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ABSTRACT 
 

 The focus of this project is to determine the effectiveness, in the preprocessing of 

biomass when magnetic ionic liquids (MIL) (1-butyl-3-methylimidazolium tetrachloroferrate 

(Bmim[FeCl4]) and 1-ethyl-3-methylimidazolium tetrachloroferrate (Emim[FeCl4])) are used as 

a green solvent.  Lignocellulose is a promising starting material for a plethora of products, 

ranging from biofuels to custom chemicals; however, lignocellulose is resistant to enzymatic 

degradation.  Various biomass-preprocessing techniques such as microbial, mechanical, and 

chemical pretreatment are used for enhancing the digestibility of biomass to sugars for ethanol 

production.  Varieties of ionic liquids have demonstrated the ability to fragment lignocellulose.  

However, after fragmentation, separation of biomass and ionic liquids has proven to present 

economic challenges for this pretreatment process.  Research has proven that the addition of 

magnetic properties to the ionic liquid can be used to stabilize the ionic liquids and prevent its 

loss or other detrimental fluid/fluid interactions in the bioreactor.  Therefore, this paper presents 

the outcomes of such MIL dissolution studies. 
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CHAPTER I 

1.0 INTRODUCTION 

1.1 Biofuel Objectives 

Some of the smallest known molecules fuel the world that we live in today.  Our planet 

has developed a plethora of materials based upon amino acids, proteins, and polysaccharides.  

They range from DNA, cellulose, chitin, elastin, silk produced from worms, and more.1 The 

converted biomass provides many sources of usable energy such as hydrocarbon fuels and 

chemical compounds like alcohols, gums, sugars, and lipid-based products.   

The objectives stated in the 2006 research roadmap published by the United States 

Department of Energy were to place biomass energy conversion research on a fast-track, helping 

make biofuels an everyday resource and economically feasible by 2012, and by 2030 have the 

potential to offset 30% of the nation’s current gasoline consumption.2 Therefore, in recent years, 

there has been a renewed interest and increased research devoted to the development of biofuels 

made from lignocellulose biomass derived from agricultural byproducts, forest residues, and 

dedicated energy crops.3–5 

With this new found push for renewable green-energy sources, important processes 

involved in the biochemical production of biofuels are being optimized. However, some of the 
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difficulties arise from the fact that the conversion to biofuel and type of biofuel produced 

depends greatly on the source/type of biomass. Consequently, most unit operations and processes 

for converting biomass to biofuel have four major steps: biomass handling, biomass 

pretreatment, hydrolysis, and fermentation.6 Out of these steps, the pretreatment process proves 

to be the most difficult to optimize because complex structures in the biomass of choice are 

broken down into oligomeric subunits. These subunits are ultimately converted into monomers 

via hydrolysis and fermentation. Therefore, the development of a more universal pretreatment 

process is the goal of many bioresource researchers today.  

1.2 Pretreatment of Lignocellulosic Biomass 

The pretreatment strategies that have been developed thus far are used to improve the 

reactivity of cellulose and increase the yield of fermentable sugars.7 Scientists have known that 

lignocellulosic biomass is a renewable and moderately carbon-neutral source of fuel that is 

readily accessible, with approximately 200 billion tons produced worldwide per year.6  There are 

various pretreatment methods used today: mechanical (physical), chemical, physiochemical, and 

biological.  

However, the full possibilities of cellulose-based biofuels have not yet been utilized for 

four main reasons: the use of petroleum-based polymers starting in the 1940s, the absence of an 

optimized green-process to extract cellulose, the difficulty in modifying cellulose properties, and 

the limited number of common solvents that easily dissolve cellulose.8 To help achieve the full 

potential of cellulose based biofuels, one such proposed pretreatment process is the use of a 

green solvent, ionic liquids (ILs). The use of ionic liquids for lignocellulosic biomass processing 
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have recently gained more and more attention in science due to the solvent’s ability to dissolve a 

diverse number of biomass types and also the tunability of the solvent chemistry.7  

1.3 Ionic Liquids 

 Ionic liquids are defined as low melting points (<100oC) salts, which hold many benefits 

such as very low vapor pressure, low flammability, recyclability, thermal stability, and low 

toxicity.9 Because of these benefits, the ILs can be changed by varying the anion or cation in the 

liquid thereby creating different classes of ILs. Fredlake et al, stated that “ILs have been 

considered as solvents for reactions, as absorption media for gas separations, as the separating 

agent in extractive distillation, as heat transfer fluids, for processing biomass, and as the working 

fluid in a variety of electrochemical applications (batteries, solar cells, etc.).”9  

Since, the discovery of ionic liquids in the early 1930s many researchers have looked at 

dissolution of cellulose in a variety of ILs. Nonetheless, little attention was given to the 

discovery of ionic liquids and was filed away. In 2002, a study published by Rogers and group 

proved that some imidazolium-based ILs could effectively dissolve cellulosic material at low 

temperatures.10 In 2004, the Hayashi group reported a new class of magnetic fluids: magnetic 

ionic liquids (MIL). This new class has the same physical properties as non-magnetic ILs, but 

with the added characteristics of being paramagnetic.  With the rediscovery of cellulose in ionic 

liquids, research in this field has taken off. Multiple research groups have published dissolution 

profiles for various ILs as shown in Table 1.11  
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Table 1.  The dissolution of cellulose in some ionic liquids.  The cellulose samples used in these 
studies commonly differed in degree of depolymerization (DP), molecular weight, or crystal 
structure.11 

Ionic Liquid Solubility (w/w%) Experimental Condition 

[Bmim]Cl 10 Heating at 100°C 

[Amim]Cl 14.5 Heating at 80°C after a longer 
dissolution time 

[Bmim]Ac 15.5 Heating at 70°C 

[Bmim]Ac/LiAc 19 Heating at 70°C 

This thesis examines the use of magnetic ionic liquids (MIL) for the dissolution of 

lignocellulosic biomass.  We do this by first characterization of the MIL, the biomass, and finally 

the dissolution of biomass in the MIL.  A brief introduction, summary of past work, and the 

structure of this thesis are in the first chapter.  Chapters 2 and 3 present a thorough review of 

conventional biochemical conversion of biomass to fuels and then the current use of ionic liquids 

for biomass conversion.  Chapter 4 describes the characterization of the MIL and biomass for use 

during the dissolution studies.  Chapter 5 is written as a paper to be submitted for publication, it 

reports the results, conclusions, and a proposal for the future work that can be conducted to 

further the IL research field in understanding interactions between magnetic ionic liquids and 

biomass.  
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CHAPTER II 

2.0 REVIEW: BIOMASS TO FUELS A BIOCHEMICAL CONVERSION PROCESS  

2.1 Introduction  

There have been many papers published about different pretreatment methods that can be 

applied to enhance the digestibility of lignocellulosic material.  Biomass is either grown or 

acquired from various sources; then is transported to the production sites for biochemical 

conversion to fuels.  Until the 1970s, the idea of agricultural residues such as straw grass or corn 

byproducts being potential sources of lignocellulosic biofuels was not well recognized.  The fuel 

emergencies during the 1970-1980s was a significant reason for breakthroughs in alternative 

fuels and engines.12 Biofuels are some of the most efficient alternatives thus far despite existing 

criticism, often incorrect, for an unfavorable net energy balance and significant arable land and 

water requirements.13  

Biomass is categorized as all materials derived from plant, animal, and microbial origins 

(see Figure 1).  The classification of biomasses used today in conversion to biofuels, are usually 

based on the animal or plant origin, woody or herbaceous carbon source and physical and 

chemical characteristics.12 
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Figure 1: Types of biomass14 

The plants are the preferred choice of biomass because they are abundant and have high 

potential to mitigate the emission of greenhouse gases.  This section will present the structure of 

lignocellulosic biomass, an overview of the ethanol production processes, and summarize the 

different pretreatment methods used in today’s industry.  

2.2 Composition of lignocellulosic material  

Any plant lignocellulosic material consists mainly of three different types of polymers 

closely associated with each other: cellulose, hemicellulose, and lignin.15 These polymer 

components exist in the plant cell wall and vary in percentage by each green plant.  Research has 

shown that, in the lignocellulosic material, cellulose, hemicellulose, and lignin are approximately 
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30-50%, 10-40%, and 5-30%, respectively.16 All of these components are intertwined by 

covalent and hydrogen bonding, making the cell wall resilient to natural degradation.  

