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ABSTRACT 

In this dissertation, lower length scale phenomena associated with the responses of hybrid 

materials to harsh and extreme environments were studied. The goal of this research was to reveal 

the underlying mechanisms of damage mitigation in these materials and the role that interface, and 

relevant material component interactions play in the overall material response. 

First, the thermal decomposition behavior of a technologically important material system, i.e., 

pristine graphene (PG) and graphene oxide (GO) reinforced poly(ethylene oxide) (PEO), was 

investigated using a reactive molecular dynamics simulation methodology. The simulations were 

performed in both non-isothermal (dynamic gravimetric) and isothermal modes of decomposition. 

Overall, the introduction of PG to the PEO system improves the thermal stability of the polymer 

in both decomposition modes. A delay in the temperature of the onset of decomposition in the non-

isothermal mode and a nearly 60% increase in the activation energy of decomposition in the 

isothermal mode is observed for the PEO-PG system. This effect gets more pronounced with an 

increase in the PG concentration in the system. In contrast, introducing GO in the PEO system 

deteriorates the thermal stability of the polymer, even though, similar to the PG concentration 

effect, the thermal stability of the polymer is increased with increasing GO concentration.  

Second, the effect of surface modification of polyoctahedral silsesquioxane (POSS) and its 

concentration in a polyimide (PI) matrix, as well as the effect of nanoparticle type (POSS, 

graphene, and carbon nanotube (CNT)) and the nanoparticle orientation in Gr and CNT 

nanoparticles in the PI matrix exposed to atomic oxygen (AO) bombardment were studied using a 
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reactive molecular dynamics simulation methodology. Among all systems, PI with randomly 

oriented CNTs or Gr nanoparticles gave, in general, the lowest mass loss, erosion yield, surface 

damage, AO penetration depth, and temperature. Grafting of the POSS nanoparticles with PI and 

the increasing the PI concentration lowers the erosion yield of the PI-POSS systems, with the effect 

of former being greater on the AO damage mitigation. The results of this fundamental study shed 

light on the lower length scale phenomena associated with AO damage mitigation in different PI-

nanoparticle systems. 

Third, the through-thickness temperature distribution and thermal conductivities of 

unprotected neat crosslinked epoxy, and protected epoxy/graphene, and 

epoxy/montmorillonite/graphene systems were investigated against lightning strike damage. It was 

inferred that the montmorillonite/graphene top coating has great potential to be used as a lightning 

strike damage protection measure for epoxy-based composite systems. A more thorough multi-

physics (electrothermal) analysis of the montmorillonite/graphene system may further reveal its 

lightning strike damage mitigation efficiency. 
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CHAPTER I 

INTRODUCTION 

Environment is full of phenomena we can consider extreme, from our familiar phenomena on 

Earth’s surface to those in the outer space:  

• fluxes of radiation and particles from the Sun 

• volcanic eruptions 

• very high underground pressures and temperatures 

• electromagnetic discharges, occurring in solar flares 

Also, human activities usually create extreme environments. For instance, in 

• high-powered lasers, 

• high temperature engine and turbines, 

• combustion engines, and 

• industrial chemical plants. 

The responses of materials to extreme environments, such as high stresses and strains, high or 

low temperatures, corrosive or oxidizing atmospheres, strong magnetic and electric fields, and 

intense photon or radiation fluxes result in phenomena that do not occur under normal conditions 

and can possibly cause failures that would limit the intended function of the materials in different 

applications. A critical understanding of the extreme environments and their implications for 

materials performance are of utmost importance in energy, military, and aerospace sectors. For 
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example, the design of smart materials capable of withstanding extreme conditions is the main 

focus in energy technologies for 

• automobiles, satellites, and aircraft, 

• electrical energy storage devices, such as fuel cells, solar cells, and batteries that have much 

longer lifetimes, 

• electricity transmission and distribution systems that are more reliable and efficient, 

• nuclear and stationary turbines, operating at higher temperatures with longer lifetimes, and 

• distribution pipelines that are not subject to failures resulting from corrosion or other 

chemical reactions. 

One of the key engineering materials are polymers and their composites. Because of their 

inherent limitations and not so reliable operation under extreme environments, these materials 

often need to be modified using a host of inclusions, such as nanomaterials. The addition of 

nanomaterials to engineering polymers often provides a means to improve the physico-chemical, 

electrical, thermal, and mechanical properties of the host polymer matrix. However, there are 

numerous levels of interaction between the material constituents that makes the prediction of the 

ultimate physical, chemical, mechanical, thermal, electrical, and other properties of the composite 

material very complex. In many cases, the interface between the different phases of the composite 

material, which often leads to the formation of an interphase region with a gradient of properties 

between those of the two phases, plays a major role in the ultimate response of the material system 

to external stimuli. These effects are often very difficult to elucidate or quantify through
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experimental characterization efforts. Reactive molecular dynamics (MD) simulation is an 

invaluable tool to probe the lower length and time scale phenomena associated with the physico-

chemo-mechanical changes of the material in response to external extreme and catastrophic 

conditions. 

In this dissertation, we seek to elucidate the lower length scale phenomena associated with the 

response of hybrid materials to harsh and extreme environments. Our goal is to reveal the 

underlying mechanisms of damage mitigation in these materials and the role that interface, and 

relevant material component interactions play in the overall material response. This dissertation 

deals with the MD simulation of the damage mitigation in hybrid materials under three different 

extreme environments:  

1- Temperature extremes: confinement effects on the thermal stability of poly(ethylene 

oxide)/graphene nanocomposites: a reactive molecular dynamics simulation study 

2- Energetic flux extremes: damage mitigation efficacy of POSS-, graphene-, and carbon 

nanotube-loaded polyimide coatings exposed to atomic oxygen bombardment 

3- Electro-thermal extremes: lightning strike protection of aircraft composite structures by 

multifunctional graphene/nanoclay bilayer coatings 
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CHAPTER II 

CONFINEMENT EFFECTS ON THE THERMAL STABILITY OF POLY(ETHYLENE 

OXIDE)/GRAPHENE NANOCOMPOSITES: A REACTIVE MOLECULAR DYNAMICS 

SIMULATION STUDY 

In this chapter, the decomposition of poly(ethylene oxide) loaded with different concentrations of 

pristine graphene and graphene oxide nano-platelets under extremely high temperature condition 

were investigated using reactive molecular dynamics simulation. The outcome of this research was 

published in Journal of Polymer Science Part B. 

2.1. Abstract 

Non-isothermal and isothermal decomposition of poly(ethylene oxide) (PEO) loaded with 

different concentrations of pristine graphene (PG) and graphene oxide (GO) nano-platelets were 

investigated using reactive molecular dynamics simulation. The onset of non-isothermal 

decomposition of the PG-loaded PEO system was the highest among all systems, suggesting that 

introducing PG to the polymer improves its thermal stability (an effect that increases with an 

increase in the PG concentration). At low concentration, introducing GO to the polymer brings 

about a deterioration of the thermal stability of the polymer consistent with experimental findings. 

On average, the activation energy for the isothermal decomposition of PG-loaded PEO system 

increases by 60% over that of the neat PEO system, while it decreases by 40% for the GO-loaded 



5 
 

PEO system. A time-dependent analysis of the through-thickness decomposition profile of the 

above systems reveals that the polymer confined between the PG sheets exhibit a higher thermal 

stability compared to the bulk polymer. However, an opposite effect is observed with the polymer 

confined between the GO sheets. The latter observation is attributed to accelerated polymer chain 

scission in confined regions due to the ejection of reactive hydroxyl radicals from the GO surface 

during the early stages of thermal decomposition. 

2.2. Introduction 

The addition of nanomaterials to engineering polymers often provides a means to improve the 

physico-chemical, electrical, thermal, and mechanical properties of the host polymer matrix.[1-3] 

However, there are numerous levels of interaction between the material constituents that makes 

the prediction of the ultimate physical, chemical, mechanical, thermal, electrical, and other 

properties of the composite material very complex.[4] In many cases, the interface between the 

different phases of the composite material, which often leads to the formation of an interphase 

region[5-8] with a gradient of properties between those of the two phases, plays a major role in the 

ultimate response of the material system to external stimuli. This is true since most of the polymer-

nanoparticle interactions are mediated through this region. Moreover, in certain two-dimensional 

(2D) nanomaterials, such as graphene nano-platelets, nanoclays, etc., the intercalated polymer in 

the galleries of the nanomaterial may exhibit a different behavior than that of the “bulk” polymer 

due to “confinement” effects.[9, 10] These effects are often very difficult to elucidate or quantify 

through experimental characterization efforts. 

  Reactive molecular dynamics (MD) simulation is an invaluable tool to probe the lower length 

and time scale phenomena associated with the physico-chemo-mechanical changes of the material 

in response to external extreme and catastrophic conditions. Few researchers have used this tool 
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to investigate the thermal decomposition of polymers.[11-15]  However, to the best of our 

knowledge, there are no reports on the reactive MD simulation of thermal decomposition in 

polymer composites. In this work, the non-isothermal and isothermal (dynamic 

thermogravimetric) behavior of poly(ethylene oxide) (PEO) reinforced with pristine graphene 

(PG) and graphene oxide (GO) nano-platelets are investigated using a reactive MD simulation, 

with focus on elucidating the effects of polymer confinement between the PG and GO nano-

platelets. For reference, PEO-GO systems are of applied interest as solid-state flexible 

polyelectrolyte films[16] used in “wearable” solar cells. 

Contrary to computational work, there are few experimental reports available on the PEO-

graphene systems in literature. Lee et al.[17] prepared a PEO-functionalized graphene sheet (FGS) 

composite film by a solvent casting method. Based on their differential scanning calorimetry data, 

the FGS hindered the growth of PEO crystals. They further report on an improvement in the 

dynamic mechanical and electrical conductivity of PEO by incorporating FGS in the material 

formulation. Bai et al.[18] prepared PEO-chemically reduced graphene [PEO-(CR-G)] composites 

by an aqueous mixing method. At a CR-G amount of 2.6 vol%, the PEO-(GR-G) composite 

exhibits a high microwave-absorbing capacity, which the authors attribute to the presence of a 

large number of electrical pathways within the CR-G sheets. They argue that these electrical 

pathways effectively dissipate the microwave energy into heat. Mahmoud[19] reports on the 

morphology and physical properties of PEO-foliated graphene sheet (PEO-FGS) composites 

prepared by melt compounding and solvent mixing. The solvent-mixed PEO-FGS system was 

found to give a higher optical transparency in the visible region, a lower FGS percolation threshold 

for electrical conductivity, and a better mechanical performance (stress-strain response) than that 

of the melt-compounded PEO-FGS system. Wang et al.[20] investigated the heat storage capacity 
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of polyethylene glycol-GO (PEG-GO) system. The most recent work on the confinement effects 

in the thermal decomposition of polymer-graphite oxide systems was published by Barroso-Bujans 

et al.[21] They investigated the thermal stability of intercalated PEO in a PEO-GO system using a 

combination of X-ray diffraction, thermogravimetric analysis (TGA), and TGA-mass 

spectroscopy. Based on their findings, the addition of GO to PEO deteriorates the thermal stability 

of the PEO-GO composite. 

Since the key mechanisms associated with the thermal stability of a technologically important 

class of polymer composites, i.e., PEO-PG and PEO-GO composite films, are poorly understood, 

the current work provides the necessary molecular insights for a better design of such systems. 

The methodology presented herein can be extended to other polymer composites. 

 

2.3. Computational Methods 

The structures of PEO, PG, and GO were created in BIOVIA Materials Studio® (v8.0). Ten 

monomer units, i.e., (CH2-CH2-O) n with n = 10, were selected for each PEO polymer chain. 

Hydrogen-terminated finite PG and GO sheets were created in the size of 30×30 Å2. In the GO 

sheets, graphene was randomly functionalized with hydroxyl (-OH) and epoxide (-O-) groups on 

the surface and with carboxylic acid (-COOH) groups on the edges.[22, 23] The final oxygen to 

carbon (O/C) ratio for the GO sheets was 1:6. Next we created six different configurations of neat 

PEO and graphene-loaded PEO systems using the Amorphous Cell® module within Materials 

Studio. These configurations are given in Table 2.1 and consist of 1) a neat PEO system 

(designated as Neat PEO), 2) a PEO system with two PG sheets at a separation distance of 12 Å 

(PEO-2PG), 3) a PEO system with two GO sheets, 14 Å apart (PEO-2GO), 4) a PEO system with 

four PG sheets (all PG pairs at 12 Å separation distance), 5) a PEO system with four GO sheets 
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(all GO pairs at 14 Å separation distance), and 6) a confined PEO system between two PG sheets, 

12 Å apart (Confined PEO-2PG). The distances between the graphene sheets were measured after 

the energy-minimization and subsequent equilibration of the initial structures by running an NPT 

simulation at atmospheric pressure and room temperature (298 K) using the COMPASS force 

field[24] with a time step of 1 fs and cutoff distance of 12 Å for a total simulation time of 3 ns. 

The coordinates of all PG sheet atoms were fixed for the Confined PEO-2PG structure during 

simulation. A schematic representation of the equilibrated PEO-2PG, PEO-2GO, and Confined 

PEO-2PG systems are given in Figure 2.1. Once created, the atomic coordinates of the initial 

structures were exported to LAMMPS,[25] where they were energy-minimized using the Polak-

Ribiere version[26] of the Conjugate Gradient (CG) method.[27] All subsequent simulations were 

run using the reactive force field (ReaxFF) implemented in LAMMPS.[28, 29] ReaxFF is a highly 

transferable empirical interatomic potential that utilizes a bond-order formalism, similar to 

REBO[30] and MEAM-BO,[31] and  polarizable charge descriptions to describe reactive and non-

reactive interactions between atoms.[32] It is a suitable force field for the simulation of systems 

undergoing chemical reactions, such as thermal decomposition.[14] In the ReaxFF formalism, the 

total energy of the system is divided into partial energy contributions as:[32] 

system bond angle tors over vdW Coulomb specificE E E E E E E E= + + + + + + , (2.1) 

where bondE  is the energy associated with bond formation between atoms, angleE  and torsE  are the 

energies associated with valence angle strain and torsional angle strain, respectively, overE  is an 

energy penalty term that prevents the over-coordination of the atoms, vdWE  and CoulombE  are the 

dispersive and electrostatic energy contribution between all atoms, respectively, and SpecificE is a 

system-specific energy term that may include lone-pair, conjugation, hydrogen binding, and C2 
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corrections.[32] More details on the ReaxFF formalism can be found in the work Chenoweth et 

al.[28] An excellent review of development, evolution, and future direction of ReaxFF is given by 

Senftle et al.[32] Since ReaxFF has been used in the past for the reactive simulation of 

polyethylene pyrolysis[33] and graphene decomposition due to hypervelocity atomic oxygen 

impact,[34] it is deemed suitable for the thermal decomposition simulations performed in this 

work. The ReaxFF parameter set herein were taken from the work of Chenoweth et al.[28] and are 

provided in the Appendix A for reference. 

Once energy-minimized, the systems were equilibrated using an NVT simulation with a time 

step of 0.05 fs at 298 K for a total simulation time of 20 ps until the system temperatures were 

stabilized. The system temperature was controlled by the Berendsen thermostat.[35] Details of the 

equilibrated initial structures are given in Table 2.1. 

 

Table 2. 1. Details of equilibrated initial systems after energy minimization and NVT 

simulation at 298 K and 1 atm. 

