
University of Mississippi University of Mississippi 

eGrove eGrove 

Electronic Theses and Dissertations Graduate School 

2014 

Raptorqp2P: Maximize The Performance Of P2P File Distribution Raptorqp2P: Maximize The Performance Of P2P File Distribution 

With Raptorq Coding With Raptorq Coding 

Zeyang Su 
University of Mississippi 

Follow this and additional works at: https://egrove.olemiss.edu/etd 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Su, Zeyang, "Raptorqp2P: Maximize The Performance Of P2P File Distribution With Raptorq Coding" 
(2014). Electronic Theses and Dissertations. 450. 
https://egrove.olemiss.edu/etd/450 

This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been 
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more 
information, please contact egrove@olemiss.edu. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by eGrove (Univ. of Mississippi)

https://core.ac.uk/display/288063364?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://egrove.olemiss.edu/
https://egrove.olemiss.edu/etd
https://egrove.olemiss.edu/gradschool
https://egrove.olemiss.edu/etd?utm_source=egrove.olemiss.edu%2Fetd%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=egrove.olemiss.edu%2Fetd%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/etd/450?utm_source=egrove.olemiss.edu%2Fetd%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu


RAPTORQP2P: MAXIMIZE THE PERFORMANCE OF P2P

FILE DISTRIBUTION WITH RAPTORQ CODING

A Dissertation
presented in partial fulfillment of requirements

for the degree of Master
in the Computer Science and Information

The University of Mississippi

by

Zeyang Su

Apr 2014



Copyright Zeyang Su 2014
ALL RIGHTS RESERVED



ABSTRACT

BitTorrent is the most popular Peer-to-Peer (P2P) file sharing system widely used

for distributing large files over the Internet. It has attracted extensive attentions from both

network operators and researchers for investigating its deployment and performance. For

example, recent studies have shown that under steady state, its rarest first scheme with

the tit-for-tat mechanism can work very effectively and make BitTorrent near optimal for

the generic file downloading process. However, in practice, the highly dynamic network

environment, especially the notorious user churns prevalently existing in most peer-to-peer

systems, can severely degrade the downloading performance.

In this thesis, we first study on the limitations of BitTorrent under dynamic network

environments, focusing on two scenarios where with our preliminary modeling and analysis,

we clearly identify how network dynamics and peer churns can significantly degrade the

performance. With these findings, we further propose a novel protocol named RaptorQP2P,

which is based on RaptorQ coding, to overcome the limitations of current BitTorrent design

and maximize the performance of P2P file distribution. The new protocol features two levels

of RaptorQ encoding. At the top layer, the entire file is RaptorQ encoded to yield a collection

of source blocks and repair blocks, and then each source and repair block is RaptorQ encoded

independently to yield a collection of source symbols and repair symbols for the block. The

symbols are independently transferred among the peers and when a sufficient number of

distinct symbols for a particular block have been received, whether source or repair, the block

can be reconstructed. The file can be reconstructed using a sufficient arbitrary number of

distinct blocks. Our results show that RaptorQP2P can well handle the network dynamics

as well as peer churns and significantly shorten the downloading completion time by up to

41.4% with excellent scalability on both file size and user population.
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CHAPTER 1

INTRODUCTION

Peer-to-peer network which was surveyed by Liu et al. (2008) and Milojicic et al.

(2002) is one of the most popular networks nowadays, attracting a large number of re-

searchers to study on this area and propose to use it not only for supporting file sharing such

as BitTorrent (2001) over the Internet, but also for video-on-demand which was discussed

by Wu et al. (2011) and live streaming which was discussed by Wang et al. (2012a). There

are two major advantages in a peer-to-peer network: flexibility and efficiency. Flexibility

means peers can join and leave the system freely and the application cannot constrain such

freedoms, while efficiency means each peer may contribute some capacity to the system,

which can greatly relieve the load of a centralized server especially when the user number

becomes large.

BitTorrent is the standard de facto for peer-to-peer file distribution, where its tit-for-

tat and piece selection mechanisms have been heavily studied. The tit-for-tat is designed to

prevent free-riders and help improve the fairness in the entire system. The piece selection

mechanism which was discussed by Cohen (2003) includes four strategies : strict priority,

rarest first, random first piece and endgame mode. The strict priority asks that before a piece

is fully downloaded, all the data of that piece should be transferred from the same peer, unless

that peer leaves the system or gets choked (i.e., being stopped due to a very low upload rate).

And if the peer does not finish downloading a full piece, even it has some data of that piece,

it still can not send these data to others. Rarest first requires that each peer first downloads

the piece which is the rarest among its neighbors. Legout et al. (2006) showed that these

mechanisms can help BitTorrent achieve near optimal performance when the network is under
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steady state. However, Magnetto et al. (2010) and Spoto et al. (2010) report that in practice,

the highly dynamic network environment, especially the notorious user churns prevalently

existing in most peer-to-peer systems, can greatly degrade the downloading performance

In this thesis, we first take an in-depth study on the limitations of BitTorrent under

dynamic network environments, investigating both local and global view scenarios where

with our preliminary modeling and analysis, we clearly identify how network dynamics and

users churns can significantly degrade the performance. For example, if one peer is receiving

a piece from one of its neighbor, then even later a new neighbor with this piece and higher

upload capacity comes, the new neighbor can do nothing to help speed up the downloading of

this piece. Another example is that the optimality of rarest first can also hardly be achieved

and maintained, as the peer joining and leaving by peer churns can easily change the piece

availability distribution.

