
University of Mississippi University of Mississippi

eGrove eGrove

Electronic Theses and Dissertations Graduate School

2015

Functional Reactive Programming For Games Functional Reactive Programming For Games

Peter Adewunmi Salu
University of Mississippi

Follow this and additional works at: https://egrove.olemiss.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Salu, Peter Adewunmi, "Functional Reactive Programming For Games" (2015). Electronic Theses and
Dissertations. 442.
https://egrove.olemiss.edu/etd/442

This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more
information, please contact egrove@olemiss.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by eGrove (Univ. of Mississippi)

https://core.ac.uk/display/288063252?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://egrove.olemiss.edu/
https://egrove.olemiss.edu/etd
https://egrove.olemiss.edu/gradschool
https://egrove.olemiss.edu/etd?utm_source=egrove.olemiss.edu%2Fetd%2F442&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=egrove.olemiss.edu%2Fetd%2F442&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/etd/442?utm_source=egrove.olemiss.edu%2Fetd%2F442&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu

FUNCTIONAL REACTIVE PROGRAMMING FOR GAMES

A Thesis
presented in partial fulfillment of requirements

for the degree of Master of Science
in the Department of Computer and Information Science

The University of Mississippi

by

Peter Salu

December 2015

Copyright Peter Salu 2015
ALL RIGHTS RESERVED

ABSTRACT

We investigate the effectiveness of functional reactive programming for games. To ac-

complish this, we clone aa, an existing game, in Elm, a purely functional programming language.

We find that functional reactive programming offers an excellent alternative to event driven pro-

gramming in purely functional languages. Elm still needs more work if it aims to compete with

JavaScript libraries. Games, which typically need several inputs at the same time, benefit from the

first class status of Signals, which allow them to be combined.

ii

ACKNOWLEDGEMENTS

Thanks to github user eugenioclrc for cloning aa in JavaScript and giving me insight into

how he did it. I would also like to thank Michael Macias for helping me with the math in aa,

pointing me in the direction of the eugenioclrc aa clone, and reviewing my paper.

iii

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . v

INTRODUCTION . 1

OVERVIEW OF ELM . 2

FUNCTIONAL REACTIVE PROGRAMMING . 7

IMPLEMENTATION OF AA . 9

CONCLUSION AND FUTURE WORK . 29

BIBLIOGRAPHY . 30

VITA . 32

iv

LIST OF FIGURES

4.1 aa clone with 7 darts on the board . 10

4.2 The flow of data for aa. 26

v

CHAPTER 1

INTRODUCTION

The goal of this thesis is to study the use of functional reactive programming for video

games. We achieve this by implementing a game in a purely functional language and making note

of the problems and advantages of this style.

1.1 Previous Work

One prominent paper that already shows how functional reactive programming can be used

for games is the Yampa arcade [4]. This paper shows how to implement Space Invaders using

Yampa which is a Functional Reactive Library that uses Haskell as a host language. This paper

serves as a template for the thesis.

1

CHAPTER 2

OVERVIEW OF ELM

For the reader to properly understand the programs as described in the thesis, they must

first understand Elm a purely functional, functional reactive programming language the games are

written in. It compiles to JavaScript and runs in any capable web browser.

2.1 History Of Elm

Elm was first released in April of 2012. It was part of the thesis of Evan Czaplicki at

Harvard [5]. The syntax of Elm resembles Haskell [2] with ML [3] style semantics. The big

difference from Haskell is that Elm is not lazy. Laziness in languages means that expressions are

not evaluated until their result is needed. This can allow for the creation of infinite data structures

whose later values are not known until they are needed.

2.2 Basic Syntax

Using the REPL (Read Evaluate Print Loop) interactive interpreter interface, we show var-

ious features of Elm. The inputs to the REPL prefix with ”>”. After the statement, the REPL

displays the resulting value and its type.

The basics of math work exactly like they do in other languages.

> x = 1 + 1

2 : number

> 22 / 7

3.142857142857143 : F l o a t

> 32 % 3

2 : I n t

2

The first line also shows how to assign values to variables.

As Elm is a functional language, function calls are very lightweight.

> s i n 32

0.5514266812416906 : F l o a t

> max 3 5

5 : comparab le

The function name comes first, with the arguments separated only by whitespace.

Declaring functions works by giving the name of the function, followed by the parameters,

then ”=” before the body of the function.

