing its useful features.  The 

enhancement of representing small features such as dam breach geometry using quadtree 

refinement required a superior numerical flux solver to be implemented.  The HLLC numerical 

scheme was selected for this purpose and integrated into the existing model to replace the first-

order upwinding scheme.  This new scheme was verified to give correct results in a variety of 

different flow regimes and conditions.  With a modern and capable numerical solver, the 

program is now ready to receive the quadtree local refinement feature. 
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IV. IMPLEMENTATION OF QUADTREE LOCAL REFINEEMNT 

1. OVERVIEW 

 The basic method of computation in CCHE2D-FLOOD consists of a regular array of 

square cells that are all the same size.  The flow values of water depth, x- and y-velocity, and the 

values of bed elevation, arrival time, and maximum depth record are stored at each cell center.  

As shown in Figure IV-1, computed values are updated by first sweeping over each of the edges 

shared between cells and calculating fluxes, then sweeping over each cell and using the edge flux 

values to update the flow values.  The edges are independent, so as long as all the edges are 

calculated before updating the cell center values, they can be calculated in any order.  This 

concept still applies in the way the quadtree method is implemented, only instead of sweeping 

over a two-dimensional array, the computational cells of various sizes are stored in a linked list.  

method allows different sized cells to be stored in separate lists while allowing parent cell and 

child cells to relate to each other using pointers.  A diagram of this is shown in Figure IV-2.  The 

"base-level" or "C1" cells in the quadtree mesh are the same size as those in the regular two-

dimensional arrays.  Once the sufficient and valid quadtree mesh is created, it is kept static. 
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Figure IV-1:  Basic computational sweep pattern.  White cells are dry.  Blue cells are wet.  

Yellow cells are ghost cells with which to calculate boundary conditions. 
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Figure IV-2:  Hierarchy of cells in the quadtree data structure.  The largest or coarsest cells are 

level C1.  Higher levels of refinement are denoted by higher numbers.  The flattened bottom 

image shows the various refined cells stacked together. 

 

2. MESH CREATION 

 One of the critical aspects of the current implementation of the quadtree method is 

defining which areas need to be refined and by how much.  The only limits to refinement are 

practical ones, where it would no longer be beneficial to refine an area because of diminishing 

returns in accuracy or in terms of added computational burden.  To this effect, an upper limit on 

refinement level is set at 8, meaning that a base-level cell can turn into a maximum of 16384 

cells at the maximum level.  To put it a different way, a 100 meter cell refined to this level would 

in effect become a group 128 cell-lengths on an edge, each tiny cell being only 0.78125 meters 

wide.  For most simulations, however, the refinement level may  be kept much lower in order to 

minimize computational burden. 
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 In the current work, only cells in the footprint of a dam are refined.  However, other 

features requiring locally-small cell sizes could be refined using a similar method. 

 Each dam's maximum level of refinement is calculated from its breach geometry.  There 

can be any number of breach profiles defining the progression of the breach, and each one 

corresponds to the pattern of elevations along the dam's length at a snapshot in time.  Since the 

progression is assumed to progress linearly in time between adjacent profiles, only the user-given 

profiles need to be considered.  To be able to accurately model the geometry of each profile, 

each one is analyzed to find the width of its smallest feature.  Two or more successive data 

points that are not at the level of the crest are considered to be a feature of the profile.  The width 

of the smallest feature for a dam's breach geometry is then taken as the limiting size.  The 

refinement level is calculated using the formula below, requiring the smallest cell size to be able 

to fit 10 of their widths inside the smallest feature. 

             

   

 

       
  

           
  

 

 

 

      
     

(31) 

Using the numbers from before, where DX= 100m and                , the feature to be 

modeled with 10 cells, the required refinement level for the dam is calculated to be: 
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That is, a refinement level of 8 is required to turn 100m cells into a size small enough to resolve 

a 1m feature, the same result as before. 

 Once the refinement level for each dam is computed, it is time to identify the actual cells 

that need to be refined.  For each dam, its rectangular profile is projected onto the computational 

grid, as in Figure IV-3.  Each base-level cell whose center is inside this rectangle is refined.  The 

process of is repeated recursively for each of the new refined cells, which has already been done 

in the left image of the figure.  It is possible that a base-level cell does not have its center inside 

the dam's rectangle, but  has a neighbor that is inside, as in the orange cell in the left image of the 

figure.  These cells are tested to see if any of their would-be refined cells would lie inside the 

dam if it were to be refined to the maximum level, as in the middle image.  If so, then that base-

level cell is refined, as in the right image in the figure, and the process is repeated recursively for 

its children. 
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Figure IV-3:  Refinement of cell adjacent to dam.  Left:  Orange cell's center is outside the blue 

dam, but an adjacent cell is inside the dam.  Middle:  Marked centers of cells if the orange cell 

were to be refined.  Right:  Top right child cell would be inside the dam, so the cell is refined. 

 

 When refining cells, a basic rule must be followed to maintain a valid quadtree mesh.  

The rule requires that adjacent cells differ by no more than one level of refinement.  Put another 

way, each cell have at most two neighbors on a given side.  If refining a cell causes one of its 

neighbors to violate this rule, then that neighbor must also be refined.  Since the neighboring cell 

was refined, the rule must be enforced for that cell's neighbors as well, recursively, until the 

entire mesh is once again valid.  This process is shown in Figure IV-4.  The top image shows the 

orange cell selected for refinement.  The second image shows the two new right-most child cells 

also being refined.  After this step, in row 3, the cell on the right is still at the base level, and now 

has four neighbors to its left.  Since this cell violates the quadtree refinement rule, it too must be 

refined.  The final image shows a valid quadtree mesh. 
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Figure IV-4:  Quadtree refinement rule.  Row 1:  Orange cell is refined.  Row 2:  Orange cells 

are refined.  Row 3:  Red cell violates quadtree rule.  Row 4:  Final mesh. 