Motivated by these findings, we propose to use RaptorQ coding to overcome the

identified limitations. RaptorQ coding which was proposed by Luby et al. (2011) is a kind

of fountain codes which are also called rateless erasure codes or FEC codes. RaptorQ coding

can generate as many symbols as desired on-the-fly (rateless codes), where each symbol is

of equal value in decoding. Both encoding and decoding is in linear time. The new protocol

features two levels of RaptorQ encoding, which is the most advanced technology in the

series of practical implementations of fountain coding techniques. As will be explained in

Section 3.1, in the standard RaptorQ encoding process, a file is partitioned into a collection

of source blocks, and each of these source blocks are independently RaptorQ encoded to yield

a set of source symbols and a potentially infinite number of repair symbols. The symbols,

source and repair, are transferred across the network, and when a number of distinct symbols,

whether source or repair, slightly exceeding the number of source symbols for a block has

been received, the receiver is able to reconstruct that original block. For example, receiving

two symbols more than the number of source symbols provides a decoding success probability

of 99.9999%. In addition, the source of the encoded symbols is irrelevant. When all of the
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blocks have been received, the entire file can be reconstructed.

In addition, we also exploit RaptorQ coding to increase the diversity and availability

of pieces in the whole system, which can further improve the efficiency of downloading a

regular piece as well as the last missing piece, which in practice, can often be a performance

bottleneck of BitTorrent. The approach taken here is to apply an additional layer of encoding

at the file level. That is, the original file is first used as input the the RaptorQ encoding

process to yield a collection of source blocks and a potentially infinite number of repair

blocks. The blocks, source and repair, are transferred using the standard RaptorQ process.

Then when a number of distinct blocks, whether source or repair, slightly exceeding the

number of source blocks of the file has been received, the receiver is able to reconstruct the

entire file.

To the future use of RaptorQ as a vehicle for forming the units to be transferred among

the peers, the new protocol also deals with the organization and rules for distributing the

symbols. Many of the choices made in developing the present protocol resulted from an in-

depth analysis of the performance of the leading peer-to-peer file sharing system, BitTorrent.

It will be seen that the source blocks and source symbols of the RaptorQ approach are roughly

equivalent to the pieces and slices, respectively, of the BitTorrent protocol.

We integrate these novel designs and develop a new protocol named RaptorQP2P.

With the real world traces measured on the BitTorrent system, we conduct extensive sim-

ulations to evaluate our solutions. The results show that RaptorQP2P can well handle the

network dynamics as well as peer churns and significantly shorten the downloading comple-

tion time by up to 41.4% with excellent scalability on both file size and user population.

The remainder of this thesis proceeds as follows: We review the related work in

Chapter 2. Chapter 3 gives preliminaries of RaptorQ and BitTorrent. In Chapter 4, we

model and analyze BitTorrent and its limitations under both the local view and global view

scenarios, it is clearly identified how network dynamics and user churn can significantly

degrade performance. And discuss how RaptorQ coding can overcome these limitations. We
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propose our RaptorQP2P protocol in Chapter 5 and evaluate it by extensive trace-driven

simulations in Chapter 6. we conclude the thesis in Chapter 7 with a discussion on the future

work.
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CHAPTER 2

RELATED WORK

Since the first version of BitTorrent was released on 2001, many researchers have

been attracted to study in the peer-to-peer file distribution area. Cohen (2003) investigated

the tit-for-tat and piece selection mechanisms, showing that the former can help prevent

the free riding and the latter can make the diversity of the pieces in the whole system

well balanced. Bharambe et al. (2006) used both analysis and experiments to show that

BitTorrent may not always achieve the optimal, and the tit-for-tat in some situation may

degrade the performance. Piatek et al. (2007) pointed out that the tit-for-tat can cause weak

robustness.

Fountain Codes which was described by MacKay (2005) are also called rateless erasure

codes. This coding technique divides the whole file into blocks and each block is then gen-

erated to rateless encoded symbols. When the receiver collects a certain number of encoded

symbols, whose number is often greater than that of the original symbols, it can decode the

symbols to the original block. Luby-Transform (LT) codes which proposed by Luby (2002)

are the first generation of fountain codes, where the symbol length can be arbitrary and the

encoded symbols can be generated on-the-fly. Recently, Raptor codes which was proposed

by Shokrollahi and Luby (2011) were proposed as a type of more advanced fountain codes,

which can conduct the encoding and decoding process in linear time. RaptorQ codes which

was proposed by Luby et al. (2011) are the latest version of Raptor codes and can introduce

even less decoding overhead (i.e., the number of extra symbols required to decode the original

data).

Due to the good property of the fountain codes family, Luby (2012), Bouras et al.