> l e s s T h a n 5 x = x < 5

<f u n c t i o n > : comparab le −> Bool

> l e s s T h a n 5 12

F a l s e : Bool

> l e s s T h a n 5 1

True : Bool

The first example works because of type inference, which enables Elm to determine the type

of functions and other objects by how they are used without requiring explicit type declarations.

For documentation reasons, it is typical to declare the type of a function before the body of

the function.

d i s p l a y B a c k g r o u n d : I n t −> I n t −> Form

d i s p l a y B a c k g r o u n d wid th h e i g h t =

f i l l e d w h i t e (r e c t (t o F l o a t wid th) (t o F l o a t h e i g h t))

The name of the function is first, and “:” means has a type. The parameters of this function

are Ints, two shown, separated by “− >”. The return value Form is last and is also separated by

“− >”. Form is a type internal to Elm that is used to represent shapes.

3

Functions can be partially applied meaning we can create new functions by applying exist-

ing functions to some of their arguments.

> i s 1 0 = (==) 10

<f u n c t i o n > : number −> Bool

> i s 1 0 3

F a l s e : Bool

> i s 1 0 10

True : Bool

We have to wrap the function == in parentheses because it is a function whose name con-

sists entirely of symbols. 10 is the first argument in the new function.

Some special functions are used to reduce the number of parentheses in code, thereby

making it more readable [6].

s c a l e 2 (move (1 0 , 1 0) (f i l l e d b l u e (ngon 5 3 0)))

ngon 5 30

|> f i l l e d b l u e

|> move (1 0 , 1 0)

|> s c a l e 2

The function | > (forward function application) is like a pipe in Unix, taking the output of one

function, and using it as the input to the function on the right. There is another function < |

(backward function application) which does the same thing, but it passes its results in the opposite

direction. Mathematically, this is function composition as indicated by the first line of code above.

2.3 Tuples and Records

Tuples are a way to group objects together.

> (1 2 , ” Something ”)

4

(1 2 , ” Something ”) : (number , S t r i n g)

This way, we can easily return multiple values from a function or group arguments that are

related together.

Records are a more robust way to group objects together. They give the component names

that can be used to access the value.

> p e r s o n = {name = ” P e t e r ” , age = 25}

{ age = 25 , name = ” P e t e r ” } :

{ age : number , name : S t r i n g }

> p e r s o n . name

” P e t e r ” : S t r i n g

This creates a new record whose member types can be inferred.

We can create a new record by updating the existing fields of a record.

> { p e r s o n | age <− 12}

{ age = 12 , name = ” P e t e r ” } :

{ name : Str ing , age : number }

We can also create new records by adding new fields to existing records.

> { p e r s o n | s c h o o l = ‘ ‘ Ole Miss ’ ’}

{ age = 25 , name = ” P e t e r ” , s c h o o l = ‘ ‘ Ole Miss ’ ’ }

: { age : number , name : Str ing , s c h o o l : S t r i n g }

We can create parameterized record types by passing type parameters during record cre-

ation [9].

type a l i a s Named a =

{ a | name : S t r i n g }

5

l a d y : Named { age : I n t }

l a d y =

{ name = ‘ ‘ Lo i s Lane ’ ’

, age = 31

}

In this case age was added during the declaration of the type of lady. This allows us to

reuse records by defining common fields, adding more if we need them.

2.4 Unions

Unions allow us to define a type that is one of several other types.

type D i r e c t i o n = Lef t | Right

This creates a type which can only have the values Left or Right.

6

CHAPTER 3

FUNCTIONAL REACTIVE PROGRAMMING

Functional reactive programming is a way of obtaining values that can vary over time [1]

[11].

It has emerged recently as an alternative to event driven programming. A typical event

driven program can be difficult to structure because in reaction to an event, global state typically

needs to be modified [1]. Another problem is needing the values provided by several events like

the current mouse position when the mouse is clicked.

A typical event driven program has at least two parts to use an event. The first is the

callback, which is a function that will be called when an instance of the event has occurred. The

second is the event object, which will be passed in to the callback and have the relevant information

e.g., the mouse position.

A signal is a variable whose value can change over time [8]. Signals are the equivalent

construct in a functional reactive language to events in other languages. They also have two parts

to use them. The first is the signal function, which will be called each time a new value of the

signal arrives. The second is the signal itself, which pushes values to the signal function. The big

difference from events is that signals are first class values. This means they are used as arguments

to, declared in, and returned from functions. In other words, they are valid anywhere other values,

like ints and booleans, are. Values from signals combine in a way events cannot.

