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ABSTRACT 

PZT is a promising piezoelectric ceramic material which has a wide range of applications 

in a variety of fields such as acoustic sensors and transducers, electrical switches, medical 

instrumentation, artificial sensitive skin in robotics, automotive detection on roads, nondestructive 

testing , structural health monitoring and as a biocompatible material. In this research a cantilever 

based multi energy harvester was developed to maximize the power output of PZT sensor. Nano 

mixtures containing graphene, ferrofluid nanoparticle (FNP) and ZnO nano particles were used to 

enhance the piezoelectric and photovoltaic output of the sensor. The samples were tested under 

different energy conditions to observe the behavior of nano coated PZT film under multi energy 

conditions (vibration and light). Composition of the ZnO and FNP was changed by weight in order 

to achieve the optimal composition of the nano mixture. Light energy, vibration energy, combined 

effect of light and vibration energy were used to explore the behavior of the sensor. The sensor 

with 1% Epoxy, 40% ZnO and 59% FNP achieved a maximum power output of 9404.28 µWatt/sec 

with vibration only from 65-400Hz. The sensor with 1% Epoxy, 5% graphene 40% ZnO and 54% 

FNP achieved a maximum power output of 13279.23 µWatt/sec when under the combined effect 

of light (3780 lumens) and vibration energy (65-400Hz). This was nearly 3 times more power 

output than the pure PZT sensor. 
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 BACKGROUND RESEARCH 

 

1.1 Introduction 

In the existing universe, there is an endless requirement for more energy which 

simultaneously should be clean and the generation technique should be eco-friendly. This desire 

was the motivation behind working on renewable energy sources. With renewable energy as the 

main source of energy in today’s world for electricity, we can minimize the issues of global 

warming and variation in climate. The problem arises with the output power of these energy 

sources, which is low, unreliable and is not as easy to regulate with the changing demand cycles 

like the traditional sources of power. To overwhelm this concern properly storing this generated 

power from renewable energy sources can be a viable option. Hence to count on these sources to 

be primary sources of energy proper storage is a desired factor. 

There is an abundance of solar and wind energy in the surrounding environment.  A large 

portion of this energy is transformed into heat and vibration and is lost into the atmosphere without 

being used. 

1.2 Energy Harvesting 

Energy harvesting is the process of scavenging energy from freely available sources like 

solar power, wind energy, thermal energy, etc. There are many ways of harvesting energy from 

the environment including solar energy, thermal, photovoltaic, electromagnetic and vibration 

based devices. Every method has its own constraints like solar methods require sufficient light 
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energy, thermal methods need sufficient temperature variation and vibration based systems need 

sufficient vibration sources. So it is unlikely that any single method can satisfy all the energy needs 

for the applications. Vibration sources are generally present universally and can be readily found 

in the surroundings buildings, structures, etc. 

Vibration energy shows a relatively high power density and among them piezoelectricity 

has shown the maximum power density. Vibration sources are generally more ubiquitous, and can 

be readily found in inaccessible locations such as air ducts and building structures [1]. 

As a result of devices such as Micro Electro Mechanical Systems (MEMS), portable 

electronics and wireless sensors, energy harvesting has become a very crucial topic, and it has 

drawn attention from the scientific community. Traditional power sources of many portable 

electronics and wireless sensors in current technology are batteries which have many 

disadvantages due to limited time span, finite amount of energy, maintenance requirements, 

possible hazardous chemicals, and environmental effects. Moreover due to its very high mass to 

electrical power ratio it impedes the development of light-weight and miniature wireless devices. 

The wireless devices are needed to be self-powered without using a battery [1]. Renewable or 

sustainable power sources are therefore required to either replace or to augment the capacity of 

batteries to increase the lifespan and the reliability of a wireless device or to realize small volume 

and fully self-powered electronics and to mitigate the environmental pollution caused by 

inappropriate disposal and recycling of batteries [2]. 

With the help of piezoelectric materials, various devices can be used for scavenging as well 

as for the diagnostics of the components of machines. Graphene has been established as an all-

round solar and storage material. In this work, both the properties of the piezoelectric materials 

and solution are coupled together for the purpose of energy harvesting which is otherwise lost as 
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vibrational energy and photovoltaic energy. In subsequent sections, a review of energy harvesting 

with various materials using different techniques is presented. 

1.3 Piezoelectricity 

Piezoelectricity is the property of a material in which if a mechanical stress or pressure is 

applied to the material then the material generates charges as a response to the stimulus of 

mechanical stress. Piezoelectricity was discovered in 1880 by French physicists Curie brothers, 

Jacques and Pierre [3]. They demonstrated this phenomenon using crystals of tourmaline, quartz, 

topaz, cane sugar, and Rochelle salt. The word piezoelectric legitimately means electricity 

resulting from pressure. The name ‘piezo’ originates from the Greek word ‘piezo’ or ‘piezein’, 

which means to squeeze or press and ‘electron’ or ‘electric’ which actually means amber and 

further translates to an ancient source of electric charge. Piezoelectric effect is a reversible effect 

where the crystals produce electricity when they are deformed due to mechanical stress (direct 

effect) and conversely they will change in dimension when they are exposed to an electric field 

(converse effect). The converse effect was mathematically deduced from fundamental 

thermodynamic principles by Gabriel Lippmann in 1881. As of today it is known that many 

crystals, certain ceramics and even biological matter such as DNA possess the piezoelectric effect. 

In the usual unstressed state the domains of piezoelectric crystals have both positive and 

negative charges that are symmetrically arranged within the crystal to nullify any electrical charge 

in the crystal. As soon as the crystal is under any kind of stress that leads to its deformation, the 

electron neutrality of the crystal is disturbed i.e. the charges now no longer nullify each other and 

it gets polarized by net positive and negative charges which appear on opposite crystal faces as 

shown in Figure 1.1. In stage 1 the ions are arranged in a relaxed state, stage 2 represents the 

balance of charges, stage 3 is during the application of stress using a finger and stage 4 shows the 
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arrangement of electrons with positive and negative on opposite surfaces. Figure 1.2 shows the 

converse piezoelectric effect. 

 

Figure 1.1 Piezoelectric concept [4] 
 

 

 

Figure 1.2 Converse piezoelectric effect [3] 
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In most crystals (such as metals), the unit cell (the basic repeating unit) is symmetrical; in 

piezoelectric crystals, it isn't. Normally, piezoelectric crystals are electrically neutral: the atoms 

inside them may not be symmetrically arranged, but their electrical charges are perfectly balanced: 

a positive charge in one place cancels out a negative charge nearby. However, if the piezoelectric 

crystal is squeezed or stretched, by deforming the structure, pushing some of the atoms closer 

together or further apart, upsetting the balance of positive and negative, and causing net electrical 

charges to appear. This effect carries through the whole structure so net positive and negative 

charges appear on opposite, outer faces of the crystal. 

The reverse-piezoelectric effect acts completely in a converse way. If a voltage is applied 

across a piezoelectric crystal and subjected to "electrical pressure” to the atoms inside, they have 

to move to rebalance themselves and that is what causes piezoelectric crystals to deform (slightly 

change shape) when you put a voltage across them. 

There are all kinds of situations where mechanical energy (pressure or movement of some 

kind) can be converted into electrical signals or vice-versa. Often this can be done with 

a piezoelectric transducer. A transducer is simply a device that converts one form of energy to 

another (for example, converting light, sound, or mechanical pressure into electrical signals). 

Piezoelectricity is also used, much more crudely, in spark lighters for gas stoves and 

barbecues. Press a lighter switch and you'll hear a clicking sound and see sparks appear. What 

you're doing, when you press the switch, is squeezing a piezoelectric crystal, generating a voltage, 

and making a spark fly across a small gap. 

Piezoelectric materials are widely available in many forms including single crystal (e.g. 

Quartz), piezo-ceramic (e.g. Lead zirconium titanate or PZT), thin film (e.g. Sputtered zinc oxide), 
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screen printable thick films based upon piezo-ceramic powders and polymeric materials such as 

Polyvinylidene fluoride (PVDF) [5-7]. 

