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ABSTRACT

We investigate the asymptotic behavior of polynomials orthogonal over an arc of the
unit circle v := {z = € : 6y < 0 < 2 — fy, 0 < Oy < 7}, with respect to a generalized
Jacobi-type weight |z — e [2*|z — e7|?°h(z), where o, 3 > —3, and h is a positive analytic
weight on the arc. Full asymptotic expansions for the orthogonal polynomials are obtained
at every point of the complex plane, extending previous results by Krasovsky [18] for the
case « = [ = 0. Our results also extend those of Kuijlaars, McLaughlin, Van Assche, and
Vanlessen |20] for polynomials orthogonal with respect to Jacobi weights on the real segment
[—1,1]. Our method of proof is based on a characterization, due to Baik, Deift, and Johansson
[3], of the orthogonal polynomials as solutions of a 2 x 2 matrix Riemann-Hilbert problem,
which extends to the unit circle the original Riemann-Hilbert characterization for orthogonal
polynomials on the real line, first discovered by Fokas, Its, and Kitaev in [11]. In order to
extricate the behavior of the polynomials from its Riemann-Hilbert matrix representation,
we follow the steepest descent method of matrix transformations developed by Deift and

Zhou in [9].
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Chapter 1 INTRODUCTION AND STATEMENTS OF THE MAIN RESULTS

1.1 Orthogonal polynomials

For a given positive, finite Borel measure 4 in the complex plane C whose support is
a compact set containing infinitely many points, there exists a unique sequence {¢, }>° , of

polynomials of a complex variable z with the property that
pu(z) ="+
is a polynomial of degree n and leading coefficient 1, and

[ o i

These polynomials ¢,, are called the monic orthogonal polynomials associated with p.
The polynomial ¢, has an important extremal property. Among all monic polyno-
mials of degree n, p, is the only one with smallest Li—norm, that is, ¢, is characterized by

the property that

/\wn!2du—P(zgiZg+___/IPIQdu-

Because the support of the measure p contains infinitely many points, it is easily

verified that the above minimum is strictly positive. If we now define

—1/2
Fon 2= (/ ’(pn|2dﬂ) o Pu(2) = kapn(z), n >0,



then the polynomials ®,, are orthonormal with respect to u, that is,

/@nq)_md,u =0m, n, m>0.

The study of orthogonal polynomials is a vast and beautiful theory with important
applications to many other branches of mathematics such as rational approximation, har-
monic analysis, number theory, numerical analysis, and random point processes, to name a
few. They have demonstrated utility outside the realm of pure mathematics. For example,
they appear in classical mechanics, optics, and electrical engineering. The origin of this
subject goes back to the eighteenth century, when Legendre was analyzing the motion of
heavenly bodies. More recently, orthogonal polynomials have been found extremely useful in
the study of random matrices |10,21,22]. The survey by Totik [31], meant for non-experts,
offers a good review of different aspects of the theory of orthogonal polynomials.

The great applicability of orthogonal polynomials resides in the freedom of choosing
the orthogonality measure p. The theory is particularly rich when the support of y is either
a subset of the real line (this includes the classical families of Jacobi, Legendre, Laguerre,
and Hermite), or when the support of the measure is the whole unit circle (see, for instance
[14,/17,128-30]). The richness of the theory emanates from the symmetry of the real line and
of the unit circle, and in the case of a measure whose support is the unit circle, having at
our disposal the whole machinery of complex function theory in the unit disk (e.g., Hardy
spaces, Poisson representation of harmonic functions, etc).

A major breakthrough in the theory of orthogonal polynomials came in the papers
[9,11]. It was proven in [11] that orthogonal polynomials on the real line can be characterized
via the solution of a 2 x 2 matrix Riemann-Hilbert problem. Using this characterization,
a steepest descent method was developed in [9] to obtain full asymptotic expansions for

the orthogonal polynomials in every region of the complex plane. Based on this method,



many new results have been obtained for both orthogonal polynomials on the real line (e.g.,
[8,12,20]) and on the unit circle [18,[24-26].

Orthogonal polynomials over more general curves of the complex plane have been
studied to a certain extent. Here, the focus is mainly on their asymptotic behavior, since the
great majority of algebraic properties that orthogonal polynomials on the real line or on the
unit circle enjoy are no longer valid for a general arc, due to the lost of symmetry. This loss
of algebraic properties means that the techniques available for the analysis of orthogonal
polynomials over an arbitrary curve are much more limited; they essentially amount to
finding an ingenious argument with tools from general complex function theory.

In this dissertation we will consider polynomials that are orthogonal with respect
to a measure supported on an arc of the unit circle. Since circular arcs are second in
simplicity only to straight line segments, it is natural to seek to extend results for orthogonal
polynomials on a real segment to orthogonal polynomials on a circular arc. A number of
works have been succesful in carrying out these extensions using different techniques, see for
instance, [2,4-6,(1516}/18},/19,23].

In [20], the asymptotic behavior of orthogonal polynomials over the segment [—1, 1]
with respect to a modified Jacobi weight was investigated using the Riemann-Hilbert ap-
proach. In this dissertation, we carry out a similar investigation on an arc of the unit circle.

Without loss of generality, we take a symmetric arc

vi={e? 0, <0< 2m— 0}, 6y (0,7), (1.1.1)

and consider polynomials ¢,, orthogonal over v with respect to a modified Jacobi-type weight

w(z) = |z — |z — 7P h(2), (1.1.2)



where a, f > —1/2 and h(z) is positive on the arc and analytic in some neighorhood U D +.

Thus, we have that

is a monic polynomial of degree n, and

[ en@Ton@lz = ez - P PR =0, 02 m
Y

The main goal of the dissertation is to establish full asymptotic expansions for ,,, describing
in great detail the behavior of ¢,, as n — oo in every region of the complex plane. Our results
extend those of [18], where a similar investigation was carried out but without singularities

at the end points of the arc, that is, for « = 5 = 0.

1.2 Riemann-Hilbert characterization of the orthogonal polynomials

Every point on a smooth oriented curve that is neither a point of self-intersection nor
an endpoint will be called an interior point. The collection of interior points of a curve ¢ will
be denoted by ¢°.

The orientation of the curve defines a positive +side and a negative -side locally about
every interior point. The positive/negative side lies to the left /right of a particle traveling
the curve along the given orientation.

Given a function f defined on the complement of a curve £, the positive and negative
boundary values fi of f at z € £ are defined to be

fe(z) == lim f(z),

z—tt

where z — t* indicates that z approaches ¢ within the positive/negative side. We say that f

has continuous boundary values on ¢° if both f, and f_ are continuous functions on ¢°. For



matrices whose entries are functions defined on the complement of a curve, the boundary
values are defined entrywise.

Hereafter the arc v will be oriented in clockwise motion along the unit circle. It
is easy to see that the orthonormal polynomials are characterized by the non-hermitian

orthogonality condition

0, m=-—1,0,1,....n—1,
/@Z(z)zmw(z)dz =
N

on+l .
i/kn, m=mn,

where @7 (2) = 2"®,(1/Z) denotes the reverse polynomial of ®,, (for a full justification, see

Section .

This characterization allows us to formulate a matrix Riemann-Hilbert problem (RHP)
whose solution involves the orthogonal polynomials and their Cauchy transforms. Namely,

we consider the problem of finding a 2 x 2 matrix Y satisfying the following conditions:
Y1 Y(z) is analytic for z € C\ 4 with continuous boundary values on ~°.

Y2 For all t € 7°,
Y3 As z — oo,

Y4 As z — €%,



1 |Z_€i90|2a
a<0
1 |z_€i90|2a 7 7

1 log|z — ei®]
Y(2)=< O , a=0, (1.2.1)
1 log|z — ei®]

O , a >0,
11

\

and as z — e % _ Y behaves as in (1.2.1) with € and « replaced by e~ and 33,

respectively.
Above in condition Y3 and in what follows, I denotes the identity matrix.

Theorem 1.2.1. The Riemann-Hilbert problem Y1-Yj has a unique solution given by

1 gpn(t)w(t>dt
- Spn(z) 2_7'('2 /’Y m

v(z) = [ By ()t e
=27k P4 (2) — i [{ tn(t — z)

The proof of this theorem is standard and follows the same arguments given in [20],
see also [3] and [L1]. It is presented in Section [5.2]

To distill the asymptotics of the orthogonal polynomials from Theorem [1.2.1, we
follow the steepest descent method as it was done in [20]. The objective of the steepest
descent process for Riemann-Hilbert problems is to alter the RHP for Y through a series of
transformations Y — T +— S — R, where the latter matrix R satisfies, generally speaking,

the following RHP on a system of contours I

R1 R is analytic on C\ I' with continuous boundary values on I°.

R2 R.(t) = R_(t)V(t) for t € T where V(t) is a jump matrix that is uniformly close to

the identity as n — oo.

R3 R(z) — I as z +— o0.



Under a few more specific assumptions, one can prove that there is a unique solution R to
the problem R1-R3, and that R(z) — I uniformly on compact subsets of C \ T' as n — oo.
Since each of the transformations has an inverse, reversing the steepest descent process
R — S +— T — Y yields the asymptotics of the matrix Y, and thus, of the orthogonal

polynomials themselves.

1.3 Asymptotics for the orthogonal polynomials

In this section, we present our new results establishing the asymptotic behavior of
the orthogonal polynomials on every region of the complex plane. The great strength of the
Riemann-Hilbert approach resides in its ability to generate full asymptotic expansions for

the orthogonal polynomials.

1.3.1 Asymptotics for the monic polynomials outside the arc

Our first theorem gives an asymptotic expansion for the nth monic orthogonal poly-
nomial ¢, (z) in powers of 1/n and for points z away from the arc. The expansions involve
a few functions and quantities that we need to introduce first.

The function

z+ 14 /(2 —eif)(z — e=)
2¢ ’

U(z) =

where

¢ = cos(6p/2),

is the unique conformal map of C \ v onto the exterior of the unit circle {w : |w| > 1} such
that 1(00) = oo and 9'(00) > 0.

The Szego6 function for the weight

w(z) = |z — )%z — e 20 p(2)



is defined as

e (B[, e,

where

9(2) = V/(z =€) (2 — e=i0)

is the square root function occurring in the definition of the conformal map .
A thorough discussion on the conformal map 1 and the Szeg6 functions is presented

in Section It will be shown in Proposition that

z’ei@oﬂ(z)— eieo)] : {—iewo/z(z — e“’ﬂ ’ exp <g(z) /7 log h(¢) dC > |

D(z):{ e e 270 ), g:i(0) C—=z

From this expression, we can compute

oV — B [ L 2700 sin(0/2) log h(e®) df
Do) = p< w e ) (131)

4m Ja, V2 — cos?(0/2)

Let o be a closed contour in U (the neighborhood where h is analytic), going around

- 27 —0, i0
D(00) = | D(00)|e @D E—00)/2 o, (L/ " cos(6/2) log h(e )d9> _

the arc v once in the positive direction. Related to the Szeg6 function, we introduce numbers

¢, and d,, defined as

1 log h(¢) d¢
T, g(Q) (= ey

n >0, (1.3.2)

B 1 log h(¢) d¢
"omi ), g(Q) (C—eifo)ntl’

Theorem 1.3.1. For z € C\ v, we have an asymptotic expansion of the form

R s NICCPC R COPTD

d n > 0. (1.3.3)




holding true as n — oo uniformly for z on compact subsets of C \ . The functions 11, are

analytic in C\ v and can be computed explicitly. The first two are given by

e®/2(160% — 1) e ™/2(168% — 1)
A(ih(z) — e2)  A(p(z) — em%/2)’

Hl(Z) = —

icot(0o/2)(1602 — 1)(8 — 12832 + (ar + 3)10i sin(y/2) + 20ie% ¢y sin by
- 256(1)(2) — e')

ie% cot (6 /2)(16a% — 1)(21 + 112a2) e (1602 — 1)(12 + 128a2)
- 256(z — ) 256(w () — e/2)2
N icot(0y/2)(168% — 1)(8 — 12802 — (a + 3)10isin(fy/2) — 20ie =% d, sin b;)

256((z) — e="™)
ie™ cot(0y/2)(165% — 1)(21 + 11262) e~ (1652 — 1)(12 + 128(32)
256(z — e~i0) 256(1)(z) — e~i00/2)2

HQ(Z) =

1.3.2 Determination of the functions 11

The determination of Il rapidly becomes a computationally demanding task for
k > 3. We briefly explain the steps needed in deriving these functions. We will see in the

proof of Theorem that

i(2) = (Ri(z) +
where (Ry)11 and (Ry)12 are the entries in the first row of a matrix

Ru(z) = (Ri)u(2) (Ri)ia(2) | .

(Ri)ai(2) (Rr)22(2)

For all sufficiently small § > 0, the open disks

Us:={z:]z—e®| <6} and Us:={z:]z —e ™| <4}



have disjoint closures, and for each integrable function f, the Cauchy transform

defines an analytic function in the three components of C \ (0Us U 0Us). Here, the circles

dUs and dUjs are clockwise oriented. The matrix functions Ry, are then computed by using

the residue theorem via the recursive formula

k—1
Ry=C(A)+ ) C(A(Ry)-), k>1,
j=1

where the functions {A;}32, are explicitly given in (3.5.9) and (3.5.10)).

