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ABSTRACT 

The current work focuses on evaluation of the effective elastic properties of cementitious 

materials through a voxel based FEA approach. Voxels are generated for a heterogeneous 

cementitious material (Type-I cement) consisting of typical volume fractions of various 

constituent phases from digital microstructures. The microstructure is modeled as a micro-

scale representative volume element (RVE) in ABAQUS to generate cubes several tens of 

microns in dimension and subjected to various prescribed deformation modes to generate the 

effective elastic tensor of the material. The RVE-calculated elastic properties such as moduli 

and Poisson’s ratio are validated through an asymptotic expansion homogenization (AEH) 

and compared with rule of mixtures. Both Periodic (PBC) and Kinematic boundary 

conditions (KBC) are investigated to determine if the elastic properties are invariant due to 

boundary conditions. In addition the method of “Windowing” was used to assess the 

randomness of the constituents and to validate how the isotropic elastic properties were 

determined. The average elastic properties obtained from the displacement based FEA of 

various locally anisotropic micro-size cubes extracted from an RVE of size 100x100x100 

microns showed that the overall RVE response was fully isotropic. The effects of domain size, 

degree of hydration, kinematic and periodic boundary conditions, domain sampling 

techniques, local anisotropy, particle size distribution (PSD), and random microstructure on 

elastic properties are studied. 
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CHAPTER 1 

 
 

INTRODUCTION 

 
 

 

Cementitious materials are composite materials mixed with aggregate and water to form 

concrete. The cement paste plays the role of a matrix in concrete. Cementitious materials are very 

complex with properties at several length scales which affect the overall behavior. Cement contains 

particles such as clinkers and aggregate. When these particles are mixed with water, they undergo 

hydration, resulting in the formation of new materials.  The age of cementitious material is an 

important parameter in defining its properties, as the properties change when new materials are 

generated.   

Young’s modulus and shear modulus are two important mechanical properties in cementitous 

materials that change over time. Calcium silicate hydrate (CSH) gel is one of the main products of 

hydration. As the percentage of CSH increases over time, the percentage of water decreases. The C-

S-H gel formation between the particles  creates a percolation network that can increasingly support 

the  mechanical stresses in the microstructure as hydration proceeds. This phenomenon translates 

into a corresponding increase in the moduli over time.  

The CEMHYD3D suite of programs simulate the evolution of the micro-structure of the 

cement paste during hydration.. MATLAB software can be used to export the CEMHYD3D output 

to ABAQUS, resulting in the simulation of microscaled cement paste representative volume element 

(RVE). This RVE accurately captures the details of all the consistent materials, their size and particle 

distribution. 



 

2 
 

The objective of this study is to understand and estimate the effects of heterogeneity on 

cement strength through microscopic modeling of its deformation behavior. 

In order to obtain the young’s and shear modulus, boundary conditions need to be imposed on 

the RVE while applying elementary deformations. Two boundary conditions considered in this study 

are kinematic boundary condition (KBC) and periodic boundary condition (PBC).  

Overall, this study shows that young’s and shear modulus increase over time in a cement 

paste RVE, and there is a negligible difference between the results obtained from imposing KBC and 

PBC. Moreover, the results obtained from KBC and PBC are compared with another method, 

asymptotic expansion homogenization (AEH), and KBC and PBC results are in good agreement with 

the results of AEH. The results show that the heterogeneous cement behaves effectively like an 

isotropic solid due to the random distribution of the various cement constituents.   

In chapter 2, the background of cement will be discussed.  Generation of RVE with 

cemhyd3d and ABAQUS with appropriate and complex boundary conditions will be discussed in 

chapter 3. Different results of windows and periodic domain size are shown in chapter 5. Finally, 

conclusion and future work will be presented in chapter 6.  
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CHAPTER 2 

 
 

BACKGROUND 

 
 

 
Multiscale modeling of materials is an emerging research area to tailor material properties.  

With the advent of scalable computing capabilities, it is now possible to model a large molecular and 

representative volume element (RVE) based material systems. The individual elastic properties and 

density for clinkers, unhydrated and hydrated products are usually estimated through molecular 

dynamics simulations.  These properties are then utilized in the microscopic level RVE simulations.  

In this paper, we are reporting a methodology for computing the elastic properties of heterogeneous 

C-S-H (calcium oxide- silicate oxide- hydroxide) based multi-phase cementitious materials.  The 

primary focus of this paper is to predict homogenized properties at macro-levels using micro 

mechanics based models. This paper focuses on the determination of elastic properties for hydrated 

cement paste from un-hydrated constituents when small strain quasi-static loading conditions are 

applied to micro-scale domains. 

 Typically, Portland cement is often used, in structural concrete along with, sand (fine 

aggregate), coarse aggregate and solidifies over time because of the addition of water. The tailoring 

of macroscopic properties (mainly strength) is dependent on its structural applications. The tailored 

mechanical proprieties for cement-based material are traditionally evaluated at the engineering 

scale/macroscopic level. However, the strength measured at the macro-level is affected by the 

chemical phase transformations due to hydration, at the molecular/nano level and the evolution of the 

microstructure.  
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 Cement is comprised of several constituents that chemically react with the addition of water 

and uses its covalent bonding mechanisms to bind materials together. When limestone and clay are 

fused together at 1450 0C, clinker nodules are formed. The clinker is typically comprised of 

tricalcium silicate (C3S), dicalcium silicates (C2S), tricalcium aluminates (C3A), calcium 

ferroaluminates (C4AF), magnesium oxide (C4A3S), calcium silicate hydrate (C3S2H3), and, gypsum 

(CSH2)
3, shown in Table 1. The tricalcium silicates are responsible for the strength development 

from 0 to 28 days. The dicalcium silicates are responsible for the strength development after 28 days. 

The tricalcium aluminates can cause to rapid setting of the cement if not controlled, leading to 

excessive heating and microcracking. The calcium ferroaluminate is the source of grey color of 

cement and contributes very slightly to strength gain. The magnesium oxides if not properly 

minimized can lead to unstable/unsound cements. The fused clinker is then mixed with a small 

percentage of gypsum (calcium sulfate) and ground down to a fine granular powder that forms 

cement. The addition of the gypsum to the clinker is used to control the rate of setting and influences 

the rate of strength development.  The C-S-H is the reaction product formed during hydration of 

cement and is the most important constituent which binds together all constituent material particles. 