2.2.1 Cellulose  

 Cellulose is a classic biopolymer existing in α-D-glucopryanoside subunits, linked by β-

1,4 glycosidic bonds (see Figure 2).15 

 

Figure 2: The structure of cellulose12 

The degree of polymerization (DP) in cellulose ranges from 103 to 1x106.17 Cellulose has 

both organized (crystalline) and unorganized (amorphous) structure.  This crystalline structure 

forms cellulose strands, which allow the cellulose to be very tightly packed and complex with 

hydrogen bonding, making the bonds rather difficult to break.  This network of cellulose strands 

form cellulose fibrils (or cellulose bundles), which are again held together by hydrogen bonding.  

Therefore, the cellulose fibrils are insoluble in most commonly used solvents.  

2.2.2 Hemicellulose 

 Hemicellulose is both a branched polymer and a heteropolymer consisting of different 

monomers like uronic acids, pentoses (i.e. xylose & arabinose), hexoses (i.e. galactose, mannose, 
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and glucose).18 Hemicellulose has a relative low molecular weight when compared to cellulose, 

short lateral branches, and different sugars that are easily hydrolyzable.15 This part of the plant 

cell wall is amorphous in structure, giving little strength to the wall.   

Although this component of lignocellulose is not covalently bound to the surface of each 

cellulose fibril, it is still tightly bound to the surface.  Hemicellulose serves as a connection 

between the lignin and cellulose fibers, thereby creating the cellulose-hemicellulose-lignin 

network making the plant cell wall more rigid.19  Therefore, the digestibility of the cellulose 

somewhat depends on the percent of hemicellulose content present in the sample. 

2.2.3 Lignin and structure 

The most abundant and last biopolymer after cellulose and hemicellulose is lignin.  This 

unit of the cell wall is a complex amorphous heteropolymer composed of three main 

phenylpropane units: p-coumaryl, coniferyl- and sinapyl acids (see Figure 3).20  The monomers 

in lignin have different strong chemical bonds and complex compositions thus providing a cross-

linked structure.  This in turn makes lignin very strong providing excellent plant structural 

support thereby making it resistant to many external forces (microbial attack, physical, or 

oxidative stress), chemicals, and degradation. 
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Figure 3: Structural monomers of lignin: p-coumaryl alcohol (I), coniferyl alcohol (II), and 
sinapyl alcohol20 

Lignin, the amorphous heteropolymer,  is very insoluble in water and optically inactive; 

again making degradation difficult.15 The cellulose to lignin ratio is an important factor affecting 

the conversion process of the lignocellulosic material.   

These three components of cellulose, hemicellulose, and lignin bond to make the cell 

wall (see Figure 4).  When these components are combined they have natural factors that 

bioresource researchers believe make feedstock recalcitrance to degradation 21: 

• the degree of lignification 

• the structural heterogeneity and complexity of cell-wall constituents, such as the cellulose 

microfibrils, the matrix polymers and cross-linkages between these components 

• the difficulty enzymes have in acting on an insoluble substrate 

• crystallinity and restricted solvent accessibility 
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Figure 4: A schematic of a plant cell wall showing cellulose fibrils (brown) laminated with 
hemicellulose (turquoise) and lignin (orange) polymers.  21 

These well-designed structural and chemical benefits in lignocellulosic biomass affect the 

enzyme accessibility and activity and/or liquid penetration.  Therefore, the crucial point to an 

efficient and economical production of biofuel is the separating of these complex structures into 

their subunits. 

2.3 Process Overview 

Ethanol produced from lignocellulosic biomass is one of the most abundant biofuels on 

Earth.  However, despite its abundance, the biomass material is complex and requires a 

significant amount of processing before being a usable biofuel.  Some of the common unit 

operations and processes to all biomass converted to biofuel have these major steps: biomass 

handling, biomass pretreatment, hydrolysis, and fermentation.6 Depending on the biomass used, 

the route to biofuel production can vary. Figure 5 provides a graphical representation of the 

biochemical conversion of biomass to end products. 
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Figure 5: From Biomass to cellulosic ethanol.22 

2.4 Main Categories of Pretreatment 

For the production of biofuels, pretreatment is an important step in the process.  During 

this step, complex structures in biomass are broken down into oligomeric subunits.  Monomeric 

subunits are produced from oligomers during hydrolysis and fermentation.  Pretreatment 

becomes vital to increasing the product yields by disrupting and solubilizing the lignin and 

hemicelluloses structures in biomass (see Figure 6). 
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Figure 6: Schematic representation of the matrix of polymers before and after pretreatment.  7 

There are several biomass properties that affect the conversion of lignocellulose: 1. 

crystallinity of the cellulose, 2. degree of polymerization, 3. moisture content, 4. available 

surface area, and 5. lignin content.23  The pretreatment categories used today are classified into 

four different types: physical, biological, chemical, and physicochemical.  Therefore, the goal of 

any pretreatment process is to have12:  

• High yields for multiple crops from young and mature sites with varying harvesting times 

• Highly digestible solid 

• Minimum number of toxic compounds 

• Biomass size reduction not required 

• Operation in reasonable size and moderate cost reactors 

• Non-production of solid-waste 

• Effective at low moisture content 

• Obtains high sugar concentration (from hydrolysis) 

• Fermentation compatibility (minimal production of  inhibitors) 
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• Lignin recovery 

• Minimum heat and power requirements 

2.4.1 Physical Pretreatment  

 Physical pretreatment is any pretreatment method not involving chemicals.  This method 

involves the breakdown of biomass size and crystallinity by milling or grinding.  As a result, the 

surface area of the sample is increased and the degree of polymerization is decreased.12 There are 

multiple methods used to achieve this goal: vibro-energy milling, ball, roller, hammer, 

ultrasonic, etc.  The main advantages and disadvantages to this method are principal investment 

costs, operating costs, scale-up options, and depreciation of equipment.24 

2.4.2 Biological Pretreatment 

Biological pretreatment uses nature to help with the degradation of biomass.  The 

microorganisms of choice are generally, brown and soft rot-fungi that degrade hemicellulose and 

lignin.  The main advantages of this pretreatment are relatively mild operating conditions and 

low energy consumption.  The main disadvantage to this method is the required long residence 

time.24 

2.4.3 Chemical/ Physiochemical Pretreatment 

There is an extensive collection of chemical/ physiochemical pretreatments with 

documented details on the mechanism of the reactions used.  All of these chemical pretreatments 

initiate by chemical reactions for the disruption of biomass structures (lignin, hemicellulose, etc.)  
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(See Appendix A, Table A.1).  There are multiple advantages and disadvantages of each 

pretreatment method discussed (see Appendix A, Table A.2). 

In 2010, Harmsen et al. published a review paper summarizing the different physical and 

chemical pretreatment processes for lignocellulosic biomass; their brief summary is presented in 

Table 2.  The overall objective of this section is to review the various preprocessing techniques 

used in the industry for the pretreatment of biomass, such as microbial, mechanical, and 

chemical/physiochemical processing, which improve the digestibility of biomass to sugars for 

biofuel production.  In this paper, the chemical pretreatment of choice are a new class of ionic 

liquids- magnetic ionic liquids (MIL).  MILs are the model pretreatment for all biomass studies 

conducted.  A more in-depth investigation of MILs are presented in the next chapter.  
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Table 2: Biomass Pretreatment Method and Description of Method24 

Pretreatment Description of method 

Alkaline NaOH, Ca(OH)2, ammonia or lime 

Acid Concentrated and diluted acids 

Wet Oxidation Utilizes oxygen as an oxidizer for compounds dissolved in 
water 

Green Solvents Room temperature ionic liquids (RTIL), N-methyl 
morpholine N-oxide (NMMO), or other solvents 

Steam Explosion Most commonly used as it employs both chemical and 
physical techniques, high-pressure saturated steam 

Liquid Hot Water (LHW) Liquid water at  an elevated temperature and pressure 

Ammonia Fiber Explosion 
(AFEX) 

Much like the steam explosion pretreatment, however, this 
utilizes liquid anhydrous ammonia under high pressures and 
moderate temperatures, which is then rapidly depressurized 

Ammonia Recycle 
Percolation (ARP) 

Aqueous ammonia in a flow-through column reactor (packed 
with biomass), with high temperatures and pressures (2.3 
MPa) 

Supercritical Fluid (SCF) Uses a supercritical CO2 or a biphasic CO2-H2O mixture  
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CHAPTER III 

3.0 REVIEW: DISSOLUTION OF CELLULOSE WITH IONIC LIQUIDS  

3.1 Introduction 

Ionic liquids (ILs) are a class of organic salts that exist as liquids at temperatures below 

100oC. There are a plethora of different ILs, though, they all have common characteristics of 

being composed of an inorganic anion and organic cation making a very heterogeneous 

molecular structure. Most common liquids (water, oil, etc.) are predominantly composed of 

electrically neutral molecules. However, ions, ionic bonds, and Van der Waals dispersion forces 

help to create ILs unique properties. The difference between the anion and cation molecular 

structure makes the bonding of the ions weak enough for the salt to act as a liquid at moderate 

temperatures.24 

ILs have a wide variety of applications from being electrical conducting fluids to being 

deemed as powerful green solvents. Most of the current use for ILs are kept in a laboratory 

setting due to several uncertainties; lack of experience, ability to recover the ILs, the toxicity of 

the compounds, and the combination of water with the ILs. Since this is a growing area of 

research relatively little information is known about lignocellulosic interaction with ILs. 