1.3.3 Asymptotics for the leading coefficient

Theorem 1.3.2. The leading coefficient k,, admits an expansion of the form

9 sin(fy/2) = T
~ 1 _k
K 272+ D(00)|? + Z nk |

where the numbers Ty, are expressed in terms of 0y, o, 3, ¢,, and d,,, and are explicitly com-

putable. The first two are

~icot(fy/2)(16a® — 1) | icot(6y/2)(166% — 1)
1= = 1 + 1 )

10



_cot(6p/2)(16a* — 1)(—8 + 1283% — 10ie"%/%(ar + f3) sin(6p/2) — 20ie =%/ ?¢; sin by)
B 256 sin(6y/2)
N icot(0o/2)(160% —1)(21 +1120%)  cot?(fy/2)(16a” — 1)(12 + 128a°)
256 256
cot(0o/2)(168% — 1)(—8 + 128a? + 10ie'%/2 (o + B) sin(fy/2) + 20ie?/2d, sin ;)
+ ;
256 sin(fy/2)
~icot(Ay/2)(165% — 1)(21 + 1126%)  cot®(6y/2)(165% — 1)(12 + 1285?)
256 256
icot(6p/2)(16a% — 1)  icot(hy/2)(166% — 1)
* 4 N 4

Iy

The computation of further terms I'y can be achieved, once we have determined the

matrix functions Ry, via the formula

e : (k j 1) (=1)7 ((Bi3)22(0) — cotl(0/2) Do) (B )21 (0)) > 1.

1.3.4 Asymptotics for the monic polynomials on the arc

For 0y < 6 < 27w — 0y, let us define

cos (e ©
A(0) := arccos ( (5/2)) ;o x(0) == —(a+ B)A0) + ar + g 2<7r )][ lggf(Lg) ¢ fcew’

A(0) = /%\/wn(ﬁﬂ) + tan )\(Q)eiy.

The behavior of ¢, (z) as n — oo for points z € v and away from the end points e

and

+i6o

is given next.

11



Theorem 1.3.3. For 0 € (6y, 2w — 6y) we have an asymptotic expansion of the form

o D(co)cme™ T [sin(6,/2)
Pn(e”) ~ 2 :
w(et) 2sin \(0)
x| (A(0)e mMO=XE) 4 jA~L(g)e i (MO X (1+Z ) (1.3.4)

_ (iA(@)@—i(n/\() X)) ¢ A ( i(nA(0)—x (0 Z zgf ]

holding true uniformly on compact subsets of (0y, 2w — 60y). In particular,

Pu(e”) D(oc)  [sin(6o/2)

chet (2n21>9 A /w 626 2sin )\

(A(g)ei(m((?)fx((?) + z’A*I(G)e*i("A(e)*X(G))) (1+0(1/n))

(1.3.5)

uniformly as n — oo on compact subsets of (6o, 2m — 0p).

Remark 1.3.4. The functions P} and P? in the expansion of Theorem are in fact given
by

PLO) = (R (),  P2(O) = k> 1. (1.3.6)

The asymptotic behavior of ¢, (z) for z € 7y and near the endpoints e** involves the

Bessel function of the first kind J,. For an arbitrary complex number v, the Bessel function

Tolz) = (%) 2 /{;!F(Ei_—:)V—I— 1 (%) (1.3.7)

is analytic in C with a branch cut along (—o0,0] corresponding to the principal branch of

(z/2)". Tt is a solution to the linear differential equation

al2 dw 5 o

12



With the help of the Bessel functions, it is now possible to express the behavior of ¢, near

the endpoints. We first give the formulae for z near e®.

Theorem 1.3.5. Let

ML) := A(0)e @™ XO) L A=1(g)eilem—x()
M2() := A(0)el X0 _ A=1(g)eilem—x(0)
M3() := A(0)e(emxO) 4 A=1(g)ilem—x(0)

M4(¢9) = A(e)e*i(aﬂ'*X(Q)) _ A*l(e)ei(aﬂfx(e)).

There exists 6 > 0 such that the asymptotic expansion

() el 00)4/sin(6p/2) [ mnA(0)
n\€ ~
4 2,/w(e) sin A(6)

x| (€7 Tan(RA(O)) ML(0) + e~ /4.1, (nA(6)) M <1+§:

'

(o (NG MEB) — T (AONME) Y ”)i(,f)]

holds true uniformly for 0 € [6y,00 + 0) as n — oco. The functions Pi and P3 are given by

(1.3.6).

The behavior of ¢, (2) for z near e~ is very similar and is given next.

Theorem 1.3.6. Let

MA(0) == A(0)e " FmHxE) _ A=1(g)ei(Prx(O)
M2(0) == A()e™ X0 4 A=1(g) e (Prtx(O),
M3(0) := A(0)ePmXO) _ A=1 ()~ Brtx())

M3(0) = A(0)e'PmHXO) 4 A7 (g)e A X (O]

13



and set \*(0) == m — X(#). There exists 6 > 0 such that the asymptotic expansion

e T 00)y/sin(6y/2) | mnA*(6)

2/ w(e?) sin A*(0)

Spn(ew) ~

o (e_m/4(] (n)\*(e) MB + 6'L7r/4J/ (n)\*(e)) MZ(Q» (1 + i

?,a(e))
— k

+ (€7 Tag (nA(6)) ME(0) — €™/ Th, (nA*(6)) M5(6)) > 9’%@)]

nk
k=1

holds true uniformly for 2w — 6y — § < 6 < 2w — 6y as n — oo, where the functions P}, and
P2 are given by ([1.3.6)).

We remark that in Theorems and [1.3.6 the asymptotic formulae at z = e*%
are to be understood in a limiting sense, that is, the behavior of ¢, (e*") is obtained by
+ifo

finding the limiting values of the formulae as z — ™. We finish this section by stating

such endpoint behavior.

Corollary 1.3.7. At the endpoints of the arc v, we have that as n — oo,

0 §@n=ootn n\2e [mnsin(fy/2) tan®(6y/2)
on(€0) ~ e ¢"D(oo) (5) h(e)  (2sinby)?
. [(1 . O‘COfo‘)/Z)) (1 . °° ?iéf())) _ (1 . mtifom) f? ?%1(50)] |
and

i B
—ify . i CnNCET (E) 26 [7nsin(6y/2) tan®(6y/2)
n(e™™) ~e 4 c"D(o0) 9 h(e=)  (2sinfy)®

. [(1 . Bcotifo/Z)) (1 . ?,g(?;eo)> . (1 - Bcotifo/Q)) i ?z(n—keo)] |

WE

=
Il

1 k=1
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1.4 The case of a varying arc

We shall now briefly discuss the process in which the arc v is allowed to vary. To be
more precise, we fix numbers «, 3 > —1/2 and € € (0,7), and for each 6y € (0,7 — €] and
integer n > 0, we let ¢,, be the nth monic orthogonal polynomial over the arc v defined by

(1.1.1) with respect to the weight given by
w(z) = |2 — ™|z — e [*h(2),

where this time h is analytic in a neighborhood U of, and positive on, the unit circle. Thus,
¢, actually depends on the two parameters 6, and n. It turns out that the asymptotic
expansions of the previous sections remain valid with very little variation if the product
nfy — oo in such a way that

lim (%) = 0. (1.4.1)

n90

The numbers ¢, and d,, are similarly defined by

1 log h(¢) d¢

C"‘z_m/a 9Q) € —eompr "=
1 log h(¢) d¢

d"‘ﬁ/g o) € —empr "=

with the difference that this time o is chosen to be a cycle consisting of two circles centered
at the origin, one negatively oriented and contained in U N{z : |z|] < 1}, the other positively
oriented and contained in U N {z : |2 > 1}.

For € > 0, let €). be the set

Q. :={z:d(z,v) > ¢},

15



where d(-,-) denotes the euclidean distance. The set . varies if so does 7.

In this new setting, Theorem takes the following form.

Theorem 1.4.1. For every T > 0, we have

pn(2)  D(o0) [((z) — e\ [(z) — e/ 00Tk (2)
o yn(z)  D(z) \/( 5 _ ¢ifo/2 ) ( o _ e—i00/2 ) ll—i—kz (16

=1

uniformly for z € Q.g, as nfy — oo satisfying (1.4.1). The functions Il are the same

functions occurring in the expansion of Theorem|1.5.1).

We notice that, if in Theorem [1.4.1], we let 8, — 0, we are allowing z to get close to
v at a speed of order y. It is possible to prove the same result under the sole assumption
that nfy — oo, provided z remains within a fixed distance from ~ when 6y — 0.

Similarly, there exist 7 > 1 such that as nfy — oo satisfying , the asymptotic
formulae of Theorems and |1 remain valid unlformly for 6 € [7‘90, 21 — 76y and

0 € [0y, T6), respectively, provided that the sums Z;O: by

> i enﬂ; 2 and D het 0°n9’“)k , Tespectively.

We finish this section with two corollaries illustrating the behavior of ¢,, when the

arc vy converges to the unit circle.

Corollary 1.4.2. As (0y,n6y) — (0,00) satisfying (1.4.1)), we have that

on(2) 2\ 1 log h(¢)d¢
cnpn(2) - (Z_ 1) exp (2m /|c|1 c—z ) ; 2| > 1,

and

on(2) e/l fim
sin(00/2)c”¢”(z) — (1 . Z)a+ﬂ+1

1 logh(Q)d¢ 1 logh(g)dg)
xexp( m][d:l 1—-¢ 27m'/|CI L (-2 5 |z| < 1,

uniformly on compact subsets of the specified regions.
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Corollary 1.4.3. As (0p,n6y) — (0,00) satisfying (1.4.1]), we have that

i v ei(a—B)T/2 1 log h(()d
eul(e™)  iac o (hf, EHOK),
<=1

einfo/2cnp20+1/2 gin () /2)a—B—1/2 qotp+1 h(1 2m1 1-¢

and if « =0, then

() — e~/ i exp (—L][ log h(g)d()
S i¢1=1

eino/2cnn1/2 gin (6 /21725 4p+1 h(1) 27i 1-¢

In Corollaries [1.4.2 and [1.4.3} the symbol § is used to denote the integral in principal

value sense, that is, if T, is the positively oriented arc {¢ : |[(| =1, |¢ — 1| > €}, then

logh(QdC [ logh(Q)d¢
][41 1—¢ ll—r’%]{r 1—¢

1.5 Dissertation structure

The content of the dissertation has been linearly structured so as to have any result
needed for a given topic well stated and developed beforehand. In Chapter [2| we state
many auxiliary results needed for the development of the steepest descent method, such as
boundary value properties of Cauchy transforms and properties of certain conformal maps
and Szego functions. For the sake of clarity, most of the proofs for Chapter |2 are relegated
to Chapter 5] The steepest descent method is carried out in Chapter [3, This is a long and
intricate chapter, from which all of our results will be derived. Chapter [4 where the proofs

of our theorems are given, is essentially a continuation of Chapter

17



Chapter 2 AUXILIARY RESULTS

2.1  The Sokhotskii-Plemelj formula

The proof of Theorem and other facts we will encounter soon rely on the following
fundamental results regarding the boundary values of Cauchy transforms, which can be found

in the book [13].

Theorem 2.1.1 (Sokhotskii-Plemelj formula [27]). Let ¥ be a simple smooth path, and let
v(t) be a weight (non-negative integrable function) that is Hélder continuous on X2, that is,

there exist constants A > 0 and 0 < A <1 such that

lo(t) —v(ty)| < Alt — ", t, t, € %°.

Then, the Cauchy transform

o et — 2

C(z) = L/ v(t) dt

has continuous boundary values Cy(z) and C_(z) at every interior point z € 3° given by

v(2) L v(t)
= —_— — — o
Ci(z) = 5 +2i2t Zdt, z € X,

_ v @) o
C_(z) = 5 +2m’]€t—zdt’ z €3,

where the symbol § is understood as the integral in the sense of principal value. In particular,

Ci(2) =C_(2) +v(z), zeX’ (2.1.1)

18



It is important to realize that the formula (2.1.1)) is, indeed, of a local nature, as

evidenced by the following corollary. We will use the notation

D(zo,7) :={2z: ]z — 20| < r}.

Corollary 2.1.2. Let v(t) be a weight defined on a system of contours 33, and suppose zy € ¥
is such that for some r > 0, ¥y = D(zo,7) N is a simple smooth arc on which v(t) is Holder

continuous. Then

Proof. Let us define

By Theorem [2.1.1] we have

Ci(z) —CL(z) =v(z), z€X,

and since the function

ZHL/ o(t) dt

271 T\Sy t—z

is continuous on the complement of ¥\ ¥, we see that

Ci(2) —C_(2) =CL(z) —CL(z) = v(z2), z€X.
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Corollary 2.1.3. Let 3 be a smooth simple path in C, and let v(s) be Hélder continuous on

.. The Cauchy transform

21 s—z

f(z) = L/E v(s) g (2.1.2)

1s a solution to the additive Riemann-Hilbert problem consisting of finding a function f such

that

al f(z) is analytic in C\ X;
a2 fi(s) = f_(s)+wv(s) forallt € ¥°;

a3 f(z) >0 as z — o0,

Moreover, this problem has at most one solution satisfying that
a4 if a and b are the endpoints of 3, then lim(z — a) f(z) = 0 and lim(z — b) f(2) = 0.

z—a z—b

Proof. That f(z) as defined by (2.1.2)) is a solution follows from Theorem [2.1.1} Suppose

f and g are two solutions to the Riemann-Hilbert problem solving al-a3. For ¢ € Y

(f=9)+t)=(f—9)-(D),

so that by Morera’s theorem, (f — g) is analytic in C\ {a,b}. Moreover,

lim(z — a)(f — g)(=) =0 and lim(z— b)(f — g)(2) =0,

z—a

so that the Laurent expansion of (z — a)(f — g)(2) (resp., of (z — b)(f — g)(2)) about a
(resp., about b) is a Taylor series with constant coefficient 0, and so (f — ¢)(z) is entire. By

Liouville’s theorem and a3, (f — g)(z) =0, so f(z) = g(2). ]
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2.2 Conformal maps and Szeg6 functions

2.2.1 The exterior conformal map of the arc

Let ¢ denote the segment [e’wo, ewo], and let G(z) be the branch of the square root
of (z — ) (2 —e~%) on C\ ¢ that is positive for z > cos 6, namely, G(z) = |z — e|. The
properties of this function can be easily obtained from the well-known branch of v/z2 — 1 on
C\[—1, 1]. For instance, given that the transformation z — 2 cosfy—z = —(z—cos fy)+cos b

is the reflection about the midpoint of ¢, we have

Gi<t) = Gi(%), Gi(t) = —G¢(5), te (€_i90, ei@o)'

Notice also that G(2cosfy — z) is also a branch of the square root of (z — ) (z — e~ on
C\ ¢. Hence
G(z) = —G(2cosb0y — z), ze€C\ VL.