At least four different length scales (Fig.1) of the constituent material microstructure that affects the 

properties and loading behavior of concrete have been cited in the literature for the purpose of 

mechanical analysis [1, 2, 3, and 4].   
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Figure 1. Multilevel micro-structure of cement based materials [2] 

 

 These four different configurations for the purposes of mechanical analysis are defined to be: 

Level 1 (C-S-H level):  At this level, C-S-H exists in two different forms. High density (HD) or low 

density (LD) C-S-H are present with two distinctive elastic properties [5, 6, 7, 8] due to different 

packing densities of the same fundamental nanometer scale particles of C-S-H [9].The morphology 

and volume fraction varies depending on water-cement (w/c) ratio. This level of a characteristic 

length scale of 10-8 – 10-6 m is the smallest material length scale that is at present accessible by 

mechanical testing, i.e., nano-indentation. Research shows that fifty to sixty percent of the hydrated 

product that is observed in the cement paste is the C-S-H gel [10]. The C-S-H gel is amorphous and 

its atomic structure is not clearly understood. It is believed that C-S-H gel nanostructure is 

responsible for controlling the engineering properties such as cohesion and strength of cement paste. 

In the last twenty years progress has been made towards characterizing the behavior of C-S-H gel 

[11-17], but substantial work is still needed in the characterization of its complex structure.  

FEA and  
lattice based  

RVE modeling 

MD simulation 

Homogenization  
and  

FEA Modeling 
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Level 2 (Cement paste level): Homogeneous C-S-H with large CH crystals, aluminates, cement clinker 

inclusions, water. Some capillary porosity may be present depending on the water/cement ratio. 

Percolation threshold is defined at this scale. The characteristic length scale at this level is 10-6 – 10-4 

m. This scale is the focus of micromechanical modeling in the current study. 

Level 3(Mortar level): Sand particles embedded in a homogenous cement matrix paste. Interfacial 

Transition Zone (ITZ) must be considered as a separate phase [6]. The characteristic length scale at 

this level is 10-3 – 10-2 m.  

Level 4 (Concrete level): Concrete is a composite material at the structural level and consists of 

aggregates with ITZ embedded in a homogeneous mortar matrix. The characteristic length scale at 

this level is 10-2 – 10-1 m. The homogenization modeling approaches at this scale characterize this 

level as a three-phase material compound of aggregates embedded in a continuous homogenous 

mortar matrix and an ITZ. 

Starting with the C-S-H colloids, each higher level configuration is built upon an agglomerated 

configuration of several units of the immediate lower level configurations. This is also known as the 

hierarchical approach. The mechanical behavior at each level is thus impacted by the clustered 

configuration of lower length scale constituents. In addition to the traditional material systems, new 

cementitious/concrete material systems consisting of nano fibers, nano particles, nano foams, etc, 

have also been considered and have demonstrated to have improved performance for ballistic and 

shock loading conditions. The presence of these nanomaterial configurations further influences the 

macro material properties and their behavior under loading conditions [5-9, 17-24]. Since C-S-H 

colloids are the building blocks of various cementitious materials that can consist of nano fibers, 

nano particles, nano foams, etc, the present work focuses on determining the fundamental elastic 

properties of cement using a voxel based FEM approach at the microscale. This approach can 

provide a basis for the analysis and comparison between the effects of nano-components on material 
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properties. The ultimate goal is to utilize this approach for designing high strength cement with 

various additives for infrastructure protection.  
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CHAPTER 3 

 

METHODOLOGY 

 
 

3.1. Representative Volume Elements 

 
In order to quantify the role of hydration kinetics on material constituents and the effect of 

the microstructure in relation to the macro-scale mechanical behavior of cementitious materials; the 

properties need to be determined at the micro length scales. In recent years there has been an 

intensive research activity devoted to describing the cementitious materials by computational means 

[10, 25-40]. At the micro-level the representative volume approach is widely used due to the 

flexibility and applicability of this method to various physical processes at the micro-scale, such as 

chemical kinetics, electrical and thermal conductivity, as well as linear and nonlinear elastic 

properties.   

 The representative volume element (RVE) is defined as the smallest volume of material that 

captures the global characteristics of the material. Random results for the overall properties of the 

material will be obtained if the tested volumes are smaller than this statistically representative 

subdomain of the microscopic geometry. Such a volume must be sufficiently large to allow a 

meaningful sampling of the micro-scale stress and strain fields and be sufficiently small for the 

influence of macroscopic gradients to be negligible and for an analysis of these micro fields to be 

possible. One of the major objectives of micromechanics is to express in a rigorous form the 
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continuum quantities associated with an infinitesimal material element as a function of the 

parameters that characterize its microstructure [41-43]. In general most concrete structures are 

macroscopic with least dimensions in the order of tens of centimeters or more. The largest aggregates 

have sizes in the order of a few centimeters. Concrete members are typically designed such that the 

macroscopic gradients are not significant over dimensions below the centimeter scale. Steep 

gradients are not generally acceptable in design practice. The 1M and 4M RVEs considered in this 

study are of the order of hundreds of microns (0.1-0.2 mm) which is small enough for them to be 

considered infinitesimal.  

 Alternatively an RVE may be defined as a volume that shows the same overall material 

properties irrespective of the boundary conditions applied [44, 45]. This definition of an RVE, gives 

rise to a dependence of the size of the RVE on the physical property considered and on the relative 

phase contrast. This means that the size of the RVE depends on the mechanical, physical or electrical 

property being analyzed. As noted by Nemat-Nasser [46], it is the dimension relative to the 

microstructure essential for a given problem that is important for the size of an RVE. For example, 

the RVE for thermal conductivity may be different from the RVE for elastic properties [47]. For 

elastic materials, the RVE exists and one can determine the size of the RVE. However, for other 

applications, such as the case of softening materials, the RVE may not exist [48].  
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3.2. Generation of Cementitious RVE 

 
 The software package, CEMHYD3D V.3, developed by NIST researchers, was used to 

simulate the hydration process and formation of the digitally generated micro-structure for a typical 

Type-I general purpose cement [49]. The software allows creation of a starting 3D microstructure 

based on a measured geometrical particle size distribution (PSD) (Fig. 2) as well as volume fractions 

and surface–area fractions of the constituent phases for the cement powder, extracted from 2D 

composite images of cement at various degrees of hydration.  

 

 

Figure 2. Scaled PSD for initial cement powder in domains of various sizes 

 

To obtain realistic results it is important to establish a suitable domain size to perform the 

RVE analysis. For this purpose, four different domain sizes 10x10x10 microns (1K), 20x20x20 

microns (8K), 50x50x50 microns (125K) and 100x100x100 microns (1M) are considered in this 

study. To generate a consistent microstructure across various domain sizes, the actual number of 

particles and pixels are scaled by assuming a constant number-fraction vs particle size (PSD) 

(Fig.2).  
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The overall work flow for generating the cement microstructure using CEMHYD3D is shown 

in Fig. 3. An initial random 3D periodic microstructure is reconstructed with the help of 

autocorrelation functions and contains typically four cement clinker minerals and forms of 

calcium sulfate, all as digital spherical particles [49].  Digitized spherical particles of a user-

specified PSD are placed into a 3-D computational volume, typically 100 voxels on a side. Each 

voxel is 1 micron on a side implying that features smaller than this cannot be resolved. However, 

in the models considered in this study, typical particle sizes range from 1 to 35 microns in 

diameter, so that most of the factors governing the interphase phenomena can be represented 

accurately.  