1.3.1 Piezoelectric Constants and related terminologies 

Three axis are used to identify directions in a piezo-ceramic element. These axes, termed 

1, 2, and 3, are analogous to X, Y, and Z of a classical three dimensional orthogonal set of axes as 

shown in Figure 1.3. Piezoelectric coefficients with double subscripts link electrical and 

mechanical quantities. The first subscript gives the direction of the electric field associated with 

the voltage applied, or the charge produced. The second subscript gives the direction of the 

mechanical stress or strain. For instance in a piezoelectric constant Xij, i corresponds to the 

direction of the electrical value measurement, and j corresponds to the direction of mechanical 

action. 

 

Figure 1.3 Designation of axes in piezoelectric material 
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According to this, a ‘31 index will characterize an electrical value considered between two 

sides of the film, and a mechanical stress applied along the length. In most cases, i = 3 because the 

electrodes are on the planar surface of the sample. Figure 1.4 shows the piezo electric coupling 

modes. 

 

Figure 1.4 Piezo electric coupling modes [8] 

The following paragraphs contain commonly used piezo terminology to describe properties 

of piezo material. 

 Piezoelectric charge constant 

The piezoelectric constants or ‘d’ coefficients are relating the mechanical strain produced 

by an applied electric field. The units may then be expressed as meters per meter, per volts per 

meter (meters per volt). Conversely, the coefficient may be viewed as relating the charge collected 

on the electrodes, to the applied mechanical stress (coulombs per newton). d31 is the induced 

polarization in direction 3 per unit stress applied in direction 1. Alternatively, it is the mechanical 

strain induced in the material in direction 1 per unit electric field applied in direction 3. 

 Piezoelectric voltage constant 

Piezoelectric voltage constant or ‘g’ constants relates the electric field produced in a 

material by a mechanical stress applied to it. The units may then be expressed as volts/meter per 
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newton/square meter. Conversely, it is the mechanical strain experienced by the material per unit 

electric displacement applied to it. g31 is the induced electric field in direction 3 per unit stress 

applied in direction 1. Alternatively, it is the mechanical strain induced in the material in direction 

1 per unit electric displacement applied in direction 3. 

 Coupling factor 

Electromechanical coupling factor ‘k’ is a measure of conversion of energy by the piezo 

element from electrical to mechanical form or vice versa 

 

Coupling factor carries subscripts, for instance k31 relates to a long thin bar, electrode on a 

pair of long faces, polarized in thickness, and vibrating in simple length expansion and contraction. 

 Compliance 

Compliance S of a material is strain produced per a unit stress. The first subscript refers to 

the direction of strain and the second subscript refers to direction of stress. For instance   is the 

compliance for a stress and accompanying stain in direction 1 under conditions of constant electric 

field. 

 Permittivity 

Permittivity or dielectric displacement is measure of the ability of a material to resist the 

formation of an electric field within it. Permittivity is expressed as the ratio of its electric 

k = p(Mechanical energy stored / Electrical energy applied) 

or 

(1.1) 

k = p(Electrical energy stored / Mechanical energy applied) (1.2) 
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displacement to the applied field strength and measured in farads per meter. The permittivity of a 

medium is most often given as a relative permittivity 

. 

 Capacitance 

Capacitance is the ability of a body to store an electrical charge. Capacitance is a function 

of the physical dimensions and the permittivity. 

  (1.3)  

where A is the surface area and t is the thickness of the material. 

1.4 Comparison of Common Piezoelectric Materials 

The properties of PZT are defined in terms of constants as permittivity (ε), piezoelectric 

charge constant (d), piezoelectric voltage constant (g), coupling factor (k) and properties such as 

density and acoustic impedance. Table 1.1 [9] demonstrates the superior properties of PZT as 

compared to other piezoelectric materials. 

Table 1.1 Properties of different piezoelectric materials [9] 

Property Symbo

l 

Units PVDF Film PZT BaTiO3 

Density ρ 103 kg/m3 1.78 7.5 5.7 

Relative Permittivity  ε/ε0 12 1200 1700 

Piezo electric Charge Constant d31 (10-12) C/N 23 110 78 

Piezo electric Voltage Constant g31 (10-3) Vm/N 216 10 5 

Coupling Factor k31 % at 1 KHz 12 30 21 

Acoustic Impedance  (106) kg/m2-sec 2.7 30 30 

  

Piezoelectric materials are smart materials used in MEMS. They possess a unique property 

called piezoelectricity, which if mechanically stressed generates a potential difference given in 
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voltage. Piezoelectric materials are naturally available and are also in the form of multiphase 

ceramics and films. Some of the man-made piezoelectric ceramics are barium titanate, lead 

titanate, lead zirconium titanate (PZT), and lithium niobate. 

1.5 Lead Zirconate Titanate (PZT) 

Lead zirconate titanate (Pb[ZrxTi1−x]O3, where 0<x<1) or PZT is an intermetallic inorganic 

compound that shows different crystal structure at different temperatures [10-12]. It has perovskite 

structure below Curie temperature (which ranges from 510 K to 800 K) and above Curie 

temperature it has paraelectric cubic structure. Also, below Curie temperature the cubic perovskite 

structure is distorted to a rhombohedral structure or a tetragonal structure for rich Ti based PZT. 

Its structure consists of oxygen and small Ti or Zr atoms in symmetrical octahedral sites, with Pb 

cations occupying dodecahedral sites, as shown in Figure 1.5. The atomic size of lead and oxygen 

are 1.4 Å each. Lead, oxygen, and titanium/zirconium atoms together form a face centered cubic 

array.  

 
Figure 1.5 Left is structure of PZT and right under influence of an electric field [13] 

The Curie temperature (Tc) is a transition temperature of ferroelectricity and is defined as 

ε = C/ (T-Tθ), where ε is the permittivity, C is the Curie constant, and Tθ is the Curie-Wiess 
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temperature. As the composition of Zr or Ti, the PZT has a different phase between the 

rhombohedral and tetragonal. The boundary of those two phases is called the morphotropic phase 

boundary (MPB) around Zr/Ti composition of 0.52/0.48. The tetragonal structure has six <100> 

polarization directions and the rhombohedral structure has eight <111> polarization directions. 

The maximum piezoelectric and dielectric constants are commonly observed at MPB due to high 

probability of 18 polarization, and they are more sensitive to the composition than to the 

temperature because the MPB is very vertical. The phases of PZT have been plotted in Figure 1.6. 

 

Figure 1.6 Phase diagram of PZT at different temperature with increasing amount of Ti and 

decreasing amount of Zr [14] 

Although all piezoelectric materials work on the same principle, PZT has highly advanced 

features and properties. PZT has a wide operating frequency range from 10-3 Hz to 109 Hz. Also, 

it has low acoustic impedance, high elastic compliance, high stability, mechanical strength and 

resistivity against moisture and chemicals with its only shortcoming being a brittle material, 

making it very suitable for energy harvesting and thus was chosen over the other piezo materials 

for this work. 
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1.6 Vibration Based Energy Harvesting from piezoelectric materials 

While there are four main methods of energy harvesting (vibration, thermal, photovoltaic, 

electromagnetic), the current work revolves around the vibration based energy harvesting and 

methods to improve it. Mechanical vibration is one of the most effective methods of implementing 

a power harvesting system. Mechanical vibration when applied to a piezo film causes strain in the 

film and thus converting the strain energy into electrical energy. There are many methods of 

collecting and storing the produced charges like capacitor charging, battery charging, etc. Research 

in the field of vibration based energy harvesting have made various electronics systems (ranging 

from digital electronics to wireless transmitters) self-powering [15-18]. 

Piezoelectric materials exhibit anisotropic characteristics, thus the properties of the 

material differ depending upon the direction of forces and orientation of the polarization and 

electrodes. The anisotropic piezoelectric properties of the ceramic are defined by a system of 

symbols and notation. Piezoelectric materials can be generalized for two cases. When the PZT are 

kept in stack configuration that rely on a compressive strain applied perpendicular to exploit the 

d33 coefficient of the material whereas those that apply strain parallel to the electrodes utilize the 

d31 coefficient [22-23]. The concept for implementing piezoelectric materials with graphene is to 

provide a sustainable power source is attracting a lot of scientific community attention [24].  