System Cell Size (Å3) 
Total No. 

of Atoms 

No. of PEO 

Molecules 

No. of 

Nanoparticles 

Density 

(g/cm3) 

Neat PEO 31.3×31.3×31.3 7,290 48 0 1.15 

Confined PEO-2PGa 37.0×32.0×12 2,328 21 2 - 

PEO-2PG 33.0×33.0×82 9,960 126 2 1.21 

PEO-2GO 36.2×36.2×83 11,136 139 2 1.20 

PEO-4PG 33.2×33.2×83 9,768 111 4 1.26 

PEO-4GO 33.1×33.1×82 9,240 97 4 1.24 
a The x, y, and z coordinates of both PG sheet atoms were fixed. 
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Next, we performed two sets of NVT simulations for all six systems, i.e., 1) non-isothermal 

(dynamic thermogravimetric) simulations starting from room temperature (298 K) up to 3,400 K 

with a temperature ramping rate of 16 K/ps for a total simulation time of 340 ps , and 2) isothermal 

simulations in the temperature range of 1,500-3,400 K with an increment of 100 K for a total 

Figure 2. 1. Snapshots of the initial equilibrium structures of a) PEO-2PG, b) PEO-4PG, 

and c) Confined PEO-2PG systems. Legend: carbon (black), hydrogen (green), and oxygen 

(red). 

a) b) 

c) 
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simulation time of 40 ps at each temperature increment. Again, the system temperature was 

controlled by the Berendsen thermostat. For both types of simulation, the long-range cut-off 

distance was 12 Å. In this work, the time step was fixed at 0.05 fs for all simulations performed at 

low and high temperatures, even though some researchers may select different times steps for 

different portions of their simulations because of computational convenience.[14] To reduce 

statistical noise, the non-isothermal simulations were repeated twice using different initial system 

configurations and the relevant data were averaged over the three simulations. 

 

2.3. Result and Discussion 

2.3.1. Non-isothermal (dynamic thermogravimetric) simulation 

In Figure 2.2, representative normalized number of PEO molecules and temperature are given as 

a function of simulation time. At each time increment, the total number of the PEO molecules in 

the system is normalized with respect to the original number of PEO molecules at room 

temperature. To elucidate the thermal stability, the average temperature of the onset of the thermal 

decomposition for the different systems (averaged over three simulations with different initial 

configurations, as outlined in the Computational Method section) are compared in Table 2.2. In 

this table, the extrapolated onset temperatures were calculated using the method outlined in ASTM 

D 3418-15, where the intersection of two lines drawn tangent to the curve before and after the 

decomposition onset is reported as the temperature of the onset of thermal decomposition. As seen 

in Table 2.2, with the introduction of PG to the PEO system at low PG concentration, a slight 

increase in the decomposition onset temperature is observed for the PEO-2PG system (720 ± 8 K) 

versus that of the Neat PEO system (700 ± 8 K). However, introducing GO to the PEO system 

(PEO-2GO) causes a 5-10% drop in the decomposition onset temperature (650 ± 20 K) compared 
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to the Neat PEO system. Based on our observations, this drop in the thermal stability of the PEO-

2GO system is attributed to the partial chemical decomposition of the functional groups on the GO 

surface, resulting in the evolution of both reactive (free radical) and non-reactive chemical species, 

such as OH, CHO, CO, CO2, H2O, and COOH. The free radicals further react with the PEO 

molecules, causing an early onset of the polymer decomposition. For reference, the initial polymer 

chain decomposition is initiated by the attack of hydroxyl radicals on the PEO. The chemistry of 

this reaction is similar to that observed for the thermo-oxidative decomposition of PEO as reported 

by Yang et al.[36]  In an experimental study performed by Barroso-Bujans et al.[21] for an 

intercalated PEO-graphite oxide system versus neat PEO, an earlier onset of decomposition for the 

PEO-graphite oxide system is reported. This experimental observation is consistent with our 

simulation results. It should, however, be noted here that the thermogravimetric data obtained 

through MD simulations do not necessarily compare to the experimental data since the temperature 

ramping rate during simulations is an order of magnitude faster than that of the experiments. With 

an increase in the PG concentration, an improvement in the thermal stability of the PEO-PG system 

is observed over that of the neat PEO (Table 2.2). While a similar trend is observed for the PEO-

GO system (Table 2.2), the thermal stability of this system is still below that of the neat PEO. 

These observations are closely related to the PEO confinement in PG and GO, which will be 

discussed in detail later. Based on our observations, an improved thermal stability of PEO is 

achieved when it is confined between two PG sheets compared to that of the Neat PEO system 

(Table 2.2). As seen in Table 2.2, the decomposition onset temperature for the Confined PEO-2PG 

system (780 ± 10 K) is about 80 K higher than that of the Neat PEO system (700 ± 8 K) and on 

par with that of the PEO-4PG system. 
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Table 2. 2. Average temperature of the onset of thermal decomposition (extrapolated onset 

temperature) for the different systems 

System Neat PEO 
Confined 

PEO-2PG 
PEO-2PG PEO-2GO PEO-4PG PEO-4GO 

Temperature (K) 700 780 720 650 770 680 

St. Dev.a 8 10 8 20 5 6 
a Standard deviation 

In Figure 2.3, the evolution of major chemical species, i.e., the polymer, CH2O, C2H4, CHO, 

H2O, CH4, and H2 are given as a function of simulation time (and temperature) for the Neat PEO, 

Confined PEO-2PG, PEO-4PG, and PEO-4GO systems. The ratio of CH2O to C2H4 generated 

during the thermal decomposition of Confined PEO-2PG system (Figure 2.3b) is less than that of 

the Neat PEO system (Figure 2.3a). This suggests that the dominant decomposition mechanism 

for the polymer when confined between two PG sheets is chain scission. This point is revisited 

again when the isothermal decomposition data are presented later. While the total number of PEO 

molecules in the PEO-4GO system is less than that of the PEO-4PG system (Table 2.1), a larger 

Figure 2. 2. Representative normalized 

number of PEO molecules and temperature 

as a function of simulation time. 
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number of CH2O and CHO molecules are formed for the former system than for the latter (Figures 

3c and 3d). The initial system decomposition (up to about 100 ps or 1200 K) is characterized by 

the polymer chain scission events. Above this point, the build-up of CH2O is observed for both 

systems, followed in intensity by C2H4, CHO, H2O, CH4, and H2. Between 2,000 and 2,500 K, a 

secondary reaction occurs for the CH2O, CHO, and C2H4 species and, hence, their concentration 

in the systems start to drop (Figure 2.3). These secondary reactions are believed to be caused by 

an increase in the concentration of free radicals in the systems at high temperatures, which result 

in an increase in the chemical attack to stable molecules.[14] During the non-isothermal 

simulation, GO partially disintegrates, i.e., its surface functional group decompose, at temperatures 

<600 K, while the PG disintegration starts at higher temperatures (>1500 K). Moreover, formation 

of an oxygenated macromolecular structure is observed at high temperatures (above 2,000-2,500 

K). Examples of these macromolecular structures are shown for the Neat PEO, PEO-4PG, and 

Confined PEO-2PG systems at 3,400 K (340 ps of non-isothermal simulation) in Figure 2.4. 
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Figure 2. 3. Evolution of major chemical species as a function of simulation time and 

temperature for a) Neat PEO, b) Confined PEO-2PG, c) PEO-4PG, and d) PEO-4GO 

systems. 

a) b) 

c) d) 
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2.3.2. Isothermal simulation 

Isothermal reactive simulations were run, as outlined in the previous section, to determine the first-

order kinetics of thermal decomposition[21] in the different PG- and GO-reinforced PEO systems. 

The Arrhenius equation for the reaction rate constant (k) is given as 

Figure 2. 4. Snapshots of a) Neat PEO, b) Confined PEO-2PG, and c) 

PEO-4PG systems at 3,400 K (340 ps of non-isothermal simulation), 

where the size and location of the evolved macromolecular structures are 

shown. Legend: carbon (black), hydrogen (green), and oxygen (red). 

a) 

b) c) 
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aE

RTk Ae
−

=  or 
(2.2) 

1ln( ) ln( )aE
k T A

R

−−
= + , 

(2.3) 

where A is the pre-exponential (frequency) factor, Ea is the activation energy, and R is the universal 

gas constant. The reaction rate constant for the different systems was calculated using the 

following formula[11] for the dominant species generated during the isothermal decomposition of 

the PEO chains, similar to the methodology employed by Chenoweth et al.:[14] 

( )

( )

2 s

2 p

CH O

CH O

n
k

n t
=


, 

(2.4) 

where 
( )2 s
CH O

n is the number of single CH2O species evolved during the thermal decomposition, 

( )2 p
CH O

n is the number of CH2O species within the backbone of the original PEO chains, and t is the 

simulation time. The reaction rate data for the different systems, their respective linear fits, and 

coefficients of determination are shown in Figure 2.5. Finally, the calculated activation energies 

are given in Table 2.3. Since the time scales in an MD simulation are much smaller than the 

experimental and, hence, the temperature range for observing thermal decomposition events are 

much broader, the activation energy data in Table 2.3, which were obtained for data at high 

temperatures (> 1,000 K), do not compare to the experimental values. For a similar PEO-GO 

system,[21] the upper limit of decomposition temperature  is typically less than 1,000 K. 

Nevertheless, the activation energy data are used for comparing between the thermal 

decomposition of the different systems. 
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Figure 2. 5. Reaction rate data for the thermal decomposition of a) Neat PEO, b) PEO-

2PG versus PEO-2GO, and c) PEO-4PG versus PEO-4GO systems. 

a) b) 

c) 
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Table 2. 3. Activation energy (Ea) for the thermal decomposition of the various systems 

System 
Ea 

(kcal/mol) 

Neat PEO 32.74 

PEO-2PG 52.43 

PEO-4PG 54.59 

PEO-2GO 8.72 

PEO-4GO 15.21 

 

As evident from Table 2.3, the activation energies for thermal decomposition of the PEO-PG 

systems are higher than those of the Neat PEO and PEO-GO systems. This observation, which is 

similar to that made for the non-isothermal simulations, indicates that an improvement in the 

thermal stability of PEO is achieved by introducing PG to the system, an effect that increases with 

increasing PG concentration (Table 2.3). Moreover, the occurrence of significantly lower 

activation energies for the PEO-GO systems versus that of the Neat PEO (Table 2.3) is an 

indication that the GO addition to the polymer deteriorates its thermal stability, even though 

increasing the GO concentration leads to a rise in the activation energy. Similar observations have 

been made by Barroso-Bujans et al.[21] regarding the activation energy differences between PEO-

PG and PEO-GO systems.  

To explain the above observations, a comparison is made between the mass distribution of the 

different systems at temperatures of 1,500, 2,000, and 2,500 K after 40 ps of isothermal simulation 

in Figure 2.6 (the dominant chemical species formed during the polymer decomposition are 

marked in Figure 2.6a). As seen in this figure, larger number of PEO chains (molecular mass of 

442 g/mol) are present in the PEO-PG systems at 1,500 K (Figures 6c and 6e) versus those of the 



20 
 

neat PEO system (Figure 2.6a). In the PEO-GO systems (Figures 6d and 6f), the polymer chains 

are essentially non-existent. This observation confirms the fact that thermal stability of PEO is 

improved by the addition of PG and is deteriorated by the addition of GO. Data in Figure 2.6b 

suggest that the thermal stability of PEO confined between the PG sheets is significantly improved 

at all temperatures. In comparing the PEO-PG (Figures 6c and 6e) and PEO-GO systems (Figures 

6d and 6f), a higher intensity is observed for the formation of CHO species in the latter, which is 

also higher than that of the Neat PEO system (Figure 2.6a). This is an indication of the thermo-

oxidative decomposition of the polymer in the PEO-GO system. 

To better elucidate the PEO confinement effect, a through-thickness decomposition profile is 

given in Figure 2.7 for the PEO-2PG and PEO-2GO systems at a representative temperature of 

2,400 K. In this figure, each data point represents a specific molecule (originally present or evolved 

during the isothermal decomposition), the mass of which has been normalized with respect to the 

mass of the PEO chain. Moreover, the z-coordinate of the center of mass of the molecule in the 

normalized z dimension of the simulation box is given as the abscissa. As seen in this figure, the 

onset of thermal decomposition occurs after 1 ps in the “bulk” region of the system (Figure 2.7a), 

while the “confined” region between the two PG sheets is still intact. After 40 ps of isothermal 

simulation, there are still PEO chains in the confined region (Figure 2.7b), indicating an improved 

thermal stability of the polymer in this region compared to the bulk. This observation can be 

explained based on two related mechanisms. According to the first mechanism, the polymer free 

volume decrease in the confined region leads to a reduced occurrence of “hot spots” in the confined 

polymer during temperature rise, which further results in a reduced local decomposition rate for 

the polymer.[37] According to the second mechanism, the PEO chains in the confined and 

interfacial regions are immobilized on the PG surfaces during thermal decomposition. These 
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immobilized chains undergo intermittent scission and recombination reactions, thereby limiting 

the number of available free radicals for continued chain scission reactions in the confined region. 

In the case of the Neat PEO system, the polymer chain scission reactions during thermal 

decomposition produce highly mobile free radicals that further produce CH2O species when 

attacking other chains. This observation is shown in Figure 2.8. In comparing the Neat PEO (Figure 

2.8a) and Confined PEO-2PG (Figure 2.8b) systems undergoing an isothermal decomposition at 

3,400 K, the formation of larger number of CH2O species is evident for the former. Another 

decomposition reaction is the thermally induced cleavage reactions that produce C2H4 species. At 

longer simulation times, the chains start to fully disintegrate and the frequency of small-molecule 

free radical formation is increased. These molecules diffuse away from the PG surfaces and cause 

thermal decomposition in the confined region. While Barroso-Bujans et al.[21] argue that the 

thermal stability of graphene (G)-reinforced PEO is inferior to that of Neat PEO, our results in this 

work indicate that PG actually improves the thermal stability of PEO as evident from both non-

isothermal and isothermal simulations. The discrepancy between two sets of results are due to the 

fact that the graphene platelets used in the work of Barroso-Bujans et al. is not pristine, but has 

oxygenated groups on the surface, resembling those of GO. 