Periodic boundaries are employed such that a particle that extends outward through one or 

more faces of the 3-D microstructure is completed extending inward through the opposite face(s). 

Such domains will be hence forth referred to as periodic microstructure domains (PMD) in this 

work to distinguish them from periodic boundary conditions (PBC) that are applied to both PMD 

and windows (Section 4). Digitized spherical particles are used to approximate the complex 3-D 

shapes of actual cement particles. Previous studies [50] have indicated that this approximation is 

adequate if the actual cement PSD and phase volume and surface fractions are maintained in the 

3-D spherical particle image. 

Cement hydration products are formed on the grains exposed to water contact and they 

nucleate in the available volumetric space along with the bound water, and free pore space.  In 

CEMHYD3D, the capillary porosity is composed of the water-filled porosity and the empty 

porosity.  The empty porosity is created due to the ongoing chemical shrinkage that accompanies 

cement hydration.  A schematic of the nano-scale C-S-H phase that forms between the cement 

clinker grains and binds them together is shown in Fig. 4. The cement products formed from the 

hydration kinetic reactions are implemented in a rule-based framework similar to cellular 
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automata. Rules are provided for the dissolution of solid material, diffusion of the generated 

species, and the various inter-reactions of these species [49]. 

The RVE approach used in this research assumes a periodic microstructure is forming during 

hydration which enables homogenization techniques dealing with periodic fields. The volume 

fractions of major constituents at various stages in the hydration process are shown in Fig. 5 and 

Figs 6-9 show the process of hydration and particle distributions individually after 3,7,14 and 28 

days in whole 1M RVE. These results are obtained by using CEMHYD3D, MATLAB and 

ABAQUS software. In the next section, the FEA based microscale modeling will be described.  

Although the actual hydration time may be determined from the model, the degree of 

hydration (DOH) is used instead of fitting the parameters to the model cycles [49]. In addition, 

the PSD dramatically influences the hydration kinetics. Thus the hydrated microstructures of 

various domain sizes cannot be compared at equal ages and are instead compared after equal 

degrees of hydration.  

Cement microstructure at various DOH up to 0.8 for a water-cement ratio of 0.4 is studied 

here. The typical Type-I cementitious material considered in this study consists of 17 constituents 

(Phases) after hydration (Table 1), where E is the Young’s Modulus and ν is Poisson’s ratio of 

each corresponding phase. 
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Figure 3. Work flow of the CEMHYD3D program for generation of cement microstructure 

 

 

Figure 4.  Schematic diagram of the nanoscale C–S–H particles [17] 
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Table 1. Material properties and volume fractions of constituent phases for a typical Type-I cement 
(DOH=0.8) [10, 49, 51] 

 
 Phase 

 

 

Phase 

ID 

 

Volume 

Fraction% 

E 

(GPa) 

 

Poisson’s 

ratio ν 

1 Water Filled Porosity  0 15.2081 0.001 0.499924 
2 Tricalcium Silicate (C3S) 1 4.3537 117.6 0.314 
3 Dicalcium Silicate (C2S) 2 2.3625 117.6 0.314 
4 Tricalcium Aluminate (C3A) 3 1.0822 117.6 0.314 
5 Tetracalcium Aluminoferrite 

(C4AF) 4 
0.8746 

117.6 0.314 
6 Dihydrate (Gypsum) (C ) 5 0.0009 45.7 0.33 
7 Hemihydrate  (C  ) 6 0.0001 62.9 0.30 

8 Calcium Hydroxide (CH) 13 16.2595 42.3507 0.324 
9 Calcium Silicate Hydrate Gel 

(CSH) 14 
42.3507 

22.4 0.25 
10 Hydrogarnet (C3AH6) 15 4.4651 22.4 0.25 
11 Ettringite ( ) 16 3.3463 22.4 0.25 
12 Iron-rich Stable Ettringite 

(ETTRC4AF) 17 
 

1.6975 22.4 0.25 
13 Monosulfate AFM (  ) 18 5.9672 0.0423 0.324 
14 Iron Hydroxide (FH3) 19 0.4331 22.4 0.25 
15 Gypsum Formed from 

Hemihydrate and Anhydrite 
(GYPSUMS) 25 

 
0.3200 

45.7 0.33 
16 ABSGYPS 29 0.0003 45.7 0.33 
17 Empty Porosity 45 1.2782 0.001 0.00 
Note: According to cement chemistry conventions, C=CaO, S=SiO2, A=Al2O3, 

F=Fe2O3, M=MgO, =SO3,    H=H2O 
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Figure 5. Typical volume fractions of major constituents at various stages of curing 
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Figure 6. Hydrated Microstructure after 3 Days 

 
 

 

Figure 7. Hydrated Microstructure after 7 Days 
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Figure 8. Hydrated Microstructure after 14 Days 

 
 
 
 

 
 

Figure 9. Hydrated Microstructure after 28 Days 
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3.3. FEA Based Microstructure Modeling 

 
Charmrova [52] focused on the prediction of effective elastic properties using FEA based on a 

vector microstructural model, specifically applied to early age microstructure. The FEA intense work 

was mainly to capture the hydration processes accurately, as well as to determine properties of cement 

at an early age (upto DOH=0.45). In addition the effects of flocculation, water/cement ratio, PSD and 

number of hydrate clusters, on elastic properties were studied. However, in the present work, the 

focus is mainly to capture the effects of domain size, degree of hydration, kinematic and periodic 

boundary conditions, domain sampling techniques, local anisotropy, particle size distribution, and 

random microstructure on elastic properties are studied. The micro-structure voxel information 

generated by CEMHYD3D (Fig. 3) is imported into the general purpose ABAQUS® finite element 

code using an in-house developed Matlab® code and modeled using continuum hexahedral (C3D8) 

elements to generate domains of various dimensions (Figs.10-11).  
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Figure 10. (a) 1K (b) 8K (c) 125K and (d) 1M FE models of hydrated cement microstructure (PMDs) 
(not to scale) 

 

 
 
 

Figure 11. 200x200x100micron (4M) FE model of hydrated cement microstructure (PMD) 

 
 
 
 
 
 
 
 

(a) (b) (c) (d) 
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3.4. Boundary Conditions 

 
 The operational details of applying the appropriate boundary conditions to the microstructure 

domains are briefly reported in published literature [10, 49, 51-55]. In this section boundary 

conditions and the issues encountered during modeling are described in sufficient detail to be 

reproducible using ABAQUS®. The windows and PMDs are subjected to various prescribed tension 

and shear deformation modes in order to generate the effective elastic tensor of the cementitious 

material at various scales. Applying the traction/force boundary conditions was found to be non-

trivial for the heterogeneous domains since the surface of the cementitious domain also contains 

porosity which has a modulus of zero. Unfortunately, when a surface traction is applied to a face 

containing pores on the surface; it results in very large artificial local deformations on the surface of 

the heterogeneous domain. Previous studies [56] have recommended using a surface layer of 

elements with a modulus and Poisson’s ratio which is the average of all constituent phases. However, 

this approach may significantly change the relative volume fractions of the various phases, which 

needs to be preserved for a highly heterogeneous cementitious material. Alternative approaches for 

applying force boundary conditions are being considered, however, only prescribed displacement 

(KBC) and periodic boundary conditions (PBC) are described here.  

