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ABSTRACT

Characterizations of graphs and matroids that have cycles or circuits of specified

cardinality have been given by authors including Edmonds, Junior, Lemos, Murty,

Reid, Young, and Wu. In particular, a matroid with circuits of a single cardinality is

called a Matroid Design. We consider a generalization of this problem by assigning

a weight function to the edges of a graph. We characterize when it is possible to

assign a positive integer value weight function to a simple 3-connected graph G such

that the graph G contains an edge that is only in cycles of two different weights. For

example, as part of the main theorem we show that if this assignment is possible,

then the graph G is an extension of a three-wheel, a four-wheel, a five-wheel , K3,n, a

prism, a certain seven-vertex graph, or a certain eight-vertex graph, or G is obtained

from the latter three graphs by attaching triads in a certain manner. The reason for

assigning weights is that if each edge of such a graph is subdivided according to the

weight function, then the resulting subdivided graph will contain cycles through a

fixed edge of just a few different cardinalities. We consider the case where the graph

has a pair of vertex-disjoint cycles and the case where the graph does not have a pair

of vertex-disjoint cycles. Results from graph structure theory are used to give these

characterizations.
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1 INTRODUCTION

This chapter introduces the basic concepts discussed in the dissertation. Re-

sults from the literature as well as new results are given in the subsequent chapters.

In section 1 of this chapter, we introduce the spectrum, e-spectrum, and weighted

e-spectrum of a graph or matroid. In section 2, we discuss the basic terminology of

matroid theory used throughout the dissertation. In section 3, we give background

results and useful theorems needed in this research.

1.1 The Spectrum of a Matroid

There are results in the graph theory and matroid theory literature that in-

vestigate a graph or a matroid with cycles or circuits of one of just of few different

cardinalities. Here we provide new such results on such graphs and matroids. We

first define the spectrum of a graph or of a matroid and give an overview of the

results from the literature related to this topic.
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Let G be a graph and M be a matroid in the remainder of this chapter. The

spectrum of G is the set of its cycle lengths, while the spectrum of M is the set of

its circuit lengths. Note that the spectrum of a graph is typically associated with

its eigenvalues. Here the spectrum of a graph is associated with its cycle lengths

in order to agree with the terminology used for matroids by Lemos and others in

research of this type. We let C(G) be the set of cycles of G and C(M) be the

set of circuits of M . We denote the spectrum of G by spec(G) and denote the

spectrum of M by spec(M). Then spec(G) = {|C| : C ∈ C(G)} while spec(M) =

{|C| : C ∈ C(M)}. By the term “circuit” of a graph we mean a “cycle” of that

graph. Authors including Cordovil, Junior, Lemos, and Maia Jr. have determined

all matroids M with spec(M) ⊆ {1, 2, 3, 4, 5} and all 3- connected binary matroids

M with spec(M) ⊆ {3, 4, 5, 6, 7} (see [?,?]). A different direction of research on the

circuit size of a matroid is to consider the problem of characterizing the matroids with

a circuit-spectrum containing few elements. In general, this is a difficult problem.

For example, even to characterize the non-binary matroids M with |spec(M)| = 1

would require the solution of problem in design theory as shown by Edmonds, Murty,

and Young in several papers [?, ?, ?]. However, this problem is more tractable for

restricted classes of matroids. Murty [?] completely characterized all binary matroids

M with |spec(M)| = 1 (see Theorem 1.3.1). Lemos, Reid, and Wu [?] characterized

all connected binary matroids M with a spectrum of cardinality two and largest

circuit size odd (see Theorem 1.3.2). They provided a sharper characterization of

the 3- connected binary matroids of this type (see Theorem 1.3.3). It is still an

open question to characterize the 2- or 3- connected binary matroids with a circuit
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spectrum of cardinality two with the largest circuit size even. We will provide some

information on these matroids here, but not a complete characterization.

Suppose that e is either a fixed edge of the graph G or a fixed element of the

matroid M . In the former case, the spectrum of e is the set of cycle lengths of the

cycles of G that contain e. In the latter case, spectrum of e is the set of circuit lengths

of the circuits ofM that contain e. We denote the spectrum of e inG by spece(G). We

denote the spectrum of e in M by spece(M). Then spece(G) = {|C| : e ∈ C ∈ C(G)}

while spece(M) = {|C| : e ∈ C ∈ C(M)}.

Consider a pair (G,ω) where ω : E(G) → Z+ is a weight function on the

edges of G. The weight ω(C) of a cycle C in the graph is the sum of the weights of

its edges, following common usage. We define the ω-spectrum of an edge e of G to

be specω(e)(G) := {ω(C) : e ∈ C ∈ C(G)}. The edge e is said to be ω-balanced (or

sometimes just balanced) if it has an ω-spectrum of cardinality two. The graph G is

said to be ω-balanced (or sometimes just balanced) if it contains an ω-balanced edge.

For example, consider the graph G in Figure 1.1 with weights ω as shown on each

edge other than e. Then the edge e is ω-balanced regardless of the weight assigned

to the edge e as each cycle of G that contains the edge e has weight either 8 + ω(e)

or 12 + ω(e). Hence specω(e)(G) = {8 + ω(e), 12 + ω(e)} and we will say that the

edge e is balanced as |specω(e)(G)| = 2.

We mentioned results on matroids with a small circuit spectrum in the last

paragraph. In this dissertation, we investigate classes of graphs that contains an

3
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Figure 1.1: A balanced edge in a weighted graph

element e with a small edge-weighted e- spectrum set. We contain a complete char-

acterization of a particular class of graphs with this property.

1.2 Concepts, Notation, and Terminology

In this section, we discuss the basic concepts of Matroid Theory needed in

this dissertation. The matroid terminology used here mostly follows Oxley [?]. We

begin with the definition of a matroid.

Definition 1.2.1. A matroid M is an ordered pair (E, I) consisting of a finite set

E and a collection I of subsets of E satisfying the following three axioms:

(I1) ∅ ∈ I.

(I2) If I ∈ I and I ′ ⊆ I, then I ′ ∈ I.

(I3) If I1 and I2 are in I and |I1| < |I2|, then there is an element e of I2 − I1 such

that I1 ∪ e ∈ I.
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The members of I are called the independent sets of M and E is called the

ground set of M . It is also common to write I(M) for I and to write E(M) for E.

Any subset of E that is not independent is called dependent. A minimal dependent

set is a dependent set with all proper subsets being independent. A matroid M

can also be defined by its set of minimal dependent sets called circuits. The set of

circuits of M is denoted by C or C(M).

Theorem 1.2.2. A set of subsets C of a non-empty finite set E is the set of circuits

of a matroid if and only if C satisfies the following three conditions.

(C1) ∅ /∈ C.

(C2) If C1 and C2 are members of C and C1 ⊆ C2, then C1 = C2.

(C3) If C1 and C2 are distinct members of C and e ∈ C1∩C2, then there is a member

C3 of C such that C3 ⊆ (C1 ∪ C2)− e. (Circuit Elimination Axiom)

Let X ⊂ E(M). Then the deletion of X from M is denoted by M\X. This is

the matroid with groundset E\X and circuit set {C ∈ E(M)\X : C ∈ C(M)}. The

contraction of X from M is denoted by M/X. This is the matroid with groundset

E\X and circuit set consisting of the minimal non-empty members of {C −X : C ∈

C(M)}.

Let e ∈ E(M). Then e is said to be a loop of M when {e} is a circuit. If f

and g be distinct elements of E(M) such that {f, g} is a circuit of M , then f and g

are said to be in parallel. A parallel class of M is a maximal subset of X of E(M)
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such that any two distinct members of X are in parallel. If elements f and g are

distinct elements of E(M) such that {f, g} is a cocircuit of M , then f and g are

said to be in series. A series class of M is a maximal subset X of E(M) such that

any two distinct members of X are in series. A matroid that is obtained from M by

replacing each element by a series class of size k is called a k-subdivision of M . The

simplification of the matroid M , denoted by si(M), is obtained by deleting all loops

and all but one element from each parallel class.

A maximum independent set of M is called a basis. The set of bases of M is

denoted by B(M), or sometimes by B. The members of B are equicardinal. In fact,

if X is any subset of the ground set of a matroid M , then the maximal independent

subsets of X are equicardinal. This common cardinality is called the rank of X.

We denote this number by r(X) and let r(M) = r(E(M)). The following theorem

characterizes precisely when certain functions can be the rank function of a matroid.

Theorem 1.2.3. Let E be a set. A function r : 2E → Z+ ∪ {0} is the rank function

of a matroid on E if and only if r satisfies the following conditions:

(R1) If X ⊆ E, then 0 ≤ r(X) ≤ |X|.

(R2) If X ⊆ Y ⊆ E, then r(X) ≤ r(Y ).

(R3) If X and Y are subsets of E, then r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X) + r(Y ).
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Let X ⊆ E(M). Then cl(X) = {x ∈ E : r(X ∪ x) = r(X)}. A set X ⊆ E

is a flat of M if cl(X) = X. A flat is sometimes called a closed set. A flat of M of

rank r(M)− 1 is called a hyperplane.

Let G be a graph. Its vertex set is denoted by V (G) while its edge set is

denoted by E(G). The cycle matroid of G is denoted by M(G). This is the matroid

with groundset E(G) and a circuit being the edge set of a cycle of G. The number

of connected components of G is denoted by ω(G). Let r be the rank function of

M(G). Then, for X ⊆ E(G), r(X) = |V (G[X])|−ω(X) where G[X] is the subgraph

of G induced by X. A matroid is said to be graphic if it is isomorphic to the cycle

matroid of some graph.

For r and n integers with 0 ≤ r ≤ n, the uniform matroid of rank r and order

n is denoted by Ur,n. This is the matroid on a set E of n elements with X ⊆ E

independent if and only if |X| ≤ r. The dual matroid of M is the matroid on E(M)

with X ⊆ E(M) being a basis of the dual matroid if and only if E(M)-X is a basis

of M . The dual matroid of M is denoted by M∗

Let A be a matrix with entries in a field F. Let E be the set of column labels

of A, and I be the collection of subsets I of E such that the columns labelled by I

are linearly dependent over F. Then I is the set of independent sets of a matroid on

E. This matroid, denoted by M [A], is called the vector matroid of A. A matroid M

is representable over a given field if and only if M ∼= M [A] for some matrix A over F.
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A binary matroid M is a matroid that is representable over the field GF (2). Each

graphic matroid is also binary (see [?, Section 6.6]).

Several matroids and graphs mentioned in this research are next described.

For an integer n exceeding two, the vector matroid of the matrix An consisting of all

binary columns of length n with exactly 1, n− 1, or n ones is called the binary spike

of rank n. This matroid is denoted by Sn. The tip of Sn corresponds to the column

of all ones. , Also, this element is called the (cotip) of (S∗n) in Figure 1.2.

Figure 1.2: A partial geometric representation for S4

Let n be a positive integer and q be an integer exceeding one. The finite field

with q elements is denoted by GF (q). The vector space of dimension n over the finite

field with q elements is denoted by V (n, q). The projective geometry of dimension

n over GF (q), denoted by PG(n, q), is the matroid obtained from V = V (n + 1, q)

by deleting the zero column and all but one element from each parallel class. The

affine geometry AG(n, q) is obtained from PG(n, q) by deleting all the elements of

a hyperplane. Matrix representation for the binary projective geometry and binary

affine geometry of dimension two are given in Figure 1.3.
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1 2 3 4 5 6 7

1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1


(a) PG(2, 2)


1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1
0 1 0 0 0 1 1 1
0 0 1 0 1 0 1 1
0 0 0 1 1 1 0 0


(b) AG(3, 2)

Figure 1.3: A projective geometry and an affine geometry

e

Figure 1.4: B(r, 2)

Suppose X ⊆ V (G). Then X is a vertex cut of G if G−X has more connected

components than G. The connectivity of G, denoted by κ(G), is defined as follows.

If G is connected and has a pair of non-adjacent vertices, then κ(G) is the smallest

j for which G has a j-element vertex cut. If G is connected but contains no pair

of non-adjacent vertices, then κ(G) is |V (G)| − 1. If G is disconnected, then let

κ(G) = 0. If k ∈ Z+, then G is k-connected if κ(G) ≥ k. For example, the graph H

9



in Figure 1.5 has a 2-vertex cut (for example {u, v}), but no 1-vertex cut so κ(H) = 2

and H is 2-connected.

v

u

d
i

h

g
f

b

a
e

c j
k

Figure 1.5: A 2-connected graph H

We next define what it means for a matroid to be n-connected for n a positive

integer exceeding one. Let X ⊂ E(M) in the remainder of the section. Then the

connectivity function of M , denoted by λM or sometimes by λ, is defined as follows:

λM(X) = r(X)+r(E−X)−r(M). If k is a positive integer such that λ(X) < k, then

both X and (X,E −X) are said to be k-separating. If (X,E −X) is a k-separating

pair with min{|X|, |E−X|} ≥ k, then we say that (X,E−X) is a k-separation of M .

A matroid is n-connected if M has no k-separation with k ∈ {1, 2, . . . , n − 1}. For

example, if M is the cycle matroid of the graph H of Figure 1.5, X = {a, b, c, d, e},

and E−X = {f, g, h, i, j, k}, then λ(X) = r(X) + r(E−X)− r(M) = (4− 1) + (5−

1)−(7−1) = 1, |X| ≥ 2, and |E−X| ≥ 2. Thus (X,E−X) is a 2-separation. Hence

M is not 3-connected. However, M has no 1-separations so that M is 2-connected.

The construction of the parallel connection or of the series connection of two

matroids M1 and M2 is defined next. Suppose that these matroids are on disjoint
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sets and that p1 ∈ E(M1) while p2 ∈ E(M2). Let p be a new element that is not in

E(M1)∪E(M2). Let E = E(M1\p1)∪E(M2\p2)∪p. Then we will define two matroids

on E. Let CP = C(M1\p1)∪{(C1−p1)∪p : p1 ∈ C1 ∈ C(M1)}∪C(M2\p2)∪{(C2−p2)∪

p : p2 ∈ C2 ∈ C(M2)} ∪ {(C1 − p1)∪ (C2 − p2) : p1 ∈ C(M1) and p2 ∈ C(M2)} and let

CS = C(M1\p1)∪C(M2\p2)∪{(C1−p1)∪(C2−p2)∪p : p1 ∈ C(M1) and p2 ∈ C(M2)}.

Then CP is the set of circuits of the parallel connection of M1 and M2, denoted by

P (M1,M2). Also, CS is the set of circuits of the series connection of M1 and M2,

denoted by S(M1,M2).

1.3 Background Results

This section begins with the background results from the literature that mo-

tivate this research. This section concludes with some preliminary theorems that are

used in this research. The first result given is by Murty [?]. This result completly

determines the binary connected matroids with a circuit spectrum of cardinality one.

This result motivates the subsequent research in this area.

Theorem 1.3.1. Let M be a connected binary matroid. For c ∈ Z+, spec(M) = {c}

if and only if M is isomorphic to one of the following matroids:

(i) a c- subdivision of U0,1,

(ii) a k- subdivision of U1,n, where c = 2k and n ≥ 3

11



(iii) an l- subdivision of PG(r, 2)∗ where c = 2rl and r ≥ 2

(iv) an l- subdivision of AG(r + 1, 2)∗ where c = 2rl and r ≥ 2

The next result is due to Lemos, Reid, and Wu [?]. This result determines

the connected binary matroids with circuit spectrum of cardinality two in a special

case. Note that the increasing complexity of the problem as the cardinality of the

circuit spectrum set becomes larger.

Theorem 1.3.2. Let c, d ∈ Z+ with c < d and d odd. Let M be a connected binary

matroid. Then spec(M) = {c, d} if and only if there are connected binary matroids

M0,M1, . . .Mn for some n ∈ Z+ such that the following holds.

(i) E(Mi) ∩ E(Mj) = {e} , for distinct i and j in {0, 1, . . . , n}.

(ii) E(M0) is the circuit of M0.

(iii) For i ∈ {0, 1, . . . , n}, e is the series class of Mi, all other series classes of Mi

have size li, and the cosimplification of Mi is isomorphic to one of the following

matroids.

(a) U1,n for some ni ≥ 3 where c = 2li.

(b) PG(ri, 2)∗, for some ri ≥ 2 where c = 2rili

(c) AG(ri, 2)∗ for some ri ≥ 3 where c = 2ri−1li

(d) S∗ni
for some ni ≥ 4 and e is the cotip, where c = 4li

(e) B(ri, 2)∗ for some ri ≥ 3 and e is the cotip, where c = 2rili

12



(iv) d = |E(M0)| − 1 + d1 + d2 + . . . + dn > c where di = c
2

where (iii) (a) holds,

di = (2ri − 1)li when (iii) (b) holds, di = (2ri−1 − 1)li when (iii) (c) holds,

di = nili when (iii) (d) holds, and di = c when (iii) (e) holds.

(v) M = S(M0,M1, . . .Mn)/e

Lemos, Reid, and Wu obtained the following consequences of the previous

theorem by restricting their attention to the class of 3-connected matroids. An

attractive result is obtained by restricting the largest cycle cardinality to an odd

number.

Theorem 1.3.3. Let M be a 3-connected binary matroid with largest circuit size odd.

Then |spec(M)| ≤ 2 if and only if M is isomorphic to one of the following matroids.

(i) U0,1 or U2,3

(ii) S2n
∗ for some n ≥ 2

(iii) B(r, 2)∗ for some r ≥ 2

We follow standard notation and denote the complete graph on n vertices by

Kn. We denote the complete bipartite graph with vertex classes of size m and n by

Km,n. The graphs K ′3,n, K ′′3,n, and K ′′′3,n are obtained by adding one, two, and three

edges, respectively, to the partite class of size three in K3,n . These graphs are given

in Figure 1.6. The complete graph on five vertices is denoted by K5 and the graph

obtained from K5 by deleting an edge is denoted by K−5 . The wheel graph is given

in Figure 1.7.
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Figure 1.6: Some graphs without vertex-disjoint cycles

B1

B2

B3

B4B5

B6

Bn
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A2

A3

A4

A5

A6

A7

An

Figure 1.7: The wheel graph Wn
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Dirac [?] characterized 3-connected graphs without vertex disjoint cycles in

the following result. This is a useful result as two vertex disjoint cycles can be used

to construct cycles of varying lengths in a highly connected graph. This result is

crucial in the proof of the main result of the dissertation.

Theorem 1.3.4. Let G be a simple 3-connected graph. Then G does not have two

vertex disjoint cycles if and only if G is isomorphic to one of the following graphs; a

wheel, K5, K−5 , K3,n, K ′3,n, K ′′3,n, or K ′′′3,n for some integer n exceeding two.

Menger’s Theorem (1927) is often used when studying n-connected graphs (

see also, [?]). This is because it is useful for constructing cycles of varying lengths

in a highly connected graph. In particular, we rely on this result in the dissertation.

Theorem 1.3.5. A graph G is n-connected if and only if every pair of vertices of G

are connected by at least n internally-disjoint paths.
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2 THE RESULTS

In the main result of the dissertation we give a characterization of all pairs

(G,ω) where G is a simple 3-connected graph and ω is an positive integer valued

weight function on the edges of G. The graph G further contains an edge such that

there are only cycles of two different weights that contain this edge. In the first

section of the chapter, we give an attractive statement of one direction of the main

result. The statement of main result as an “if and only if” theorem waits until the

third section of the chapter as the first two sections of the chapter gives such pairs

(G,ω) for the graph G being in different classes of graphs. Section 1 of the chapter

concentrates on graphs without vertex-disjoint cycles, while Section 2 of the chapter

concentrates on graphs with a pair of vertex-disjoint cycles.

2.1 Graphs without disjoint cycles

We first give an attractive partial statement of one direction of the main result

of the dissertation, Theorem 2.3.1. This next result indicates the graphs that are

of interest in this dissertation. An extension of a graph is either the graph itself or

16



a simple graph obtained by adding edges to the graph. The vertex labeling of the

graphs Prism, Prism⊥ and Prism⊥⊥ are given in Figure 2.1, 2.2, and 2.3, respectively.