In contrast to the PEO-2PG system, the decomposition profile of the PEO-2GO system after 

1 ps of isothermal simulation (Figure 2.7c) shows a more severe thermal decomposition in the 

interfacial and confined regions versus that of the bulk region, consistent with the findings of 

Barroso-Bujans et al.[21] At 40 ps, the system is uniformly decomposed (Figure 2.7d). The 

ejection of reactive small chemical species, such as OH, from a GO sheet during thermal 

decomposition causes a more severe PEO chain scission in the neighborhood of the GO sheet[21] 

as evidenced in Figure 2.7c. When the GO (or PG) concentration is increased in the system, the 
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free radicals formed in the confined regions are barred from diffusing to the bulk by the graphene 

sheets and, therefore, the cumulative effect of such a restricted movement of the free radicals is an 

improved non-isothermal and isothermal stability of the bulk PEO. Similar arguments have been 

made by Barroso-Bujans et al.[21] 
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Figure 2. 6. Mass distribution in a) Neat PEO, b) Confined PEO-2PG, c) PEO-2PG, d) 

PEO-2GO, e) PEO-4PG, and f) PEO-4GO systems at various temperatures after 40 ps of 

isothermal simulation.  

a) b) 

c) d) 

e) f) 
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Figure 2. 7. Through-thickness decomposition profiles for a) PEO-2PG system after 1 ps, 

b) PEO-2PG system after 40 ps, c) PEO-2GO system after 1 ps, and d) PEO-2GO after 40 ps 

of isothermal simulation at 2,400 K. The dotted lines indicate the approximate positions of 

the PG or GO sheets. 

a) b) 

c) d) 



25 
 

 

2.4. Conclusion 

Incorporation of nanoparticles in polymers is often thought to improve the thermal stability of the 

host polymer matrix. However, this is not always the case as the thermal behavior of the 

nanoparticle-reinforced polymer is strongly governed by the chemistry of the nanoparticle surface 

and its physico-chemical interactions with the polymer molecules. In this work, the thermal 

decomposition behavior of a technologically important material system, i.e., pristine graphene 

(PG) and graphene oxide (GO) reinforced poly(ethylene oxide) (PEO), was investigated using a 

reactive molecular dynamics simulation methodology. This specific material system is of interest 

in the development of flexible solid-state polyelectrolyte films for “wearable” solar cells. The 

simulations were performed in both non-isothermal (dynamic gravimetric) and isothermal modes 

of decomposition. Overall, the introduction of PG to the PEO system improves the thermal stability 

of the polymer in both decomposition modes. A delay in the temperature of the onset of 

decomposition in the non-isothermal mode and a nearly 60% increase in the activation energy of 

decomposition in the isothermal mode is observed for the PEO-PG system. This effect gets more 

Figure 2. 8. Isothermal evolution of major chemical species as a function of simulation 

time for a) Neat PEO and b) Confined PEO-2PG systems. 

a) b) 
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pronounced with an increase in the PG concentration in the system. In contrast, introducing GO in 

the PEO system deteriorates the thermal stability of the polymer, even though, similar to the PG 

concentration effect, the thermal stability of the polymer is increased with increasing GO 

concentration. 

An investigation of the PEO confinement between the PG and GO nano-platelets reveals that 

thermal stability of the polymer is improved in the confined region versus that of the bulk region 

of the polymer. This effect is attributed to the immobilization of the polymer chains on the surfaces 

of the PG sheets, reduced free volume, and finally reduced occurrence of “hot spots” during 

thermal decomposition. In contrast, the PEO thermal stability is significantly deteriorated in the 

confined region between two GO sheets versus that of the bulk region of the polymer. This 

observation is rooted in the fact that polymer chain scission during temperature rise is accelerated 

in the neighborhood of the GO sheets because of the evolution of highly reactive hydroxyl radicals 

that immediately attack the polymer chains. At higher GO (and PG) concentrations, the free 

radicals formed in the confined regions are restricted from moving to the bulk and, hence, 

improved non-isothermal and isothermal stability of the bulk PEO is observed. 

The results of this study shed light on the mechanisms of thermal decomposition in the PEO-

PG and PEO-GO hybrid systems and provide insight on the polymer confinement effects on its 

thermal stability. 
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CHAPTER III 

A REACTIVE MOLECULAR SIMULATION OF DAMAGE MITIGATION EFFICACY OF 

POSS-, GRAPHENE-, AND CARBON NANOTUBE-LOADED POLYIMIDE COATINGS 

EXPOSED TO ATOMIC OXYGEN BOMBARDMENT 

In The second part, a reactive molecular dynamics simulation was employed to compare between 

the damage mitigation efficacy of pristine and polyimide (PI)-grafted polyoctahedral 

silsesquioxane, graphene, and carbon nanotubes in a polyimide matrix exposed to extreme 

energetic atomic oxygen flux. The outcome of this research was published in Journal of Applied 

Materials and Interfaces. 

3.1. Abstract 

A reactive molecular dynamics simulation was employed to compare between the damage 

mitigation efficacy of pristine and polyimide (PI)-grafted polyoctahedral silsesquioxane (POSS), 

graphene (Gr), and carbon nanotubes (CNTs) in a PI matrix exposed to atomic oxygen (AO) 

bombardment. The concentration of POSS and the orientation of Gr and CNT nanoparticles were 

further investigated. Overall, the mass loss, erosion yield, surface damage, AO penetration depth, 

and temperature evolution are lower for the PI systems with randomly oriented CNTs and Gr or 

PI-grafted POSS compared to those of the pristine POSS or aligned CNT and Gr systems at the 

same nanoparticle concentration. Based on experimental early degradation data (before the onset 

of nanoparticle damage), the amount of exposed PI, which has the highest erosion yield of all 
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material components, on the material surface is the most important parameter affecting the erosion 

yield of the hybrid material. Our data indicate that the PI systems with randomly oriented Gr and 

CNT nanoparticles have the lowest amount of exposed PI on the material surface; therefore, a 

lower erosion yield is obtained for these systems compared to those of the PI systems with aligned 

Gr and CNT nanoparticles. However, the PI/grafted-POSS system has a significantly lower erosion 

yield than the PI systems with aligned Gr and CNT nanoparticles, again due to a lower amount of 

exposed PI on the surface. When comparing the PI systems loaded with PI-grafted POSS versus 

pristine POSS at low and high nanoparticle concentrations, our data indicate that grafting the POSS 

and increasing the POSS concentration lower the erosion yield by a factor of about 4 and 1.5, 

respectively. The former is attributed to a better dispersion of PI-grafted POSS versus that of the 

pristine POSS in the PI matrix, as determined by the radial distribution function. 

 

3.1. Introduction 

Hypervelocity atomic oxygen (AO) bombardment of satellite and other spacecraft positioned in or 

flying through the low Earth orbit (LEO) is a serious problem for their structural integrity and 

long-term operational safety. AO, which has a relative velocity of 7-8 km/s upon impact with 

moving spacecraft, rapidly oxidizes and degrades the exposed surfaces of polymers that are typical 

matrices for spacecraft structural composites.[38, 39] The result of erosion due to AO 

bombardment is a loss of material thickness, a textured surface morphology, and propensity to 

catastrophic material failure.[38] One protective measure to mitigate the AO bombardment 

damage is to use nanoparticle-enhanced coatings,[40] prepared by incorporating nanoparticles 

such as polyoctahedral silsesquioxanes (POSS),[41-48] POSS-TiO2,[49] carbon nanotubes 
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(CNTs),[50] CNT-POSS,[51] graphene (Gr),[52-55] ZnO nanowires,[56] ZrO2,[57] and boron 

nitride nanosheets (BNNS)[58] in an aerospace-grade polymer matrix, such as polyimide (PI). The 

nano-enhanced coatings typically exhibit significantly lower erosion yield[59] than those of the 

neat polymers. However, whenever these coatings are electrically insulating, such as a PI-POSS 

coating, they may become charged during exposure to space plasma, thereby causing hazardous 

electrostatic discharge.[51] Therefore, a secondary objective in protecting the spacecraft is often 

to shield the structures and electronics to electrostatic discharge hazards by incorporating 

nanoparticles such as Gr and CNT, which are electrically conductive. It is noteworthy to mention 

that the AO damage mitigation efficacy of Gr and CNT has received much less attention than that 

of POSS. One objective in this work is to fill this scientific gap and provide relevant molecular 

insights. 

While there are numerous theoretical and experimental studies published in literature on the 

subject of AO attack and its mitigation by nanoparticle-enhanced polymer coatings,[40, 60, 61] 

relevant publications for computational studies are scarce. Srinivasan and van Duin[62] performed 

a reactive molecular dynamics (MD) simulation of hyperthermal AO collisions with Gr to 

elucidate a possible chemical degradation of the Gr nanoparticle. They report the removal of an 

O2 molecule from the surface of the Gr sheet upon the AO impact through an Eley–Rideal-type 

reaction mechanism. Moreover, the Gr sheet buckles along its diagonal. Rahnamoun and van 

Duin[63] investigated the chemistry of degradation in Kapton®, Teflon®, POSS, and amorphous 

silica exposed to AO attack. Through their reactive MD simulation, they found that Kapton is less 

resistant to the AO attack than Teflon. Moreover, amorphous silica exhibits the highest durability 

among the materials simulated before silicon starts to oxidize. In a recent study by Zeng et al.,[46] 

the role of trifluoropropyl-modifed POSS (FP-POSS) in mitigating the AO impact damage in a 
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polyvinylidene fluoride (PVDF) matrix was studied using a reactive MD simulation. The 

incorporation of FP-POSS into PVDF was found to significantly enhance the durability of PVDF 

against AO attack, as evidenced by a reduced temperature rise, mass loss, and erosion yield of the 

polymer nanocomposite. The erosion will not take place until the number of AO species reaches a 

specific threshold value. The late onset of erosion is attributed to the stable cage-like Si-O frames 

in the FP-POSS molecules. 

Most of the recent studies on the improvement of nanoparticle-assisted AO damage durability 

of polymer composites have been limited in their scope. A thorough comparison between the 

damage mitigation efficacy of various nanoparticles, especially Gr and CNT, have been largely 

overlooked. Moreover, to the best of our knowledge, the effect of nanoparticle alignment in Gr 

and CNT nanoparticles on the durability of the polymer nanocomposite to the AO attack has not 

been studied. It is, therefore, our aim in this work to compare the AO damage mitigation efficacy 

of pristine and PI-grafted POSS, Gr, and CNT nanoparticles in a PI matrix, considering the latter 

two nanoparticles’ orientation. In addition, the effect of POSS grafting and concentration on the 

AO damage mitigation is examined in the PI/POSS systems. 

 

3.3. Computational Details 

The computational methodology used herein is adapted from the work of Rahnamoun and van 

Duin.[63] Models of the imide monomer (an idealized representation of PI),[63] pristine POSS 

(the cage structure associated with (SiO1.5)n n = 8),[63] PI-grafted POSS,[63] Gr (hydrogen-

terminated, 20×22 Å2), and CNT (single-walled (6,6) structure with a length of 25 Å) were created 

in BIOVIA Materials Studio® (v8.0). Since reactive MD simulation is computationally expensive 
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and the focus in this work is not on the nanoparticle size effects, the CNT and Gr nanoparticle 

sizes were selected such that they would be appropriate for the simulation cells created (Table 3.1). 

Next, nine different systems, as listed in Table 3.1, were packed in a 3D-periodic simulation cell 

and energy-minimized using the Conjugate Gradient method.[27] The crosslinking of PI was not 

considered in this work, as it is anticipated that its effect on the AO damage mitigation is small 

since the structures are not under external load. This approach is consistent with similar work 

published in the past.[63] In the PI-Gr-Aligned-15 and PI-CNT-Aligned-15 systems (Table 3.1), 

Gr sheets and CNTs were placed perpendicular to the AO bombardment direction (Figure 3.1). 

For each system, an initial NPT (constant number of atoms, N; constant pressure, P; constant 

temperature, T) simulation was run for a total of 2 ns at room temperature (298 K) and atmospheric 

pressure using the COMPASS force field[24] within Materials Studio. The system temperature 

and pressure were controlled with the Nosé-Hoover thermostat and barostat,[64] respectively. The 

simulations were run until the system densities were equilibrated at about 1.9-2.0 g/cm3 for the PI-

POSS systems and 1.6-1.8 for the PI-Gr and PI-CNT systems, respectively (Figure 3.2a). By 

investigating the density evolution profiles for select systems in Figure 3.2a, it is evident that the 

systems were adequately equilibrated after 2 ns of NPT simulation. Moreover, by investigating the 

relative density distributions ( bulk  ) of the select systems in the x, y, and z directions of their 

respective simulation cells (Figures 2b-2d), a fluctuation of about 4-7% is observed, indicating 

that all structures are well-formed after 2 ns of simulation. For reference, the remaining relative 

density data are given in the Appendix B. To improve the statistical sampling, three separate 

simulations were run for each system and the relevant data were averaged over all three 

simulations. 
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It has to be emphasized here that, similar to any MD simulation study of complex material 

systems, size effects may have some influence on the obtained results. While not within the scope 

of this work, a side study was performed on the Neat PI system to evaluate the extent of such size 

effects. The relevant procedure and results are outlined in the Supporting Information.  

Table 3. 1. Details of the nanoparticle-loaded polyimide (PI) systems 

Nanoparticle 

 

Nanoparticle 

Concentration 

(wt%) 

Designation 

Number of 

Molecules 

(PI/Nanoparticle) 

Simulation 

Cell Size 

(Å3) 

None 0 Neat PI 240/0 43×43×55 

Pristine POSS 
15 PI-pPOSS-15 240/30 44×44×53 

30 PI-pPOSS-30 240/80 44×44×52 

PI-grafted POSS 
15 PI-gPOSS-15 210/30 44×44×53 

30 PI-gPOSS-30 160/80 44×44×52 

Randomly Oriented Gr 15 PI-Gr-Random-15 240/4 46×46×47 

Aligned Gr 15 PI-Gr-Aligned-15 236/4 46×46×48 

Randomly Oriented 

CNT 
15 

PI-CNT-Random-

15 
240/4 

46×46×48 

Aligned CNT 
15 PI-CNT-Aligned-

15 

230/4 46×46×49 
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Once equilibrated, the final atomic coordinates of the systems were exported to the LAMMPS 

software package[25] into a 2D-periodic simulation cell with periodicity in the x and y directions. 

A vacuum slab was placed on top of the systems in the z direction. Next an NVE (constant number 

of atoms, N; constant volume, V; constant energy, E) simulation was run for each system for a 

total of 10 ps using the reactive force field (ReaxFF)[28, 65] until the system temperatures were 

stabilized at 298 K. It is noteworthy to mention that ReaxFF has been used in the past for the 

reactive simulation of the various components in our nanoparticle-loaded PI systems, i.e., PI,[63] 

POSS,[63] CNT,[66] and Gr.[62] Therefore, ReaxFF is deemed to be a suitable force field for the 

simulation of material systems in this work. The ReaxFF parameters for silicon were taken from 

the work of van Duin et al.[67] and those for carbon, hydrogen, oxygen, and nitrogen were taken 

from the work of Chenoweth et al.[28] The complete set of the ReaxFF parameters used in this 

work is given in the Appendix B. In these simulations, the time step and cut-off distance were set 

Figure 3. 1. Representative initial snapshots of the energy-minimized PI systems loaded 

with (a) aligned Gr and (b) aligned CNT nanoparticles.  

(a) (b) 
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at 0.1 fs and 9 Å, respectively. Then another NVE simulation was run for a total simulation time 

of 35 ps, during which the material surface was bombarded with oxygen atoms in 200 fs intervals 

from a distance of 70 Å above the material surface and with the velocity of 0.074 Å/fs (= 7.4 

km/s)[63] in the z direction. This velocity of the AO species was fixed in this work to match the 

real AO bombardment event. However, the variability in the position of the AO bombardment in 

the defined region above the surface of the different material systems is taken into account when 

repeating the simulations, since the algorithm performs the bombardment randomly in the defined 

region. The trajectory files were saved every 200 fs and analyzed to generate mass loss data, mass 

density profiles, damage propagation depths, AO penetration depths, erosion yields, and 

temperature evolution profiles for the different systems. 
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3.4. Results and Discussion 

Representative initial (t = 0 ps) and final (t = 35 ps, equivalent to a fluence of 1015 O atoms/cm2) 

snapshots of all nanoparticle-loaded PI systems (Table 3.1) are shown in Figure 3.3. The neat PI 

system undergoes a relatively rapid damage when exposed to the hypervelocity AO species (Table 

3.1), consistent with the observations of Rahnamoun and van Duin.[63] In what follows, the data 

Figure 3. 2.  (a) Representative density evolution profiles for select systems during the 

equilibration of initial structures; (b)-(d) relative density ( ) distribution in the 

simulation cells for representative systems after 2 ns of equilibration. 