 Initially, cubic homogeneous domains of size 1K, 8K, 125K and 1M were subjected to 

various boundary conditions and the deformations were compared against theoretical values to 

confirm the absence of any meshing artifacts. Suitable boundary conditions were tested in 

ABAQUS® for each mode of deformation and the ones that provided an exact match with the 

theoretical values were used for further study of the heterogeneous periodic domain. In order to 

generate the elastic tensor of the heterogeneous cementitious material, the periodic domain is 

subjected to applied displacement boundary conditions as represented in Fig. 12(a) for axial (U1) and 

in Fig. 12(b) for pure shear (U12).  
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 In case of uniaxial loading along x, y, or z axes (Fig. 12(a)), the faces with x, y and z =0 have 

roller BC, such that the nodes on these faces are constrained only in directions perpendicular to the 

respective faces i.e., for face x-y, displacement U3=0, for face x-z, displacement U2=0 and for face y-

z, displacement U1=0. The faces with x=L0, y = L0 and z= L0 are constrained to move as rigid faces 

such that a large number of nodes (the “coupling” nodes) are constrained to the rigid body motion of 

the single mid-face node. The nodes in these faces are slaved to the mid-face reference node using 

kinematic coupling constraints (*KINEMATIC COUPLING). The edge and vertex nodes of the mesh 

are not constrained. The prescribed traction or displacement loading is applied to the reference node 

that is coupled to all nodes in the face corresponding to the loading axis. This boundary condition 

allows the Poisson’s effect.  In case of pure shear loading (Fig. 12(b)), a uniform traction or 

displacement is applied on all the nodes of faces with x=L0, and y = L0. An opposing traction or 

displacement is applied on all the nodes of faces with x=0 and y=0. Roller BC (U3=0) are applied on 

the face x-y to constrain against possible rigid body motion of the cube along z-axis in the case of 

smaller domains. 

 
Figure 12.   Prescribed Kinematic (KBC) (a) tensile deformation (E1) and (b) pure shear (G12) 

boundary conditions 

 

 

 

(a) (b) 
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 Periodic boundary conditions (PBC) are applied to the PMD in order to ensure that the bulk 

response of the material is simulated without any edge effects (Fig. 13).   

 

Figure 13.  Prescribed Periodic Boundary Conditions (PBC) 

 

As shown below, the equations are formulated such that the differences in displacements 

between any two opposite faces of the domain are prescribed to be proportional to the applied 

strain [57]. 

Nodes on Faces: 

 
 
 

 

Nodes on Edges: 

 
 
 
 
 
 

Nodes on Vertices: 

 
 
 
 

 
 

 
Two examples related to uniaxial deformation (E1) along x-axis and shear deformation (G12) 

in the x-y plane are illustrated in detail: 

Case -1: Applied strain: ϵ11≠0. (ϵ22, ϵ33, ϵ12, ϵ13   , ϵ23 =0) for uniaxial deformation along x-axis. 
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Nodes on Faces: ϵ11≠0, 

i=1 

 
 
 

 

Nodes on Edges: ϵ11≠0, 

i=1 

 
 
 
 

 
 

Nodes on Vertices: ϵ11≠0, 

i=1 

 
 
 
 

 

 
Case -2: Applied strain: ϵ12 and ϵ21≠0. (ϵ11, ϵ22, ϵ33, ϵ13, ϵ23 =0) for shear deformation in x-y plane. 
 

Nodes on Faces: ϵ12 ≠0, 
i=1 

 
 

 
 

Nodes on Edges: ϵ12 ≠0, 

i=1 

 
 

 
 

 
 

Nodes on Vertices: ϵ12 ≠0, 
i=1 

 
 
 
 

 

Nodes on Faces: ϵ21 ≠0, 

i=2 

 
 
 

 

Nodes on Edges: ϵ21 ≠0, 

i=2 

 
 
 
 

 
 

Nodes on Vertices: ϵ21 ≠0, 

i=2 

 
 
 
 

 

 
In ABAQUS® the PBC are enforced using the *EQUATION keyword. The following are the 

steps in applying PBC on a model: 

1. Group the node sets on the faces, edges and vertices of the cube. The *EQUATION keyword 

allows only those nodes on opposite faces which have matching coordinates. Hence a regular 

or identical mesh on each the opposing faces are required. In case of irregular mesh, the 

outermost layers of the RVE geometry need be re-meshed such that this condition is satisfied.  

2. The prescribed loading (traction or displacement) is applied on a dummy node situated 

outside the RVE domain.  

3. The mid-nodes on the faces of the RVE need to be constrained in directions orthogonal to 

prescribed loading to avoid rigid body motion in the cases of uniaxial loading. For example, 
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in Case-1 described previously, the mid-nodes of faces F3& F4 are assigned boundary 

condition U3=0 and mid-nodes of faces F5& F6 are assigned boundary condition U2=0. 

3.5. Windows 

 
To investigate how the anisotropy due to local microstructure leads to overall isotropic behavior 

of the agglomerate, the method of windowing is employed. Cubes of size 1K, 8K and 125 K are 

extracted from 8 locations within the 1M domain which coincide with the gauss quadrature points of a 

hypothetical C3D8 master element of 1M size. These extracted sub-domains will be referred to as 

windows in subsequent discussions in this study (Fig.14). These are analogous to physical core 

samples prepared by extraction from a hydrated bulk specimen and are used to sample the 1M 

domain.  

 
 

Figure 14. Schematic showing location of windows extracted from the 1M-PMD. 
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3.6. Homogenization 

 
 

Homogenization procedures aim at finding a volume element's responses to prescribed 

mechanical loads (typically far field stresses or far field strains) and to deduce the corresponding 

overall properties. The most straightforward application of such studies is materials characterization, 

i.e. simulating the overall material response under simple loading conditions such as uniaxial tensile 

tests [53]. Modern approaches based on computational homogenization define a microstructural 

representative volume element that is modeled in full detail. Subsequently, the constitutive equations 

for the whole object are computed from the representative cell. Several studies have been conducted 

on obtaining the homogenized or equivalent properties by applying traction or displacement 

boundary conditions on a periodic domain and the applied boundary conditions are discussed briefly 

[51,54,55].  

 The ABAQUS® models consisting of 1 million or more continuum (C3D8) elements are not 

amenable to being queried for individual element stresses and strains which can then be averaged. 