3.1 Functional Reactive Programming in Elm

An example of displaying the mouse position in Elm is simple.

show <˜ Mouse . p o s i t i o n

7

Show is a function that takes an object and displays it on the screen. Mouse.position is a

Signal which gives a tuple containing the x and y coordinates of the mouse position, e.g., (2, 226).

<∼ (pronounced map) is a function that applies the signal on the right to the function on the left.

We can also consider map as transforming an ordinary function into a signal function. Each time

the mouse position changes, the show function is called, and the tuple on the screen changes.

Multiple signals may need to be passed into a signal function. This can be accomplished by

using one of the mapN functions, which takes in N signals as parameter and calls the signal function

with the current value of any of the signal changes. The other way is to use the ∼ function, which

allows multiple signals to be passed into a function.

I n p u t <˜ Keyboard . s p a c e ˜ Keyboard . e n t e r

The advantage signals have over events is their ability to be used as ordinary variables.

show <˜ sampleOn Mouse . c l i c k s Mouse . p o s i t i o n

The sampleOn function returns the current value of the second parameter when the value

in the first changes. The ability for signals to be combined is a powerful one allowing for ease of

expression without global variables. This ability is similar to functional languages, where functions

are able to be used as first class values.

8

CHAPTER 4

IMPLEMENTATION OF AA

To judge how useful functional reactive programming is for games, we implement aa [14].

To avoid getting caught in tricky game design work, we use an existing game.

aa is a game where the objective is to shoot a number of darts into a circular board. Once a

dart hits the board, it begins to rotate. The player completes levels by shooting the required number

of darts, and loses by having two darts collide. Two darts collide when the ball at the end of each

dart overlap. The game becomes more challenging by having more darts on the board initially, and

moving faster.

The code template followed for aa is set by Elm’s Pong tutorial [7]. The tutorial divides

the structure of data and functions into four parts: inputs, model, updates, and view.

The inputs for aa are the space bar, which fires darts, and delta time which is the amount of

time that passes between updates. The delta is set at 60 times a second, and at each time delta, the

state of the space bar is checked.

−−I n p u t s t o t h e game .

type a l i a s I n p u t =

{ s p a c e : Bool

, e n t e r : Bool

, d e l t a : Time

}

d e l t a : S i g n a l Time

d e l t a = i n S e c o n d s <˜ (f p s 60)

9

Figure 4.1. aa clone with 7 darts on the board

i n p u t : S i g n a l I n p u t

i n p u t =

S i g n a l . sampleOn d e l t a

<| I n p u t <˜ Keyboard . s p a c e ˜ Keyboard . e n t e r ˜ d e l t a

The model for the game holds relevant data for all the game’s objects. This includes the

coordinates of objects, their velocities, the number of darts to be fired, whether the game is being

played or paused, and the current level. Some of the fields of records are there for the view, which

is where objects get displayed on screen, such as the radius of the board and darts.

type D i r e c t i o n = Lef t | Right

10

type a l i a s O b j e c t a =

{ a |

x : F l o a t

, y : F l o a t

, vx : F l o a t

, vy : F l o a t

, a n g l e : F l o a t

, a n g u l a r V e l o c i t y : F l o a t

, d i r e c t i o n : D i r e c t i o n

}

type a l i a s Board =

O b j e c t { r a d i u s : F l o a t

, numberOfDar ts : I n t

, c o l l i s i o n Y : F l o a t

}

type a l i a s Dar t =

O b j e c t { r a d i u s : F l o a t

, i s F i r e d : Bool

, c o l l i d e d W i t h B o a r d : Bool

, c o l l i d e d W i t h O t h e r D a r t : Bool

, c o l l i d e d S p e e d : F l o a t

}

type a l i a s D a r t s = L i s t Dar t

11

type a l i a s P l a y e r =

O b j e c t { d a r t s : D a r t s

, i s S h o o t i n g : Bool

, i ndexOfDar tToBeF i r ed : I n t

}

type S t a t e = LoadLevel | Play | Pause

type a l i a s Game =

{ s t a t e : S t a t e

, boa rd : Board

, p l a y e r : P l a y e r

, spaceCoun t : I n t

, l e v e l : I n t

}

d e f a u l t B o a r d : Board

d e f a u l t B o a r d =

{ x = 0

, y = 130

, vx = 0

, vy = 0

, a n g l e = 0

, a n g u l a r V e l o c i t y = 5

, d i r e c t i o n = Lef t

, r a d i u s = 100

, numberOfDar ts = 10

12

, c o l l i s i o n Y = −85

}

d e f a u l t D a r t : Da r t

d e f a u l t D a r t =

{ x = 0

, y = −300

, vx = 0

, vy = 0

, a n g l e = (3 * pi) / 2 −−270 d e g r e e s i n r a d i a n s .

