
University of Mississippi University of Mississippi 

eGrove eGrove 

Electronic Theses and Dissertations Graduate School 

2017 

Blockchains For Publicizing Available Scientific Datasets Blockchains For Publicizing Available Scientific Datasets 

Shirishkumar Patel 
University of Mississippi 

Follow this and additional works at: https://egrove.olemiss.edu/etd 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Patel, Shirishkumar, "Blockchains For Publicizing Available Scientific Datasets" (2017). Electronic Theses 
and Dissertations. 947. 
https://egrove.olemiss.edu/etd/947 

This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been 
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more 
information, please contact egrove@olemiss.edu. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by eGrove (Univ. of Mississippi)

https://core.ac.uk/display/288063219?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://egrove.olemiss.edu/
https://egrove.olemiss.edu/etd
https://egrove.olemiss.edu/gradschool
https://egrove.olemiss.edu/etd?utm_source=egrove.olemiss.edu%2Fetd%2F947&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=egrove.olemiss.edu%2Fetd%2F947&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/etd/947?utm_source=egrove.olemiss.edu%2Fetd%2F947&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu


 

i 

 

 

 

UNIVERSITY OF MISSISSIPPI 
 
 
 
 
 
 
 
 
 

BLOCKCHAINS FOR PUBLICIZING 
 

AVAILABLE SCIENTIFIC DATASETS 

 
 
 
 
 
 
 
 
 

by 

 

Shirish Patel 
 
 
 
 
 
 
 

 

A thesis submitted in partial fulfillment for the 

master's degree 

 

 

in the Computer Science  
Dr. Philip Rhodes  

Department of Computer and Information Science 
 

                                                   
 
 
                                                    May 2017

http://www.olemiss.edu/
srpatel3@go.olemiss.edu
http://www.cs.olemiss.edu/~rhodes
http://www.cs.olemiss.edu/


 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Copyright c 2017 Shirish Patel 
 
Permission is granted to copy, distribute and/or modify this document under the terms 

of the University Of Mississippi



 

ii 

 

ABSTRACT 

 

This thesis explores the effectiveness of blockchain technology for advertisement of Scientific 

Data. Recently the advancement in hardware and software for data processing increases the 

supply and demand for huge data sets. Such data may be widely distributed, and not 

immediately available to the scientists who need it. We need a method of advertising available 

datasets to interested parties. 

 

Blockchains are a recent innovation developed by the cryptocurrency community, but are 

increasingly applied to other problem domains. Due to their currency heritage, however, the 

properties of blockchains do not always lend themselves to new applications. 

 

We have developed a prototype DAPP (Distributed Application) to advertise available scientific 

datasets using metadata. A private Ethereum blockchain is used to distribute metadata to 

users, while an Ethereum contract matches dataset providers with consumers. Lastly, a 

conceptual currency is used to incentivize efficient resource selection. 



 

iii 

 

 
 

ACKNOWLEDGEMENT 

 

I would first like to thanks my thesis advisor Dr. Philip Rhodes of the Department of Computer 

Science at The University of Mississippi. Dr. Rhodes was always there whenever I ran into 

some trouble spot or whenever I needed suggestions on my research or writing. He guided 

me in the right directions whenever needed throughout this thesis. 

 

I also would like to thank Dr. Feng Wang and Dr. Byunghyun Jang for being the members of 

my thesis validation committee and also helping me making my work and my write-up better. 

 

Finally I would like to thank my family for their constant support and faith in me. This 

accomplishment would not have been possible without them. . . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



 

iv 

 

 
 
 
 
 
 
 

CONTENTS 
 
ABSTRACT            ii 
 
ACKNOWLEDGEMENTS         iii 
 
CONTENTS              iv 
 
ABBREVIATIONS           vi 
 
 
1. Introduction          1 

 
1.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    1 

 
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    2 
 
1.3 Key Components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    3 
 
1.4 Challenges  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   3 
 
1.5 Summary of Contributions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    3   
 

2. Background 
 
2.1 Ethereum  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    5 
 
2.2 Blockchains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    6 
 
2.3 Solidity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    7 
 
2.4 Swarm and Whisper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    9 
 
 2.4.1 Swarm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    9 
 
 2.4.2 Whisper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    9 
 
2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    10 
 
 2.5.1 Grid Computing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    10 
   
  2.5.1.1 Resource Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    10 
  
 2.5.2 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    11 

 
3.  Advertising Resources with a Blockchain 
 
 3.1 Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
 
 3.2 Contract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 
  
  3.2.1 Provider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 
   
  3.2.2 Advertising Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 
 
  3.2.3 Consumer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15 
 

3.2.4 Reputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 
 
3.2.5 Example Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 



 

v 

 

 

4. Results 

 4.1 Testing Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 

 4.2 Basic Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 

 4.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 

  4.3.1 Publishing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24 

  4.3.2 Matchmaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

5. Conclusion and Future Work 

 5.1  Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 

 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 

 

 

Bibliography           29 

Vita            32

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

vi 

 

 

 

 

 

ABBREVIATIONS 
 
 
 

 

DAPP Distributed Applications 
 

DDOS Distributed Denial Of Service 
 

EVM Ethereum Virtual Machine 
 

ClassAds Classified Advertisements 
 

VM Virtual Machine 
 
 
 
 
 
 
 
 
 
 
 
 



 

1 

 

 

 

 

 

CHAPTER 1: INTRODUCTION 

  

 

“The blockchain is an incorruptible digital ledger of economic transactions that can be 

programmed to record not just financial transactions but virtually everything of value." 

 

Don & Alex Tapscott, authors of Blockchain Revolution: How the Technology Behind Bitcoin Is 

Changing Money, Business, and the World [1] 

 
 

The “3 V's" (Volume, Variety and Velocity) are three defining properties of “Big Data" [2]. While 

Volume represents the amount of data, Velocity represents the speed of data processing. 

Variety refers to the diversity of data types used in different fields. Recent advancements in 

hardware and software have caused a data explosion. This resulted in a rapid increase in the 

amount of produced and published data and hence even further worsened the problems 

presented by the 3 V's. As these challenges increased, processing and managing datasets 

became more important. 

 

In distributed environments, networked computers can communicate with each other by 

passing messages. Nodes in a distributed environment need a way to advertise the availability 

and costs of the resources in order to access the resources on the network [3]. The 

conventional way to do this is to have one master who controls and publishes data to all other 

nodes in the network, or to have peer to peer network in which all peers share information with 

each other. 

 

1.1 The Problem 

The Data explosion introduces new problems of managing huge datasets in an effective way. 