Instead the strain energy corresponding to a known applied displacement of the periodic domain is 

used to determine the corresponding homogenized modulus.  Including only non-zero strain terms, 

the relation for the total strain energy due to deformation (Voigt notation) is given by: 

                         (1) 

     Where,  

    U = total strain energy of the RVE (ABAQUS output) 

 = average strain (computed from applied displacement), q=1 to 6 

 = volume of periodic domain (computed from dimensions of cube) 

 average strain (computed from equation 1), p=1 to 6 

 The homogenized moduli tensor elements are computed by assigning the elastic properties 

and subjecting the periodic domain to a prescribed pure deformation mode such that only one of the 
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six independent stresses is non–zero (Figs 10-13).  The tensor elements are the ratio of the average 

stress and strain corresponding to a deformation mode: 

       and                                    (2)         

 Where, = homogeneous modulus corresponding to applied deformation mode (i, j = 1, 2, 3 

are not summed indices). 

 In the case of pure shear deformation (Fig.15), ABAQUS® data output is in terms of 

engineering shear strain ( )xyg  such that: 

( ) ( ) ( ) ÷
ø

ö
ç
è

æ
D
D

+
D
D

=+»+=
X

y

Y

x
xy 2121  tan tan qqqqg                                         (3) 

The tensorial shear strain can be computed as:                              

                                                                                                                (4) 

From (2) the corresponding element of the elastic modulus is computed as:  

                   and                                                    (5) 

with no sum on i. 

 For further verification, the present RVE method is compared with asymptotic expansion 

homogenization (AEH). The AEH method provides an alternate means of estimating the effective 

elastic properties of general three dimensional microstructures from an RVE [58, 59].   
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Figure 15.  Deformation corresponding to pure shear (G12) 

 

For linear elastic inhomogeneous microstructures that exhibit perfectly-periodic 

homogeneity, an exact estimate of the effective homogeneous elastic properties can be obtained.  

This involves solving for  in Eq. (6): 

              (6) 

subject to periodic boundary conditions on all boundaries of the RVE domain.  The summation 

convention applies to the indices i, j, k, l, m, and n, which range from 1 to 3. Vector yi signifies the 

coordinates of the microstructure RVE, and Dijkl is the elastic stiffness tensor at a point  in the 

material.  The homogenized linear elastic stiffness tensor, , is obtained from: 

 

            (7) 

 

y

1q

2q

x

y

m 1=U

m 1=U

m 1-=U

m 1-=U

m 100=DX

m 100=DY

m 2=Dy

2=Dx
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which produces a general estimate of all 81 terms of the anisotropic elastic stiffness tensor. Under 

symmetries imposed by the geometry of the microstructure,  will possess all appropriate 

symmetries as well.  Thus, the number of terms in  can be reduced in the standard way 

through symmetry arguments associated with, for instance, orthotropic linear elasticity. 
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CHAPTER 4 

 

RESULTS 

 
 

4.1. RVE Deformation in ABAQUS Simulation  

 
This subsection shows RVE deformation due to imposing KBC by ABAQUS simulation. As 

it was mentioned in section 3.4, KBC is one of the imposed boundary conditions to determine the 

effective young’s and shear modulus. Imposing of KBC has been described in details previously in 

this thesis. Figs 16 and 17 show the deformation of 1M RVE after imposing KBC for the cases of E11 

and E12, respectively.  

 

Figure 16 Deformation of 1M RVE due to imposing KBC for the case of E11 
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Figure 17 Deformation of 1M RVE due to imposing KBC for the case of E12 

 
Figs 18 and 19 show the deformation of 4M RVE due to imposing KBC for the cases of E11 

and E12, respectively.  

 

 

 

 

 

 

 

 

 

Figure 18 Deformation of 4M RVE due to imposing KBC for the case of E11 
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Figure 19 Deformation of 4M RVE due to imposing KBC for the case of E12 

 

Also, deformation modes and corresponding elastic properties of the heterogeneous 

cementitious 1 Million elements RVE due to imposing KBC are shown in Fig 20. 
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Figure 20. Deformation modes for a 1M RVE (28 Days) for the case of KBC 

 

It can be seen from Fig 20 that cementitious RVE created by CEMHYD3D behaves almost as 

an isotropic material. It can be observed that RVE is not exactly isotropic and for this reason, 

anisotropy will be discussed in section 4.2.1.     

 

4.2. Microstructure Based homogenization 
 

4.2.1. Periodic Microstructure Domain (PMD) 

 
In order to study the effect of domain size on elastic properties, PMDs of various sizes: 1K, 8K, 

125K  and 1M are generated in CEMHYD3D. The input particle size distribution (PSD) is scaled 

(Fig. 2) in order to keep the relative volume fractions of various constituents in smaller domains 

similar to those in the 1M PMD.  The microstructure of each PMD is captured at various degrees of 

hydration (DOH =0.3, 0.5 or 0.8) in order to study the evolution of elastic properties of the cement.  
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As expected, the volume fractions (DOH=0.8) of constituents in PMDs of sizes 8K, 125K and 1M are 

found to be consistent within domains of the same size and vary only slightly with size as shown in 

Fig. 21. In domains smaller than 8K, the volume fractions of various constituent phases cannot be 

maintained due to the low number of particles. In case of the 1K domain the volume fractions of 

individual constituents become unrealistic. A significant increase is observed in the volume fraction of 

C-S-H as the domain size increases from 1 K to 8K. This may be due to the fact that C-S-H forms on 

the active surfaces. Since there are only a few particles, the corresponding ratio of active surfaces to 

domain volume is relatively less compared to PMDs of size 8K and larger, which have a smoother 

PSD (Fig. 2). This shows that the hydration kinetics is highly sensitive to PSD. However, beyond 8K, 

the volume fractions become independent of the domain size.  

 

 
 

Figure 21. Volume fractions of major phases for 1K, 8K, 125K and 1M PMDs 

 
 

The effect of spatial distribution of constituents on the elastic properties is studied by 

generating several instances of the 1M PMD with random spatial distribution of particles within 

the volume of each domain, while keeping the volume fractions and PSD constant. These 

instances are subjected to various axial and shear deformation modes in order to determine 
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corresponding elements of the elastic tensor.  Figs. 22(a)-(b) show the cumulative average values 

of principal and shear moduli of the 1M-PMD for various instances normalized to their 

respective average. It is seen that spatial distribution of constituent phases has little effect on 

global elastic properties of the domain.  

 

 
 

Figure 22. Variation of (a) principal and (b) shear moduli (KBC) in 1M- PMD for various instances 
normalized to their respective average 

 
The elastic tensor (Voigt notation) for an isotropic material is given by: 

           (8) 

Where the individual components of the stiffness tensor are given by: 

                   

                                 (9) 

 

              

 

Stdev  
E1=0.00326 
E2=0.00345 
E3=0.00400 

Stdev  
G12=0.00513 
G13=0.00256 
G23=0.00156 

(b) (a) 
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where,  . 

To quantify the anisotropy more precisely, the following parameters were described by Kanit [60]: 

                          (10) 

Where, 

 ,  ,  , 

The coefficient a is equal to 1 if the elastic behavior is perfectly isotropic. 