Theorem 2.1.1. Let G be a simple 3-connected graph. If there exists a positive

integer valued weight function on the edge set of G such that there exists an edge that

is only in cycles of two different weights, then the graph is a three-wheel, a four-wheel,

a five-wheel, K3,n, the Prism, the Prism⊥, or Prism⊥⊥ graph or is isomorphic to one

of the latter three graphs by attaching triads to either the vertex set {v1, v3, w2} or

{v3, w1, w2}.

v1 w1

v2

v3

w2

w3

Figure 2.1: A vertex-labeled Prism Graph

The next result indicates why we consider graphs that contain an edge in

cycles of two different weights. There are no simple 3-connected graphs that contain

cycles of a single weight when the weights are assigned as positive integer values

to the edges. We remind the reader, this theorem means that if a positive integer

weight is assigned to each edge of such a graph, then there will be cycles of at least

two different weights that contain each edge.
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v1 w1

v2

v3

w2

w3

w12

Figure 2.2: A vertex-labeled Prism⊥ graph

v1 w1

v2

v3

w2

w3

w12

v13

Figure 2.3: A vertex-labeled Prism⊥⊥
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Theorem 2.1.2. Let G be a simple 3-connected graph and ω : E(G) → Z+. If

e ∈ E(G), then |specω(e)(G)| ≥ 2.

In the remainder of the section we give results on simple 3-connected graphs that

contain a balanced edge. The graphs considered in this section of the dissertation do

not contain two vertex-disjoint cycles. An understanding of when edges are balanced

in such graphs will be important to the characterization of the simple 3-connected

graphs that contain a balanced edge that is given in Section 3 of this chapter.

An edge of G will always be assigned an uppercase letter as a label such as

A1, and the weight ω(A1) of the edge A1 will be represented by the corresponding

lower case letter such as a1. The edge labeling of the graph G in Theorems 2.1.3,

2.1.4, and 2.1.5 is as given in Figure 1.7 with n representing the appropriate number

of spokes in the wheel graph under consideration. For convenience sake, we give a

picture of the wheel with the appropriate number of spokes by the statement of each

of these next four theorems.

B1

B2

B3
A1

A2A3

Figure 2.4: The wheel graph W3
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Theorem 2.1.3. Let G be isomorphic to the wheel W3 with the edge labels as pictured

and with the associated weight function ω (indicated by lowercase letters). Then an

edge E is balanced if and only if, up to relabeling, E = A1 and one of the following

conditions holds:

(i) ai = aj + b2 and b3 = b1 + b2 for i = 2 and j = 3 or for i = 3 and j = 2, or

(ii) ai = aj + b2 and b1 = b2 + b3 for i = 2 and j = 3 or for i = 3 and j = 2, or

(iii) a2 = a3 and b1 = b3.

B1

B2

B3

B4

A2

A1

A4

A3

Figure 2.5: The wheel graph W4

Theorem 2.1.4. Let G be isomorphic to the wheel W4 with the edge labels as pictured

and with the associated weight function ω. Then the edge E is balanced if and only

if, up to relabeling, either

(i) E = A1: a2 = a4, b1 = b4, b2 = b3, and a3 = a2 ± b2, or

(ii) E = B1: and condition (C1), (C2), or (C3) of Table 2.1 is satisfied.
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(C1) a1 = a3 + b4 (C2) a1 = a4 + b4 (C3) a2 = a3 + b2
a2 = a3 + b2 a2 = b2 a1 = b4

a3 = a4 a4 = b3 a3 = b3
b3 = 2a3 a3 = 2a4 a4 = 2a3

Table 2.1: Conditions that imply that the edge B1 is balanced in a four-wheel

B1

B2

B3

B4

B5

A1

A2

A3A4

A5

Figure 2.6: The wheel graph W5

Theorem 2.1.5. Let G be isomorphic to the wheel Wn for n ≥ 5 with the edge

labels as pictured and with the associated weight function ω. Then an edge E of G is

balanced if and only if, up to relabeling, E = B1: n = 5, a1 = b3 + b5, a2 = b2 + b3,

a3 = b3, a4 = 2b3, a5 = b3, and b3 = b4.

The edges of the graph G given in Theorem 2.1.6 are as labeled in Figure 2.7.

Theorem 2.1.6. Let G be isomorphic to the graph K−5 with the edge labels as

pictured and with the associated weight function ω. Then an edge E is balanced if

and only if, up to relabeling, either

(i) E = A1: a2 = a4, b1 = b4, b2 = b3, a3 = a2 − b2, and c = 2b2 or
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B1

B2B3

B4

A1

A2

A3

A4

C

Figure 2.7: The graph K−5

(ii) E = C: a1 = a3, b1 = b2, b3 = b4, a2 = b1 ± a1, and a4 = b3 ± a1 except that

it is not true that both a2 = b1 − a1 and a4 = b3 − a1 .

Theorem 2.1.7. Let G be isomorphic to the graph K5 with the associated weight

function ω : E(G)→ Z+. Then no edge of G is balanced.

The edges of the graph G in the following theorems are as labeled in Figure 2.8

with the appropriate subset of the set {U1, U2, U3} deleted from the edge set of the

graph K ′′′3,n.
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A1

A2

A3

An

B1

B2

B3

Bn

C1 C2

C3

Cn

U1

U2

U3

...

Figure 2.8: The graph K ′′′3,n
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Let [n] = {1, 2, . . . , n} for n ∈ Z+ throughout the dissertation. We refer in the

following theorems to the edge labels given in the appropriate subgraph of Figure 2.8.

In the next theorem the edges U1, U2, and U3 are deleted. The graph K3,3 is given

in Figure 2.9 for the readers convenience in identifying the labeling mentioned in the

theorem.

C1 C2

C3

B1

B2

B3

A1

A2

A3

Figure 2.9: An edge labeled K3,3 graph

Theorem 2.1.8. Let G be isomorphic to the graph K3,n, for n ≥ 3 with the edge

labels as pictured and with the associated weight function ω. Then an edge E is

balanced if and only if, up to relabeling, E = A1: b1 = c1, and, for i, j ∈ [n]\1,

ai = aj and bi = cj.

We refer in the following theorem to the edge labels given in Figure 2.8 where

the edges U2, and U3 are deleted. We give a labeled K ′3,3 graph for the readers

convenience.
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C1 C2

C3

B1

B2

B3

A1

A2

A3
U1

Figure 2.10: An edge labeled K ′3,3 graph

Theorem 2.1.9. Let G be isomorphic to the graph K ′3,n, for n ≥ 3 with the edge

labels as pictured and with the associated weight function ω. Then an edge E is

balanced if and only if, up to relabeling,

(i) E = A1: b1 = c1 and, for i, j ∈ [n]\1, ai = aj, bi = cj, and u1 = a2 + b2, or

(ii) E = C3: a3 = b3, and, for i, j ∈ [n]\3, ai = bj, ci = cj, and u1 = 2a1, or

(iii) E = U1: for i, j ∈ [n], ai = aj, bi = bj, and ci = cj.

We refer in the following theorem to the edge labels given in Figure 2.8 where

the edge U3 is deleted. A labeled K ′′3,3 graph is pictured as well for the readers

convenience.
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C1
C2

C3

B1

B2

B3

A1

A2

A3
U1

U2

Figure 2.11: An edge labeled K ′′3,3 graph

Theorem 2.1.10. Let G be the graph K ′′3,n, for n ≥ 3 with the edge labels as pictured

and with the associated weight function ω. Then an edge E is balanced if and only

if, up to relabeling,

(i) E = A1: b1 = c1, for i, j ∈ [n]\1, ai = aj, bi = cj, u1 = a2 + b2, and u2 = 2b2,

or

(ii) E = B1: a1 = c1, for i, j ∈ [n]\1, ai = cj and bi = bj, and u1 = u2 = a2 + b2,

or

(iii) E = U1: for i, j ∈ [n], ai = aj, bi = bj, ci = cj, and u2 = b1 ± c1.

We refer in the following theorem to the edge labels given in Figure 2.8. We

give a labeled K ′′′3,3 graph in Figure 2.12 for the readers convenience.
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C1
C2

C3

B1

B2

B3

A1

A2

A3
U1

U2

U3

Figure 2.12: An edge labeled K ′′′3,3 graph

Theorem 2.1.11. Let G be the graph K ′′′3,n, for n ≥ 3 with the edge labels as pictured

and with the associated weight function ω. Then an edge E is balanced if and only

if, up to relabeling,

(i) E = A1: b1 = c1, for i, j ∈ [n]\1, ai = aj, bi = cj, u1 = u3 = a2 + b2, and

u2 = 2b2, or

(ii) E = U1: for i, j ∈ [n], ai = aj, bi = bj, ci = cj, u2 = b1±c1, and u3 = a1±c1.

2.2 Graphs with disjoint cycles

We give the simple 3-connected graphs with a balanced edge that contain a

pair of disjoint cycles in this section of the dissertation. These graphs are extensions

of either the Prism graph or of two other closely related graphs. We first give a

useful lemma before giving the statements of these results. A graph H is called a

27



topological minor of a graph G if a subdivision of H is isomorphic to a subgraph of

G. So each edge of the topological minor H corresponds to a path of G. If ωG is

a positive integer valued weight function on the edge set of G, then the associated

weight function on the edge set of H is obtained by letting the weight of each edge

be the sum of the weights of the corresponding path in G. So an edge that can be

balanced with respect to a weight function in a graph can be balanced with respect

to another weight function in any topological minor that contains that edge.

Lemma 2.2.1. Let G be a graph with weight function ωG : E(G) → Z+ and H be

a topological minor of G with associated weight function ωH . If E is an edge of H,

then |specωH(E)(H)| ≤ |specωG(E)(G)|.

The following theorem is a key part of the proof of Theorem 2.3.1. The graph

G in Theorem 2.2.2 is as pictured in Figure 2.13.
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C1

A3

A2

B3

B2

C3

B1

C2

A1

Figure 2.13: The labeled prism graph G

Theorem 2.2.2. Let G be the Prism graph with the edge labels as pictured and with

the associated weight function ω. Then an edge E is balanced if and only if either

(i) E = C1 and specω(E)(G) = {a3 + b3 + c1 + c2, a3 + b3 + c1 + c2 + 2a1} where

a1 = b1, c2 = c3, and either a3 = a1 + a2 and b2 = b1 + b3 or a2 = a1 + a3 and

b3 = b1 + b2, or

(ii) E = C2 and specω(E)(G) = {a3 + b3 + c1 + c2, a3 + b3 + c1 + c2 + 2a2} where

a2 = b2, c1 = c3, and either a1 = a2 + a3 and b3 = b1 + b2 or a3 = a1 + a2 and

b1 = b2 + b3, or

(iii) E = C3 and specω(E)(G) = {a2 + b2 + c1 + c3, a2 + b2 + c1 + c3 + 2a3} where

a3 = b3, c1 = c2, and either a2 = a1 + a3 and b1 = b2 + b3 or a1 = a2 + a3 and

b2 = b1 + b3.
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v1 w1

v2

v3

w2

w3

C1

C2

C3

A2

A1

A3

B2

B1

B3

D1

Figure 2.14: The labeled Prism+ Graph

Theorem 2.2.3. Let G be the Prism+ graph with the edge labels as pictured and

with the associated weight function ω. Then an edge E is balanced if and only if, up

to relabeling,

(i) E = C1: a1 = b1 = c2 = c3, a2 = a1 + a3, b3 = b1 + b2, and d1 = a3 + c3, or

(ii) E = C2: a2 = b2 = c1 = c3, a3 = a1 + a2, b1 = b2 + b3, and d1 = b3 + c3, or

(iii) E = C3: a3 = b3, c1 = c2, a2 = a1 + a3, b1 = b2 + b3, and either d1 = a3 and

c1 = 2a3 or d1 = 2a3 and c1 = a3.

Moreover, no other edge of G is balanced.

Let H be a subgraph of a simple 3-connected graph G. Then an H-bridge of G

is a path between distinct vertices of H with the path being internally disjoint from

the vertices of H. Now let H be a subdivision of a Prism such as the graph shown

in Figure 2.13. For the purposes of the following definition, we consider the labels
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in that figure to correspond to paths so that C1 is a path of H and not necessarily

just an edge for example. Then an H-bridge of G that is a path from a vertex vi

to a vertex wj for i, j ∈ [3] with i 6= j is called a chord of H (see the path D1 in

Figure 2.14). The following corollary of Theorem 2.2.3 will be useful in this research.

Corollary 2.2.4. Let G be a simple 3-connected graph with a weight function ω :

E(G)→ Z+.

(a) An edge of G that is contained in one of a pair of vertex-disjoint cycles of G

is not balanced.

(b) Let H be a subgraph of G that is a subdivision of a Prism. If E is an edge of

a chord of H, then E is not balanced.

The graph Prism1++ is as given in Figure 2.15.

31



C1

A3

A2

D1

B3

B2

C3

B1

C2

A1

D2

Figure 2.15: The labeled Prism1++ graph

Theorem 2.2.5. Let G be the Prism1++ graph with the edge labels as pictured and

with the associated weight function ω. Then an edge E is balanced if and only if

E = C1: a1 = b1 = c2 = c3, a2 = a1 +a3, b3 = b1 + b2, d1 = a3 + c3, and d2 = b2 + c2.

The edge labeled graph Prism2++ is given in Figure 2.16.

C1

A3

A2

D1

B3

B2

C3

B1

C2

A1

D2

Figure 2.16: The labeled Prism2++ graph
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Theorem 2.2.6. Let G be the Prism2++ graph with the edge labels as pictured and

with the associated weight function ω. Then an edge E is balanced if and only if, up

to relabeling,

(i) E = C2: a2 = b2 = c1 = c3, a3 = a1 + a2, b1 = b2 + b3, d1 = b3 + c3, and

d2 = 2a2, or

(ii) E = C3: a3 = b3 = c1 = c2, a2 = a1 + a3, b1 = b2 + b3, d1 = 2b3, and

d2 = b2 + c2.

The edge labeled Prism3++ graph is given in Figure 2.17. This graph is

mentioned in the next theorem.
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C1

A3

A2

D1

B3

B2

C3

B1

C2

A1

D2

Figure 2.17: The labeled Prism3++ graph

Theorem 2.2.7. Let G be the Prism3++ graph with the edge labels as pictured and

with the associated weight function ω. Then G does not contain a balanced edge

The graph Prism1+++ is as given in Figure 2.18. This graph is mentioned

in Theorem 2.2.8.
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C1

A3

A2

D1

B3

B2

C3

B1

C2

A1

D2

D3

Figure 2.18: The labeled Prism1+++ graph

Theorem 2.2.8. Let G be the Prism1+++ graph with the edge labels as pictured

and with the associated weight function ω. Then G does not contain a balanced edge.

The graph Prism2+++ is as given in Figure 2.19. This graph is mentioned

in Theorem 2.2.9.

C1

A3

A2

D1

B3

B2

C3

B1

C2

A1

D2

D3

Figure 2.19: The labeled Prism2+++ graph
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Theorem 2.2.9. Let G be the Prism2+++ graph with the edge labels as pictured

and with the associated weight function ω. Then an edge E is balanced if and only if,

up to relabeling, E = C2: a2 = b2 = c1 = c3, a3 = a1 + a2, b1 = b2 + b3, d1 = b3 + c3,

d2 = 2b2, and d3 = a1 + c1.

The graph Prism3+++ is as given in Figure 2.20. This graph is mentioned

in Theorem 2.2.10.

C1

A3

A2

D1

B3

B2

C3

B1

C2

A1

D2

D3

Figure 2.20: The labeled Prism3+++ graph

Theorem 2.2.10. Let G be the Prism3+++ graph with the edge labels as pictured

and with the associated weight function ω. Then G does not contain a balanced edge.

Theorem 2.2.11. Let G be an extension of the Prism graph obtained by adding four

or more edges to that graph. Then G does not contain a balanced edge.

Theorem 2.2.12. Let G be the Prism⊥ graph with the edge labels as pictured and

with the associated weight function ω. Then an edge E is balanced if and only if
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v1 w1

v2

v3

w2

w3

C1

C2

C3

A2

A1

A3

w12

B2

B1

B31

B32

P

Figure 2.21: The graph Prism⊥

(i) E = C1 : p = a1 = b1 = c2 = c3, b31 = b2, b32 = b1, a2 = a1 + a3, and

specω(E)(G) = {a3 + b3 + c1 + c2, a3 + b3 + c1 + c2 + 2a1} or

(ii) E = C2 : p = a2 = b2 = c1 = c3, b31 = b1, b32 = b2, a1 = a2 + a3, and

specω(E)(G) = {a3 + b3 + c1 + c2, a3 + b3 + c1 + c2 + 2a2}.
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v1 w1

v2
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w2

w3

C1

C2

C3

A2

A1

A3

w12
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B1

B31

B32

P1

P2

Figure 2.22: The graph Prism⊥+a

Theorem 2.2.13. Let G be the Prism⊥ + a graph with the edge labels as pictured

and with the associated weight function ω. Then an edge E is balanced if and only if

E = C1 : p1 = a1 = b1 = c2 = c3, p2 = a3 + c2, b31 = b2, b32 = b1, and a2 = a1 + a3.
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v1 w1

v2
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w2
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C2
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A1

A3

w12
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B31

B32

P1

P2

Figure 2.23: The graph Prism⊥+b

Theorem 2.2.14. Let G be the Prism⊥ + b graph with the edge labels as pictured

and with the associated weight function ω. Then an edge E is balanced if and only if

either

(i) E = C1 : p1 = a1 = b1 = c2 = c3, p2 = b2 + c3, b31 = b2, b32 = b1, and

a2 = a1 + a3, and specω(E)(G) = {a3 + b3 + c1 + c2, a3 + b3 + c1 + c2 + 2a1}. or

(ii) E = C2 : p1 = a2 = b2 = c1 = c3, p2 = 2a2, b31 = b1, b32 = b2, a1 = a2 + a3,

and specω(E)(G) = {a3 + b3 + c1 + c2, a3 + b3 + c1 + c2 + 2a2}.

39



v1 w1

v2

v3

w2

w3

C1

C2

C3

A2

A1

A3

w12

B2

B1

B31

B32

P1

P3

P2

Figure 2.24: The graph Prism⊥++

Theorem 2.2.15. Let G be the Prism⊥ + + graph with the edge labels as pictured

and with the associated weight function ω. Then an edge E is balanced if and only if

E = C1 : p1 = a1 = b1 = c2 = c3, p2 = b2 + c3, p3 = a3 + c3, b31 = b2, b32 = b1, and

a2 = a1 + a3, and specω(E)(G) = {a3 + b3 + c1 + c2, a3 + b3 + c1 + c2 + 2a1}.
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Figure 2.25: The graph Prism⊥⊥

Theorem 2.2.16. Let G be the Prism⊥⊥ graph with the edge labels as pictured and

with the associated weight function ω. Then an edge E is balanced if and only if

E = C1 : p1 = p2 = a1 = b1 = c2 = c3, a21 = a3, a22 = a1, b31 = b2, b32 = b1,

a2 = a1 + a3, and b3 = b1 + b2.
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Figure 2.26: The graph Prism⊥⊥+

Theorem 2.2.17. Let G be the Prism⊥⊥+ graph with the edge labels as pictured

and with the associated weight function ω. Then an edge E is balanced if and only if

E = C1 : p1 = p2 = a1 = b1 = c2 = c3, p3 = a3 + c2, a21 = a3, a22 = a1, b31 = b2,

b32 = b1, a2 = a1 + a3, and b3 = b1 + b2.
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Figure 2.27: The graph Prism⊥⊥++

Theorem 2.2.18. Let G be the Prism⊥⊥++ graph with the edge labels as pictured

and with the associated weight function ω. Then an edge E is balanced if and only

if E = C1 : p1 = p2 = a1 = b1 = c2 = c3, p3 = a3 + c2, p4 = b2 + c2, a21 = a3,

a22 = a1, b31 = b2, b32 = b1, a2 = a1 + a3, and b3 = b1 + b2.

2.3 The main result

We give the main result of the thesis in this section of the dissertation. A

balanced three-wheel is a pair (G,ω) where G is a graph with ω : E(G)→ Z+ where

G ∼= W3 and, up to relabeling, ω is as given in the statement of Theorem 2.1.3.

Likewise, we define a balanced four-wheel graph etc. to be a pair (G,ω) such as

given in Theorems 2.1.4 through 2.2.18.

Suppose that the pair (G,ω) is balanced. Further suppose that there is a

subgraph H of G that is either a Prism, Prism⊥, or Prism⊥⊥ graph as shown in
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Figures 2.13, 2.21, and 2.25. By symmetry, we will assume that the edge C1 is

balanced and that the edge A2 and B3 are of largest weight in the cyles A1∪A2∪A3

and B1 ∪ B2 ∪ B3, respectively. Here we let A2 = A21 ∪ A22 and B3 = B31 ∪ B32

when appropriate. Then we will refer to A1 ∪A2 ∪A3 and B1 ∪B2 ∪B3 as the base

triangles of H, A2, A3, B2, and B3 as diagonal edges, A2 and B3 as the long diagonal

edges, and the path A2 ∪ C1 ∪ B3 as the long path of H. Adding a handle to H is

the operation of attaching a triad of G to H with the triad meeting the vertex set of

H in both endvertices of the long path and in one interior vertex of the long path.