In 2004, the Hayashi group reported a new class of magnetic fluids: magnetic ionic 

liquids (MIL). This new class has the same physical properties as non-magnetic
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ILs, but with the added characteristics of being paramagnetic.25 This chapter will provide a brief 

overview of ILs, and the new class of MILs for the dissolution of lignocellulosic materials. 

3.2 Structure and Physiochemical Properties of Ionic Liquids 

Based on the structure of cations, these salts are divided into four different types of ionic 

liquids: imidazolium-, pyridinium-, quaternary ammonium-, and quaternary phosphonium (see 

Figure 7).  

 

Figure 7: Common structures of ionic liquid cations (a) imidazolium, (b) pyridinium, (c) 
quaternary ammonium, (d) quaternary phosphonium.11 

Some of the physicochemical properties of ionic liquids are summarized below.11 

• High thermal stability.  The decomposition temperatures of many ionic liquids can be 

more than 300°C.  

• Broad liquid range from -200 to 300°C, and excellent dissolution performance for 

organic, inorganic compounds and polymer materials. 

• Immeasurable vapor pressure and non-flammability under common conditions. 

• High conductivity and wide electrochemical window of 2~5 V. 

• Designable structures and properties for various practical applications. 
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Research thus far has proven that better dissolution of lignocellulosic biomass occurs in 

imidazolium based ILs when compared to other ILs at same operating conditions.  Fort and 

researchers were able to demonstrate with minimal sample preparation that [C4mim]Cl is fully 

capable of dissolving structured polysaccharide-based natural matrices (see Figure 8).26 

 

Figure 8: Structures of (a) [C4mim]Cl, (b) cellulose, and (c) lignin. 

Other studies have found that ILs are most efficient with dissolution and separation of 

lignocellulosic biomass when they contain Cl- (chloride), [HCO2]-(formate), [CH3CO2]- (acetate, 

Ac-), [NH2CH2CO2]- (aminoethanic acid), [CH3SO4]-(methylsulfate), [RR’PO2]- (phosphonate), 

[Me2C6H3SO3]- (xylenesulphonate) anions.11 

3.3 Dissolution of Cellulose in ILs 

In the mid 1930s, Charles Graenacher first discovered that cellulose in the presence of 

nitrogen-containing bases is dissolved into molten N-ethylpyridinium chloride.27  Little attention 

was given to this discovery.  As technology and energy demand increased, there was a growing 

need for economical alternative fuels.  Therefore, researchers revisited the idea of molten salts as 

a pretreatment process for biofuel production.  In 2002, Dr. Robin Rogers & associates at the 
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University of Alabama published a study demonstrating the ability of select imidazolium-based 

ionic liquids dissolve cellulose (up to 25 wt%) efficiently at low temperature (≤100oC).10  

Bioresource researchers have looked at a wide variety of imidazolium salts to see if the 

same effective dissolution of cellulose is possible.  It was later discovered that there is a 

correlation between water content (in the ILs) and the solubility of the cellulose.  Vitz and group 

noted that the solubility of cellulose was reduced when non-dried ILs were used thus, making it 

necessary to dry all ILs carefully before use28 Vitz’s findings and others are listed in Table 3. 

Researchers Zhang and Fukaya successfully synthesized allyl-based ILs: 1-allyl-3-

methylimidazolium chloride ([Amim]Cl) and 1-allyl-3-methylimidazolium formate 

([Amim][HCO2]).29,30 They both noted that these ILs have lower viscosity, lower melting points, 

and relative stronger dissolution capabilities for cellulose than those of the common 

imidazolium-based ionic liquids with the identical anions.  Approximately 5% of cellulose (DP-

650) could be dissolved easily in [Amim]Cl at 80°C within 30 minutes; with an increase in time 

dissolution increased to 14.5%.29  If [Amim][HCO2] was used as a solvent, the solubility of 

cellulose was as high as 10% at 60°C.30  
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Table 3: The dissolution of cellulose in ionic liquid solvents.  The cellulose samples used in 
these studies commonly differed in degree of depolymerization (DP), molecular weight, or 

crystal structure.11 

Ionic Liquid Solubility 
(w/w%) Experimental Condition Reference 

[Bmim]Cl 10 Heating at 100°C Swatloski et al., 
2002 

[Bmim]Cl 25 Microwave heating Swatloski et al., 
2002 

[Amim]Cl 5 Heating at 80°C within 30 
min Zhang et al., 2005 

[Amim]Cl 14.5 Heating at 80°C after a longer 
dissolution time Zhang et al., 2005 

[Amim][HCO2] 10 Heating at 60°C Fukaya et al., 2006 

[Emim][(MeO)HPO2] 10 Heating at 45°C within 30 
min Fukaya et al., 2008 

[Emim][(MeO)HPO2] 2~4 Room-temperature within 3~5 
hour Fukaya et al., 2008 

[Emim][Et2PO4] 14 Heating at 100°C within 1 
hour Vitz et al., 2009 

[Bmim]Ac 15.5 Heating at 70°C Xu et al. 2010 

[Bmim][HSCH2CO2] 12 Heating at 70°C Xu et al. 2010 

[Bmim]Ac/LiAc 19 Heating at 70°C Xu et al. 2010 

Other researchers have looked at changing the anions and cations to 1-ethyl-3-

methylimidazolium methyl methylphosphonate ([Emim][(MeO)MePO2]), 1-ethyl-3-

methylimidazolium dimethyl phosphate ([Emim][(MeO)2PO2]), 1-ethyl-3-methyl-imidazolium 

methyl phosphate ([Emim][(MeO)HPO2]), 1-ethyl-3-methylimidazolium diethyl phosphate 

([Emim][Et2PO4]) and 1,3-dimethylimidazolium dimethyl phosphate ([Dmim][Me2PO4]).  
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 Xu and group noted that with the addition of lithium salts such as LiAc, LiCl, LiBr, 

LiClO4, and LiNO3, dissolution of cellulose increased from 15.5% to 19% when [Bmim]Ac is 

the ionic liquid of choice.  These finding and more suggests that the addition of lithium salts 

have the possibility to increase the dissolution of cellulose.  In summary, thus far researchers 

have proven the following:  

• Cellulose, hemicellulose, or lignin, refined or natural can be dissolved by disrupting the 

extensive hydrogen-bonding network in the crosslinking polymers 

• [Bmim]Cl and [Amim]Cl are the main ionic liquids of choice (see Figure 9), other ILs 

exist with varying dissolution percentages 

• Cellulose solubility can be controlled by the selection of ionic liquid constitutes10 

• Microwave irradiation or sonification can significantly facilitate better dissolution31 

• Lithium salts can enhance the dissolution of cellulose in ILs8 

 

Figure 9: Structure and abbreviation of ionic liquids (1) 1-butyl-3-methyl-limidazolium 
chloride, (2) 1-allyl-3-methylimidazolium chloride, 32 

3.3.1 Dissolution Mechanism of Cellulose in ILs 

Sun and colleagues published work noting that even thought the dissolution is greatly 

affected by: 1. source of the cellulose; 2. different DP; and 3. dissolution conditions (heating 
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method, irradiation, time, pressure, etc.), commonly, with the same cation the solubility of 

cellulose in ionic liquids decreased in the following order33: 

[(CH3CH2O)2PO2]− ≈ [OAc]− > [SHCH2COO]− > [HCOO]− > Cl− > Br− ≈ [SCN]− 

Before, ILs research developed, it was believed that the ions, especially the anions of the 

ILs could effectively break the extensive inter- and intra- molecular hydrogen bonding network 

of lignocellulosic material.  With this thought process, the interactions between cellulose and ILs 

were investigated using modern Nuclear Magnetic Resonance (NMR) relaxation spectroscopy 

(13C and 35/37Cl).  Remsing et al., discovered that carbons C-4’ and C-1” of the [Bmim]+  cation 

displayed a small variation in the relaxation times as the concentration of cellobiose (two glucose 

molecules linked by a β-(14) bond) in [Bmim]Cl increased (see Figures 10 and 11).  The value 

changes in the 13C T1=70oC and T2=90oC eluding that [Bmim]+ does not have a specific 

interaction with the cellobiose.  On the other hand, in the 35/37Cl relaxation rates it appears that 

the anion Cl- has a strong interaction with the cellobiose molecules.34  Further research is being 

conducted to discover exactly what occurs and how to best modify ionic liquids to achieve 

optimal dissolution of lignocellulosic biomass. 