These datasets need to be processed in order to extract human understanding from the raw 

data. Even though one might have enough processing power to process these datasets, there 

remains a problem to find appropriate dataset for particular application. Datasets may be 

widely distributed across a network and have many replicas available, also different 

applications need datasets that are specially formatted or preprocessed. Satisfying these 



 

2 

 

needs underlines the necessity for a common platform which advertises available datasets in 

terms of metadata. Such metadata helps data consumers to make better choices from among 

the available replicas. Indeed, research into resource management and replica selection has 

been an ongoing topic of research for decades [4]. This thesis investigates whether the arrival 

of an exciting new technology, the blockchain is a viable approach to this important problem 

[5]. 

 

1.2 The Motivation 

 

The notoriety of Blockchain Technology is largely due to the rise of BitCoin, as a solution for 

the problems of “double spending" and similar attacks that plaqued previous attempts at digital 

currencies. All the processing on a blockchain is recorded as a transaction which shows the 

proof of transaction processing. Once the transaction is completed it is stored in permanently 

in the blockchain. Blockchains are (generally speaking) immutable, using cryptography to 

prevent tampering with the contents of blocks. Nodes participating in the blockchain each have 

a complete copy of the entire blockchain, all the way back to the beginning of the chain. Newly 

joined nodes must sync the full blockchain content in order to start making transactions. As 

each node in the blockchain technology has a full history, it is almost impossible to have DDOS 

attack because there is no single point of failure. 

 

In addition to this resilience, the fact that each node has a complete history makes blockchains 

well suited to the task of advertising available resources. Rather than taking a traditional peer-

to-peer approach [6] that requires repeating historical information for new nodes, blockchains 

handle this problem naturally, since each node has a full copy of the blockchain history. 

 

Even though the main application domain for blockchains remains digital currencies, it had 

been applied to different domains like Internet of Things, networking, publishing medical 

records, online library system etc. also in current year some of the multinational companies 

are making their own version of blockchains for private use. 

 

The problem of advertising metadata about datasets or resources in distributed environments 

have been studied for years [7]. However, these e orts largely predate the invention of the 

blockchain. A major motivation of this thesis is to investigate the feasibility of using a 

blockchain for replica selection in a distributed context. 

 



 

3 

 

1.3 Key Components 

 

We chose the Ethereum Blockchain to implement the prototype, which is an open source, 

distributed blockchain based computing platform featuring smart contracts: software running 

on a blockchain over the network. Smart contracts are account holding objects on the 

Ethereum blockchain, and are capable of interacting with other contracts, storing data, and 

making decisions. Solidity is the programming language with which smart contracts are written. 

A JavaScript API officially published by Ethereum developers is used to communicate with 

Ethereum node. 

 

 

1.4 Challenges 

 

Blockchain technology is new and fast evolving but right now it still has some limitations. For 

example it doesn't allow users to choose which data to be replicated on each node and which 

data to be stored in distributed manner, which makes direct representation of datasets 

unattractive and limits to advertise only metadata as an advertisement. 

 

Blockchain technology was originally designed for managing digital currency, and inherits 

properties designed for this purpose. It therefore raises complexities when being applied to 

different domains. For advertising metadata about the scientific datasets using blockchain 

technology, we had to deal with multiple layers of technology inside the blockchain itself to 

make it work. As blockchains are new technology, certain conveniences (such as  floating 

point types and a library of ready-made data structures) are simply not yet available. 

 

1.5  Summery of Contributions 

 In Chapter 2 we've given basic introduction on Ethereum and Blockchain 

technology. Also Chapter 2 includes brief information on Swarm and Whisper 

protocols, which are complementary technologies to Blockchain. 

 Chapter 3 talks about the work we've done. It mainly focuses on the detailed 

explanation of the DAPP (Distributed Application) we've developed. Also it 

includes run through transition from an instance of a system, which will help 

you better understand how the DAPP works. 

 Chapter 4 discusses about the tests: why they are needed and what the results 

are.  



 

4 

 

 Chapter 5 includes conclusion of our work and future work possible in this 

area.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

5 

 

 

 

 

CHAPTER 2: BACKGROUND 

Bitcoin is a cryptocurrency and a payment system invented by an unidentified programmer, or 

group of programmers, under the name of Satoshi Nakamoto. Bitcoin uses peer-to-peer 

technology with no central authority like banks i.e. transactions take place between users 

directly. Bitcoin is open-source; nobody owns it or controls it and anyone can take part. 

Ethereum uses the same concept as Bitcoin but offers more functionalities to its user. 

 

2.1  Ethereum 

Ethereum is a decentralized platform that runs smart contracts: applications that run exactly 

as programmed without any possibility of downtime, censorship, fraud or third party 

interference. These apps run on a custom built blockchain, an enormously powerful shared 

global infrastructure that can move value around and represent the ownership of property. 

This enables developers to create markets, store registries of debts or promises, move funds 

in accordance with instructions given long in the past (like a will or a futures contract) and 

many other things that have not been invented yet, all without a middle man or counterparty 

risk. Ethereum pro-vides an Ethereum Virtual Machine (EVM) which can execute Turing-

complete scripts using an international network of public nodes and a token called ether. 

Ethereum was initially proposed in late 2013 by Vitalik Buterin, a cryptocurrency researcher 

and programmer. Development was funded by an online crowd sale during July August 2014. 

To complete transaction one must pay price in terms of Gas (an internal pricing mechanism 

for Ethereum) which also helps prevent spamming the network. Ethereum and Bitcoin differs 

in many terms but the most important distinction to note is that Bitcoin offers one particular 

application of blockchain technology, a peer-to-peer electronic cash system that enables 

online Bitcoin payment. While the bitcoin blockchain is used to track the ownership of digital 

currency (bitcoins), the Ethereum blockchain focuses on running the programming code of any 

decentralized application. 

 

 

 



 

6 

 

2.2  Blockchains 

 

A Blockchain is a distributed database that maintains a continually growing list of ordered 

records called blocks, designed to hold the records of the transactions that have taken place. 

Each block contains a timestamp and a link to previous block. A genesis block is the starting 

block of blockchain which defines the characteristics of the resulting blockchain. Blockchain 

uses a peer-to-peer network and a distributed timestamp server to maintain database 

autonomous. Blockchains are by default made resistant to the modification of data; i.e. once 

recorded, data in the block cannot be altered. If needed the current state of a contract can be 

updated in blockchain, but this updated data will not replace the old data. Instead a new branch 

will be made for this updated data and a reference to this branched data will be given at the 

old location of data i.e. old data will remain there as long as blockchain exists. 