It follows that

G(z), z €ext(yUl)U Lo,

G(2cosby — z), ze€int(yU¥),

is the branch of the square root of (z — ¢)(z — =) on C \ v that is positive for z > —1.

Moreover,

g:(t) = —g_ (), g.(t) = Glt), ter”, (2.2.1)

We also record that if «/ is the reflection of the arc v about the segment ¢, then

g(z) = g(21) with z # 21 only when z; = 2cosfy — z and z, z; € int(yU~).

In what follows we shall often denote g(z) by \/(z — i) (z — e~0).
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Let us define

24+ 14 g(2)

) , c:=cos(f/2), z€C\n. (2.2.2)
c

¥(z) =

Proposition 2.2.1. The function ¥ maps C \ v conformally onto |w| > 1, and satisfies

(00) = 00, Y/ (00) = ¢! > 0. It has the following properties:

i. The inverse ¥~' of ¥ is

P Hw) = ) Jw| > 1. (2.2.3)

1.

‘w(zz) <1, and therefore ’1/1(22)2 <1, zeC\n. (2.2.4)
111. We have the boundary value properties
¢(€ii90) — 6ii90/2,
b () =t, teq”, (2.25)
1
b+ )=, te,
ey (t) — 1 v (t) 1 .
w*(t) - w+<t) —c ) er(t) - ?/1—(75) —c ) te v (226)
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iv. The geometric relation between 1, (t) and ¥_(t) is given by

B sin?(6y/2)
$-(t) —c

e e (0 <)

¢+(t) =
(2.2.7)

that is, ¥4 (t) and ¥_(t) are endpoints of a cord passing through ¢ = cos(0y/2).

Notice that from Proposition [2.2.1(iv.), it follows that
i6 ) 0
0<argi () < 2 < arg () <7 € (0,7

. 0 )
—m Sargyy(e) < = <argy_(e”) <0, 0€ [-m, ~),

and since 1, (¢?)y_(e?) = €, then

by 0

5 <9< arg Py (), (0o, 7),

arg ¢ (e) < g < _%a (=, —bo).

2.2.2  Szego functions

Definition 2.2.2. Let w(z) be an analytic weight on +° and let logw(z) be a branch of the
logarithm of w on v°. Assuming that f7 |logw(z)||dz| < 0o, we define the Szegd function for
w (corresponding to the chosen branch of logarithm) as

Dlaiw) mexp (4 [ LRI E) seTn,

Proposition 2.2.3. The Szego function has the following properties:
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i. D(z;w) is analytic and never zero in C\ v, and

ii. For two different branches of logw(z), the corresponding Szegd functions differ at most

by a factor of —1.
iii. Dy (t;w)D_(t;w) = w(t) for all t € ~°.
w. Ifw(t) >0 fort €, then D(0) = D(c0).

Property i. is trivial from the definition. Property ii. follows from the fact that

1 d¢ o m s
/VG@)C—Z = FEC\Wr (2.2.8)

We shall now compute the Szegd function for some relevant weights, starting with

the orthogonality weight w. For this, we first need the following proposition.

Proposition 2.2.4. The function

is a conformal map of C\ v onto the interior G of a cardioid shaped Jordan curve, which is
symmetric with respect to the x-axis, intersecting it at 0 and 2sinfy. The positive boundary

values function Fy takes vy to the lower half of the cardioid, and

Similarly, the function
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is a conformal map of C\ 7 onto the interior G, with ﬁ+ taking v to the upper half of the

cardioid, and

Fy(z)=F_(z), wzen.

We will later need the following observation. Using (2.2.2)), it is easy to see that

(1) = sec(By/2) 4 tan(6y/2),

and so
2'677:90/2(1 _ 61‘90)

¥(1)

Hence ¢ maps C\ (yU (—o0,—1)) onto {z : |z| > 1} \ (=00, —1), and choosing the branch

F(1) = = 2tan(6/2)(1 + sin(6/2)).

of log(z — €) in C\ (yU (—o0, —1)) corresponding to arg(l — e?°) = (6, — m)/2, we have

4 — 6
LogF(z) = log(z — €") — Log1(2) + i 5 0 zeC\ (yU(—o0,—1)). (2.2.9)
Similarly, if we choose the branch of log(z — e~®) in C\ (y U (—o0,—1)) corresponding to

arg(l — e %) = (7w — 6y)/2, then

— T

~ , 0
LogF (z) = log(z — e~™) — Log ¢)(z) + i— 5

z€C\ (yU(—o0,—1)). (2.2.10)
Proposition 2.2.5. The Szegd function for the weight
w(z) = |z — eif[2e| — ¢mifo|28
and corresponding to the principal branch of the logarithm Logw(z) is
D(z;w) = exp {a LogF(z) + 8 LogF(z)
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Proposition 2.2.6. The function

isin(£6y/2)(z — eFif)
P(z) — cos(0p/2)

F(z,+6y) = ze€C\~,

maps C \ v onto the interior of a cardioid symmetric about the line {re*%="/2) .y ¢ R},
with a cusp at the origin, and lying in C\ {—re*@®=7/2) .y > 0}, so that a branch of

log F(z,+60) exists for z € C\ v with

3
0y — 7” < arg F(2,00) < 0o + g

—0y — g <argF(z,—b0y) < —0y + 3;

Hereafter, when we write log F(z, +6y) and F(z, +60,)“, we mean the branches of these

functions corresponding to the range of the arg F(z, £6,) specified in Proposition [2.2.6}

Proposition 2.2.7. If the branches of the logarithmic functions log(t—e¥°) and log(t—e =)

on v° are chosen so that
7/2 < arg(t — eF%) < 31/2, t €A, (2.2.11)
then

/log(t — eFifo) gt milog F(z, £6p) N (mi)?
y Gy t-z 9(2) g9(z)”

so that for every a € R,

D(z; (t — e¥1%)) = ™2 [F (2, £00)]"%.
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The function z — 2= takes C \ v conformally onto C \ {re® : r > 0}. We define

z—e~ 0

0o

alz) = (i

1
Z —
Z_e_wo) , z€C\,

with a(oco) = 1, that is, the branch resulting from choosing

z — et

00—27r<arg( ) <y, z€C\~ (2.2.12)

2z — e~

Proposition 2.2.8. The function a(z) is the Szegd function corresponding to the weight

) 1
t— e\ 2
wo= (22N e

t — e~

where the branch of v(t) and that of log v(t) are those corresponding to the choice argv(t) =
(6 — ) /2.

Proposition 2.2.9. If the branch of log ﬁ i1s chosen according to

1
/2 < arg (%> <3m/2, ten’,

then the Szegd function for the weight 1/G(t) is given by

a(z) + a‘l(z)‘

D (5 1/G(t)) =[5 (=, 00)] " [F (2, —00)] M = i=—o— . (2.2.13)
Proposition 2.2.10. For z € C \ v, we have
a(z) +a(2)"t  e(@(z) —c) e /((z) — e (i(z) — e=i00/2)
2 B O (%) : (2.2.14)
a(z) —a(z)"" _ — sin 6
2i = 1) Falz) )’ (2.2.15)
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and

(2.2.16)

We finish this section with some auxiliary results on boundary value limits that will

be needed later.

Proposition 2.2.11. With

A(0) := arccos (¢ cos(6/2)) , Oy < 0 <21 — b,

we have the following equalities holding true for all 6y < 0 < 21w — 0y

Yo (e?) = fNO+0/2),
|1y (%) — ¢| = cos(6/2)[tan(8/2) + tan A(F)].

.

(a +2a )+ (ei9) = %\/’G&D(Q/2) + tan)\(e>€i(>‘79),%)'

<“ ; al) () = isin(6/2) (5 9)
2 n /25 A(0) y/cos(0/2)/tan(0/2) + tan A(0)

. Dy(e?;w) = \/w(t)exp{ix(0)}, with

x(0) = —(a+ B)A(O) + ar +

g+(€w)][ log h(¢) d¢
27 0 g-i-(C) C_ €i9 .
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Chapter 3 THE STEEPEST DESCENT METHOD

We have now established all the facts necessary for the application of the steepest
descent method. We closely follow the ideas in [8,20], and will be treating the fixed arc and
the varying arc cases simultaneously. We depart from the Riemann-Hilbert problem Y1-Y4

stated in Chapter [1.2] whose solution is given by Theorem [1.2.1

3.1 Transformation Y — T

This first transformation has for objective to normalize the behavior of Y at infinity.

Let

where

c = cos(0y/2).

Direct calculations show that T satisfies the following RHP:

T1 T(z) is analytic for z € C\ 7 with continuous boundary values on ~°.

T2 For all t € 7°,

T3 As z — oo,



T4 T has the same behavior as Y as z — e that is,

1 ’Z _ ei@o’?o&
1 |Z _ 6i90|2a
1 log|z — €]

T(z)=¢ O ' , a=0, (3.1.1)
1 log|z — €]

and as z — e ®_ T behaves as in ([3.1.1)) with e® and « replaced by e~ and 33,

respectively.

3.2 Transformation T'— S

The weight w is given by
w(z) = |z = Pz — e [Ph(2),

with h(z) analytic in some neighborhood U D «. In the case of varying 6y, by assumption, h
is positive and analytic in the whole unit circle |z| = 1, and we choose U to be a thin open
annulus centered at the origin and containing the unit circle.

In either case, we can choose this neighborhood U in such a way that
0 < inf |h(2)| <sup|h(z)| < occ. (3.2.1)

We extend w(z) analytically to QN U,

Q:=C\ {[0,00) U{e?: —0, <0 < 6}},
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Figure 3.1: Domain of w,(z)

Figure 3.2: Domain of wg(z)

via the equality

w(z) = wa(2)ws(2)h(2),

wa(z) = ¢ [2108(z =€) —logz — (m+60)i] ¢\ {[0,00) U {e? 10 < 0 < Bp}},

ws(z) = P [2loglz =) —logz = (m —60)i] ¢ €\ {[0,00) U {e¥ : —6 < 6 < 0}}.

(3.2.2)

Here w,, and wg are analytic in the specified domains with the branches of log(z — e*"%) and

log z chosen so as to have arg(—1 + isin(460p) — e*%) = 7 and arg(—1) = m, respectively.
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e 161{)

Figure 3.3: Domain of analytic continuation of w, (2)ws(z)

From now on when we write w(z), we will mean the analytic continuation as defined
above (see Subsection for details).
The purpose of the next transformation 7" — S is to correct the oscillatory behavior

of the jump in T2. We do this based on the factorization of the jump matrix

T w 1 0 0 w 1 0

0 tnl/}:Zn w—ltnw:2n 1 _w—l 0 w—ltn¢;2n 1
The analytic continuation of w(z) allows us to extend the matrices

1 0 1 0
and

w1 w1

to the domains QN U N{z: |z] <1} and QN U N {z : |z] > 1}, respectively, and we denote

both extensions by

1 0
w(z) tzmp(z)7 1

Since |290(2)7?| < 1 and w(z) is non-zero for all z € C \ v, see Propostion [2.2.1] we

have

ﬁ(@)n—m as n—0
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YL YR

Figure 3.4: The lens I’

for 2z away from ~. That is, these matrices tend to the identity (although not uniformly) as
n tends to infinity. Using this information, we transform the RHP for T to a new RHP in

an opened lens about 7, denoted by

=y, UyUng

and shown in Figure [3.4], with the lens contained in 2 N U.
Let O be the unbounded component of C \ I', and let O and Og be the interiors of
v U~ and v U g, respectively.

Let us define

)
T, z €0,
1 0
T , 2€0p,
S = —w(z)"t2Mp(z)7 1
1 0
T , z € Og.
w(z) 2"p(z) 2" 1
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Then S solves the following Riemann-Hilbert problem:

S1 S(z) is analytic for z € C\I' with continuous boundary values on I'°.

S2

S3 As z — oo,

S4 As z — e,

1 |Z _ €i00|2a
a < 0,
1 |Z o 6i90|2a
log |z — €] log |z — €|
) o = 07
log |z — €| log |z — €|
S(z) = | (3.2.3)
11
O , a>0 z€0,
11
‘Z o €i90|—2a 1
0) ' , Oé>0,Z€OLUOR,
‘Z o 6190|—2a 1

\

and as z — e % S behaves as in (3.2.3) with €% and « replaced by e~ and 3,

respectively.
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3.3  Outer parametrix

Here we seek to find a 2 x 2 matrix N(z) satisfying the following Riemann-Hilbert

problem:
N1 N(z) is analytic for z € C\ .