 

Figure 10: Structure and numbering of [Bmim]Cl.34  
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Figure 11: 13C and 35Cl when T1 (●) and T2 (○) relaxation times as a function of cellobiose 
concentration (wt%) for the C-4’ and C-1” carbons (a) and chloride ions (b) in neat [C4mim]Cl 

at 90oC.34 

3.3.2 Dissolution Separation of Cellulose in ILs 

 Dissolution separation is an important step in the pretreatment of lignocellulosic biomass.  

Therefore, multiple techniques are employed to facilitate with the separation of cellulose in ILs 

after it has been dissolved.  The method for most regeneration of lignocellulosic material is 

simple in theory (see Figure 12).  
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Figure 12: Classic process used for the separation of lignocellulose from ionic liquids 

Kilpeläinen and researchers reported that wood could be easily regenerated from 

imidazolium-based ionic liquids with a common anti-solvent such as simple water.32 Other anti-

solvents are used with varying but similar results such as 1:1, acetone-water solutions, organic 

solvents, or mechanical methods (i.e. rapid mechanical stirring).  Using these methods and other 

the yields of the reconstituted cellulose ranged from 30 to 60%.11 Different studies have 

discovered that the main components (cellulose, hemicellulose, and lignin) of lignocellulosic 

material can be separated by various post-treatment techniques. 

 Even though the separation process of ionic liquids and biomass are relatively simple, a 

limitation in using ILs is the known, but under looked fact that they tend to inactive cellulose.  

Turner and researchers studied the hydrolysis of cellulose by T. reesei cellulose in [Bmim]Cl and 

[Bmim]BF4 that contained 5% of cellulose and discovered that the hydrolytic rate in the ILs was 

poor; at least 10-fold less than under standard reaction conditions.35 This was because the ILs 

leads to the unfolding and permanent inactivation of the enzymes, thus preventing the subsequent 

Lignocellulose       
+ ionic liquid 

Dissolution Solution 

+Antisolvent Regenerated 
Cellulose 

1.Extraction 
2.Distillation 

Regenerated 
ligin 
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steps of the biofuel process.  Turner also noted that complete regeneration of cellulose after 

pretreatment and removal of all ionic liquid before hydrolysis is necessary for the enzymes to 

function.  

 Broduer et al. said that, “…introduces a regeneration and separation step into the process 

which increases the overall cost and precludes the development of a single stage continuous 

process for conversion of lignocellulosic biomass.  Thus, selection of a solvent for pretreatment 

in which cellulases and microorganisms are active is a key step in the development of the 

“biorefinery concept” or “consolidated bioprocessing” schemes, which try to develop a single-

stage continuous process for biomass conversion.”7 

3.4 Magnetic Ionic liquids 

 Magnetic ionic liquids (MIL) are just like any other kind of ionic liquid.  In 2004, Satoshi 

Hayashi and coworkers discovered the magnetic properties and pioneered the way for MIL 

research today.  The only main difference between MIL and ILs is that MILs are magnetic.  

MILs have the usual ILs properties of high ionic conductivity, high thermal stability, non-

flammability, and extremely low volatility; additionally, they show a strong response to a 

magnetic field.  What makes this liquid a new class and sets them apart from other magnetic 

liquids is that MILs are a “single-phase” liquid whereas others consist of “dispersed magnetic 

micro-particles in fluids”36. 

 Researchers Hayashi and Hamaguchi published papers indicating that in addition to the 

other known MILs, a new class of magnetic fluids were discovered: 1-butyl-3-

methylimidazolium tetrachloroferrate (Bmim[FeCl4]) and 1-butyronitrile-3-methylimidazolium 
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tetrachloroferrate (nBmim[FeCl4]).25  Bmim[FeCl4] looks like the non-magnetic ILs but with the 

addition of FeCl4 (see Figure 13). Where nBmim[FeCl4]) is synthesized by replacing the butyl 

group of the bmim+ cation with the butyronitrile group. Hayashi and et al. noted “if magnetic 

anions are aligned locally in an ILs, it would show interesting magnetic properties (see Figure 

14).”25  

 

Figure 13: Structure of Bmim[FeCl4] 

The Hayashi group performed MPMS SQUID measurements and discovered that the 

MILs are indeed paramagnetic, having a large effective magnetic moment (μeff) of 5.80 (Bohr 

magneton).37 Misuk and coworkers used visible absorption spectroscopy (VIS) to verify “the 

reason for the magnetic properties of this compound is provided by the possible local ordering 

and high-spin of the FeCl- anions”38  

 

Figure 14: Pictures showing the response of Bmim[FeCl4] to a small Nd magnet (0.55 
T)25. Water is added to the sample to better show the displacement and distortion of 
Bmim[FeCl4] (I):No magnetic field, two layers of liquids, water, and Bmim[FeCl4], 
upper and lower respectively. (II and III): Magnetic field is applied Bmim[FeCl4] is 

attracted and moves toward the magnet. 

                    I                                           II                                            III 
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 Some researchers such as Sang Hyun Lee recently investigated the possibility of using a 

magnet to recover MILs after they were used in a reaction system.  Lee and group discovered 

“they can be used as alternatives for organic solvents and separated by magnetic field after use in 

a reaction system.39” Lee also stated that the separation factor of magnetic ionic liquids in a 

solution could be increased via several convention methods such as ultracentrifugation, filtration, 

and adsorption by exploiting the ILs properties such as high molecular weight, density, and 

conductivity.39 This proved to be a step in the right direction for the pretreatment of biomass 

using ionic liquids.8   

 In 2010, Wang and associates developed the use of MILs as a catalyst.  Conventionally, 

the glycolysis of poly(ethylene terephthalate) (PET) is catalyzed by a variety of compounds, 

metal acetates, titanium-phosphate, solid superacids, metal oxides (i.e. copper oxide), etc.. They 

published a study that proved Bmim[FeCl4] could behave as the efficient and eco-friendly 

catalyst for the depolymerization of PET when compared to FeCl3, metal salts, or an ionic 

liquid.40 This finding is significant because it provides the basis that Bmim[FeCl4] can 

depolymerize compounds.  However, there is no report on the use of MIL in the catalytic 

depolymerization of lignin, hemicellulose, or cellulose.  In this present study, magnetic ionic 

liquids, Bmim[FeCl4] and 1-ethyl-3-methylimidazolium tetrachloroferrate (Emim[FeCl4]), are 

synthesized and examined to discover the effectiveness of preprocessing lignocellulosic biomass.  

If possible, magnetic ionic liquids offer high potential for markedly reducing the costs of 

pretreatment and will facilitate in the development of a consolidated biorefinery process.  
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CHAPTER IV 

4.0 PREPARATION AND CHARACTERIZATION OF MAGNETIC IONIC LIQUIDS 

4.1 Introduction 

 The synthesis of the magnetic ionic liquids (MILs) is a vital step to the dissolution 

studies; therefore, in depth research was conducted for the best method.  This section will present 

the methods used to synthesize and characterize 1-butyl-3-methylimidazolium tetrachloroferrate 

(Bmim[FeCl4]) (Liquid 1)  and 1-ethyl-3-methylimidazolium tetrachloroferrate (Emim[FeCl4]) 

(Liquid 2) the MILs used in the dissolution studies.  

4.2 Experimental Procedure 

4.2.1 Materials 

 Commercial chemicals were of reagent or analytical grade and were used without further 

purification.  1-butyl-3-methylimidazolium chloride [Bmim]Cl (CAS#: 79917-90-1), 1-ethyl-3-

methylimidazolium chloride [Emim]Cl (CAS#: 65039-09-0), acetone, Iron(III) chloride 

hexahydrate (CAS#: 10025-77-1) were obtained from Sigma Aldrich (sigmaaldrich.com).  

Molecular structures and properties of the ionic liquids are shown in Appendix B.   
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4.2.2 Synthesis of Magnetic Ionic Liquids (MILs) 

 In the present study, Bmim[FeCl4] was prepared via a similar method previously 

described by Hayashi and et al.25 Equimolar amounts of crystal powder [Bmim]Cl and 

FeCl3
●6H2O were weighed out in a N2 enriched glove box.  The two compounds are mixed to 

produce a dark brown two layer liquid from an endothermic solid-state reaction.  The lower 

layer, hydrophobic MIL, was purified by repeated washing with deionized water.  Acetone was 

added to the washed MIL and was dried in a rotary evaporator system at 18 torr, and 80oC for 6 

hours. The same procedure was performed for the synthesis of Emim[FeCl4]. 