 

Blockchains provide secure online transactions and store these transactions across many 

computers in such a way that makes alteration of these records almost impossible. 

Transactions are authenticated by mass collaboration powered by collective self-interests 

a.k.a. miners, which allows participants to access and verify the transactions in an inexpensive 

manner. For a trans-action to be stored into a block, has to be authenticated by miners. Miners 

play important role in the security of blockchain as it won't allow spam blocks to be added to 

blockchain. 

 
A Blockchain stores the data across its network, which eliminates the problems that comes 

with storing data in a single place like single point of failure. A Blockchain uses a public key (a 

long string of hexadecimal numbers) as an address on the blockchain for encrypting data on 

the blockchain. Each user will have own private key using which it can access the contents of 

blockchain. As whole content of blockchain will be replicated on each node by blockchain 

technology and each user will have their own private key, each user will have full access to 

the content of blockchain. With Each node having full copy of blockchain it is safe to say that 

there is no "official" copy exist or no user is important than other user. 

 

Blockchains are databases used for storing data, but to populate those blockchains uses 

different software, Ethereum and BitCoin are examples. For serializing changes blockchain 

uses different types of time-stamping schemes like proof-of-work, proof-of-stake etc. 

Blockchain technology was originally developed for keeping track of transactions performed 

by BitCoin but as time passed and the evolution of blockchain took place, managing 



 

7 

 

transactions for cryptocurrencies like BitCoin became merely one of the many possible 

applications of blockchain technology. 

 

Proof-of-Work time stamping technology is currently used by BitCoin, meaning certain amount 

of work has to be done in order to complete the transaction. This results in making process of 

mining in BitCoin centralized because of the most of the companies ended up purchasing 

hardware dedicated for mining process. Ethereum in other hand uses the Proof-of-stake time 

stamping technology, which focuses on validating a block instead of mining it. Means blocks 

still need to be created by someone, and who gets to create the next block depends on the 

specific Proof of Stake algorithm, but the selection process have randomness in contrary with 

of Proof-of-Work algorithm used by BitCoin. 

 

2.3 Solidity 

 

As mentioned earlier the main difference between BitCoin and Ethereum is that BitCoin uses 

a blockchain for recording and maintaining online transactions where as Ethereum uses 

blockchain to run smart contract all over the network. Smart Contracts are small programs 

which governs the behavior of accounts within the Ethereum state. These programs operate 

within the context of the Ethereum environment. Solidity is the programming language for 

writing smart contracts. It is perhaps the first example of a contract-oriented programming 

language; a slight tweak on the notion of object-oriented programming language. While closely 

related to object-oriented languages, this is a language designed specifically to help express 

agreements that must encode ideas and relationships relevant to Real Life, or some formal 

model thereof. As such we see notions such as ownership, identity, protections and restrictions 

forming a core part of the vocabulary and idiomatic grammar. 

 

Example of HelloWorld.sol a simple contract: 
 
contract mortal  { 
 

/* define variable owner of the type address */ address owner; 
/* this function is executed at initialization and sets the owner of the contract */  

function mortal () { owner = msg . sender ; } 

/* Function to recover the funds on  the contract */ 
 

function kill ()  {  if  ( msg . sender == owner )  selfdestruct ( owner );  } 
 
} 

 
Contract greeter is mortal { 
 

/* define variable greeting of the type string */  

string greeting ; 



 

8 

 

 
 

 
/* this runs when the contract is executed */  

function greeter ( string _ greeting ) public { 
 

greeting  =  _ gr e et in g ; 
 

} 
/*  main function */ 

 
function greet () constant returns ( string ) {  

return greeting ; 
} 

 
} 
 

 

 

Explanation: 

 

As you can see there are two different contracts in the code: greeter and mortal. Solidity provides 

inheritance just like other languages; in the code above the greeter contract inherits the properties 

of mortal contract by "is mortal". You can declare global variables and structures and can access 

those using functions. Once you deploy a contract on blockchain, the same bytecode will be 

replicated on each instance of the blockchain giving access to every node with the full blockchain 

copy. There is no central identity who manages the code, meaning each node will have equal 

priority by default but you can give the owner of contract or some other node a little more privileges 

than other nodes as in the code above only the owner i.e. the creator of the contract will be able 

to call the function kill(). Upon deploying the contract as a return value you will get an address 

(string of hexadecimals) at which contract is deployed. In order to access the same contract from 

other nodes, one will need this address and a ABI (application binary interface). The ABI defines 

different things such as how parameters are passed to the functions, how application interacts 

with itself, where the return value is placed for return etc. 

 

Once the contract is deployed on the blockchain then it is supposed to run for infinite time as 

long as there is even a single node active on the network. But if you want the contract to be 

inaccessible and retrieve all the resources contract is holding you can do it so by the use of 

kill() function as shown above in the code. The data of the contract will be still there in the 

blockchain as the data in the blockchain is supposed to be immutable but it won't be 

accessible. After deploying the above contract on blockchain you first need to set value of 

variable greeting of type string by calling function greeter using the contract object created 

using the deployed address and ABI of the contract. After setting the value of greeter if you 

call function greet using the same contract object, you will get the value you have settled 

before for greeting. 

 



 

9 

 

2.4 Swarm and Whisper 

 

Both Swarm and Whisper are complementary technologies contributing to the vision of 

Ethereum as \World Computer". Imagining Ethereum as a metaphor for shared computer, it 

should be noted that a computation alone is not enough. For a computer to be fully useful, it 

also needs storage to remember things and bandwidth for communication. Keeping in mind 

the vision of Ethereum World Computer smart contracts can be seen as distributed logic, 

Swarm can be seen as decentralized storage and Whisper can be seen as decentralized 

messaging. 

 

2.4.1  Swarm 

 

Swarm is a distributed storage platform and content distribution service, a native base layer 

service of the ethereum web 3 stack. Swarm is being designed as an accounting protocol that 

benefits from the self-execution of "smart contracts" on Ethereum Virtual Machine. The 

primary objective of Swarm is to provide a sufficiently decentralized and redundant store of 

Ethereum’s public record, in particular to store and distribute app code and data as well as 

block chain data. 

 

From the end user's perspective, Swarm is not that different from WWW, except that uploads 

are not to a specific server. The objective is to peer-to-peer storage and serving solution that 

is DDOS-resistant, zero-downtime, fault-tolerant and censorship-resistant as well as self-

sustaining due to a built-in incentive system which uses peer to peer accounting and allows 

trading resources for payment. Swarm is designed to deeply integrate with the devp2p 

multiprotocol network layer of Ethereum as well as with the Ethereum blockchain for domain 

name resolution, service payments and content availability insurance. 