 

 However, this basic rule does not guarantee against rather sudden transitions between 

levels of refinement.  Figure IV-5 shows that the cells highlighted in red in the top image have a 

base-level cell on their left and cells with level  two refinement on their right.  To avoid these 

sharp changes in cell size, an additional rule is imposed when refining cells:  The maximum and 
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minimum level of refinement amongst all neighbors of a given cell must be less than or equal to 

one.  The red cells in the figure below have a neighbor to the left with level zero and cells to their 

right with level two, or a difference of two, thus violating the rule.  The solution requires that the 

adjacent cell(s) with the lower refinement level must also be refined.  This process is also 

repeated recursively until all cells in the quadtree mesh no longer violate the basic quadtree rule 

or the adjacency rule.  The bottom image in the figure below shows the final mesh. 

 

 

 

Figure IV-5:  Quadtree adjacency rule.   Row 1:  Red cells violate the additional adjacency rule.  

Row 2:  Orange cell must also be refined.  Row 3:  Final mesh. 
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3. DATA STRUCTURES 

 Each base-level cell is represented in the regular mesh by its position and flow 

information, including bed elevation, water depth, water surface elevation, and u- and v-

velocities.  These data are stored in two-dimensional arrays.  The quadtree data structure consists 

of a one-dimensional linked-list, with each list element containing the position and flow 

information along with connectivity information.  The connectivity information links each cell to 

its parent if it has one, to its four children, if it has them, and to its four edges of its same level.  

The edges are stored in a similar one-dimensional linked list containing position information, 

flux values, and connectivity information.  The connectivity information for edges includes its 

parent edge if it has one, its two child edges if it has them, and the two cells of its same level on 

either side.  Cells and edges are stored in a separate list for each refinement level to form a 

group.  Figure IV-6 shows the hierarchy of cells descending from the cell marked C1* in Figure 

IV-2.  Cells which have child cells are marked with a * symbol in the image and are called stem 

cells.  Cells that have no child cells are called leaf cells. 

 

 

Figure IV-6:  Hierarchy of cells. 
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 Like cells, the edges have a hierarchy shown in Figure IV-7, with E1* corresponding to 

the same E1* in Figure IV-2.  Similarly to cells, edges with child edges are called stem edges 

and those without are called leaf edges. 

 

 

Figure IV-7:  Hierarchy of edges. 
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4. MESH CONNECTIVITY 

 For computations using the quadtree local refinement method, the global 2D arrays of 

values are kept from the basic method.  The local refinement mesh is an additional set of data 

structures that allows the differing-resolution cells to be calculated in succession.  The quadtree 

mesh overlaps the basic mesh, as in Figure IV-8, where left and right images show the basic 

mesh on the left and the same area with the quadtree mesh superimposed on the right.  The red 

and green cells in the left image are not computed in the basic mesh since their values are 

overridden by the cells in the quadtree mesh.  Base-level cells in the quadtree mesh along the 

periphery of the refined area, highlighted in red in Figure IV-8,  are duplicates of the 

corresponding cells in the basic mesh.  These duplicates are only calculated in the quadtree 

mesh, since one of their edges has been refined.  After calculation, their flow values are copied 

back to the basic mesh to facilitate communication between the two meshes. 
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Figure IV-8: Connection between basic mesh and quadtree meshes.  The left and right images 

show the same area.  Left:  Basic mesh.  Red cells are shared with the quadtree mesh, and neither 

red nor green cells are computed.  Right:  Quadtree mesh.  Red cells are shared with the basic 

mesh.  Yellow cells have been refined.  Both yellow and red cells are computed in this mesh. 

 

5. NUMERICAL SCHEME MODIFICATIONS 

 At each time step, for each level of refinement, edges in the quadtree mesh are computed 

using the HLLC flux solver only if they are leaf edges.  Similarly, cells are only computed from 

their edge fluxes if they are leaf edges.  If a leaf cell is adjacent to a larger cell on one edge, then 

there is no problem.  That cell will only see a single edge in that direction.  However, if a cell is 

adjacent to two smaller neighbor cells or edges, then the situation is more complicated.  Figure 

IV-9 shows the most complicated valid quadtree cell possible. 
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Figure IV-9:  Locations of edge variables for computing quadtree cell.  The bold F and G terms 

are vectors of fluxes with three components each. 

 

 Referring to Figure IV-9 and the previous chapters, the HLLC numerical scheme is 

modified as follows.  If the edge in the given direction has the same level of refinement as the 

current cell, the flux in that direction is taken directly from the edge.  If the edge in the given 

direction has a higher level of refinement, the flux is the sum of the two child edge fluxes, 

weighted by their half-size: 
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(32) 

Then Equation (2) in Chapter III is modified as such: 

        
   
   

        
   
   

             (33) 

 

Where     is the time step for the  given cell's level of refinement and         is the cell size 

for the cell of the given refinement level. 

 Since the two neighboring cells on a given side may be any combination of wet and dry, 

the source terms must be handled in a different way than they are in the basic grid HLLC 

scheme.  Here, the bed slope source term contribution from each neighboring cell is taken 

independently by way of the edges.  The source term contribution from each of the neighboring 

cells to this one is calculated and stored during calculation of the edge fluxes, which is why these 

terms appear along with the fluxes in Figure IV-9. 
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 The bed slope source term is calculated by summing the individual contributions from 

each of the neighboring edges.  For example, for the bed slope source term in the x-direction: 

Bottom-left quarter of the cell: 

 
 

 
 
 

 
         

         
 
 
   

 

Top- left quarter of the cell: 

 
 

 
 
 

 
         

         
 
 
   

 

Bottom-right quarter of the cell: 

 
 

 
 
 

 
         

         
 
 
   

 

Top-right quarter of the cell: 

 
 

 
 
 

 
         

         
 
 
   

 

Grouping terms and rearranging yields the final form of the bed slope source term in the x-

direction: 

 
 

 

 

   
                                                

                                              

(34) 
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 The bed slope term in the y-direction is derived in a similar manner.  This way of 

handling the bed slope source terms maintains the "C-property" or balance of the flux and source 

terms in still water.  In the case where all bed elevations are flat, then the bed slope source term 

above reduces to zero, as expected.  The bed roughness source term is calculated the same 

linearized fashion as the basic mesh. 