4.2.3 Characterization of MIL 

 In order to spectroscopically characterize the liquids, first the visible absorption (VIS) 

spectrum was recorded on an Evolution 201Thermo Scientific spectrometer.  Fourier transform 

infrared spectroscopy (FTIR) were measured using an Agilent Tech Cary 660 Series FTIR 

Spectrometer with a potassium bromide Attenuated Transmitted Reflectance (ATR) crystal.  IR 

spectra over a 4000-700 cm-1 range were collected at 40 scans, 2 cm-1 resolution using the 

normal Happ-Genzel function.   

4.3 Results and Discussions 

It is known that elemental Iron-containing ionic liquids demonstrate an intense VIS 

absorbance which comes from the intra-configurational d-transition Fe3+ in a tetrahedral ligand 

field.41 The spectra for Liquids 1 and 2 are presented in Figures 15 and 16, respectively.  The 

visible absorption spectrum for both samples were compared to that of related literature and they 
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both resemble the three characteristic bands of FeCl4
- ion at 532, 603, and 685 nm.42 Therefore, 

it is confirmed that the principal trivalent iron species is FeCl4
- with a coordination number of 

four for iron exist dominantly in the prepared samples (Eq. 4.1).  

FeCl 3 Cl
-+ FeCl 4

-

                                                           (4.1) 

Figure 15: Visible absorption spectra of Emim[FeCl4] 
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Figure 16: Visible absorption spectra of Bmim[FeCl4] 

The ATR-FTIR spectra for the samples were also compared to researchers Yao and Chu.  

These spectrums display the detection of the characteristic vibration of the imidazole cation in 

both Liquid 1 and 2.  The infrared spectra for the liquids are assigned to the in-plane and out-of-

plane flexural vibration mode of the imidazolium ring at the vibrational bands of 832 and 742 

cm-1 in, respectively (see Figures 17, 18, 19, and 20).41 
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Figure 18: ATR-FTIR spectra of Emim[FeCl4] fingerprint region (1000-700cm-1) 
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Figure 20: ATR-FTIR spectra of Bmim[FeCl4] fingerprint region (1000-700cm-1) 
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4.4 Conclusion 

 In conclusion, from the above spectroscopic analysis it suggests that the procedures for 

the synthesis of magnetic ionic liquids Bmim[FeCl4] and Emim[FeCl4] were successful.  

Additionally, it is known that with the addition of excess Cl- anions the forward reaction 

direction of the equilibrium is favored and that the below reactions (4.2 & 4.3) are valid. 

Bmim
+
 + FeCl4

-
 

[Bmim]FeCl 4
Bmim

+
 +Fe3

+
 + 4Cl

-
                                              (4.2) 

Emim
+
 + FeCl4

-
 

[Emim]FeCl 4
Emim

+
 +Fe3

+
 + 4Cl

-
                                              (4.3) 



 

37 

 

CHAPTER V 

5.0 DISSOLUTION OF BIOMASS IN MAGNETIC IONIC LIQUIDS 

Christopher R. Riley (christophercrr@gmail.com) 
Clint Williford (drwill@olemiss.edu) 
 
Department of Chemical Engineering, The University of Mississippi, University, MS 38677 

Abstract 

 The focus of this project is to determine the effectiveness, in the preprocessing of 

biomass when magnetic ionic liquids (MIL) (1-butyl-3-methylimidazolium tetrachloroferrate 

(Bmim[FeCl4])  and 1-ethyl-3-methylimidazolium tetrachloroferrate (Emim[FeCl4])) are used as 

a green solvent.  Lignocellulose is a promising starting material for a plethora of products, 

ranging from biofuels to custom chemicals; however, lignocellulose is resistant to enzymatic 

degradation.  Various biomass-preprocessing techniques such as microbial, mechanical, and 

chemical pretreatment are used for enhancing the digestibility of biomass to sugars for ethanol 

production.  Varieties of ionic liquids have demonstrated the ability to fragment lignocellulose.  

However, after fragmentation, separation of biomass and ionic liquids has proven to present 

economic challenges for this pretreatment process.  Research has proven that the addition of 

magnetic properties to the ionic liquid can be used to stabilize the ionic liquids and prevent its 

loss or other detrimental fluid/fluid interactions in the bioreactor.  Therefore, this paper presents 

the outcomes of such MIL dissolution studies. 
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5.1 Introduction 

Some of the smallest known molecules fuel the world that we live in today.  Our planet 

has developed a plethora of materials based upon amino acids, proteins, and polysaccharides.  

They range from DNA, cellulose, chitin, elastin, silk produced from worms, and more.1 The 

converted biomass provides many sources of usable energy such as hydrocarbon fuels and 

chemical compounds like alcohols, gums, sugars, and lipid-based products.   

The objectives stated in the 2006 research roadmap published by the United States 

Department of Energy were to place biomass energy conversion research on a fast-track, helping 

make biofuels an everyday resource and economically feasible by 2012, and by 2030 have the 

potential to offset 30% of the nation’s current gasoline consumption.2 Therefore, in recent years, 

there has been a renewed interest and increased research devoted to the development of biofuels 

made from lignocellulose biomass derived from agricultural byproducts, forest residues, and 

dedicated energy crops.3–5 

With this new found push for renewable green-energy sources, important processes 

involved in the biochemical production of biofuels are being optimized. However, some of the 

difficulties arise from the fact that the conversion to biofuel and type of biofuel produced 

depends greatly on the source/type of biomass. Consequently, most unit operations and processes 

for converting biomass to biofuel have four major steps: biomass handling, biomass 

pretreatment, hydrolysis, and fermentation.6 Out of these steps, the pretreatment process proves 

to be the most difficult to optimize because complex structures in the biomass of choice are 

broken down into oligomeric subunits. These subunits are ultimately converted into monomers 
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via hydrolysis and fermentation. Therefore, the development of a more universal pretreatment 

process is the goal of many bioresource researchers today.  

There have been many papers published about different pretreatment methods that can be 

applied to enhance the digestibility of lignocellulosic material.  Biomass is either grown or 

acquired from various sources; then is transported to the production sites for biochemical 

conversion to fuels.  Until the 1970s, the idea of agricultural residues such as straw grass or corn 

byproducts being potential sources of lignocellulosic biofuels was not well recognized.  The fuel 

emergencies during the 1970-1980s was a significant reason for breakthroughs in alternative 

fuels and engines.12 Biofuels are some of the most efficient alternatives thus far despite existing 

criticism, often incorrect, for an unfavorable net energy balance and significant arable land and 

water requirements.13  

Biomass is categorized as all materials derived from plant, animal, and microbial origins 

(see Figure 21).  The classification of biomasses used today in conversion to biofuels, are usually 

based on the animal or plant origin, woody or herbaceous carbon source and physical and 

chemical characteristics.12  The plants are the preferred choice of biomass because they are 

abundant and have high potential to mitigate the emission of greenhouse gases.  



 

 

40 

 

Figure 21: Types of biomass14 

Ionic liquids (ILs) are a class of organic salts that exist as liquids at temperatures below 

100oC. There are a plethora of different ILs, though, they all have common characteristics of 

being composed of an inorganic anion and organic cation making a very heterogeneous 

molecular structure. Most common liquids (water, oil, etc.) are predominantly composed of 

electrically neutral molecules. However, ions, ionic bonds, and Van der Waals dispersion forces 

help to create ILs unique properties. The difference between the anion and cation molecular 

structure makes the bonding of the ions weak enough for the salt to act as a liquid at moderate 

temperatures.24 

ILs have a wide variety of applications from being electrical conducting fluids to being 

deemed as powerful green solvents. Most of the current use for ILs are kept in a laboratory 



 

 

41 

 

setting due to several uncertainties; lack of experience, ability to recover the ILs, the toxicity of 

the compounds, and the combination of water with the ILs. Since this is a growing area of 

research relatively little information is known about lignocellulosic interaction with ILs. 

In 2004, the Hayashi group noted that a new class of magnetic fluids were discovered: 

magnetic ionic liquids (MIL). This new class has the same physical properties as non-magnetic 

ILs, but with the added characteristics of being paramagnetic.25 Thus, here we synthesize two 

magnetic ionic liquids, 1-butyl-3-methylimidazolium tetrachloroferrate (Bmim[FeCl4]) and 1-

ethyl-3-methylimidazolium tetrachloroferrate (Emim[FeCl4]). We use both liquids in various 

pretreatment conditions and perform dissolution studies using microcrystalline cellulose, fibrous 

cellulose, and a biomass of choice- switch grass.  