N2 For all t € v,

N3 As z — o0,
Niz)=1+0(1/z2).

We now take advantage of the property (iii.) of the Szegé function for the weight w,

D(z) := D(z;w),
and write
Ne o [PO 0y (PO ) (3.3.1)
0  D(oo)™t 0 D(z)

Then, the 2 x 2 matrix A(z) satisfies the following RHP:
A1l A is analytic in C\~.

A2 Fort e,

A3 A— 1T as z— oo.

If we, in addition, impose that
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A4 A(2) = O(|z — e|71/4) as z — et
then as we show in Section there is just one solution A given by

a(z)+a=1(z) a(z)—a"1(2)

Ag) = Nl
_a(z)—a"Mz)  a(z)+a”l(2)
24 2
and we take
Dico) 0 @t a@-'@\ [ po-t g
N(Z) B ( ) 1 a(z)iafl(z) a(z)-i:*l(z) ( ) (332)
0  D(oo)” — 5 0 D(z)

for solution to the RHP N1-N3.

We will later use that N is invertible, given that

det N = det A — (M)2+ (M)z — 1.

2 21

3.4 Local parametrices

Since the jump matrices across 7, and g are not uniformly close to the identity near

the endpoints of v, we must construct local parametrices in
Us:={z:|z—e®| <6} and Us:={z:]|z—e | <5}

for some & > 0 small enough as to have Us and Us contained in the open upper half plane
and lower half plane, respectively, with (Us U 55) cU.
In the case of a varying arc, because we allow 6, to vary, possibly approaching 0, we

will specifically choose § of the form

0=pbh, 0<p<p,
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Figure 3.5: Neighborhood Us

where p; > 0 is a universal constant satisfying that

p190 < sin(QO), 0< 90 <7 —¢€.

We will better specify p; later in Section [3.4.3]

3.4.1 Riemann-Hilbert problem for P

We wish to find a P that satisfies the same jump relations as S, that matches N on
the boundary OUs of Us, and that has the same behavior as S as z — €. More precisely,

we seek to find P solving the following Riemann-Hilbert problem:

P1 P(z) is analytic Us \ T’ and continuous in {z : |z — €| <6} \ T.

P2 P has the same jumps as .S on ' N Us:

P.(t) = P_(t) , teUsnN(7 Uk,
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, te UsnNn°.

P3 (Fixed arc case) On the boundary of Us, we have as n — oo

1
n

P(z) N (2)=I1+0 < ) , uniformly for z € OUs \ T

P3 (Varying arc case) On the boundary of Us, we have as nfy — oo

P(z)N'z)=1+0 (%) ., uniformly for z € 0Us \ T.

nbo
P4 As z — e,

1 ’Z _ ei@g’Qa
1 |Z . 6i90|2a

log |z — €| log |z — €|

@) . ' , a=0,

log|z — €| log |z — ']
P(z) = <

11

@) , a>0, z€0,
11
|Z_6i90|72a 1

@ ) CY>0,Z€OLUOR.

|Z o ei90|—20¢ 1

(3.4.1)

We now have to apply a series of transformations to P in order to arrive to a Riemann-

Hilbert problem with constant jumps on a systems of rays departing from the origin that

can be explicitly solved in terms of special functions, namely, modified Bessel and Hankel

functions.
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Figure 3.6: Domain of W,(z)

3.4.2 Reduction to constant jumps

Define
Wa(2) :=exp {% (2log(z — €") —log z + (7 — Qo)i)} (3.4.2)

for z € C\ ({¢ : 6y <0 <27} U[0,00)), with log(z — ¢/®) and log z the branches of the
logarithm in

C\ ({e”: 6y <0 <21} U0,00))

corresponding to the values
arg((—1+isinfy) — eiao) =7 and arg(—1)=m,

respectively.

Define also

W (z2) = Wa(2)ws(2)2h(2)"2. (3.4.3)
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We have (see Section [5.15))

w(z)e™, 2| < 1, 2 € [0, 00),
W(z)? =

w(z)e™™  |z| > 1, 2 €[0,00),

and

WL ()W_(t) =w(t), teUsn~°.

(3.4.4)

We will later make use of the following lemma. Its proof is given in Section [5.15]

Lemma 3.4.1. For a fixed arc vy, let o be a closed contour in U going around the arc ~y in the

positive direction and leaving every point z € Uy inside. For the case of a varying arc, let o be

a cycle consisting of two circles centered at the origin, one negatively oriented and contained

in UN{z: |z| <1}, the other positively oriented and contained in U N {z

:|z] > 1}, and

such that Us is contained in the annulus bounded by these two circles. Then, for z € Us \ 7,

we have

271
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with ¢, given by (1.3.2)). In particular,

W(z)
D(z)

=1+0(|]z—e®|Y?), asz— e,

Let us now define a matrix P! via the equality

W(z) ()" /2 0
Pl) = B, (:)PD(2) (2)Mp(2) /2"

0 W ()" (2)v/z "
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where /2 denotes the principal branch of the square root, and E,(z) is, at this moment,
an arbitrary, invertible analytic matrix in Us, which will be more specifically chosen later.

Then, PW satisfies the following RHP:
PM1 PW(2) is analytic Us \ T' and continuous in {z : |z — ei®| < §}\ T.

PM2 P gatisfies the jump relations

1 0
PY() = PY (1) ‘ . teUsnyl,
62a7r7, 1
0 1
PO() = PO(1) . teUsny’,
~1 0
1 0
PO = PD() ] tetina
e— QT 1

PW3 As z — ¢ PM(z) has the following behavior for z € Us \ I':

‘Z_eieo‘a ‘Z_eieo‘a

|Z_ei90|a |Z_€i90|04

log |z — €| log |z — e
o [0t et ol ey

log |z — €| log |z — €|

PY(z) =
|Z_ei€0|o¢ ‘Z_ei%‘—a ‘
O , a >0, as z — €% with z € O,
‘z_eieo‘a ‘Z_eieo‘—a
|Z_67;90|*a |Z_6’L'90|70¢

@] ., a>0, asz— e with 2 € Op UOg.
‘Z_eieo‘—a ’Z_6190|—Oé
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3.4.3 Mapping Us onto a neighborhood of 0

Define

f(2) ::i[Log%} , 2€C\ (yU(—00,0]).

From the discussion following Proposition 2.2.1] we see that f,(z)/1/z takes v+ := yN {2 >
0} onto the first quarter arc of the unit circle {e? : 0 < § < 7/2}, while f_(2)/1/z takes "
onto the fourth quarter arc {¢ : —7/2 < 6 < 0}. Moreover, f,(2)/\/z = +/2/f-(2), so that
fr(t) = f_(t) for t € UsN~°, so f(z) is analytic in Us. Also, for |z — €| < sinfy, we have
(see Section

tan®(6,/2)
12e%%0

i~ tan(6,/2)
z

=) -

f(z)= (z =€)+ 0 ((z —e™)?).

Hence, for a sufficiently small 9, f is a conformal mapping of Us onto a neighborhood of 0.
Moreover, f(z) maps vNUs into (—o0,0], {2 : |z] > 1} NUs to the upper half plane C, and

{z :|z| < 1} N Us to the lower half plane C_. Consequently,
V) =20, £ =i, tey nUs (3.4.5)

To manage the case of a varying arc, we need in addition, some uniform estimates.
From Rouche’s theorem and the estimate in Section below, it is not difficult to
see that there exists 0 < p; < 1 such that for every 0 < 6y < 7 — €, the map f is conformal
on

Us={z:|z—€| <6, 0=pby}

for all 0 < p < p;. Moreover, there are positive constants C),, and c,, such that uniformly

in0<bOy<m—¢0<p<p,andte]l0?2n],

Co Pl < |f(2)] < Cpp2, 2= e + phpe™. (3.4.6)
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3.4.4 Model RHP

We now use the mapping ¢ = n?f(z) to transfer the RHP for P in Us onto a

neighborhood of 0 in the ¢ plane on a contour ¥g defined for © € (0, 7) as the union of the

three infinite rays oriented towards the origin

Yo1 = {re® :r >0},

Neg = {re™ :r >0},

Yeos = {re ® :r >0} (3.4.7)

This leads us to the following RHP. For a fixed o > —1/2, we wish to find ¥ such that

U1l U is analytic in C \ Xg;

VU2 U satisfies the jump relations

1 0
) 9 t E 209717
eQam 1
0 1
, t €33,

-1 0

1

' : t € X33

672am 1
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U3 As ( — 0, U(() has the behavior

(

o ¢l [¢] | o<,
¢l ¢l
lo lo

o [Peldl osicl)
log [¢| log|¢]

V(¢) =

¢l ¢l .

O , a >0, as ( — 0 with |arg(| < ©,
¢l ¢l
IS .

O , a>0, as ( — 0 with © < |arg (| < 7.
IS

As shown in |20] (see Section for details), a solution for this RHP is provided by

a matrix W, defined as follows. For |arg(| < O,

Lo (2¢12 L Koa(2¢Y2
v | B (20 )
2miC!2 15, (2C1?)  —2C1 2K, (2C172)

for © < arg( <,

1Mo \1/2 1@ o ~\1/2 ami
W,(C) = 250 (2(=C)7) 250 (2(=C)7) € 0 , (3.4.8)
mCA(Hyy Y (2(=0)2) mCURHL)Y (=) ) \ 0 erem

and for —7 < arg( < —0O,

FLIROV) R0V (e

Vo (¢) = ] 1 NE (3.4.9)
_7T<1/2<H2( ))/<2<_C)1/2) 71_C1/2<[{2( ))/(2(_01/2) 0 eami

« «

where I, K>, are modified Bessel functions and H. (1) HQ(? are Hankel functions (Bessel

20

functions of the third kind).
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We use the freedom we had in deforming v, NU and v NU and take them to be the

preimages of the rays Yo, and Xg 3, respectively, with respect to the map f(z).
Remark 3.4.2. Notice that the expressions that define the solution ¥, are independent of
©. If we let Cg 1, Co2 and Cg 3 denote the three components of C \ g in such a way that

Co1={Ce€C\Xp:0 <arg( <},

06,2 :{§€C\Z@ e <arg( < —@},

and

Cosz={C€C\Xg:|arg(| < O},

and if ¥, ¢ and ¥, o denote the solutions ¥, corresponding to the angles ©' > ©, then

Voo(() =Vae((), C€CoiUCosUCqg,

so that W, erlc,, , is the analytic continuation of W4 elcg,, Ya,elce, is the analytic contin-

uation of ¥, e/|cy, ,, and W, e, , is the analytic continuation of ¥, o|c,, ,-

S
Defining

PW(2) = Wa(n?f(2))

we see that PV complies with P1 — PM3, and so

W (2) () /2" 0
P(z) = E,(2)Va(n® f(2)) (e (3.4.10)

0 W (=) (2)y/z "

satisfies P1, P2, and P4. We now find F,, in such a way that, in addition, P3 is also satisfied.
We first consider the case of a fixed arc, that is, 6, is fixed, and so is Us. Using the

asymptotic expansion for large ¢ € C\ Xg, see (9.7.1)-(9.7.4) in [1] and formula (6.28) of [20],
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one finds that uniformly as ( — oo,

\Ila(o - \/271(1/4 0 i 1+ O(C—1/2> i+ O(C_1/2) 62<1/2 0
0 vV 27T<1/4 2 7+ O(C*1/2) 1+ O(C71/2) 0 67241/2

(3.4.11)

Here we note that when

2

c=r)="" 2]

e2'? = (2)"\/z ", and so making ¢ = n%f(z) yields that for every ¢ € (0,6),

Do (n2 () = ¢217n 0) Fz)~U4 0

1+0(L) i+o(d)) (¥ o

< \}5 (n) t (n) vz .
1 1 z

i+0(;) 1+0(;) 0 Jom

uniformly on {2z :e < |z —e®| <5} \ T as n — oco.
In the case of a varying weight, by (3.4.6), we also have, after making ¢ = n?f(z),

that for every po € (0, p1),

= 0 f)7 0
U (n?f(2) = | Vo™
0 2mn 0 f(2)V/4
(3.4.12)
» 140 (%) i+0(%) | (4 o
2 1 1 NEk
V2 i+0 () 1+0(%)) \ 0 &

uniformly, as nfy — oo, for 6y € (0,7 — €] and z in the set

{2 : pobo < |z — €| < p16} \T.
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Combining (3.4.13)) and (3.4.12)) with (3.4.10]), we obtain that for a fixed arc,

> 0 270
P(z) = Buo) | 77 /)
0 2mn 0 f(z)V/4
(3.4.13)
1 (1+0(%) i+0(2) ) (W) o
S
V21lito(3) 140(2) 0 W)

uniformly on {z : ¢ < |z — €| < 6} \ T as n — oo, while for a varying arc, the equality
(3.4.13) is also true when replacing the O(1/n) by O (%{)) in a uniform sense, as nfy — oo,

for 0y € (0,7 — €] and z in the set
{2 :pobo < |z — ™| < p16p} \ T.