Further the effective engineering constants for an isotropic material can be computed as: 

 ;  ;                   (11) 

, ,  ,      ,  

 Note that in Eq.(11) G is defined as  instead of   . In a fully isotropic material (a=1) 

these values should be identical. However, they may differ depending on the degree of anisotropy in 

the material. In all KBC cases mentioned below, a total of six pure axial (Ei) and shear deformation 

(Gij) cases are analyzed and results are summarized in Table 2 and Figs. 23-24. The orthotropic 

elastic matrix obtained by applying KBC to a 1M-PMD at a DOH of 0.8 using ABAQUS is given as 

follows: 

 

Table 2. Effective bulk properties obtained from elastic tensors by applying KBC to PMDs assuming 
orthotropic symmetry 

Domain Size 

(microns) 

DOH λ 

(GPa) 

G 

(GPa) 

K 

(GPa) 

E 

(GPa) 
 a 

100x100x100 0.8 18.1211 9.08 24.1744 24.209 0.3331 0.9892 
100x100x100 0.5 24.4610 7.613 29.5364 21.032 0.3813 0.9517 
100x100x100 0.3 37.7033 5.714 41.5126 16.39 0.4342 0.8854 

50x50x50 0.8 18.2599 9.05 24.2933 24.151 0.3343 0.9847 
20x20x20 0.8 22.4614 8.917 28.4061 24.217 0.3579 1.0 
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 In the above cases where KBC was applied, the elastic tensor was found to be effectively 

isotropic. This isotropic behavior is assumed to hold in cases when PBC is applied as well. Hence 

only two deformation cases corresponding to pure extension (E1) and pure shear (G12) are required to 

populate the elastic tensor and obtain the overall effective bulk properties. Since the microstructure 

and domain size are identical, effective Poisson’s ratios obtained from the corresponding KBC cases 

(Table 2) are used to generate the elastic tensor in this study. This enables efficient computation of 

the elastic tensor since the PBC cases require significantly larger computational resources. The 

various trends observed in this analysis are summarized in Table 3 and Figs. 23-24. 

Table 3. Effective bulk properties obtained from elastic tensors by applying PBC to PMDs 

 
Domain Size 

(microns) 

DOH λ 

(GPa) 

G 

(GPa) 

K 

(GPa) 

E 

(GPa) 
 a 

100x100x100 0.8 15.5048 9.1520 21.6061 24.0590 0.3144 0.9979 
100x100x100 0.5 15.2035 7.763 20.3789 20.6650 0.3310 0.9942 
100x100x100 0.3 12.7297 5.8840 16.6524 15.7920 0.3419 0.9949 

50x50x50 0.8 15.3334 9.1540 21.4360 24.0400 0.3131 0.9976 
20x20x20 0.8 17.1366 9.1030 23.2053 24.1510 0.3265 1.0 

 
 
The full anisotropic stiffness matrix for typical cement 1M- PMD (DOH= 0.8) obtained using 

AEH [58] is: 
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Table 4. Effective bulk properties obtained from elastic tensors by applying AEH to various PMDs 
(DOH=0.8) 

Domain Size 

(microns) 

DO

H 

λ 

(GPa) 

G 

(GPa) 

K 

(GPa) 

E 

(GPa) 
 a 

100x100x100 0.8 16.5834 9.3550 22.82 24.6910 0.3197 0.9590 
100x100x100 0.5 18.9851 8.1146 24.3948 21.9140 0.3503 0.9357 
100x100x100 0.3 20.3734 6.3953 24.6369 17.6580 0.3805 0.9182 

50x50x50 0.8 16.9219 9.3370 23.1466 24.6910 0.3222 0.9560 
20x20x20 0.8 18.3961 9.3200 24.6095 24.8260 0.3319 0.9470 

 
 

The strength and cohesion of cement paste are controlled by the formation of C-S-H. As the 

hydration of the cement paste proceeds, the C-S-H gel formation results in the reduction of free 

water content in the pores which reduces the effective bulk modulus (K) and Poisson’s ratio as 

shown in Fig. 23(b) and 23(d) in the case of KBC and AEH, however PBC shows the opposite trend. 

The bulk modulus (K) computed according to the elastic relations is very sensitive to Poisson’s ratio 

(ν), as well as differences between the Young’s modulus (E) and shear modulus (G) values, which 

are obtained from simulations, as can be seen in Fig. 23(b). The C-S-H gel formation between the 

particles creates a percolation network that can increasingly support the mechanical stresses in the 

microstructure as hydration proceeds. This translates into a corresponding increase in the moduli as 

shown in Figs. 23(a) and 23(c). Due to the increase in C-S-H gel volume fraction and simultaneous 

reduction in volume fraction of most of the other constituents, the microstructure tends to become 

more isotropic. A comparison of the elastic matrices obtained at various DOH indicates this trend as 

shown in Fig. 23(e).   The effect of domain size on the elastic properties is shown in Fig.24 for 

cementitious domains of various sizes (8K, 125K and 1M). The effective properties (at constant 

DOH) asymptotically converge as the domain size becomes larger. Overall, the larger domains 

hydrate at a faster rate as compared with smaller domains having the same volume fractions of 

constituent phases (Fig.25). This may be due to an increase in the active reaction surface area with 

increasing domain volume. Hence for comparison purposes, the elastic properties of domains of 

various sizes need to be considered at equivalent DOH. 
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 Fairly significant (between 35%-8%) differences between values of Young’s modulus 

obtained by applying KBC and PBC to the microstructural domains are reported for cement by 

Smilauer [61] and for random composites by Kanit [47]. However, in the present study the difference 

was found to be smaller (<4%) and it does not follow the trend of elastic properties obtained from 

KBC being larger than those obtained from PBC.  However the E and G values obtained by applying 

KBC and PBC are slightly lower than AEH estimates (Table 4).  
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Figure 23.  Effect of DOH on material bulk properties for 1M-RVE for KBC, PBC and AEH 

 

(a) (b) 

(c) (d) 

(e) 
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Figure 24.  Effect of domain size on material bulk properties for DOH=0.8 for KBC, PBC and AEH 

 
 
 

(a) (b) 

(c) (d) 

(e) 
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Figure 25. The effect of domain size on degree of hydration (α) (CEMHYD3D) 

 

4.2.2. Windows 

 
Windows ranging in size from 1K to 125K are extracted from a 1M-PMD (DOH=0.8) to 

qualitatively evaluate the local anisotropy within the larger domain. It is important to note that the 

particle distribution and volume fraction of each window is not consistent with that of the larger 

domain from which the window is extracted. The volume fractions of some of the major constituent 

phases that are contained within both the 1K and 8K windows are found to vary significantly (Fig. 