, a n g u l a r V e l o c i t y = 0

, d i r e c t i o n = Right

, r a d i u s = 10

, i s F i r e d = F a l s e

, c o l l i d e d W i t h B o a r d = F a l s e

, c o l l i d e d W i t h O t h e r D a r t = F a l s e

, c o l l i d e d S p e e d = 0

}

d e f a u l t P l a y e r : P l a y e r

d e f a u l t P l a y e r =

{ x = 0

, y = 0

, vx = 0

, vy = 0

, a n g l e = 0

, a n g u l a r V e l o c i t y = 0

13

, d i r e c t i o n = d e f a u l t B o a r d . d i r e c t i o n

, d a r t s = []

, i s S h o o t i n g = F a l s e

, i ndexOfDar tToBeF i r ed = −1

}

defau l tGame : Game

defau l tGame =

{ s t a t e = LoadLevel

, p l a y e r = d e f a u l t P l a y e r

, boa rd = d e f a u l t B o a r d

, spaceCoun t = 0

, l e v e l = 0

}

Updating the game involves moving all objects in reaction to the inputs. The board keeps

track of the number of darts in the level. For the player, updating involves moving the darts toward

the board when space is pressed, making them orbit when they collide with the board and checking

to see if they collide with each other.

−−Update t h e game .

s t e p O b j e c t : Time −> O b j e c t a −> O b j e c t a

s t e p O b j e c t d e l t a ({ x

, y

, vx

, vy

, a n g l e

, a n g u l a r V e l o c i t y

14

, d i r e c t i o n

} as o b j e c t) =

{ o b j e c t |

x <− x + vx * d e l t a

, y <− y + vy * d e l t a

}

c o l l i d e d W i t h B o a r d : Dar t −> Board −> Bool

c o l l i d e d W i t h B o a r d d a r t boa rd =

d a r t . y >= board . c o l l i s i o n Y

u n s a f e G e t : I n t −> Array a −> a

u n s a f e G e t index array =

case Array . g e t index array of

Jus t i t em −>

i t em

Nothing −>

Debug . c r a s h ”Unknown Index ”

s t e p P l a y e r : Time −> Board −> Bool −> P l a y e r −> P l a y e r

s t e p P l a y e r d e l t a boa rd s p a c e p l a y e r =

l e t i ndexOfDar tToBeFi red ’ =

i f s p a c e | | p l a y e r . i s S h o o t i n g then

l e t i ndexOfDar tToBeF i r ed =

i f s p a c e then

p l a y e r . i ndexOfDar tToBeF i r ed + 1

e l s e

15

p l a y e r . i ndexOfDar tToBeF i r ed

in

i ndexOfDar tToBeF i r ed

e l s e

p l a y e r . i ndexOfDar tToBeF i r ed

d a r t s A r r a y =

Array . f r o m L i s t p l a y e r . d a r t s

|> Array . map (\ d a r t −> s t e p D a r t d e l t a d a r t boa rd)

d a r t s A r r a y ’ =

i f (s p a c e | | p l a y e r . i s S h o o t i n g)

&& indexOfDar tToBeFi red ’ >

d e f a u l t P l a y e r . i ndexOfDar tToBeF i r ed

&& indexOfDar tToBeFi red ’ <

Array . l e n g t h d a r t s A r r a y then

l e t d a r t T o B e F i r e d =

u n s a f e G e t indexOfDar tToBeFi red ’ d a r t s A r r a y

d a r t s A r r a y W i t h F i r e d =

Array . s e t

indexOfDar tToBeFi red ’

{ d a r t T o B e F i r e d | i s F i r e d <− True}

d a r t s A r r a y

in

c o l l i d e d W i t h O t h e r D a r t s

d a r t T o B e F i r e d

d a r t s A r r a y W i t h F i r e d

e l s e

16

d a r t s A r r a y

d a r t s ’ = Array . t o L i s t d a r t s A r r a y ’

i s S h o o t i n g ’ = s p a c e | | a n y I n F l i g h t d a r t s ’ boa rd

in

{ p l a y e r |

d a r t s <− d a r t s ’