1.7 Nanogenerators (NG) 

There have been several different types of piezoelectric materials that has been used as 

nanogenerators like semiconducting piezoelectrics, insulating piezoelectrics and insulating 

polymeric piezoelectrics.  
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1.7.1 Semiconducting Piezoelectric Materials: 

ZnO is a semiconducting piezoelectric material, nanogenerators has its ZnO nanostructures 

like nanoparticles, nanowires, nanorods, nanobelts, nanotubes, nanopowder and other complex 

forms [25-26]. Wang and Song took the first step in the development of NGs using the 

piezoelectricity of aligned ZnO nanowires (NWs) with the help of atomic force microscopy (AFM) 

[27] as shown in figure 1.7. 

(a)               (b)  

 

1.7.2 Insulating Piezoelectric Materials: 

BaTiO3, PVDF and PZT; Researchers were not limited to ZnO, they have discovered their 

luck with insulating piezoelectric materials like BaTiO3 and PZT. Due to its excellent piezoelectric 

properties (d33 = ¼ 60{130 pC/N) over those of ZnO (d33 = ¼ 5:9 pC/N) and other materials, PZT 

acted as the most promising perovskite material. Its output has a significant advantage over other 

semiconducting piezoelectric materials. With different PZT composition ratio’s, Pb(Zr0:52Ti0:48)O3 

near the morphotropic phase boundary (MPB) exhibits excellent ferroelectric and piezoelectric 

properties, which qualifies as the most suitable NG. To achieve the piezoelectric properties of 

these insulating materials they are heated to Curie temperature. To rearrange the ions in the poling 

axis a sufficient voltage is applied in the desired direction. The orientation of ions in the poling 

Figure 1.7(a) Reproduced SEM image of vertically aligned ZnO NWs by Wang and Song [27] 

(b) Schematic representation of measurement of output voltage due to the bending of ZnO NW 

during the scanning of AFM tip over NWs [27] 
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direction is maintained even when they attain lower temperature. The amassing of unlike charges 

at the two ends of the material’s surfaces is due to external strain on the charge center of dipoles 

following the poling process [28].  

Schematic example of PZT nanofiber-based NGs device in which interdigitated electrodes 

are connected to the extraction electrodes for harvesting the charge carriers and a soft polymer 

PDMS is attached on top of PZT fibers to package the device [28] 

Another subset of insulating piezoelectric materials is the piezo-polymer material. Its most 

researched piezoelectric polymer is PVDF which has good flexibility, lightweight and 

biocompatibility. However, it has relatively low piezoelectric coefficient (25pC/N) because of the 

limitation of the alignment of the H–C–F dipoles and randomly oriented crystals. The comparison 

table of various NG’s and their parameters have been listed in Table 1.2.



 
  

 
 

1
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Table 1.2 Comparison of various parameters of NGs such as: type of material, shape and size, active area, 

piezoelectric coefficient (d33), output voltage (Vout), output current (Iout), current density (Jout), and power density (P). 

[29] 

Materia

l 
Structure Substrate Dimension Electrode 

d33 

(pm/V) 

Output 

voltage 

Output 

current/curre

nt density 

Power/ 

Power 

Density 

Ref. 

ZnO 
Lateral 

nanowires 

Flexible 

substrate 

D: 200nm 

L: 50 µm 

A: 1cm2 

Au 14.3–26.7 2.03V 107nA 11mW/cm3 [30] 

ZnO 
Array of 

nanowires 
PDMS 

D: 500nm 

L: 6 µm 

A: 1.5cm2 

ITO 14.3–26.7 8V 0.6A 5:3mW/cm3 [31] 

PVDF Nanofibers Grounded 

substrate 

D: 0.5–6.5 µm  

L: 0.1–0.6mm 

A: / 

Metal 57:6 5–30mV 0.5–3nA 2.5–90pW per 

cycle (calculated) 

[32] 

PZT Ribbon film PET film Ribbon size:500 

µmx100 µm 

T: 500nm 

A: 60mm2 

Graphene 250 2V 2:2mA/cm2 88mW/cm3 [33] 

PZT Nanowires PET film L: 1.5cm  

W: 0.8mm 

T: 5 µm 

A: / 

Ag 152 6V 45nA 200W/cm3 [34] 

BaTiO3 Ribbon film Kapton 

film 

Ribbon size:300 

µmx50 µm 

T: 300nm 

A: 82mm2 

Au 30–100 1V 0.19A/cm2 7mW/cm3 [35] 
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1.8 Zinc Oxide Nanoparticles 

Zinc oxide is an inorganic compound with the chemical formula ZnO. Its molecules have 

tetrahedral structure. The bonding in ZnO is largely ionic, which explains its strong 

piezoelectricity. Zinc oxide possess both the semiconducting and piezoelectric properties which 

makes it unique. It is bio-safe and biocompatible material which makes increases its stakes on 

sustainability. ZnO has the highest piezoelectric tensor among other tetrahedrally bonded 

semiconductors like ZnO, GaN, CdS and ZnS. In all these materials, the piezoelectric effect is the 

result of two different terms of opposite signs. These terms are usually referred to as the clamped 

ion and internal strain contributions. ZnO has the least cancellation effect among them which 

accounts for its high piezoelectric effect [36-37]. 

ZnO has a non-central symmetric wurtzite crystal structure. Zn2+ cations and O2- anions 

are placed in tetrahedral coordinates and the centers of the positive and negative ions overlap. If a 

stress is applied at an apex of the tetrahedron, the centers of the cations and anions are relatively 

displaced, resulting in a dipole moment. Figure 1.8 shows this effect. Polarization from all of the 

units results in a macroscopic potential (piezopotential) drop along the straining direction in the 

crystal [38] 

 

Figure 1.8 ZnO crystal structure [38] 
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 ZnO is a promising material for the future of nanotechnology. ZnO has wide energy gap 

(3.37 eV), high excitation binding energy and high breakdown strength which makes it highly 

suitable for the electronic and photonic devices as well as for high frequency applications. 

Availability of ZnO in native substrate form and its potential for room temperature operations 

makes ZnO highly desirable for chemical sensors and subscale operations. ZnO has higher 

excitation binding energy (60meV) compared to other semiconductor materials. Because of having 

higher band energy, ZnO is useful in the field of piezoelectricity, ferroelectricity and 

ferromagnetism [39]. 

1.9 Ferro Fluid Nanoparticles 

Ferrofluids are colloidal mixtures composed of nanoscale ferromagnetic or ferrimagnectic 

particles. These particles are suspended in a carrier fluid usually an organic solvent or water. The 

ferromagnetic nanoparticles are coated with a surfactant to prevent their agglomeration due to van 

der Waals forces and magnetic forces. Oleic acid, citric acid, tetra methyl ammonium hydroxides 

are the common surfactants used. Nano-size ferrofluid particles are suspended by Brownian 

motion and hence they generally do not settle under normal conditions [40].  

Ferrofluids have an important property of changing their physical properties by means of 

moderate magnetic fields, especially their viscosity. This property makes ferrofluid very useful in 

the fields of engineering and medicine. This property of ferrofluid is known as the magneto viscous 

effect [41]. They have a strong affinity towards magnets, they are basically paramagnetic materials 

and as soon as they are exposed to magnets they become strongly magnetized as shown in Figure 

1.9 
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Figure 1.9 Ferrofluid under effect of magnetic field [42] 

The composition of the constituents in the ferrofluid used is 5% magnetic particles which 

is iron, 15% Surfactant i.e. oleic acid or polymers and 80% carrier fluid i.e. mineral oil like 

kerosene or water. A typical ferrofluid is illustrated in Figure 1.10. 