 

2.4.2  Whisper 

 

Whisper is a pure identity based messaging protocol for Ethereum which allows messaging 

between using within the same network. Whisper is separate from Ethereum so smart 

contracts have not (yet) access to it. Whisper is not designed to provide a connection oriented 

system, nor for simply delivering data between a pair of particular network endpoints. Whisper 

is a new protocol designed expressly for a new paradigm of application development. It is 



 

10 

 

designed from the ground up for easy and efficient multi-casting and broadcasting, and also 

for low-level partially-asynchronous communications. 

 

Whisper is not designed to transfer huge amount of data between nodes, but only to exchange 

messages of information between nodes. Like whenever DApps needs to publish small 

amount of information to each other, DApps that needs to signal each other in order to 

ultimately collaborate on transaction or whenever DApps needs to provide non-real-time 

hinting or general communication between each other. Whisper works on very low level, API 

is only exposed to DApps and never to the end users. 

 

2.5  Related Work 

 

Distributed Computing where the resources are distributed over network and are managed, 

used, owned by organizations and the fact that partners can join or leave organization at any 

time makes it dynamic. Resource discovery in such dynamic network is tedious and very 

important [8]. 

 

2.5.1 Grid Computing 

 

A simple way to think about Grid Computing is that it is the way of taking advantage of unused 

CPU-cycles of a pool of interconnected computers. According to Ian Foster, “Grid Computing 

refers to the large-scale integration of computer systems (via high-speed networks) to provide 

on-demand access to data-crunching capabilities and functions not available to one individual 

or group of machines"[9]. Grid Computing removes the need to “provision" for peak load. 

Instead, organizations share resources with other organizations, borrowing from other 

organizations during their own peak periods and vice versa. 

 
Condor is a software system developed by Miron Livny's group at the University of Wisconsin 

and made available to the public in 2003[10]. Condor is a specialized batch processing system 

that manages the jobs for Grid Computing system. Condor places the job in queue until the 

resources required for that job are available and then starts the job on available grid machine. 

 

2.5.1.1 Resource Discovery 

 



 

11 

 

As mentioned above one of the tasks of Condor is to schedule jobs to available Grid Machine, 

as the efficiency of a scheduling algorithm is bounded by the resource discovery algorithm 

makes the problem of resource discovery in Grid Computing very important. 

 

Classified Advertisements (ClassAds) are the lingua franca of Condor. They are used for de-

scribing jobs, workstation and other resources. They are exchanged by Condor processes to 

schedule jobs. They are logged les for statistical analysis and debugging purpose. They are 

used to inquire about the current state of problem. 

 

Match making is a resource management software for High Throughput Computing. Most of 

the problems while deploying Condor in Grid are handled by this [11]. As the machines being 

located at different physical locations, selection of a right replica of dataset from other replicas 

becomes an important issue [12]. 

 

2.5.2 Cloud Computing 

 

Unlike Grid Computing where, more than one computer coordinates to solve a problem 

together and process will have direct access to the resources required, Cloud Computing is 

where application doesn't have direct access to the resource required. Rather it accesses 

them through something like a service. So instead of talking to specific hard drive to store the 

data or CPU for computation it talks to the service that provides these resources. Another 

difference between Grid Computing and Cloud Computing is that in Cloud Computing 

virtualization of resources is possible of which end user is unaware. Virtualization makes little 

difference to the customer experience, but they are only charged for the time they actually 

use. If they aren't using any VMs, they are not charged. By giving access as VM's comes 

elasticity, means the cloud provider can run only the number of physical machines that are 

necessary at a given time. 

 
In theory, our model could support either grid or cloud computing. Grid Computing 

complements the vision of Ethereum as a World Computer. Ethereum allows creating "tokens" 

that functions as currencies. One way our system could support cloud computing is via a token 

1that can be bought with “real world" cash.



 

12 

 

 
 
 
 
 
 

CHAPTER 3: PUBLICIZING RESOURCES WITH BLOCKCHAIN 
 

 
Data in the blockchain is complete, consistent, timely and widely available. Due to the 

decentralized network, blockchains do not have single point of failure and that makes them 

better able to withstand malicious attacks. As there is no central authority to control the 

transactions users are responsible for all of their information and transactions. Changes to the 

blockchains are viewable by all parties, creating transparency between users. All the data in 

the blockchain are by default immutable, meaning they cannot be altered or changed. The fact 

that having a distributed database all over network minimize the risk of single point of failure 

also leads to have each node having a full copy of blockchain which increases traffic because 

of message passing system of blockchain and memory occupied by each to hold blockchain 

data. Immutability of blockchain provides integrity but also makes it di cult to handle dynamic 

data. 

 
Blockchain works as underlying infrastructure for Ethereum allowing smart contracts to run on 

it, solidity is used for developing smart contracts. Once deployed on blockchain smart 

contracts are called DAPPS (Distributed Applications) and are supposed to run for infinite time. 

Solidity offers many functionalities for developing smart contracts. 

 

3.1 Mappings 

 

Mappings can be seen as Hashtable which are virtually initialized such that every possible key 

exists and is mapped to a value byte whose byte-representation is all zeros: a type's default 

value. It consists of two main parts: a Key-Part and a Value-Part. Syntax for declaring a 

mapping is: 
 
mapping  ( _KeyType  = >  _ValueType )  mapName ; 
 

 

One can think of KeyValue as the key that has to pass to the function to get the ValueType 

associated with it. Here the KeyValue can be any type except a mapping, a dynamic size 

array, an enum or a struct where as a ValueType can be anything also another mapping which 



 

13 

 

is called mapping of mapping. Mappings are only allowed for state variables (or as storage 

reference type in internal functions). 

 

Unlike traditional hashtables in key data is not stored in mapping, only its keccak256 hash to 

look up value. Because of this mappings do not have a length or concept of key or value being 

set. Also this makes mapping non iterable. 

 

An example of mapping: 
 
struct sellerAccounts {  

string sellerName;  

address sellerAddress;  

uint accountBalance;  

bool doesExist ; 
 

int sellerReputation ;  

uint numberOfFeeds; 
 

} 

 
mapping  ( address  = >  sellerAccounts)  list_Accounts; 
 

 

As you can see in the code above there is structure sellerAccounts with multiple members. 

Here the KeyValue is of type address and ValueType i.e. return type is of type sellerAccount. 