There are two ways to add a handle to the subgraph H. An arbitrary number of

handles may be added in the theorem that follows.

Theorem 2.3.1. Let G be a simple 3-connected graph and ω : E(G) → Z+. Sup-

pose that G contains an edge E such that |specω(E)(G)| = 2. If G is isomor-

phic to a three-wheel, four-wheel, five-wheel, K−5 , K3,n, K ′3,n, K ′′3,n, or K ′′′3,n for

n ≥ 3, Prism, Prism+, Prism1++, Prism2++, Prism2+++, Prism⊥, Prism⊥+a,

Prism⊥+b, Prism⊥⊥, Prism⊥⊥+, or the Prism⊥⊥++ graph, then the edge E is bal-

anced in G if and only if the Pair (G,ω) is as given in one of Theorems 2.1.3 through

Theorem 2.2.18. The only remaining graphs that may be balanced are all obtained

from extensions of the Prism, Prism⊥, or Prism⊥⊥ graph by attaching handles.

So the previous theorem completely solves the problem of determining the balanced

3-connected graphs and their appropriate weight functions except that we do not

explicitly determine the pairs (G,ω) in the latter three classes of graphs mentioned

in the theorem statement.
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3 THE PROOFS

We give the proofs of the results from Chapter 2 in this chapter of the dis-

sertation. First we consider the graphs without two vertex-disjoint cycles. Then

we consider graphs with disjoint cycles. Finally, we prove the main result of the

dissertation.

3.1 Graphs without disjoint cycles

In this section we give the proofs of the results mentioned in Section 2.1 of

the dissertation. Lemma 2.2.1 will be implicitly invoked throughout the dissertation

so we prove it first.

Proof of Lemma 2.2.1. If C is a cycle of H of weight ωH(C) that contains the edge

E, then there exists a subdivision of C that is a cycle of G of weight ωH(C) that

contains the edge E. Hence the result follows from the observation specωH(E)(H) ⊆

specω(E)(G).
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Figure 3.1: Cycles Containing e

Proof of Theorem 2.1.2. Suppose that |specω(e)(G)| = 1. There exists a non-

Hamiltonian cycle C that contains the edge e as G is 3-connected. Choose a vertex

V that is not on C. By Menger’s Theorem, there exist three internally disjoint paths

from V to distinct vertices Q1, Q2, and Q3 of C. Label these paths P1, P2, and P3, re-

spectively. Suppose that Xi is the arc of C from Qi to Qi+1 for i ∈ {1, 2, 3} modulo 3

(see Figure 3.1). Assume that e is an edge of the path X3, without loss of generality.

Then some of the cycles ofG that contain the edge e areX1∪X2∪X3, P1∪P2∪X2∪X3,

P1∪P3∪X3, and P2∪P3∪X1∪X3. Following standard usage throughout the disser-

tation, we denote the weight of a path or cycle by the lowercase letter of its uppercase

label. Then x1 + x2 + x3 = p1 + p2 + x2 + x3 = p1 + p3 + x3 = p2 + p3 + x1 + x3.

It follows from equating the first and second of these sums that x1 = p1 + p2. It

follows from equating the third and fourth of these sums that p1 = p2 + x1. These

two equations imply that p2 = 0; a contradiction.Thus |specω(e)(G)| ≥ 2.
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In the following proof we make a statement such as “By symmetry we may

assume that E = A1” to mean that the group of automorphisms of the given graph

G is transitive on the edge set of G. We will make such statements in the subsequent

proofs such as that we may assume that E is the edge A1 or B1 in a four-wheel

graph. This statement means that every edge in a four-wheel graph can be mapped

by an automorphism to either a spoke edge such as A1 or a rim edge such as B1.

Proof of Theorem 2.1.3. By symmetry we may assume that E = A1. The cycles

of G that contain the edge A1 are {A1, A2, B1}, {A1, A3, B3}, {A1, A2, B2, B3}, and

{A1, A3, B1, B2}. The weights of the cycles that contain the edge A1 are listed in

Table 3.1. Consider the edge isomorphism (A1)(A2A3)(B2)(B1B3) of the graph G.

The corresponding weight permutation

(†) (a1)(a2a3)(b2)(b1b3)

will feature prominently in this proof. Similar weight permutations will be used in

subsequent proofs. If (†) is applied to the sums in (1), (2), (3), and (4) of Table 3.1,

then the sums in (1) and (2) are interchanged, while the sums in (3) and (4) are also

interchanged.

If case (i) of the theorem statement holds, then the cycles of G that contain

A1 have weight either a1 + a2 + b1 or weight a1 + a2 + b1 + (2b2). If case (ii) of the

theorem statement holds, then the cycles of G that contain the edge A1 have weight

a1 + a3 + b3 or a1 + a3 + b3 + (2b2). If case (iii) of the theorem statement holds, then
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the cycles of G that contain the edge A1 have weight a1 + a2 + b1 or a1 + a2 + b1 + b2.

Hence the edge A1 is balanced if the weight function ω satisfies conditions (i), (ii),

or (iii) of the theorem statement.

Conversely, suppose that the edge A1 is balanced and that the weight function

ω satisfies none of conditions (i), (ii), and (iii) of the theorem statement. The four

sums in Table 3.1 have one of two different values.

(1) a1 + a2 + b1 (2) a1 + a3 + b3
(3) a1 + a2 + b2 + b3 (4) a1 + a3 + b1 + b2

Table 3.1: The cycles weights of the cycles containing the edge A1 of the graph W3

The following notation will be used for different tables of sum values through-

out the remainder of the proof. There exist nonempty sets S and T that partition

{1, 2, 3, 4} such that all the sums in Table 3.1 corresponding to the elements of S

have the same value, while all the sums in Table 3.1 corresponding to the elements

of T have the other value. We will slightly corrupt notation and write, for example,

(S, T ) = (123, 4) to mean that the sums in (1), (2), and (3) have the same value,

while the sum in (4) has the other value. We summarize in each row of Table 3.2

the corresponding path length condition that occurs in the graph of Figure 1.7 when

the corresponding sums in Table 3.1 have the same value.

Assume that |S| ≤ |T | without loss of generality. Then |S| ∈ {1, 2} and

|T | = 4− |S|. Suppose |S| = 1. Suppose that (S, T ) = (1, 234) or (S, T ) = (3, 124).

The former case implies that b3 = b1 + b2 and a3 = a2 + b2 and the latter case

implies that b3 = b1 + b2 and a2 = a3 + b2. This a contradiction as then condition
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(1) = (2) a2 + b1 = a3 + b3
(1) = (3) b1 = b2 + b3
(1) = (4) a2 = a3 + b2
(2) = (3) a3 = a2 + b2
(2) = (4) b3 = b1 + b2
(3) = (4) a2 + b3 = a3 + b1

Table 3.2: Consequences of Equal Sums in Table 3.1

(i) is satisfied. If (S, T ) = (2, 134) or (S, T ) = (4, 123), then condition (ii) of the

theorem statement is satisfied by applying (†) to the cases (S, T ) = (1, 234) and

(S, T ) = (3, 124), respectively. This is a contradiction.

Suppose that |S| = 2. Then |T | = 2. Assume that 1 ∈ S without loss of

generality. Assume that (S, T ) = (12, 34). Then a2 = a3 and b1 = b3. This is

a contradiction by (ii) in the theorem statement. If (S, T ) = (13, 24) or (S, T ) =

(14, 23), then b2 = 0; a contradiction. This completes the proof of Theorem 2.1.3.

(1) a1 + a2 + b1 (4) a1 + a3 + b3 + b4
(2) a1 + a4 + b4 (5) a1 + a3 + b1 + b2
(3) a1 + a2 + b2 + b3 + b4 (6) a1 + a4 + b1 + b2 + b3

Table 3.3: The weights of cycles containing the spoke edge A1

Proof of Theorem 2.1.4. We may assume that E is either a spoke or a rim edge of G.

Hence we may assume that E = A1 or E = B1. First suppose the former. The cycles

of G that contain the edge A1 are {A1, A2, B1}, {A1, A4, B4}, {A1, A2, B2, B3, B4},

{A1, A3, B3, B4}, {A1, A3, B1, B2}, {A1, A4, B1, B2, B3}. Hence the weights of the
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cycles of G that contain the edge A1 are as given in Table 3.3. If the hypothesis

condition (i) holds, then these weights are all either a1+a2+b1 or a1+a2+b2+b3+b4.

Conversely, suppose that |specω(A1)(G)| = 2 and that (G,ω) is not as listed

in the theorem statement. Then the sums in Table 3.3 are one of two different

values. We summarize in each row of Table 3.4 the corresponding path length

conditions that occur in the graph of Figure 1.7 when the corresponding sums in

Table 3.3 have the same value. Some pairs of the equalities in Table 3.4 cannot

occur simultaneously. From considering all pairs of possible equalities from Table 3.4

we obtain Table 3.5. For example, if (1)=(3) and (2)=(6), then one obtains the

contradiction that b2 = b3 = 0. This information is summarized in the first row

of Table 3.5. We use the same notation for nonempty sets S and T that partition

{1, 2, 3, 4, 5, 6} as before so that the sums in Table 3.3 corresponding to the elements

of S have the same value, while all the sums in Table 3.3 corresponding to the

elements of T have the other value.

Notice that min{|S|, |T |} 6= 1 because in Table 3.5 each element of the set

{1, 2, 3, 4, 5, 6} is not mentioned in at least one row. For example, (S, T ) = (1, 23456)

would contradict row (v) of the table. If |S| = |T | = 3, then, up to interchang-

ing the sets S and T , we obtain ten possible combinations (S, T ). We next list

each of these ten pairs (S, T ) followed in parentheses by the row number of Ta-

ble 3.5 that implies that this pair cannot occur: (123, 456) (ii), (124, 356) (v),

(125, 346) (iii), (126, 345) (vi), (134, 256) (i), (135, 246) (i), (136, 245) (ii),

(145, 236) (vi), (146, 235) (iv), (156, 234) (iii). It follows that we may assume
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(1) = (2) a2 + b1 = a4 + b4
(1) = (3) b1 = b2 + b3 + b4
(1) = (4) a2 + b1 = a3 + b3 + b4
(1) = (5) a2 = a3 + b2
(1) = (6) a2 = a4 + b2 + b3
(2) = (3) a4 = a2 + b2 + b3
(2) = (4) a4 = a3 + b3
(2) = (5) a4 + b4 = a3 + b1 + b2
(2) = (6) b4 = b1 + b2 + b3
(3) = (4) a2 + b2 = a3
(3) = (5) a2 + b3 + b4 = a3 + b1
(3) = (6) a2 + b4 = a4 + b1
(4) = (5) b3 + b4 = b1 + b2
(4) = (6) a3 + b4 = a4 + b1 + b2
(5) = (6) a3 = a4 + b3

Table 3.4: Consequences of Equal Sums in Table 3.3

|S| = 2 and |T | = 4. There are fifteen pairs (S, T ) to consider. Nine of these

pairs cannot occur by Table 3.5. We next list each of these nine pairs (S, T ) followed

in parentheses by the row number of Table 3.5 that implies that this pair cannot

occur: (13, 2456) (i), (15, 2346) (iii), (16, 2345) (iv), (23, 1456) (iv), (24, 1356) (v),

(26, 1345) (i), (34, 1256) (iii), (45, 1236) (ii), (56, 1234) (v). Thus we have six cases

(i) (1) = (3) and (2) = (6)
(ii) (1) = (3) and (4) = (5)
(iii) (1) = (5) and (3) = (4)
(iv) (1) = (6) and (2) = (3)
(v) (2) = (4) and (5) = (6)
(vi) (2) = (6) and (4) = (5)

Table 3.5: Pairs of equalities from Table 3.4 that do not simultaneously hold
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remaining to consider for (S, T ), namely (12, 3456), (14, 2356), (25, 1346), (35, 1246),

(36, 1245), and (46, 1235).

Suppose (S, T ) = (14, 2356). We consider the information from Table 3.3

in the following sentences. It follows from (5)=(6) that a3 = a4 + b3 and (2)=(6)

b4 = b1+b2+b3. Substitute a4+b3 for a3 and b1+b2+b3 for b4 into the two equations

(1)=(4) a2 + b1 = a3 + b3 + b4 and (3)=(5) a2 + b3 + b4 = a3 + b1 to obtain that

a2 = a4 + b2 + 3b3 and a4 = a2 + b2 + b3. Thus b2 = b3 = 0; a contradiction.

Suppose (S, T ) = (35, 1246). It follows from (3)=(5) that a2+b3+b4 = a3+b1,

(1)=(6) a2 = a4 + b2 + b3 and (2)=(6) b4 = b1 + b2 + b3. Substitute a4 + b2 + b3

for a2 and b1 + b2 + b3 for b4 into the equations (3)=(5) to obtain the equation

(a4 + b2 + b3) + b3 + (b1 + b2 + b3) = a3 + b1. Now use (2)=(4), where a4 = a3 + b3; we

obtain the equation [(a3 + b3)+ b2 + b3]+ b3 + b1 + b2 + b3 = a3 + b1. Thus b2 = b3 = 0;

a contradiction.

Assume that (S, T ) = (12, 3456). Then one obtains the following seven equa-

tions from Table 3.4: a2 + b1 = a4 + b4, a2 + b2 = a3, a2 + b3 + b4 = a3 + b1,

a2 + b4 = a4 + b1, b1 + b2 = b3 + b4, a3 + b4 = a4 + b1 + b2, and a3 = a4 + b3. From

combining the first and fourth of these equations we obtain that b1 = b4. One can

show from these equations that a2 = a4, b1 = b4, b2 = b3, and a3 = a2 + b2. Hence

(G,ω) is as given in (i) of the theorem statement; a contradiction.

Assume that (S, T ) = (36, 1245). Then one obtains the following seven equa-

tions from Table 3.4: a2 + b4 = a4 + b1, a2 + b1 = a4 + b4, a2 + b1 = a3 + b3 + b4,
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a2 = a3 + b2, a4 = a3 + b3, a4 + b4 = a3 + b1 + b2, and b1 + b2 = b3 + b4. It follows

from the first two equations that b1 = b4. Then one can show that a2 = a4, b1 = b4,

b2 = b3, and a2 = a3 + b2. Hence (G,ω) is as given in (i) of the theorem statement;

a contradiction.

Under the isomorphism (A1)(A2, A4)(A3)(B1, B4)(B2B3) of the edge set of G

we obtain the following permutation of the labels in Table 3.3, (12)(45)(36). Hence

the remaining cases (S, T ) = (25, 1346) and (46, 1235) become the cases (14, 2356)

and (46, 1235), respectively, that we have shown cannot occur.

Now suppose that E = B1. The cycles of G that contain the

edge B1 are {B1, B2, B3, B4}, {A1, A2, B1}, {A1, A3, B1, B2}, {A1, A4, B1, B2, B3},

{A2, A3, B1, B3, B4}, {A2, A4, B1, B4}, and {A3, A4, B1, B2, B4}. The weights of the

cycles of G that contain the edge B1 are labeled in Table 3.6.

Consider the edge isomorphism (A1, A2)(A3, A4)(B1)(B2, B4)(B3) ofG. Under

the permutation (†) (a1a2)(a3a4)(b1)(b2b4)(b3) of the corresponding weights in G, we

obtain the following permutation (‡) (1)(2)(36)(45)(7) of the labels in Table 3.6.

If Condition (C1) of Table 2.1 holds, then specω(B1)(G) = {a1 + a2 + b1, a1 +

a2 + b1 + b3}, If Condition (C2) of Table 2.1 holds, then specω(B1)(G) = {a1 + a2 +

b1, a1 + a2 + a3 + b1}.

Conditions (C3) is obtained from condition (C2) by applying the permutation

(†). Hence if Condition (C3) of Table 2.1 holds, then |specω(B1)(G)| = 2. This
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permutation (†) and its associated label permutation (‡) will be invoked again in

this proof.

Conversely, suppose that the edge B1 is balanced but that that (G,ω) is not

as given in one of the three cases of Table 2.1.

(1) b1 + b2 + b3 + b4 (5) a2 + a3 + b1 + b3 + b4
(2) a1 + a2 + b1 (6) a2 + a4 + b1 + b4
(3) a1 + a3 + b1 + b2 (7) a3 + a4 + b1 + b2 + b4
(4) a1 + a4 + b1 + b2 + b3

Table 3.6: B1 is a rim edge of W4

We summarize in each row of Table 3.7 the corresponding path length condi-

tion that occurs in the graph of Figure 1.7 when the corresponding sums in Table 3.6

have the same value.

Some pairs of the equalities in Table 3.7 cannot occur simultaneously. From

considering all pairs of possible equalities from Table 3.7 we obtain Table 3.8. For

example, if (1)=(3) and (2)=(5), then one obtains the contradiction that a3 = 0.

This information is summarized in the first row of Table 3.8. We use the same

notation for nonempty sets S and T that partition {1, 2, 3, 4, 5, 6, 7} as before so

that the sums in Table 3.6 corresponding to the elements of S have the same value,

while all the sums in Table 3.6 corresponding to the elements of T have the other

value.
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(1) = (2) b2 + b3 + b4 = a1 + a2
(1) = (3) b3 + b4 = a1 + a3
(1) = (4) b4 = a1 + a4
(1) = (5) b2 = a2 + a3
(1) = (6) b2 + b3 = a2 + a4
(1) = (7) b3 = a3 + a4
(2) = (3) a2 = a3 + b2
(2) = (4) a2 = a4 + b2 + b3
(2) = (5) a1 = a3 + b3 + b4
(2) = (6) a1 = a4 + b4
(2) = (7) a1 + a2 = a3 + a4 + b2 + b4
(3) = (4) a3 = a4 + b3
(3) = (5) a1 + b2 = a2 + b3 + b4
(3) = (6) a1 + a3 + b2 = a2 + a4 + b4
(3) = (7) a1 = a4 + b4
(4) = (5) a1 + a4 + b2 = a2 + a3 + b4
(4) = (6) a1 + b2 + b3 = a2 + b4
(4) = (7) a1 + b3 = a3 + b4
(5) = (6) a3 + b3 = a4
(5) = (7) a2 + b3 = a4 + b2
(6) = (7) a2 = a3 + b2

Table 3.7: Consequences of Equal Sums in Table 3.6
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(i) (1) = (3) and (2) = (5)
(ii) (1) = (4) and (2) = (5)
(iii) (1) = (4) and (2) = (6)
(iv) (1) = (4) and (3) = (7)
(v) (1) = (5) and (2) = (3)
(vi) (1) = (5) and (2) = (4)
(vii) (1) = (5) and (6) = (7)
(viii) (1) = (6) and (2) = (4)
(ix) (1) = (7) and (3) = (4)
(x) (1) = (7) and (5) = (6)
(xi) (2) = (4) and (5) = (7)
(xii) (2) = (5) and (4) = (7)
(xiii) (3) = (4) and (5) = (6)
(xiv) (3) = (5) and (4) = (6)

Table 3.8: Pairs of equalities from Table 3.7 that do not simultaneously hold
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Notice that min{|S|, |T |} 6= 1 as in Table 3.8 each element of the set {1, 2, 3, 4, 5, 6, 7}

is not mentioned in at least one row. For example, (S, T ) = (1, 234567) would

contradict row (xi) of the Table 3.8.

Assume |S| = 2 and |T | = 5. There are twenty-one pairs (S, T ) to consider.

Only one of these pairs can occur by Table 3.8. We next list each of the twenty

pairs (S, T ) that cannot occur followed in parentheses by the row number of Ta-

ble 3.8 that establishes that fact: (12, 34567) (xiii), (13, 24567) (i), (14, 23567) (ii),

(15, 23467) (v), (16, 23457) (viii), (17, 23456) (ix), (23, 14567) (v), (24, 13567) (vi),

(25, 13467) (i), (26, 13457) (iii), (27, 13456) (xiii), (34, 12567) (vii), (35, 12467) (iii),

(36, 12457) (ii), (37, 12456) (ii), (46, 12357) (i), (47, 12356) (i), (56, 12347) (iv),

(57, 12346) (iii), (67, 12357) (i). Hence (S, T ) = (45, 12367). Notice that (4)=(5),

(2)=(3), and (2)=(6) in Table 3.7 yield the equations a1 + a4 + b2 = a2 + a3 + b4,

a2 = a3 + b2, and a1 = a4 + b4, respectively. Substituting a4 + b4 for a1 and a3 + b2

for a2 into a1 + a4 + b2 = a2 + a3 + b4, we obtain the equation a3 = a4. Since (1)=(7)

in Table 3.7 yield the equations b3 = a3 + a4 and a3 = a4, we obtain the equation

b3 = 2a3. It follows from (2)=(3) in that table that a2 = a3 + b2. It follows from

(2)=(6) that a1 = a4 + b4 = a3 + b4. In summary, a3 = a4, b3 = 2a3, a1 = a3 + b4,

and a2 = a3 + b2. Thus (G,ω) is as given in (C1) of Table 2.1; a contradiction.