 

6. COMPUTATIONAL ALGORITHM 

 Refined cells and edges are in lists according to their level of refinement, from   in the 

base-level, unrefined cells, to   , cells refined one level, and so on, up to      , the smallest 

cells with the highest level of refinement.  The global time step is calculated from the maximum 

depth and the maximum velocity in all cells in both the basic and the quadtree meshes using the 

usual CFL condition in Equation (3) in Chapter III.  This time step is divided in half for 

computing each level of refinement above the base-level   .  Referring to the flowchart in 

Figure IV-10, the order of computations are as follows.  First, the fluxes on the edges with the 

highest level of refinement     are calculated.  These edge fluxes are used to update the cell-

center values of the cells with that level of refinement.  This first iteration brings those cells 

temporally half of the way to the next-lower level,       .  Repeating this process a second 

time brings them temporally equal to the cells in      .  Then the computation proceeds  to 

compute one iteration of       , and so on, moving to the next-lower level once the current 

level has been computed twice.  During each step, if a cell has children, then its values are not 

computed from its edge fluxes.  Flow values for each of the 4 children are averaged to give the 
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value in the parent cell.  This reduces redundant calculation since the edges of a parent cell have 

already been computed by its children. 

 

Figure IV-10:  Order of calculations 
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 Once all the cells in the quadtree mesh have been computed, the flow values in the base-

level cells are copied to their corresponding cells in the basic mesh, and the edges and cells in the 

basic mesh are computed as normal.  Once both meshes have been updated by one global time 

step, the iteration is complete, and the process starts over until the end time is reached. 

 

7. MEASURING DISCHARGE WITH OBSERVATION LINE 

 One useful feature in the basic CCHE2D-FLOOD model is the ability to query discharge 

across a given line segment.  This feature has been extended to work in both the basic and 

quadtree meshes.  Figure IV-11 shows an example observation line in green.  The observation 

line is represented by a series of equally-spaced points, referring to the colored circles in the 

figure, and each sample point has an associated segment length, shown in red.  Whether in the 

basic 2D mesh or the quadtree mesh, each point falls into a single cell, highlighted in orange.  

This cell determines the size of the interpolation cell, shown in blue.  This interpolation cell's 

corners will touch four cells, shown in orange and yellow.  The values of X- and Y- components 

of discharge for these four cells are used with bilinear interpolation to get the values at the 

sample point.  These values represent a vector of discharge at the sample point.  This vector is 

projected onto the observation line, and component normal to the line is multiplied by the length 

of the segment associated with that sample point.  The positive and negative values of normal 

discharge are summed separately among all the sample points to give the total discharge across 

the observation line. 
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Figure IV-11:  Observation Line.  Top:  First sample point.  Center:  Second sample point.  

Bottom:  Third sample point. 
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8. SPECIAL SITUATIONS 

 Certain special situations can arise when refining cells.  The cells in dam chosen for 

refinement can be adjacent to a reservoir or body of water.  The bed elevations and initial water 

depths in the base-level cells  are known only at the base resolution, so when these cells are 

refined, their values must be passed down to all their refined cells.  This can be a problem 

because a base-level  cell  can be refined in such a way that some of the child cells are inside the 

dam and some are outside, as in Figure IV-12.  The refined cells that are inside the dam take on 

the dam's crest elevation while the ones outside the dam retain the original bed elevation of the 

parent, as in the middle image of Figure IV-12.  Those with the original bed elevation may be 

adjacent to a reservoir cell,  but will inherit the dry initial condition from its dry parent, as in the 

right image in the figure.  If these cells are not handled as part of the refinement process, then 

water from the adjacent cells will immediately rush into them in the first time step, causing 

sloshing in the reservoir before the dam begins to breach.  This problem arises because the 

source of the input water depth data was not aware of the quadtree refinement structure.  The 

solution is to recursively fill any refined cell with the water surface elevation of any of its wet 

neighbors.  Thus the orange cells in Figure IV-12 would take their bed elevations from their 

parent cell, but they would receive the water surface elevation of the reservoir cells to their north 

or west. 
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Figure IV-12: Illustration of problem when refining.  Dark blue cells are in the reservoir while 

white cells are dry.  The dam is the light blue rectangle.  Green cells are refined cells in the dam.  

Orange cells highlight the cells that should have been part of the reservoir.  Left:  Dam is placed.  

Middle:  Cells inside the dam are refined.  Right:  Orange cells are refined, but not part of the 

reservoir. 

 

 

9. DISCUSSION 

 The quadtree local refinement method allows regions of larger cells to be replaced by a 

greater  number of smaller cells.  These refinements of larger cells into smaller cells allow 

modeling greater detail in the flow of water.  The flow can be manipulated by altering the bed 

elevations of the refined cells, just like it is done in the regular mesh to model dam breach 

geometry.  In addition, the discharges in the refined cells can also be probed and summed using 

observation lines.  To accomplish quadtree local mesh refinement, regions of refinement must be 

selected via some means, and the desired level of refinement must be calculated.  In the current 

work, the footprint of the dam is used to identify potential cells to be refined.  The level of 

refinement is determined by the dam's given breach geometry profiles.  During the refining 

process, the refinement algorithms are designed to obey certain rules to keep the mesh valid and 
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ensure good results.  These new processes allow a basic simulation definition to be automatically 

enhanced with quadtree local mesh refinement without additional input from the user.  However, 

certain special situations arise when using this method, such as handling initial depths in refined 

cells near water bodies.  In addition, the refinement process adds additional cells to the model 

which must be computed.  This extra computational burden is the tradeoff for being able to 

resolve smaller features without having to refine the entire domain.  In the next chapter, the 

accuracy and speed of the model will be tested to determine the costs and benefits of using the 

quadtree local refinement method. 

  



60 

 

V. RESULTS 

 The CCHE2D-FLOOD program with the quadtree local mesh refinement enhancements 

was tested by modeling different configurations of a progressive dam breach.  The goal was to 

determine if different configurations of the same ideal model match each other at various global 

cell sizes with various levels of refinement.  If the results given by these simulations are 

acceptable, then it is reasonable to believe that other configurations and other simulations will 

also give acceptable results.  The accuracy and computational costs of simulations using quadtree 

refinement vs. global refinement are presented for these tests, followed by a discussion of the 

results. 