5.2 Experimental Procedure 

5.2.1 Materials 

 Commercial chemicals were of reagent or analytical grade and were used without further 

purification.  The ionic liquids 1-butyl-3-methylimidazolium chloride [Bmim]Cl (CAS#: 79917-

90-1), 1-ethyl-3-methylimidazolium chloride [Emim]Cl (CAS#: 65039-09-0), acetone, silicon oil 

(AP100), methanol, Iron(III) chloride hexahydrate (CAS#: 10025-77-1), microcrystalline 

cellulose (CAS#: 9004-34-6), BCA Protein Assay Kit (reagent A & B), Cellulase from 

Trichoderma reesei ATCC 26921 (CAS#: 9012-54-8), and Whatman paper (grade #1) were 

obtained from Sigma Aldrich (sigmaaldrich.com).  Molecular structures and properties of the 
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ionic liquids are shown in Appendix B.  Switch grass of 1’’ grind size was obtained from 

BioDimensions, Memphis, TN.  The switch grass was dried for 12 hours at 100oC before use. 

5.2.2 Synthesis of Magnetic Ionic Liquids (MILs) 

 In the present study, Bmim[FeCl4] was prepared via a similar method previously 

described by Hayashi and et al.25 Equimolar amounts of crystal powder [Bmim]Cl and 

FeCl3●6H2O were weighed out in a N2 enriched glove box.  The two compounds are mixed to 

produce a dark brown two layer liquid from an endothermic solid-state reaction.  The lower 

layer, hydrophobic MIL, was purified by repeated washing with deionized water.  Acetone was 

added to the washed MIL and was dried in a rotary evaporator system at 18 torr, and 80oC for 6 

hours.  The same procedure was performed for the synthesis of Emim[FeCl4]. 

5.2.3 Characterization of Magnetic Ionic Liquids (MILs) 

In order to spectroscopically characterize the liquids, first the visible absorption (VIS) 

spectrum was recorded on an Evolution 201Thermo Scientific spectrometer.  Fourier transform 

infrared spectroscopy (FTIR) were measured using an Agilent Tech Cary 660 Series FTIR 

Spectrometer with a potassium bromide Attenuated Transmitted Reflectance (ATR) crystal.  IR 

spectra over a 4000-700 cm-1 range were collected at 40 scans, 2 cm-1 resolution using the 

normal Happ-Genzel function.   
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5.2.4 Size separation and preparation of biomass 

Switch grass of 1” grind size was obtained from BioDimensions, Memphis, Tennessee. A 

similar procedure performed by Dr. Swetha Mahalaxmi was followed for the biomass size 

separation and preparation.12 A stacked sieve system, comprising of U.S.A Standard Testing 

Sieves (organized in a top to bottom sequence) #10 (2 mm), #18 (1 mm) and a collection pan, 

was used for separating the 1’’ ground switch grass into three fractions, >2 mm (material 

remained above the #10 pan), 1-2 mm (material remained below the #10 and above the #18) and 

<1 mm (material remained in the collection pan).  A known amount of un-partitioned switch 

grass (UP) is taken in the pan #10, of the staked sieve system, and subjected to manual shaking 

for a minute.  This procedure was repeated five times, weighed, collected, subjected to milling in 

an IKA MF 10.1 impact mill with an internal 1 mm circular screen, and saved separately for 

further experiments. 

5.2.5 Dissolving of Cellulose in Magnetic Ionic Liquids (MILs) 

1 mL of the MIL was filled into a small test tube (~16mL), weighed on a microbalance 

and preheated to 100oC.  The biomass sample (particle size= 0.1-2mm) of choice was quickly 

added into the ionic liquid. The temperature of the dissolution process was controlled in an oil 

bath at different predetermined temperatures ranging from 100oC to 160oC.  This mixture was 

allowed to react under atmospheric pressure for a minimum of 1 hour, and allowed to proceed at 

specified time intervals.  All experiments were performed in triplicates.  The solubility of the 

organic material in the MIL was checked visually.  If the organic sample appeared to dissolve, 
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biomass was added in portions of only 1 wt% of the magnetic ionic liquid each time with 

mechanical stirring.  

5.2.6 Recovery of MIL and Regeneration of Biomass 

Method I- After a set reaction time, deionized water was added to the biomass mixture 

where a precipitate and two layers of liquid quickly form.  The slurry is placed in a centrifuge at 

10,000 rpm for 10 minutes.  The top layer containing the biomass is poured off and was washed 

three times with additions of deionized water in order to remove excess ionic liquid.   

Method II- After a set reaction time, 10 mL deionized water was added to the biomass 

mixture where a precipitate and two layers of liquid immediately form.  A magnet (N35 – N40) 

is placed at the bottom of the test tube to induce a magnetic field for a minimum of 2 hours.  

After which visual inspection of the solution was recorded for separation of the biomass and the 

MIL. 

Method III- After a set reaction time, 10mL of methanol was added to the biomass 

mixture where a homogenous mixture formed.11 This solution was filtered using a glass-fiber 

filter, separating solids from MIL.  The filtrate is then heated to boil off the methanol. 

For all of the above three methods, the presence of the magnetic ionic liquid was verified 

by measuring absorbance on the Evolution 201 Thermo Scientific spectrometer of the recovered 

liquid. The remaining biomass solids were dried and frozen for further analysis. 
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5.2.7 Enzymatic Hydrolysis & Glucose Determination 

The frozen regenerated biomass samples were treated with cellulase from Trichoderma 

reesei (filter paper activity-132 FPU/mL determined by Cellulase Assay, See Appendix C). The 

enzymatic hydrolyses were carried out at 50±  1 °C for 24 h using 50 mM citrate buffer (pH 4.8±  

0.3) in a New Brunswick Scientific (model C24) incubator shaker at 120 rpm.  The solutions 

were filtered, and the filtrate from the enzymatic hydrolysis was then diluted to a volume of 250 

mL using a volumetric flask.  A series of 100 mL of distilled water dilutions, containing 100-

1000 µL (in 100 µL intervals) of the above filtrate were prepared.  Four milliliters of each 

dilution were then added into a test tube. A series of glucose standards solutions (GSS) were 

made (and verified by a standard curve). The coloring reagent is prepared by mixing 1 part of 

reagent B with 50 parts of reagent A of BCA test kit (protein assay kit).  Reagent B is a copper 

solution, and reagent A is a BCA solution.  The resulting solution had a green color, which is 

prepared for every analysis.  The color is developed by adding (to each of the 4 mL of GSS and 

diluted filtrates) 1 mL of coloring reagent.  The samples were then mixed using a Vortex mixer, 

reacted at 60 °C and incubated for 2 hours.  Each vial is protected from light by covering with 

aluminum foil.  Samples containing glucose turned purple and the concentration is determined at 

562 nm against a blank via UV-VIS spectroscopy. 

5.3 Results and Discussions 

For ionic liquid pretreatment of biomass, multiple studies have found that 1.[Bmim]Cl- is 

an effective solvent to solubilize the plant cell wall at mild temperatures43, 2. subsequent 



 

 

46 

 

cellulose precipitation and regeneration via addition of an anti-solvent could reject lignin in the 

solution43 and 3. optimal reaction temperature and time for switch grass are 160oC and 3 hours.  

The first step to the screening of a solvent for delignification and pretreatment of 

lignocellulosic biomass was to develop and verify reproducible methods to synthesize 

Bmim[FeCl4] and Emim[FeCl4].  After which several simple 8-hour screening studies were 

conducted.  Table 4 summarizes the various pretreatment conditions and solvents used 

throughout the dissolution studies.  Preliminary results show that it is possible to achieve 

dissolution of biomass in a magnetic ionic liquid.  It must be noted however, that the studies 

were not conducted at temperatures below 100oC.10 

Table 4: Dissolution conditions and preliminary results *Reaction conditions: 1 atm, 8 hours, ~2 
grams of MIL and 1 wt% biomass 

Temperature (oC) Bmim[FeCl4] Emim[FeCl4] [Bmim]Cl FeCl3 

100 No No Yes No 

140 Yes No Yes No 

160 Yes Yes Yes No 

 

The main goals of this study are to disrupt the hydrogen bonding and increase the 

separation factor between the ionic liquids and the biomass of choice; thereby, creating a more 

universal pretreatment process.  Partial sample dissolution [up to 2% (w/w)] occurred by simply 

mixing a dried sample with the magnetic ionic liquid and mechanical stirring at temperatures 

greater than 140oC (see Table 5). There was an apparent trend that higher temperatures increased 
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solubility in the two magnetic ionic liquids. The temperature accelerated the diffusion of the MIL 

into the lignocellulose resulting in possible more lignin being dissolved into the MIL.  Further 

research must be conducted to confirm the dissolution of lignin.  