(a) (b) 

(c) (d) 
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for the Neat PI system are used as control when comparing between the nanoparticle-loaded PI 

systems. Moreover, the behavior of the PI-POSS systems will be elucidated first to reveal the 

effects of POSS grafting and concentration on the resistance of the material to the AO 

bombardment damage. Next, we compare the damage mitigating effects of the different 

nanoparticles (POSS, Gr, and CNT) and alignment in Gr and CNT on the nanoparticle-loaded PI 

systems. 

Averaged normalized mass loss as a function of simulation time and fluence is given for the 

PI-POSS systems in Figure 3.4a. Mass loss for each system is normalized at each time step with 

respect to the respective total mass of the initial system. In Figure 3.4a, the data are compared for 

the pristine and grafted POSS systems at the low and high POSS concentrations (15 wt% and 30 

wt%, respectively) versus that of the Neat PI system. As seen in this figure, the Neat PI system 

undergoes a rapid degradation as opposed to those of the POSS-loaded PI systems. The onset of 

material degradation (mass loss) occurs at lower AO exposure times for the PI-pPOSS-15 system 

(about 7 ps, equivalent to a fluence of 1.85×1014 O atoms/cm2 or bombardment with 35 AO 

species) than that of the PI-gPOSS-15 system (about 13 ps, equivalent to a fluence of 3.40×1014 O 

atoms/cm2 or bombardment with 65 AO species). This observation indicates that grafting of the 

POSS nanoparticles with PI molecules improves the AO damage mitigation efficacy in the PI-

POSS systems (see also Figures 3a and 3b). When nanoparticles are grafted with the resin 

molecules, their dispersion is improved in the resin.[68] In other words, the nanoparticles are better 

stabilized in the resin, leading to a reduced agglomerated state. The occurrence of this phenomenon 

is confirmed in Figure 3.4b, where the radial distribution functions (RDFs) of the Si-Si atomic 

pairs in the pPOSS- and gPOSS-loaded PI systems are compared at the same concentration (15 

wt%). The overlapping peaks at about 2.5 Å are associated with the Si-Si atomic distances within 
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the same POSS structure. The peaks at about 1.5 Å for pPOSS and 3 Å for gPOSS are associated 

with the Si-Si atomic distances in different POSS nanoparticles. These results indicate that the 

POSS nanoparticles are closer to one another in the pPOSS system, signifying a more 

agglomerated state when compared to the gPOSS system.  

An increase in the POSS nanoparticle concentration leads to an increase in the damage 

mitigation efficacy of both pPOSS- and gPOSS-loaded PI systems (Figure 3.4a). Since POSS 

nanoparticles are highly resistant to damage by AO bombardment,[63] an increase in their 

concentration is expected to improve the damage mitigation efficacy of the PI-POSS systems. All 

in all, the grafting of POSS with PI has a more pronounced damage mitigation effect against AO 

bombardment. This point will be revisited later when the erosion yield data are compared for the 

different systems. 
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Figure 3. 3. Representative initial (t = 0 ps) and final (t = 35 ps) snapshots of the PI 

systems loaded with (a) pristine POSS (left: 15 wt% and right: 30 wt%), (b) PI-grafted POSS 

(left: 15 wt% and right: 30 wt%), (c) CNT (left: randomly oriented and right: aligned), and 

(d) Gr (left: randomly oriented and right: aligned). The details of the systems are given in 

Table 3.1. 35 ps of simulation is equivalent to a fluence of 1015 O atoms/cm2. 

(a) (b) 

(c) (d) 



39 
 

 

 

In Figure 3.5, averaged normalized mass loss of the PI-gPOSS system is compared to those 

of the PI systems loaded with randomly oriented and aligned Gr and CNT nanoparticles. The 

nanoparticle weight fraction is fixed at the lower 15 wt% concentration for a valid comparison 

between the systems. As seen in this figure, the PI system loaded with randomly oriented CNTs 

or Gr nanoparticles exhibit a higher resistance to the AO bombardment damage than the other 

systems, as evidenced by their late onset of mass loss (about 24 ps, equivalent to a fluence of 

6.25×1014 O atoms/cm2 or bombardment with 120 AO species). In contrast, the PI systems loaded 

with aligned CNT and Gr nanoparticles have the lowest damage (onset of mass loss for both 

systems at about 10 ps, equivalent to a fluence of 2.63×1014 O atoms/cm2 or bombardment with 

50 AO species).  

Figure 3. 4.  (a) Averaged normalized mass loss as a function of simulation time and 

fluence for the neat polyimide (PI) and loaded-PI systems with pristine and grafted POSS 

nanoparticles (pPOSS and gPOSS, respectively) at two nanoparticle concentrations of 15 

wt% and 30 wt%; (b) radial distribution function showing the Si-Si intraparticle and 

interparticle atomic distances in the different PI-POSS systems. 

(a) (b) 
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Erosion yield, defined as the average mass loss divided by the number of oxygen atoms that 

have impacted the material,[69] is listed for the different systems at different AO exposure times 

in Table 3.2. As it is customary in MD simulation, the erosion yield data are reported in terms of 

g/AO rather than cm3/AO.[46, 63] This is mainly due to the difficulty in measuring the volume of 

disintegrated species. When comparing the chemical species evolved during material degradation, 

smaller molecules, such as H2, O2, HO, H2O, CO, and CO2, are among the first to appear in all 

systems at lower erosion yield values, followed by longer chain hydrocarbon-based species, such 

as C6H3O, C6H4, C6H4O, and C6H5, at higher erosion yield values. As mentioned previously, 

grafting of the POSS nanoparticles has a larger effect on the damage mitigation efficacy of the 

POSS-loaded PI systems than POSS concentration. When comparing between all POSS-loaded PI 

systems, the former generally lowers the erosion yield by a factor of about 4, while the latter lowers 

it by a factor of about 1.5 (Table 3.2). Consistent with the mass loss data (Figure 3.5), the PI 

systems with randomly oriented Gr and CNT nanoparticles, which show significantly lower 

erosion yield values at different AO exposure times (Table 3.2, underlined systems), give higher 

damage mitigation efficacy than the other systems. During our simulations, the PI was the only 

component that underwent degradation when exposed to the AO attack. Atar et al.[51] report a 

similar observation for the early degradation of PI, as opposed to CNT and POSS, in PI/CNT and 

PI/CNT-POSS systems. Since Gr and CNT have a similar carbon-based structure to that of PI, 

their degradation is expected to be on equal footing with that of PI. However, this is not the case 

and PI undergoes a faster degradation, which is attributed to its higher erosion yield.[38, 51, 70] 

To further investigate why the carbon-based nanoparticles (CNT and Gr) can mitigate the AO 

damage in CNT- and Gr-loaded PI systems, a system composed of 13 relaxed layers of hydrogen-

terminated pristine Gr sheets (46×46 Å2) were subjected to AO bombardment under the same 
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conditions as the those of the nanoparticle-loaded PI systems. The schematics of the layered Gr 

system, AO penetration depth, and normalized mass loss are shown in Figure 3.6. 

 

 

 

 

 

 

 

 

 

 

Figure 3. 5. Averaged normalized mass 

loss as a function of simulation time and 

fluence for the neat polyimide (PI) and 

loaded-PI systems with grafted POSS 

(gPOSS), as well as randomly oriented and 

aligned Gr and CNT nanoparticles, at a 

concentration of 15 wt%. 
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 Almost all AO species react with the topmost Gr layer and are prevented from penetrating 

the system as evident in Figures 6a and 6b. Moreover, there is an insignificant mass loss observed 

for the layered Gr system during the simulation, which indicates that the Gr sheet retains its 

integrity during AO bombardment. Therefore, it is deduced that the Gr nanoparticles can indeed 

Figure 3. 6. (a) Final snapshot of a layered hydrogen-terminated Gr system (black = 

carbon, silver = hydrogen) bombarded with atomic oxygen (AO) species (red), (b) final 

normalized mass density profile of the AO (material surface is located at z = 0 Å) in the 

layered Gr system, and (c) normalized mass loss as a function of simulation time and fluence 

for the layered Gr system bombarded with AO. 

(a) (b) 

(c) 
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protect the PI by reacting with the AO species and preventing them from decomposing the PI 

molecules. The same can hold true for the CNT particles. 

Experimental observations indicate that the erosion yield of the PI/POSS system (at a POSS 

concentration of 8 wt%) is reduced by a factor of about 4 compared to that of the neat PI.[40] 

However, the erosion yield of PI/CNT system is reduced by only a factor of 1.25.[40] Moreover, 

to the best of our knowledge, there are no experimental erosion yield reports for the PI/Gr system. 

The erosion yield data obtained in this work for PI/g-POSS, PI/CNT-Aligned, and PI-Gr-Aligned 

(Table 3.2) match the above experimental trends. Both Novikov et al.[40] and Atar et al.[51] report 

a more exposed surface for the PI in the PI/CNT system compared to that of PI/POSS during the 

early period of the system degradation. Therefore, the PI/CNT system exhibits a higher erosion 

yield than that of PI/POSS. In our simulations, the PI/CNT-Aligned and PI-Gr-Aligned systems 

have more exposed surface for the PI (60 PI molecules for the PI/CNT-Aligned and 50 PI 

molecules for the PI-Gr-Aligned system) than that of the PI/gPOSS-30 system (45 PI molecules); 

therefore, they exhibit a higher erosion yield consistent with the experimental observations. On the 

other hand, the PI/Gr-Random (42 PI molecules) and PI-CNT-Random (40 PI molecules) systems 

have less exposed PI than that of the PI-gPOSS-30 system, leading to lower erosion yield values 

for the former systems. The exposed PI molecules for the different systems were calculated for a 

15-Å deep region from the exposed surfaces of the material systems before the initiation of the 

AO bombardment. It has to be mentioned that all the above observations are valid for the early 

stage of degradation, when the nanoparticles themselves have not undergone degradation. POSS 

is reportedly more resistant to the AO attack damage than Gr or CNT.[51] Randomly oriented 

CNTs and Gr nanoparticle are “well-dispersed” in our systems on the individual nanoparticle level. 

This level of dispersion is very difficult, if not impossible, to obtain in practice. Therefore, in the 
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experimental data for the PI/CNT systems, CNTs are expected to be in a more agglomerated 

state.[40, 51] 

Table 3. 2. Average erosion yield[69] at different atomic oxygen exposure times 

                
a

AOn  

System 

 

Erosion Yield (×10-24 g/O atom) 

13 21 41 72 89 

Neat PI 4.20 18.32 44.20 79.93 89.90 

      

PI-pPOSS-15 0.00 2.15 5.25 25.00 37.50 

PI-pPOSS-30 0.06 0.10 2.02 28.50 29.00 

PI-gPOSS-15 0.00 0.72 1.52 5.70 11.60 

PI-gPOSS-30 0.00 0.45 0.43 0.31 7.55 

      

PI-Gr-Random-15 0.00 0.00 0.06 1.33 1.79 

PI-Gr-Aligned-15 0.00 0.57 1.83 11.10 16.75 

      

PI-CNT-Random-15 0.00 0.00 0.25 0.68 0.56 

PI-CNT-Aligned-15 0.06 2.55 7.95 9.55 21.50 
a Number of atomic oxygen species that have impacted the material systems 

Note: The underlined systems have lower erosion yield. 

 

To better elucidate the extent of damage in all nanoparticle-loaded PI systems exposed to 

hypervelocity AO species, an average damage propagation depth (DPD) (Figure 2.7 and Table 

3.3) and an average AO penetration depth (Figure 3.8) were calculated in this work. DPD was 

determined based on a comparison between the normalized mass density profiles for the initial and 

final configurations of the systems along the z-axis (parallel to the AO bombardment direction). 

Accordingly, the approximate distance between the point within the material corresponding to the 

onset of drop in the normalized mass density and the system surface is given as a measure of DPD. 
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The AO penetration depth (Figure 3.8) is calculated from the profile of the normalized AO mass 

density in the simulation cell (along the z-axis) averaged over the last 2,000 steps of the simulation. 

As seen in Figure 3.7, which gives an example of the normalized mass density profile for the 

PI-Gr-Aligned-15 system, damage extends to a depth of about 15 Å. The DPD data for the other 

systems are given in Table 3.3, where the DPD shows a decreasing trend with an increase in the 

POSS concentration in the PI-POSS systems and with grafting of the POSS nanoparticles (compare 

to Figures 3a and 3b). Moreover, the alignment of nanoparticles in the PI-Gr and PI-CNT systems 

does not affect the DPD appreciably (Table 3.3). When comparing the PI-gPOSS with PI-Gr and 

PI-CNT systems, they all give similar DPD values. The same observation is made for the AO 

penetration depth data in Figure 3.8, which indicate that the AO penetration depths in the PI-

gPOSS systems are, in general, similar to those of the PI-Gr and PI-CNT systems. These 

observations are, in general, consistent with those of the normalized mass loss data in Figures 4 

and 5.  
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Table 3. 3. Average damage propagation depth (DPD) for different nanoparticle-loaded 

polyimide (PI) systems bombarded with AO species 

 

 

Neat 

PI 

POSS 
Gr CNT 

Pristine PI-Grafted 

15 

wt% 

30 

wt% 

15 

wt% 

30 

wt% 

Random Aligned Random Aligned 

DPD (Å) 28.5 25.5 21.8 20.3 15.3 15.3 15.1 18.3 18.8 

St. Dev.a 

(Å) 
1.1 0.4 0.2 0.2 0.2 0.4 0.2 0.4 0.6 

a Standard deviation 

 

 

Figure 3. 7. An example of the final normalized mass 

density profiles along the z-axis of the PI systems 

loaded with aligned graphene nanoparticles. The 

material surface is located at z = 0 Å. The damage 

propagation depth is shown by the arrow. 
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Representative temperature evolution profiles for the PI-POSS-15, PI-Gr-15, and PI-CNT-15 

systems are given in Figure 3.9. As seen in this figure, the PI-Gr-15 and PI-CNT-15 systems 

(randomly oriented or aligned) exhibit lower temperature rise upon AO bombardment than those 

of the PI-POSS-15 systems. This is a desirable behavior, consistent with the observations for mass 

loss (Figure 3.5), DPD (Table 3.3), and AO penetration depth (Figure 3.8). However, it is difficult 

to suggest a correlation between temperature evolution and mass loss or DPD. 

Figure 3. 8. Representative final normalized mass density profiles of the atomic oxygen 

(AO) in (a) PI-POSS and (b) PI-Gr and PI-CNT systems. The material surface is located at z 

= 0 Å. 

(a) (b) 
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3.5. Conclusion 

Atomic oxygen (AO) bombardment of spacecraft in the low Earth orbit poses a great hazard to 

their durability and safe operation in near-Erath and space missions. Through a concerted research 

effort in recent years, nanoparticle-enhanced polymer matrices have been shown to possess 

promising AO damage mitigation and erosion-inhibiting characteristics when used as a top coating 

on the spacecraft body structures. However, due to the presence of a variety of lower length scale 

phenomena associated with nanoparticle/polymer systems and their behavior toward AO attack, a 

fundamental understanding of key interactions between nanoparticle type, morphology, level of 

dispersion, concentration, and surface chemistry is warranted. This objective is fulfilled in this 

work by considering three classes of nanoparticles, i.e., polyoctahedral silsesquioxane (POSS), 

graphene (Gr), and carbon nanotubes (CNTs). The main research focus in recent years on the AO 

bombardment damage mitigation has been on the use of POSS nanoparticles and considerably less 

Figure 3. 9. Representative temperature evolution 

profiles for the PI-POSS-15, PI-Gr-15, and PI-CNT-15 

systems. The profiles for the PI systems loaded with 

pristine or PI-grafted POSS, as well randomly oriented 

or aligned Gr or CNT systems are very similar. 
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attention has been given to CNT and almost no attention to Gr. For the latter two, orientation of 

nanoparticles may also play a role in their damage mitigation capability.  