Here values using mapping can be set as: 

 

 
list _ Accounts [0 x 9 c 7 c a a 8 4 c f 6 2 e a 7 3 9 8 8 7 d 3 3 8 3 a c b 8 d 8 0 c 5 c 2 2 d 2 e ]. sellerName  =  " xyz "; 
 
list_Accounts [0 x 9 c 7 c a a 8 4 c f 6 2 e a 7 3 9 8 8 7 d 3 3 8 3 a c b 8 d 8 0 c 5 c 2 2 d 2 e ].accountBalance = 0;  

list_Accounts [0 x 9 c 7 c a a 8 4 c f 6 2 e a 7 3 9 8 8 7 d 3 3 8 3 a c b 8 d 8 0 c 5 c 2 2 d 2 e ].doeExist = false ; 

 

 

3.2       Contract 
 
 
We developed a smart contract that advertises the available datasets to the scientists who 

might use them. Customers can query a dataset type and will get list of sellers who provides 

that particular type of dataset then it's up to customer to choose appropriate dataset from the 

list. Whenever a seller uploads any new advertisement he/she will get some points as a reward 

(token) and can use it later on for buying (or accessing!!) resources on the same network. Also 

buyers can give feedbacks on the datasets that will help other buyers making decision and 

choosing the right dataset from list. 

 
 

 



 

14 

 

3.2.1 Provider 
 

 

Whenever a provider has a dataset he/she wants to sell. He/She must create an account, 

upon creation of account successfully a token will be associated to that particular address and 

will be used as a reference in all further transactions. Once token is assigned with account, 

seller can upload the advertisement about dataset. According the credentials specified by 

seller for dataset, seller will get points in his/her account that can be used later for accessing 

other resources. Each token will have a sellerName, sellerAddress, accountBalance which are 

visible to all members and sellerReputation which is not visible to anyone but helps improving 

the system. SellerReputation will be directly affected by the feed backs from the datasets that 

were uploaded by that particular account and in turn will affect the feed backs given by this 

seller. We can say the older system gets the more stable it becomes. Once advertisement is 

successfully added to the contract seller will be rewarded with points in accountBalance. 

 
 

3.2.2 Advertising Datasets 
 

 

Advertisement have information specific to particular dataset. Solidity offers structure type for 

having different data types. Keeping in mind the further upgrades on solidity we decided to 

store information about dataset into two different structures datasetNode info and datasetNode 

qos contains the basic information about the dataset and quality of service respectively. 

Structure datasetNode info have variables: 

 

IP: IP address of the server where the data is stored 

 

datasetLocation: Geological location where the dataset is being stored 

datasetDescription: Free form metadata 

 
encryptedURL: An URL that will be given in return when buyer buys the dataset. Could be the 

url to access the dataset 

 

cost: Cost to buy the dataset 

 

doesExist: Use to prevent duplication of datasets and also can be used when dataset is in 

maintenance and seller temporary wants to make it unavailable 

 

volume: Volume of the dataset (in Kb) 



 

15 

 

 

owner: Owner of the dataset (account address of the dataset owner) 
 
 
 

All the information in the datasetNode info will be visible to the buyer on query. datasetNode 

qos have only a single variable that wil be visible to the user: 

 

 

datasetFeeds: An integer showing the feedback received for the dataset 
 
 

 

3.2.3 Consumer 
 

 

For accessing the datasets consumers can either directly go to the address of Owner and 

dataset type (if he/she already knows exactly what dataset he/she needs) or can get the list of 

providers who have that type of datasets and can decide what dataset is perfect for the 

application. For accessing any dataset the buyer must have enough points in his/her account 

Balance. Once consumer accesses the dataset he/she can give feedback about the dataset. 

Feedback given by a particular customer will be modulated by the personal reputation of that 

consumer and then only will be added to that dataset. We can say that in order to access any 

resource on the network one first should share something on the network. 

 

 

3.2.4 Reputation 
 

 

Reputation of an account holder plays an important part in maintaining the integrity of system. 

Function giveFeedBack takes sellerReputations as a reference to count the final feedback 

given to the dataset. Even though the feedback of the owners who provide good datasets 

count as more important than those who doesn't, we made sure that one individual's feedback 

doesn't affect dataset's feedback more than a certain limit. 

 

Each account holder at a time can be in either of the following category. Consider the code 
below: 
 
 
 
Function calcMul () returns  ( int ){ 
 

if ( list_Accounts [ msg.sender ].numberOfFeeds >10){ 
 

if ( list_Accounts[ msg .sender ].sellerReputation == 5){ return 1; 
 

} 
 

else if ( list_Accounts[ msg .sender ]. sellerReputation == 10){ return 2; 
 

} 
 

else if ( list_Accounts [ msg .sender ]. sellerReputation == -5){ return -1; 
 

} 
 



 

16 

 

else if ( list_Accounts [ msg.sender ]. sellerReputation == -10){ return -2; 
 

} 
 

else { 
 

return 0; 
 

} 
 

} 
 

else { 
 

return 0; 
 

} 
 

} 
 

 

Here msg.sender is the address of the node originating transaction i.e. in this case buyer, who 

is giving feedback. list_Accounts[msg.sender].numberOfFeeds is sum of all feedbacks 

received by the datasets uploaded by the feedback giver i.e. msg.sender with this case. It is 

important to check since only after getting certain number of feedbacks, feedbacks given by 

buyer should affect more or less or else should be considered as neutral. As you can see in 

the code instead of relating sellerReputation directly with the return value we used it for 

categorizing owner that bounds the effect of feedbacks given by an individual buyer. You can 

tune the final effect on feedbacks by individual buyer by changing return value here. As this 

return value will directly affects the final feedbacks. 

 

3.2.5 Example Transaction 
 

 

Following is a state of account with an address: 
"0x003cc32e6f95748ebf31809a2803dcfda2fe7526" at some time. Let's give this account an 
alias Owner1. 
 
 

 

  Owner1  
    

    

 sellerName : University of Mississippi  
    

 sellerAddress : 0x003cc32e6f95748ebf31809a2803dcfda2fe7526  
    

 accountBalance : 1550  
    

 numberOfFeeds : 26  
    

 ownerReputations : -6  
    

 
 



 

17 

 

Interpretation of the information in the table above can be done as: Owner1 owns multiple 

datasets (no need to know exact number of datasets owned). Right now Owner1 has 1550 

points which it got from uploading datasets that it can use for accessing other resources. For 

all the datasets owned by Owner1 it received a total of 26 feedbacks (this includes positive 

and negative feedbacks). According to the feedbacks received to its datasets Owner1's 

reputation is -6, we will see how it affects the feedback given by Owner1. numberOfFeeds 

and ownerReputations are not visible to any user in the system but are used for maintaining 

the QoS of system. 