Table 5: Dissolution behavior of lignocellulosic materials in different magnetic Imidazolium-
Based ionic liquids (BC: Biomass-Switch grass, CF: Cellulose fiber, and MC: Microcrystalline 

cellulose) 

Magnetic Ionic Liquid Sample Solubilization conditions Solubility (wt%) 

Bmim[FeCl4] MC, BM, CF 100oC, 8 hours 0 

Emim[FeCl4] MC, BM, CF 100oC, 8 hours 0 

Bmim[FeCl4] MC 140oC, 8 hours 1 

Emim[FeCl4] MC 140oC, 8 hours Partially soluble 

Emim[FeCl4] BC 160oC, 8 hours Partially soluble 

Bmim[FeCl4] MC, CF 160oC, 8 hours 2 

 

However, through-out the studies it was discovered that the recovery of the magnetic 

ionic liquids from the biomass is a significant issue.  Thus, three different methods for separation 

were used.  Method I employed the use of a solid Neodymium magnet to exploit the Fe-

magnetism property.  We believe that if a stronger magnetic field, perhaps an electromagnetic 

induced field, is introduced to the MIL it might be able to increase the separation factor between 

biomass and MIL.  Method II used a centrifuge to exploit the density of the MIL.  Because of the 

hydrophobic nature of the magnetic ionic liquid when water is introduced into the solution, the 

centrifuge had little to no affect on the separation.  Lastly, Method III used the liquid state of the 

MIL, which allowed it to pass through a glass-fiber filter and separate it from the solid biomass.  
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As a result, gravimetric analysis proved that out of all three methods used, Method III worked 

best for MIL recovery and was performed thought-out the remainder of the study.   

Enzymatic saccharification was performed on the processed samples to better understand 

some of the impacts that the magnetic ionic liquid had as a pretreatment method.  The biomass 

samples of switchgrass were compared to untreated and 10% H2SO4 pretreatment process (see 

Appendix D for method) for glucose release during hydrolysis.  The data suggests that both 

untreated and H2SO4 pretreatment methods release more glucose than those treated with 

Bmim[FeCl4] and Emim[FeCl4] (see Table 6). 

 

Figure 22: Amount of glucose released during enzymatic hydrolysis with the MIL (in 
Bmim[FeCl4] or Emim[FeCl4] compared to controls of 10% H2SO4 and untreated samples 

 

 Therefore, only placing lignocellulose in a magnetic ionic liquid does not have sufficient 

capability to produce readily biodegradable cellulose.  When compared to other IL-H2O 
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mixtures the [H+] concentration is an important player for the rate of dissolution and sugar 

degradation29.  Therefore, the [H+] of the MIL must not be interacting with the biomass structure, 

and thereby, cannot catalyze the depolymerization-hydrolysis of cellulose into water-soluble 

reducing sugars under suitable conditions.  

5.4 Concluding remarks and future perspectives 

This research has developed reproducible methods for the synthesis of Bmim[FeCl4], 

Emim[FeCl4], completed the screening for dissolution of switch grass, microcrystalline 

cellulose, and fibrous cellulose.  It was demonstrated that Bmim[FeCl4] and Emim[FeCl4] can 

both facilitate the depolymerization of select biomass.  A comparison of the dissolution effects of 

Bmim[FeCl4], Emim[FeCl4], and FeCl3 indicates that the activity by Bmim[FeCl4] is the 

highest.  However, it must be noted that the solubility of the magnetic iron complex of 

[Bmim]Cl- is significantly less than that of the non-magnetic complex which have up to 25 

w/w%10.  Investigation also shows that a biomass/magnetic ionic liquid reaction needs 

sufficiently higher temperatures when compared to [Bmim]Cl- to achieve slight dissolution.  

To further this research, results indicate that it might be of worthy investigation to perform 

many other studies.  Determine the water content of Bmim[FeCl4] and Emim[FeCl4] to see if 

moisture is preventing greater dissolution.  To test other ionic liquids with paramagnetic 

properties and adjust the pH to see if dissolution rates and solubility would increase.  To develop 

inexpensive methods of separation intensification for the recovery of the magnetic ionic liquids 

(i.e. increasing the magnetic field strength induced on the MIL/biomass slurry during 

separation).  In addition, it might of interest to explore other reaction conditions employing the 
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use of ultrasound or microwave technology or varying the pressures and temperatures. Lastly, to 

understand the interaction mechanism between magnetic ionic liquids and cellulose, 

hemicellulose, or lignin further through macroscopic and microcosmic methods.  
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Table A.1: Effect of various pretreatment methods on the chemical composition and 
chemical/physical structure of lignocellulosic biomass.  H: high effect, L: low effect, ND: not 
determined, *Depends on the chemical nature of the solvent.7 

Pretreatment 
method 

Increases accessible 
surface area 

Decrystalizes 
cellulose 

Removes 
hemicellulose 

Removes lignin Alters lignin 
structure 

Alkaline H ND L H H 
Acid H  H  H 
Green Solvent H H L H or L* L 
Steam Explosion H  H  L 
LHW H ND H  L 
AFEX H H L H H 
ARP H H L H H 
SCF H H H  L 
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 Table A.2 Advantages and disadvantages of different pretreatment methods of lignocellulosic 
biomass.7 
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B1: Physical and Chemical properties of 1-ethyl-3-methylimidazolium chloride 

 

 
 

Figure B.1: [EMIM]Cl- 
 
 

Name: 1-ethyl-3-methylimidazolium chloride 

CAS: 65039-09-0   

Empirical Formula: C6H11ClN2 

Molecular Weight: 146.62 g/mol  

pH: 7.7 at 100 g/l  

Melting point: 77-79oC 

Flash Point: 186.00 oC 

Relative Density: 1.112 g/cm3 at 80oC 
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B2: Physical and Chemical properties of 1-butyl-3-methylimidazolium chloride 

 

 
 

Figure B.2: [BMIM]Cl- 
 
 

Name: 1-butyl-3-methylimidazolium chloride 

CAS: 79917-90-1   

Empirical Formula: C8H15ClN2 

Molecular Weight: 174.67 g/mol  

pH: 7.9 at 100 g/l  

Melting point: 70oC 

Flash Point: 192 oC 

Relative Density: 1.086 g/cm3 at 20oC 
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C: Procedure for the Filter Paper Assay for Saccharifying Cellulase  

Authors: Y.H. Percival Zhang, Jiong Hong, and Xinhao Ye, Cellulase Assays, Biofuels: Methods and 
Protocols, Methods in Molecular Biology, Jonathan R. Mielenz (ed.), vol. 581; 2009 Chapter 14 

C1: Assay description  

FPA is the most common total cellulase activity assay recommended by the International 

Union of Pure and Applied Chemistry (IUPAC)1. IUPAC recommends a filter paper activity 

(FPA) assay that differs from most enzyme assays based on soluble substrate for initial reaction 

rates. This assay is based on a fixed degree of conversion of substrate, i.e. a fixed amount (2 mg) 

of glucose (based on reducing sugars measured by the DNS assay) released from 50 mg of filter 

paper (i.e., both amorphous and crystalline fractions of the substrate are hydrolyzed) within a 

fixed time (i.e., 60 min). In part due to the solid heterogeneous substrate, reducing sugar yield 

during hydrolysis is not a linear function of the quantity of cellulase enzyme in the assay 

mixture. That is, twice the amount of enzyme does not yield two times the reducing sugar within 

equal time. Total cellulase activity is described in terms of “filter-paper units” (FPU) per 

milliliter of original (undiluted) enzyme solution. The strengths of this assay are that (1) the 

substrate is widely available and (2) the substrate is reasonably susceptible to cellulase activity.  

However, the FPA has long been recognized for its complexity and susceptibility to operator 

errors.2 

 
 
 
 
 
 
                                                            
1 Ghose TK (1987) Measurement of cellulase activities. Pure Appl. Chem. 59:257–268. 
2 Coward-Kelly G, Aiello-Mazzari C, Kim S, Granda C, and Holtzapple M (2003) Suggested improvements to the standard filter 
paper assay used to measure cellulase activity. Biotechnol. Bioeng. 82:745–749. 
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C2: Reagents and Materials 

Supplies: 
13x100 mm test tubes/caps  
30 x 115 mm conical tubes 
Whatman No. 1 paper strips 
Phenol 
Sodium metabisulfite 

Citric acid monohydrate 
Distilled Water 
Sodium Hydroxide 
3,5 Dinitrosalicylic acid 
Sodium Potassium Tartrate 

 
Dilute Enzyme Solution (DES)- 
 

Dilute commercial cellulase solution 20 fold using 0.05M Na-citrate buffer (1 part solute, 19 part 
solvent, CV=CV). Use conical tube. 
 