In this work, the effect of surface modification of POSS and its concentration in a polyimide 

(PI) matrix, as well as the effect of nanoparticle type (POSS, Gr, and CNT) and the nanoparticle 

orientation in Gr and CNT nanoparticles in the PI matrix were studied using a reactive molecular 

dynamics simulation methodology. Among all systems, PI with randomly oriented CNTs or Gr 

nanoparticles gave, in general, the lowest mass loss, erosion yield, surface damage, AO penetration 

depth, and temperature. These observations are attributed to the lowest amount of exposed PI at 

the material surface in agreement with the experimental findings for the early degradation period 

(before the onset of nanoparticle degradation). It should be mentioned here that POSS is more 

resistant to the AO attack damage than Gr or CNT. It is practically impossible to prepare PI-CNT 

or PI-Gr systems with well-dispersed CNTs or Gr nanoparticles on the individual level. However, 

our results indirectly show the significant effect of CNT or Gr dispersion in the PI matrix on the 

AO damage mitigation. The PI-CNT and PI-Gr systems also show a slower temperature rise than 

those of the PI-POSS systems, which is a desirable material behavior. 

Grafting of the POSS nanoparticles with PI and the increasing the PI concentration lowers the 

erosion yield of the PI-POSS systems, with the effect of former being greater on the AO damage 

mitigation. When grafted, the POSS nanoparticles give better dispersion in the PI matrix, thereby 

reducing the amount of exposed PI on the material surface. Therefore, their AO damage mitigation 

efficacy becomes almost on par with the PI systems with randomly oriented CNTs or Gr 

nanoparticles. The results of this fundamental study shed light on the lower length scale 

phenomena associated with AO damage mitigation in different PI-nanoparticle systems. 
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CHAPTER IV 

Thermal Analysis of Montmorillonite/Graphene Double-layer Coating as a Candidate Lightning 

Strike Protective Layer for Crosslinked Epoxy by Molecular Dynamics 

In this chapter, the through-thickness temperature distribution and thermal conductivities of 

unprotected neat crosslinked epoxy, and protected epoxy/Gr, and epoxy/MMT/Gr systems 

against lightning strike damage was investigated. 

 

4.1. Abstract 

Molecular dynamics simulations were performed to determine thermal conductivities and through-

thickness temperature profiles of unprotected crosslinked epoxy, as well as protected epoxy with 

graphene (Gr) and montmorillonite (MMT)/Gr surface coatings against lightning strike damage. 

Three hot surface temperatures of 500 K, 1,000 K, and 10,000 K, corresponding to the initial stages 

of the temperature rise at the lightning strike site, were used, while the cold surface was kept at 

298 K. The MMT/Gr double-layer coating provided the most efficient thermal shielding of the 

epoxy sublayer, even at 10,000 K. Much less efficient thermal shielding was observed for the Gr 

coating. 

4.2. Introduction 

Lightning strike damage protection is a critical aspect of the design of modern aircraft composite 

structures. Near the lightning strike site on a composite part, a peak current of about 200 kA and a 
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maximum temperature of about 20,000°C may be observed in a fraction of a second.[71] As 

composite materials gradually replace aluminum in critical aircraft parts, such as fuselage and 

wings, the lightning strike hazard increases to alarming levels because of a generally lower 

electrical and thermal conductivities of the composite materials compared to aluminum. Therefore, 

it is imperative to protect the new-generation composite-heavy aircraft, such as Boeing 787 

Dreamliner, against catastrophic failure due to lightning strike damage. During the strike event, 

the polymer matrix, which is generally epoxy, decomposes through ignition and pyrolysis followed 

by a catastrophic fiber delamination in the composite. To mitigate the localized damage, the 

electric charge needs to be swiftly distributed over a large surface area. Moreover, the transverse 

heat conduction should be minimized by employing a suitable thermal shielding mechanism. 

While the use of metal meshes and ply-integrated interwoven wires[72] have proven to be effective 

in the lightning strike protection of fiber-reinforced composites, these meshes and wires 

significantly increase the weight of the structures. Herein, the efficacy of a novel lightweight 

montmorillonite (MMT)/graphene (Gr) double-layer protective top coating in mitigating the 

lightning strike damage extent in the crosslinked epoxy sublayer is investigated using molecular 

dynamics (MD) simulation. Gr is known to possess excellent electrical and thermal 

conductivities,[73] while montmorillonite is known for its superior thermal shielding 

characteristics.[74] Though lightning is an electrothermal phenomenon, the current work only 

focuses on the thermal degradation aspects of the strike event, thereby providing molecular 

insights into the thermal shielding behavior of the MMT/Gr coating. While the thermal properties 

of Gr[75] and Graphene oxide,[76] Gr/epoxy[77] and MMT/epoxy[78] systems have been studied 

before, to the best of our knowledge, the thermal behavior of an epoxy/MMT/Gr multilayer system 
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has not been investigated yet. In what follows, the MD simulation details and thermal analysis data 

are presented. 

4.3.  Computational Details 

All initial chemical structures were created in BIOVIA Materials Studio (V8.0). Initially, 207 

epoxy monomers (Bisphenol A diglycidyl ether (DGEBA) with chemical formula C21H24O4) were 

randomly packed with 207 curing agent molecules (1,3-phenylenediamine) at 298 K in a 3D-

periodic simulation box (size: 40×40×100 Å3, target density: 1.2 g/cm3) in the Amorphous Cell 

module of Materials Studio. All simulations in the work were performed using the Consistent 

Valence Forcefield (CVFF).[79] This forcefield has previously been used for the MD simulation 

of similar systems, such as Gr-polymer[80] and polymer-MMT[81] and is deemed appropriate for 

this work. Next, a geometry minimization was performed on the epoxy/curing agent system using 

the Conjugate Gradient method[82] followed by equilibration of the system at 298 K using the 

NPT ensemble for 1 ns. In all simulations, a time step of 1 fs was used. The cut-off distance for 

long-range intermolecular interactions was fixed at 12 Å. The system temperature and pressure 

were controlled by Andersen thermostat and barostat,[83] respectively. Once the system density 

was equilibrated at around 1.18 g/cm3, a crosslinking algorithm in Materials Studio was employed 

with an initial target of 100% curing agent conversion. After the conclusion of the crosslinking 

procedure, an actual conversion of 90% was achieved for the curing agent. 

Next, MMT crystal structure (a = 5.171 Å, b = 8.956 Å, and c = 9.740 Å; α = 90º, β = 96.1º, 

γ = 90º)[84] was imported from the American Mineralogist Crystal Structure Database (Figure 1). 

Three stacked MMT layers were constructed from this unit crystal in the size of 40×40×27 Å. 

Finally, six layers of pristine graphene (Gr) (size: 40×40 Å2) were separately stacked at an 

equilibrium interlayer distance of 4 Å. In this work, the number of Gr and MMT layers were fixed 
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at six and three, respectively, and the effects of the number of Gr and MMT layers on the thermal 

properties of the composite systems were not investigated. Altogether, three systems were 

constructed from the above base layers in Materials Studio: 1) neat crosslinked epoxy, 2) 

crosslinked epoxy/Gr, and 3) crosslinked epoxy/MMT/Gr (Figure 4.1). Next, these systems were 

imported to the LAMMPS software package and equilibrated at 298 K using the NPT ensemble 

for 10 ns. Then, a 2D simulation was run (periodicity in the x and y-directions) on the equilibrated 

structures using the NVE ensemble for 1 ns, where the top surface was subjected to temperatures 

of 500 K, 1,000 K, and 10,000 K (hot surface in Figure 4.1) and the bottom surface was kept at 

298 K (cold surface in Figure 1). Once the systems reached thermal equilibrium, a through-

thickness temperature profile was generated for each case. An example of temperature profile 

evolution with increasing simulation time is given for the neat crosslinked epoxy system in Figure 

2. In this figure, the temperature profiles at 5 ns and 10 ns overlap, signifying the achievement of 

thermal equilibrium. Also, Müller-Plathe’s algorithm[85] was employed to calculate the thermal 

conductivity of various systems. For this purpose, a 3D-periodic simulation box of each system 

was divided into N slabs (1 Å thick) perpendicular to the z-direction. Thermal conductivity was 

then calculated using the following formula:[85]  
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where t is the simulation time, m is the particle mass, Lx and Ly are the simulation box lengths in 

x- and y-directions, respectively, T is the temperature, and v is the atomic velocity. Subscripts h 

and c refer to hot and cold atom, respectively. The sum is over all kinetic energy transfers between 
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the particles and the temperature gradient in the z-direction is ensemble-averaged. More details 

about the algorithm are given in Müller-Plathe’s work.[85]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 1. Initial snapshot of the 

epoxy/MMT/Gr triple-layer system. The unit 

crystal structure of MMT is shown in the 

zoomed-in view. 
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4.4. Results and Discussion 

The equilibrium temperature distribution along the z-axis (Figure 4.1) are given for the two 

protected epoxy systems, i.e., epoxy/Gr and epoxy/MMT/Gr, as well as the control epoxy system 

for each of the three surface temperatures (500 K, 1,000 K, and 10,000 K) in Figure 4.3. The 

unprotected epoxy system shows a near-linear temperature profile, wherein the local temperature 

decreases from the hot to cold surface for all three cases of surface temperatures. At 1,000 K 

(Figure 4.3a) and 10,000 K (Figure 4.3b), about 50% and 95% of the epoxy is expected to undergo 

thermal degradation, respectively. This indirect prediction is based on the crossing of the local 

temperature over the line marking the thermal degradation onset temperature for the neat 

crosslinked epoxy (680 K). It should be mentioned herein that the thermal degradation of epoxy is 

only inferred from the thermal distribution in this work. This analysis is just suggestive and not 

based on the actual complex physics and chemistry of thermal degradation that may be responsible 

for the degradation phenomenon. 

When a Gr protective layer is applied to the surface of epoxy (epoxy/Gr system), a moderate 

drop is observed for the maximum epoxy surface temperature, as well as the slope of the linear 

Figure 4. 2. Evolution of through-thickness temperature profile in the neat crosslinked 

epoxy system with increasing simulation time. 
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profile (Figure 4.3). In addition, a decrease in the local temperature is observed when transitioning 

between the Gr sheets in the protective Gr layer, which is most noticeable for the first-to-second 

Gr sheet transition at 500 K (Figure 4.3a). This phenomenon is attributed to the lower transverse 

thermal conductivity of Gr compared to its longitudinal thermal conductivity. At the epoxy/Gr 

interface, another drop in the local temperature is observed, which is most noticeable at 10,000 K 

(Figure 4.3c). This phenomenon is due to a strong phonon scattering at the epoxy/Gr interface as 

a result of a weak bonding and phonon mismatch between the epoxy and Gr layers. The data in 

Figure 4.3 indicate a relatively moderate thermal protection is observed when coating the 

crosslinked epoxy with Gr. The thermal protection efficacy of the Gr layer is more pronounced at 

lower surface temperatures (about 25% of epoxy is expected to undergo thermal degradation at 

1,000 K) (Figure 4.3b) and is deteriorated at 10,000 K (Figure 4.3c). 
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The most significant thermal protection is observed when a MMT/Gr double-layer coating is 

applied to the epoxy surface (epoxy/MMT/Gr system). Interestingly, only about 50% of epoxy is 

expected to undergo thermal degradation at 10,000 K (Figure 4.3c) with essentially no degradation 

at the lower surface temperature of 1,000 K (Figure 4.3b). In this case, the thermal barrier effect 

of MMT is very noticeable at all low, moderate, and high temperatures. Generally, transitioning 

between each MMT layer, a sharp drop of local temperature to essentially 0 K is observed, which 

(a) (b) 

(c) 

Figure 4. 3. Through-thickness equilibrium temperature profiles in the epoxy, epoxy/Gr, and 

epoxy/MMT/Gr systems when the hot surface is at (a) 500 K, (b) 1,000 K, and (c) 10,000 K. The 

cold surface is kept at room temperature (298 K). 
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is attributed to the existence of local vacuum in the interlayer spacing. This successive layer-by-

layer thermal shielding is clearly seen in Figure 4.3. 

Thermal conductivities (λ) of the neat crosslinked epoxy, epoxy/Gr, and epoxy/MMT/Gr 

systems are given in Table 1. By applying a top Gr coating to the neat crosslinked epoxy, a 26% 

reduction in the thermal conductivity of the composite is observed. However, a top coating of 

MMT/Gr brings about a nearly 100% reduction in the thermal conductivity of the system. This 

signifies a nearly total thermal shielding of the epoxy sublayer when the MMT/Gr system is used 

as the top coating. 

 

Table 4. 1. Thermal conductivities (λ) of the various systems 

System λ (W/m2 K) 
Experimental λ 

(W/m2 K) 

Epoxy 0.12±0.07 0.15-0.25a 

Epoxy/Gr 0.09±0.07 - 

Epoxy/MMT/Gr 0.0001±0.00003 - 

   a From the work of Chung and Lin24 

 

4.5. Conclusions 

In summary, by computationally investigating the through-thickness temperature distribution and 

thermal conductivities of unprotected neat crosslinked epoxy, and protected epoxy/Gr, and 

epoxy/MMT/Gr systems against lightning strike damage, it is inferred that the MMT/Gr top 

coating has great potential to be used as a lightning strike damage protection measure for epoxy-

based composite systems. A more thorough multi-physics (electrothermal) analysis of the 

epoxy/MMT/Gr system may further reveal its lightning strike damage mitigation efficacy. 
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CHAPTER V 

CONCLUSIONS 

Molecular dynamics simulation is an invaluable tool to probe the lower length and time scale 

phenomena associated with the physico-chemo-mechanical changes of the material in response to 

external extreme and catastrophic conditions. In this dissertation, both reactive and non-reactive 

molecular dynamics simulation were employed to elucidate the lower length scale phenomena 

associated with the response of hybrid materials to three harsh and extreme environments. 

In the first part of dissertation, decomposition of poly(ethylene oxide) loaded with different 

concentrations of pristine graphene and graphene oxide nano-platelets under extremely high 

temperature condition were investigated using reactive molecular dynamics simulation. The onset 

of non-isothermal decomposition of the pristine graphene-loaded poly(ethylene oxide) system was 

the highest among all systems, suggesting that introducing pristine graphene to the polymer 

improves its thermal stability (an effect that increases with an increase in the pristine graphene 

concentration). At low concentration, introducing graphene oxide to the polymer brings about a 

deterioration of the thermal stability of the polymer consistent with experimental findings. On 

average, the activation energy for the isothermal decomposition of pristine graphene-loaded 

poly(ethylene oxide) system increases by 60% over that of the neat poly(ethylene oxide) system, 

while it decreases by 40% for the graphene oxide-loaded poly(ethylene oxide) system. A time-

dependent analysis of the through-thickness decomposition profile of the above systems reveals 
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that the polymer confined between the pristine graphene sheets exhibit a higher thermal stability 

compared to the bulk polymer. However, an opposite effect is observed with the polymer confined 

between the graphene oxide sheets. The latter observation is attributed to accelerated polymer 

chain scission in confined regions due to the ejection of reactive hydroxyl radicals from the 

graphene oxide surface during the early stages of thermal decomposition. 