Assume |S| = 3 and |T | = 4. There are thirty-five pairs (S, T ) to con-

sider. Thirty-two of these pairs cannot occur by Table 3.8. We next list each

of these thirty-two pairs (S, T ) followed in parentheses by the row number of Ta-

ble 3.8 that implies that this pair cannot occur: (124, 3567) (iv), (125, 3467) (vii)
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(127, 3456) (ix),(134, 2567) (i), (135, 2467) (vi), (136, 2457) (i), (137, 2456) (i),

(145, 2367) (iii), (146, 2357) (ii), (147, 2356) (ii), (156, 2347) (v), (157, 2346) (v),

(167, 2345) (viii), (234, 1567) (v), (235, 1467) (ii), (S, T ) = (236, 1457) (v),

(237, 1456) (iv), (245, 1367) (i), (246, 1357) (vi), (247, 1356) (vi), (256, 1347) (i),

(257, 1346) (i), (267, 1345) (iii), (345, 1267) (ix), (346, 1257) (ix), (347, 1256) (xii),

(356, 1247) (x), (357, 1246) (iii), (367, 1245) (ii), (456, 1237) (x), (467, 1235) (i), and

(567, 1234) (xi).

We have three cases remaining to consider for (S, T ), namely (123, 4567),

(126, 3457), (457, 1236). Assume that (S, T ) = (123, 4567). In Table 3.7, it follows

from (1)=(3), (2)=(3), (4)=(7), and (5)=(6), respectively, that b3 + b4 = a1 + a3,

a2 = a3 + b2, a1 + b3 = a3 + b4, and a3 + b3 = a4. One can show using these equations

that a1 = b4, a3 = b3, a4 = 2a3, and a2 = a3 + b2. Thus the pair (G,ω) is as given in

condition (C3); a contradiction.

Assume that (S, T ) = (126, 3457). Under the permutation (‡), this condition

becomes (S, T ) = (123, 4567) and under (†) condition (C3) becomes condition (C2);

a contradiction.

Suppose (S, T ) = (457, 1236). Then, in Table 3.7, (4)=(7) and (1)=(3) imply

that a1 + b3 = a3 + b4 and b3 + b4 = a1 + a3. Thus a1 = b4. However, (2)=(6)

implies that a1 = a4 + b4. Hence a4 = 0; a contradiction. This completes the proof

of Theorem 2.1.4.
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Proof of Theorem 2.1.5. We may assume that E ∈ {A1, B1}. Sup-

pose that n = 5. The cycles of G that contain the edge B1 are

{B1, B2, B3, B4, B5}, {A1, A2, B1}, {A1, A3, B1, B2}, {A1, A4, B1, B2, B3},

{A1, A5, B1, B2, B3, B4}, {A2, A3, B1, B3, B4, B5}, {A2, A4, B1, B4, B5},

{A2, A5, B1, B5}, {A3, A4, B1, B2, B4, B5}, {A3, A5, B1, B2, B5}, and

{A4, A5, B1, B2, B3, B5}. If the given conditions hold, then these cycles all

have weight b1 + b2 + b3 + b4 + b5 or b1 + b2 + b3 + b4 + b5 + 2b3.

Conversely, suppose that the edge E ∈ {A1, B1} of G has |specω(G)(E)| = 2

and it is not true that n = 5, E = B1, and ω is as given in the theorem statement.

Let H, K, and J be the graphs given in Figure 3.2 with weight functions ωH , ωK ,

and ωJ defined as in Table 3.9. It follows from the edge E being ω-balanced in G

that the edge is also ωH-balanced in H, is ωK-balanced in K, and is ωJ -balanced in

J .

B1

B2B3

BH

A1

A2

A3

A4

H

B1

B2BK

Bn

A1

A2

A3

An

K

B1

BJBn−1

Bn

A1

A2

An−1

An

J

Figure 3.2: Three subgraphs of G ∼= W5

First assume that E = A1. It follows from Theorem 2.1.4 that ωH(B1) =

ωH(BH) and that ωJ(B1) = ωJ(Bn). From Table 3.9 we obtain that b1 = ωH(B1) =
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ωH(A1) = a1 ωK(A1) = a1 ωJ(A1) = a1
ωH(A2) = a2 ωK(A2) = a2 ωJ(A2) = a2
ωH(A3) = a3 ωK(A3) = a3 ωJ(An−1) = an−1
ωH(A4) = a4 ωK(An) = an ωJ(An) = an
ωH(B1) = b1 ωK(B1) = b1 ωJ(B1) = b1
ωH(B2) = b2 ωK(B2) = b2 ωJ(BJ) = b2 + b3 + · · ·+ bn−2
ωH(B3) = b3 ωK(BK) = b3 + b4 + · · ·+ bn−1 ωJ(Bn−1) = bn−1
ωH(BH) = b4 + b5 + · · ·+ bn ωK(Bn) = bn ωJ(Bn) = bn

Table 3.9: The pairs (H,ωH), (K,ωK), and (J, ωJ)

ωH(BH) = b4 + b5 + · · · + bn and b1 = ωJ(B1) = ωJ(Bn) = bn. Hence b4 = 0; a

contradiction. Thus E = B1. Then we have shown that (G,ω) is as given in one of

the conditions (C1), (C2), and (C3). We obtain three analogous conditions, as given

in Table 3.10, for each of the pairs (H,ωH) and (K,ωK).

We now substitute the values of Table 3.9 into Table 3.10 to obtain Table 3.11. Now

exactly one of conditions (H1), (H2), and (H3) holds from that table. Also, exactly

one of conditions (K1), (K2), or (K3) holds, while exactly one of conditions (J1),

(J2), or (J3) holds. We first show that conditions (H1) and (H2) cannot occur.
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(H1) (H2)
ωH(A1) = ωH(A3) + ωH(BH) ωH(A1) = ωH(A4) + ωH(BH)
ωH(A2) = ωH(A3) + ωH(B2) ωH(A2) = ωH(B2)
ωH(A3) = ωH(A4) ωH(A4) = ωH(B3)
ωH(B3) = 2ωH(A3) ωH(A3) = 2ωH(A4)
(H3)
ωH(A2) = ωH(A3) + ωH(B2)
ωH(A1) = ωH(BH)
ωH(A3) = ωH(B3)
ωH(A4) = 2ωH(A3)
(K1) (K2)
ωK(A1) = ωK(A3) + ωK(Bn) ωK(A1) = ωK(An) + ωK(Bn)
ωK(A2) = ωK(A3) + ωK(B2) ωK(A2) = ωK(B2)
ωK(A3) = ωK(An) ωK(An) = ωK(BK)
ωK(BK) = 2ωK(A3) ωK(A3) = 2ωK(An)
(K3)
ωK(A2) = ωK(A3) + ωK(B2)
ωK(A1) = ωK(Bn)
ωK(A3) = ωK(BK)
ωK(An) = 2ωK(A3)
(J1) (J2)
ωJ(A1) = ωJ(An−1) + ωJ(Bn) ωJ(A1) = ωJ(An) + ωJ(Bn)
ωJ(A2) = ωJ(An−1) + ωJ(BJ) ωJ(A2) = ωJ(BJ)
ωJ(An−1) = ωJ(An) ωJ(An) = ωJ(Bn−1)
ωJ(Bn−1) = 2ωJ(An−1) ωJ(An−1) = 2ωJ(An)
(J3)
ωJ(A2) = ωJ(An−1) + ωJ(BJ)
ωJ(A1) = ωJ(Bn)
ωJ(An−1) = ωJ(Bn−1)
ωJ(An) = 2ωJ(An−1)

Table 3.10: Conditions implied the weighted graphs H, K, and J
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(H1) (H2)
a1 = a3 + b4 + b5 + · · ·+ bn a1 = a4 + b4 + b5 + · · ·+ bn
a2 = a3 + b2 a2 = b2
a3 = a4 a4 = b3
b3 = 2a3 a3 = 2a4
(H3)
a2 = a3 + b2
a1 = b4 + b5 + · · ·+ bn
a3 = b3
a4 = 2a3
(K1) (K2)
a1 = a3 + bn a1 = an + bn
a2 = a3 + b2 a2 = b2
a3 = an an = b3 + b4 + · · ·+ bn−1
b3 + b4 + · · ·+ bn−1 = 2a3 a3 = 2an
(K3)
a2 = a3 + b2
a1 = bn
a3 = b3 + b4 + · · ·+ bn−1
an = 2a3
(J1) (J2)
a1 = an−1 + bn a1 = an + bn
a2 = an−1 + b2 + b3 + · · ·+ bn−2 a2 = b2 + b3 + · · ·+ bn−2
an−1 = an an = bn−1
bn−1 = an−1 an−1 = 2an
(J3)
a2 = an−1 + b2 + b3 + · · ·+ bn−2
a1 = bn
an−1 = bn−1
an = 2an−1

Table 3.11: Exactly one pair of conditions (H,K) holds
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Suppose that condition (H1) holds. If conditions (H1) and (K1) hold, then

a3 + b4 + b5 + · · · + bn = a1 = a3 + bn so that b4 = 0; a contradiction. If conditions

(H1) and (K2) hold, then a3 + b2 = a2 = b2 so that a3 = 0; a contradiction. If

conditions (H1) and (K3) hold, then a3 + b4 + b5 + · · ·+ bn = a1 = bn so that a3 = 0;

a contradiction. Thus condition (H1) doesn’t hold.

Suppose that condition (H2) holds. If conditions (H2) and (K1) hold, then

b2 = a2 = a3 + b2 so that a3 = 0; a contradiction. If (H2) and (K2) hold, then

2a4 = a3 = 2an so that a4 = an. Then a4 + bn = an + bn = a1 = a4 + b4 + b5 + · · ·+ bn

so that b4 = 0; a contradiction. If (H2) and (K3) hold, then b2 = a2 = a3 + b2 so

that a3 = 0; a contradiction. Thus condition (H2) does not hold.

We have shown that condition (H3) must occur. If (H3) and (J1) hold, then

b3 + b2 = a3 + b2 = a2 = an−1 + b2 + b3 + · · ·+ bn−2 so that an−1 = 0; a contradiction.

If (H3) and (J2) hold, then bn−1 + bn = an + bn = a1 = b4 + b5 + · · · + bn.

Thus n = 5. Hence a3 = b3 and a2 = b2 + b3. Then 2a3 = a4 = 2a5 = 2b4.

Hence a3 = b4. Thus b3 = a3 = b4. Also a4 = 2a3 = 2b3 and a5 = b4 = b3.

Finally, a1 = b4 + b5 = b3 + b5. Hence (G,ω) is as given in the theorem statement; a

contradiction.

If (H3) and (J3) hold, then bn = a1 = b4 + b5 + · · · + bn so that b4 = 0; a

contradiction. This completes the proof of Theorem 2.1.5.

The edge labeling of G in Theorem 2.1.6 was given in Figure 2.7.
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Proof of Theorem 2.1.6. We may assume by symmetry that E ∈ {A1, C1}. First

assume that E = A1. The cycles of G that contain the edge A1 are

{A1, A2, B1}, {A1, A4, B4}, {A1, A2, B2, B3, B4}, {A1, A3, B3, B4}, {A1, A3, B1, B2},

{A1, A4, B1, B2, B3}, {C,A1, A2, B4}, {C,A1, A4, B1}, {C,A1, A3, B3, B4}, and

{C,A1, A3, B1, B3}. If the conditions of the theorem statement are satisfied, then

specω(A1)(G) = {a1 + a2 + b1, a1 + a2 + b1 + 2b2}.

Conversely, suppose that |specω(A1)(G)| = 2 and that the pair (G,ω) is not

as given in the theorem statement. It follows from applying Theorem 2.1.4 to the

subgraph of G obtained by deleting the edge C that a2 = a4, b1 = b4, b2 = b3, and

a3 = a2 ± b2. First suppose that a3 = a2 + b2. Then the cycles of G that contain A1

have length a1 +a2 + b1 or a1 +a2 + b1 +2b2. Hence the cycles of G that contain both

of the edges A1 and C have one of these two weights. The given conditions imply

that these four cycles have weights a1 + a2 + b1 + c or a1 + a3 + b1 + b2 + c. Thus

{a1 + a2 + b1 + c, a1 + a3 + b1 + b2 + c} = {a1 + a2 + b1, a1 + a2 + b1 + 2b2}. Then

c > 0 implies that a1 + c+ b1 + a2 = a1 + a2 + b1 + 2b2 so that c = 2b2.

Recall that a3 = a2±b2. Assume that a3 = a2+b2. Then a1+a3+b1+b2+c =

a1 + a2 + b1 + 2b2 + c has too large a weight. Hence a3 = a2 − b2 and G is as given

in the theorem statement; a contradiction.

Now suppose that E = C. The cycles of G that contain the edge

C are {A2, A4, C}, {B1, B4, C}, {B2, B3, C}, {A1, A2, B4, C}, {A1, A4, B1, C},
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{A2, A3, B3, C}, {A3, A4, B2, C}, {A1, A3, B1, B3, C}, {A1, A3, B2, B4, C}. If the con-

ditions of the theorem statement are satisfied, then specω(C)(G) = {b1 + b3 + c, 2a1 +

b1 + b3 + c}.

Conversely, suppose that |specω(C)(G)| = 2 and that the pair (G,ω) is not

as given in the theorem statement. Consider the two subgraphs G1 and G2 of G

pictured in Figure 3.3. It follows from applying Theorem 2.1.4 to G1 that b1 = b2,

b3 = b4, a1 = a3, a2 = b1 ± a1. It follows from applying Theorem 2.1.4 to G2 that

a4 = b3 ± a3. Since a1 = a3, a4 = b3 ± a1. It follows from (G,ω) not being as given

in the theorem statement that a2 = b1 − a1 and a4 = b3 − a1. Now the conditions

obtained imply that specω(C)(G) = {b1 + b3 + c, 2a1 + b1 + b3 + c}. But then the

cycle {A2, A4, C} has weight a2 + a4 + c = b1 + b3 + c − 2a1 which is of too small

weight. This contradiction completes the proof of Theorem 2.1.6.
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B2

G1
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B1
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B3
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B4

G2

Figure 3.3: Two subgraphs of G ∼= K−5 that use the edge e

Proof of Theorem 2.1.7. Suppose that G ∼= K5 with the edge labeling for G as given

in Figure 3.4. Suppose that |specω(D)(G)| = 2 without loss of generality. It follows
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Figure 3.4: The graph K5
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Figure 3.5: Two subgraphs of G ∼= K5

from applying Theorem 2.1.6 (i) to the left subgraph in Figure 3.5 that b1 = b4 − c.

It follows from applying Theorem 2.1.6 (ii) to the right subgraph in that figure that

b1 = b4. Thus c = 0; a contradiction. Hence the edge D is not balanced. By

symmetry no edge of G is balanced. This completes the proof of Theorem 2.1.7.

Proof of Theorem 2.1.8. Suppose that G ∼= K3,n with the edge labeling for G as

given in Figure 2.8 with the edges U1, U2, and U3 deleted. We may assume that

E = A1. cycles of G that contain the edge A1 are, for i ∈ [n]\1, {A1, B1, Ai, Bi}

and {A1, C1, Ai, Ci} , and in addition for j /∈ {1, i}, {A1, B1, Bi, Ci, Cj, Aj} and
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{A1, C1, Bi, Bj, Ci, Aj}. If the conditions in the theorem statement hold, then

Specω(A1)(G) = {a1 + b1 + a2 + b2, a1 + b1 + a2 + 3b2}.

Conversely, suppose that |Specω(A1)(G)| = 2 and that the pair (G,ω) is not

as given in the theorem statement. First suppose that n = 3. Then the eight sums

in the Table 3.12 have one of two different values.

(1) a1 + a2 + b1 + b2 (5) a1 + a2 + b1 + b3 + c2 + c3
(2) a1 + a2 + c1 + c2 (6) a1 + a2 + b2 + b3 + c1 + c3
(3) a1 + a3 + b1 + b3 (7) a1 + a3 + b2 + b3 + c1 + c2
(4) a1 + a3 + c1 + c3 (8) a1 + a3 + b1 + b2 + c2 + c3

Table 3.12: Weights of cycles containing the edge A1 in the graph K3,3

There are three edge isomorphisms of G ∼= K3,3 that fix the

edge A1. These isomorphisms are (A1)(A2)(A3)(B1C1)(B2C2)(B3C3),

(A1)(A2A3)(B1)(B2B3)(C1)(C2C3), and (A1)(A2A3)(B1C1)(B2C3)(B3C2). Thus

in any equations involving the weights ai, bi, and ci we may apply the per-

mutations (a1)(a2)(a3)(b1c1)(b2c2)(b3c3), (a1)(a2a3)(b1)(b2b3)(c1)(c2c3), and

(a1)(a2a3)(b1c1)(b2c3)(c3c2) to both sides of the equations. These three per-

mutations of the edge weights of G yield the following three permutations of the

equation labels of the equations in Table 3.12:

(A) (12)(34)(56)(78),

(B) (13)(24)(58)(67), and

(C) (14)(23)(57)(68).
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(1) = (2) b1 + b2 = c1 + c2
(1) = (3) a2 + b2 = a3 + b3
(1) = (4) a2 + b1 + b2 = a3 + c1 + c3
(1) = (5) b2 = b3 + c2 + c3
(1) = (6) b1 = b3 + c1 + c3
(1) = (7) a2 + b1 = a3 + b3 + c1 + c2
(1) = (8) a2 = a3 + c2 + c3
(2) = (3) a2 + c1 + c2 = a3 + b1 + b3
(2) = (4) a2 + c2 = a3 + c3
(2) = (5) c1 = b1 + b3 + c3
(2) = (6) c2 = b2 + b3 + c3
(2) = (7) a2 = a3 + b2 + b3
(2) = (8) a2 + c1 = a3 + b1 + b2 + c3
(3) = (4) b1 + b3 = c1 + c3
(3) = (5) a3 = a2 + c2 + c3
(3) = (6) a3 + b1 = a2 + b2 + c1 + c3
(3) = (7) b1 = b2 + c1 + c2
(3) = (8) b1 = b2 + c1 + c2
(4) = (5) a3 + c1 = a2 + b1 + b3 + c2
(4) = (6) a3 = a2 + b2 + b3
(4) = (7) c3 = b2 + b3 + c2
(4) = (8) c1 = b1 + b2 + c2
(5) = (6) b1 + c2 = b2 + c1
(5) = (7) a2 + b1 + c3 = a3 + b2 + c1
(5) = (8) a2 + b3 = a3 + b2
(6) = (7) a2 + c3 = a3 + c2
(6) = (8) a2 + b3 + c1 = a3 + b1 + c2
(7) = (8) b3 + c1 = b1 + c3

Table 3.13: consequences of Equal Sums in Table 3.12
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(i) (1) = (2) and (3) = (7)
(ii) (1) = (2) and (4) = (8)
(iii) (1) = (3) and (2) = (7)
(iv) (1) = (3) and (4) = (6)
(v) (1) = (5) and (2) = (6)
(vi) (1) = (5) and (3) = (8)
(vii) (1) = (5) and (4) = (7)
(viii) (1) = (6) and (2) = (5)
(ix) (1) = (6) and (3) = (4)
(x) (1) = (6) and (4) = (8)
(xi) (1) = (6) and (7) = (8)
(xii) (1) = (7) and (4) = (5)
(xiii) (1) = (8) and (2) = (4)
(xiv) (1) = (8) and (3) = (5)
(xv) (1) = (8) and (4) = (6)
(xvi) (1) = (8) and (6) = (7)
(xvii) (2) = (4) and (3) = (5)
(xviii) (2) = (5) and (3) = (4)
(xix) (2) = (5) and (3) = (7)
(xx) (2) = (5) and (7) = (8)
(xxi) (2) = (6) and (3) = (8)
(xxii) (2) = (6) and (4) = (7)
(xxiii) (2) = (7) and (3) = (5)
(xxiv) (2) = (7) and (4) = (6)
(xxv) (2) = (7) and (5) = (8)
(xxvi) (2) = (8) and (3) = (6)
(xxvii) (3) = (5) and (6) = (7)
(xxviii) (3) = (7) and (4) = (8)
(xxix) (3) = (7) and (5) = (6)
(xxx) (3) = (8) and (4) = (7)
(xxxi) (4) = (6) and (5) = (8)
(xxxii) (4) = (8) and (5) = (6)

Table 3.14: Pairs of equalities from Table 3.13 that do not simultaneously hold
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We partition the equation labels in Table 3.12 in two classes of equal sums S

and T as usual. Assume that 1 ∈ S without loss of generality. Suppose that 1 = 6.