Since we want to have P(z)N~!(2) = I4+0O (1/n) in the fixed arc case, and P(2)N 7' (z) =

I1+0 (n@o)fl in the varying case, uniformly for z € OUs \ I', we now choose

E(2) = N(2) W(z) 0 \}5 —\/Lé f(z)V/4 0 2tn 0
0 W) \-% 5 0 flz)7/* 0 =
(3.4.14)

pioy = ney [0 (1+0(1)) A (3.4.15)

with O(1/n) replaced by O (ﬁ) in the case of a varying arc. It is clear that this P complies

with the condition P3 in case of a fixed arc, and moreover, we see that indeed

P(z)N'z)=1+0 (l) (3.4.16)

n
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uniformly on {z : e < |z — ™| < §} \ T as n — oo.

For a varying arc, it follows from Lemma that W(z)/D(z) and D(z)/W(z)
remain uniformly bounded for 6y € (0,7 — €] and z in the set {z : |z — e®| < p16y} \ . In
view of (1.3.1), the same is true for | D(co)| and |D(c0)|~'. With these observations and the
estimate (3.7.2), we see from the definition of NV in that

remain uniformly bounded for 0 < #y < m — € and z in the set
{Z : p0«90 < |Z — eieol < ,0190} \ I

Then, by (3.4.15)), we conclude that the condition P3 also holds for the varying arc case, and

moreover,

P(z)N*z)=1+0 (niﬁo) (3.4.17)

uniformly, as nfy — oo, for 0 < y < 7™ — € and 2z in the set {z : pofy < |z — €| < p16y} \ T.
Now, the matrix E,, is in principle only analytic on Us \ 7, but we now show that E,
is indeed analytic in Us.
Using the condition N2 satisfied by the matrix N(z) and (3.4.4]), we get
W, (t) 0 W_(t) 0 0 1
0 Wy 0o w_®*t)\-10

(3.4.18)
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Using (3.4.5) and (| m, we get from (3.4.14] m ) that

: 0 [0 -+
Eny(t) = Bo_(t) [ V2™ " Ve
1/4 1
0 21 0 f-(t) f 7
1 3 1/4
y 0 1 5 | [+
7 1 —1/4
-1 0/ \-% & 0 ()Y o

This proves that E, is analytic in Us \ {€’®}. We now prove E,, is analytic at e'%
Using Lemma [3.4.1 we deduce that as z — e?%,

a(z)+a"1(z a(z)—a"1(z Wiz
N(Z) W(Z) 0 B D(OO) 0 ( )+2 (=) (=) - (2) D((z)) 0
0 W(z)—l 0 D(oo)_l _a(Z)—Qai*l(Z) G(Z)-F;*l(z) 0 I/ID/((Zz))
‘Z _ eieo‘—l/zl ‘Z _ ewo\_l/“ 1 0
=0 @)
|Z _ 6i(90|—1/4 |Z _ 6z‘(90|—1/4 0 1
(3.4.19)

Since the function f(z) has a simple zero at €'®, we have that as z — %,

f(z)1/4 0 0 |Z _ e1‘00|1/4 0 (3 ) 20)
0 f(Z)_l/4 0 |Z _ ei00’—1/4

Then, from (3.4.14), (3.4.19) and (3.4.20)) we see that as z — €%,

1 ‘Z - ez‘eo‘—l/z
E.(2)=0
1 |Z_€i90|—1/2

which implies that E,, has a removable singularity at €, and so E, is analytic in Us.
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We conclude this section by writing out the solution P, which is the same for both

the fixed arc and the varying arc cases:

Wz 0 L i Z)1/4 0
Py v [ ho—h| 10
0 VV(Z)_1 _\/Li % 0 f(z)_1/4
2mn 0 W(z) " "b(2) /2" 0
) v | VTV )
R 0 W) (2)v/z

3.4.5 Invertibility of P

It is clear from (3.4.21]) that det P = det ¥, (n?f). To evaluate det ¥, (n?f), we use
Liouville’s theorem. We have that det ¥, () is analytic on C\ Yg. Each jump matrix for
W, has for determinant 1, implying that (det ¥, (¢)), = (det ¥o(())_ across Xg ;, ¥g ,, and

Y% 3- That is, det W, () is analytic in C\ {0}. Moreover, as ¢ tends to the origin,

O(I¢P), a<O,

det U, (¢) = O (log[¢]), a=0,

O(1), for a > 0, as ¢ — 0 with |arg(| < ©,

| O(I¢]7?¥), fora>0, as ¢ — 0 with © < |arg(| <.

Hence det ¥, (¢) has a removable singularity at 0 and it is therefore entire. Finally, using

(3.4.11)), we observe that det ¥, (c0) = 1, so that det ¥, ({) = 1.

3.4.6 Riemann-Hilbert problem for P

This subsection will only treat the case of a fixed arc, since the treatment for a varying
arc mirrors that just done above for P.

We now seek to find P solving the following Riemann-Hilbert problem:
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P1 P(z) is analytic U; \ T’ and continuous in {z : |z — e | < §} \ T.

P2 P has the same jumps as S on I'° N U, that is,

P(t) = P_(t) , teUsn (7 UnR),

P3 On the boundary of Us, we have that as n — oo,

. 1 .
P(z)N"'(2)=1+0 (ﬁ) ., uniformly for z € 0Us \ T

P4 As z — e,

1 |z—e %%

1 |z—e %28

log |z — e7™| log |z — e 0|

0 , B=0,
. log |z — 7| log |z — e 0|
P(z) =
11
@) : B>0, z€0,
11

|z — e=%0|728 1
0] , B>0, z€ O UOp.
|z —e=%0|72 1

Let us define

Wp(2) == exp {3/2 [2log(z — e ™) —log z + (7 + 0p)i] } (3.4.22)
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Figure 3.7: Domain of Wj(z)

for € C\ ({e:0<6<2m—6}U[0,00)), with log(z — €) and log z the branches of
the logarithm in

C\({e”:0<0<2r -6} U[0,00))

corresponding to arg(—1 + isin(—#y) — e~%) = —7 and arg(—1) = 7, respectively. Let us
also set

W (z) = wa(2)"/*Wp(2)h(2)'.

As we verify in Section [5.15] we have

W) = w(z)e?™ |zl < 1, 2 € [0, 00),

w(z)e ™, [z > 1, 2 ¢ [0,00),

and

WL (OW_(t) =w(t), teUsn~° (3.4.23)
The analogue of Lemma is then the following.

Lemma 3.4.3. Let o be a closed contour in U going around the arc v in the positive direction
and leaving every point z € 55 \ v inside. For the case of a varying arc, let o be a cycle
consisting of two circles centered at the origin, one negatively oriented and contained in

Un{z:|z| <1}, the other positively oriented and contained in U N{z : |z| > 1}, and such
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that 55 is contained in the annulus bounded by these two circles.For z € Uy \ 7, we have

W2 (o)) e
- (12) @@G@E}Mze >>

n=0

with d,, given by (1.3.3). In particular,

=1+4+0(|z—e M2, asz— e,

Y

0 W (=) (2)v/z "

where En(z) is an arbitrary, invertible analytic matrix in Us. P satisfies the following

RHP:
PM1 PM)(z) is analytic Us \ I and continuous in {z : [z — e ™| < §} \ T

PW2 PO satisfies the following jump relations:

N B 1 0 N
POty = PY(1) . telUs;nAs,
672[3m' 1

. . 0 1 .

P (1) = PU(t) . telyny,
~1 0

A1) 5(1) 1 -,
6267ri 1
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PM3 As z — e P0)(2) has the following behavior for z € Us \ I':

|z — e7|F |z — 708
) : B <0,

|z — e ®0|F |z — g7i0|P

log |z — e~ log|z — e¥0
| I

log |z — e ™| log|z — e 0|

|z — 7|8 |z — e=%0| 8 .
O , >0, asz— e €O,
|z — 7|8 |z — e=0| P

|z — 70|78 |z — g~i0| B ,
@] ., >0 asz—= e zecOpUOg.
|z — e |78 |z — 70| P

The function f(z) as defined in (3.4.3]) satisfies that f(z) = f(%Z), so that f(z) con-
formally maps N Uy into (—oo,0], {z : 2| > 1} N Us into C_, and {z : |z| < 1} N U into

C,. Consequently,
V)= 12w, ) = —if), ey’ n U (3.4.24)

We now use the mapping ¢ = n%f(z) to transfer the RHP for PM in Us onto a
neighborhood of 0 in the ¢ plane on the contour Zg that is the union of the three infinite
rays —Xe1, —2ez2, and —Xg 3. Here, —¥Xg ; denotes the ray g as defined in but
with reverse orientation, that is, departing from the origin. This leads us to the following

RHP:

U1 ¥ is analytic in C \ Ze.
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U2 U satisfies the jump relations

- - 1 0

T (1) = T_(1) e
e2Bmi ’

- - 0 1

b, (1) =T_(t) L tEe-%Y,,
-1 0

- - 1 0

(1) = (1) . te-xo,
6—2,871'2' 1

U3 As ¢ — 0, ¥ behaves exactly as ¥ with « replaced by 3.

As shown in [20], see Section for details, a solution to this RHP is given by

1 0 1 0
W(C) 7
0 —1 0 -1
10
where conjugation by the Pauli matrix corrects the reversal of the contours.
0 —1
Then
. 1 0 10
PW(z) = Us(n’f(2))
0 —1 0 -1

0 —1 0 —1 0 W ()" (2)y/z "
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satisfies P1, P2, and P4. We now find E,, so that P3 is also satisfied. As above, we use the

asymptotic expansion of ¥z for large ¢ to obtain

1 —1/4
Ble) = B.(2) 1 0 — 0 f(2) 0
0 -1 0 2mn 0 f(z)1/4
1 [1+0(%) i+0(2)) (W)t o0 1 0
V2 ito@) 1+0(}) 0 W) \o -1

uniformly for z € dU; \ T’ as n — oo. Since we want to have P(2)N~'(z) = I + O (

uniformly for z € Us \ T', we now choose

v

~

1
V2

(3.4.25)

T -1 : 1/4 1
0 W(z) iv/mnf(z) NG
With this matrix En we then have
. W(z) 0 W(z)™" 0
P(z) = N(z) i (I +0(1/n)) i :
0 W(z)! 0 W(z)
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and it is clear that this P complies with the condition P3. We verify that the matrix E, is

analytic in Us. Using the condition N2 satisfied by the matrix N(z) and (3.4.23)), we get

W (t) 0 W_(t) 0 0 1 5
N+(t) B :N_(t) _ 5 tE’}/OﬂU(g
0 Wy 0o w_®*t)\-10

(3.4.26)

Baw=np|" O 0 1) [ vafsO" s
n+ it ~
0 W_(t)_l -1 0 i\/ﬂnf+(t)1/4 gmf{r(t)l/zl

=FE,_(1).

This proves that £, is analytic in Us \ {e"%}. Using Lemma we readily see

that E, is analytic at e~®. Then, our solution P is chosen to be

Vi 1 i 2)1/4 ™
Py =N |0 i ovi| [ 0 2 0
0 W&\ )\ 0 fET 0 g
1 0 1 0 W(z)""W(2) "/ 0
) ) ) ()9 V" _
0 —1 0 —1 0 W ()™ (2)y/z "

3.5 Transformation S — R

We now construct I’ in a convenient way. Given a sufficiently small § and an angle

© € (7/2,7), let 250 and nse be the unique points of OU; such that

f(z50) € Xo1, [f(nse) € Xogs.
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Then, their conjugates Z5;e and 7; ¢ are the unique points of dU; such that

[(Zse) € Xos, f(se) € Lo,

Let us define

o ={2€Us: f(z) € Bo 1} U{z € Us f(z) € Zos},

Jr={z€Us: f(z) € Los}U{z € Us : f(z) € Zoal,
and the clockwise oriented circular arcs

A1 = {|zsele” s arg z0 < 0 < 21 — arg z50 ),

Vg = {|nsele” : argmso < 0 < 21 — argnse}-

We take
Yo=YV, YR =YrRU R
and, as previously defined,

I'=Tsp=7vUvUn"g,

see Figure [3.8]

We now perform the final transformation, namely,

S(z)N"Y(z), zeC\ (T;UU;UT),
R(2) = Rse(2) = S(z)P~'(2), zeUs\T, (3.5.1)
S(z)P~Y(z), zeUs\T.

By construction, the jumps of S and N across v\ (UsUUs) are the same, so R has an analytic
continuation there. Since the jumps of S and P on Us NI are the same, R is analytic across

Us NT°, and similarly, R is also analytic across Us N T°. This leaves R analytic on C \ T,
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Figure 3.8: Contour I' =I'5 ¢

except for possible isolated singularities at e* where
f - f‘(;’@ = 6U5 U 805 U ’A}/L U ’A}/R,

see Figure [3.9]

We now check that R is analytic at the point €, and by completely analogous

arguments that we omit, it will follow that R is analytic at the point e~ as well.
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dUs

Figure 3.9: Contour I’ = f‘57@

Since det(P) = 1, we get from (3.4.1)) that as z — €',

(
|Z _ ei90|20c |Z _ 67;90’204

o) , a <0,
1 1

log |z — €| log |z — €|

@) . A , a=0,
log |z — €| log |z — €|

0 ; a>0, z€0,

1 1

|Z _ 6i90|720¢ |Z o 6i90|720¢
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Then, since R = SP~! in Us, it follows from (3.2.3) and (3.5.2) that as z — e,

(
’Z _ ei@o’Qa ’Z _ 6200’20(
O , a <0,

|Z _ 6i90|20{ |Z . e’i@o|20¢

log |z — %] log |z — €|

@) , a=20,
log |z — €| log |z — ']
11
@) , a>0, z€0,
11
|Z _ 6i00|72a |Z o 6i90|720¢
O , a>0, z€ O, UQOg.

|z — ei90|—2a |z — ei@g‘—Qa

Since 2a > —1, it clearly follows from that if a < 0, then the singularity that R has
at € is removable. If a > 0, and m is any integer with m > 2a, then (z — ¢ )™ R(2)
has a removable singularity at ¢, and so R has no worse than a pole at that point, but
since R remains bounded as z — €% with z € O, we conclude that the singularity has to be
removable.