(2013) and Miguel et al. (2013) have been developed to use the fountain codes family to
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improve the performance, where Eittenberger et al. (2012) proposed to utilize Raptor Codes

to accelerate P2P streaming. There have also been studies on utilizing fountain codes to

accelerate P2P file sharing. Spoto et al. (2010) proposed to modify BitTorrent by using the

LT codes. The modification, however, may introduce duplicate coded packets being sent to

the same peer, and even worse, a coded packet forwarded by a peer may traverse in a circle

and then be forwarded back to this peer again. To address these issues and also make the

data exchange more efficiently, Magnetto et al. (2010) proposed ToroVerde, a push-based

P2P content distribution protocol, where a bloom filter is included in a coded packet when

the packet is forwarded, so as to record the peers that the packet has traversed and avoid

sending the packet to the same peer twice. However, the additional bloom filter introduces

extra overhead to the data exchange. Also, when the peer number becomes large, the size

of the bloom filter has to be increased so as to still distinguish different peers accurately,

causing even more overhead for the data exchange.

Different from these works, we propose a new protocol design based on RaptorQ

codes, which is one of the most recent advances in the Fountain codes family. Moreover, our

design is based on the modeling and analysis of the limitations of BitTorrent under various

dynamic network environments, which also guide us on the RaptorQP2P design to achieve

the maximized performance for P2P file distribution.
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CHAPTER 3

PRELIMINARIES ON RAPTORQ AND BITTORRENT

3.1 RaptorQ Coding

RaptorQ belongs to the family of Raptor codes which was proposed by Shokrollahi

and Luby (2011) and is one of the recent advances on fountain codes which was introduced

by MacKay (2005). Fountain codes are also called rateless erasure codes or FEC codes. LT

codes which was discussed by Luby (2002) is the first generation of fountain codes, where the

whole file is divided into many blocks and each block is further divided into source symbols.

The source symbols will then XOR each other to generate encoded symbols. Ideally, the

number of encoded symbols that can be generated is limitless. When the receiver receives a

certain number of encoded symbols which is slightly greater than the source symbols, then

the receiver can decode the symbols and get the block. Different from the LT codes, in

RaptorQ, after we divide whole file into blocks and symbols, there is a pre-coding stage

which the source symbols will XOR to generate some redundant symbols. These redundant

symbols plus the source symbols will XOR each other and then generate encoded symbols,

each encoded symbol having a specific symbol number within a block. After the receiver

receives a prescribed number of encoded symbols , it can decode the block. The number

of received encoded symbols should slightly more than the number of source number. For

example if the number of source symbols are k, the receiver should receive k + ε encoded

symbols where ε is a very small number. By taking advantage of the pre-coding stage, the

RaptorQ can achieve both encoding and decoding in linear time. And its decoding overhead

can be much smaller than other Raptor codes and LT codes. In addition, a potentially

infinite number of symbols can be generated on the fly and the number of symbols needed
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by the receiver in order to decode is only slightly higher than the original number of source

symbols, the source of the symbols being irrelevent. These properties are found to be very

useful in designing a P2P file distribution protocol to deal with some of the challenging

characteristics of P2P networks as will be shown later.

3.2 BitTorrent

Bram Cohen proposed the BitTorrent (2001) and designed the BitTorrent protocol in

April 2001 and released the first BitTorrent version in July 2001. Different from the former

HTTP or FTP client-server protocol, BitTorrent allows user uploads of file to others, which

can greatly relieve the load of the file server and accelerate distribution of a large file to a

large number of users. BitTorrent has become a standard protocol of file sharing over the

Internet. To illustrate the protocol clearly, we first briefly introduce the terminology and

then give an overview on the BitTorrent protocol.

3.2.1 Terminology

A user usually downloads a .torrent file from the web server, which includes metainfo

of the file and the IP address of the tracker that can provide the information about other

users currently downloading the file.

The tracker is a central server that collects statistics of all the users downloading

a file. Each user should first contact with the tracker and then get a list of users to start

downloading the file.

A swarm is the set of all the users that participate in distributing (i.e., downloading

and uploading) a file.

Peers are the users who participate in distributing a file. The peers in a swarm may

be divided into two types. One is the leecher, which does not have the whole file yet. The

other is seeder, which has finished downloading but stays in the swarm to further help the file

distribution. Only leachers will download the file content from other peers but both leachers

8
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Figure 3.1. An overview of the BitTorrent Protocol.

and seeders can upload the file content to other peers. Each peer will maintain several peers

as its neighbors.

In addition, BitTorrent divides the whole file into pieces. Each piece is further divided

into slices. A slice is the smallest transmission unit in BitTorrent.

During the file distribution process, there is a piecemap in each peer to indicate its

downloading progress.

If peer A does not have a certain piece but peer B has, then we say peer A is interested

in peer B.
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3.2.2 Protocol Overview

The mechanism of BitTorrent is shown in Fig. 3.1. One leecher first downloads a

.torrent file from a web server. Then the leecher will contact with the corresponding tracker

to ask for a list of peers currently in the swarm and the tracker will response the leecher

a peer list. After that, the leecher will randomly select a number of peers from the list

and connect to them for downloading pieces. When peers connect to each other, they will

exchange their piecemaps to see whether a connected peer is interested or not, so that a peer

can request a missing piece from others.

In BitTorrent, two mechanisms are used for piece requesting and downloading process.