 

Figure 1.10 Ferrofluid constituents [42] 

 In this figure the Tetramethylammonium hydroxide coats the magnetite particles with 

hydroxide anions. Tetramethylammonium hydroxide cations create diffuse shell around each 

magnetite particle and create repulsion between particles stabilizing the colloid. [42]. 
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The magnetic moment of the ferrofluid particles are randomly distributed. Thus they have 

no net magnetization. Under the influence of a magnetic fluid, the magnetic moments of the 

particles orient along the fields lines forming cones. Under the magnetic field, ferrofluid responds 

as a homogenous magnetic liquid moving to the region of highest flux. Retention force of a 

ferrofluid can be adjusted by either changing the magnetization of the fluid of the magnetic field 

in the region [40]. 

1.9.1 Formation of cones 

When ferrofluid is subjected to a magnetic field they act as magnets due to their 

paramagnetic behavior. Since the constituent of ferrofluid is magnetic nanoparticles, when 

exposed to a magnetic field they tend to form a trajectory towards the magnetic lines of forces, 

which leads to the formation of circular based structures with a pointed head resembling a conical 

structure. The size of these cones can be varied by the variation of magnetic field, also if they are 

exposed to this field for a long time under some source of heat or in atmosphere which dries out 

the carrier fluid. When the magnetic field is removed, after a sufficient amount of time for the 

carrier fluid to dry out, iron oxides nanoparticles in the form of cones are left. Since these ferrofluid 

have does not a strong binding force an external binder like epoxy is required to hold the structure 

and resists external vibrating forces to let them fell off. 

1.10 Graphene 

This is the era of graphene, it’s the rising star on the grounds of materials science and 

condensed matter physics. It’s strictly a two-dimensional material and it is a one atom thick 

allotrope of carbon having a honeycomb structure. It inherits significantly high crystal and 

electronic quality and, despite its short history, has already revealed a profusion of new physics 
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and potential applications, which are briefly discussed here.  It’s a zero-gap semiconductor [43] 

and its single layered structure has helped to access its peculiar electronic properties. Whereas one 

can be certain of the authenticity of applications only when commercial products appear, graphene 

does not require any credibility of its prominence in terms of fundamental physics. Owing to its 

unusual electronic spectrum, graphene has led to the emergence of a new archetype of “relativistic” 

condensed matter physics, where quantum relativistic phenomena, some of which are 

unobservable in high energy physics, can now be simulated and examined in table-top 

experiments. More generally, graphene represents a conceptually new class of materials that are 

only one atom thick and, on this basis, offers new inroads into low-dimensional physics that has 

never ceased to surprise and continues to provide a fertile ground for applications [44]. It has 

shown very optimistic results when used as a storage device as an ultracapacitor [45]. 

Graphene is basically non-piezoelectric but can be persuaded to act like a material to 

produce electricity under mechanical stress by creating holes of the right symmetry and can acquire 

a piezoelectric coefficient almost 36% of Boron nitrite nanotubes and 72% of that of quartz [46]. 

It shows excellent photovoltaic material properties and recently researchers have synthesized solar 

dies based on graphene [47-49] 

1.11 Improving Efficiency of Energy Harvesting using Nanoparticles Coating 

Researchers have investigated the efficiency of the piezoelectric stack operated in 

compression and found that efficiency does increase with increasing force and load resistance but 

these factors are less significant than frequency as efficiency was found maximum at several orders 

of magnitude below the resonant frequency [50]. A low cost, approach to produce electricity using 

piezoelectric zinc oxide nanowires gifted of converting low-frequency vibration/friction energy 

into electrical energy [51]. 
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It is found that PZT thick films fabricated through screen printing show porosity ranging 

from 10% to 40% [52]. Researchers have studied the results by varying the thickness and length 

of piezoelectric materials [53]. This high percentage of PZT greatly affects the electromechanical 

properties resulting in a decrease in the amount of energy harvested from them. Basic properties 

of PZT, like the ferroelectric, electromechanical coupling, hysteresis and dielectric constant have 

a great role in determining the wide range applications of PZT. Researchers are trying to improve 

these properties by doping, surface treatment and coating. Studies have been conducted to explain 

the effect of complex doping on the structure and electrical properties of PZT ceramics. The 

properties of the PZT ceramics modified with complex soft dopants, La3+ and Nb3+ with non-

modified PZT and the modified PZT ceramics showed enhanced piezoelectric properties and were 

stable with the compositional variations [54]. Local crystallographic orientation and the local 

grain-grain orientation affect the ferroelectric properties of the PZT. These properties play an 

important role in determining switching of domains. Piezo force microscopy was an important tool 

used for analyzing the polarization switching behavior at the grain corners and boundaries [55]. In 

this work, zinc oxide nanoparticles along with ferrous ferro-fluid nanoparticles and graphene are 

used to improve the efficiency of energy harvested from vibration of PZT and luminance effect 

have been studied. The properties of all nanoparticles are listed in Table 1.3 below. 
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Table 1.3 Properties of Nanoparticles 

Properties 
ZnO 

nanopowder 
Ferrofluid 

Graphene 

Size of Nanoparticles (nm) 01 - 10  25 

Appearance White Black Black 

Physical form Powder Solution nanoplatelets 

Density(g/cc) 5.643 1.21 2.2 

Young Modulus (Gpa) 12  1000 

Poissons ratio 0.31   

Specific Heat @ 25°C (Jmol−1K−1) 0.12   

Thermal Conductivity(watts/meter-K) 251  3000 

Electrical conductivity (siemens/meter)   107 

Magnetic Ordering Diamagnetic Paramagnetic Diamagnetic 

Band Gap (eV) 3.3  0 

Excitation Binding Energy (meV) 60   

Piezo Electric effect (F/m2) 1.2   

Electron Mobility  cm2/(V·s) @ 80 K 27  200,000 

Viscosity  (cp@27°C)  6  

Acoustic Impedance (g/cm2-sec) 36.4x105   

 

ZnO hybridized with graphene can produce an efficient photocatalyst [19-21]. Veeregowda 

[56] at the University of Mississippi, verified this by testing them under various experiments that 

ferrous nanoparticle coated from ferrofluid on silver coated PZT material of area 6 in2 can enrich 

the energy generation. His experiment reveals a boost from 51.123 mV to 115.434 mV comparing 

a plain PZT with the coated PZT vibrating at a frequency of 90Hz. 

Bhagmar [57] and Sharma [58] in their work at the University of Mississippi showed a rise 

in the output from 237 mV to 299.7 mV and 48.5 µW to 68.5 µW (by applying a magnetic field 

of 160 gauss) when coated with FNP-ZnO coat. The data above shows that the nanoparticle coating 

has good potential for power generation. 
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1.12 Justification of work  

From the above literature search it is apparent that to enhance the power output of smart 

piezoelectric materials, nanoparticles and magnetic effect in combination can be used.   Hence this 

current research is thus focused on development of a smart composite with various combinations 

of coatings of nanoparticles of FNP and ZnO, graphene, under the influence of magnetic field and 

luminance under various frequencies. 

This research involves developing a coating which is easier to make and apply on PZT. 

The coating developed was formed using readily available materials like graphene, FNP, ZnO 

nanoparticles, and commercially available magnetic strips and binder resins. The cost involved in 

developing this coating is economical and low as compared to other materials having different 

composites used for energy harvesting.   

The major advantage(s) of using this coating was that it utilizes Opto-MagnetoElectric 

effect, which is a combination of the optical effect of graphene and ZnO nanoparticles and 

advanced magenetoelectric effect of both FNP and ZnO. These properties should enhance the 

power density of the coating and provides an easier and cost effective alternative for improving 

the energy harvesting capabilities and versatility of PZT at various environments. 

In addition to this the other focus was on making PZT-composite based solar cells to tap 

and store solar energy.  Also, the combination of solar cells and piezoelectric materials can be used 

to create a composite which has the potential to use both vibration and solar energy simultaneously.