  In The second part, a reactive molecular dynamics simulation was employed to compare 

between the damage mitigation efficacy of pristine and polyimide (PI)-grafted polyoctahedral 

silsesquioxane, graphene, and carbon nanotubes in a polyimide matrix exposed to extreme 

energetic atomic oxygen flux. The concentration of POSS and the orientation of graphene and 

carbon nanotube nanoparticles were further investigated. Overall, the mass loss, erosion yield, 

surface damage, atomic oxygen penetration depth, and temperature evolution are lower for the 

polyimide systems with randomly oriented carbon nanotubes and graphene or PI-grafted POSS 

compared to those of the pristine POSS or aligned carbon nanotubes and graphene systems at the 

same nanoparticle concentration. Based on experimental early degradation data (before the onset 

of nanoparticle damage), the amount of exposed polyimide, which has the highest erosion yield of 

all material components, on the material surface is the most important parameter affecting the 

erosion yield of the hybrid material. Our data indicate that the polyimide systems with randomly 

oriented carbon nanotubes and graphene nanoparticles have the lowest amount of exposed 

polyimide on the material surface; therefore, a lower erosion yield is obtained for these systems 

compared to those of the polyimide systems with aligned carbon nanotubes and graphene 

nanoparticles. However, the PI/grafted-POSS system has a significantly lower erosion yield than 

the polyimide systems with aligned carbon nanotubes and graphene nanoparticles, again due to a 

lower amount of exposed polyimide on the surface. When comparing the polyimide systems 
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loaded with PI-grafted POSS versus pristine POSS at low and high nanoparticle concentrations, 

our data indicate that grafting the POSS and increasing the POSS concentration lower the erosion 

yield by a factor of about 4 and 1.5, respectively. The former is attributed to a better dispersion of 

PI-grafted POSS versus that of the pristine POSS in the polyimide matrix, as determined by the 

radial distribution function. 

In third part of this dissertation, molecular dynamics simulations were performed to 

determine thermal conductivities and through-thickness temperature profiles of unprotected 

crosslinked epoxy, as well as protected epoxy with graphene and montmorillonite/graphene 

surface coatings against lightning strike damage. Three hot surface temperatures of 500 K, 1,000 

K, and 10,000 K, corresponding to the initial stages of the temperature rise at the lightning strike 

site, were used, while the cold surface was kept at 298 K. The MMT/Gr double-layer coating 

provided the most efficient thermal shielding of the epoxy sublayer, even at 10,000 K. Much less 

efficient thermal shielding was observed for Gr coating. 
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APPENDIX A: ReaxFF Parameter Set of poly(ethylene oxide)/graphene 

nanocomposites 

 

Reactive MD-force field 

 39       ! Number of general parameters                                         

   50.0000 !Overcoordination parameter                                           

    9.5469 !Overcoordination parameter                                           

  127.8302 !Valency angle conjugation parameter                                  

    3.0000 !Triple bond stabilisation parameter                                  

    6.5000 !Triple bond stabilisation parameter                                  

    0.0000 !C2-correction                                                        

    1.0496 !Undercoordination parameter                                          

    9.0000 !Triple bond stabilisation parameter                                  

   11.5054 !Undercoordination parameter                                          

   13.4059 !Undercoordination parameter                                          

    0.0000 !Triple bond stabilization energy                                     

    0.0000 !Lower Taper-radius                                                   

   10.0000 !Upper Taper-radius                                                   

    2.8793 !Not used                                                             

   33.8667 !Valency undercoordination                                            

    7.0994 !Valency angle/lone pair parameter                                    

    1.0563 !Valency angle                                                        

    2.0384 !Valency angle parameter                                              

    6.1431 !Not used                                                             

    6.9290 !Double bond/angle parameter                                          
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   0.3989 !Double bond/angle parameter: overcoord                               

    3.9954 !Double bond/angle parameter: overcoord                               

   -2.4837 !Not used                                                             

    5.7796 !Torsion/BO parameter                                                 

   10.0000 !Torsion overcoordination                                             

    1.9487 !Torsion overcoordination                                             

   -1.2327 !Conjugation 0 (not used)                                             

    2.1645 !Conjugation                                                          

    1.5591 !vdWaals shielding                                                    

    0.1000 !Cutoff for bond order (*100)                                         

    2.0038 !Valency angle conjugation parameter                                  

    0.6121 !Overcoordination parameter                                           

    1.2172 !Overcoordination parameter                                           

    1.8512 !Valency/lone pair parameter                                          

    0.5000 !Not used                                                             

   20.0000 !Not used                                                             

    5.0000 !Molecular energy (not used)                                          

    0.0000 !Molecular energy (not used)                                          

    3.6942 !Valency angle conjugation parameter                                  

  5    ! Nr of atoms; cov.r; valency;a.m;Rvdw;Evdw;gammaEEM;cov.r2;#             

            alfa;gammavdW;valency;Eunder;Eover;chiEEM;etaEEM;n.u.                

            cov r3;Elp;Heat inc.;n.u.;n.u.;n.u.;n.u.                             

            ov/un;val1;n.u.;val3,vval4                                           

 C    1.3763   4.0000  12.0000   1.8857   0.1818   0.8712   1.2596   4.0000      

      9.5928   2.0784   4.0000  22.6732  79.5548   5.7254   6.9235   0.0000      

      1.2065   0.0000  -0.8579   4.9417  28.3475  11.9957   0.8563   0.0000      

     -2.8846   4.1590   1.0564   4.0000   2.9663   0.0000   0.0000   0.0000      

 H    0.6646   1.0000   1.0080   1.6030   0.0600   0.7625  -0.1000   1.0000      
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      9.3951   4.4187   1.0000   0.0000 121.1250   3.8196   9.8832   1.0000      

     -0.1000   0.0000  -0.1339   3.5803   2.8733   1.0000   1.0698   0.0000      

    -13.0615   3.0626   1.0338   1.0000   2.8793   0.0000   0.0000   0.0000      

 O    1.2699   2.0000  15.9990   1.9741   0.0880   1.0804   1.0624   6.0000      

     10.2186   7.7719   4.0000  27.3264 116.0768   8.5000   7.8386   2.0000      

      0.9446   8.6170  -1.2371  17.0845   3.7082   0.5350   0.9745   0.0000      

     -3.1456   2.6656   1.0493   4.0000   2.9225   0.0000   0.0000   0.0000      

 N    1.2226   3.0000  14.0000   1.9324   0.1376   0.8596   1.1839   5.0000      

     10.0667   7.8431   4.0000  32.5000 100.0000   6.8418   6.3404   2.0000      

      1.0497  14.5853  -1.1222   2.0637   3.2584   3.1136   0.9745   0.0000      

     -4.2059   2.6491   1.0183   4.0000   2.8793   0.0000   0.0000   0.0000      

 S    1.9405   2.0000  32.0600   2.0677   0.2099   1.0336   1.5479   6.0000      

      9.9575   4.9055   4.0000  52.9998 112.1416   6.5000   8.2545   2.0000      

      1.4601   9.7177  -2.3700   5.7487  23.2859  12.7147   0.9745   0.0000      

    -11.0000   2.7466   1.0338   4.0000   2.8793   0.0000   0.0000   0.0000      

 15      ! Nr of bonds; Edis1;LPpen;n.u.;pbe1;pbo5;13corr;pbo6                   

                         pbe2;pbo3;pbo4;n.u.;pbo1;pbo2;ovcorr                    

  1  1 145.4070 103.0681  73.7841   0.2176  -0.7816   1.0000  28.4167   0.3217   

         0.1111  -0.1940   8.6733   1.0000  -0.0994   5.9724   1.0000   0.0000   

  1  2 167.1752   0.0000   0.0000  -0.4421   0.0000   1.0000   6.0000   0.5969   

        17.4194   1.0000   0.0000   1.0000  -0.0099   8.5445   0.0000   0.0000   

  2  2 188.1606   0.0000   0.0000  -0.3140   0.0000   1.0000   6.0000   0.6816   

         8.6247   1.0000   0.0000   1.0000  -0.0183   5.7082   0.0000   0.0000   

  1  3 171.0470  67.2480 130.3792   0.3600  -0.1696   1.0000  12.0338   0.3796   

         0.3647  -0.2660   7.4396   1.0000  -0.1661   5.0637   0.0000   0.0000   

  3  3  90.2465 160.9645  40.0000   0.9950  -0.2435   1.0000  28.1614   0.9704   

         0.8145  -0.1850   7.5281   1.0000  -0.1283   6.2396   1.0000   0.0000   

  1  4 134.9992 139.6314  78.5681   0.0420  -0.1370   1.0000  23.6247   0.2415   
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         0.1522  -0.3161   7.0000   1.0000  -0.1301   5.4980   1.0000   0.0000   

  3  4 127.7074 177.1058  40.0000   0.4561  -0.1481   1.0000  31.4801   0.2000   

         0.8968  -0.3555   7.0000   1.0000  -0.1219   7.0000   1.0000   0.0000   

  4  4 151.9142  87.1928 151.4761   0.4280  -0.1001   1.0000  12.3631   0.6229   

         0.1721  -0.1614  12.1345   1.0000  -0.0882   5.3056   1.0000   0.0000   

  2  3 216.6018   0.0000   0.0000  -0.4201   0.0000   1.0000   6.0000   0.9143   

         4.7737   1.0000   0.0000   1.0000  -0.0591   5.9451   0.0000   0.0000   

  2  4 223.1853   0.0000   0.0000  -0.4661   0.0000   1.0000   6.0000   0.5178   

         7.8731   1.0000   0.0000   1.0000  -0.0306   6.1506   0.0000   0.0000   

  1  5 128.9942  74.5848  55.2528   0.1035  -0.5211   1.0000  18.9617   0.6000   

         0.2949  -0.2398   8.1175   1.0000  -0.1029   5.6731   1.0000   0.0000   

  2  5 151.5159   0.0000   0.0000  -0.4721   0.0000   1.0000   6.0000   0.6000   

         9.4366   1.0000   0.0000   1.0000  -0.0290   7.0050   1.0000   0.0000   

  3  5   0.0000   0.0000   0.0000   0.5563  -0.4038   1.0000  49.5611   0.6000   

         0.4259  -0.4577  12.7569   1.0000  -0.1100   7.1145   1.0000   0.0000   

  4  5   0.0000   0.0000   0.0000   0.4438  -0.2034   1.0000  40.3399   0.6000   

         0.3296  -0.3153   9.1227   1.0000  -0.1805   5.6864   1.0000   0.0000   

  5  5  96.1871  93.7006  68.6860   0.0955  -0.4781   1.0000  17.8574   0.6000   

         0.2723  -0.2373   9.7875   1.0000  -0.0950   6.4757   1.0000   0.0000   

  6    ! Nr of off-diagonal terms; Ediss;Ro;gamma;rsigma;rpi;rpi2                

  1  2   0.0455   1.7218  10.4236   1.0379  -1.0000  -1.0000                     

  2  3   0.0469   1.9185  10.3707   0.9406  -1.0000  -1.0000                     

  2  4   0.0999   1.8372   9.6539   0.9692  -1.0000  -1.0000                     

  1  3   0.1186   1.9820   9.5927   1.2936   1.1203   1.0805                     

  1  4   0.1486   1.8922   9.7989   1.3746   1.2091   1.1427                     

  3  4   0.1051   2.0060  10.0691   1.3307   1.1034   1.0060                     

 50    ! Nr of angles;at1;at2;at3;Thetao,o;ka;kb;pv1;pv2                         

  1  1  1  70.0265  13.6338   2.1884   0.0000   0.1676  26.3587   1.0400         
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  1  1  2  69.7786  10.3544   8.4326   0.0000   0.1153   0.0000   1.0400         

  2  1  2  74.6020  11.8629   2.9294   0.0000   0.1367   0.0000   1.0400         

  1  2  2   0.0000   0.0000   6.0000   0.0000   0.0000   0.0000   1.0400         

  1  2  1   0.0000   3.4110   7.7350   0.0000   0.0000   0.0000   1.0400         

  2  2  2   0.0000  27.9213   5.8635   0.0000   0.0000   0.0000   1.0400         

  1  1  3  72.9588  16.7105   3.5244   0.0000   1.1127   0.0000   1.1880         

  3  1  3  80.0708  45.0000   2.1487   0.0000   1.1127 -35.0000   1.1880         

  1  1  4  61.5055  45.0000   1.2242   0.0000   1.1127   0.0000   1.1880         

  3  1  4  71.9345  45.0000   1.5052   0.0000   1.1127   0.0000   1.1880         

  4  1  4  51.3604  45.0000   0.6846   0.0000   1.1127   0.0000   1.1880         

  2  1  3  66.6150  13.6403   3.8212   0.0000   0.0755   0.0000   1.0500         

  2  1  4  68.9632  16.3575   3.1449   0.0000   0.0755   0.0000   1.0500         

  1  2  4   0.0000   0.0019   6.3000   0.0000   0.0000   0.0000   1.0400         

  1  3  1  79.1091  45.0000   0.7067   0.0000   0.6142   0.0000   1.0783         

  1  3  3  83.7151  42.6867   0.9699   0.0000   0.6142   0.0000   1.0783         

  1  3  4  79.5876  45.0000   1.1761   0.0000   0.6142   0.0000   1.0783         

  3  3  3  80.0108  38.3716   1.1572 -38.4200   0.6142   0.0000   1.0783         

  3  3  4  81.5614  19.8012   3.9968   0.0000   0.6142   0.0000   1.0783         

  4  3  4  85.3564  36.5858   1.7504   0.0000   0.6142   0.0000   1.0783         

  1  3  2  78.1533  44.7226   1.3136   0.0000   0.1218   0.0000   1.0500         

  2  3  3  84.1057   9.6413   7.5000   0.0000   0.1218   0.0000   1.0500         

  2  3  4  79.4629  44.0409   2.2959   0.0000   0.1218   0.0000   1.0500         

  2  3  2  79.2954  26.3838   2.2044   0.0000   0.1218   0.0000   1.0500         

  1  4  1  66.1477  22.9891   1.5923   0.0000   1.6777   0.0000   1.0500         

  1  4  3  91.9273  38.0207   0.5387   0.0000   1.6777   0.0000   1.0500         

  1  4  4  92.6933   9.9708   1.6094   0.0000   1.6777   0.0000   1.0500         

  3  4  3  73.4749  42.7640   1.7325 -17.5007   1.6777   0.0000   1.0500         

  3  4  4  73.9183  44.8857   1.1980  -0.9193   1.6777   0.0000   1.0500         
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  4  4  4  74.0572  15.4709   5.4220   0.0000   1.6777   0.0000   1.0500         