It follows that R = Rse is a solution to the following Riemann-Hilbert problem:

R1 Risanalytic for z € C\f and has continuous boundary values on I from each component

of C\T.

R2 For t € I'°, R, (t) = R_(t)V (t) with

N F v, respug
-1 n —2n
vit) = w ()t~ 1
P()NTY(1), t € aU;,
P)N~L(1), t € OU;.
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We now make an important observation, for which it is convenient to count with the

following notation. We will write
AcCcB N M<<N
if A and B are domains in C with A C B, and if M is an analytic matrix defined on

A whose analytic continuation to B is given by V.

Remark 3.5.1. Since f is an angle preserving map, for any fixed ©y € (7/2,7) we
can find a small enough d; > 0 such that for all © and § with Oy < © < 7 and
0 <9 < dp, the contour f‘57@ divides the complex plane in four open components Us,
Ug, 5.0, and G; e, with ()5 denoting the unbounded component, see Figure . Let
Rs.e be defined by , and let ¢’ and © be such that 0 < §’ < dp, and Oy < O < 7.
Then, by definition (3.5.1]) (see also Remark , we have

Q(;’@ C Qgg@/ VAN R(s,@ << R(s/,@/ if 9 < 5, O < @,,

G&@ C G(;/,@/ A R&@ << R5/7@/ if 9 < 5, o > @/,
Us CcUs A R(;/,@/ << R(;,@ if 9 < 0,
05/ C U(s N Ryeo << Rse if & < 6.

This shows that R as defined in (3.5.1]) admits an analytic continuation from and across

the boundary of any of the components of C \ I.

The following corollary for a fixed arc is an immediate consequence of the discussion

in Remark 3.5.11

Corollary 3.5.2. Let 0y be fized. There exist numbers m/2 < ©g < 01 < m, 0 < §y < 6y,
and a constant M > 0, such that for the solution Rse(z) of the RHP R1-R3 we have the
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uniform bound
[Rso(z)| <M, 2€C\Ilse, <3<, 6)<O <0

We are now going to fix angles 7/2 < ©y < ©; < 7 and numbers 0 < py < p; < 1
such that, as we had in Remark [3.5.1] for all © and p with ©p < © < ©1 and py < p < p1,
the contour f&@, with 0 = pfy divides the complex plane in four open components. We also
write

do = pobo, 01 = p1bo.

If 0y is fixed, by (2.2.4]) and the maximum principle for analytic functions, there exists

some A > 0 such that for all n > 0,

n

<e™ telse\ (OU;UAU;), 6y <d<d, Op<O <0,

»(t)?

Since 1/w is bounded in U, c.f. (3.2.1)), we then have

1 0 1 Ni1Nay — NioNoy + Oe™") O(e=*)
N Nt =
e L O(e™) Ni1Nay — Ni3Noy + O(e™")

det N + O(e ") O(e™")
O(e=) det N + O(e™")

=I+0(e™) (3.5.4)

uniformly, as n — oo, for t € Ise \ (9Us UdUs), dy < § < 6y, O < © < Oy,
This observation, together with (3.4.16)), implies that as n — oo,

R.(t) = R_(t) (I+ 9, (1» , telse,

n

uniformly for dg < § < 61, Oy < O < O.
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When 6, is allowed to vary in (0,7 — €], we have to be more careful. If ¢ € f(;,@ \
(8U5 U 805), then

’t| 2 1 +71/00907 ‘t| > ]-7

and

|t’ S 1-— 7—2)01907 |t| < 17

for some positive constants 71, 75 independent of 6y, p, and ©. Since |t/¢(t)] < 1 for t & =,

we have that for || > 1,

< ! < — < ;7
[W@) ™~ [t T |1+ Tpobo|”

‘1#(2)2

67

Combining these two last estimates with the series

while for |t] < 1,

n

< " <1 = 7mp16o]™.

22 28

log(1 — L Lz
og(l+2z2)==z2 2—|—3 ,

we find that if p; is chosen sufficiently small, then we can find some universal constant A > 0

such that for all 6y € (0,7 — €], Oy < O < Oy, py < p < p1, and with 6 = pby,

n

< 67)‘”90, te f‘&@ \ (8U5 U 805)

»(t)?

Just as we argued for the fixed arc case, this implies that

1 0
N N7t =1+ 0O(e %) (3.5.5)

tn
w1
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uniformly for z € Ise \ (8Us U 8U5) as nfy — oo. This together with (3.4.17) implies that

as nfy — oo, and with § = pb,

R.(t) = R_(1) (I+ 0 (L)) , teTlse,

n@o

uniformly for 6y € (0,7 — €], Og < © < Oy, po < p < p1.

3.5.1 Asymptotic expansion of R

Following [§8], in order to obtain the asymptotic expansion of R(z), we first give

estimates for the jump matrix V(¢), for t € I'. Define

By (5.4)-(F53), we have
A1) < e, IA(t)| < e, (3.5.6)
uniformly for ¢ € f‘(;,@ \ (QUs U 8[75) as n — 00, ny — 0o, in the fixed and varying arc cases,

respectively.

Proposition 3.5.3. There exist /2 < Oy < ©1 < 7 and 0 < py < p1 < 1 such that with

0 = pby, the matrix A has an asymptotic expansion on IA“57@ of the following form:

i. If Oy is fixed, then

Alt)~> A’f(t), telse, (3.5.7)

00
nk
k=1
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uniformly in the parameters 6 and © as n — oo. This means that for every integer

K >0, there is a constant Ci such that for alln > 1, p € (po, p1) and © € (O, 1),

K

Ag(t) Ck .
A(t)—z 2 < KT tGF(;,@.
k=1
1. If Oy s allowed to vary, then
L OEAL(T) .
Alt) ~ E)an;k . telse, (3.5.8)

k=1

uniformly, as nfy — oo, for 0y € (0,7 — €], p € (po, p1) and © € (O, O1).

The functions Ay in (3.5.7) and (3.5.8) are one and the same.

Proof. We will prove only part i. corresponding to a fixed arc, since the proof for a varying

arc follows with the help of (3.4.6) along the same lines. By (3.5.4]), Ax(¢t) = 0 for all ¢ in
the outer lips ﬁ;,@ \ (OUs U 8(75). For t € 0Uy, using again (9.7.1)-(9.7.4) in [1], we find that

the asymptotic expansion

w(t) 0 = ©Qak—1) [ FLMUa2+E L) ik 1)
~ N{(t Rk —1)
N0 won 2B 0 (1M k— )i Lda?+E- 1)
X W™ o N(t)™!
0 W@

holds uniformly on Uy, 6 = pby, p € (po, p1). Here (o,0) = 1 and

2 _ 2_0)... 2 _ —_ 1)2
(lo? ~1)(d0? =9)- - (4> = 2k = 1)) |
22|

(057 k) =
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That is, for t € 0Us,

W) 0 @uk-1) (Sl +E-1)  —i(k—1)
AL(t) = N(t S
B N ALl W T TR
X W™ o N@t)™
0 W)
(3.5.9)
Similarly, we find that for ¢ € dUj,
1974 0 _ (—1)’“42 k1 il — 1
Ag(t) = N(t) Q ) éi(ﬁ}é))kl/z st - kg
0 W)™ (D" k =3 @B +5-7)
X W™ ~O N(@t)™
0 W@
(3.5.10)
O

We now notice that the expressions defining Ay, are analytic in (Us U Us) \ 7. We can

actually say more.

Lemma 3.5.4. For each k > 1 and 6 € (0,d1), the restrictions Ay and Ay

- have
|U6\’Y

meromorphic continuations to Us and Us, respectively, whose only pole is of order at most

‘Ua\’v

(k+1)/2 and located at e*".

Proof. We consider the restriction A Us\y By definition, Ay is analytic in Us\y. By ({3.4.5)),

(fo () = (=1)* (f_(t))** for t € Us N ~°. Using (3.4.18) and its inverse counterpart, we
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see that for t € 7,

wW.t)™t 0 0 -1\ [(w_®)*t o

and so

W_(t) 0 (20, k — 1) (—1) 0 1
0 W_(t)fl Qk(f—(t))kﬂ -1 0

B Wm0 | Qak-1), L, [HelE-d) (CDFE - D)
o )2’“<f(t)>k/2( g =) a2k

Hence Ay, is analytic across Us N °. Near the pole €, we recall (3.4.19) and that f has a

simple zero at €' so that as z — €%,

]Z o eiﬁo’—l/él |Z o 61‘90|—1/4 ‘Z o ei@g‘—k/Z ]Z o ewO]"W
|Z _ e2'90|—1/4 |Z _ 6z’6’0l—1/4 |Z _ 6z‘00|—k/2 |Z _ 6190|—k/2
|Z o ei90|—1/4 ‘Z - 6i90‘_1/4
x O
|z o €i00|71/4 |z _ €i90|,1/4
|Z _ ez‘€0|—1/2—1c/2 |Z _ ez‘@o|—1/2—k/2
=0
|z _ 6i60|—1/2—k/2 |z _ ei90|—1/2—k/2
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Figure 3.10: Splitting [ into six contours

The statement for Ay is proven analogously. O

|U§\7

Lemma 3.5.5. For the matriz R defined by (3.5.1)) and satisfying the RHP R1-R3, we have

the representation

R(z)—1= 2%@ A Wdt, zeC\T. (3.5.11)

Proof. The contour I divides C in four components, Uy, Uy, Q = (50, and G = (50, where
2 denotes the unbounded component. We consider the matrix R(z) — I in each component
and split [ into the six paths fl, fg, e ,fﬁ defined via Figure m

For z € G, we have by Cauchy’s integral formula,

me-t=ge ([ ) e g [ S

Moreover, by Cauchy’s theorem, we have that for z € G,

(o) FEumom (e ) 5o
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Figure 3.11: Components of C \ I.

and after deforming to infinity and using that R(z) — I = O (1), we also have that

</r /p3 /p() t—z d—/m%dt:o,

Hence for z € G,

R(z)— 1= //F//F// (R.(t) t—iR(t)_I)dt

T Iy

1 /R(t)A(t) »

21 t— =z

where we have used that by definition A :=V — I, and so

Similar arguments hold for z € Us and z € Us.
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Since R(z)—1 = O(1/z) as z — oo, we get from Cauchy’s integral formula for simply

connected neighborhoods of infinity that for z € 2,

1 R (t)—1 1 / R (t)—1
—I=— ——dt — — ———dt.
R(z) 2mi (/1“6 +/f1 +/f3) t—=z dt 2w Jp, t—2z dat

We again note that, by Cauchy’s theorem, the integrals over the remaining Jordan contours

vanish, and we have

(o o [ f) e
([ <[ +]) Rzt 1 no-,

211 I t—=z
1 _
_ _/ R <t)A(t)dt
2 Jp t—2z

O
By Proposition and Lemma [3.5.4] and (3.5.6]), we have for a fixed arc,
1A oo ovsu00,) = O(n™"), AN oo ovs0005)) = O(e "), (3.5.12)
while for a varying arc
HAHLOO(BU(;UBU(;) = O((HQO)_l)a HAHLoo(f\(aUéuaUJ)) = O(B_MQO)- (3.5.13)

We now consider the bounded linear operator

C_ : Ly([; C*2) — Ly(T; C*?)
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given by

C () = tim — [ L4

z=t— 21 Jp (— 2

, tel?, feLy(I;C),

whose norm remains uniformly bounded as [ varies, see e.g., Appendix A of [7]. We also
consider the operator

Ch : Lg(f; (CQ"Q) — Lg(f; C2x2)

defined as

Ca(f) == C_(fA),  fe Ly([;C*?).

By (3.5.12)-(3.5.13), Ca is a bounded linear operator from C?*? onto itself with operator

norm

O(1/n), 0y fixed,
ICall = (3.5.14)

O ((nby)~"), 6 varying,

so that for n large enough, we can invert 1 — Ca via the Neumann series

(11— Ca)” ZCA,

uniformly in the respective parameters. Here 1 denotes the identity operator.

We now use
ji= (1= Ca)(C-(A)

to construct an explicit expression for R. Note that y remains uniformly bounded on I as

[ varies with .
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Lemma 3.5.6. If R is a solution of the Riemann-Hilbert problem R1-R3, then R is unique

and given by

R=1+C(A+pA).

Proof. Taking limiting values in (3.5.11)) we get

R_—1=Ca(R.),

or equivalently,

R_—1—Cx(R_—1I)=C_(A).

Acting on both sides by (1 — CA)™! and rearranging terms, we get

R =1+ 1 —Ca) " (C_(A)=1+p.

Plugging (3.5.15)) into (3.5.11]) completes the proof.

Corollary 3.5.7. For the case of a varying arc, we have

OoR(z) =O0(1), z€C\TIse, 0= pby,

uniformly for 6y € (0,7 — €|, p € (po, p1) and © € (Oy, O1).