 
Another account with address "20df3558eee9fbc4a3bfc8ddb82fd8b63c4ef49e" is created 

with initial credentials and no datasets are uploaded from this account yet, let's give this 

account an alias Owner2. At current time the state of Owner2 will be as follows: 

 

 
 

  Owner2  
    

    

 sellerName : Mississippi State University  
    

 sellerAddress : 20df3558eee9fbc4a3bfc8ddb82fd8b63c4ef49e  
    

 accountBalance : 0  
    

 numberOfFeeds : 0  
    

 ownerReputations : 0  
    

 
 

Owner2 uploads dataset with the following credentials, let's give this dataset an alias 
dataset2: 

 

  Dataset2  
    

    

 IP : 130.74.96.151  
    

 datasetLocation : Starkville, MS  
    

 datasetDescription: Some string  
    

 encryptedURL : www.urltothedataset.com  
    



 

18 

 

 datasetCost : 700  
    

 datasetVolume : 1024KB  
    

 datasetOwner : 20df3558eee9fbc4a3bfc8ddb82fd8b63c4ef49e  
    

 datasetFeedBack : 0  
    

 

It is important to note here is that encryptedURL will not be visible to any buyer when it gets 

the list of sellers, it will be returned only when buyer buys the dataset and after points are 

credited into seller's accountBalance. As Owner2 uploads dataset advertisements its state 

changes but this does not affect the state of Owner1, now the states of two accounts Owner1 

and Owner2 will be as follows: 

 

 

 Owner1 Owner2 
   

   

sellerName : University of Mississippi Mississippi State University 
   

sellerAddress : 0x003cc32e6f95748ebf31809a2803dcfda2fe7526 0x003cc32e6f95748ebf31809a2803dcfda2fe7526 
   

accountBalance : 1550 1536 
   

numberOfFeeds : 26 0 
   

ownerReputations : -6 0 
   

 
 

Here rewards will be credited to accountBalance which is directly dependent on volume of the 

dataset but the cost of dataset do not depend upon any other variables but is totally up to the 

account holder. Owner1 wants to access the Dataset2 owned by Owner2, accountBalance of 

Owner1 which is 1550, is greater than the cost of dataset which is 700 so Owner1 can access 

Dataset2. If everything is alright and after points transferred from Owner1's accountBalance to 

Owner2's accountBalance, encryptedURL will be returned to buyer, from where buyer can access 

the dataset. After buying Dataset2 states of Owner1 and Owner2 will be as follows: 

 
 
 

 Owner1 Owner2 
   

   

sellerName : University of Mississippi Mississippi State University 
   

sellerAddress : 0x003cc32e6f95748ebf31809a2803dcfda2fe7526 0x003cc32e6f95748ebf31809a2803dcfda2fe7526 
   

accountBalance : 850 2236 
   

numberOfFeeds : 26 0 
   

ownerReputations : -6 0 
   

 



 

19 

 

 

After accessing Dataset2 Owner1 can give feedback for Dataset2 but as we know Owner1 has -6 

ownerReputations, meaning Owner1's datasets have not received very good feedbacks. This 

means Owner1's feedbacks should not be affecting more, but it should affect a little. So according 

to logic for whatever feedback Owner1 gives, less than one will be implied to dataset means if 

Owner1 gives positive 3 feedback to Dataset2 only positive 2 will be added to Dataset2. After 

Owner1 gives feedbacks for Dataset2 states of Owner1, Owner2 and Dataset2 will be as follows: 

 

 
 

 Owner1 Owner2 
   

   

sellerName : University of Mississippi Mississippi State University 
   

sellerAddress : 0x003cc32e6f95748ebf31809a2803dcfda2fe7526 0x003cc32e6f95748ebf31809a2803dcfda2fe7526 
   

accountBalance : 850 2236 
   

numberOfFeeds : 26 1 
   

ownerReputations : -6 1 
   

 

Here datasetFeedBack will be visible to all buyers who query datasetList: 
 
 

  Dataset2  
    

    

 IP : 130.74.96.151  
    

 datasetLocation : Oxford, MS  
    

 datasetDescription: Some string  
    

 encryptedURL : www.urltothedataset.com  
    

 datasetCost : 700  
    

 datasetVolume : 1024KB  
    

 datasetOwner : 20df3558eee9fbc4a3bfc8ddb82fd8b63c4ef49e  
    

 datasetFeedBack : 2  
    

 

 

At current time if Owner2 wants to give feedback to other datasets, feedback will be given to 

dataset as they are provided by Owner2 as right now Owner2's dataset only have received 1 

feed from other users. We cannot determine whether Owner2 is increasing Qos or decreasing 

QoS of system. 

http://www.urltothedataset.com/


 

20 

 

 

 

 

 

CHAPTER 4: RESULTS 

 

Ethereum is already successfully running over the world on huge number of nodes, and was 

designed to be scalable. So it would be redundant for us to evaluate scalability here. Also 

Ethereum's whisper protocol for exchanging data between nodes makes it much efficient in 

terms of propagating transactions from one node to another. The main purpose of this tests is 

to check the functionalities of the DAPP we've developed and make sure it is functioning as it 

should be. 

 
The domain of Ethereum is to manage cryptocurrency, so with ethereum comes data integrity, 

data security, data availability and other advantages like resistance to DOS attacks, fast 

propagation of data between nodes etc., making ethereum a suitable choice for our 

application. 

 

 

4.1 Testing Environment 
 

 

As scalability is not an issue for Ethereum, instead of going for large number of nodes we have 

tested our DApp on 6 nodes placed within 2miles of radius. 

 

For this testing we used three nodes with intel i7 3.40 GHz quad core processors with each 

having 16 GB of RAM, two nodes with intel Xenon 2.40 GHz quad core processors with each 

node having 24GB of ram, one node with AMD A8 quad core processor with 6GB of RAM. All 

these nodes were connected wireless and were located in 1000meters of range as latency 

because of distance is negligible for our application. 