  1  4  2  72.7016  33.4153   1.0224   0.0000   0.0222   0.0000   1.0500         

  2  4  3  82.4368  44.1900   1.9273   0.0000   0.0222   0.0000   1.0500         

  2  4  4  82.6883  39.9831   1.1916   0.0000   0.0222   0.0000   1.0500         

  2  4  2  71.2183  14.4528   3.6870   0.0000   0.0222   0.0000   1.0500         

  1  2  3   0.0000   0.0019   6.0000   0.0000   0.0000   0.0000   1.0400         

  1  2  4   0.0000   0.0019   6.0000   0.0000   0.0000   0.0000   1.0400         

  1  2  5   0.0000   0.0019   6.0000   0.0000   0.0000   0.0000   1.0400         

  3  2  3   0.0000   0.0019   6.0000   0.0000   0.0000   0.0000   1.0400         

  3  2  4   0.0000   0.0019   6.0000   0.0000   0.0000   0.0000   1.0400         

  4  2  4   0.0000   0.0019   6.0000   0.0000   0.0000   0.0000   1.0400         

  2  2  3   0.0000   0.0019   6.0000   0.0000   0.0000   0.0000   1.0400         

  2  2  4   0.0000   0.0019   6.0000   0.0000   0.0000   0.0000   1.0400         

  1  1  5  74.9397  25.0560   1.8787   0.1463   0.0559   0.0000   1.0400         

  1  5  1  86.9521  36.9951   2.0903   0.1463   0.0559   0.0000   1.0400         

  2  1  5  74.9397  25.0560   1.8787   0.0000   0.0000   0.0000   1.0400         

  1  5  2  86.1791  36.9951   2.0903   0.0000   0.0000   0.0000   1.0400         

  1  5  5  85.3644  36.9951   2.0903   0.1463   0.0559   0.0000   1.0400         

  2  5  2  93.1959  36.9951   2.0903   0.0000   0.0000   0.0000   1.0400         

  2  5  5  84.3331  36.9951   2.0903   0.0000   0.0000   0.0000   1.0400         

  2  2  5   0.0000   0.0019   6.0000   0.0000   0.0000   0.0000   1.0400         

 17    ! Nr of torsions;at1;at2;at3;at4;;V1;V2;V3;V2(BO);vconj;n.u;n             

  1  1  1  1   0.0000  23.2168   0.1811  -4.6220  -1.9387   0.0000   0.0000      

  1  1  1  2   0.0000  45.7984   0.3590  -5.7106  -2.9459   0.0000   0.0000      

  2  1  1  2   0.0000  44.6445   0.3486  -5.1725  -0.8717   0.0000   0.0000      

  0  1  2  0   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000      

  0  2  2  0   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000      

  0  1  3  0   5.0520  16.7344   0.5590  -3.0181  -2.0000   0.0000   0.0000      
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  0  2  3  0   0.0000   0.1000   0.0200  -2.5415   0.0000   0.0000   0.0000      

  0  3  3  0   0.0115  68.9706   0.8253 -28.4693   0.0000   0.0000   0.0000      

  0  1  4  0  -4.0616  66.2036   0.3855  -4.4414  -2.0000   0.0000   0.0000      

  0  2  4  0   0.0000   0.1000   0.0200  -2.5415   0.0000   0.0000   0.0000      

  0  3  4  0   1.1130  14.8049   0.0231 -10.7175  -2.0000   0.0000   0.0000      

  0  4  4  0  -0.0851  37.4200   0.0107  -3.5209  -2.0000   0.0000   0.0000      

  0  1  1  0   0.0000   0.9305   0.0000 -24.2568   0.0000   0.0000   0.0000      

  4  1  4  4  -3.6064  43.6430   0.0004 -11.5507  -2.0000   0.0000   0.0000      

  0  1  5  0   3.3423  30.3435   0.0365  -2.7171   0.0000   0.0000   0.0000      

  0  5  5  0  -0.0555 -42.7738   0.1515  -2.2056   0.0000   0.0000   0.0000      

  0  2  5  0   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000      

  9    ! Nr of hydrogen bonds;at1;at2;at3;Rhb;Dehb;vhb1                          

  3  2  3   2.0431  -6.6813   3.5000   1.7295                                    

  3  2  4   1.6740 -10.9581   3.5000   1.7295                                    

  4  2  3   1.4889  -9.6465   3.5000   1.7295                                    

  4  2  4   1.8324  -8.0074   3.5000   1.7295                                    

  3  2  5   2.6644  -3.9547   3.5000   1.7295                                    

  4  2  5   4.0476  -5.7038   3.5000   1.7295                                    

  5  2  3   2.1126  -4.5790   3.5000   1.7295                                    

  5  2  4   2.2066  -5.7038   3.5000   1.7295                                    

  5  2  5   1.9461  -4.0000   3.5000   1.7295    
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APPENDIX B: Polyimide Coatings Exposed to Atomic Oxygen 

Bombardment 

 

 

B.1. Polymer Chain and Simulation Cell Size Effects 

An investigation into the effects of polymer chain and simulation cell sizes on the relevant mass 

loss data were performed. For this purpose, three systems were created using the procedure 

outlined in the paper: 1) polyimide (PI) with one monomer unit per PI chain (designated as PI-

Short-Chain) (240 total PI chains as given for the Neat PI system in Table 1), 2) PI with three 

monomer units per PI chain (PI-Long-Chain) (80 total PI chains, same size as that of the Neat PI 

system), and 3) PI with one monomer unit per PI chain (PI-Small-Cell) (120 total PI chains, size: 

43×43×30 Å3). The simulation procedure for these systems is similar to that of the other 

nanoparticle-loaded PI systems, as described in the paper. To improve the statistical sampling of 

the data, a total of three simulations were performed for each system and the mass loss data were 

averaged over all simulations.  

The average normalized mass loss data for the above systems are shown in Fig. S1. As seen 

in this figure, the system with the larger polymer chains (PI-Long-Chain) has a negligibly higher 

onset of mass loss versus that of the PI-Short-Chain system. When decreasing the simulation cell 

size at constant polymer chain size, the onsets of mass loss are similar; however, there is a slight 

increase in the rate of degradation for the PI-Small-Cell system. While size effects may be present 

for the systems studied in this work, it is anticipated that these effects are small relative to the
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phenomena investigated, i.e., atomic oxygen (AO) penetration depth, damage propagation depth 

(DPD), erosion, etc. Indeed., the calculated AO penetration depth and DPD for all material systems 

in this work are smaller than the z-dimension of the respective simulation cells. This signifies the 

fact that our selected system sizes are appropriate in this work to observe the AO damage 

phenomena. 

 

B.2. Relative Density Distributions 

Equilibrium relative density ( bulk  ) distribution of systems are given in Figure S2. 

Figure B. 1. Averaged normalized mass 

loss as a function of simulation time for the 

Neat PI systems with short (PI-Short-

Chain) and long (PI-Long-Chain) polymer 

chains at constant cell size, as well as short 

chains with smaller cell size (PI-Small-

Cell). 
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Figure B. 3. Relative density ( ) distribution in the simulation cells for (a) Neat PI, 

(b) PI-pPOSS (15 wt%), (c) PI-pPOSS (30 wt%), (d) PI-gPOSS (30 wt%), (e) PI-Gr-

Random, and (f) PI-CNT-Random systems after 2 ns of equilibration. 

(a) (b) 

(c) (d) 

(e) (f) 
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B.3.  ReaxFF Parameter Set 

Reactive MD-force field 

 39       ! Number of general parameters 

   50.0000 !Overcoordination parameter 

    9.4514 !Overcoordination parameter 

   29.8953 !Valency angle conjugation parameter 

  216.5421 !Triple bond stabilisation parameter 

   12.2245 !Triple bond stabilisation parameter 

    0.0000 !C2-correction 

    1.0701 !Undercoordination parameter 

    7.5000 !Triple bond stabilisation parameter 

   11.9083 !Undercoordination parameter 

   13.3822 !Undercoordination parameter 

  -10.9834 !Triple bond stabilization energy 

    0.0000 !Lower Taper-radius 

   10.0000 !Upper Taper-radius 

    2.8793 !Not used 

   33.8667 !Valency undercoordination 

    3.3976 !Valency angle/lone pair parameter 

    1.0563 !Valency angle 

    2.0384 !Valency angle parameter 

    6.1431 !Not used 

    6.9290 !Double bond/angle parameter 
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    0.0283 !Double bond/angle parameter: overcoord 

    0.0570 !Double bond/angle parameter: overcoord 

   -2.4837 !Not used 

    5.8374 !Torsion/BO parameter 

   10.0000 !Torsion overcoordination 

    1.8820 !Torsion overcoordination 

   -1.2327 !Conjugation 0 (not used) 

    2.1861 !Conjugation 

    1.5591 !vdWaals shielding 

    0.0100 !Cutoff for bond order (*100) 

    4.8414 !Valency angle conjugation parameter 

    3.5857 !Overcoordination parameter 

   38.6472 !Overcoordination parameter 

    2.1533 !Valency/lone pair parameter 

    0.5000 !Not used 

    1.0000 !Scale factor (d) in dispersion 

    5.0000 !Molecular energy (not used) 

    0.0000 !Molecular energy (not used) 

6.9784 !Valency angle conjugation parameter 

  7    ! Nr of atoms; cov.r; valency;a.m;Rvdw;Evdw;gammaEEM;cov.r2;# 

            alfa;gammavdW;valency;Eunder;Eover;chiEEM;etaEEM;n.u. 

            cov r3;Elp;Heat inc.;n.u.;n.u.;n.u.;n.u. 

            ov/un;val1;n.u.;val3,vval4 
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 C    1.3742   4.0000  12.0000   1.9684   0.1723   0.8712   1.2385   4.0000 

      8.7696   0.1000   4.0000  31.0823  79.5548   5.7254   6.9235   0.0000 

      1.2104   0.0000 183.8108   5.7419  33.3951  11.9957   0.8563   0.0000 

     -2.8983   4.7820   1.0564   4.0000   2.9663   1.6737   0.1421  14.0707 

 H    0.6867   1.0000   1.0080   1.3525   0.0616   0.8910  -0.1000   1.0000 

      9.1506   0.1000   1.0000   0.0000 121.1250   3.8446  10.0839   1.0000 

     -0.1000   0.0000  58.4369   3.8461   3.2540   1.0000   1.0698   0.0000 

    -15.7683   2.1504   1.0338   1.0000   2.8793   1.2669   0.0139  12.4538 

 O    1.3142   2.0000  15.9990   1.9741   0.0880   0.8712   1.1139   6.0000 

      9.9926   0.1000   4.0000  29.5271 116.0768   8.5000   7.1412   2.0000 

      0.9909  14.7235  69.2921   9.1371   1.6258   0.1863   0.9745   0.0000 

     -3.5965   2.5000   1.0493   4.0000   2.9225   1.7221   0.1670  13.9991 

 N    1.2456   3.0000  14.0000   2.0437   0.1035   0.8712   1.1911   5.0000 

      9.8823   0.1000   4.0000  32.4758 100.0000   6.8453   6.8349   2.0000 

      1.0636   0.0276 127.9672   2.2169   2.8632   2.4419   0.9745   0.0000 

     -4.0959   2.0047   1.0183   4.0000   2.8793   1.5967   0.1649  13.9888 

 S    1.9647   2.0000  32.0600   2.0783   0.2176   1.0336   1.5386   6.0000 

      9.9676   0.0812   4.0000  35.1648 112.1416   6.5000   8.2545   2.0000 

      1.4703   9.4922  70.0338   8.5146  28.0801   8.5010   0.9745   0.0000 

    -10.0773   2.7466   1.0338   6.2998   2.8793   1.5967   0.1649  13.9888 

 Si   2.0276   4.0000  28.0600   2.2042   0.1322   0.8218   1.5758   4.0000 

     11.9413   0.0618   4.0000  11.8211  136.4845   1.8038   7.3852   0.0000 

     -1.0000   0.0000 126.5331   6.4918   8.5961   0.2368   0.8563   0.0000 
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     -3.8112   3.1873   1.0338   4.0000   2.5791   1.0000   0.1649  13.9888 

 X   -0.1000   2.0000   1.0080   2.0000   0.0000   1.0000  -0.1000   6.0000 

     10.0000   0.5000   4.0000   0.0000   0.0000   8.5000   1.5000   0.0000 

     -0.1000   0.0000  -2.3700   8.7410  13.3640   0.6690   0.9745   0.0000 

    -11.0000   2.7466   1.0338   4.0000   2.8793   1.5967   0.1649  13.9888 

20      ! Nr of bonds; Edis1;LPpen;n.u.;pbe1;pbo5;13corr;pbo6 

                         pbe2;pbo3;pbo4;Etrip;pbo1;pbo2;ovcorr 

  1  1 141.9346 113.4487  67.6027   0.1554  -0.3045   1.0000  30.4515   0.4283 

         0.0801  -0.2113   8.5395   1.0000  -0.0933   6.6967   1.0000   0.0000 

  1  2 155.7526   0.0000   0.0000  -0.4525   0.0000   1.0000   6.0000   0.5921 

        12.1053   1.0000   0.0000   1.0000  -0.0097   8.6351   0.0000   0.0000 

  2  2 169.8421   0.0000   0.0000  -0.3591   0.0000   1.0000   6.0000   0.7503 

         9.3119   1.0000   0.0000   1.0000  -0.0169   5.9406   0.0000   0.0000 

  1  3 157.7219  89.8921  27.9315  -0.4324  -0.1742   1.0000  15.0019   0.5160 

         1.2934  -0.3079   7.0252   1.0000  -0.1543   4.5116   0.0000   0.0000 

  3  3 108.9631 158.3501  42.0558   0.1226  -0.1324   1.0000  28.5716   0.2545 

         1.0000  -0.2656   8.6489   1.0000  -0.1000   6.8482   1.0000   0.0000 

  1  4 128.9104 171.2945 100.5836  -0.1306  -0.4948   1.0000  26.7458   0.4489 

         0.3746  -0.3549   7.0000   1.0000  -0.1248   4.9232   1.0000   0.0000 

  3  4  76.1062 118.8680  75.7263   0.7080  -0.1062   1.0000  16.6913   0.2407 

         0.3535  -0.1906   8.4054   1.0000  -0.1154   5.6575   1.0000   0.0000 

  4  4 160.6599  73.3721 154.2849  -0.7107  -0.1462   1.0000  12.0000   0.6826 

         0.9330  -0.1434  10.6712   1.0000  -0.0890   4.6486   1.0000   0.0000 
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  2  3 230.7607   0.0000   0.0000  -0.6643   0.0000   1.0000   6.0000   0.9854 

         5.1146   1.0000   0.0000   1.0000  -0.0532   5.1189   0.0000   0.0000 

  2  4 208.0443   0.0000   0.0000  -0.3923   0.0000   1.0000   6.0000   0.3221 

        10.5505   1.0000   0.0000   1.0000  -0.0690   6.2949   0.0000   0.0000 

  1  5 128.7959  56.4134  39.0716   0.0688  -0.4463   1.0000  31.1766   0.4530 

         0.1955  -0.3587   6.2148   1.0000  -0.0770   6.6386   1.0000   0.0000 

  2  5 128.6090   0.0000   0.0000  -0.5555   0.0000   1.0000   6.0000   0.4721 

        10.8735   1.0000   0.0000   1.0000  -0.0242   9.1937   1.0000   0.0000 

  3  5   0.0000   0.0000   0.0000   0.5563  -0.4038   1.0000  49.5611   0.6000 

         0.4259  -0.4577  12.7569   1.0000  -0.1100   7.1145   1.0000   0.0000 

  4  5   0.0000   0.0000   0.0000   0.4438  -0.2034   1.0000  40.3399   0.6000 

         0.3296  -0.3153   9.1227   1.0000  -0.1805   5.6864   1.0000   0.0000 

  5  5  96.1871  93.7006  68.6860   0.0955  -0.4781   1.0000  17.8574   0.6000 

         0.2723  -0.2373   9.7875   1.0000  -0.0950   6.4757   1.0000   0.0000 

  6  6 109.1904  70.8314  30.0000   0.2765  -0.3000   1.0000  16.0000   0.1583 

         0.2804  -0.1994   8.1117   1.0000  -0.2675   6.2993   0.0000   0.0000 

  2  6 137.0000   0.0000   0.0000  -0.1902   0.0000   1.0000   6.0000   0.2256 

        17.7186   1.0000   0.0000   1.0000  -0.0377   6.4281   0.0000   0.0000 

  3  6 136.6643  41.8662   0.0000   0.2527  -0.3000   1.0000  36.0000   0.6764 

         0.9938  -0.3800  10.3140   1.0000  -0.1915   6.2189   1.0000   0.0000 

  1  6 125.8776  57.9428   0.0000   0.1077  -0.5558   1.0000  17.2117   0.4687 

         0.2379  -0.3297  10.4455   1.0000  -0.1529   6.2959   1.0000   0.0000 

  4  6 103.7982  30.4010  20.2000  -0.1419  -0.3025   1.0000  35.5000   0.4217 
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         0.9927  -0.3060   9.9500   1.0000  -0.1654   8.3456   1.0000   0.0000 