The first is the piece selection mechanism, which includes four parts: strict priority, rarest

first, random first piece and endgame mode. Strict priority is that before a piece is fully

downloaded, all the slices in that piece should be downloaded from only one peer, unless that

peer leaves the system. If so, a second peer will be selected to download the remained slices

of that piece. Also, a peer cannot share a piece with others until the whole piece has been

fully downloaded. Rarest first means that when choosing a piece to download, a peer will

select the piece which is the rarest among its neighbors. Random first is when a peer first

joins the system, the peer will randomly download a piece from its neighbors. The endgame

mode occurs when a peer only has one piece left to finish the downloading, in which case it

will send the request to all its neighbors. Once a peer receives a response from one neighbor,

it will download the last piece from that neighbor. Besides the piece selection mechanism,

the second mechanism is called tit-for-tat, which is mainly designed for avoiding the free

riders that only download from other peers but never upload to others. In tit-for-tat, a

leecher will choke the peer with the lowest uploading rate, and a seeder will choke the peer

with the lowest downloading rate.

These two mechanisms have been proved to be close to optimal if the network envi-

ronment is at steady state. However, in practice, this assumption can hardly hold given the

peer churns and the network dynamics, which may significantly degrade the overall system

10



performance. For example, by strict priority, for a given piece, a peer can only download it

from one of its neighbors. This means that as long as that neighbor can upload the slices of

the piece to the peer (i.e., not leave or get choked), the peer will stick to that neighbor for

the piece, even if later a new neighbor with higher upload capacity enters the system and has

the piece. Also, due to peer churns, the current rarest piece may change as time progresses

since both peer joining and leaving can change the piece availability distribution, which is

further aggravated by that the rarest first used in BitTorrent is from the local view instead

of the global view. In next section, we will further analyze BitTorrent and its limitations

under various network dynamics.
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CHAPTER 4

ANALYSIS ON BITTORRENT AND ITS LIMITATIONS

In this chapter, we analyze and discuss how BitTorrent deals with various network

dynamics and the limitations from both a local view scenario and a global view scenario,

respectively. We then explain why RaptorQ codes can help overcome these dilemmas, which

further motivates our RaptorQP2P protocol design proposed in next section.

4.1 Analysis on Local View Scenario

The local view scenario refers to the situation when a peer wants to download a piece

from its neighbors. Fig. 4.1 shows an illustration, where peer A is currently neighboring

with peers B, C, D and E. Suppose that peer A wants to download piece 1 and peers B,

C and D have it. By strict priority, peer A can only choose one peer among B, C and D

for downloading piece 1. However, no matter which neighbor peer A chooses to request the

piece, it may become sub-optimal later due to the network dynamics and peer churns. For

example, if peer A chooses B for currently B has the highest upload rate, then later due to

the bandwidth variations, D may have higher upload rate than B yet A cannot switch to

D for piece 1. In addition, if peer churns happen, say, peer C leaves and peer F becomes a

new neighbor of A, then even F has higher upload rate than B, A still cannot switch to it

for piece 1.

With the previous analysis, one may quickly work out an improvement where a peer

is allowed to download a piece from several peers simultaneously, e.g., in Fig. 4.1, Peer A

downloads piece 1 from B, C and D simultaneously. To achieve the optimal performance,

we thus have the following modeling and analysis. Let up(x) denote the upload rate of peer

x. Assume a piece can be further evenly divided into m slices {b1, b2, . . . , bm} with size s.

12
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Figure 4.1. An illustration for the Local View Scenario.

And let Sx denote the slice set assigned to download from peer x (x ∈ {B,C,D}). Then we

need to find a slice downloading assignment so as to minimize the downloading completion

time for the given piece:

ttotal = max
x∈{B,C,D}

(s · |Sx|

up(x)

)

,

subjecting to the following constraints:

(1)
∣

∣

⋃

x∈{B,C,D} Sx

∣

∣ = m,

(2) ∀x1, x2 ∈ {B,C,D}, if x1 6= x2, then Sx1
∩ Sx2

= ∅.

It is easy to figure out that if up(x) (x ∈ {B,C,D}) is constant, one optimal assignment

is to assign slices to B, C and D evenly according to their upload rates, i.e., for peer x

(x ∈ {B,C,D}), we request
up(x) ·m

∑

y∈{B,C,D} up(y)
number of slices from it.

However, in practice, up(x) (x ∈ {B,C,D}) can vary dramatically even in a short

period. In addition, the peers in the system can also be highly dynamic, leaving or joining

the system at their own will. For example, if peer C leaves the system while peer A is still

downloading some slices of piece 1 from it, it may take peer A certain amount of time to

13



be aware of peer C’s leaving and then resend requests to peers B and C for those slices

that should previously be downloaded from peer C. Similarly, if later peer A connects to

peer F who also has piece 1, to exploit F ’s upload capacity for piece 1, again after requesting

some slices from peer F , peer A needs to cancel these slices from peers B and D to avoid

duplications, which would also introduce certain amount of time and bandwidth overhead.

It is worth noting that the rarest first strategy in BitTorrent may make the situation even

worse. In Fig. 4.1, peer A may decide to download pieces 0, 2 or 4 first since they are the

rarest in the local view of peer A, even piece 1 can be downloaded much faster. In fact,

if piece 1 is downloaded first, when the downloading finishes, pieces 0, 2 and 4 may have

more copies in the local view of peer A (since peers B, C, D and E may download these

pieces from their other neighbors during peer A downloads piece 1), leading to even faster

downloading speed rather than downloading them right now.