, i s S h o o t i n g <− i s S h o o t i n g ’

, i ndexOfDar tToBeF i r ed <− i ndexOfDar tToBeFi red ’

}

d a r t s I n F l i g h t : D a r t s −> Board −> D a r t s

d a r t s I n F l i g h t d a r t s boa rd =

l e t check d a r t =

not d a r t . c o l l i d e d W i t h B o a r d && d a r t . y > d e f a u l t D a r t . y

in

L i s t . f i l t e r check d a r t s

a n y I n F l i g h t : D a r t s −> Board −> Bool

a n y I n F l i g h t d a r t s boa rd =

d a r t s I n F l i g h t d a r t s boa rd

|> L i s t . l e n g t h

|> (/ =) 0

c o l l i d e d W i t h O t h e r D a r t s : Da r t −> Array Dar t −>

Array Dar t

c o l l i d e d W i t h O t h e r D a r t s d a r t d a r t s =

17

l e t c o l l i d e d a D a r t =

l e t d a r t D i s t a n c e = d i s t a n c e

a D a r t . x

a D a r t . y

d a r t . x

d a r t . y

in

i f a D a r t . c o l l i d e d W i t h B o a r d

&& a D a r t /= d a r t

&& d a r t D i s t a n c e <= d a r t . r a d i u s * 2 then

{ a D a r t | c o l l i d e d W i t h O t h e r D a r t <− True}

e l s e

a D a r t

in

Array . map c o l l i d e d d a r t s

d i s t a n c e : F l o a t −> F l o a t −> F l o a t −> F l o a t −> F l o a t

d i s t a n c e x1 y1 x2 y2 =

s q r t <| ((x2 − x1) ˆ 2) + ((y2 − y1) ˆ 2)

s t e p D a r t : Time −> Dar t −> Board −> Dar t

s t e p D a r t d e l t a d a r t boa rd =

l e t vy ’ = i f d a r t . i s F i r e d &&

not d a r t . c o l l i d e d W i t h B o a r d then 600 e l s e 0

c o l l i d e d W i t h B o a r d ’ =

i f not d a r t . c o l l i d e d W i t h B o a r d then

c o l l i d e d W i t h B o a r d d a r t boa rd

18

e l s e

d a r t . c o l l i d e d W i t h B o a r d

ang le ’ = d a r t . a n g l e +

i f c o l l i d e d W i t h B o a r d ’ then d a r t . c o l l i d e d S p e e d e l s e 0

(x ’ , y ’) =

i f d a r t . c o l l i d e d W i t h B o a r d then

(boa rd . x + 2 * board . r a d i u s * cos ang le ’

, boa rd . y + 2 * board . r a d i u s * s i n ang le ’

)

e l s e

(d a r t . x , d a r t . y)

d a r t ’ = s t e p O b j e c t

d e l t a

{ d a r t |

x <− x ’

, y <− y ’

, vy <− vy ’

, a n g l e <− ang le ’

, c o l l i d e d W i t h B o a r d <− c o l l i d e d W i t h B o a r d ’

}

in

d a r t ’

i n i t i a l B o a r d D a r t s : I n t −> D a r t s

i n i t i a l B o a r d D a r t s n =

19

−−360 d e g r e e s d i v i d e d by n .

l e t d e l t a = (2 * pi) / t o F l o a t n

n D e l t a s = L i s t . r ep ea t n d e l t a

a n g l e s = L i s t . s c a n l (+) 0 n D e l t a s

upda t eAng le d a r t a n g l e =

{ d a r t | a n g l e <− a n g l e

, c o l l i d e d W i t h B o a r d <− True

}

d e f a u l t D a r t s = L i s t . r ep ea t n d e f a u l t D a r t

in

L i s t . map2 upda t eAng le d e f a u l t D a r t s a n g l e s

s t e p B o a r d : Time −> Board −> Board

s t e p B o a r d d e l t a boa rd =

s t e p O b j e c t d e l t a boa rd

l o a d L e v e l : Game −> Game

l o a d L e v e l game =

l e t l e v e l = u n s a f e G e t game . l e v e l Leve l . l e v e l s

i n i t i a l N u m b e r O f D a r t s = l e v e l . i n i t i a l N u m b e r O f D a r t s

dar t sToWin = l e v e l . dar t sToWin

speed = l e v e l . speed

indexOfDar tToBeFi red ’ = i n i t i a l N u m b e r O f D a r t s − 1

d a r t s ’ = i n i t i a l B o a r d D a r t s i n i t i a l N u m b e r O f D a r t s