Then Table 3.14 implies that 2 6= 5, 3 6= 4, 4 6= 8, and 7 6= 8. This implies that

3 = 8 and 4 = 7. This contradicts row (xxx) of Table 3.14. Hence 1 ∈ S and 6 ∈ T .

Hence from applying the fact that 1 6= 6 and the label permutations (A), (B), and

(C) that 2 6= 5, 3 6= 7, and 4 6= 8.

Assume that 1 = 8. Then Table 3.14 implies that 2 6= 4, 3 6= 5, 4 6= 6, and

6 6= 7. Then {1, 2, 3, 6, 8} ⊆ S. This contradicts row (xxvi) of Table 3.14. Hence

1 6= 8 and 8 ∈ T . It follows from 6 = 8 and the label permutation (A) that 5 = 7.

First assume that 5, 7 ∈ S. Then Table 3.14 implies that 2 6= 6, 3 6= 8, 4 6= 7, and

4 6= 5. So {1, 2, 3, 5, 7} ⊆ S and {4, 6, 8} ⊆ T/ This contradicts row (i) of Table 3.14.

Hence we have established that 1 6= 8 so that 1 ∈ S and {5, 6, 7, 8} ⊆ T . Then

row (xxxii) of Table 3.14 implies that 4 ∈ S. Row (xxv) of Table 3.14 implies that

2 ∈ S. Row (xxvii) of Table 3.14 implies that 3 ∈ S. Hence S = {1, 2, 3, 4} and

T = {5, 6, 7, 8}. So a2 = a3, b1 = c1, b2 = b3, and c2 = c3. Hence the pair (G,ω) is

as given in Theorem 2.1.8 with n = 3; a contradiction. By symmetry, if G ∼= K3,n,

then (G,ω) is as given in the theorem statement; a contradiction. This completes

the proof of Theorem 2.1.8.

Proof of Theorem 2.1.9. Suppose that G ∼= K ′3,n as pictured in Figure 2.8 with the

edges U2 and U3 deleted. By symmetry we may assume that E = A1, E = C3, or E =

U1. First assume that E = A1. The cycles of G that contain the edge A1 are as given

in the previous proof together with cycles {A1, B1, U1} and {A1, C1, U1, Bi, Ci} for i ∈
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[n]\1. If (G,ω) satisfies conditions of the theorem statement (i), then specω(A1)(G) =

{a1 + b1 + a2 + b2, a1 + b1 + a2 + 3b2}.

Conversely, suppose that |specω(A1)(G)| = 2 and that the pair (G,ω) is not

as given in the theorem statement. Then Theorem 2.1.8 implies that b1 = c1, and,

for i, j ∈ [n]\1, ai = aj and bi = cj. These conditions imply that specω(A1)(G) =

{a1 + b1 + a2 + b2, a1 + b1 + a2 + 3b2}. Then there are cycles of length a1 + b1 + u1

and a1 + b1 + 2b2 + u1 containing the edges A1 and U1. So u1 = a2 + b2 and (G,ω)

is as given in Theorem 2.1.9 (i); a contradiction.

Now suppose that E = C3. If (G,ω) satisfies the conditions in the theorem

statement (ii), then specω(C3)(G) = {a1 + a3 + c1 + c3, 3a1 + a3 + c1 + c3}.

Conversely, suppose that |specω(C3)(G)| = 2 and that (G,ω) is not as given in

the theorem statement (ii). Then from interchanging the roles of the edges A1 and C3

in the proof of Theorem 2.1.8 we obtain that a3 = b3, ci = cj for i, j ∈ {1, 2, · · · , n}\3

and ai = bj for i, j ∈ {1, 2, · · · , n}\3. Thus specω(C3)(G) = {a1 + a3 + c1 + c3, 3a1 +

a3 + c1 + c3}. The cycles of G that contain both the edges C3 and U1 all have weight

a1 + a3 + c1 + c3 + u1. Hence u1 = 2a1. Thus (G,ω) is as given in part (ii) of the

theorem statement; a contradiction.

Now suppose that E = U1. If (G,ω) satisfies the conditions in the theorem

statement (iii), then specω(U1)(G) = {a1 + b1 + u1, a1 + b1 + u1 + 2c1}.
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Conversely, suppose that |specω(U1)(G)| = 2 and that the pair (G,ω) is

not as given in the theorem statement (iii). Suppose that n = 3 and then

we generalize the result when n > 3. The cycles of G that contains the edge

U1 are {A1, B1, U1}, {A2, B2, U1}, {A3, B3, U1}, {A3, B3, U1}, {A1, B2, C1, C2, U1},

{A1, B3, C1, C3, U1}, {A2, B1, C1, C2, U1}, {A2, B3, C2, C3, U1}, {A3, B2, C2, C3, U1},

and {A3, B1, C1, C3, U1}. Then the sums in Table 3.15 are of two values. Define the

sets S and T as before and assume that 1 ∈ S without loss of generality. Table 3.16

yields the consequences of different sums being equal in the Table 3.15 and Ta-

ble 3.17 shows which pairs of equal sums cannot occur. Under the edge isomorphism

(A1, B1)(A2, B2)(A3, B3)(C1)(C2)(C3) of G we obtain the following permutation of

the label set of Table 3.15:

(†) (1)(2)(3)(46)(59)(78).

(1) a1 + b1 + u1 (6) a2 + b1 + c1 + c2 + u1
(2) a2 + b2 + u1 (7) a2 + b3 + c2 + c3 + u1
(3) a3 + b3 + u1 (8) a3 + b2 + c2 + c3 + u1
(4) a1 + b2 + c1 + c2 + u1 (9) a3 + b1 + c1 + c3 + u1
(5) a1 + b3 + c1 + c3 + u1

Table 3.15: Weights of cycles containing the edge U1 in the graph K3,3 + U1
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(1) = (2) a1 + b1 = a2 + b2
(1) = (3) a1 + b1 = a3 + b3
(1) = (4) b1 = b2 + c1 + c2
(1) = (5) b1 = b3 + c1 + c3
(1) = (6) a1 = a2 + c1 + c2
(1) = (7) a1 + b1 = a2 + b3 + c2 + c3
(1) = (8) a1 + b1 = a3 + b2 + c2 + c3
(1) = (9) a1 = a3 + c1 + c3
(2) = (3) a2 + b2 = a3 + b3
(2) = (4) a2 = a1 + c+ 1 + c2
(2) = (5) a2 + b2 = a1 + b3 + c1 + c3
(2) = (6) b2 = b1 + c1 + c2
(2) = (7) b2 = b3 + c2 + c3
(2) = (8) a2 = a3 + c2 + c3
(2) = (9) a2 + b2 = a3 + b1 + c1 + c3
(3) = (4) a3 + b3 = a1 + b2 + c1 + c2
(3) = (5) a3 = a1 + c1 + c3
(3) = (6) a3 + b3 = a2 + b1 + c1 + c2
(3) = (7) a3 = a2 + c2 + c3
(3) = (8) b3 = b2 + c2 + c3
(3) = (9) b3 = b1 + c1 + c3
(4) = (5) b2 + c2 = b3 + c3
(4) = (6) a1 + b2 = a2 + b1
(4) = (7) a1 + b2 + c1 = a2 + b3 + c3
(4) = (8) a1 + c1 = a3 + c3
(4) = (9) a1 + b2 + c2 = a3 + b1 + c3
(5) = (6) a1 + b3 + c3 = a2 + b1 + c2
(5) = (7) a1 + c1 = a2 + c2
(5) = (8) a1 + b3 + c1 = a3 + b2 + c2
(5) = (9) a1 + b3 = a3 + b1
(6) = (7) b1 + c1 = b3 + c3
(6) = (8) a2 + b1 + c1 = a3 + b2 + c3
(6) = (9) a2 + c2 = a3 + c3
(7) = (8) a2 + b3 = a3 + b2
(7) = (9) a2 + b3 + c2 = a2 + b1 + c1
(8) = (9) b2 + c2 = b1 + c1

Table 3.16: consequences of Equal Sums in Table 3.15
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(i) (1) = (4) and (2) = (6)
(ii) (1) = (4) and (8) = (9)
(iii) (1) = (5) and (3) = (9)
(iv) (1) = (5) and (6) = (7)
(v) (1) = (6) and (2) = (4)
(vi) (1) = (6) and (5) = (7)
(vii) (1) = (9) and (3) = (5)
(viii) (1) = (9) and (4) = (8)
(ix) (2) = (4) and (5) = (7)
(x) (2) = (6) and (8) = (9)
(xi) (2) = (7) and (3) = (8)
(xii) (2) = (7) and (4) = (5)
(xiii) (2) = (8) and (3) = (7)
(xiv) (2) = (8) and (6) = (9)
(xv) (3) = (5) and (4) = (8)
(xvi) (3) = (7) and (6) = (9)
(xvii) (3) = (8) and (4) = (5)
(xviii) (3) = (9) and (6) = (7)

Table 3.17: Pairs of equalities from Table 3.16 that do not simultaneously hold
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Suppose that 4 ∈ S. Then, by rows (i)and (ii) of Table 3.17, one of four cases

occurs, (1248, 69), (1249, 68), (1468, 29), or (1469, 28) is a subset of (S, T ). The first

and last of these cases do not occur by row (xiv) of Table 3.17.

Suppose that (1249, 68) ⊂ (S, T ). It follows from row (viii) of Table 3.17

that (3) 6= (5) so that (12349, 568) or (12459, 368) is a subset of (S, T ). Suppose the

former holds. Then (1) = (4), (2) = (7), and (3) = (9) imply that b1 = b2 + c1 + c2,

b2 = b3+c2+c3, and b3 = b1+c1+c3. Thus b1 = b2+c1+c2 = (b3+c2+c3)+c1+c2 =

b3 + c1 + 2c2 + c3 = (b1 + c1 + c3) + c1 + 2c2 + c3. Hence b1 < b1; a contradiction.

Suppose (12459, 368) is a subset of (S, T ). This contradicts row (xvii) of Table 3.17.

Hence (1468, 29) is a subset of (S, T ).

It follows from row (xii) of Table 3.17 that (14568, 279) or (14678, 259) is

a subset of (S, T ). The former cannot occur by row (xii) of Table 3.17. If the

latter occurs, then the equations for (2) = (5), (1) = (6), and (3) = (8) imply that

a2 + b2 = a1 + b3 + c1 + c3, a1 = a2 + c1 + c2, and b3 = b2 + c2 + c3. It follows

from substituting the last two equations into the first we obtain that a2 + b2 =

a1 + b3 + c1 + c3 = (a2 + c1 + c2) + (b2 + c2 + c3) + c1 + c3 = a2 + b2 + 2(c1 + c2 + c3)

so that a2 + b2 < a2 + b2; a contradiction. Hence (1) 6= (4). We may apply (†) to

obtain that (1) 6= (6).

Assume (1) = (5). Then by rows (iii) and (iv) of Table 3.17, (3) 6= (9) and

(6) 6= (7). Hence 7 ∈ S and (157, 46) is a subset of (S, T ), and either (1357, 469)

or (1579, 346) is a subset of (S, T ). Then former case cannot occur by row (xvi) of
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Table 3.17. If the latter case occurs, then 8 ∈ S by row (viii). Then 2 ∈ S by row

(ix) of Table 3.17. Then (3) = (4), (4) = (6), (2) = (8), and (1) = (5) imply that

a3 + b3 = a1 + b2 + c1 + c2, a1 + b2 = a2 + b1, a2 = a3 + c2 + c3, and b1 = b3 + c1 + c3.

Thus a3 + b3 = (a1 + b2) + c1 + c2 = (a2 + b1) + c1 + c2 = (a3 + c2 + c3) + b1 + c1 + c2 =

a3 +c2 +c3 +(b3 +c1 +c3)+c1 +c2 = a3 + b3 +2(c1 +c2 +c3) so that a3 + b3 < a3 + b3;

a contradiction. So (1) 6= (5), and by (†), (1) 6= (9). Hence (1, 4569) is a subset of

(S, T ).

Suppose (1) = (7) so that (17, 4569) is a subset of (S, T ). By row (xii) of

Table 3.17, 2 ∈ T . It follows from rows (xiv) and (xvi) of Table 3.17 that (2) 6= (8)

and (3) 6= (7), respectively. Thus (S, T ) = (178, 234569). It follows from (1) = (7),

(2) = (4), and (3) = (9) that a1 + b1 = a2 + b3 + c2 + c3, a2 = a1 + c1 + c2, and

b3 = b1+c1+c3. It follows from combining these three equations that a1+b1 < a1+b1;

a contradiction. Hence (1) 6= (7), and by (†), (1) 6= (8). Hence (1, 456789) is a

subset of (S, T ). It follows from rows (ix) and (xvi) of Table 3.17 that 2 ∈ S and

3 ∈ S, respectively. Hence (S, T ) = (123, 456789). Using the equalities obtained

in Table 3.16 from (1)=(2)=(3) and (4)=(5)=(6)=(7)=(8)=(9) we obtain that, for

i, j ∈ {1, 2, 3}, ai = aj, bi = bj, and ci = cj. Now if n ≥ 3, by symmetry, for i, j ∈ [n],

ai = aj, bi = bj, and ci = cj. Hence (G,ω) is as given in the theorem statement (iii);

a contradiction. This completes the proof of Theorem 2.1.9.

Proof of Theorem 2.1.10. Suppose that G ∼= K ′′3,n as pictured in Figure 2.8 with the

edge U3 deleted. By symmetry, we may assume that E = A1, E = B1, or E = U1.
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First assume that E = A1. If (G,ω) satisfies the conditions in the theorem statement

(i), then specω(A1)(G) = {a1 + a2 + b1 + b2, a1 + a2 + b1 + 3b2}.

Conversely, suppose that |specω(A1)(G)| = 2 and that the pair (G,ω) is not as

given in the theorem statement (i). It follows from applying Theorem 2.1.9 (i) that

b1 = c1, and, for i, j ∈ [n]\1, ai = aj, bi = cj, and u1 = a2 + b2. The cycles of G that

contain A1 then must have weight a1 + a2 + b1 + b2 or a1 + a2 + b1 + 3b2. In addition,

the cycle of G {A1, C1, U1, U2} has weight a1 + b1 + a2 + b2 + u2 so that u2 = 2b2.

Hence (G,ω) is as given in the statement of the theorem (i); a contradiction.

Now suppose that E = B1. If (G,ω) satisfies the conditions in the theorem

statement (ii), then specω(B1)(G) = {a1 + a2 + b1 + b2, a1 + 3a2 + b1 + b2}.

Conversely, suppose that |specω(B1)(G)| = 2 and that the pair (G,ω) is not as

given in the theorem statement (ii). It follows from Theorem 2.1.9 to the subgraph

of G obtained by deleting the edge U2 and symmetry that a1 = c1, for i, j ∈ [n]\1,

ai = cj, bi = bj, and u1 = a2 + b2. It follows from applying Theorem 2.1.9 to the

subgraph of G obtained by deleting the edge U1 that u2 = a2 + b2 so that (G,ω) is

as given in the theorem statement (ii); a contradiction.

Finally, assume that E = U1. If (G,ω) satisfies the conditions in the theorem

statement (iii), then specω(U1)(G) = {a1 + b1 + u1, a1 + b1 + 2c1 + u1}.

Conversely, suppose that |specω(U1)(G)| = 2 and that the pair (G,ω) is not

as given in the theorem statement (iii). It follows from Theorem 2.1.9 (iii) that ,
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for i, j ∈ [n], ai = aj, bi = bj, and ci = cj and hence the weights of the cycles that

contain the edge U1 are a1 + b1 + u1 or a1 + b1 + 2c1 + u1.

The cycles of G that contain the edge U1 but not U2 have weight a1 + b1 + u1

or a1 + b1 + 2c1 + u1.The cycles of G that contain the edges U1 and U2 have weight

a1 +c1 +u1 +u2. Note that a1 +c1 +u1 +u2 = a1 +c1 +u1 +(b1±c1) so that all cycles

of G that contain the edge U1 have weight a1 + b1 + u1 or a1 + b1 + 2c1 + u1. There

are cycles of G that contain both the edges U1 and U2 of weight a1 + c1 + u1 + u2.

Thus a1 + c1 + u1 + u2 ∈ {a1 + b1 + u1, a1 + b1 + 2c1 + u1} and u2 = b1 ± c1. Hence

(G,ω) is as given in the theorem statement (iii); a contradiction. This completes the

proof of Theorem 2.1.10.

Proof of Theorem 2.1.11. Suppose that G ∼= K ′′′3,n as pictured in Figure 2.8. We

may assume by symmetry that E = A1 or E = U1. First assume that E = A1.

If (G,ω) satisfies the conditions in the theorem statement (i), then specω(A1)(G) =

{a1 + b1 + a2 + b2, a1 + b1 + a2 + 3b2}.

Conversely, suppose that |specω(A1)(G)| = 2 and that the pair (G,ω) is not

as given in the theorem statement (i). It follows from Theorem 2.1.10 (i) that

b1 = c1, for i, j ∈ [n]\1, ai = aj, bi = cj, u1 = a2 + b2, and u2 = 2b2. Thus

specω(A1)(G) = {a1 +b1 +a2 +b2, a1 +b1 +a2 +3b2}. Then the cycle {A1, B1, U2, U3}

has weight in specω(A1)(G) so that a1 + b1 + 2b2 + u3 = a1 + b1 + u2 + u3 ∈ {a1 + b1 +

a2 + b2, a1 + b1 +a2 + 3b2}. If a1 + b1 + 2b2 +u3 = a1 + b1 +a2 + 3b2, then u3 = a2 + b2

and the pair (G,ω) is as given in the theorem statement (i); a contradiction. Hence
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a1 + b1 + 2b2 + u3 = a1 + b1 + a2 + b2 and u3 = a2 − b2. Then the cycle {A1, C1, U3}

has weight a1 + c1 + u3 = a1 + b1 + (a2 − b2); a contradiction.

Suppose that E = U1. If (G,ω) satisfies the conditions in the theorem state-

ment, then specω(U1)(G) = {a1 + b1 + u1, a1 + b1 + 2c1 + u1}.

Conversely, suppose that |specω(U1)(G)| = 2 and that the pair (G,ω) is not

as given in the theorem statement (ii). It follows from Theorem 2.1.10 (iii) that ,

for i, j ∈ [n], ai = aj, bi = bj, ci = cj, and u2 = b1 ± c1. Thus specω(U1)(G) =

{a1 + b1 + u1, a1 + b1 + 2c1 + u1}.

The cycle {U1, U2, U3} has weight {u1 + u2 + u3} ∈ {a1 + b1 + u1, a1 + b1 +

2c1 +u1}. The cycle {U1, U2, U3} has weight u1 +u2 +u3 = u1 + (b1± c1) +u3. Thus

u1 + (b1 ± c1) + u3 = a1 + b1 + u1 or u1 + (b1 ± c1) + u3 = a1 + b1 + u1 + 2c1. So

u3 = a1± c1 or u3 = a1 + 2c1± c1. Hence u3 ∈ {a1± c1, a1 + 3c1}. Since u3 = a1± c1

would imply that (G,ω) is as given in the theorem statement (iii), u3 = a1 + 3c1.

The cycle {B1, C1, U1, U3} has weight b1 + c1 + u1 + u3 = a1 + b1 + 4c1 + u1 which is

of too large a weight. This contradiction completes the proof of Theorem 2.1.11.

3.2 Graphs with disjoint cycles

In this section we give the proofs of the results mentioned in Section 2.2 of

the dissertation.
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Proof of Theorem 2.2.2. First suppose that the edge E = A1 is bal-

anced. The cycles of G that contain the edge A1 are {A1, A2, A3},

{A1, B1, C2, C3}, {A1, A2, B3, C1, C2}, {A1, B2, B3, C2, C3}, {A1, A3, B2, C1, C3},

{A1, A3, B1, B3, C1, C3}, and {A1, A2, B1, B2, C1, C2}. Hence the seven sums in Ta-

ble 3.18 are of two different values.