On the other hand, if we adopt the RaptorQ coding technique to encode each piece

into different symbols from different peers (which will be further explained in Section 5),

the overall performance can be automatically maximized even without solving the above

optimization problem. For example, if piece 1 is encoded into different symbols at peers B,

C and D. Peer A can simply request peers B, C and D to keep generating and sending

different symbols of piece 1 until it collects enough symbols to decode the piece and sends

the updated piecemap to its neighbors. It is easy to see that the network dynamics (such as

bandwidth variations) will not affect peer A, since the number of symbols sent from peers B,

C and D will automatically change with the network dynamics. Also, if peer C leaves and

peer F becomes a new neighbor, peer A can easily exploit peer F ’s upload rate by simply

requesting F to generate and send different symbols of piece 1. Again, the number of symbols

sent from peers B, C (before it leaves), D and F (after it becomes A’s neighbor) will be

automatically optimized to minimize the downloading completion time.
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Figure 4.2. An illustration for two level encoding.

4.2 Analysis on Global View Scenario

This scenario further investigates why BitTorrent adopts the rarest first strategy and

how we can compensate with RaptorQ coding. Remember that in BitTorrent, the original

file is evenly divided into pieces. Given that the peer-to-peer environment is highly dynamic,

if one of the pieces is very rare in the system and it happens that all the peers that have this

piece suddenly leave the system, other peers thus can never finish the downloading until at

least one peer with this piece comes back to the system. To minimize the probability that

such situations happen, one optimal solution is to make all the pieces have even number of

copies in the system. The corresponding mechanism to achieve this is to always download

the rarest piece in the system first. As this mechanism needs global information, which

can be very costly in a large-scale peer-to-peer environment, a reasonable approximation is

thus to first download the piece that is the rarest one in the local view, i.e., among all the

neighbors of a peer.

However, there may be some drawbacks for this approximation. First, a piece is the

rarest in the local view may not be the rarest in the global view. More importantly, if

we allow a peer can download one piece from multiple neighbors, this mechanism actually

slows down the speed for a peer to finish downloading a piece, since the peer chooses the

locally rarest one rather than other pieces with more copies locally, losing the opportunities

to exploit more peers contributing larger aggregate upload bandwidth to deliver these pieces

to the peer faster. In addition, rarest first is also known to cause that when a peer is close to

finish downloading, it may take enormous time to locate and download the remained missing

pieces.
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To address this issue, we also conduct RaptorQ coding at the inter-piece level as

shown in Fig. 4.2. Assume the original file can be evenly divided into N pieces. Besides

treating a slice as a source symbol and encoding on one piece, we now treat each piece as a

source symbol and further encode on the entire file (or each part of the file if the file is too

large and needs to be divided into parts) into N source symbols and N repair symbols. For

simplicity, here we omit the encoding overhead and assume that collecting any N symbols is

enough to decode the original file. Then to alleviate the situation described at the beginning

of this subsection, now rarest first changes to that we roughly need to download one of the

rarest N symbols first. Since a peer only needs N symbols to decode the original file, when

a peer choose one of the rarest N symbols first in the local view, it now have much larger

flexibility and can largely ignore the rarest first and select the symbol (piece) that can be

provided by more neighbors simultaneously to speed up the downloading. We use a simple

example to further illustrate how the inter-piece level RaptorQ coding can help alleviate the

situation described at the beginning of this section. Assume a file contains only 2 pieces,

which can be further encoded into 4 symbols. There is only one seeder in the system and

then two new leechers join the system. By rarest first, each leacher will randomly choose one

piece (or equivalently, symbol) to download. Then after each leacher downloads one symbol,

the seeder leaves the system. In this case, it is easy to calculate that the probability that

two leachers happen to download the same symbol and thus there are not enough symbols

in the system to finish the downloading. For BitTorrent, the probability is 2 × (1
2
)2 = 1

2
,

while by RaptorQ coding, the probability becomes 4 × (1
4
)2 = 1

4
, which is much less than

that of BitTorrent. In next chapter, we will present the detailed design of our RaptorQP2P

protocol to maximize the performance for P2P file distribution by RaptorQ coding.
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CHAPTER 5

RAPTORQP2P PROTOCOL DESIGN

For ease of exposition, we borrow some terminology from BitTorrent to help elaborate

our protocol design. In RaptorQP2P, we set each piece length as 1600KB, which can be

further divided into 100 source symbols. The size of each source symbol is thus 16KB. Recall

that in BitTorrent, one peer should download one piece from only one peer unless that peer

leaves the swarm or gets choked. Also, an unfinished piece cannot be shared to other peers

until its downloading has been finished. Different from BitTorrent, by utilizing RaptorQ

codes, our protocol allows multiple peers to send the same piece to a peer simultaneously,

which can be automatically optimized by the RaptorQ coding as discussed in the previous

section. Moreover, to maximize the utilization of peers’ upload capacities, our protocol also

allows opportunistic transmissions, where a peer can send the received encoded symbols of

a piece to other peers even if the peer does not have the full piece yet.