12    ! Nr of off-diagonal terms; Ediss;Ro;gamma;rsigma;rpi;rpi2 

  1  2   0.0464   1.8296   9.9214   1.0029  -1.0000  -1.0000   0.0000 

  2  3   0.0403   1.6913  10.4801   0.8774  -1.0000  -1.0000   0.0000 

  2  4   0.0524   1.7325  10.1306   0.9982  -1.0000  -1.0000 294.9500 

  1  3   0.1028   1.9277   9.1521   1.3399   1.1104   1.1609 631.8500 

  1  4   0.2070   1.7366   9.5916   1.2960   1.2008   1.1262 650.0000 

  3  4   0.0491   1.7025  10.6101   1.3036   1.1276   1.0173 880.0000 

  1  6   0.0937   1.9583  11.0607   1.8627   1.5560  -1.0000 600.0000 

  2  6   0.0470   1.6738  11.6877   1.0031  -1.0000  -1.0000   0.0000 

  3  6   0.1263   1.6593  10.6833   1.5650   1.4452  -1.0000   0.0000 

  4  6   0.1100   1.7548  10.9719   1.7231   1.4584  -1.0000 180.0000 

  1  5   0.1408   1.8161   9.9393   1.7986   1.3021   1.4031   0.0000 

  2  5   0.0895   1.6239  10.0104   1.4640  -1.0000  -1.0000   0.0000 

 82    ! Nr of angles;at1;at2;at3;Thetao,o;ka;kb;pv1;pv2 

  1  1  1  74.0317  32.2712   0.9501   0.0000   0.1780  10.5736   1.0400 

  1  1  2  70.6558  14.3658   5.3224   0.0000   0.0058   0.0000   1.0400 

  2  1  2  76.7339  14.4217   3.3631   0.0000   0.0127   0.0000   1.0400 

  1  2  2   0.0000   0.0000   6.0000   0.0000   0.0000   0.0000   1.0400 

  1  2  1   0.0000   3.4110   7.7350   0.0000   0.0000   0.0000   1.0400 

  2  2  2   0.0000  27.9213   5.8635   0.0000   0.0000   0.0000   1.0400 

  1  1  3  65.1700   8.0170   7.5000   0.0000   0.2028  10.0000   1.0400 

  3  1  3  71.7582  26.7070   6.0466   0.0000   0.2000   0.0000   1.8525 
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  1  1  4  65.4228  43.9870   1.5602   0.0000   0.2000  10.0000   1.8525 

  3  1  4  73.7046  23.8131   3.9811   0.0000   0.2000   0.0000   1.8525 

  4  1  4  65.6602  40.5852   1.8122   0.0000   0.2000   0.0000   1.8525 

  2  1  3  59.4426  17.6020   2.3044   0.0000   0.9699   0.0000   1.1272 

  2  1  4  71.0777   9.1462   3.4142   0.0000   0.9110   0.0000   1.0400 

  1  2  4   0.0000   0.0019   6.3000   0.0000   0.0000   0.0000   1.0400 

  1  3  1  72.1018  38.4720   1.3926   0.0000   0.4785   0.0000   1.2984 

  1  3  3  89.9987  44.9806   0.5818   0.0000   0.7472   0.0000   1.2639 

  1  3  4  70.3281  13.2989   7.7058   0.0000   0.7472   0.0000   1.2639 

  3  3  3  84.2807  24.1938   2.1695 -10.0000    0.7472   0.0000   1.2639 

  3  3  4  84.2585  44.1039   0.9185   0.0000   0.7472   0.0000   1.2639 

  4  3  4  74.2312  25.7005   4.3943   0.0000   0.7472   0.0000   1.2639 

  1  3  2  89.0416  36.9460   0.4569   0.0000   2.7636   0.0000   2.0494 

  2  3  3  81.1709   4.2886   6.5904   0.0000   3.0000   0.0000   1.2618 

  2  3  4  75.9203  44.9675   0.8889   0.0000   3.0000   0.0000   1.2618 

  2  3  2  82.2020  12.7165   3.9296   0.0000   0.2765   0.0000   1.0470 

  1  4  1  68.3788  18.3716   1.8893   0.0000   2.4132   0.0000   1.3993 

  1  4  3  86.5585  37.6814   1.1611   0.0000   1.7325   0.0000   1.0440 

  1  4  4  74.4818  12.0954   7.5000   0.0000   1.7325   0.0000   1.0440 

  3  4  3  78.5850  44.3389   1.3239 -19.2266    1.7325  40.0000   1.0440 

  3  4  4  77.6245  32.0866   1.8889  -0.9193   1.7325   0.0000   1.0440 

  4  4  4  66.4718  15.9087   7.5000   0.0000   1.7325   0.0000   1.0440 

  1  4  2  90.0000  33.6636   1.1051   0.0000   0.2638   0.0000   1.1376 
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  2  4  3  83.8493  44.9000   1.3580   0.0000   0.5355   0.0000   2.5279 

  2  4  4  78.7452  24.2010   3.7481   0.0000   0.5355   0.0000   2.5279 

  2  4  2  55.8679  14.2331   2.9225   0.0000   0.2000   0.0000   2.9932 

  1  2  3   0.0000   0.0019   6.0000   0.0000   0.0000   0.0000   1.0400 

  1  2  4   0.0000   0.0019   6.0000   0.0000   0.0000   0.0000   1.0400 

  1  2  5   0.0000   0.0019   6.0000   0.0000   0.0000   0.0000   1.0400 

  3  2  3   0.0000   0.0019   6.0000   0.0000   0.0000   0.0000   1.0400 

  3  2  4   0.0000   0.0019   6.0000   0.0000   0.0000   0.0000   1.0400 

  4  2  4   0.0000   0.0019   6.0000   0.0000   0.0000   0.0000   1.0400 

  2  2  3   0.0000   0.0019   6.0000   0.0000   0.0000   0.0000   1.0400 

  2  2  4   0.0000   0.0019   6.0000   0.0000   0.0000   0.0000   1.0400 

  1  1  5  74.4180  33.4273   1.7018   0.1463   0.5000   0.0000   1.6178 

  1  5  1  79.7037  28.2036   1.7073   0.1463   0.5000   0.0000   1.6453 

  2  1  5  63.3289  29.4225   2.1326   0.0000   0.5000   0.0000   3.0000 

  1  5  2  85.9449  38.3109   1.2492   0.0000   0.5000   0.0000   1.1000 

  1  5  5  85.6645  40.0000   2.9274   0.1463   0.5000   0.0000   1.3830 

  2  5  2  83.8555   5.1317   0.4377   0.0000   0.5000   0.0000   3.0000 

  2  5  5  97.0064  32.1121   2.0242   0.0000   0.5000   0.0000   2.8568 

  6  6  6  69.5456  21.6861   1.4258   0.0000  -0.2101   0.0000   1.3241 

  2  6  6  75.8168  21.6786   1.0588   0.0000   2.5179   0.0000   1.0400 

  2  6  2  78.5939  20.9272   0.8580   0.0000   2.8421   0.0000   1.0400 

  3  6  6  70.1016   5.3781   1.3167   0.0000   2.1459   0.0000   1.0400 

  2  6  3  73.6706   6.7092   3.7625   0.0000   0.8613   0.0000   1.0400 
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  3  6  3  90.2344   7.7833   1.7464   0.0000   0.7689   0.0000   1.0400 

  6  3  6  25.0715   3.6526   0.3180   0.0000   4.1125   0.0000   1.0400 

  3  3  6  73.4663  25.0761   0.9143   0.0000   2.2466   0.0000   1.0400 

  2  3  6  63.6634  10.0346   2.6680   0.0000   1.6982   0.0000   1.0400 

  1  3  6  53.6634  15.7193   2.7680   0.0000   1.6982   0.0000   1.0400 

  2  2  6   0.0000  47.1300   6.0000   0.0000   1.6371   0.0000   1.0400 

  6  2  6   0.0000  31.5209   6.0000   0.0000   1.6371   0.0000   1.0400 

  3  2  6   0.0000  31.0427   6.5625   0.0000   1.6371   0.0000   1.0400 

  2  2  5   0.0000   0.0019   6.0000   0.0000   0.0000   0.0000   1.0400 

  1  1  6  72.5239  22.3583   2.0393   0.0000   1.0031   0.0000   1.0400 

  6  1  6  75.3369  18.9270   2.0703   0.0000   1.0031   0.0000   1.0400 

  1  6  1  69.3369  18.9270   2.1333   0.0000   1.0031   0.0000   1.0400 

  1  6  3  69.3004  18.9710   2.1533   0.0000   1.0031   0.0000   1.0400 

  1  6  6  69.3369  19.6964   2.0703   0.0000   1.0031   0.0000   1.0400 

  2  1  6  72.5949  10.9851   1.4246   0.0000   1.0000   0.0000   1.0400 

  1  6  2  72.5949  14.8347   2.4952   0.0000   1.0000   0.0000   1.0400 

  4  6  6   0.0000  30.0000   6.0000   0.0000   1.0000   0.0000   1.0400 

  4  6  4  74.2811  10.5525   2.0350   0.0000   0.9925   0.0000   1.0693 

  3  6  4  77.5533  10.2000   2.0100   0.0000   0.9900   0.0000   1.0500 

  6  4  6  76.5000  10.2000   2.0200   0.0000   1.0050   0.0000   1.0300 

  2  6  4  70.5000  10.0357   1.2043   0.0000   1.0151   0.0000   1.0388 

  2  4  6  70.5000  10.0250   2.0067   0.0000   1.0050   0.0000   1.0500 

  4  4  6  77.5000  10.2055   2.0200   0.0000   0.9900   0.0000   1.0400 
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  3  4  6  77.0000  10.0000   2.0000   0.0000   1.0000   0.0000   1.0400 

  4  3  6  77.0000  10.0000   2.0000   0.0000   1.0000   0.0000   1.0400 

  4  2  6   0.0000  20.0000   2.0000   0.0000   1.0000   0.0000   1.0400 

  3  1  6  71.5949  10.8121   2.5256   0.0000   1.0000   0.0000   1.0400 

  1  2  6   0.0000  10.0000   2.0000   0.0000   1.0000   0.0000   1.0400 

35    ! Nr of torsions;at1;at2;at3;at4;;V1;V2;V3;V2(BO);vconj;n.u;n 

  1  1  1  1   0.0000  48.4194   0.3163  -8.6506  -1.7255   0.0000   0.0000 

  1  1  1  2   0.0000  63.3484   0.2210  -8.8401  -1.8081   0.0000   0.0000 

  2  1  1  2   0.0000  45.2741   0.4171  -6.9800  -1.2359   0.0000   0.0000 

  0  1  2  0   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000 

  0  2  2  0   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000 

  0  1  3  0   1.7254  86.0769   0.3440  -4.2330  -2.0000   0.0000   0.0000 

  0  2  3  0   0.0000   0.1000   0.0200  -2.5415   0.0000   0.0000   0.0000 

  0  3  3  0   1.2314 116.5137   0.5599  -4.1412   0.0000   0.0000   0.0000 

  0  1  4  0  -1.3258 149.8644   0.4790  -7.1541  -2.0000   0.0000   0.0000 

  0  2  4  0   0.0000   0.1000   0.0200  -2.5415   0.0000   0.0000   0.0000 

  0  3  4  0   1.3168  57.0732   0.2679  -4.1516  -2.0000   0.0000   0.0000 

  0  4  4  0   2.0000  75.3685  -0.7852  -9.0000  -2.0000   0.0000   0.0000 

  0  1  1  0   0.0930  18.6070  -1.3191  -9.0000  -1.0000   0.0000   0.0000 

  4  1  4  4  -2.0000  20.6655  -1.5000  -9.0000  -2.0000   0.0000   0.0000 

  0  1  5  0   4.0885  78.7058   0.1174  -2.1639   0.0000   0.0000   0.0000 

  0  5  5  0  -0.0170 -56.0786   0.6132  -2.2092   0.0000   0.0000   0.0000 

  0  2  5  0   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000 
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  0  6  6  0   0.0000   0.0000   0.1200  -2.4426   0.0000   0.0000   0.0000 

  0  2  6  0   0.0000   0.0000   0.1200  -2.4847   0.0000   0.0000   0.0000 

  0  3  6  0   0.0000   0.0000   0.1200  -2.4703   0.0000   0.0000   0.0000 

  0  4  6  0   0.0000   0.0000   0.0000  -2.4426   0.0000   0.0000   0.0000 

  1  1  3  3   1.2707  21.6200   1.5000  -9.0000  -2.0000   0.0000   0.0000 

  1  3  3  1  -1.8804  79.9255  -1.5000  -4.1940  -2.0000   0.0000   0.0000 

  3  1  3  3  -2.0000  22.5092   1.5000  -8.9500  -2.0000   0.0000   0.0000 

  1  4  4  3   0.1040  70.1152   0.5284  -3.5026  -2.0000   0.0000   0.0000 

  1  1  3  4   1.2181 119.6186  -1.5000  -7.0635  -2.0000   0.0000   0.0000 

  2  1  3  4  -2.0000 156.6604   1.1004  -7.3729  -2.0000   0.0000   0.0000 

  1  3  4  3   2.0000  96.6281  -1.5000  -3.8076  -2.0000   0.0000   0.0000 

  1  1  4  2  -2.0000 147.2445  -1.5000  -7.0142  -2.0000   0.0000   0.0000 

  1  1  4  3  -2.0000  47.8326  -1.5000  -9.0000  -2.0000   0.0000   0.0000 

  2  3  4  3  -0.2997 152.9040  -1.5000  -4.4564  -2.0000   0.0000   0.0000 

  2  4  4  3   0.1040  70.1152   0.5284  -3.5026  -2.0000   0.0000   0.0000 

  6  1  3  4   2.0000  70.2461   2.0000  -3.0635  -2.0000   0.0000   0.0000 

  3  1  6  1   5.0000  80.6070   5.0000  -3.0000  -2.0000   0.0000   0.0000 

  1  3  6  1   1.0000  80.6070   1.0000  -3.0000  -2.0000   0.0000   0.0000 

  9  ! Nr of hydrogen bonds;at1;at2;at3;Rhb;Dehb;vhb1 

  3  2  3   2.1845  -2.3549   3.0582  19.1627 

  3  2  4   1.7058  -3.8907   3.0582  19.1627 

  4  2  3   1.8738  -3.5421   3.0582  19.1627 

  4  2  4   1.8075  -4.1846   3.0582  19.1627 
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  3  2  5   2.6644  -3.0000   3.0000   3.0000 

  4  2  5   4.0476  -3.0000   3.0000   3.0000 

  5  2  3   2.1126  -4.5790   3.0000   3.0000 

  5  2  4   2.2066  -5.7038   3.0000   3.0000 

  5  2  5   1.9461  -4.0000   3.0000   3.0000 
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