 

1. SIMULATION SETUP 

 The ideal model presented in these results consists of a 128m by 128m domain, in which 

a 64m by 64m square reservoir is bounded by barriers on 3 sides and a dam on the fourth side.  

Two extra barriers 64m apart extend from the dam's side of the reservoir until they meet the edge 

of the domain.  The domain edges are open boundaries to allow water to flow out.  Referring to 

Figure V-1, the reservoir, barriers, and dam are aligned in one of three orientations: vertical or 

zero degrees of rotation, rotated 20 degrees clockwise, and rotated 45 degrees clockwise. These 

three ideal models are modeled using four global mesh sizes: 1m, 2m, 4m, and 8m.  The dam in 

the 2m global mesh size simulation is modeled using unrefined 2m cells and using one level of 

refinement.  The dam in the 4m global mesh size simulation is modeled using unrefined 4m cells, 
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using one level of refinement (2m cells), and using two levels of refinement  (1m cells).  The 

dam in the 8m global mesh size simulation is modeled using unrefined 8m cells, using one level 

of refinement (4m cells), using two levels of refinement  (2m cells), and using three levels of 

refinement (1m cells).  In addition, there is another group of simulations using a 512m by 512m 

domain with a vertically-aligned 128m by 512m reservoir and dam with the same levels of 

refinement above.  Table 1 summarizes each group in the 40 total simulations.  The first column 

describes the global cell size and the highest level of refinement for the locally-refined cells.  For 

example, "1mL0" is the simulation using 1m cells with no refinement, and "8mL3" is the 

simulation with the global cell size equal to 8m with three levels of refinement. 

 

 

Figure V-1:  Ideal Domain for Left: 0 degrees rotation, middle: 20 degrees rotation, right: 45 

degrees rotation.  Blue is reservoir area.  Red is the dam.  Black is barriers.  Gray is background. 
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Table 1: Simulation Information.  Four groups of these simulations are done:  1.  64mx64m 

reservoir with 0 degree orientation.  2.  64mx64m reservoir with 20 degree orientation.  3.  

64mx64m reservoir with 45 degree orientation.  4.  128mx512m reservoir with 0 degree 

orientation 

Simulation 

Cell Size 

(m) 

Refinement 

Level 

Smallest Cell Size 

(m) 

1mL0 1 0 1 

2mL0 2 0 2 

2mL1 2 1 1 

4mL0 4 0 4 

4mL1 4 1 2 

4mL2 4 2 1 

8mL0 8 0 8 

8mL1 8 1 4 

8mL2 8 2 2 

8mL3 8 3 1 

 

 In each case the barriers are represented by raising the bottom elevation of whole cells to 

a level above the reservoir.  Care has been taken to ensure that the position of the barriers is such 

that the reservoir contains approximately the same area at all resolutions.  Similarly, the dam 

width is chosen as 8m to ensure that it is modeled the same in every case.  Each orientation and 

resolution combination is shown in Figure V-2. 
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Figure V-2:  From left to right in a row: 1m resolution, 2m resolution, 4m resolution, 8m 

resolution.  Row 1: 0 degree orientation.  Row 2:  20 degree orientation. Row 3: 45 degree 

orientation.  Row 4:  Larger simulation with 0 degree orientation.  Blue color indicates reservoir 

area.  White indicates barriers and dams.  Black indicates background areas. 
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 An observation line is placed along the centerline of the dam in each simulation, giving a 

measure of the total discharge flowing through the breach at every second.  Each simulation is 

run for 800 seconds model time.  The wall time, CPU time, and number of iterations are recorded 

for each simulation along with a raster file of water depths outputted every 100 seconds. 

 

2. BREACH CHARACTERISTICS 

 The dam breach is the same in each of the 40 test cases.  The dam profile changes from 

the initial, intact dam height to the final breach geometry in 300 seconds.  Elevations of cells 

within the dam are interpolated linearly in both time between successive breach profiles and their 

position between points in the profile.  The final breach geometry has a top width of 16m and a 

bottom width of 8m, giving an average width of 12m.  The depth of the breach is 5m, the same 

as the height of the dam, and the side slopes are 4H:5V.  The breach geometry at every 100 

seconds is plotted in Figure V-3.  The size and formation time of this breach are selected to allow 

modeling at the various cell sizes in the cases described, but are typical for the reservoir-dam 

pair chosen here for testing.  The progression of the breach geometry starts at the level of the 

dam crest, then the full width of the breach is brought down to its final profile over the 300 

second duration.  However, actual dam breaches usually follow a different progression, where a 

smaller-width gap progresses downward and then expands to its full width.  Representing more 

realistic dam breach progressions can be done in the future.  Figure V-4 shows an example of the 

progression of breach geometry for the 0 degree orientation at 100 second intervals for the 

highest level of refinement.  Figure V-5 shows the same for the 20 degree orientation.  Figure 

V-6 shows the same for 45 degree orientation. 
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Figure V-3:  Progression of Breach Geometry 
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Figure V-4:  Progression of breach geometry for 0 degree orientation.  Left:  Plan view.  Right:  

3D View looking upstream.  Row 1:  Initial geometry at 0 seconds.   Row 2:  100 seconds.  Row 

3:  200 seconds.  Row 4:  300 seconds, final geometry. 
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Figure V-5:  Progression of breach geometry for 20 degree orientation.  Left:  Plan view.  Right:  

3D View looking upstream.  Row 1:  Initial geometry at 0 seconds.   Row 2:  100 seconds.  Row 

3:  200 seconds.  Row 4:  300 seconds, final geometry. 
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Figure V-6:  Progression of breach geometry for 45 degree orientation.  Left:  Plan view.  Right:  

3D View looking upstream.  Row 1:  Initial geometry at 0 seconds.   Row 2:  100 seconds.  Row 

3:  200 seconds.  Row 4:  300 seconds, final geometry. 
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 The orientation of the refined section of the dam in the 20 and 45 degree cases slightly 

overlaps with the cells in the boundary definition that do not participate in the breaching process.  