(3.5.15)

Proof. By increasing py and ©p, and decreasing p; and ©Oq, if necessary, we may assume

that for some small ¢ > 0, the estimates (3.5.13)) are true uniformly for 6, € (0,7 — €,

pE(pp—e,p1+e)and © € (O —¢,0; + €). Hence, and by Remark [3.5.1, we can find a

small 7 > 0 such that for every p € (po,p1), © € (©9,01), and z € C\ T'se with § = pfy,
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there is p' € (pg —e,p1 +¢) and © € (Og —¢,0; + ) with
d(Z, far’@/> > 7'60, R(;,@(z) = Rgg@/(Z),
where ' = p'6y. By Lemma we then have

R < 60l + 5 [ 1A+ nd)(s)dsl

F(;/’(_)/

with the absolute value understood in an entrywise sense, and the corollary follows in view

of (3.5.13). O

Proposition 3.5.8. The matriz R has an asymptotic expansion on C\ (0Us U 8U5) of the

following form:

1. If Oy is fixed, then

— R
R(z) ~ I+ Z ZECZ) as n — oo, (3.5.16)
k=1

with each Ry (z) analytic for z € C\ (8Us U dUs) and

This expansion is uniform for z € C\ (0Us U oUj).

1. When 0y is allowed to vary, there exist 0 < py < p1 < 1 such that with 6 = pfy,

0)*

R(z)~[+i (nBo" z € C\ (0Us UdU;), (3.5.17)

uniformly for 0y € (0,7 — €| and p € (po, p1) as nby — 0o with

In 90 0

li =
im n@o
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The functions Ry in (3.5.16|) and (3.5.17) are one and the same.

Proof. We will only prove part ii. since part i. is, in fact, a corollary of part ii. It will
be sufficient to show that there are py, p1, and € such that for all p € (po — €,p1 + €),
© € (0yg—¢,01+¢), and 7 > 0, the matrix R = Rse with 0 = pfy, has an expansion of the

form

9R
Rso(z ~I~|—Z rf;k
0

uniformly on {z € C : d(z,T56) > 76y}. For suppose this is the case. Then, by Remark
3.5.1| (see also the proof of Corollary , there exists a small 7 > 0 with the property
that for every p € (pp,p1) and O any of the four components of C \ I'se, we can find
pe (po—¢e,p1+¢)and © € (Og —¢,0; + ¢) such that with &' = p'6y, we have that
0 c C\ f‘y,@/, d(o, f‘(;/’@/) > 76y, and the solutions Rse and Ry o coincide on O. By

assumption, we have an expansion

on O. Since the expansion is, if it exists, unique, it follows that Ry e 1(2) = Rsex(2) for all
z€Oand k> 1.
Then, for [ € N, define Sj(t) to be the partial sum of A containing the first [ terms.

That is,

l
Q’SAk
=2 (nd

k=1
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Let C denote the Cauchy transform taken over I, and define

Cs,(f) == C_(fS), feL*D),

p= Y (Cs ) (C(S).

J=0

rp=1+ C(Sl + ,ulSl).

Notice that since S; = 0 on I'\ (OU; U 8Us), r(z) is analytic for z € C\ (8U; U dUs). Let C
denote the Cauchy transform taken over OUs U dUs. By Lemma [3.5.6, we have

1R —nll = [l + C(A+ pd) = (I + C(S + mS)) ||
<[IC(A + pA) = C(A + pA) ||+ [C(A + pA) = C(S; + S|

= |C(A + pA) — C(A + pA)|| + [|CA + uA — S; — S| (3.5.18)

We examine the first term in the sum on the right hand side of (3.5.18]). Using (3.5.15|), we

have

A(s) + u(s)A(s)

s —Z

ds.

~ 1
I'Mully

By (3.5.6)), it then follows that
IC(A + ) — C(A + p) | = OB e~

uniformly for {z € C: d(z,T) > 76} as nby — oco.

If we now use that nfy — oo in such a way that
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1 —nbo— _2
then for n#, large enough, we have —% < %, so that g le ™l = e=Anbo—Inbo - =35m0

Therefore, for the first term we have
IC(A + pA) = C(A + pA)|| = O(e™2").
Now we examine the second term in (3.5.18]), which is the norm of the function matrix

C’(A—FMA—SI—MSI):L/ ) Mds
oUsUOUg S

2mi -z (3.5.19)
L[ s u0),, -
27‘-7’ 8U5U60§ §—=z
By Proposition [3.5.3] we have
1
1A = S| ooy = O (b)) (3.5.20)
which yields
< A L
1Ca = Cs |l < [[C-[1A = Sill 2y = O o))

and since ||Ca|| = O (1/(nby)), see (3.5.14]), we also have

1
ICs |l < [Call + [|Ca — Cg | = O ( ) |

nby

In particular, I — Cy, is invertible for all n sufficiently large, and

I —=Cs) <D ICsI"=001).,  [I(L-Ca)~| =00

n=0

as nfy — oo.

7



From the definition of y;, we also find

l
, 1
il < IC- NSy SN =0 () (3521

Jj=0

Finally, we estimate the L?-norm of j — p;. Since

po—pm=(1—-Ca)(C- ZC& -
= (1= Ca)™" = (1= Cg) ") (C-A) + Y (Cs,)'(C-5))

j=l+1

and

11— Ca)™ = (= Cs) 7' = (L = Ca) " (Ca = Cs,)(L = Cs,) '

< (1= Ca)HIIICa = Cs || (1 = Cs,) 7|
1
=0 ((neo)l“) ’

it follows that

1 1
b= ity < O (g ) +IC- Sty D 105l =0 (s )

J=l+1

Combining this with (3.5.21]) and (3.5.20) we get

1A = Sl ey < Ml = pull oy NAN Loy + el ooy 1A = Sill p2sy

o (W) | (3.5.22)

Then, from (3.5.19)), (3.5.20)), and (3.5.22)), we deduce that

~ 1
1018+ 0 = 51 = Sl = O (i
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uniformly for {z € C: d(z,T") > 76} as n — co. Thus, we have proven that

Now, writing

we have

(C4,,C4,, - Ca,. (1)

J+1
(ngo)k1+k2+"'+kj+1 !

and so

R=r+0 <W) =1+ C(S(1+m))+ (W)

C(A (Cs,,Ca,,  Ca,,

(neo)kl +kot-4kjto

()

+

(s

§=0 \ki=lko=1  kj4o=1

Hence for every [ > 1,

C(Ar (C3,,Ca,, - C3, (1)

J
(nfg)F1+he++k; )

l
Ri=) 2
7=1 1§k‘1,k2,...,k‘j§l+lfj
o1+ -k =1

79



completing the proof. Notice that

C(Akl (CA;C2 CAIC3 T CAkJ ) (1))
(nfg)kr+eat+k;

R = (nfo)' )

1<ky ka,....k;
E1tkotetk=l

cA . S 1 ol a C_(Ak(Ca,, -+ Ca, )(1))
= )+ (0 3 rosmC [ B > s
k=1 1<ko, .. k;
kot thy=l—k;
~ -1
=C(A) + ZC (Ak<lek)f>
k=1

Since Ay, = 0% Ay, this formula for R; remains valid in the case of a fixed arc, provided

that we replace Ay, by Ay, that is,

-1

Ri=C(A)+ > C(A(Rig)-).

k=1

3.6 Series expansions

In this section we derive several series expansions that will be needed for the deter-
mination of the functions Rj. The series hold for fixed 6y, but not uniformly as 6, varies.
The needed uniform estimates will be given in the next section.

If we choose the branch of (z — €i%)*¥/4 in C\ {ri:r < sinf} corresponding to

’ 3
—g < arg(z — ) < g,
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then for |z — €| < 2sin 6,

T 1/4
¢ 190 1/4 ( ) 0o\ k
a(z) = ———==(2 — (2 — e")",
(=) Vv/2sin 00( Z (20 sin 0y)* il )
e (3.6.1)
1 _ QT 4/ i60\—1/4 k 00\
CL(Z) =e8 2811160(2—6 0) £ W(z—e 0) y
and if we choose the branch of (z — e™)*/4 in C\ {ri : —sinfy < r} corresponding to

3 ‘
—; < arg(z —e ) < g,

then for |z — e~ | < 2sin 6,

_ il 4 : __—ifg\—1/4 - (11{;4)(_1)k _ itk
a(z) = e "s4/2sinby(z — e ") Z—( L (z —e )",

— 2isin fp)*
i 00 1/4 k
-1__ €°® _—ifp\1/4 ( k )< 1) bk
)= ) ; Risnggr © )

The expansion

U(z) _z- eifo 4 2¢etf/2 4 \/(z — ei)(z — eio) (- i 61,90)71/2

vz 2c
z—d% =)z =)\ (T e o)k
= (1 - 2ceifo/2 * 2ceifo/2 g ( k )e e
0,
2\ _—iké 00\ k
:14—2(;)6 °(z — ") (3.6.2)

1 — (5 —i :
+ 2ceit0/2 (Z ( /i )e keo(z —€ 90)k>

S} 1/2
X (Z_ 6190 +e”r/4\/m _ 7,90 /22 2181112 _ 6190)k>
O

0

81



is valid for {2 : |z — €| < 2sinfp} \ 7, provided that the branch of (z —

cut along v U {ri : r < —sinfp} is chosen so as to have
arg(ri — %) = 7/2, r > sin 6.

In particular, we have

—i0p ) —2i6p
w(2>:1_6 (2_6100)+3€
Nz ) g

e—’i@o 36—2i90

+ e—i@o/? (1 _ 5 (Z _ ei@o) + 2 (Z _ 6i90)2>

(Z . ei00)2 + O(Z o 6i90)3

%)1/2 in the plane

: : 1 : '™/ /tan(fy /2 :
> (em/4 tan(90/2)(z . 6190)1/2 + Q_C(Z _ 6190) . e an( 0/ >(Z _ 6190)3/2

4 sin 90

32sin? 6,

Collecting similar terms and simplifying the coefficients yields

Y(2) — 14 /4y /tan(6,/2) (2 — )12 4 ie~"™ tan(fy/2) (2 — e)

vz ci00/2 9

ot /4 ,—5i00/2  / —216 ;
+ e / e 0/ tan(90/2) (Z _ 6i00)3/2 + e 2 0(1 - 22 tan(QD/Q))(Z . ei00>2

4 sin 6y 8
im/4 —5i00/2 —240
N eim/4e—5ib0/ \/tan.(ﬁg/Q)(Zl—?)e O)(z—ei9°)5/2+0(2
32 sin” 6,

For |z|] < 1, we know that

logz—(z—l)—(2_21)2+(Z;1>3_...
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So for |1(2)/y/z — 1| < 1, we have

() () () () -6
(K\/? — 1)5 + O(z — €5

1
5
and

I C R R R R G

+ O(z — €0)S.

(3.6.4)

These last two expansions together with (3.6.3)) give that as z — e,

Y

J(z) = glog’ (d}w(?) = ) 4 B e o 0 = o

1
F()2 = 2 log @(;)) - eiﬂ/4e_i90/22 2] . eoopse g 0 — ey

2
9p—im/4 i0/2

_ei0)=1/2 | Oy — ¢if0)1/2.
tan(6y/2) ) ( )

flz)7? =

Since ¥(z) = f(z) and f(Z) = f(z), we immediately get that as z — e,
—jetto ) , 2i00 1 o2 9 ' '
f(2) = ie tznwo/ >(z _ i) 4 e tail2(90/ )(z _ )2 4 Oz — e i%0)3,

)12 = 3o (%?) B ewemz R/ (. — 02 4Oz — ey

iw/4 ,—i0p/2
floyvr = e
tan(6y/2)

o e—i00>—1/2 + O(z _ e—i90)1/2'
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3.7 Uniform estimates

Writing 2z = e + psin(6y/2)e, 0 < t < 27, we get from (3.6.2) that uniformly in

O0<bgp<m—eand 0<p<1

V(z) ] e™/4\/2sin O,

N S (Psin(fo/2)e") % + O(p).

Combining this with (3.6.4)), we see that there exists 0 < p; < 1 such that uniformly in
0<bg<m—eand 0<p<p

ie’t=%) sin?(0y/2)p

> (1+0(p)). (3.7.1)

f(z) =
Similarly, it follows from that
a(z) = 0(p""), a(z)"' =0(p™"), (3.7.2)
uniformly in 0 < 8y <7 —¢€, 0 < p < py, and z in the set
{2 posin(60/2) < |2 — €| < pysin(6/2)} \T.

3.7.1 Determination of Ry

It suffices to treat only the case of 6y fixed. At the end of the proof of Proposition

[3.5.8 we found the recursive formula
E—1

Ry =C(Ap) + Y C(A;(Riy)-). (3.7.3)

j=1
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In particular, we have

Ri(z) =C(A)) = LAU Auft)dt + L /{)U Al(t)dt. (3.7.4)

271 t—z 271 t—z

By Lemma |3.5.4] we have

e , B ,
Ai(z) = o T O(1), asz—e® Aj(z)=——+0(), asz—>e

where A and B® are the constant matrices

A0 — ce®/2(16a2 — 1) [ D(c0) 0 -1 4| [ D()™ 0
4 0 Do)y ')\ i 1 0 D(0)
and
B _ ce~i00/2(1642 — 1) [ D(0) 0 -1 —i D(o0)™! 0
4 0 Do) ') =i 1 0 D(oo)

that we compute using the expansions involving the functions f(z) found in Section , the
expansion for W (z)/D(z) and its inverse (see ((5.15.3))), together with the expansions for g(z)
and a(z) for z € Us.

By the residue theorem, we immediately get

A BW I
Z—eieo_'_,z_@*i@o’ ZEC\(U5UU5>7
Fulz) = AW B (3.7.5)

—Ay(z), ze€eUsU Us.