As discussed in the previous chapter, one challenge that lies in such a mechanism is

that to we must ensure that different neighbors generate and send different encoded symbols

so as to avoid duplications, which has the effect of wasting upload capacity. To this end,

we exploit the fact that each symbol generated by RaptorQ coding for a given piece has a

unique symbol number, and propose an intelligent symbol scheduling algorithm to guarantee

that the symbols sent out from one neighbor are different from the symbols sent out from

all the other neighbors. The main idea is that since a peer only has a limited number of

neighbor slots, we only allow the symbols with the specific symbol numbers to be sent from

a given neighbor slot. Specifically, when a peer connects to a new neighbor, it will assign an

empty neighbor slot to the neighbor and inform the neighbor its neighbor slot number during
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the initial piecemap exchange. If the neighbor has a full piece that the peer does not have,

the neighbor will only send those symbols encoded from that piece whose symbol numbers

must be equal to the neighbor’s slot number after taking mod on the number of the peer’s

neighbor slots. Since different neighbors of a peer have different neighbor slot numbers,

we can guarantee that the encoded symbols we receive from one neighbor are different from

those received from another neighbor. In addition, to deal with peer churns, when requesting

a piece from a neighbor, we also let a peer include the maximum symbol number that it has

received so far for the piece, so that if a neighbor leaves after sending some encoded symbols,

the new neighbor can continue sending later symbols starting from the maximum symbol

number indicated during the piece request.

The pseudo code of the algorithm is summarized in Fig. 5.1, where NSize is the

number of neighbor slots, i is the sender’s neighbor slot number assigned by the receiver.

We use maxsymbol[j] to denote the maximum symbol that the receiver has received for

piece j. This pseudo code can divide into two parts. The first part (line 1-15) deals with

the case that the sender has the full piece j and the second part (line 16-25) handles the

case that the sender only has the partial data of piece j. If the sender has a full piece, it

will send the symbols depending on its neighbor slot number i assigned by the receiver. In

particular, the sender will first check whether (maxsymbol[j] − i) can be exactly divided

by NSize. If so, it will send the symbol with the number of maxsymbol[j] +NSize to the

receiver. Otherwise, the sender will calculate the first symbol number that is greater than

the current maxsymbol[j] and can be exactly divided by i, and then send the symbol to the

receiver. Moreover, even the sender only has part of piece j, it can check its received symbols

in symbolmap and find the symbol whose number is greater than the maxsymbol[j] and can

be exactly divided by NSize after minus i. If so, the sender can still “opportunistically”

send the symbol to the receiver, so as to better utilize its upload capacity.

This mechanism can make sure that all the neighbors can send one piece to one

receiver simultaneously and even one peer have not finished downloading one piece, he can
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Algorithm IntelligentSymbolScheduling(piece j)
1: if Sender has the full piece j,
2: if (maxsymbol[j]− i)%NSize == 0,
3: maxsymbol[j] = maxsymbol[j] +NSize;
4: Generate and send the symbol with the
5: number maxsymbol[j];
6: else

7: for a = 0..NSize − 1,
8: maxsymbol[j] + +;
9: if (maxsymbol[j]− i)%NSize == 0,
10: break;
11: end if

12: end for

13: Generate and send the symbol with the
14: number maxsymbol[j];
15: end if

16: else if Sender only has the partial piece j,
17: for b = 0..receivedsymbols,
18: if symbolmap[j][b] > maxsymbol[j] and (symbolmap[j][b] − i)%NSize == 0,
19: maxsymbol[j] = symbol[j][b];
20: Send the symbol with the number
21: maxsymbol[j];
22: break;
23: end if

24: end for

25: end if

Figure 5.1. The algorithm for intelligent symbol scheduling.

still send the received encoded symbols to others and no duplicated symbol would be send.

Now recall Fig. 4.1, let’s say peer F is neighbor 0 of peer A, peer B is neighbor 1 of peer A,

peer C is neighbor 2 of peer A, peer D is neighbor 3 of peer A, peer E is neighbor 4 of peer

A. Now assume peer A does not have any symbol of piece 1 he will ask all the neighbors to

send piece 1 to him. Due to peer F is the neighbor 0 of peer A, so he would send symbol

5, 10, etc., peer B would send symbol 6, 11, etc., peer C would send symbol 7, 12, peer D

would send symbol 8, 13 peer E should send 9, 14, but due to he does not have a full piece

of piece 1, he will check peer A′smaxsymbol[1] ( the maximum symbol of piece 1 ) if peer

E has the symbol number which larger than peer A′smaxsymbol[1] and the symbol number
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(symbolnumber - 4) mod 5 is equal to 0 (here the number 4 is the position of peer E in

peer A’s neighbor, 5 is the NSize), then peer E will send the symbol and peer A will save

this in its symbolmap[j][n]. For example, if peer E has symbol of symbol9, symbol10 and

symbol17, only symbol9 can be sent to peer A, since (9 − 4)%5 = 0. If later, peer F leaves

the swarm, peer B, C, D, E can still send peer A a certain number of symbols to let peer A

decodes piece 1. If peer G joins to the swarm after peer F leaves, G becomes new neighbor

0 of peer A and peer G also has piece 1, peer A will tell peer G peer A′smaxsymbol[1] and

peer G′ neighbor slot of peer A is 0, then peer G can send symbols to peer A. For example, if

peer G find peer A′smaxsymbol[1] is 25, then he check his neighbor slot of peer A’s neighbor

is 0 and he will send symbol 30, 35, etc.; if peer G find peer A′smaxsymbol[1] is 28, then he

check his neighbor slot of peer A’s neighbor is 0, do a calculation to get the nearest symbol

number to symbol28 which should correlative to G′ neighbor slot, then he will find symbol

30 is suitable to send to peer A.