 

24 
 

 

 

 

 EXPERIMENTAL DETAILS 
 

2.1 Preparation of nano-paste coating solution: 

Sudhanshu [58] found in his work at the University of Mississippi that the maximum 

output of power using the mixture of ferrofluid nanoparticles, zinc oxide nanoparticles and epoxy 

was achieved with 59.9% ferrofluid, 40% ZnO and 0.1% epoxy. This process was progressed 

with the addition of graphene and the effect of light on the substrate was studied. For the first set 

of experiments for energy harvesting, two sets of composites were compared, one was PZT 

mounted on a rectangular plate and the other was nano-coated PZT with different constituents of 

different composition. The process is explained in the Figure 2.1 below.

 

Figure 2.1 Flowchart of steps involved in composite preparation 
 

Composite 
Preparation 

Magnetic Field 
exposure on 
coatings and 

curing with UV  

Coating of PZT 
Substrate

(a) Paint Brush

(b) Spin coating  

Preparation of 
nanocoating 

mixture
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2.1.1 Optimization of Epoxy used in solution 

A total of 4 different nano-coating mixtures were produced with different ratios of 

constituents to optimize the amount of epoxy keeping zinc oxide nanoparticles content constant 

and varying the amount of ferrofluid nanoparticles. Details of the solutions prepared is shown in 

Table 2.1 

Table 2.1 Different compositions of composite coatings for optimization of epoxy 

S. No. Ferrofluid % ZnO % Epoxy % Graphene % 

1  59.9  40  0.1  0 

2  59.5  40 0.5  0 

3  59  40  1  0 

4 58 40 2 0 

 

Epoxy acts as a binder in this solution, but it absorbs the vibrations in the sample which 

can decrease the energy output. Optimum amount of epoxy was determined to maintain the balance 

of holding the solution together and has minimum effect on vibrations in the specimen. 

First step was the preparation of epoxy in a mixing bowl, epoxy has 2 constituents A and 

B that were in different bottles, and they were added in the ratio of 10:1 by weight. For preparation 

of 1 gm of epoxy the amount of A and B added was 910 mg and 9 mg respectively. 10 gm of each 

solution was prepared, so for every 10 gm of solution 4 gm of ZnO nanopowder was used and 5.99 

gm, 5.95 gm and 5.9 gm of Ferrofluid nanoparticles and 0.01 gm, 0.05 gm and 0.1 gm of epoxy 

was used for solution 1, 2, 3 respectively. 

For the preparation of samples, the components were mixed in a centrifugal tube by weight, 

for instance for the preparation of solution 1, having 59.9% ferrofluid nanoparticles, 40% ZnO 

nanoparticles and 0.1% epoxy was used. The centrifugal tube was placed in a weighing machine 
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and then the weight was calibrated to zero and 4000 mg of ZnO nanoparticles was added using a 

spatula, and weight was calibrated to zero again and 5990 mg of Ferrofluid nanoparticles was 

added using a pipette and then 10 mg of Epoxy was added from the mixing bowl using a spatula 

in the solution. After the addition of all the constituents the centrifugal tube was shaken and when 

the nanopaste was prepared it was kept for sonication for 30 minutes for mixing. It avoids 

agglomeration of particles and make the solution consistent. 

2.1.2  Optimization of constituents used in solution: 

Four nano-coating mixtures were produced with different ratio of constituents to optimize 

the amount of constituents keeping the amount of epoxy 1% in each case and varying the amount 

of ferrofluid nanoparticles, zinc oxide nanopowder and graphene. For preparation of solution nmp 

was used since graphene [59] and ZnO [15] are soluble in it. The list of materials used is listed in 

Table 2.2 

Table 2.2 Mixture constituents and the suppliers. 
S.No Material Supplier and Address Key properties 

1 Ferrofluid – EMG 

300 

Ferrotec (USA) Corporation 

33 Constitution Drive, Bedford, 

N.H. 03110 

5%: magnetic solid (ferrofluid 

nanoparticles), density of FNP 5.17g/ml 

10%: Surfactants 

85%: carrier Density of solution= 

1.21gm/ml 

2 Zinc Oxide 

Nanopowder 

Sigma-Aldrich 

Po box 14508 st. Louis, MO 

63178 united states 

Size <100 nm 

3 Epoxy Resin - ITW 

Consumer 

62345 - 437541 

Ron's Home And Hardware 

215 North College Avenue 

Indianapolis, IN 46204 

- 

4 Graphene-XGnP 25 XG Sciences, Inc. 

3101 Grand Oak Drive, 

Lansing, MI  48911 

Nanoplatelets, size 25 µm 
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For the optimization of power output with graphene in the mixture, four solutions were 

prepared and compared with solution 3. While preparing the solutions having graphene 

nanoplatelets in them, it was agglomerated together and to disperse them thoroughly in the 

solution, nmp (N-Methyl-2-pyrrolidone) was added in the solution and acts as a solvent for 

graphene. These solutions were sonicated for 2 hours so that the solution would be thorough and 

consistent and this would lead to a colloidal solution. The solutions prepared are tabulated in Table 

2.3 below. 

Table 2.3 Different compositions of composite coatings. 

S. No. Ferrofluid % ZnO % Epoxy % Graphene % 

5  54  40  1  5 

6  49  40  1 10 

7  39  40  1 20 

 

2.2 Coating the PZT substrate surface:  

The PZT substrate supplied by Murata (part number - 7BB-27-4L0) was coated with a 

nano-mixture by two methods, one using paint brush and the other was spin coating technique. 

2.2.1 Coating PZT using paint brush technique 

With the help of a paint brush the coating was distributed evenly with a uniform thickness, 

manually. The piezo substrate shown in the Figure 2.2 [60] with its dimensions in Table 2.4. 

Coating the surface of PZT substrate surface using a brush on the surface (note the amount of 

nano-mixture was applied in a way to avoid dripping from the sides) uniformly. 
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Table 2.4 Dimension of the piezo substrate [60] 

Plate size dia 

ø D (mm) 

Piezo 

element dia. 

ø a (mm) 

Silver coated 

electrode diameter 

ø b (mm) 

Total 

Thickness 

T (mm) 

Brass Plate 

Thickness  

t (mm) 

Plate 

Material 

27.0 19.7 18.2 0.54 0.30 Brass 

 

 

Figure 2.2 PZT substrate [60] 

 

2.2.2 Spin coating of PZT substrate 

The substrate was coated with the help of a spin coating machine located in the Chemical 

Engineering Department (model WS-400BZ-6NPP/LITE). The principle behind spin coating is 

the centripetal acceleration which causes most of the solution (resin) to spread to the edge of the 

substrate, leaving a thin film of material on the surface. Final coating thickness and its properties 

depend on the nature of the fluid material (viscosity, drying rate, percent solids, surface tension, 

etc.) and the parameters (speed, acceleration and time) chosen for the spin process. The spin 
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coating technique gives the repeatability, but with a slight change in parameters the coating film 

can change drastically. 

Spin coating was started by constraining the boundary of the substrate, loading the 

substrate, switching on vacuum pump and turning the valve of nitrogen gas to 60 psi. Then a 

program was chosen and the solution (resin) was loaded in a pipette and then it was dropped on 

the center of PZT. The program was the run and at the end of run the coated PZT was obtained. 

The flow chart in Figure 2.3 summarizes the steps used. After steps 1-5 it was repeated by 

following steps 6, 7 then 4, and 5, so the order was steps 1-7 then steps 4-7 for next samples.  