(1) a1 + a2 + a3 (2) a1 + b1 + c2 + c3
(3) a1 + a2 + b3 + c1 + c2 (4) a1 + b2 + b3 + c2 + c3
(5) a1 + a3 + b2 + c1 + c3 (6) a1 + a3 + b1 + b3 + c1 + c3
(7) a1 + a2 + b1 + b2 + c1 + c2

Table 3.18: Weights of cycles containing the edge A1 in the prism graph

Let S and T be nonempty sets that partition {1, 2, 3, 4, 5, 6, 7} so that

the elements of S have the same value in this table, while the elements of T

have the other value in this table. Note that under the edge isomorphism of G

(A1)(B1)(C1)(A2A3)(B2B3)(C2C3) we obtain the following permutation of the sum

labels in Table 3.18:

(†) (1)(2)(35)(4)(67).

We summarize in each row of Table 3.19 the corresponding weight condition

that occurs in the graph of Figure 2.13 when the corresponding sums in Table 3.18

have the same value.

Some pairs of the equalities in Table 3.19 cannot occur simultaneously. From

considering all pairs of possible equalities from Table 3.19 we obtain Table 3.20. For
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(1) = (2) a2 + a3 = b1 + c2 + c3
(1) = (3) a3 = b3 + c1 + c2
(1) = (4) a2 + a3 = b2 + b3 + c2 + c3
(1) = (5) a2 = b2 + c1 + c3
(1) = (6) a2 = b1 + b3 + c1 + c3
(1) = (7) a3 = b1 + b2 + c1 + c2
(2) = (3) b1 + c3 = a2 + b3 + c1
(2) = (4) b1 = b2 + b3
(2) = (5) b1 + c2 = a3 + b2 + c1
(2) = (6) c2 = a3 + b3 + c1
(2) = (7) c3 = a2 + b2 + c1
(3) = (4) a2 + c1 = b2 + c3
(3) = (5) a2 + b3 + c2 = a3 + b2 + c3
(3) = (6) a2 + c2 = a3 + b1 + c3
(3) = (7) b3 = b1 + b2
(4) = (5) b3 + c2 = a3 + c1
(4) = (6) b2 + c2 = a3 + b1 + c1
(4) = (7) b3 + c3 = a2 + b1 + c1
(5) = (6) b2 = b1 + b3
(5) = (7) a3 + c3 = a2 + b1 + c2
(6) = (7) a3 + b3 + c3 = a2 + b2 + c2

Table 3.19: Consequences of Equal Sums in Table 3.18

example, if (1)=(3) and (2)=(6), then one obtains the contradiction that b3 = 0.

This information is summarized in the first row of Table 3.20.

Suppose 1 ∈ S without loss of generality. Assume 6 ∈ S. It follows from

Table 3.20 rows (v), (vi), and (vii) that exactly one of 2 and 7, exactly one of 2

and 3, and exactly one of 4 and 7, respectively, are in S. The first and last of these

assertions imply that (2)=(4). The first two of these assertions imply that (3)=(7).
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This contradicts Table 3.20 row (xi). So 6 ∈ T . It follows from (†) that 7 ∈ T as

well.

Assume 3 ∈ T . Then, Table 3.20 row (xiii) implies that 5 ∈ S. Then, by

Table 3.20 row (iv) implies that 4 ∈ S. Hence either 2 ∈ S which contradicts Table

3.20 row (xi) or 2 ∈ T which contradicts Table 3.20 row (iii). So 3 ∈ S. We have

shown to this point of the proof that {1, 3} ⊆ S and {6, 7} ⊆ T .

It follows from Table 3.20 row (i) that 2 ∈ S. It follows from Table 3.20

row (ii) that exactly one of 4 and 5 is in S. So either 4 ∈ S and 5 ∈ T or 5 ∈ S and

4 ∈ T . The former contradicts Table 3.20 row (xii). Thus the latter holds so that

5 ∈ S while 4 ∈ T . Hence (S, T ) = {1235, 467}. It follows from (1)=(2), (1)=(3),

and (1)=(5) in Table 3.18 that b1 = b2 + b3 + c1 + c1. It follows from (4)=(7) and

(1)=(5) in Table 3.18 that b3 + c3 = (b2 + c1 + c3) + (b2 + b3 + c1 + c1) + c1. Thus

0 = b2 + b2 + c1 + c1 + c1 + c1; a contradiction. Hence the edge A1 is not balanced.

By symmetry, the edge E is not balanced if E ∈ {A1, A2, A3, B1, B2, B3}.

Let the pair (G,ω) be as given in the statement of the theorem for i ∈ [3].

Then specω(Ci)
= {ai + aj + bk + ci + cj, 3ai + aj + bk + ci + cj} so that the edge Ci is

balanced.

Conversely, suppose that the edge E = C1 is balanced and that (G,ω) is not

as given in the theorem statement for i=1. We will obtain a contradiction. The

result will then follow by symmetry when E = C2 or E = C3. There are eight

cycles of G that contain the edge e. They are A2 ∪B2 ∪C1 ∪C3, A3 ∪B3 ∪C1 ∪C2,
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A1∪A2∪B3∪C1∪C2, A1∪A3∪B2∪C1∪C3, A2∪B1∪B3∪C1∪C3, A3∪B1∪B2∪C1∪C2,

A1 ∪A2 ∪B1 ∪B2 ∪C1 ∪C2, and A1 ∪A3 ∪B1 ∪B3 ∪C1 ∪C3. Hence the eight sums

in Table 3.21 are of two values. Thus, again, there exist nonempty sets S and T that

partition {1, 2, 3, 4, 5, 6, 7, 8} such that all the sums in Table 3.21 corresponding to

the elements of S have the same value, while all the sums in Table 3.21 corresponding

to the elements of T have the other value.
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(i) (1) = (3) and (2) = (6)
(ii) (1) = (3) and (4) = (5)
(iii) (1) = (5) and (2) = (7)
(iv) (1) = (5) and (3) = (4)
(v) (1) = (6) and (2) = (3)
(vi) (1) = (6) and (2) = (7)
(vii) (1) = (6) and (4) = (7)
(viii) (1) = (7) and (2) = (5)
(ix) (1) = (7) and (2) = (6)
(x) (1) = (7) and (4) = (6)
(xi) (2) = (4) and (3) = (7)
(xii) (2) = (4) and (5) = (6)
(xiii) (3) = (6) and (5) = (7)
(xiv) (3) = (7) and (5) = (6)

Table 3.20: Pairs of equalities from Table 3.18 that do not simultaneously hold

(1) a2 + b2 + c1 + c3 (2) a3 + b3 + c1 + c2 (3) a1 + a2 + b3 + c1 + c2
(4) a1 + a3 + b2 + c1 + c3 (5) a2 + b1 + b3 + c1 + c3 (6) a3 + b1 + b2 + c1 + c2
(7) a1 + a2 + b1 + b2 + c1 + c2 (8) a1 + a3 + b1 + b3 + c1 + c3

Table 3.21: E = C1 in the prism graph
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(1) = (2) a2 + b2 + c3 = a3 + b3 + c2
(1) = (3) b2 + c3 = a1 + b3 + c2
(1) = (4) a2 = a1 + a3
(1) = (5) b2 = b1 + b3
(1) = (6) a2 + c3 = a3 + b1 + c2
(1) = (7) c3 = a3 + b3 + c2
(1) = (8) a2 + b2 = a1 + a3 + b1 + b3
(2) = (3) a3 = a1 + a2
(2) = (4) b3 + c2 = a1 + b2 + c3
(2) = (5) a3 + c2 = a2 + b1 + c3
(2) = (6) b3 = b1 + b2
(2) = (7) a3 + b3 = a1 + a2 + b1 + b2
(2) = (8) c2 = a1 + b1 + c3
(3) = (4) a2 + b3 + c2 = a3 + b2 + c3
(3) = (5) a1 + c2 = b1 + c3
(3) = (6) a1 + a2 + b3 = a3 + b1 + b2
(3) = (7) b3 = b1 + b2
(3) = (8) a2 + c2 = a3 + b1 + c3
(4) = (5) a1 + a3 + b2 = a2 + b1 + b3
(4) = (6) a1 + c3 = b1 + c2
(4) = (7) a3 + c3 = a2 + b1 + c2
(4) = (8) b2 = b1 + b3
(5) = (6) a2 + b3 + c3 = a3 + b2 + c2
(5) = (7) b3 + c3 = a1 + b2 + c2
(5) = (8) a2 = a1 + a3
(6) = (7) a3 = a1 + a2
(6) = (8) b2 + c2 = a1 + b3 + c3
(7) = (8) a2 + b2 + c2 = a3 + b3 + c3

Table 3.22: Consequences of equal sums in Table 3.21
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(i) (1) = (3) and (2) = (4)
(ii) (1) = (4) and (2) = (3)
(iii) (1) = (4) and (6) = (7)
(iv) (1) = (5) and (2) = (6)
(v) (1) = (5) and (3) = (7)
(vi) (1) = (6) and (2) = (5)
(vii) (1) = (7) and (2) = (8)
(viii) (1) = (7) and (3) = (5)
(ix) (1) = (7) and (4) = (6)
(x) (1) = (8) and (2) = (7)
(xi) (2) = (3) and (5) = (8)
(xii) (2) = (6) and (4) = (8)
(xiii) (2) = (8) and (3) = (5)
(xiv) (2) = (8) and (4) = (6)
(xv) (3) = (7) and (4) = (8)
(xvi) (3) = (8) and (4) = (7)
(xvii) (5) = (7) and (6) = (8)
(xviii) (5) = (8) and (6) = (7)

Table 3.23: Pairs of equalities from Table 3.21 that do not simultaneously hold
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We summarize in Table 3.22 the corresponding path length condition that

occur in the graph of Figure 2.13 when the corresponding sums in Table 3.21 have

the same values. Some of the pairs of equalities in Table 3.22 cannot occur simul-

taneously. This information is summarized in Table 3.23. For example, if (1) = (3)

and (2) = (4) in Table 3.22, then a1 = 0; a contradiction.

Note that under the weight permutation associated with the edge isomorphism

(A1)(A2, A3)(B1)(B2, B3)(C1)(C2, C3) (‡) the sums (1) and (2) are interchanged, the

sums (3) and (4) are interchanged, the sums (5) and (6) are interchanged; and the

sums (7) and (8) are interchanged.

Suppose 1 ∈ S without loss of generality. assume 7 ∈ S. It follows from

Table 3.23 rows (vii), (viii), and (ix) that exactly one of 2 and 8, exactly one of

3 and 5, and exactly one of 4 and 6, respectively, are in S. This yields eight cases.

We next list each of these eight cases and the row label of Table 3.23 that the

case contradicts. (S, T ) = {12457, 368} row(xvi), (S, T ) = {13478, 256} row(xii),

(S, T ) = {12367, 458} row(xi), (S, T ) = {13678, 245} row(i), (S, T ) = {12347, 568}

row(i), (S, T ) = {14578, 236} row(ii), (S, T ) = {12567, 348} row(iv), and (S, T ) =

{15678, 234} row(xi).

Hence we have shown that 7 ∈ T . It follows from the symmetry of (‡) that exactly

one of 2 and 8 is in S. However, {1, 8} ⊆ S and {2, 7} ⊆ T contradicts Table 3.23

row (x). Thus {1, 2} ⊆ S and {7, 8} ⊆ T .
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We will show that, up to symmetry, S = {1, 2, 3, 5} and T = {4, 6, 7, 8}.

Recall that up to this point in the proof, {1, 2} ⊆ S and {7, 8} ⊆ T . First assume

that 3 ∈ S. If 5 ∈ T , then (2)=(3) and (5)=(8) contradicting Table 3.23 row

(xi). Hence {1, 2, 3, 5} ⊆ S and {7, 8} ⊆ T . If 4 ∈ S, then (1)=(3) and (2)=(4)

contradicting Table 3.23 row (i). Hence 4 ∈ T and {1, 2, 3, 5} ⊆ S while {7, 8} ⊆ T .

If 6 ∈ S, then (1)=(6) and (2)=(5) contradicting Table 3.23 row (vi). Hence 6 ∈ T

We have shown that if 3 ∈ S, then (S, T ) = {1235, 4678}.

Now assume that 3 ∈ T so that {1, 2} ⊆ S and {3, 7, 8} ⊆ T . If 4 ∈ T ,

then (3)=(7) and (4)=(8) contradicting Table 3.23 row (xv). Hence 4 ∈ S so that

{1, 2, 4} ⊆ S and {3, 7, 8} ⊆ T . If 5 ∈ S, then (1)=(5) and (3)=(7) contradicting

Table 3.23 row (v). Hence 5 ∈ T so that {1, 2, 4} ⊆ S and {3, 5, 7, 8} ⊆ T . If

6 ∈ T , then (1)=(4) and (6)=(7) contradicting Table 3.23 row (iii). Hence 6 ∈ S.

We have shown that if 3 ∈ T , then (S, T ) = {1246, 3578}. We have established that

(S, T ) = {1235, 4678} or (S, T ) = {1246, 3578}. However, by symmetry induced in

(‡), we may assume that (S, T ) = {1235, 4678}. It follows from (1)=(2) and (7)=(8)

that c2 = c3. It follows from that c2 = c3 and (3)=(5) that a1 = b1. It follows from

(2)=(3) that a3 = a1 + a2, while (1)=(5) implies that b2 = b1 + b3. Thus the pair

(G,ω) is as given in the theorem statement; a contradiction. This completes the

proof of Theorem 2.2.2.
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(1) a3 + c2 + d1 (6) a1 + a3 + b1 + c3 + d1
(2) b3 + c1 + d1 (7) a2 + b2 + b3 + c3 + d1

(3) a1 + a2 + c2 + d1 (8) a1 + a3 + b2 + b3 + c3 + d1
(4) a2 + b1 + c3 + d1 (9) a1 + b2 + c1 + c2 + c3 + d1
(5) b1 + b2 + c1 + d1

Table 3.24: The weights of cycles containing the edge D1 in the Prism+ graph
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(1) = (2) a3 + c2 = b3 + c1
(1) = (3) a3 = a1 + a2
(1) = (4) a3 + c2 = a2 + b1 + c3
(1) = (5) a3 + c2 = b1 + b2 + c1
(1) = (6) c2 = a1 + b1 + c3
(1) = (7) a3 + c2 = a2 + b2 + b3 + c3
(1) = (8) c2 = a1 + b2 + b3 + c3
(1) = (9) a3 = a1 + b2 + c1 + c3
(2) = (3) b3 + c1 = a1 + a2 + c2
(2) = (4) b3 + c1 = a2 + b1 + c3
(2) = (5) b3 = b1 + b2
(2) = (6) b3 + c1 = a1 + a3 + b1 + c3
(2) = (7) c1 = a2 + b2 + c3
(2) = (8) c1 = a1 + a3 + b2 + c3
(2) = (9) b3 = a1 + b2 + c2 + c3
(3) = (4) a1 + c2 = b1 + c3
(3) = (5) a1 + a2 + c2 = b1 + b2 + c1
(3) = (6) a2 + c2 = a3 + b1 + c3
(3) = (7) a1 + c2 = b2 + b3 + c3
(3) = (8) a2 + c2 = a3 + b2 + b3 + c3
(3) = (9) a2 = b2 + c1 + c3
(4) = (5) a2 + c3 = b2 + c1
(4) = (6) a2 = a1 + a3
(4) = (7) b1 = b2 + b3
(4) = (8) a2 + b1 = a1 + a3 + b2 + b3
(4) = (9) a2 + b1 = a1 + b2 + c1 + c2
(5) = (6) b2 + c1 = a1 + a3 + c3
(5) = (7) b1 + c1 = a2 + b3 + c3
(5) = (8) b1 + c1 = a1 + a3 + b3 + c3
(5) = (9) b1 = a1 + c2 + c3
(6) = (7) a1 + a3 + b1 = a2 + b2 + b3
(6) = (8) b1 = b2 + b3
(6) = (9) a3 + b1 = b2 + c1 + c2
(7) = (8) a2 = a1 + a3
(7) = (9) a2 + b3 = a1 + c1 + c2
(8) = (9) a3 + b3 = c1 + c2

Table 3.25: Consequences of Equal Sums in Table 3.24
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(i) (1) = (3) and (4) = (6)
(ii) (1) = (3) and (7) = (8)
(iii) (1) = (6) and (3) = (4)
(iv) (1) = (6) and (5) = (9)
(v) (1) = (8) and (2) = (9)
(vi) (1) = (8) and (3) = (7)
(vii) (1) = (9) and (2) = (8)
(viii) (1) = (9) and (5) = (6)
(ix) (2) = (5) and (4) = (7)
(x) (2) = (5) and (6) = (8)
(xi) (2) = (7) and (3) = (9)
(xii) (2) = (7) and (4) = (5)
(xiii) (2) = (8) and (5) = (6)
(xiv) (2) = (9) and (3) = (7)
(xv) (3) = (4) and (5) = (9)
(xvi) (3) = (9) and (4) = (5)

Table 3.26: Pairs of equalities from Table 3.25 that do not simultaneously hold
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In the proofs that follow, when considering a pair (G,ω), where G is a graph

and ω is a weight function on the edges we will slightly corrupt notation and refer to

the pair (H,ω) when H is a subgraph of G with the edge labels of H being a subset

of the edge labels of G.

C2

B3

B1

D1

A3

A1C3

A2

C1

B2G

Figure 3.6: Another labeled prism graph when E = C2

Proof of Theorem 2.2.3. Theorem 2.2.2 implies that the only edges of G that may

be balanced are C1, C2, C3, and D1. If (G,ω) is as given in the theorem statement

(i), then specω(C1)(G1) = {2a1 + a3 + b2 + c1, 4a1 + a3 + b2 + c1} so that the edge

C1 is balanced. If (G,ω) is as given in the theorem statement (ii), then the edge C2

is balanced by applying the weight permutation (a1, b2)(a2, b1)(a3, b3)(c1, c2)(c3)(d1)

associated with the edge isomorphism of G suggested by Figures 2.14 and 3.6. If

the pair (G,ω) is as given in the statement of the theorem (iii), then specω(C3)(G1) =

{a1 + a3 + b2 + c1 + c3, a1 + 3a3 + b2 + c1 + c3} so that the edge C3 is balanced.

We now consider the three cases where the edge E is C1, C2, or C3. First

suppose that E = C1. Suppose that the edge C1 is balanced but that the pair (G,ω)

is not as given in the theorem statement (i). The cycles of G that contain the edges

92



C1 and D1 are {B3, C1, D1}, {B1, B2, C1, D1}, and {A1, B2, C1, C2, C3, D1}. Hence

{b3 + c1 + d1, b1 + b2 + c1 + d1, a1 + b2 + c1 + c2 + c3 + d1} ⊆ specω(C1)(G). So

(†) two of the three sums b3+c1+d1, b1+b2+c1+d1, and a1+b2+c1+c2+c3+d1

must be the same.

It follows from Theorem 2.2.2 that a1 = b1 and c2 = c3 and either a2 = a1+a3

and b3 = b1 + b2 or a3 = a1 + a2 and b2 = b1 + b3. Suppose the latter holds.

Then b3 + c1 + d1 < 2b1 + b3 + c1 + d1 = b1 + b2 + c1 + d1 = a1 + b2 + c1 + d1 <

a1 + b2 + c1 + c2 + c3 + d1. This contradicts (†).

We have established that the former holds and a2 = a1+a3 and b3 = b1+b2. So

specω(C1)(G) = {a1+a3+b2+c1+c2, 3a1+a3+b2+c1+c2}. Now {b1+b2+c1+d1, a1+

b2+c1+c2+c3+d1} = {a1+a3+b2+c1+c2, 3a1+a3+b2+c1+c2} and the first listed

element in each of these sets is smaller than the second listed element by the given

conditions. So b1+b2+c1+d1 = a1+a3+b2+c1+c2 implies that d3 = a3+c3. Also, use

the given conditions, d3 = a3+c3, and a1+b2+c1+c2+c3+d1 = 3a1+a3+b2+c1+c2

to obtain that a1 = c3. Thus the pair (G,ω) is as given in the theorem statement

(i); a contradiction.

Next suppose that E = C2. Then again the weight permutation

(a1, b2)(a2, b1)(a3, b3)(c1, c2)(c3)(d1) associated with the edge isomorphism of G sug-

gested by Figures 2.14 and 3.6 implies that the pair (G,ω) is as given in the theorem

statement (ii); a contradiction.
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(a) The Graph G1
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(b) The Graph G2
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(c) The Graph G3
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A2
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A1
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(d) The Graph G4

Figure 3.7: Several Labeled Prism+ Graphs
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Finally suppose that E = C3 and that the pair (G,ω) is not as given in the

theorem statement (iii). The cycles of G that contain the edges C3 and D1 are

{A2, B1, C3, D1}, {A2, B2, B3, C3, D1}, {A1, A3, B1, C3, D1}, {A1, A3, B2, B3, C3, D1},

and {A1, B2, C1, C2, C3, D1}. Then

(†) {a2 + b1 + c3 + d1, a2 + b2 + b3 + c3 + d1, a1 + a3 + b1 + c3 + d1, a1 + a3 +

b2 + b3 + c3 + d1, a1 + b2 + c1 + c2 + c3 + d1} ⊆ specω(C3)(G).