The positions of the barriers around the reservoir are originally placed in the domain by 

imposing high elevations in those cells at the global resolution.  Even if some of those cells are 

later refined, the higher elevations may remain and slightly interfere with the flow through the 

dam breach.  However, only the edges of the dam overlap these areas, and the breach geometry 

has at least 2 meters of buffer on each end that remains at the original dam height.  In future 

work, the extent to which these barrier cells interfere with the flow near the dam cells will be 

determined. 

 Since the breach geometry is the same for all test cases, the resolution of the finest cells 

in the simulation determine how many of them are used to model the breach.  Table 2 shows the 

number of finest-cell widths that can fit within the 16m breach geometry.  The orange-colored 

values highlight the simulations where the refinement level and global cell size result in only a 

few cells representing the breach.  The yellow value is the worst-case among the simulations, 

with only 2 cells able to fit in the breach width. 
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Table 2:  Number of finest-resolution cells that can fit within the dam breach width for each 

simulation. Highlighted values show combinations with a small number of cells. 

Simulation 

Cell Size 

(m) 

Refinement 

Level 

Smallest Cell Size 

(m) 

Breach 

Width (m) 

Number of 

finest-cell 

widths in 

breach 

1mL0 1 0 1 16 16 

2mL0 2 0 2 16 8 

2mL1 2 1 1 16 16 

4mL0 4 0 4 16 4 

4mL1 4 1 2 16 8 

4mL2 4 2 1 16 16 

8mL0 8 0 8 16 2 

8mL1 8 1 4 16 4 

8mL2 8 2 2 16 8 

8mL3 8 3 1 16 16 

 

3. SIMULATION RESULTS 

 For each orientation, 10 simulations were run using various global cell sizes and levels of 

refinement.  A set of example results for each orientation is shown in Figure V-7. 

The cases with 1m global resolution without refinement are considered to give the correct 

discharge through the breach: we consider these to be the control simulations.  Figure V-8 shows 

the discharge vs. time plots for the control simulations where the global cell size is 1m and no 

refinement is done.  Table 3 shows the peak discharges for these control simulations with percent 

error calculated relative to the 0 degree case.  These are considered to be the "correct" answers to 

which other simulations in their group are compared.  All three simulations give similar results, 

with their peak discharge matching within 10% of each other. 
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Figure V-7:  Water depths and red velocity vectors of simulations at 400 seconds. Top: 0 degree 

rotation case.  Middle:  20 degree rotation case.  Bottom:  45 degree rotation case. 
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Figure V-8:  Discharge vs. time for 1m unrefined simulations 

 

Table 3: Peak Discharges for control simulations 

  

Maximum 

Discharge 

(m³/s) 

% 

Error 

0deg 56.0 0.0 

20deg 58.2 3.9 

45deg 60.0 7.1 
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 For the simulations with 0 degree orientation, the discharges vs. time are plotted in Figure 

V-9 with corresponding maximum or peak discharges given in Table 4.  Results of simulations 

with 20 degree orientation are plotted in Figure V-10 with peak discharges in Table 5.  Results of 

simulations with 45 degree orientation are plotted in Figure V-11 with discharges in Table 6.  In 

the tables, the percent error is calculated relative to the peak discharge in their 1mL0 case.  In 

addition, the 8m and unrefined 4m simulation results are highlighted to show their higher relative 

error. 
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Figure V-9: Discharge vs. Time for 0 degree Orientation Simulations 

Table 4:  Peak Discharges for 0 degree cases 

  

Maximum 

Discharge 

(m³/s) 

% 

Error 

1mL0 56.0 0.0 

2mL0 54.6 -2.5 

2mL1 56.4 0.7 

4mL0 49.1 -12.3 

4mL1 55.2 -1.5 

4mL2 56.5 0.7 

8mL0 53.7 -4.2 

8mL1 51.6 -8.0 

8mL2 55.8 -0.4 

8mL3 60.4 7.7 
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Figure V-10: Discharge vs. Time for 20 degree Orientation Simulations 

Table 5:  Peak Discharges for 20 degree cases 

  

Maximum 

Discharge 

(m³/s) 

% 

Error 

1mL0 58.2 0.0 

2mL0 56.9 -2.3 

2mL1 61.2 5.0 

4mL0 50.9 -12.6 

4mL1 60.0 3.1 

4mL2 57.6 -1.2 

8mL0 45.9 -21.1 

8mL1 43.5 -25.3 

8mL2 55.0 -5.5 

8mL3 52.2 -10.3 
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Figure V-11: Discharge vs. Time for 45 degree Orientation Simulations 

Table 6:  Peak Discharges for 45 degree cases 

  

Maximum 

Discharge 

(m³/s) 

% 

Error 

1mL0 60.0 0.0 

2mL0 59.3 -1.2 

2mL1 55.5 -7.6 

4mL0 50.8 -15.4 

4mL1 65.9 9.8 

4mL2 59.7 -0.6 

8mL0 28.3 -52.8 

8mL1 48.3 -19.5 

8mL2 54.1 -9.9 

8mL3 38.4 -36.0 
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 These plots show that the discharge peaks after 300 seconds, after the dam breach has 

reached its full size.  The reservoir empties quickly after the peak.   

 In the 0 degree case, the 2mL1 simulation has lower error in the peak discharge than the 

2mL0 simulation.  In the 20 degree and 45 degree cases, the opposite is true, showing that for 

those particular simulations, a higher level of refinement did not improve the results. 

 In all cases, the 4m global cell size simulations with higher levels of refinement had 

smaller errors in peak discharge than the ones with lower levels of refinement.  In some cases the 

error changed sign between refinement levels, but overall the errors were reduced. 

 In all three orientations, the 8mL2 simulations had lower errors than the 8mL0 and 8mL1 

simulations in their groups.  However, the 8mL3 simulation in each orientation actually had a 

higher error than the 8mL2 simulation, suggesting that higher levels of refinement may not 

correlate with higher accuracy.  Clearly there is room for future work to determine if refining to 

higher levels continues to increase accuracy, or if at some point the higher levels introduce more 

errors to counter the increase. 