 

Figure 2.3 Flow chart for spin coating of PZT substrate 

Approximately 0.25 ml of solution was used to coat a single substrate. The piezo substrate 

having a PZT layer was enclosed with a non-permeable boundary so that the coating would be 

restricted to PZT surface only and there is no coating over brass. Considering the low viscosity of 

the solution, the parameters were chosen accordingly and trials were performed to determine the 

best coating results came out for a coating time of 35 seconds, with a speed of 300 rpm. The actual 

setup is shown in Figure 2.4 

Constraining the 
boundary of PZT 

substrate and loading it 
in spin coating machine

1

Switching on Vaccum 
pump and Nitrogen gas 
vaulve (pressure 60 psi)

2

Setting the program by 
setting the parameters 

like time, speed and 
acceleration

3

Loading the solution 
(resin) in a pipette  

4

Run the program and 
dispensing the solution 

on PZT substrate 
(center)

5

Waiting for the program 
to end and collecting 

the substrate

6 
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Figure 2.4 Actual setup of spin coating 

2.3 Curing with UV Rays and exposure to magnetic field:  

The nanocoated PZT substrate was then exposed to a magnetic field with magnets on top 

and bottom kept at a certain distance and exposed to ultraviolet light (UV) for curing. The 

combination of magnetic field and distance between the magnets should be optimized to 12” and 

160 Gauss for the cones on PZT surface to be of highest height with maximum density and it 

should not fell of as soon as the magnetic force is removed. The UV curing process is based on a 

photochemical reaction. A UV lamp (Entela UVL-56) having a wavelength 365 nm was used for 

curing. The curing time was 24-30 hours for all the test specimens, so they are dried and firm. The 

chamber used for curing is shown in Figure 2.5. 
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Figure 2.5 Chamber used for magnetic exposure and curing 

A schematic diagram of the exciter and placement of substrates on the plates is shown in 

Figure 2.6. The substrates was connected in series and were placed at a distance of 60 mm from 

the fixed end. The distance between the substrates were maintained at 29mm from their respective 

centers. The thickness of steel plate was 0.5 mm. 

 

Figure 2.6 Exciter, rectangular plate and Piezo positions, all dimensions are in mm 
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The setup of the experiment is shown in Figure 2.7 which includes a signal generator for 

establishing an output which is enhanced using an amplifier. This is further connected to a vibrator 

or exciter that vibrates at various frequencies as programmed by the signal generator and the output 

of the voltage root mean square value can be seen using oscilloscope. This Vrms value can be used 

to calculate the power output for each frequency. The power per second was calculated by 

summing up the area under the curve of power and frequency. A frequency range from 65 Hz to 

400 Hz was used for the calculation of net power produced in that frequency range.  

 

Figure 2.7 Actual setup of the experiment 

2.4 Calibration: 

2.4.1 Impedance Matching 

In order to match the impedance of the circuit, various resistances used were 0.5, 0.75, 1 

and 2 M ohm and the power output was compared at different frequencies for all four cases. Power 

output was calculated using the voltage output obtained for each individual frequency and was 

used to calculate the power output which was then plotted against the frequency range. Net power 

output, which is area under the curve of power and frequency was calculated using the trapezoidal 

rule. 
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The composition of nano-mixture used in this experiment was 59.9% Ferrofluid 

nanoparticles, 40% ZnO and 0.1% epoxy and three coated PZT substrates were connected in series 

over a rectangular plate and placed at a distance of 60 mm from the fixed end and excited from a 

frequency range of 65Hz to 700Hz 

The output peak power and area under the curve was best achieved for the circuit resistance 

of 1 M Ohm that was 14140.59 µ Watt/sec. The power output for various circuit resistances under 

the frequency range of 65-700 Hz were compared, they are listed in Figure 2.8 

 

Figure 2.8 Impedance matching using power output comparison of PZT with Resistances in 

Mega-ohm excited in the frequency range of 65-700 HZ 

After testing the external resistances of 0.5, 0.75, 1 and 2 M-Ohm, the best matched 

resistance value based on the area under power output-frequency of vibration was 1 M-Ohm in the 

frequency range of 65-700 Hz and it was 14140.59 µ Watt/sec. 

2.4.2 Optimization of Epoxy 

In order to optimize the amount of epoxy in the mixture, four solutions with different 

amount of epoxy were used. They were solution 1 (59.9% FNP, 40% ZnO and 0.1% epoxy), 2 
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(59.5% FNP, 40% ZnO and 0.5% epoxy), 3 (59% FNP, 40% ZnO and 1% epoxy) and 4 (59% 

FNP, 40% ZnO and 1% epoxy). All these solutions were excited at frequencies ranging from 65 

Hz-400 Hz and the voltage output was used to calculate the power output and then plotted against 

the frequency range, the area under the curve was calculated using the trapezoidal rule. The 

comparison chart for 0.1% epoxy, 0.5% epoxy, 1% epoxy and 2% epoxy is shown in Figures 2.9. 

 

Figure 2.9 Epoxy optimization by comparing the power output of coated PZT with variation of 

Epoxy in Solution in the range of 65-400 HZ 

Epoxy is the binding agent in the solution but the presence of epoxy can suppress the 

vibration in the substrate, which will reduce the power output hence the amount of epoxy was 

optimized and for this the content of epoxy was varied from 0.1, 0.5, 1 and 2% in the solution with 

keeping the amount of ZnO at 40% and varying the amount of Ferrofluid from 59.1, 59.5, 59 and 

58% respectively. The area under the curve plotted between power output-frequency was 

compared and was found maximum for the solution 1% epoxy, 40% ZnO and 59% FNP and was 

found to be 8420.12 µ Watt/sec. in the frequency range of 65-400 Hz. Based on this conclusion all 

the samples had 1% epoxy in the resin solution that were carried out for the effect of graphene and 

light. 
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 COMPARISON OF COATING TECHNIQUE 

3.1 Techniques Used 

A brush coating technique and a spin coating technique were compared based on their 

power output in the frequency range of 65-400 Hz and the positioning of the fabricated PZT with 

different resin compositions were placed at a distance of 60mm from the free end. 

3.2 Results and Discussion 

The methods used earlier by Sudhanshu [58], Baghmar [57] and Nadeeka [61] were brush 

coating only which is not a scientific method hence a spin coating technique was adopted to 

compare the outcome with the brush coating technique. The brush coating results and the spin 

coated results are shown in Fligure 3.1. 

 

Figure 3.1 Comparison of power output of coated PZT with various compositions of nano-paste 

in the range of 65-400 HZ with different cases 
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Due to the presence of ZnO and graphene in the solution the output of the composite was 

increased with the increase in lumens and was found maximum for the substrate having solution 

graphene 5%, FNP 54%, ZnO 40% and epoxy 1% and with a value of 13279.23 µ watt/sec for 

3780 lumens. There was an enhancement in substrate having different solution type under the 

influence of light with increasing lumens. 

With the help of AFM, surface images of the substrates coated by different techniques 

were compared based on the surface texture and the distribution of the solution as in Figure 3.2. 

 

 

(c) Spin coated PZT with 5% graphene, 54% 

FNP, 40% ZnO and 1% epoxy 

(d) Paint brush coated PZT with 5% 

graphene, 54% FNP, 40% ZnO and 1% 

epoxy 
Figure 3.2 AFM images of coated PZT with various techniques 

(a) Spin coated PZT with 59% FNP, 40% 

ZnO and 1% Epoxy 

(b) Paint brush coated PZt with 59% 

FNP, 40% ZnO and 1% Epoxy 
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These composites were observed under Keyence VHX-2000 microscope (In Structures 

Lab, Mechanical Engineering) set at the magnification of 200x, as shown in Figure 3.3.  