++ L i s t . r ep ea t

dar t sToWin

20

{ d e f a u l t D a r t | c o l l i d e d S p e e d <− speed }

p l a y e r ’ =

{ d e f a u l t P l a y e r |

d a r t s <− d a r t s ’

, i ndexOfDar tToBeF i r ed <− i ndexOfDar tToBeFi red ’

}

in

{game |

p l a y e r <− p l a y e r ’

}

stepGame : I n p u t −> Game −> Game

stepGame i n p u t game =

l e t

{ space , e n t e r , d e l t a } = i n p u t

game ’ =

i f game . s t a t e == LoadLevel then

l o a d L e v e l game

e l s e

game

{ s t a t e , board , p l a y e r , spaceCoun t } = game ’

s t a t e ’ =

case s t a t e of

LoadLevel −> Play

21

−> s t a t e

−−TODO: Move t h i s i n t o a f u n c t i o n .

(s p a c e P r e s s e d , spaceCount ’) =

i f s p a c e then

i f spaceCoun t == 0 then

(space , spaceCoun t + 1)

e l s e

(False , spaceCoun t + 1)

e l s e

(space , 0)

board ’ = s t e p B o a r d d e l t a boa rd

p l a y e r ’ = s t e p P l a y e r d e l t a board ’ s p a c e P r e s s e d p l a y e r

in

{game |

s t a t e <− s t a t e ’

, p l a y e r <− p l a y e r ’

, boa rd <− board ’

, spaceCoun t <− spaceCount ’

}

gameSta t e : S i g n a l Game

gameSta t e = S i g n a l . f o l d p stepGame defau l tGame i n p u t

The view simply takes data presented to it from the model, and displays it on the screen.

The board is a circle with the number of darts left. The darts for the player draw separately, with

the ball for the darts drawn from the model, and the line drawn from the center of the darts to the

22

center of the board.

−− View f o r t h e game .

d i s p l a y B a c k g r o u n d : I n t −> I n t −> Form

d i s p l a y B a c k g r o u n d wid th h e i g h t =

f i l l e d w h i t e (r e c t (t o F l o a t wid th) (t o F l o a t h e i g h t))

d i s p l a y O b j e c t : F l o a t −> F l o a t −> Form −> Form

d i s p l a y O b j e c t x y form =

move (x , y) form

drawBoard : Board −> Form

drawBoard boa rd =

group

[

(f i l l e d b l a c k <| c i r c l e boa rd . r a d i u s)

, (t e x t

<| Text . h e i g h t 40

<| Text . c o l o r w h i t e

<| Text . f r o m S t r i n g

<| t o S t r i n g boa rd . numberOfDar ts

)

]

−−Draw t h e board gr o u p i n g d a r t s t h a t have c o l l i d e d

−−w i t h t h e board t o t h e board .

d i s p l a y B o a r d : Board −> Form

d i s p l a y B o a r d boa rd =

23

d i s p l a y O b j e c t boa rd . x boa rd . y <| drawBoard boa rd

d a r t C o l o r : Co lo r . Co lo r

d a r t C o l o r = b l a c k

drawDar t : Da r t −> Form

drawDar t d a r t =

l e t d rawDar tCo lo r =

i f d a r t . c o l l i d e d W i t h O t h e r D a r t then r e d e l s e d a r t C o l o r

in

c i r c l e d a r t . r a d i u s

|> f i l l e d d rawDar tCo lo r

drawLine : Dar t −> Form

drawLine d a r t =

segment (d e f a u l t B o a r d . x , d e f a u l t B o a r d . y)

(d a r t . x , d a r t . y)

|> t r a c e d (s o l i d d a r t C o l o r)

d i s p l a y D a r t : Da r t −> Form

d i s p l a y D a r t d a r t =

d i s p l a y O b j e c t d a r t . x d a r t . y (drawDar t d a r t)

d i s p l a y : (Int , I n t) −> Game −> Element

d i s p l a y (width , h e i g h t) { board , p l a y e r } =

l e t d a r t F o r m s = L i s t . map d i s p l a y D a r t p l a y e r . d a r t s