In the RaptorP2P protocol, we also adopt the inter-piece level encoding discussed in

the previous chapter. In particular, each seeder in the system will encode the file at the piece

level so that for a file with N pieces, we now have 2N piece level symbols for downloading.

Then when a peer selects a piece to download from its neighbors, it can choose among the

rarest N pieces instead of the rarest piece in the BitTorrent protocol. In next chapter, we

will conduct extensive simulations with the real world traces measured from the BitTorrent

system to evaluate our RaptorQP2P protocol, which further demonstrate the effectiveness

of our RaptorQ based protocol design.
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CHAPTER 6

PERFORMANCE EVALUATION

6.1 Methodology

We run extensive simulations to evaluate RaptorQP2P. To make it more practical,

our simulation is driven by the traces measured from the real BitTorrent system from Wang

et al. (2012b), which mainly contain the peer online/offline patterns in a swarm with various

real world network dynamics such as peer churns and flashcrowds. The upload capacity of

each peer is randomly chosen between 240KB/s to 720KB/s. The default peer number is

set to 1000 and the file size is 512MB. Other configurations are adopted from the typical

settings used in other authors Wang et al. (2012b), Magnetto et al. (2010), Piatek et al.

(2007) and Wang et al. (2011). For comparison, we also implement the BitTorrent protocol

and focus on the downloading completion time which is the time that a peer has downloaded

enough pieces (or piece level symbols) to get the original file. In addition, we also vary the

peer number from 200 to 1000 and the file size from 32MB to 512MB to investigate the

scalability of our solution.

Our simulator is based on time-driven. Each time instance all the peers would first

maintain their neighbors, then put requests to their neighbors and send the data to their

neighbors. In the stage of neighbor maintenance, each peer should maintain three layers.

The first layer is member maintenance. In this layer, tracker responses a list of peers who

sharing the same file. The second layer is general neighbor maintenance, where a peer can

select a list of peers from the tracker’s response and connect to them as general neighbor to

each other. The last layer is mesh neighbor maintenance. In this layer, a peer will select

some peers who have his interesting pieces from its general neighbors, and add those peers to
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its mesh neighbor. So the real data transmission only happens among the mesh neighbors.

Also, the tit-for-tat mechanism is used in this stage. The second stage is putting requests

to those peers who have his interesting piece. In BitTorrent, for a given piece, a peer only

puts request to those mesh neighbors who have the whole piece. However, in RaptorQP2P, a

peer can put request to those mesh neighbors who have any encoded symbols for that piece

and tell them the maximum symbol number for that piece. The peer will also inform all

mesh neighbors their corresponding neighbor slots. The last stage is sending data to peer’s

neighbors. In this stage, BitTorrent will use the strict priority, rarest first, random first piece

and endgame mode. In our RaptorQP2P, peers use the mechanisms described in Chapter 5.

6.2 Performance Results

Fig. 6.1 shows the results of the total downloading completion time (i.e., the time for

all the peers get the original file) as a function of file size. As expected, with the file size

becoming large, the total downloading completion time of both RaptorQP2P and BitTorrent

increases linearly. However, the total downloading completion time of RaptorQP2P increases

much slower than that of BitTorrent. This is because as the file size increases, our piece level

encoding can make the piece selection process more flexible, which allows a peer to choose a

piece with more copies among its neighbors and further speed up the time of downloading a

piece by our protocol. Moreover, when the file size increases to 512MB, the time taken by

RaptorQP2P is only 58.6% of the time taken by BitTorrent, which is roughly a performance

gain of 41.4%. This further demonstrates the effectiveness of our RaptorQ based protocol

on distributing large files, which can be of great demands in nowadays applications such

as high-definition medical or satellite image distribution among different sites and virtual

machine image distribution among different cloud servers, where a typical file size can be

hundreds of megabytes or even more.

To better understand the performance of each individual peer, we also investigate

the CDF of each peer’s downloading completion time with 1000 peers and a 512MB file,
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which is shown in Fig. 6.2. It is easy to see that all the peers using RaptorQP2P have

much smaller downloading completion time than those using BitTorrent. Besides, since in

the real environment, peers may join the system at different time and their online/offline

patterns can be totally different, this explains why the CDF curve of RaptorQP2P expands

between 1144s and 1401s. However, no matter when to join the system, all the peers using

BitTorrent finish the downloading at the time closer to each other (roughly around 2339s).

This is because under the network dynamics and peer churns, the well-known last piece

problem of BitTorrent (i.e., it is often very hard for a peer to identify the last missing piece

for downloading) becomes more severe, as those peers with the last missing piece that a peer

is looking for may dynamically leave the system and then rejoin later. On the other hand,

due to the piece level encoding, the peers using RaptorQP2P have much flexible choices for

their last missing pieces, since for a N -piece file, we now have roughly N options for the last

missing piece.

We next examine how our solution scales with different number of peers. The re-

sults are shown in Fig. 6.3. When the number of peers changes from 200 to 1000, the total

downloading completion time of BitTorrent gradually increases with some small fluctuations.