(a) PZT, 200X      (b) nmp and ZnO over PZT, 200X  

        

(c) nmp and graphene over PZT, 200X  (d) Coated PZT with Nanopaste of 

Graphene, Ferrofluid, Zinc Oxide, 200X 

(e) FNP 59%, ZnO 40% and epoxy 1%, 200X (f) 3-d image of spin coated PZT with a 

nanopaste of Graphene, Ferrofluid, Zinc 

Oxide and epoxy, 200X 

Figure 3.3 Images of samples with microscope Keyence VHX-2000 (located in Structures lab in 

Mechanical Engineering) 
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The main reason to optimize the coating technique was repeatability and to find a better 

technique for getting an even resin (coating) layer on the PZT substrate. The techniques used were 

paint brush technique and spin coating technique, there was an increase in power output/sec for all 

the solutions prepared with the peaks being 8420.12 µ Watt/sec and 9404.28 µ Watt/sec for 

solution 1% epoxy, 40% ZnO and 59% FNP for brush coated and spin coated respectively. With 

the solution containing graphene, it was found that the peak was for the solution graphene 5%, 

FNP 54%, ZnO 40% and epoxy 1% having 7410.02 µ Watt/sec and 8634.72 µ Watt/sec 

respectively for brush coated and spin coated sensors under the frequency range of 65-400 Hz. 
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 EFFECT OF LIGHT 
 

4.1 Effect of light (photovoltaic effect) 

Nadeeka [61] studied the effect of light on her composite of PVDF having a coating of a 

mixture of ferrofluid and ZnO, hence an effort was made to study the effect of light (lumens) on 

the composite prepared. Graphene with ZnO acts as an efficient photocatalyst and was the 

motivation of studying the effect of light on the substrate. The sources used and their outcomes 

are shown in figures were 325 lumens, 565 lumens, 790 lumens, 1120 lumens, 2710 lumens, 3780 

lumens 

4.1.1 Effect of a light source of 325 lumens 

 

Figure 4.1 Comparison of power output of spin coated PZT with various compositions of nano-

paste in the range of 65-400 HZ with a light source of 325 Lumens at a distance of 75mm 

There was an increase of 6.2% for solution 1% epoxy, 40% ZnO and 59% FNP and an 

increase of 9.3% for solution graphene 5%, FNP 54%, ZnO 40% and epoxy 1% when compared 
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to vibration only. The details of output is listed in Figure 4.1.The maximum net power output was 

for 1% epoxy, 40% ZnO and 59% FNP followed by graphene 5%, FNP 54%, ZnO 40% and epoxy 

1% which is roughly 6% less. 

4.1.2 Effect of a light source of 565 lumens 

There was an increase of 12.4% for solution 1% epoxy, 40% ZnO and 59% FNP and an 

increase of 18.85% for solution graphene 5%, FNP 54%, ZnO 40% and epoxy 1% when compared 

to vibration only. The maximum net power output was for 1% epoxy, 40% ZnO and 59% FNP 

followed by graphene 5%, FNP 54%, ZnO 40% and epoxy 1% which is roughly 3% less. Net 

power output is shown in Figure 4.2. 

 

Figure 4.2 Comparison of power output of spin coated PZT with various compositions of nano-

paste in the range of 65-400 HZ with a light source of 565 lumens at a distance of 75mm 

4.1.3 Effect of a light source of 790 lumens 

There was an increase of 18.7% for solution 1% epoxy, 40% ZnO and 59% FNP and an 

increase of 28% for solution graphene 5%, FNP 54%, ZnO 40% and epoxy 1% when compared to 

vibration only. The maximum net power output was for 1% epoxy, 40% ZnO and 59% FNP 
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followed by graphene 5%, FNP 54%, ZnO 40% and epoxy 1% which is roughly 0.8% less. As 

shown in Figure 4.3 

 
Figure 4.3 Comparison of power output of spin coated PZT with various compositions of nano-

paste in the range of 65-400 HZ with a light source of 790 lumens at a distance of 75mm 

4.1.4 Effect of a light source of 1120 lumens 

There was an increase of 24% for solution 1% epoxy, 40% ZnO and 59% FNP and an 

increase of 36% for solution graphene 5%, FNP 54%, ZnO 40% and epoxy 1% when compared to 

vibration only. As shown in Figure 4.4 

 
Figure 4.4 Comparison of power output of spin coated PZT with various compositions of nano-

paste in the range of 65-400 HZ with a light source of 1120 lumens at a distance of 75mm 
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The maximum net power output was for graphene 5%, FNP 54%, ZnO 40% and epoxy 1% 

followed by 1% epoxy, 40% ZnO and 59% FNP which is roughly 0.8% less. 

4.1.5 Effect of a light source of 2710 lumens 

There was an increase of 31% for solution 1% epoxy, 40% ZnO and 59% FNP and an 

increase of 45% for solution graphene 5%, FNP 54%, ZnO 40% and epoxy 1% when compared to 

vibration only. The maximum net power output was for graphene 5%, FNP 54%, ZnO 40% and 

epoxy 1% followed by 1% epoxy, 40% ZnO and 59% FNP which is roughly 1.2% less. As shown 

in Figure 4.5. 

 
Figure 4.5 Comparison of power output of spin coated PZT with various compositions of nano-

paste in the range of 65-400 HZ with a light source of 2710 Lumens at a distance of 75mm 

4.1.6 Effect of a light source of 3780 lumens 

There was an increase of 38% for solution 1% epoxy, 40% ZnO and 59% FNP and an 

increase of 54% for solution graphene 5%, FNP 54%, ZnO 40% and epoxy 1% when compared to 

vibration only. The maximum net power output was for graphene 5%, FNP 54%, ZnO 40% and 
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epoxy 1% followed by 1% epoxy, 40% ZnO and 59% FNP which is roughly 2% less. The results 

of power output is shown in Figure 4.6. 

 
Figure 4.6 Comparison of power output of spin coated PZT with various compositions of nano-

paste in the range of 65-400 HZ with a light source of 200W (3780 lumens) at a distance of 

75mm 

Due to the presence of ZnO and graphene in the solution the output of the composite was 

increased with the increase in lumens and was found maximum for the substrate having solution 

graphene 5%, FNP 54%, ZnO 40% and epoxy 1% and was 13279.23 µ watt/sec with 3780 lumens. 

There was an enhancement in substrate having different solution type under the influence of light 

with increasing lumens. The variation of net power output is shown in Figure 4.7.

4856.33

13007.70 13279.23

9925.19
8428.91

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

14000.00

PZT FNP 59%, ZnO
40% and epoxy

1%

graphene
5%,FNP 54%,
ZnO 40% and

Epoxy 1%

graphene
10%,FNP 49%,
ZnO 40% and

Epoxy 1%

graphene
20%,FNP 39%,
ZnO 40% and

Epoxy 1%

P
o

w
er

 O
u

tp
u

t 
(µ

 W
at

t/
se

c)

Composition

Power output (µ Watt/sec) in the range of 65-400Hz 
with a light source of 3780 lumens



 

 
 

4
4

 

 

Figure 4.7 Comparison of power output of coated PZT with various compositions of nano-paste in the range of 65-400 Hz with 

different light sources.
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4.2 Discussions 

In this research three solutions were made with graphene in them. Solution 1 having 

graphene 5%, FNP 54%, ZnO 40% and Epoxy 1%, solution 2 having graphene 10%, FNP 49%, 

ZnO 40% and Epoxy 1% and solution 3 having graphene 20%, FNP 39%, ZnO 40% and Epoxy 

1% was coated on PZT substrate. The net power output was compared based on area under the 

curve plotted between power output-frequency. The maximum power/sec (µ Watt/sec) was found 

to be 7410.02 µ Watt/sec for solution graphene 5%, FNP 54%, ZnO 40% and Epoxy 1% under the 

frequency range of 65-400 Hz. 

The effect of light was recorded and the light sources used were 325 lumens, 565 

lumens790 lumens, 1120 lumens, 2710 lumens and 3780 lumens. Due to the presence of ZnO and 

graphene in the solution, which acts as an efficient photocatalyst [19], the output of the composite 

was increased with the increase in lumens and was found maximum for the substrate having 

solution graphene 5%, FNP 54%, ZnO 40% and Epoxy 1% and was 13279.23 µ Watt/sec with 

3780 lumens. 
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 CONCLUSIONS, DISCUSSIONS AND FUTURE 

WORK 
 

5.1 Coating Technique 

Earlier Baghmar [57], Sudhanshu [58] and Nadeeka [61] used a paint brush approach to 

coat the piezo surface. This is not a scientific method and there can my numerous limitations with 

this technique is repeatability being one of them. Due to repeatability and uniformity of coating a 

spin coating technique was used to resolve both these issues. Comparing the results there was an 

increase in peaks, the power was 8420.12 µ Watt/sec and 9404.28 µ Watt/sec for the solution of 

1% epoxy, 40% ZnO and 59% FNP for brush coated and spin coated respectively. With the 

solution containing graphene, it was found that the peak was for solution with graphene 5%, FNP 

54%, ZnO 40% and Epoxy 1% having 7410.02 µ Watt/sec and 8634.72 µ Watt/sec respectively 

for brush coated and spin coated sensors under the frequency range of 65-400 Hz. 