24

−−L i n e s f o r t h e d a r t s drawn s e p a r a t e l y so t h e y

−−won ’ t move when t h e d a r t s are r e l o c a t e d .

l i n e F o r m s =

L i s t . f i l t e r . c o l l i d e d W i t h B o a r d p l a y e r . d a r t s

|> L i s t . map drawLine

in

c o n t a i n e r wid th h e i g h t midd le

<| c o l l a g e wid th h e i g h t

<| d i s p l a y B a c k g r o u n d wid th h e i g h t

: : l i n e F o r m s

++ d a r t F o r m s

++ [d i s p l a y B o a r d boa rd]

main : S i g n a l Element

main = d i s p l a y <˜ Window . d i m e n s i o n s ˜ gameS ta t e

The inputs combine into a new signal, and trigger the generation of a signal of Game

objects. A new instance of the game object is created by updating the model based on input.

Finally, a signal of Element, Elm’s way of displaying graphics on the screen, is created by reading

the Signal of Game and displaying the data in the model.

i n p u t : S i g n a l I n p u t

i n p u t =

S i g n a l . sampleOn d e l t a

<| I n p u t <˜ Keyboard . s p a c e ˜ Keyboard . e n t e r ˜ d e l t a

gameS ta t e : S i g n a l Game

gameSta t e = S i g n a l . f o l d p stepGame defau l tGame i n p u t

25

main : S i g n a l Element

main = d i s p l a y <˜ Window . d i m e n s i o n s ˜ gameS ta t e

Figure 4.2. The flow of data for aa.

4.1 Advantages of Functional Reactive Programming

Signals, combined with the structure of the game, reduced the overall complexity of the

code. Since the inputs were composed together into a single record, there was no need for multiple

event handlers setting the values of global variables.

In JavaScript and other imperative languages, mutation forms the basis for how data from

multiple events are gathered. This is because events typically cannot return values, so saving the

relevant variable involves setting a global variable from inside the event handler. Also making sure

the values generated from events are updated in all the functions that need them can be tricky [1].

In purely functional languages like Elm, variables cannot be modified. This means that

there is no way to set a global variable from inside an event handler. By passing in relevant values

to signal functions, and allowing signals to be composed with each other, Signals provide a way

26

for all the functions that need a value to use the latest value.

4.2 Problems with the implementation

Most of the problems with the implementation are at the language level. Elm is a new

language, and not all of the library features work as expected, or aren’t as robust as they should be.

For aa, only one dart should be fired regardless of how long space is pressed. Signal.dropRepeats is

a function that only lets the new value out if it is not a duplicate of the last value. For an input record

consisting of only the space parameter, this works as expected, but because delta, the time since the

last update, is constantly changing, the entire record is not considered a duplicate. There was no

way to modify the way to compare records, and there was no dropRepeatsWith that would allow

filtering values with a custom function, although this has been discussed in [10]. Alternatively,

Signal.foldp, which allows past values of signals to be inspected, also did not work because it

could only look at the previous value. This meant that the value in the space signal would rapidly

flip from true to false.

type a l i a s I n p u t =

{ s p a c e : Bool

, s pa c e2 : Bool

, d e l t a : F l o a t

}

d e l t a : S i g n a l F l o a t

d e l t a = Time . i n S e c o n d s <˜ (Time . f p s 60)

i n p u t : S i g n a l I n p u t

i n p u t =

l e t space ’ = d r o p R e p e a t s <| sampleOn d e l t a s p a c e

space2 ’ = d r o p R e p e a t s s p a c e

27

in I n p u t <˜ space ’ ˜ space2 ’ ˜ d e l t a

The solution ended up being a counter in the game record that counted the number of times

it had seen the space pressed and would reset when it saw a false value.

4.3 Non-Signal Problems

There were a few problems implementing the game that had nothing to do with functional

reactive programming. These were aside from the usual crashes and odd behavior that you can

expect to see from a new language.

The Pong tutorial made it seem like it is possible to implement a game by planning ev-

erything from the start. In reality, the process was a lot more iterative. There are always new

considerations and alterations to each of the four sections of code.

Another problem involves getting the darts to orbit the board. Initially, darts had a pin part

a line that extended from the ball in the model. This caused problems when trying to have darts

orbit around the board as they would have to rotate. The first solution tried involved grouping the

darts when they collide with the board, then rotating the entire object. This did not work as the

changes would exist only in the view, and the dart coordinates are used in updates for calculating

dart on dart collisions. Rotating the dart by itself using an angle parameter also does not work as

this causes the dart to spin about its own axis. The correct solution is to add an angle parameter

using cos (angle) for the x coordinate and sin (angle) for the y coordinate [12]. The pins of the

darts were also removed from the model, and exist only in the view. They rotate properly since we

continually redraw them from the center of the ball of the dart to the center of the board.