 

4.2 Basic Functionality 
 
 
This section will guide you through the basic functionalities Following are the screen shots 
from actual testing phase at particular state of system, which will give you an idea how the 
system works: 
 



 

21 

 

First of all all the nodes were initialized with the same genesis block and are connected with 

each other making a cluster of nodes. Once cluster is up and running you can check it from 

any node as shown in image below: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

After cluster is ready and each node it connected, contract can be deployed on any on of the 

node. In the following screen shot you can see contract being deployed on any one of the 

machine



 

22 

 

After the contract is deployed on blockchain after some time (exact timing in upcoming 

sections) you can retrieve data from any other node in cluster. You can see this in the screen 

shot below. Thing to be noted here is that data was uploaded from other node and was 

retrieved from other node. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Now let's say after some time have passed and users have uploaded datasets and accessed 

datasets that changes the states of datasets as well as the reputations of the Owner of 

dataset(Section 3.2.5). Now if any user wants to get the list of all the producers who owns the the 

datasets of mobile data, The user can run a script and will get list of all producers in a le where 

user can process it, or it can be provided as an input to any application. Here in out example we 

have used this le as an input to a java program for further processing. Outputs of a Java program 

are presented in screen shots below: 

 



 

23 

 

 
We've processed data from a le and make Objects of each datasets so that we can do more 

with the data. Some of the examples are sorting and automatic dataset selection: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The dataset description has to be a patterned input to minimize the cost of upload on 

blockchain. But if any dataset have some special quality, Owner can specify it. The problem 

of a general metadata format is considered out of scope here. 

 
 
 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 



 

24 

 

 

4.3 Performance 
 

For a transaction to be mined in Bit Coin takes about 6 to 10 minutes on average calculated 

around 25-30 seconds for Ethereum, but these times are not always exacts as final time will 

depend upon the special cation in block itself. For a transaction to become irreversible, the 

transaction has to be confirmed by certain number of miners which is specified inside Block. 

 

 

4.3.1 Publishing 
 

 

Publishing advertisements about datasets can differ from seller to seller as each dataset has 

different attributes meaning different size of data has to be stored inside blockchain. This test 

tests if the size of blockchain affects the time it takes for publishing the advertisement. We 

wrote a JavaScript that uploads random data on the blockchain to increase the number of 

blocks on the blockchain rapidly 

 

In this section we have tested how the amount of data to be deployed on the blockchain affects 

the time taken for data deployment also how it changes with the increases with the change in 

size of blockchain. For testing we've used two functions from our code addDatasetType() and 

addDataset() which are as follows: 
 
function  addDatasetType ( string  _datasetType )  returns ( string ){  

if ( list_datasetType [ _datasetType ]. doesExist != true ){   

list_datasetType [ _datasetType ]. datasetType  =  _ datasetType ; 

list_datasetType [ _datasetType ]. listHead = 0;    

list_datasetType [ _datasetType ]. doesExist = true ;   

return " new  type success fully added ";       

}          

else {          

return " dataset type already exist  you  can add  dataset of  this  type "; 

}          

}          
    

    

function  a d d D a t a s e t I n f o ( string  _datasetType , string _IP ,  string _datasetLocation ,  string 

_ d a t a s e t D e s c r i p t i o n ,        

string  _encryptedURL ,  uint  _cost ) {        

list_datasetType [ _datasetType ] [ msg . sender ]. IP = _IP ;    

list_datasetType [ _datasetType ] [ msg . sender ]. datasetLocation  = _ d a t a s e t L o c a t i o n ; 

list_datasetType [ _datasetType ] [ msg . sender ]. datasetDescription = _ d a t a s e t D e s c r i p t i o n ; 

list_datasetType [ _datasetType ] [ msg . sender ]. encryptedURL  =  _ e n c r y p t e d U R L ; 

list_datasetType [ _datasetType ] [ msg . sender ]. cost = _cost ;   



 

25 

 

list_datasetInfo [ _ d a t a s e t T y p e ][ msg . sender ]. owner =  msg . sender ;  

list_datasetInfo [ _datasetType][ msg . sender ]. next =  list_datasetType [_datasetType]. 

listHead ;          

list_datasetType [ _datasetType]. listHead  =  msg . sender ;   

}          

function  initDatasetQos ( string datasetType ) {       

list_datasetQos [ _datasetType ][ msg . sender ]. datasetFeedBack = 0; 

}          

function  addDataset ( string  _datasetType ,  string _IP , string  _datasetLocation ,  string 

_datasetDescription ,  string  _encryptedURL ,      

uint  _cost ,  uint  volume ) constant  returns  ( string ) {    

if (!list_datasetInfo [ _datasetType ][ msg . sender ] .doesExist ) {  

addDatasetInfo ( _datasetType , _IP ,  _datasetLocation ,  _datasetDescription , 

_encryptedURL ,  _cost ) ;        
 

 
initDatasetQos ( _datasetType ) ; 

addUserReward ( volume ) ; 
 

return (" account successfully created ") ; 
 

} 
 

else { 
 

return  " dataset already exist !!"; 
 

} 
 
} 
 

From the code above it is clear that function addDataset() have more data to be deployed on 

blockchain than function addDatasetType(). 

 

Effect of Blockchain size on Deploy time for function addDatasetType  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

26 

 

 

          50  

 addDatasetType() 
 

(s
e

cs
) 

40 
             

 

             
 

30 
             

 

              

ti
m

e
              

 

              
 

D
ep

lo
y 

20 
             

 

              
 

 
10 

             
 

              
 

 

0 

             
 

              
 

 0 1000 2000 3000 4000 5000 
 

    Blockchain Size (Number of Blocks)    
 

 

Effect of Blockchain size on Deploy time for function 

addDataset 240 

 

 addDataset() 
 

(s
e
cs

) 

200 
             

 

             
 

160 
             

 

ti
m

e
 

             
 

120 
             

 

D
e
p

lo
y              

 

80 
             

 

              
 

 
40 

             
 

              
 

 

0 

             
 

              
 

 0 1000 2000 3000 4000 5000 
 

    Blockchain Size (Number of Blocks)    
 

 

 

From the graphs above it is clear that the time taken for deploying data on blockchain directly 

depends upon the size of the blockchain, leading us to believe that when size of blockchain 

will grow more than certain; the time for a transaction to complete will be unbearable. Though 

developers of Ethereum argues that because of the Ethereum's proof of stack algorithm 

[section 2.2] will not let the size of Blockchain affects the transition time to unbearable. 

 

 

 



 

27 

 

 
4.3.2 Matchmaking 
 

 

The main feature of blockchain technology is that it replicates a whole copy of blockchain to 

each node, requires a public/private key to give access to data inside blockchain. 

 

 
 

Effect of Blockchain size on retrieve time  
 50       

 

 
45 

 data retrieval time    
 

       
 

 40       
 

(s
e

cs
) 

35       
 

30 
      

 

ti
m

e
       

 

25       
 

R
e

tr
ie

ve
 

20       
 

15       
 

       
 

 10       
 

 5       
 

 0 0 1000 2000 3000 4000 5000 
 

   Blockchain Size (Number of Blocks)  
 

 

 

As you can see here because of a whole copy of blockchain is already available at each 

node, as the size of blockchain increases it does not affect the data retrieve time. 