5.2 Power Output with addition of graphene and light effect 

There was not a significant change, in fact the output degraded with the addition of 

graphene. The main reason behind this decrease or no improvement is because graphene does not 

have any piezoelectric effect. The maximum power output in the range of 65-400 Hz was for 

9404.28 µ Watt/sec for the solution of 1% epoxy, 40% ZnO and 59% FNP while opting for the 

spin-coating technique. Although, there was an increase in power output when the substrate was 

exposed to light and the substrate with 5% graphene on got the best out of it with an additional 

effect of vibrations. Graphene possess excellent photovoltaic properties, this was the reason the 
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output in 65-400Hz was found maximum for the substrate having solution graphene 5%, FNP 

54%, ZnO 40% and epoxy 1% and was 13279.23 µ Watt/sec with 3780 lumens which is 1.02% 

and 173% more than compared to FNP 59%, ZnO 40% and epoxy 1% 13007.70 µ Watt/sec and 

PZT 4856.33 µ Watt/sec respectively. The main reason behind this increase in power output was 

the zero-gap semiconductor [43] property of graphene which basically acted as a solar dye [47-49] 

which in addition to the vibrational energy also converts the available light energy. 

5.3 Future Work Suggestions 

The basic goal of this work was to study the effect of light and vibrations on a piezo 

material having a coating of material with photovoltaic properties. Future work should be: 

1. Testing different photovoltaic materials used. 

2. The coating technique that involves the deposition of a photovoltaic material over the 

piezo material should optimized further by varying the parameters (time, speed and 

acceleration) used in the spin coating technique by studying the viscosity, drying rate 

and surface tension of the mixture. 

3. The type of piezoelectric materials used should be focused more on polymers, since 

they have more diverse applications. 
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Calculation of power: 

With the help of Oscilloscope the output root mean square voltage was determined then 

the relation between power, voltage and resistance was used. 

P = Vrms
2/R 

Where P is power in watt, Vrms is root mean square voltage in volts, and R is resistance in 

ohm. 

Calculation of Area under the curve by Trapezoidal Rule in excel: 

When the function f(x) is not known, or it cannot be evaluated analytically, the above 

integral should be determined numerically. This can be done in a number of ways, some of which 

are better than others. The trapezoidal rule is one of the best ways to calculate this integral its 

advantages over other methods are (1) easy to implement; (2) accurate; and (3) quite robust. The 

technique is to break the function up into numerous trapezoids and calculate the individual areas. 

 

Figure 0.1 sample curve for calculation of area under the curve 

The area of the shaded trapezoid above is 

 

The area under the graph is therefore the sum of the area of all the trapezoids. The accuracy 

of the numerical integration will go up with decreased spacing between the time points. That’s 

why an effort was made to get as more spacing as a result 17 spacing’s were considered in a 

frequency interval from 60-400 Hz. 
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APPENDIX B: POWER OUTPUT CURVES 
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Optimization of Epoxy 

 

Figure 0.2 Power output of nano-coated PZT having 0.1% 

epoxy from frequency range of 65-400 Hz 

 
Figure 0.3 Power output of nano-coated PZT having 0.5% 

epoxy from frequency range of 65-400 HZ 

 

Figure 0.4 Power output of nano-coated PZT having 1% 

epoxy from frequency range of 65-400 HZ 

 
Figure 0.5 Power output of nano-coated PZT having 2% 

epoxy from frequency range of 65-400 HZ 
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Brush Coated Results 

 

Figure 0.6 Power output of PZT with brush coated FNP 59%, 

ZnO 40% and epoxy 1% 

 

Figure 0.7 Power output of PZT with brush coated graphene 

5%, FNP 54%, ZnO 40% and epoxy 1% 

 

 

Figure 0.8 Power output of PZT with brush coated graphene 

10%, FNP 49%, ZnO 40% and epoxy 1% 

 

Figure 0.9 Power output of PZT with brush coated graphene 

20%, FNP 39%, ZnO 40% and epoxy 1% 
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 Spin Coating Results 

 
Figure 0.10 Power output of PZT with spin coated graphene 

5%, FNP 54%, ZnO 40% and epoxy 1% 

 

Figure 0.11 Power output of PZT with spin coated PZT with 

FNP 59%, ZnO 40% and epoxy 1% 
 

 
Figure 0.12 Power output of PZT with spin coated graphene 

20%, FNP 39%, ZnO 40% and epoxy 1% 

 

Figure 0.13 Power output of PZT with spin coated graphene 

10%, FNP 49%, ZnO 40% and epoxy 1% 
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Effect of Light 

Results under light source of 325 lumens 

 

Figure 0.14 Power output of PZT with spin coated PZT with 

FNP 59%, ZnO 40% and epoxy 1% 

 
Figure 0.15 Power output of PZT with spin coated graphene 

5%, FNP 54%, ZnO 40% and epoxy 1% 

 

 

Figure 0.16 Power output of PZT with spin coated graphene 

10%, FNP 49%, ZnO 40% and epoxy 1% 

 
Figure 0.17 Power output of PZT with spin coated graphene 

20%, FNP 39%, ZnO 40% and epoxy 1% 
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Results under light source of 565 lumens 

 

Figure 0.18 Power output of PZT with spin coated PZT with 

FNP 59%, ZnO 40% and epoxy 1% 

 

Figure 0.19 Power output of PZT with spin coated graphene 

5%, FNP 54%, ZnO 40% and epoxy 1% 

 

 

Figure 0.20 Power output of PZT with spin coated graphene 

10%, FNP 49%, ZnO 40% and epoxy 1% 

 

Figure 0.21 Power output of PZT with spin coated graphene 

20%, FNP 39%, ZnO 40% and epoxy 1% 
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Results under light source of 790 lumens 

 

Figure 0.22 Power output of PZT with spin coated PZT with 

FNP 59%, ZnO 40% and epoxy 1% 

 

Figure 0.23 Power output of PZT with spin coated graphene 

5%, FNP 54%, ZnO 40% and epoxy 1% 

 

 

Figure 0.24 Power output of PZT with spin coated graphene 

10%, FNP 49%, ZnO 40% and epoxy 1% 

 

Figure 0.25 Power output of PZT with spin coated graphene 

20%, FNP 39%, ZnO 40% and epoxy 1% 
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Results under light source of 1120 lumens 

 

Figure 0.26 Power output of PZT with spin coated PZT with 

FNP 59%, ZnO 40% and epoxy 1% 
 

 

Figure 0.27 Power output of PZT with spin coated graphene 

5%, FNP 54%, ZnO 40% and epoxy 1%  

 

 

Figure 0.28 Power output of PZT with spin coated graphene 

10%, FNP 49%, ZnO 40% and epoxy 1% 

 

Figure 0.29 Power output of PZT with spin coated graphene 

20%, FNP 39%, ZnO 40% and epoxy 1% 
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Results under light source of 2710 lumens 

 
Figure 0.30 Power output of PZT with spin coated PZT with 

FNP 59%, ZnO 40% and epoxy 1% 

 

Figure 0.31Power output of PZT with spin coated graphene 

5%, FNP 54%, ZnO 40% and epoxy 1% 

 

 

Figure 0.32 Power output of PZT with spin coated graphene 

10%, FNP 49%, ZnO 40% and epoxy 1% 

 

Figure 0.33 Power output of PZT with spin coated graphene 

20%, FNP 39%, ZnO 40% and epoxy 1% 
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Results under light source of 3780 lumens 

 

Figure 0.34 Power output of PZT with spin coated PZT with 

FNP 59%, ZnO 40% and epoxy 1% 

 

Figure 0.35 Power output of PZT with spin coated graphene 

5%, FNP 54%, ZnO 40% and epoxy 1% 

 

 

Figure 0.36 Power output of PZT with spin coated graphene 

10%, FNP 49%, ZnO 40% and epoxy 1% 

 

Figure 0.37 Power output of PZT with spin coated graphene 

20%, FNP 39%, ZnO 40% and epoxy 1%
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