 In each of these groups, the 8m simulations and the 4m unrefined simulations have the 

highest percent error relative their controls and are thus the least accurate.  Removing these 

simulation results from each of the three orientation groups and combining the 15 remaining 

simulations gives the results in Figure V-12.  This figure shows that the remaining cases more 

closely match each other. 
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Figure V-12:  Discharge vs. time for all cases except 8m cases and 4m unrefined cases 

 

 

4. PERFORMANCE 

 Each simulation was run, one after the other, with no other major processes running on 

the machine.  The machine was a desktop running Microsoft Windows 7 with a quad-core Intel 

i7 870 CPU and 14 GB of RAM.  Table 7, Table 8, and Table 9 show the relevant timing 

information for the 0 degree, 20 degree rotated, and 45 degree rotated simulation groups, 

respectively.  CPU time is a measure of the computational effort spent by all cores of all 
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processors used by a single computer process.  CPU time is less-influenced by other processes 

running on the machine, drive lag times, etc. than wall time.  The wall time is a measure of real-

world duration of when the process begins to when the process ends as though measured by a 

clock, regardless of interruptions or competition for computer resources from other running 

processes.  The number of iterations is the total number of time steps required to reach the full 

800 seconds of simulation.  The "QT cells" and "Leaf cells" columns give the total number of 

cells in the quadtree mesh and the total number of leaf cells in the quadtree mesh, respectively.  

The Speedup of each simulation is the CPU time taken by the 1m simulation divided by the CPU 

time taken by the given simulation.  The theoretical speedup is the cube of the relative difference 

in global cell size compared to the 1m simulation. 

 

Table 7:  Simulation Characteristics for 0 degree Simulations 

 

CPU 

time (s) 

Wall 

time (s) Iterations 

QT 

Cells 

Leaf 

Cells 

Global 

Cell size 

(m) Speedup 

Theoretical 

Speedup 

1mL0 91.45 92 26365 - - 1 1.0 1 

2mL0 11.23 12 13070 - - 2 8.1 8 

2mL1 12.98 13 13606 256 216 2 7.0 8 

4mL0 1.53 2 6391 - - 4 59.8 64 

4mL1 1.79 2 6874 96 84 4 51.0 64 

4mL2 2.79 3 6922 324 256 4 32.7 64 

8mL0 0.17 1 2340 - - 8 532.9 512 

8mL1 0.28 1 3420 38 34 8 325.7 512 

8mL2 0.50 1 3499 132 106 8 183.2 512 

8mL3 1.56 2 3554 420 326 8 58.6 512 
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Table 8:  Simulation Characteristics for 20 Degree Simulations 

 

CPU 

time (s) 

Wall 

time (s) Iterations 

QT 

Cells 

Leaf 

Cells 

Global 

Cell size 

(m) Speedup 

Theoretical 

Speedup 

1mL0 94.83 95 26512 0 0 1 1.0 1 

2mL0 11.84 12 13221 0 0 2 8.0 8 

2mL1 13.81 14 13895 300 250 2 6.9 8 

4mL0 1.48 1 6353 0 0 4 64.0 64 

4mL1 1.93 1 7015 99 85 4 49.0 64 

4mL2 3.23 3 7055 401 315 4 29.4 64 

8mL0 0.22 1 2858 0 0 8 434.2 512 

8mL1 0.31 1 3472 42 37 8 304.0 512 

8mL2 0.53 1 3519 140 112 8 178.8 512 

8mL3 1.78 2 3666 491 379 8 53.3 512 

 

Table 9:  Simulation Characteristics for 45 Degree Simulations 

 

CPU 

time (s) 

Wall 

time (s) Iterations 

QT 

Cells 

Leaf 

Cells 

Global 

Cell size 

(m) Speedup 

Theoretical 

Speedup 

1mL0 98.00 99 26940 0 0 1 1.0 1 

2mL0 11.97 12 13276 0 0 2 8.2 8 

2mL1 13.88 14 13955 282 237 2 7.1 8 

4mL0 1.54 2 6439 0 0 4 63.5 64 

4mL1 2.04 2 7182 104 88 4 48.0 64 

4mL2 3.14 4 7104 354 278 4 31.3 64 

8mL0 0.20 1 2943 0 0 8 483.2 512 

8mL1 0.62 1 3595 44 39 8 157.1 512 

8mL2 0.56 1 3550 158 126 8 174.5 512 

8mL3 1.54 1 3542 446 345 8 63.5 512 

 

 The CPU and wall time for the simulations follow the expected order, with 8m 

simulations taking less time than the 4m simulations which take less time than the 2m 

simulations, which in turn take less time than the 1m simulations.  Simulations with higher levels 

of refinement are slightly slower than the simulations with lower levels of refinement in the same 

global cell size class.  Simulations with a larger global cell size take fewer iterations than 
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simulations with smaller global cell size due to the larger time step.  The speedup of each 

simulation is approximately in the same order of magnitude as the theoretical case, except  for 

the 8m refined to 3 levels simulations.  However, these domains are so small, and the simulations 

finish so quickly, that a significant portion of the CPU time may have been spent doing auxiliary 

tasks such as writing raster files, computing and writing to disk the observation line discharges, 

etc.  For these 30 simulations we see a general trend in the CPU time, but the group of 

simulations described in the next section is a better representative.  Rather than to compare 

simulation times, the simulations above were designed to measure and compare the discharge 

flowing through the breach to ensure the results are correct. 

 

5. LARGER DOMAIN CASE 

 The final batch of simulations involve a square domain 512m by 512m with a vertical 

barrier dividing the domain in two.  The same dam and breach as in the previous simulations is 

situated vertically in the center as shown in the bottom row of Figure V-2 above.  In these 

simulations, the domain and reservoir are much larger than in the previous simulations, so the 

computational time is expected to be longer and more differentiated between various resolutions.  