26). Larger variation is observed in smaller windows. This variation is indicative of the local 

anisotropy in the volume of material contained within the larger 1M domain. 
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Figure 26. Volume fractions of major phases for (a) 1K element and (b) 8K element windows 

 

 

Figure 26-(c). Volume fractions of major phases for 125K element windows 

 
 

Intuitively, as the window sizes become larger their average properties are expected to 

approach that of the bulk material. To evaluate the effects of domain size and random 

microstructure on the elastic properties, four 1M PMDs, each with different microstructure, are 

generated while maintaining the same PSD and volume fractions of the constituents. The resultant 

domain size is 200x200x100 (4M) finite elements.  

(a) (b) 



 

43 
 

Convergence studies are conducted on windows of various sizes (1K, 8K, 125K, 1M and 4M 

elements). For each case the average values obtained from 8 instances in the case of 1K, 8K and 

125K windows; 5 instances of 1M and 1 instance of 4 M domains are reported. The convergence 

behavior of the elastic modulus (uniaxial deformation) normalized with respect to E1 and G12 

obtained from PBC applied to 4M- PMD is shown Figs. 27-28.  Based on these numerical 

exercises, a 1M domain size seems to be the minimum required size such that computed 

properties are no longer sensitive to variations between random instances. This indicates that the 

1M domain size is sufficient for an RVE to realistically represent the microstructure and effective 

bulk properties of the Type-I cement considered here. Though this exercise does not directly 

address the statistical aspects based on 2-way ANOVA or a t-Test, the results clearly show that 

both domain size and random microstructure do not significantly affect the elastic properties 

obtained from the domains of size equal to or larger than 1M elements. 
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Figure 27.  Elastic moduli (uniaxial) with increasing window size 

 
 

Figure 28.  Elastic shear moduli Gij with increasing window size 

 

 

 

1.0E+03 8.0E+03 1.3E+05

E1 0.00294 0.00792 0.00605
E2 0.00291 0.00775 0.00598
E3 0.00284 0.00828 0.00618

Stdev- KBC 

Stdev- PBC 
1.0E+03 8.0E+03 1.3E+05

E1 0.00356 0.00446 0.0015
E2 0.00319 0.00316 0.00141
E3 0.00372 0.00459 0.00155

1.0E+03 8.0E+03 1.3E+05

G12 0.00112 0.00084 0.01791
G13 0.00113 0.00116 0.01768
G23 0.00103 0.00104 0.01779

Stdev- KBC 

Stdev- PBC 

1.0E+03 8.0E+03 1.3E+05

G12 0.00104 0.00097 0.00053
G13 0.00113 0.00124 0.00056
G23 0.00107 0.00113 0.00049
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4.3. Rule of Mixtures Based Homogenization 

          
 A rule of mixtures approach independent of the microstructure of the material is used to 

compute the effective bulk properties of the cementitious material. The theoretical extreme upper and 

lower bounds on effective material properties of multi-phase materials are the Voigt [62] and Reuss 

[63] bounds. The rule of mixtures based Voigt upper bound on the effective bulk (K*) and shear 

moduli (G*) of a mixture of n material phases is given by: 

  and      (12) 

The inverse rule of mixtures based Reuss lower bound on effective bulk (K*) and shear 

moduli (G*), is given by:     

 and         (13) 

 Hashin (1962) [64] presented the composite (or coated) spheres model for determining the 

effective material properties for multi-phase materials, based on the dilute suspension model. Here a 

large number of uniformly distributed coated spherical inclusions that fill all space in a matrix are 

considered. The effective bulk modulus (K*) is given by: 

          (14) 

Where,  

=Bulk modulus of ith kind of inclusion,     

=Bulk modulus of matrix  

  =Effective bulk modulus of heterogeneous material  

=Poisson’s ratio of matrix  

=volume concentration of ith kind of inclusion 

 =volume concentration of inclusions 

And the simplified formula for effective shear modulus (G*) is given by [64]: 
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              (15) 

Where,  

=Bulk modulus of ith kind of particle,    =Bulk modulus of matrix  

  =Effective bulk modulus of heterogeneous material  

=Poisson’s ratio of matrix  

=volume concentration of ith kind of particle 

 

For the upper bound, the effective bulk and shear moduli of the hydrated cement are obtained 

by assuming that the properties of the matrix are that of C-S-H. For the lower bound, the 

properties of the matrix are assumed to be that of water filled porosity (Table 1).The various 

theoretical bounds on the elastic moduli based on rule of mixtures are compared in Table 5 

below: 

Table 5. Comparison of theoretical bounds on homogenized elastic moduli for a 1M-RVE 
(DOH=0.8) 

 
Voigt 

(V) 

Reuss 

(R) 
Hill Hashin 

K(GPa) 26.33 9.02 17.68 25.78 

G(GPa) 12.17 2.19e-4 6.09 11.59 

Lambda 18.21 9.02 13.62 18.06 

E (GPa) 31.32 6.58e-4 15.66 30.23 

ν 0.30 0.50 0.40 0.30 
 

The differences between Voigt and Reuss estimates are large when the phase moduli differ by 

more than a factor of two, producing poor estimates in the case of particulate composites. The 

large variation shown in Table 5 is consistent with the significant presence of porosity which has 

effectively zero Young’s modulus. It is also observed that the Hashin estimates in this case are 
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close to the Voigt upper bound. In both these estimates the elastic properties are higher than 

those estimated by microstructure based homogenization (KBC, PBC and AEH). 

The material properties predicted by the microstructure based methods for a 1M  domain at 

DOH=0.8 are comparable to resonant ultrasound spectroscopy (RUS) based experimental data 

(Table 6) reported for a typical Type –I Portland cement with a w/c ratio of 0.40 [65]. In the 

current study, the Young’s modulus (E) of the cement RVE is computed to be around 24.0 GPa, 

the Shear modulus (G) is around 9.0 GPa and effective Poisson’s ratio (ν) is about 0.32 for a w/c 

ratio of 0.40. Similar but slightly different range of values for Young’s modulus (20-25 GPa), 

Shear modulus (8-10 GPa) and Poisson’s ratio (0.24-0.25) have been reported by several authors 

for Type-I cements with w/c ratio ranging from 0.4 to 0.5 [61, 66-68]. The authors believe that 

the reason for this difference is the variation in experimentally determined micro-scale material 

properties, different PSD, volume fractions of constituent phases and w/c ratios in cements 

studied at various research facilities.  

 

Table 6. Experimental (RUS) results for hydrated cement paste with w/c=0.4 [65] 

 
 C11 C33 C12 C13 C44 ν E G 

(GPa) 24.23 -- 6.69 -- 8.77 0.216 21.55 8.8 
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4.4. Compressive strength of Hardened Cement Paste 

 
Powers (1958) considered strength to be related to the concentration of solid hydration products 

in the paste and expressed this as a gel space ratio (X) defined by Eq.(17) below in which the gel 

pores are included in the gel volume [69]: 

 

                           (17) 

Where, 

α = degree of hydration  

w/c= water-cement ratio =0.40 

The compressive strength (  ) is related to X by the equation: 

 

                     

(18) 

where n=2.6 to 3.0 for typical cements. 