This is because the peer traces are collected from the real BitTorrent system, where with

more peers joining/leaving in the system, more peer churns and flashcrowds may happen, not

only degrading the overall performance but also bringing more fluctuations. RaptorQP2P,

however, has much stable performance when the number of peers changes. This is because

RaptorQ coding can automatically help optimize the symbol downloading among different

neighbors even they may come and leave at any time. Moreover, our opportunistic trans-

mission scheme can further exploit a peer’s upload rate and speed up the file distribution

process even when a piece is not fully downloaded at the peer. To this end, we take a closer

look at how much data traffic is delivered through our opportunistic transmission scheme

and the results are shown in Fig. 6.4. It is easy to see that the portion of the traffic delivered

by opportunistic transmissions (denoted as opportunistic traffic) increases steadily with the
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Figure 6.1. Total downloading completion time as a function of file size for 1000 peers.

file size (up to 39.3% of the total traffic when the file size is 512MB), since larger files have

more pieces and thus bring more chances for opportunistic transmissions, which also explains

why RaptorQP2P performs much better than BitTorrent especially when dealing with large

files.

In practice, it is often very important to understand how long for a individual peer

to receive the first piece when flash crowds happen. In Fig. 6.5, we simulate a flash crowds

scenario where 1000 peers join a swarm simultaneously and download a 512MB size file. The

results show that comparing to BitTorrent protocol, our RaptorQP2P can efficiently resist

the flash crowd influence and help the peers receive the first piece quickly, i.e. , all the peers

can receive the first piece in 60 seconds by RaptorQP2P. However in BitTorrent protocol,

the slowest peer cannot receive the first full piece until 124 seconds. The time taken by

RaptorQP2P is only 48.4% of the time taken by BitTorrent, which is roughly a performance

24



0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Downloading Completion Time (s)

C
D

F

 

 
BitTorrent
RaptorQP2P

Figure 6.2. CDF of individual peer’s downloading completion time for a 512 MB file and
1000 peers.

gain of 51.6%. This further demonstrates the effectiveness of our RaptorQ based protocol

on resisting the impacts caused by flash crowds.

Another practical issue is that when downloading a file by P2P, users often become

impatient if they wait the first data for a long time, thinking this swarm may not be active

and then leaving the swarm. Our RaptorQP2P protocol can significantly reduce the time to

wait for the first data. As shown in fig. 6.6, we measure the time of each peer getting the first

data with 1000 peers and a 512MB file. It is easy to see that all the peers using RaptorQP2P

have much smaller time to getting the first data than those using BitTorrent. We can see

from this CDF, in RaptorQP2P, more than 95% of peers can get the first data before 35

seconds, and all the peers can get the first data in 54 seconds. But in the BitTorrent, more

than 95% peers can get the first data in 75 seconds, and all the peers can get the first data in
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Figure 6.3. Total downloading completion time as a function of the number of peers for a
512 MB file.

85 seconds. Since in our protocol, the peers can send the encoded symbols to his neighbors

though they do not finish downloading the piece, so all peers in RaptorQP2P have much

more opportunities to get the first data than in BitTorrent, which explains why the CDF

shows RaptorQP2P has a smaller time to getting the first data.

We next examine how the average time of getting the first data scales with different

number of peers. The results are shown in Fig. 6.7. When the number of peers changes from

200 to 1000, the average time of getting the first data by BitTorrent gradually decreases with

some small fluctuations where the fluctuations are mainly caused by peer churns and flash

crowds. But in the RaptorQP2P, comparing to the BitTorrent, the average time of getting

first data stays very low and is more stable with the peer number increasing. This is because

the opportunistic transmission scheme in RaptorQP2P can better exploit a peer’s upload
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Figure 6.4. The contribution of opportunistic transmissions to the whole system as a function
of file size with 1000 peers.

capacity and speed up the file distribution process even when a piece is not fully downloaded

at the peer, so that each peer has more chances to get the first data.
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Figure 6.5. CDF of individual peer’s getting first piece in a flash crowds condition for a 512
MB file and 1000 peers.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this thesis, we presented a novel RaptorQP2P protocol which applies the RaptorQ

coding technique into P2P file distribution, where the design was motivated by our in-depth

study on the limitations of BitTorrent under various dynamic network environments. We

first encode the piece into symbols and utilizing the feature that RaptorQ codes can generate

rateless identical symbols to fully utilize each peer’s upload capacity and avoid the influence

by network dynamic, peer churn and flash crowds. Then we take a global view to see the

whole file. To decrease the possibility of missing piece happened, we encode all the pieces

to generate the encoded pieces and when the receiver receiving a certain number of encoded

pieces, then he can decode the whole file. This piece level encoded mechanism can increase

the piece variety and resist the influence by peers who have a certain piece leave the swarm

suddenly which will caused a missing piece happened. We conducted extensive simulations

driven by the real traces measured from the BitTorrent system. The results showed that our

protocol can scale well with different user populations and achieve much better performance

than BitTorrent, especially when dealing with large files.

Besides further evaluating our protocol in a prototype system, we are also interested

in investigating how our protocol would perform under other type of networks such as cloud

and wireless networks.

Another interesting idea is to apply online social networks (OSNs) to P2P file sharing.

In most cases, people who are friends in real world are friends in OSNs . This provides a

better incentive for users to share more resources in P2P file distribution and keep staying in

the system to upload after finishing download. One preliminary work has been done by Su
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and Wang (2013). It is thus interesting to further explore along this direction and extend

our protocol there.
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