Figure V-13 shows the discharge vs. time for these simulations.  Table 10 shows the peak 

discharges for these cases.  The unrefined 8m simulation shows discharges higher than all over 

simulations and is thus the least accurate, as expected. 
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Figure V-13:  Discharge vs. time for simulation of larger domain with 0 degree orientation 

Table 10: Peak Discharges for larger domain simulations 

  

Maximum 

Discharge 

(m³/s) 

% 

Error 

1mL0 165.2 0.0 

2mL0 162.0 -1.9 

2mL1 163.5 -1.0 

4mL0 154.8 -6.3 

4mL1 160.7 -2.7 

4mL2 162.1 -1.9 

8mL0 217.3 31.6 

8mL1 158.5 -4.1 

8mL2 161.9 -2.0 

8mL3 173.6 5.1 
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 One of the goals of local mesh refinement is to attain the same discharges through the 

dam breach with a coarser global cell size and finer resolution for the breach as with using a 

smaller global cell size.  Figure V-14 compares the breach discharges for the four test cases 

using 1m for their finest cell resolution.  These results agree quite well, with the 8m simulation 

with 3 levels of refinement being slightly less accurate, as in the cases in the previous section. 

 

 

Figure V-14:  Discharge vs. time of larger domain simulation comparing simulations where the 

finest-resolution cells were 1m. 
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 Figure V-15 shows the discharge vs. time of the best cases, where the 8m simulations and 

the unrefined 4m simulation are excluded.  These results also agree quite well. 

 

 

Figure V-15:  Discharge vs. time of larger domain simulation for all cases except 8m cases and 

4m unrefined case. 
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6. PERFORMANCE OF LARGER DOMAIN CASE 

 Table 11 shows the relevant simulation information for the larger domain case run on the 

same machine mentioned above.  Like the smaller cases in the previous sections, the a general 

trend is present in the CPU time taken by these simulations.  The 1m global cell size simulation 

takes the longest, with each successive doubling of the global cell size decreases the CPU time 

by a factor of about 8.  These results agree with the theoretical speedup much better than the 

smaller test cases since the domains are large enough to spend a proportionally-larger amount of 

the time calculating the hydrodynamics and a proportionally-smaller time doing auxiliary tasks. 

 

Table 11:  Simulation Characteristics for Larger Domain Simulations 

 

CPU 

time (s) 

Wall 

time (s) Iterations 

QT 

Cells 

Leaf 

Cells 

Global 

Cell size 

(m) Speedup 

Theoretical 

Speedup 

1mL0 3409.00 3114 44039 - - 1 1.0 1 

2mL0 413.92 414 21719 - - 2 8.2 8 

2mL1 422.31 423 22035 256 216 2 8.1 8 

4mL0 48.06 49 10494 - - 4 70.9 64 

4mL1 50.20 50 10860 96 84 4 67.9 64 

4mL2 52.57 52 11012 324 256 4 64.8 64 

8mL0 5.93 6 4904 - - 8 575.1 512 

8mL1 6.36 6 5238 38 34 8 535.6 512 

8mL2 6.65 6 5419 132 106 8 513.0 512 

8mL3 8.53 8 5612 420 326 8 399.5 512 

 

 The cube root of the speedup may be considered a measure of the computational burden 

brought on by the change in cell size.  Plotting this for each of the 10 simulations vs. its cell size 

along with a line of theoretical maximum speedup is shown in Figure V-16.  Some of the 

simulations exhibit a speedup greater than the theoretical maximum.  The simulations with larger 
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cell sizes have fewer total cells and a larger time step than the 1m case, and these are the only 

two factors that contribute to the theoretical speedup.  Other factors could be coming into play, 

such as better CPU cache access for the simulations with fewer, larger cells. 

 Another trend to note is that for a given global cell size, the simulations with higher 

levels of refinement take longer than simulations with lower levels of refinement.  This is due to 

the additional burden of calculating the additional, refined cells at their smaller time steps.  For 

instance, even though the domain is large compared to the dam, the 8mL3 case has  420 quadtree 

cells plus 4,096 8m base cells, or about 10% more cells than the 8mL0, unrefined case.  In 

addition, the quadtree cells of higher refinement level must be calculated multiple times for each 

global time step, adding to the expected result of slowing down the simulation vs. the cases 

without refinement.  Despite the added computational burden of even the highest levels of 

refinement, the simulations with larger global cell sizes still vastly outperform the simulations 

with smaller global cell sizes. 
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Figure V-16:  Cube root of speedup vs global cell size for larger domain simulations.  Data 

points are shown at cell sizes of 1m, 2m, 4m, and 8m.  The line of theoretical maximum speedup 

is shown as the red line. 
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no refinement, 4m cells with one level of refinement, 4m cells with two levels of refinement, 8m 

cells with no refinement, 8m cells with one level of refinement, 8m cells with two levels of 

refinement, and 8m cells with three levels of refinement.  In addition, a larger domain and 

reservoir were simulated using the same dam and breach as above to get a more accurate 

portrayal of the CPU time required to finish the simulations.  In the smaller domain cases, the 

results of 0 degree, 20 degree, and 45 degree rotations agreed with each other.  With a given 

orientation, the results using larger global cell sizes refined to higher levels tended to disagree 

more with the control simulations.  The CPU time required by simulations with larger global cell 

sizes tended to change with the cube root of the relative cell size.  For simulations with a given 

global cell size, the ones with higher levels of refinement took longer to calculate than the ones 

with lower levels of refinement, but in all cases, they were faster than the next smaller level of 

global cell size. 

 There are two ways of thinking about local refinement.  The first is when considering a 

given global mesh size, local refinement allows representing smaller features.  Sometimes the 

data with the best available cell size is not enough to resolve the dam breach.  In these cases, 

local refinement makes the simulation possible, regardless of computation speed.  The other way 

of thinking is that given a size of feature to be modeled, the domain can be coarsened to some 

degree while maintaining the definition of that feature.  This allows the same simulation to be 

run faster with local refinement.  In the current work, local refinement is tested via the second 

way of thinking.  This is acceptable because the domain outside the dam breach and reservoir are 

unimportant in the current cases.  We assume that the domain can be coarsened without losing 

any important features.  In real world dam break simulations, there will be a limit to the 
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coarsening of the global cell size due to other features besides dam that need to be modeled.  The 

issue of selecting an optimal cell size given these restraints is outside the scope of this thesis. 