Then Theorem 2.2.2 implies that a3 = b3 and c1 = c2 and either a2 = a1 + a3

and b1 = b2 + b3 or a1 = a2 + a3 and b2 = b1 + b3.

Suppose that the former holds. Then the given conditions and (†) imply that

{a1 + 2a3 + b2 + c3 + d1, a1 + b2 + 2c1 + c3 + d1} = {a2 + b1 + c3 + d1, a2 + b2 + b3 +

c3 + d1, a1 + a3 + b1 + c3 + d1, a1 + a3 + b2 + b3 + c3 + d1, a1 + b2 + c1 + c2 + c3 + d1} ⊆

specω(C3)(G) = {a1 + a3 + b2 + c1 + c3, a1 + 3a3 + b2 + c1 + c3}.

Thus {a1 + 2a3 + b2 + c3 + d1, a1 + b2 + 2c1 + c3 + d1} ⊆ {a1 + a3 + b2 +

c1 + c3, a1 + 3a3 + b2 + c1 + c3}. The elements in the right set are distinct, while the

elements in the left set may or may not be distinct. First assume that the elements

in the left set are distinct. If the first two elements in each set are equal and the

second two elements in each set are equal, then d1 = a3 and c1 = 2a3 so that the

pair (G,ω) is as given in the theorem; a contradiction. If the first element in the first

set is equal to the second element in the second set and the second element in the

first set is equal to the first element in the second set, then the inconsistent pair of

equations d1 = a3 + c1 and c1 + d1 = a3 hold; a contradiction. Second assume that
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the elements in the left set are equal. Then a3 = c1 Then a1 +a3 + b2 + c1 + c3 +d1 =

a1 + 2a3 + b2 + c3 + d1 ∈ {a1 + a3 + b2 + c1 + c3, a1 + 3a3 + b2 + c1 + c3} . This

implies that d1 = 2a3 and so the pair (G,ω) is as given in the theorem statement; a

contradiction.

We have shown that a1 = a2 + a3 and b2 = b1 + b3 together with a3 = b3 and

c1 = c2. So {a2 + b1 + c3 + d1, a2 + 2a3 + b1 + c3 + d1, a2 + 2a3 + b1 + 2b3 + c3 + d1} ⊆

{a2 + b1 + c3 + d1, a2 + b2 + b3 + c3 + d1, a1 + a3 + b1 + c3 + d1, a1 + a3 + b2 + b3 + c3 +

d1, a1 + b2 + c1 + c2 + c3 + d1} ⊆ specω(C3)(G). However, the left set contains three

distinct elements, while the right set only contains two; a contradiction.

Suppose |specω(D1)(G)| = 2. Then the nine sums in Table 3.24 are of two

different values. Let S and T be nonempty sets that partition {1, 2, 3, 4, 5, 6, 7, 8, 9}

so that the elements of S have the same value in this table, while the elements of

T have the other value in this table. Consequences of equal sums in this table are

shown in Table 3.25 while pairs of sums that cannot be equal are given in Table 3.26.

Consider the edge isomorphism (A1, B2)(A2, B1)(A3B3)(C1, C2)(C3)(D1). If

we apply the associated weight permutation to the label set of Table 3.25 we obtain

the following permutation that may be applied to these labels throughout the proof:

(†) (12)(35)(4)(67)(8)(9).

Suppose that 1 ∈ S without loss of generality. Assume that 3 ∈ S. It follows

from Table 3.26 that 4 6= 6 and 7 6= 8. Thus we obtain four cases to consider:
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(α1) (1347, 68) ⊆ (S, T )

(α2) (1348, 67) ⊆ (S, T )

(α3) (1367, 48) ⊆ (S, T )

(α4) (1368, 47) ⊆ (S, T )

Assume that case (α1) holds. It follows from Table 3.26 row (xv) that

(13457, 689) ⊆ (S, T ) or (13479, 568) ⊆ (S, T ). Suppose the former holds. It fol-

lows from row (ix) of that table that (13457, 2689) ⊆ (S, T ). This contradicts row

(xiv). Hence the latter case holds. We obtain a contradiction from row (viii) of the

table.

Assume that case (α2) holds. It follows from Table 3.26 row (xv) that

(13458, 679) ⊆ (S, T ) or (13489, 567) ⊆ (S, T ) Suppose the former holds. It follows

from row (xii) of the table that (123458, 679) ⊆ (S, T ). Then (6)=(9) in Table 3.25

implies that a3 + b1 = b2 + c1 + c2. It follows from (2)=(8) that c1 = a1 +a3 + b2 + c3.

These two equations together yield a3 + b1 = a1 +a3 + 2b2 + c2 + c3 = (a1 + c2) +a3 +

2b2 + c3. It follows from (3)=(4) in the table that a1 + c2 = b1 + c3. Combine these

two equations to obtain that a3 + b1 = (b1 + c3) + a3 + 2b2 + c3. Hence b2 = 0; a con-

tradiction. Hence the latter case holds and (13489, 567) ⊆ (S, T ). This contradicts

row (viii) of the table.

Assume that case (α3) holds. It follows from Table 3.26 row (iv) that

(α3) (13567, 489) ⊆ (S, T ) or (α3) (13679, 458) ⊆ (S, T ). Suppose the former holds.
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Then by row (xiii) of the table, (123567, 489) ⊆ (S, T ). It follows from (4)=(9) and

(1)=(6), respectively, in Table 3.25 that a2+b1 = a1+b2+c1+c2 and c2 = a1+b1+c3.

These two equations together a2 = 2a1 + b2 + c1 + 2c3. Hence a2 > c1. However,

(2)=(7) from Table 3.25 implies that c1 > a2; a contradiction. Hence the latter holds

and (13679, 458) ⊆ (S, T ). This contradicts row (xvi) of Table 3.26.

We have shown that case (α4) (1368, 47) ⊆ (S, T ) holds. It follows from row

(iv) of Table 3.26 that (13568, 479) ⊆ (S, T ) or (13689, 457) ⊆ (S, T ). Suppose the

former case holds. It follows from row (v) of the table that (123568, 479) ⊆ (S, T ).

This contradicts row (ix) of the table. Thus the latter case holds. This contradicts

row (xvi) of the table.

We have shown that 1 6= 3. Hence (†) implies that 2 6= 5. Hence (12, 35) ⊆

(S, T ) or (15, 23) ⊆ (S, T ). Suppose the former holds. Assume 1=8. It follows from

the table that 2 6= 9 and 3 6= 7. So (1278, 359) ⊆ (S, T ). This contradicts row (xi) of

Table 3.26. Hence (12, 358) ⊆ (S, T ). Assume 1=9. Then (129, 358) ⊆ (S, T ). Hence

row (viii) of Table 3.26 implies that (1269, 358) ⊆ (S, T ). It follows from row (xiv)

of the table that (12679, 358) ⊆ (S, T ). Hence row (xii) of the table implies that

(124679, 358) ⊆ (S, T ). But we established earlier in the proof that 4 = 9, 2 = 7,

and 1 = 6 cannot simultaneously occur. So 1 6= 9. Hence (12, 3589) ⊆ (S, T ). It

follows from row (xvi) of Table 3.26 that (124, 3589) ⊆ (S, T ). Then row (iv) of the

table implies that (124, 35689) ⊆ (S, T ). Then 2=4 and 3=9 in Table 3.25 imply

that b3 = b1 + b2 + 2c3 so that b3 > b1. However, 6=8 in that table implies that

b1 > b3; a contradiction.
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We have established that (15, 23) ⊆ (S, T ). Assume 1=8. Then rows (v)

and (vi) Table 3.26 imply that (15789, 23) ⊆ (S, T ). Then 5=9 and row (xv) of

the table imply that (145789, 23) ⊆ (S, T ). So row (iv) of the table implies that

(145789, 236) ⊆ (S, T ). Then 2=3 and 1=8 imply that c1 = 2a1 + a2 + b2 + c3 =

2a1+b2+(a2+c3). But 4=5 implies that a2+c3 = b2+c1. Hence c1 = 2a1+b2+(b2+c1)

so that b2 = 0; a contradiction. Thus 1 6= 8 and (15, 238) ⊆ (S, T ).

Row (vii) of Table 3.26 implies that (15, 2389) ⊆ (S, T ). Row (xiii) of Ta-

ble 3.26 implies that (15, 23689) ⊆ (S, T ). Then row (xiii) of Table 3.26 implies that

(15, 234689) ⊆ (S, T ). Then we obtain the triple 6=9, 2=8, and 3=4 that we have

previously shown cannot occur. This completes the proof of Theorem 2.2.3.

Proof of Corollary 2.2.4. Recall that the weight of a path in a graph is the sum of

the weights of its edges. Part (a) of the corollary follows from Theorem 2.2.3 where

no edge of Ai or Bi is balanced in that theorem. Part (b) of the corollary follows by

symmetry from Theorem 2.2.3 where the edge D1 there is not balanced.

Proof of Theorem 2.2.5. It follows from Theorem 2.2.3 and symmetry that the only

edges of G that may be balanced are C1, C2, and C3. If the given conditions hold,

then Specω(C1)(G) = {2a1 + a3 + b2 + c1, 4a1 + a3 + b2 + c1}.

Suppose that the edge C1 is balanced and that the pair (G,ω) are not as given

in the theorem statement (i). Then the graph G1 in Figure 3.7 (a) is ω(C1)-balanced.

Apply Theorem 2.2.3 (i) to the pair (G1, ω) to obtain that that a1 = b1 = c2 = c3,
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a2 = a1 + a3 b3 = b1 + b2, and d1 = a3 + c3. The graph G2 in Figure 3.7 (b) is ω(C1)-

balanced. Apply Theorem 2.2.3 to the pair (G2, ω) to obtain that d2 = b2+c2. Hence

(G,ω) is as given in the theorem statement (i); a contradiction.

Suppose that the edge C2 is balanced. Then the graph G1 in Figure 3.7

(a) is ω(C2)-balanced. Apply Theorem 2.2.3 (ii) to the pair (G1, ω) to ob-

tain that b1 = b2 + b3 among other weight conditions. The graph G2 of Fig-

ure 3.7 (b) is ω(C2)-balanced. Apply Theorem 2.2.3 (iii) and the weight permu-

tation of G2 associated with the edge isomorphism between G1 and G2 given by

(A1, B1)(A3, B2)(A2, B3)(C1)(C2, C3)(D1, D2) to transform the equation a2 = a1 +a3

in that theorem statement to b3 = b1+b2. Hence b1 > b3 and b3 > b1; a contradiction.

Hence the edge C2 is not balanced. By symmetry, the edge C3 is not balanced. This

completes the proof of Theorem 2.2.5.

Proof of Theorem 2.2.6. It follows from Theorem 2.2.3 that the only edges of G that

may be balanced are C1, C2, and C3. Let G1 and G3 be the subgraphs of G given

in Figure 3.7 (a) and (c). Suppose that the edge C1 is balanced. Then G1 is ω(C1)-

balanced. Apply Theorem 2.2.3 (i) to the pair (G1, ω) to obtain that a2 = a1 + a3.

The graph G3 is ω(C1)-balanced Apply Theorem 2.2.3 (i) to the pair (G3, ω) and fix

a1 and interchange a2 and a3 in the equation a2 = a1+a3 to obtain that a3 = a1+a2.

Then the two equations a2 = a1 + a3 and a3 = a1 + a2 are inconsistent so that the

edge C1 is not balanced.
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Suppose that the edge C2 is balanced. It was observed in the proof of The-

orem 2.2.3 that specω(C2)(G) = {2b2 + a1 + b3 + c2, 4b2 + a1 + b3 + c2}. Apply

Theorem 2.2.3 (ii) to the pair (G1, ω) to obtain that a2 = b2 = c1 = c3, a3 = a1 + a2,

b1 = b2 + b3, and d1 = b3 + c3. It follows from G being ω(C2)-balanced that G3 is

ω(C2)-balanced. Then we obtain the following system of equations by applying the

permutation (a1)(a2, a3)(b1)(b2, b3)(c1)(c2, c3)(d1, d2) to the conditions given in the

statement of Theorem 2.2.3 (iii):

a2 = b2, c1 = c3, a3 = a1 + a2, b1 = b2 + b3, and either d2 = a2 and c1 = 2a2

or d2 = 2a2 and c1 = a2.

If d2 = a2 and c1 = 2a2, then the cycle {A1, A2, B2, B3, C2, D2} ofG has weight

a1 +a2 +b2 +b3 +c2 +d2 = 3b2 +a1 +b3 +c2 /∈ {2b2 +a1 +b3 +c2, 4b2 +a1 +b3 +c2} =

specω(C2)(G); a contradiction. Hence d2 = 2a2 and c1 = a2. Thus (G,ω) is as given

in the theorem statement (i). In this case the edge C2 is balanced.

If E = C3, then the pair is as given in the theorem statement (iii) by applying

the weight permutation (a1)(a2, a3)(b1)(b2, b3)(c1)(c2, c3)(d1, d2) to the statement of

part (ii) of the theorem.
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Proof of Theorem 2.2.7. Only the edges C1, C2, and C3 may be balanced by The-

orem 2.2.3. Let the graphs G1 and G4 be as given in Figure 3.7 (a) and (d), re-

spectively. Suppose the graph G is ω(C1)-balanced. Then the graph G1 is ω(C1)-

balanced. It follows from Theorem 2.2.3 that a2 = a1 + a3. The graph G4 is ω(C1)-

balanced. It follows from Theorem 2.2.3 that a3 = a1 + a2 . These two equations are

inconsistent. Hence the edge C1 is not balanced. By symmetry, the edge C2 is not

balanced.

Suppose the edge C3 is balanced. Then G1 is ω(C3)-balanced. It follows from

Theorem 2.2.3 (iii) that a2 = a1 + a3. The graph G4 is ω(C3)-balanced. Hence

Theorem 2.2.3 (iii) implies that a1 = a2 + a3. These two equations are inconsistent.

Thus the edge C3 is not balanced.

Proof of Theorem 2.2.8. It follows from Theorems 2.2.3 and 2.2.5 that no edges of

G are balanced.

Proof of Theorem 2.2.9. It follows from Theorems 2.2.3 and 2.2.6 that the only

edges of G that may be balanced are C2 and C3. First suppose that the edge C2

is balanced. It follows from applying Theorem 2.2.6(i) that a2 = b2 = c1 = c3,

a3 = a1 + a2, b1 = b2 + b3, d1 = b3 + c3, and d2 = 2b2 Apply Theorem 2.2.5

and the weight permutation (a1, b2)(a2, b1)(a3, b3)(c1, c2)(c3)(d1)(d2, d3) suggested by

consideration of Figures 2.15 and 3.8 to obtain that d3 = a1 + c1. Thus the pair

(G,ω) is as given in the theorem statement. If the pair (G,ω) is as given in the

theorem statement, then specω(C2)(G) = {2b2 + a1 + b3 + c2, 4b2 + a1 + b3 + c2}.

102



C2

B2

B1

D1

A3

A1

C3

A2

C1

B2

D3

Figure 3.8: A relabeled extensions of the Prism graph

C3
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B1

D2

A2

A1

C2

A3

C1

B3

D3

Figure 3.9: Another relabeled extensions of the Prism graph

Suppose that the edge C3 is balanced. Then the edge C3 is balanced in the

subgraph of G given in Figure 3.9. This contradicts Theorem 2.2.6.

Proof of Theorem 2.2.10. It follows from Theorem 2.2.5 that only the edge C1 may

be balanced. Suppose that the edge C1 is balanced. Then the edge C1 is balanced

in the subgraph of G shown in Figure 3.11. This contradicts Theorem 2.2.5. Hence

the edge C1 is not balanced.
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Figure 3.10: A three-edge extension of the Prism graph
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D3

Figure 3.11: A relabled Prism1++ graph
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v1 w1
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v3

w2

w3

C1

C2

C3

A2

A1

A3 B11

B12
B2

B3

w12

P

Figure 3.12: The edge C1 is not balanced

Proof of Theorem 2.2.11. Suppose that E is a balanced edge of such a graph. A thir-

teen edge extension of a Prism graph is isomorphic to the Prism1+++, Prism2+++,

or Prism3+++ graph. Hence G is obtained by adding edges to one of these three

graphs. Thus there exists a fourteen edge subgraph H of G that uses the edge E

and that is a single-edge extension of one of these three graphs. Each edge of a

single-edge extension of a Prism1+++, Prism2+++, or Prism3+++ is in a sub-

graph of that graph that is isomorphic to the Prism1+++ graph. Hence the edge

E is in a subgraph of G that is isomorphic to the Prism1+++ graph. Hence the

edge E is not balanced in this subgraph. Thus the edge E is not balanced in G; a

contradiction.

We next give a structural lemma that will be useful in many of the remaining

proofs.
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v1
w1

v2

v3

w2

w12

C1

C2

P

A2

A1

B31

B32

A3
w12

C3

B2

B1

Figure 3.13: A redrawing of the graph Prism⊥

Lemma 3.2.1. Let G be the graph given in Figure 3.12 with associated weight func-

tion ω. Then the edge C1 is not balanced.

Proof of Lemma 3.2.1. Suppose that E = C1 is balanced. Then Theorem 2.2.2 (iii)

implies that specω(E)(G) = {a3 + b3 + c1 + c2, a3 + b3 + c1 + c2 + 2a1} where a1 = b1,

c2 = c3, and either a3 = a1 + a2 and b2 = b1 + b3 or a2 = a1 + a3 and b3 = b1 + b2.

Then the three cycles P ∪ C1 ∪ B3 ∪ B11, P ∪ C1 ∪ B2 ∪ B12, and P ∪ C1 ∪

B12 ∪ C3 ∪ A1 ∪ C2 ∪ B3 have weight in the set S = {p+ c1 + b3 + b11, p+ c1 + b2 +

b12, p+ c1 + b12 + c3 +a1 + c2 + b3}. In either of the cases a3 = a1 +a2 and b2 = b1 + b3

or a2 = a1 + a3 and b3 = b1 + b2 the three elements of S are distinct as they can be

listed in increasing order. Thus the edge C1 is in cycles of at least three different

weights; a contradiction. Hence the edge C1 is not balanced.
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Proof of Theorem 2.2.12. Suppose that the edge E is balanced. Then Theorem 2.2.2

implies that E = Ci for i ∈ [3]. First suppose that E = C1. It follows from

Theorem 2.2.2 that a1 = b1, c2 = c3, specω(E)(G) = {a3 + b3 + c1 + c2, a3 + b3 +

c1 + c2 + 2a1} and either a31 + a32 = a3 = a1 + a2 and b2 = b1 + b3 or a2 = a1 + a3

and b3 = b1 + b2. Consider the redrawing of the graph Prism⊥ of Figure 2.21 that is

given in Figure 3.13. It follows from applying Theorem 2.2.2 to the redrawing that

b32 = a1, p = c2, b1 = a1 = b32, and b3 = b31 + b32 = b1 + b2 so that a2 = a1 + a3.

Hence b31 = b2. The cycle P ∪ B31 ∪ C1 ∪ A3 ∪ C2 ∪ B1 ∪ C3 has weight in the set

{a3 + b3 + c1 + c2, a3 + b3 + c1 + c2 + 2a1} so that a1 = c2. Thus the pair (G,ω) is

as given in (i) of the theorem statement. Likewise, by symmetry, if E = C2, then

the pair (G,ω) is as given in (ii) of the theorem statement. One can check that

the conditions given in (i) or (ii) of the theorem statement hold, then specω(E)(G) is

{a3 + b3 + c1 + c2, a3 + b3 + c1 + c2 + 2a1} or {a3 + b3 + c1 + c2, a3 + b3 + c1 + c2 + 2a2},

respectively. The graph G can be redrawn as in Figure 3.12 with the edge C3 in

place of the edge C1. Thus the edge C3 is not balanced.