28

CHAPTER 5

CONCLUSION AND FUTURE WORK

Functional reactive programming provides a cleaner way than event driven programming

of modeling input and state updates. This is because of its ability to treat signals the same way as

any other variable. This ability is similar to the power functions have in a functional programming

language, where functions have first class status.

In the short term, Elm needs to have a more stable language with a lot more features. This

includes a more sophisticated type system like Haskell’s type classes [13]. This will allow for

a greater degree of abstraction and code reuse. A more traditional step debugger would also be

helpful even though the time-traveling debugger was useful.

In the long run, Elm might have trouble attracting a large audience because most pro-

grammers are unfamiliar with pure functional programming. There are also several libraries like

flapjax [15] that can serve programmers that want reactive programming, but don’t want to leave

JavaScript. It might do well with Haskell and ML users that want a similar language in their

browser.

In the future, a cleaner way to ensure no duplicate values for a single input in a record of

inputs needs to be found. The given functions for filtering inputs do not work as expected. Looking

into the JavaScript Elm outputs and the Haskell Elm is written in might give a clearer explanation

why.

More games with a variety of inputs will need to be written. The difference in Signals used

between already established games (Pong, aa) will likely only be in the inputs, as the structure for

games seems to be robust.

29

BIBLIOGRAPHY

30

BIBLIOGRAPHY

[1] Engineer Bainomugisha, Andoni Lombide Carreton, Tom Van Cutsem, Stijn Mostinckx, and
Wolfgang De Meuter. A survey on reactive programming. ACM Computing Surveys, 2012.

[2] Haskell Community. Haskell language. https://www.haskell.org/, 2015.

[3] Ocaml Community. Ocaml - ocaml. http://ocaml.org/community/, 2015.

[4] Antony Courtney, Henrik Nilsson, and John Peterson. The yampa arcade. In Proceedings of
the 2003 ACM SIGPLAN workshop on Haskell, pages 7–18. ACM, 2003.

[5] Evan Czaplicki. Elm: Concurrent frp for functional guis. Senior thesis, Harvard University,
2012.

[6] Evan Czaplicki. Basics. http://package.elm-lang.org/packages/
elm-lang/core/2.1.0/Basics#|>, 2015.

[7] Evan Czaplicki. Making pong an intro to games in elm. http://elm-lang.org/blog/
making-pong, 2015.

[8] Evan Czaplicki. Reactivity. http://elm-lang.org/guide/reactivity, 2015.

[9] Evan Czaplicki. Records. http://elm-lang.org/docs/records, 2015.

[10] Evan Czaplicki. Why no droprepeats in elm-0.15. https://github.com/elm-lang/
core/issues/200, 2015.

[11] Conal Elliott and Paul Hudak. Functional reactive animation. In ACM SIGPLAN Notices,
volume 32, pages 263–273. ACM, 1997.

[12] Gamegur-us. Gamegur-us/aa. https://github.com/Gamegur-us/aa, 2015.

[13] Miran Lipovaca. Learn you a haskell for great good!: a beginner’s guide. no starch press,
2011.

[14] General Adaptive Apps Pty Ltd. aa. https://play.google.com/store/apps/
details?id=com.aa.generaladaptiveapps&hl=en, 2015.

[15] Leo A Meyerovich, Arjun Guha, Jacob Baskin, Gregory H Cooper, Michael Greenberg, Aleks
Bromfield, and Shriram Krishnamurthi. Flapjax: a programming language for ajax applica-
tions. In ACM SIGPLAN Notices, volume 44, pages 1–20. ACM, 2009.

31

VITA

Bachelor of Science in Computer Science The University of Mississippi (July 2007 - May

2011)

Software Engineer at Notify Corporation (Now Globo Mobile Plc.) (October 2011 - Jan-

uary 2014)

Graduate Assistant at the Department of Outreach (January 2014 - August 2014)

Graduate Assistant at Mississippi Center for Supercomputing Research (September 2014 -

December 2015)

32

	Functional Reactive Programming For Games
	Recommended Citation

	tmp.1561729709.pdf.o4UNs