 What can be determined from these results is that the discharges through the dam breach 

for various orientations and various levels of refinement match reasonably well with their 

respective control case.  Ideally, since all simulations modeling the smaller domain were also 

modeling the same reservoir, dam, and breach, they should give the same results.  However, 

differences in cell sizes and issues inherent to the numerical solver lead to some differences in 

the measured discharges.  The differences between unrefined cases of different orientations are 

about as large as the differences between refinement levels in a given orientation.  Therefore we 

can conclude that the computational model using local refinement gives results with the same 

level of accuracy as the original computational model without local refinement.  In terms of 

accuracy, the quadtree method seems to give reasonable results up to three levels of refinement.  

Future work will determine if there is a limit where increasing the refinement level gives no 

improvement to the results.  The test cases shown here demonstrate the local refinement 

technique and show that it gives reasonably accurate results. 

 It is expected that real world dam break simulations will require a much larger domain 

than the ones presented in this chapter.  The speedup gained from using local refinement would 

be even more profound in these cases since the area to be refined would be proportionally 

smaller than the unrefined part of the domain.  These cases would be expected to achieve close to 

the theoretical maximum speedup of 8-fold for each doubling of the global cell size.  The best 

results in the simulations above come from refinement levels up to level 2.  Future work will 

determine if simulations with further refinement with larger base cells follow the trends found 

here.  If the accuracy of a selected refinement level is acceptable, then the speedup gained by 
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coarsening the rest of the domain makes local refinement well worth it.  With further work, the 

code could be optimized to take advantage of modern CPU architecture, such as more efficient 

data structures and cache access, vectorization, and parallel computation. 
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VI. CONCLUSIONS 

 The goal in this work is to present the reader with an introduction to the necessity of 

capable, stable, fast, reliable, and easy to set up dam break flood modeling, and to present an 

existing tool that has been upgraded to better fulfill these needs.  With aging infrastructure and 

increases in populations in inundation zones, the consequences of a dam break flood can be a 

large and evolving threat.  The problem is compounded by the large number of dams in the 

United States and the inadequate number and quality of emergency action plans.  This shows the 

need for more research and better tools to address this problem.  Recent advances in technology 

such as geographical information systems, collections of large data sets, and numerical methods, 

along with ever-improving hardware availability have made advanced models possible.  The 

push is for more- more simulations with larger domains and faster results.  This requires more 

advanced models that are easier to set up and give accurate results as quickly as possible. 

 The existing CCHE2D-FLOOD model contained numerous features designed to meet the 

goals of numerical modelers.  However, the ease of using a basic DEM as the computational 

mesh limited it in the size of features it could model while still producing results quickly.  In 

order to represent small features such as dam breach geometry, the modeler would have to 

reduce the size of the entire mesh, and only if the data was even available.  In addition, the 

penalty of having a small cell size for the entire domain was required if the feature was to be 

modeled.  While useful, this model showed a clear need for a remedy to this problem.  A first 

step was to replace the older first-order upwinding numerical scheme with a more robust HLLC 

solver.  This new solver has been verified to give correct results in a variety of test cases. 
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 The efforts described in this manuscript were to address this problem by decoupling the 

global cell size from the size of features that could be resolved by using quadtree local mesh 

refinement.  This method involves replacing one larger cell by four smaller ones with half the 

size in both x- and y-dimensions.  These refinements can be done anywhere in the domain, and 

with only practical limits on refinement level.  Specifically, the projection of a dam's crest line 

and width are used to define which cells need to be refined.  The refinement level is determined 

by the size of the features in the definition of the dam's breach geometry.  With special 

considerations to initial conditions, the resulting quadtree mesh is coupled with the basic, regular 

two-dimensional mesh and solved simultaneously.  This allows the quadtree mesh to be 

generated only where needed while the regular mesh is kept at its original resolution.  The 

methods, algorithms, and data structures for solving for the flow variables in time with the 

quadtree mesh have been presented. 

 Quadtree local refinement is useful because it enables the representation of small features 

without the need to refine the entire mesh.  If the global mesh size is fixed, then local refinement 

allows the features to be represented at all where before they were not.  Alternatively, local 

refinement allows features to be modeled at the original resolution while the rest of the domain is 

made coarser with larger cells.  Each doubling of the global cell size has a theoretical speedup of 

eight, so this method allows much faster simulation where only a small area is required to have 

higher resolution. 
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 The results of simulations utilizing local refinement are presented in Chapter 5.  An ideal 

reservoir and dam with three different orientations were modeled using different cell sizes and 

with different levels of refinement.  Even in the models using a coarse global cell size with three 

levels of refinement, the errors in peak discharge relative to the globally-refined cases were 

usually less than 10%.  This is comparable to the differences between the peak discharges of the 

unrefined cases of different orientations.  These results show that for the given simulations, using 

quadtree local mesh refinement for representing dam breach geometry gives results about as 

accurate as the model with global refinement. 

 An example of the benefits of using local refinement to decouple dam breach size form 

the global cell size are shown in Figure VI-1.  The simulation CPU time required to simulate a 

reservoir and dam at the smallest global cell size without refinement is the unit time shown in the 

figure.  Doubling the global cell size to 2 and refining one level takes about 1/8 as long to run.  

Quadrupling the global cell size to 4 reduces the computational cost by about another factor of 8, 

and so on.  The larger the number of cells in the coarsened domain relative to the number of cells 

in the refined area, the closer the gains will approach to the theoretical. 
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Figure VI-1:  Relative Cost in CPU Time to Represent a Feature with local Refinement while 

coarsening the rest of the domain  
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code and result in further speedups.  Until then, the current implementation of quadtree local 

mesh refinement accomplishes the intended goals with good results.  The model is featureful, 

robust, accurate, fast, and simple to set up.  Quadtree local mesh refinement is another useful tool 

in helping the model meet the requirements of modern dam break problems. 
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