Proof of Theorem 2.2.13. It is straightforward to check that if the pair (G,ω) is as

given in the theorem statement, then specω(E)(G) = {a3 + b3 + c1 + c2, a3 + b3 +

c1 + c2 + 2a1} so that the edge E is balanced. Conversely, suppose that the edge E

is balanced. Then Theorem 2.2.12 implies that E = C1 or E = C2. If the former

holds, then all the conditions in the theorem statement not involving the quantity

p2 holds by applying Theorem 2.2.12 to the graph obtained by deleting the edge P1.
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The condition p2 = a3 + c2 holds by Theorem 2.2.3. Hence the pair (G,ω) is as given

in the theorem statement.

Suppose that E = C2 is balanced. Then Theorem 2.2.12 implies that a1 > a3.

Apply Theorem 2.2.3 (ii) to the graph G to obtain that a3 > a1; a contradiction

Proof of Theorem 3.2. It is straightforward to check that if the pair (G,ω) is as given

in the theorem statement, then specω(E)(G) = {a3+b3+c1+c2, a3+b3+c1+c2+2a1}

so that the edge E is balanced. Conversely, suppose that the edge E is balanced.

Then Theorem 2.2.12 implies that E = C1 or E = C2. If E = C1 , then the

conditions in the Theorem statement hold by Theorems 2.2.12 and 2.2.3. One can

check that the cycles that contain the edge P2 all have weight either a3 + b3 + c1 + c2

or a3 + b3 + c1 + c2 + 2a1 when these conditions hold.

Suppose that the edge C2 is balanced . Then Theorem 2.2.12 (ii) implies

that p1 = a2 = b2 = c1 = c3, b31 = b1, b32 = b2, a1 = a2 + a3, and specω(E)(G) =

{a3+b3+c1+c2, a3+b3+c1+c2+2a2}. Apply the following permutation from left to

right to the weights given in Theorem 2.2.3 (iii) (c3, c2, c1)(d1, p2)(a1, a3, a2)(b1, b3, b2)

to obtain that either p2 = a2 and c3 = 2a2 or p2 = 2a2 and c3 = a2. This weight

permutation is induced by the associated edge isomorphism of G that redraws the

graph of Figure 2.23 as the graph in Figure 2.14. The former does not occur as

c3 = a2. Hence the latter occurs and the pair (G,ω) is as given in (ii) of the
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theorem statement. Conversely, if condition (ii) of the theorem statement holds,

then specω(E)(G) = {a3 + b3 + c1 + c2, a3 + b3 + c1 + c2 + 2a2}.

Proof of Theorem 2.2.16. It is straightforward to check that if the graph G satisfies

the given conditions, then G has the stated spectrum. Now suppose that the edge

E is balanced. Let Gi be the subgraph of G obtained by deleting the edge Pi for

i ∈ [2]. It follows from applying Theorem 2.2.12 to G1 that E ∈ {C1, C3} and from

applying Theorem 2.2.12 to G2 that E ∈ {C1, C2}. Hence E = C1, and moreover,

the conditions of the theorem statement hold.

Proof of Theorem 2.2.17 and 2.2.18. That a balanced edge in either of these graphs

must satisfiy the theorem statements follows from Theorems 2.14 and 2.2.17. One

can check that the edge C1 is balanced if the weight function satisfies either of these

conditions.
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(a) The Subgraph H

v1 w1

v2

v3

w2

w3

z1

z2

z3
v13

v23

v12

w13

w23

w12

(b) Internal vertices in H

Figure 3.14: Labeled paths and vertices in the subgraph H

3.3 The main result

We prove the main result of the dissertation here. This proof relies on knowing

the structure of balanced simple 3-connected graphs in both of the cases where the

graph contains no two vertex-disjoint cycles and where the graph does not contain

two vertex-disjoint cycles.

Proof of Theorem 2.3.1. Suppose that the graph G contains vertex-disjoint cycles

and that (G,ω) is not as given in Theorems 2.1.3 through Theorem 2.2.18 or may

be obtained from extensions of the Prism, Prism⊥, or Prism⊥⊥ graph by attaching

handles.

If the graphG has six vertices, thenG is obtained by adding edges to the Prism

graph. Hence the pair (G,ω) is a balanced Prism, Prism+, Prism1++, Prism2++,
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or Prism2+++ graph by Theorems 2.2.2 through 2.2.11; a contradiction. Hence the

graph G has seven or more vertices as well as a pair of disjoint cycles.

Let H be a subgraph of G that is a subdivision of a Prism. The existence of

H is guaranteed by Menger’s Theorem. Suppose that the subgraph H is as pictured

in Figure 3.14 (a). There the uppercase letters label paths of G so that A1 labels a

path between the vertices v2 and v3, for example. Hence the subgraph H consists of

two cycles A1 ∪A2 ∪A3 and B1 ∪B2 ∪B3 joined by three disjoint paths C1, C2, and

C3. Now each of the nine paths listed above may contain more than one edge. In

this case the path contains at least one internal vertex. Even though there may be

several internal vertices on these nine paths, we use a placeholder label vij, wij, or

zi to denote a canonical internal vertex of the path in question (see Figure 3.14 (b)).

We use vij to denote an internal vertex on the path from vi to vj. We use wij to

denote an internal vertex on the path from wi to wj. We use zi to denote an internal

vertex of the path Ci from vertex vi to wi . So the vertex v12 lies on the path A3 of

H where the path A3 has endvertices v1 and v2. The vertex z2 lies on the path C2

from vertex v2 to vertex w2, for example.

Figure 3.14 (a) and (b) illustrate the placement of these nine internal vertices

on the nine paths that comprise the edge set of H. If an internal vertex vij, wij, or

zi exists, then the two induced subpaths of Ai, Bi, or Ci, respectively are labeled by

by double scripts as in Figure 3.15. For example, the vertex v23 will partition the

path A1 into subpaths A11 and A12 and the vertex z2 will partition the path C2 into

subpaths C21 and C22 as shown in Figure 3.15. So Ai = Ai1 ∪ Ai2, Bi = Bi1 ∪ Bi2,
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w2
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B32

B11

B12

B21

B22

Figure 3.15: Subpaths of the paths of H

and Ci = Ci1 ∪ Ci2 for i ∈ [3]. Although the labeling in Figure 3.15 appears quite

dense, we rarely consider more than two of these internal vertices in each case. We

follow our usual convention of using a lower case letter to represent the weight of a

path that is labeled by the corresponding upper case letter. So the path A1 will have

weight a1 while the subpaths A11 and A12 will have weight a11 and a12, respectively,

for example.

We first discuss some terminology used to refer to an H-bridge of G. Re-

call that a path P in G is called an H-bridge when the distinct endvertices of P ,

say v and w, lie in the vertex set of H and the internal vertices of P are disjoint

from the vertex set of H. Then we will write P = P [v, w] even though there may

many such paths between the vertex v and the vertex w. Throughout the proof,

P = P [v, w] will denote an H-bridge of G with v and w being distinct members

of {v1, v2, v3, w1, w2, w3, z1, z2, z3, v12, v13, v23, w12, w13, w23}where the vertices can be
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v1 w1

v2

v3

w2

w3

w12

C2

A3

A1

A2

C3

C1

B31

B32

B1

B2

P = P [v3, w12]

Figure 3.16: The graph H ∪ P [v3, w12]

found in Figure 3.14 (b) and 3.15. The first claim will be a key part of the proof of

the main theorem.

Claim 3.3.1. No edge of the H-bridge P = P [v, w] is balanced.

Proof of Claim 3.3.1. Suppose that the balanced edge E in on the path P = P [v, w]

First assume that v = v3. If w is in {v1, v2, w3, z1, z2, z3, v12, v13, v23, w13, w23}, then

there exist disjoint cycles of G with one of the cycles containing the edge E. This

contradicts Corollary 2.2.4. If w is in {w1, w2}, then the edge E lies on a chord the

subgraph H. This also contradicts Corollary 2.2.4. Hence we may assume that w =

w12. Then the graph H together with the H-bridge P is as given in Figure 3.16. It

follows from Theorem 2.2.12 and 2.2.1 that no edge of P is balanced; a contradiction.

Hence w 6= w12. Hence v 6= v3. Moreover, by symmetry, neither v nor w is in

{v1, v2, v3, w1, w2, w3}.
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Figure 3.17: A redrawing of the graph H ∪ P [v3, w12]

We may assume that v ∈ {v23, z3} by symmetry. If v = v23, then Corol-

lary 2.2.4 implies that w cannot be any of the vertices labeled in Figure 3.14 other

than w1 as otherwise the edge E of the path P is in a cycle that is disjoint from

another cycle of G. However, we have shown that neither v nor w is a vertex wi; a

contradiction. Suppose that v = z3. Then Corollary 2.2.4 (a) implies that w cannot

be any of the other vertices labeled in Figure 3.14 (b); a contradiction. Hence no

edge of an H-bridge P is balanced. This completes the proof of Claim 3.3.1.

Suppose that the edge E is not in the subgraph H. Then Menger’s Theorem

implies that the edge E is in an H-bridge of G. This contradicts Claim 3.3.1. Hence

E is an edge of H. It follows from Theorem 2.2.2 that we may assume that the edge

E lies on the path C1 subgraph H given in Figure 3.14. Hence the following claim

holds by Theorem 2.2.2 (i).

Claim 3.3.2. The following weight equations hold for the subgraph H:

a1 = b1, c2 = c3, specω(E)(G) = {a3 + b3 + c1 + c2, a3 + b3 + c1 + c2 + 2a1}, and either
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(i) a3 = a1 + a2 and b2 = b1 + b3, or

(ii) a2 = a1 + a3 and b3 = b1 + b2.

The next claim will be useful in the remainder of the proof.

Claim 3.3.3. Let Z be a subgraph of G such that Z is a subdivision of a Prism.

Suppose that P1, P2, and P3 are the three pairwise disjoint paths that join the two

vertex-disjoint cycles of Z. Then the edge E lies on one of these paths, say P1.

Moreover, the paths P2 and P3 have the same weight.

Proof of Claim 3.3.2. It follows from Claim 3.3.1 and Menger’s Theorem that E is

an edge of Z. The result follows from Theorem 2.2.2.

We next show that each of the nine paths of H listed in Figure 3.14 (a) consist

of a single edge except in the case that exactly one of the paths A2, A3, B2, and B3

consists of two edges. Thus either none of the internal vertices vij, wij, and zi listed in

Figure 3.14 (b) will exist or exactly one vertex will exist in the set {v12, w12, v13, w13}.

It follows from the assumptions, the 3-connectivity of G, and Menger’s Theorem that

the H-bridge P exists. Suppose that an internal vertex on C2 exists so that v = z2.

Then we may assume that w ∈ {v1, v3, w1, w3, v12, w12, v23, w23, v13, w13, z1, z3}.

If w ∈ {v12, w12, v23, w23}, then there are two disjoint cycles in G with one

of the cycles containing the edge E. This contradicts Corollary 2.2.4 (a). Recall

that the edge E lies on the path C1. If w ∈ {v1, w1, v3, w3}, then there is a pair
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of vertex-disjoint cycles with three disjoint paths between the cycles where one of

the paths contains the edge E, another path is the path C3, and a third path is a

proper subpath of C2. This contradicts Claim 3.3.3. Suppose that w ∈ {v13, w13}.

By symmetry, suppose that w = v13. Then again, there is a pair of vertex-disjoint

cycles, namely P ∪ C21 ∪ A1 ∪ A22 and B1 ∪ B2 ∪ B3, joined by three disjoint paths

C1∪A21, C22 and C3. This contradicts Claim 3.3.3 as c22 < c3. Thus w /∈ {v13, w13}.

Suppose w = z1. Then in either of the cases where the edge E lies between

the vertices v1 and z1 or lies between the vertices z1 and w1 on the path C1 we obtain

a contradiction to Corollary 2.2.4 (a). Hence we may assume that w = z3 and that

H ∪ P is as shown in Figure 3.18 where the path P of weight p is the curved path

from the vertex z2 to the vertex z3. It follows from applying Claim 3.3.3 to the pair

of cycles P ∪ A2 ∪ A3 ∪ C21 ∪ C31 and B1 ∪ B2 ∪ B3 that c22 = c32. By symmetry,

c21 = c31. Hence c2 = c3 implies that c21 = c22 = c31 = c32 = 1
2
c2. It follows from

applying Theorem 2.2.2 to these pair of cycles that p = a1 as the edges P and A1

are opposite from the path joining the two cycles that contains the edge E. We may

assume by symmetry that case (i) of Claim 3.3.2 holds. Hence a3 = a1 + a2 and

b2 = b1 +b3. Then the cycle C1∪A3∪A1∪C31∪P ∪C22∪B1∪B2 has weight at most

a3 + b3 + c1 + c2 + 2a1 by Claim 3.3.2. Hence c1 + a3 + a1 + 1
2
c2 + a1 + 1

2
c2 + b1 + b2 =

c1 + a3 + a1 + c31 + p + c22 + b1 + b2 ≤ a3 + b3 + c1 + c2 + 2a1 so that b1 + b2 ≤ b3.

This contradicts that b2 = b1 + b3. Hence w 6= z3 and the interior vertex z2 does not

exist. Thus the path C2, and by symmetry the path C3, consists of a single edge (see

Figure 3.19).
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Figure 3.18: Adding a path to the subgraph H
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Figure 3.19: The subgraph H again
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(a) There exists a path from z1 to w12

v1 z1
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w12

w1

C11

w2

w3

C2 B32

C3 B2

A2

A1

A3

C12

B31

PB1

(b) A redrawing of the graph in (a)

Figure 3.20: The path C11 contains a balanced edge

Now suppose that the path C1 contains at least two edges so that we may

assume that an internal vertex z1 exists. Let C11 and C12 be the subpaths of C1

from v1 to z1 and from z1 to w1, respectively. Suppose that the edge E is on the

subpath of C1 from v1 to z1, i.e. E is an edge of the path C11. Suppose that

v = z1. Then we may assume that w ∈ {v2, v3, w2, w3, v12, v13, v23, w12, w13, w23}. If

w ∈ {v2, v3, v12, v13, v23, }. Then there exists a cycle that contains the edge E and a

disjoint cycle that does not meet this cycle contradicting Corollary 2.2.4.

Thus w ∈ {w2, w3, w12, w13, w23}. Suppose that w = w12 (see Figure 3.20) (a).

Then redraw the graph in Figure 3.20 (a) as in Figure 3.20 (b). We have already

shown that an edge of C11 in the right graph of Figure 3.20 cannot be balanced (see

Figure 3.18). Hence w 6= w12. By symmetry, w 6= w13. Assume that w = w2.

Now consider the graph H ∪ P shown in Figure 3.21. The cycles A1 ∪ A2 ∪ A3 and

C12 ∪B3 ∪P are joined by the disjoint paths C11 (that contains E), C2 and B2 ∪C3.

Hence c2 = b2 + c3. Then c2 = c3 implies that b2 = 0; a contradiction. Hence x 6= w2.
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Figure 3.21: There is a path from z1 to w2

v1
w1

v2

v3

w2

w3

z1
w23

C2

C3

C11 C12

A2

A1

A3

B2

P

Figure 3.22: There is a path from z1 to w23

By symmetry, w 6= w3. Hence w = w23 (see Figure 3.22). Then redraw the graph in

Figure 3.22 minus the subpath C12 to obtain the graph in Figure 3.23. We obtain

that b1 = a1 = b2 +b3 by considering the left vertical path and the right vertical path

of the graph. This contradicts that either b2 = b1 + b3 or b3 = b1 + b2 of Claim 3.3.2.

Hence v 6= w23 and the interior vertex z1 does not exist.
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Figure 3.23: The left hand right paths have the same weight

It follows from Claim 3.3.1 and that the interior vertices z1, z2, and z3 do not

exist that we have established the following powerful observation.

Claim 3.3.4. If U1 and U2 are disjoint cycles of G, then the edge E joins a vertex of

U1 to U2. Any other pair of disjoint paths from U1 to U2 that are also vertex-disjoint

from E have length one.

Now suppose that an interior vertex v = v23 exists. Then, by symmetry, we

may assume that w ∈ {v1, v12, w1, w2, w12, w23}. It follows from Corollary 2.2.4 (a)

that w /∈ {v12, w2, w12, w23}. Suppose that w = v1. Consider the cycle B1 ∪ B2 ∪ B3

and the cycle A2∪P ∪A12. Then Claim 3.3.3 implies that the path A11∪C2 consists

of a single edge; a contradiction. Hence w 6= v1. So w = w1. But we obtain a graph

that is isomorphic to the graph given in Figure 3.17. Then no edge of P is balanced

by Lemma 3.2.1. So w 6= w1. Thus v 6= v23. By symmetry, v 6= w23.
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Suppose that an interior vertex v = v12 exists. Then we may assume

that w ∈ {v3, v13, w1, w12, w2, w13, w3}. It follows from Corollary 2.2.4 (a) that

w /∈ {w1, w12, w2, w13}. Suppose that w = v13. Then consider the cycle B1 ∪B2 ∪B3

together with the vertex-disjoint cycle formed from P together with the subpath of

A3 from v12 to v1 and the subpath of A2 from v1 to v13 (see Figure 3.14). Then

there are three vertex-disjoint paths between these two cycles with one of the paths

being C1. Another one of the paths is obtained by traversing A3 from v12 to v2 and

then traversing C2. The latter path must consist of a single edge by Claim 3.3.3; a

contradiction. Hence w 6= v13. It follows that w = v3.

Claim 3.3.5. The only internal vertices of the paths Ai, Bi, and Ci for i ∈ [3] that

may exist are in the set {v12, v13, w12, w13}. If such an internal vertex exists, then it

is the only internal vertex on that path.

(i) If v12 exists, then a3 > a2, b2 > b3, and there is an edge of G from v12 to w3

(ii) If v13 exists, then a2 > a3, b3 > b2, and there is an edge of G from v13 to w2.

(iii) If w12 exists, then a2 > a3, b3 > b2, and there is an edge of G from w12 to v3.

(iv) If w13 exists, then a3 > a2, b2 > b3, and there is an edge of G from w13 to v2.

(v) If a pair of these internal vertices exists, then the pair is either {v12, w13} or

{v13, w12}.

Proof of Claim 3.3.5. We have shown that the vertices listed are the only possible

internal vertices of the paths of H in the previous arguments. Suppose that the
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Figure 3.24: Possible vertices of the subgraph H

vertex v12 exits. Then we have shown that P = P [v, w] = P [v12, w3]. It follows from

Theorem 2.2.12 that a3 = a1 + a2 and b2 = b1 + b3. Moreover, a32 = a1. If another

internal vertex v′12 existed on the path A3, then the resulting subpath A′32 of A3

would also have weight a1 by Theorem 2.2.12. Then the weight of the subpath of A3

from v12 to v′12 would be zero; a contradiction. Hence v12 is the only internal vertex

on A3 if it exists. By symmetry, each of the vertices v12, v13, w12, w13 is unique if

it exists. Conditions (i) through (iv) all follow from Theorem 2.2.12. The truth of

conditions (i) through (iv) imply the truth of condition (v).

It follows from the above claim that we may assume that the vertex set of

H consists of at most eight vertices, namely v1, v2, v3, w1, w2, w3 and possibly the

vertices v13 and w12, see Figure 3.25. Now let v be a vertex of G that is not in H.

By Menger’s Theorem there exists three internally disjoint paths Qi for i ∈ [3] from

v to distinct vertices xi of H.
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Suppose that {x1, x2} = {w2, w3}. If x3 = v1, then we obtain a contradiction

by Lemma 3.2.1. If x3 = w1, then we obtain a contradiction by Claim 3.3.4. If

x3 ∈ {v2, v3}, then we obtain a contradiction by Corollary refnobalance. Hence at

most one vertex xi is in the set {w2, w3}. By symmetry, at most one vertex xi is

in the set {v2,3 }. Likewise, Corollary 2.2.4 implies that at most one vertex is in

each of the sets {vi, wi} for i ∈ [3]. Hence we obtain four cases for the paths Qi

by these conditions. We may suppose that condition (i) holds by symmetry. Then

conditions (ii) and (iii) cannot hold by Claim 3.3.4. So for each vertex v outside of

H, either condition (i) or (iv) holds so that a triad is attached to the given vertices.

In summary, we have shown that G is an extension of the Prism graph, the Prism⊥

graph, or the Prism⊥⊥ graph, or, up to relabeling, is obtained from an extension of

these graphs by adding triads as in (i) or (iv). Hence the pair (G,ω) is as given in

the theorem statement; a contradiction. This completes the proof of the main result.

(i) {x1, x2, x3} = {v1, v3, w2}

(ii) {x1, x2, x3} = {v1, v2, w3}

(iii) {x1, x2, x3} = {v2, w1, w3}

(iv) {x1, x2, x3} = {v3, w1, w2}
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Figure 3.25: Adding triads to H ∼= Prism⊥⊥
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