 

28 

 

 
 
 
 
 
 

CHAPTER 5: CONCLUSION AND FUTURE WORK 
 
 
5.1 Conclusion 
 

 

From the results from tests in section 4 it is clear that the time for deploying a data on the 

blockchain depends on both the size of metadata to be deployed and the size of the blockchain 

itself. Claim of the Ethereum developers about the Proof-of-Work concept for validating a block 

seems to be proven true as on an average with the current size of Ethereum blockchain it only 

takes about 25-30 seconds for a transaction to be mined. And also it doesn't matter how long 

it takes for a transaction to complete, as the whole copy of the blockchain available to each 

node locally retrieval of data from a blockchain is very fast. 

 

The main purpose of this experiment was to determine if this newly arrived Blockchain 

technology is a viable approach for publishing metadata about scientific datasets, and from 

the results of our experiment it is clear that Blockchain technology is a viable approach for the 

given problem. 

 

 

5.2 Future Work 
 

 

Here the final output of list of datasets will be in a le. This means we can perform operations 

we need on the dataset advertisements and choose appropriate dataset for application, or 

application can choose whatever dataset will be suitable for itself. Replicas with the same cost   

can be differentiated by network cost. At the time when buyer buys dataset, a string with URL 

will be returned to buyer where it can access dataset, but once swarm developed and is fully 

functional will help integrate datasets with smart contracts. With the use of Whisper proto-col 

which is used for exchanging small data between nodes, swarm which provides distributed 

storage and holy grail protocol which will integrate hardware with smart contracts a power full 

sensor network can be deployed and monitored. 

 

More QoS can be implemented once oats type will be available in future updates of Solidity. 

Right now it mainly have conditional variables to make decisions but once oats are available 

we can have exponential bounded by limits. 

 



 

29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BIBLIOGRAPHY 

 

 

 



 

30 

 

[1] Don Tapscott and Alex Tapscott. Blockchain Revolution: How the Technology Behind 

Bitcoin Is Changing Money, Business, and the World. Penguin, 2016. 

 
[2] Diya Soubra. The 3vs that de ne big data. Data Science Central, 5, 2012. 

 

[3] Rajesh Raman, Miron Livny, and Marvin Solomon. Matchmaking: Distributed resource 

management for high throughput computing. In High Performance Distributed Computing, 

1998. Proceedings. The Seventh International Symposium on, pages 140{146. IEEE, 1998. 

 

[4] Rajesh Raman, Marvin Solomon, Miron Livny, and Alain Roy. The classads language. In 

Grid resource management, pages 255{270. Kluwer Academic Publishers, 2004. 

 
[5] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou. 

Hawk: The blockchain model of cryptography and privacy-preserving smart contracts. In 
 

Security and Privacy (SP), 2016 IEEE Symposium on, pages 839{858. IEEE, 2016. 

 

[6] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A survey of peer-to-peer content 

distribution technologies. ACM computing surveys (CSUR), 36(4):335{371, 2004. 

 

[7] Leili Mohammad Khanli and Morteza Analoui. Grid jqa: A qos guided scheduling algo-

rithm for grid computing. In Parallel and Distributed Computing, 2007. ISPDC'07. Sixth 

International Symposium on, pages 34{34. IEEE, 2007. 

 
[8] Rajkumar Buyya, David Abramson, Jonathan Giddy, and Heinz Stockinger. Economic 

models for resource management and scheduling in grid computing. Concurrency and 

computation: practice and experience, 14(13-15):1507{1542, 2002. 

 
[9] Ian Foster and Carl Kesselman. What is the grid. A three point checklist, 20, 2003. 

 
 



 

31 

 

 

[10] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke. Condor-g: a computation 

management agent for multi-institutional grids. In Proceedings 10th IEEE International 

Symposium on High Performance Distributed Computing, pages 55{63, 2001. doi: 

10.1109/ HPDC.2001.945176. 

 
[11] R. Raman, M. Livny, and M. Solomon. Matchmaking: distributed resource management 

for high throughput computing. In Proceedings. The Seventh International Symposium on 

High Performance Distributed Computing (Cat. No.98TB100244), pages 140{146, Jul 

1998. doi: 10.1109/HPDC.1998.709966. 

 
[12] S. Vazhkudai, S. Tuecke, and I. Foster.  Replica selection in the globus data grid.  In 
 

Proceedings First IEEE/ACM International Symposium on Cluster Computing and the 

Grid, pages 106{113, 2001. doi: 10.1109/CCGRID.2001.923182. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

32 

 

 

 

 

 

 

VITA 

Shirish Patel 
 
 

 

University of Mississippi 
 

Oxford, MS 38677 U.S.A. 
 

Phone: 769-823-8953 
 
email: srpatel3@go.olemiss.edu 

DOB: August, 21 1994 

 

 

Objective 
 

 

To take a challenging and high performance oriented role in the field of Computer Science and 

implement the expertise and experience gained in this field to develop complex project with 

efficiency and quality. 

 
 
 

Current Position 

 

 

2015-presentGraduate Student 
 

Department of Computer and Information Science 
 

University of Mississippi 
 

Current GPA-3.75 
 
 

 

Education 

 

 

2011-2015Under Graduate 
 

Gujarat Technological University 
 

GPA-3.7 
 
 

 

Projects 

mailto:srpatel3@go.olemiss.edu


 

33 

 

 

 

Mobile VoIP - A call conferencing application in android with configured server on Ubuntu. 
 
Artificial Intelligence course Project- An intelligent agent that can play Conniption game against 

human (purely coded in Java). 

 

Parallel programming course project- Parallelized K-Means algorithm with increased 

performance and efficiency. 

 

Operating System course project- Starvation free solution for banker's algorithm and dining 

philosopher problem. 

 
 
 

Technical Skills 

 

 

Languages Core Java (Simple Programming, Multithreading, Socket Programming), J2EE, C 

(Simple Programming, Multithreading), C++, HTML, CSS, JavaScript, UML. 
 
Database  MySQL 
 
Tools  GitHub, GDB, Make le, Shell Script 
 
 

 

Experience 

 

 

Jan 2016 - present Teaching Assistant for Java Advance, Computer Organization and Architecture 

at University of Mississippi, Oxford, MS 

 

June 2016 – present  Research member under Dr. Philip Rhodes, currently developing standalone 

application in C++ to write in block-chain bypassing the protocols of CPP-Ethereum. 

Summer 2016  Student Worker at Dr. Coy Waller research laboratory for summer  
 


	Blockchains For Publicizing Available Scientific Datasets
	Recommended Citation

	tmp.1561054863.pdf.UR2hm