In the case of the PMDs, the total porosity is taken as being equal to water porosity and 

volume of C-S-H is taken as total gel volume. Theoretical maximum strength is achieved when X=1, 

i.e., 100% hydration takes place. In literature several models are used to fit either degree of hydration 

or strength development vs time. A parabolic model developed by Knudsen and implemented in 

CEMHYD3D [70] provides a good fit to experimental data: 

 

                              (19) 

 

Where, Au = ultimate achievable value of the property =  (compressive strength) 

t0 = induction time which accounts for accelerated rate of hydration during the very early stage, 
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k = rate constant that is fitted to experimental data 

The development of compressive strength for cementitious periodic domains of various sizes (8K, 

125K and 1M) is plotted in Fig. 29. The trend in compressive strength development is similar to that 

of the degree of hydration.  The development of the Young’s modulus in the 1M-RVE, normalized to 

the modulus obtained from the 4-M PMD as a function of time (days) is shown in Fig. 30.  

 

 

Figure 29.  Development of the compressive strength (f’c) (CEMHYD3D) 

 

 

Figure 30.  Development of the Young’s Modulus (E) (ABAQUS) 

 
 



 

50 
 

4.5. Computational Resources 

 
The computational resources of the Sequoia cluster at Mississippi Supercomputing Center 

(MCSR was leveraged. Sequoia is a 124 node cluster with 22 Altix XE 310, 24 Altix XE 320, and 78 

Rackable computing nodes. Each Altix node consists of Dual Intel Xeon Quad-core E5420 

Harpertown processors, a 1333 MHz Front Side Bus, a 12 MB L2 Cache, and a 250 GB Disk Drive. 

Each Harpertown processor consists of 4 2.5 GHz cores (or, effectively, CPUs) and 8 GB memory. 

42 Altix nodes are configured with 16 GB memory each (2GB per core), but 4 Altix fat nodes are 

configured with 32 GB memory each (4GB per core). Each Rackable node has two six-core Intel 

Xeon X5650 (Westmere) processors, 36 GB of DDR3 RAM, a 2 TB internal SATA hard drive, and a 

QDR Infiniband network card. Overall, Sequoia has 3.44TB memory. 

 

Table 7  Resource allocation on Sequoia at MCSR 

 
RVE size  

(no. of elements) 

No. of Nodes No. of 

CPUs/Node 

RAM 

Allocation 

(Gb) 

1000 1 1 28 
8000 1 1 28 

1 Million 1 2 28 
4 Million 4 1 140 
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Figure 31.  Wall clock time (hr) vs RVE size 
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CHAPTER 5 

 
 
 

CONCLUSION AND FUTURE WORK 

 
 

 

The results presented under this work clearly show how meso-scale effective properties can 

be determined using voxel based FEA approach. Analysis is conducted to obtain the elastic moduli 

and compressive strength of a Type-I cement paste. In this effort both KBC and PBC were 

investigated to determine if the elastic properties are invariant due to boundary conditions and results 

are compared with an alternate AEH methodology. In addition the method of “windowing” was used 

to access the randomness of the constituents and to validate how the isotropic elastic properties were 

determined. A comparison between the two domain sampling methods shows that windowing 

produces effective material properties with a larger variation than the PMD due to a higher variation 

in local phase volume fractions. Macroscopic properties obtained for various DOH and domain sizes, 

determined by applying KBC, PBC, AEH and rule of mixtures based homogenization are found to be 

comparable.  It is shown that even though cement is a heterogeneous anisotropic material at the 

micro-level, the bulk properties are effectively isotropic.   

Multiscale modeling (MM) is a computationally intensive approach that enables computation of 

elatic properties of heterogeneous cement with a wide variety of additives. Under a hierarchical MM 

approach, the individual properties of each constituent and additive material can be computationally 

determined using molecular dynamics (MD) simulations and this information can be passed on to the 

next level RVE based microstructural model. In future, this microscopic RVE based methodology 

will be further extended to investigate the effects of nano-scale additives on mechanical properties.  
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Instruction of ABAQUS job submission in supercomputers at The University of Mississippi 

(MCSR) 

 

 First, we need to open the "SSH Sequia File Transfer Client Software" which can be 

downloaded from the following webpage: 

https://shareware.unc.edu/ 

 Then, we need to click on “quick connect”. In the “Connect to Remote Host pop-up 

window”, we need to enter: 

 

Hostname: hpcwoods.olemiss.edu 

User Name: *********   

Password: ********** 

 

 

 

 ABAQUS inp file should be copied and pasted in the place which is shown in the above 

picture. Now, we need to open the “SSH Secure Shell” 
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 Here, a *.inp file can be transferred into the "Sequoia Environment". Again, we need to click 

on quick connect. After entering the hostname, username and password in pop-up windows, 

following commands should be inserted step by step.  

 

1- ls                                                                                                          (in order to see the list of files) 

2- scp filename.inp sequoia:~                                        (in order to transfer the *.inp file into sequoia) 

3- ls –l                                                                                                     (in order to see the list of files) 

4- chmod 600 Filename.inp                                                                        (for the purpose of security) 

5. ssh Sequoia                                                                        (in order to enter to sequoia environment) 

In the new appeared window, we need to insert the following commands as well.  

6. ls 

7. chmod 600 *.inp   

8. mkdir directory                                                                                         (in order to make directory) 

9. mv filename.inp directory                                                (in order to move the file to that directory) 

10. cd directory                                                       (in order to work only on the files in that directory) 



 

62 
 

11. ls –l 

12. cp ~/abaqus.pbs Filename.pbs                                                (in order to create a ABAQUS script) 

13. nano Filename.pbs                                                   (in order to open the ABAQUS pbs script  job)                  

 

 Here, time needed to run a job and memory space can be allocated in ABAQUS pbs script. 

One recommended sample of ABAQUS script is as follows: 

 

" 
#!/bin/csh 
#PBS -N Filename 
#PBS -j oe 
#PBS -l nodes=1:ppn=2 
#PBS -l mem=28000mb 
#PBS -l walltime=66:00:00 
cd $PBS_O_WORKDIR 
setenv SCRDIR /tmp/$PBS_JOBID 
mkdir -p $SCRDIR 
/usr/local/apps/abaqus/Commands/abq6102 job=Filename input=Filename.inp \ 
" 
 
Now, we need to press "Ctrl+O" to save the changes and press "Ctrl+x" to exit. 

 

14. ls 

15. qsub Filename.pbs            (in order to run the job)  

16. qstat number                                                               (number is that produced in by command 15) 

17. qstat -f number                                                           (number is that produced in by command 15) 

18. qstat -u username                                                       (in order to see the status of  jobs by the user) 

 

To get the results, we need to enter the following commands: 

 

19. cd directory/ 

20. ls 



 

63 
 

21. scp Filename.odb hpcwoods:~ 

 

 At this moment the Filename.odb is in hpcwoods environment and it can be transferred to the 

system of the user.  
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