Enzyme Stock (ES)- 
Use conical tube. 
ES1: 0.10 ml of DES + 1.90 ml of citrate buffer (dilute rate = 0.0250). 
ES2: 0.15 ml of DES + 1.85 ml of citrate buffer (dilute rate = 0.0375). 
ES3: 0.20 ml of DES + 1.80 ml of citrate buffer (dilute rate= 0.0500).  
ES4: 0.30 ml of DES + 1.70 ml of citrate buffer (dilute rate = 0.0750). 
ES5: 0.35 ml of DES + 1.65 ml of citrate buffer (dilute rate = 0.0850). 
 

Glucose Standards Stocks (GSS)- 
A working stock solution of anhydrous glucose (10 mg/mL) should be made up. Use conical tube 
GSS1: 1.0 ml of glucose stock + 4.0 ml buffer = 2 mg/ml (1.0 mg/0.5 ml). 
GSS2: 1.0 ml of glucose stock + 2.0 ml buffer = 3.3 mg/ml (1.65 mg/0.5 ml). 
GSS3: 1.0 ml of glucose stock + 1.0 ml buffer = 5 mg/ml (2.5 mg/0.5 ml). 
GSS4: 1.0 ml of glucose stock + 0.5 ml buffer = 6.7 mg/ml (3.35 mg/0.5 ml). 
 
 

 
 
Glucose Standards Tubes (GSs)- 
Use test tube 
GS1: 0.5 ml of GSS1 + 1.0 ml of .05M citrate buffer 
GS2: 0.5 ml of GSS2 + 1.0 ml of .05M citrate buffer 
GS3: 0.5 ml of GSS3 + 1.0 ml of .05M citrate buffer 
GS4: 0.5 ml of GSS4 + 1.0 ml of .05M citrate buffer 
 
Enzyme Controls Tubes (EC)- 
Use test tube 
EC1: 1.0 ml of .05M citrate buffer + 0.5 ml ES1 
EC2: 1.0 ml of .05M citrate buffer + 0.5 ml ES2 
EC3: 1.0 ml of .05M citrate buffer + 0.5 ml ES3 
EC4: 1.0 ml of .05M citrate buffer + 0.5 ml ES4 
EC5: 1.0 ml of .05M citrate buffer + 0.5 ml ES5 

Substrate Control Tube (SC)- 
Use test tube 
SC: 1.5 ml of 0.05M citrate buffer + filter paper strip 
 
Reagent Blank Tube (RB)- 
Use test tube 
RB: 1.5 ml of 0.05M citrate buffer 
 
Enzyme Assay Tubes (E)- 
Use test tube 
E1: 0.50 ml ES1 + filter paper strip + 1.0 ml buffer 
E2: 0.50 ml ES2 + filter paper strip + 1.0 ml buffer 
E3: 0.50 ml ES3 + filter paper strip + 1.0 ml buffer 
E4: 0.50 ml ES4 + filter paper strip + 1.0 ml buffer 
E5: 0.50 ml ES5 + filter paper strip + 1.0 ml buffer 
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A. Citrate Buffer: For this procedure, cellulase assays are carried out in 0.05 M citrate buffer pH 
4.8.  The assay conditions must be defined when reporting results.  
 

1. Mix and dissolve: 
Citric acid monohydrate   210 g  
Distilled Water    750 mL  
NaOH - add until pH equals 4.3  50 to 60 g  

 
2. Dilute to 1 L and check pH. If necessary, add NaOH until the pH is 4.5. This is 1M 

stock citrate buffer  
 

3. Citrate buffer (50 mM, pH 4.8): 
a. Dilute 1M stock citrate buffer solution 20 fold using distilled water (1 part 

solute, 19 part solvent, C1V1=C2V2) 
b. After diluting the citrate buffer stock check and adjust the pH if necessary to 

pH 4.8. 
4. Store at room temperature (up to 3 months) or at 4oC for longer storage. 

 
  

B. DNS Reagent 
 
1. Mix and Dissolve on stir plate: 

Distilled water    1416 mL  
3,5 Dinitrosalicylic acid  10.6 g  
Sodium hydroxide  19.8 g 

2. Add: 
Rochelle salts (sodium potassium tartrate)  306 g  
Phenol (melt at 50oC)     7.6 mL  
Sodium metabisulfite     8.3 g 

 
3. Titrate 3 ml of the DNS reagent using 0.1 M HCl using the phenolphthalein endpoint pH 

check. It should take 5–6 ml of HCl for a transition from red to colorless. Add NaOH if 
required (2 g of NaOH added = 1 ml of 0.1 M HCl used for 3 ml of the DNS reagent) 

 
4. Store in darkness at 4°C for at least 1 month. It could lose its reducing ability after long 

storage. 
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C3: Procedure 

1. Place a rolled filter paper strip into each 13 × 100 test tube. 

2. Add 1.0 ml of 50 mM citrate buffer (pH 4.8) to the tubes; the paper strip should be submerged in the 

buffer.3 

3. Prepare the enzyme dilution series, of which at least two dilutions must be made of each enzyme 

sample, with one dilution releasing slightly more than 2.0 mg of glucose (~2.1 mg) and one slightly less 

than 2.0 mg of glucose (1.9 mg)3. 

4. Prepare the dilute glucose standards (GSs). 

5. Prepare the blank and controls. 

6. Pre-warm the enzyme solutions, blank, and controls until equilibrium. 

7. Add 0.5 ml of the enzyme dilution series to the tubes with filter paper substrate (E1–5); add 0.5 ml of 

the enzyme dilution series to the tubes without filter paper substrate (EC1–5). 

8. Incubate the tubes of E1–5, GSs, RB, EC1–5, and SC in a 50°C water bath (or shaker incubator) for 

exactly 60 min. 

9. Add 3.0 ml of the DNS reagent to stop the reaction, and mix well.3  

10. Boil all tubes for exactly 5.0 min.4 

11. Transfer the tubes to an ice-cold water bath. 

12. Withdraw ~0.5 ml of the colored solutions into 1.5-ml microcentrifuge tubes and centrifuge at 

~10,000 g for 3 min. 

13. Add 0.200 ml of the supernatant into 3-ml spectrophotometer cuvette tubes, add 2.5 ml of water, and 

mix well by using a pipette or by inversion several times. 

14. Measure absorbance at 540 nm, where the absorbance of RB is used as the blank. 

 

 

 
                                                            
3 See Reagents and Materials sheet for procedure. 
4 The boiling condition should be severe, and the volume of the boiling water bath should be maintained above the 
level of the total liquid volume of the test tubes to promote full color development. 
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C4: Calculations 

1. Draw a standard sugar curve (sugar along the x-axis vs. absorbance at 540 along the y-axis), as 
shown in Fig. 1.  

2. Calculate the delta absorbance of dilute enzyme solutions (DE1–4) for E1–5 by subtraction of 
the sum of the absorbance of EC1–5 and SC.  

3. Calculate the real glucose concentrations released by E1–5 according to a standard sugar 
curve.  

4. Draw the relationship between the real glucose concentrations and their respective enzyme 
dilution rates (EDRs) (Fig. 1).  

5. Link the points less than 2 mg and greater than 2 mg by a line, and identify the EDR by using 
the point for 2-mg glucose based on the line (Fig. 1).  

6. Calculate the FPA of the original concentrated enzyme solution in terms of FPU/ml: 0.37 
FPA= 0.37/EDR where 2 mg glucose = 2 mg/(0.18 mg/mmol) × 0.5 ml × 60 min = 0.37 
mmol/min/ml. 
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D1: Sulfuric Acid Pretreatment 

Author: Mahalaxmi, Swetha PREPROCESSING OF BIOMASS USING MECHANICAL 
CHEMICAL AND MICROBIAL TECHNIQUES. (2012). 

 In a set of experiments, >2 mm, 1-2 mm, <1 mm and Un-partitioned samples were 

subjected to 0.69 %, 2 %, 5 % and 10 % concentrations of sulfuric acid pretreatment for 30 

minutes in 20 mL tightly capped hungate tubes at 260 °F. The reaction mixture comprised 1 g 

biomass and 10 mL of H2SO4 (0.097 mL, 0.28 mL, 0.69 mL and 1.39 mL of 72 % H2SO4 made 

up to 10 mL with water, to make 0.69 %, 2 %, 5 % and 10 % H2SO4 respectively).  The tubes 

were allowed to cool to room temperature; the reaction mixture was filtered and washed to 

obtain filtrate and residue.  The filtrate was analyzed for sugars, furfural, hydroxyl methyl 

furfural (HMF) and polyphenols using HPLC.
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