7 — ei@g + - 671‘90
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3.7.2 Determination of R,

Using the recursive relation (3.7.3)), we have

Ro(2) = C(Ag + Ri_A,)
1 / Au(t) £ Ri-(DA- ()t | 1 A(t) + Ri_(H) A _(t)dt
U5

2mi t—=z 21 J o, t—=z

We can find constant matrices A®, B® such that

A®@) A

Ri(2)A1(2) + Aq(2) = Py +0(1), asz— e,
B®) 0

Ry(2)A1(2) + Ag(z) = po—— O(1), asz—e ™

so that once again from the residue theorem we get

A® B®@ -
z—ei90+z—e—i90’ ZGC\<U5UU§)’
Ra(2) = A®) B® (3.7.6)

— Ri(2)A1(2) — Ay(2), ze€UsUUs.

z — eto + z — e~ o

Using two terms in each of the expansions used above and with the aid of Mathematica, we

compute
2@ _ (160” —1) cot(6,/2) D(c0) 0 iAs(, Byco)  Bala, B, co)
20 0 D(OO)_l 02(0475’60) _iD2<O‘aﬁch)
D(c0)™ 0
X )
0 D(c0)
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with

Agla, B, co) =8 + 21e — 1288% + 11207 + (a + B)e/210i sin(6y/2) + 20icy sin(y)e™™,
Byla, B, co) =8+ 12¢% — 1285% 4 12802 + (a + 3)e/210i sin(6y/2) + 20icy sin(y)e™,
Cy(a, B, co) = — 8 — 12 412842 — 128%™ + (o + B)e'™/210i sin(0y/2) + 20icy sin(fy)e™,

Dy(a, B,¢) = — 8 — 21 + 12837 — 11202 + (o + £)e®/210i sin(Ay/2) + 20icq sin(6y)e',

and ¢y defined in ((1.3.2)). Similarly, we find

B(2):(1652_1)00t(90/2) D(e0) 0 —iAs(B, . do)  Ba(B, v, do)
256 0 Do)yt) \ GBande) iDa(Ba,do)
D(c0)™ 0
X )
0 D(0)

with dy defined in ((1.3.3)).
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Chapter 4 PROOFS OF THE ASYMPTOTIC RESULTS

4.1 Proof of Theorems|1.3.1jand [1.4.1

Given a compact set K C C\~, we may open the lens about v and pick neighborhoods
Us and Us in such a way as to leave K in the exterior of I. Then, reversing the steepest

descent process we find that for z € K,

c* 0 z)" 0
V() - RGN G) [ |
0 ¢ 0 Yz)™
where
D(oc0 0 A(2) Az D)™t 0
iy [P @) As)| (D)
0 D(oo)*l —A12(Z) All(Z) 0 D(Z)
and
All(z) _ a(z) +2a (Z)7 A12(z) _ CL(Z) —2261 (Z)
Hence,
Y _ Y™ (2)[Ri1(2)N11(2) + RiaNa1 (2)]
Yor M (2)[Ra1 (2) N11(2) + Raa Noa (2))]

Using that Y17 = ¢,(2) and the expansion of Proposition m

R(z)=1+Y R;Ej%
k=1
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we get

oulz)  D(oo)a(z) +afz)"
cyn(z)  D(z) 2

- f: <Rk,2blkl(z> N i oa(z)— Z(g)—l i (Rk)12<2)] .

X

By Proposition [2.2.10| we can the write

() ()

where for each k,

i (2) = (Bi)u(z) +

Using this formula together with (3.7.5) and (3.7.6), the expressions for II; and Il, are
obtained by direct computation.
The proof of Theorem [1.4.1] is just a repetition of the above arguments, since the

expansion for (3.5.17)) for R is valid as 6, varies, possibly approaching 0.

4.2 Proof of Theorem [1.3.2

For each n, let Y™ denote the solution to the RHP Y1-Y4. From (T1.2.2)), we have
Y2(1n+1) (F) = o2 ¥,
Since ¢, is a monic polynomial of degree n, we have that

1 — 1 i <
k2 = —— lim Y2(1n+1) <2*1> = __Y2(1n+1)(0)'

" 2T z—00 21
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As in the proof of Theorem [1.3.1 we have
V() = e )[R ()N (2) + Ry (2) N (=),

where R™*1) denotes the solution to R1-R3 corresponding to n+ 1. One can easily compute

—sin(6y/2)
D(00)D(0)’

»(0)=ct, Nn(0) = Ny (0) =

so that

Y g)etins) o €R(00) § (R (0) _ sin(fo/2) (Hiwk)gz(m)

2t D(0) & (n+1)*  D(00)D(0) — (n+ 1)k
Sln(90/2) > (Rk)QQ(O) - COt(Qo/Z)DQ(OO)(Rk>21 (0)
~ D(0)D(0) (“,; (n+1)* )

Since D(0) = D(00), see Proposition M(iv), it follows that

9 sin(6y/2) Ty
~ 1 il
Fin 02(”+1)27T]D(oo)‘2 T Z nk |’

k=1

where

r-S (k S 1) (=1 (B )22(0) — cot(8/2) DX () (Bi)an (0))

J=0

Having already computed the first two functions Ry and Ry, by evaluating them at zero we

find I'y and I's, whose values are given in the statement of Theorem [1.3.2]

4.3 Proof of Theorem (1.3.3

Given a compact set K C (6, 2 —6), we may pick neighborhoods Us and Us so small

as to have the compact set K* = {e¢? : § € K} lying exterior to Us U Us. Then, reversing
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the steepest descent process, we find that for z € Oy \ Us U Us,

0 1 0 z)" 0
Y(2)= R(2)N(z) vee) . (4.3.1)

0 ¢™ w(z) t2"p(z) 7 1 0 ()™

Now, taking into account that R is continuous on the complement of f‘, in particular, on the

neighborhood (O, UOg U %) \ Us U Us of K*, we get after multiplying the matrices on the
right of (4.3.1)) and taking limits from O, toward K* that

o (8) = Diso)e" (M(t)flm(t) . t"D+<t>A12+<t>> (1 iy <Rk>?<t>>
k=1

D+(t) w(t)@/zi(t) n
(PO An (1) | D) Asey (1)) = (Bi)ia(t)
+D<oo>( Dy w@er) ) ko

By plugging in the formulae obtained in Proposition [2.2.11} we find

(2n—1)60

PHE) A (€7) | D () An () ¢ ()
D, (") w(e?)yr () \/M 2sin A(0

% (A(@) i(nA(0)—x(0)) + iA—l(g)e—i(n)\(Q)—x(G))) 7

and
wi(ew)AgH(eie) ein0D+(ei9)A22+(ei0) e-@ sm(90/2)
D, (e") w(e?)yn () Vw(ei?) \ 2sin A(0
x (A(@)e —i(nA(0)—x(0)) _ Z'A—l(g)ei(n/\(G)—x(G))> :
where
cos(9/2 20)

Theorem then readily follows by combining the last three equalities. Notice that since

Vcos(0/2)\/tan(0/2) + tan A(0) = \/Sin(9/2) + /2 — cos2(0/2),
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we have |[A(0)| > 1, and consequently
0 < [A@)] = [A@)] 7 < [AO)OXOD 4N (9)e HOXON < [A(9)] + [A(0)]

Therefore, we are allowed to factor the term A(#)e!™AO=X() 1 jA=1(9)e= M O—XO) out of

[33) and get (T35).

4.4  Proof of Theorems|1.3.5(and |1.3.6

For 0 € (0y,2m — 6,), we have

NN

From the definitions of W, and W, we see that

w(e®)e™, e € UsnA°,
(4.4.1)
w(e)e P e ¢ Usnne.

We now concentrate on t € Us N ~°. After reverting the steepest descent process, we arrive

0 Wi () e ()™ 0
Y(t) = R(t) E, (t)[Wa(n®f(8))]+ R n
0 c¢™n 0 WL (), (t) Vi
1 0) [v+(t)" 0
w(t) My (t) 72 1 0 v(t)™

Multiplying the last three matrices and using we get

—Qamt

Yil c" 0 "
. ROE )L, (20 |
Y21 (t) 0 c™ w(t) el
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Recall that f(z) maps Us N Oy, into Sz > 0 with 27/3 < arg f(2) < 7, so that

6i7r/4
0V, = VA0

and if we use the notation

C=n?f(t) = = X0), t=c"
then
2A=Q)* =nA0), ¢* = ZA0).

Then, using (3.4.8)) and the fact that
HYY) + HY) = 25,

see (9.1.3)-(9.1.4) in [1], we arrive at

: LHL) (nA(6) 3H2 (nA(©))
Voqp(n f(®)) pari - w(}[&ly))/(n)\w)) W(HSZ))/(H)\(Q))
_ Joa (NA(0))
imn(0)J5, (nA(0))
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Across v°, E, = E,, so that (c.f. (3.4.14))

E,(t) = N.(1) We(t) 0 1|1 =i [ V2mnlf) 0
n = 4 - = _
o win) V2 i 0 Vamn ()7,
] A1+ () D(00)Wi(t)  A124(t)D(00) Dy (2) 1 —
b D, (1) W4(t)
\/§ 7A12+(t)W+(t) A11+(t)D+(t) _Z 1
D(c0) D4 (1) D(c0)W4(2)
e/ /T (0) 0
X
0 e~/ 7m)\(6)_1

Therefore, for t = € € U; N ~°,

Y11 (t) \/d”\/ﬁn)\ ) i

Yau (£) 2uw(t)
A11+( ) i(am—x(0)) A12+ t)e i(am—x(0 1 —1 €i7r/4<]2a (n/\(O))
el AT )\ 1) e ()

Using the formulas in Proposition [2.2.11{ and the definition of A(#) we can write

A11+ (eiG) — 6—2‘0/4 SIH(HO/Q)A( )
2sin A() (1.4.2)
0y _ ; —i0/4 Sln(90/ )
A12+ (6 9) =€ v 2Sln)\( ) (0)
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Thus,

Yia (t) D(c0)et &7\ /nN(0) [sin(6y/2) [ 0O (1 +§:Rk£t>>
n Pt n

}/21(t) D4 /w(t) sin )\(9)
A(B)et(am=x(9)) A ()~ Le—i(am—x(6) _i[A(Q)ei(aﬂfx(e))_A(e)flefi(wfxw))]
X ‘A(g)e—i(aw—x(e))+A(9)—lei(a7r—x(0)) A(@)e—i(aw—x(ﬂ))_A(e)—lei(aw—xw))
-t D(c0)?2 D(c0)?
e/ Joe (NA(0))
X )
ie /4L (nA\(6))

and Theorem follows after multiplying these matrices.

Next, we concentrate on t = e € Us N ~°. After reverting the steepest descent

process, this time we arrive at

c” 0 - ) 1 0
Y = R(t)En (1) [Ws(n”f(t))]+
0 ¢ 0 -1 0 -1
vt" n
| om0 Lo 0o 0
Wi ()97 (t) tm —n
0 \/En+ w(t) (£)2" 1 0 w+ (t)

Multiplying the last three matrices and using (4.4.1)) we get

Yvﬂ \/En - 0 B 1 0 1 0 667ri
_ R(t)E,(t) [Us(n?f(1)]+ |
Yo w(t) o ¢ 0 -1 0 —1) \e™

Recall that f(z) maps Us N Oy, into Sz < 0 with —7 < arg f(z) < —27/3, so that

e~/ —
), = A0)

and if we again rename



then

20 =nlr = AO)), () =—Flm =A@,

and using (3.4.9)), we arrive at

1 0 ePri

0 —1 0 —1 e Bm

LHY (n[r — A(0))) LHE) (n[r — \0))) 1
il 2OL Y (nfr — A0)])  — T RO HE Y (nfr - A0)]) ) \1

2 2

Jag (n[m — A(0)])
—imn[r — A(0)]J55 (n[r — A(0)])

We also have

7 1 ™ /4,
f v [0 0 ) 1) (Vemlio 0

o Wyt V2l 0 Vamn [F() )

A4 (D)W (1) Az (£)D(00) D (t)
_ Dy (1) Wi (t)

— Aoy (W4 (1) A1 (0D (t) V2 7 1
D(o0)D4(t) D(c0)W(t)

e/ /mn[r — A(0)] 0

0 et/ — )\(9)]_1

Therefore, for t = ¢ € Us N v,

Yl | _ Do)Vt y/mnlr —AO)] (" 0
Yau(1) 2t Voo

A11+(t)67i(’8ﬂ-+xw)) A12+(t)€i(,87r+x(9)) 1 2 67i7r/4<]2[)> (n[ﬂ' — )\(0)])

_f]‘jl(a;gg)e—i(ﬁwx(e)) _11431(1;52) i (BT+x(0)) i 1) \ —ie™ T, (nr — A(9)])
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With the help of (4.4.2)), we thus obtain

Yu(t)|  D(oo)et™ ™ /anlr = \@)] [sin(6o/2) [ 0 (1 +iRk£t)
k=1

)

A(0)e= BT+X(0) _ A (9)~1ei(Br+x(6)) 7;[A(@)e—i(ﬁﬂ’-‘rx(@))+A(9)—1ei(57\’+x(9))]
X .A(g)ei(ﬁw+x(9)),A((;)—le—i(ﬁwx(ﬁ)) A(g)ei(ﬂw+x(9))+/\(9)—le—i(5w+x<9))
¢ D(0)?2 D(o0)?
e Jog (n[m — A(B)])
X ?
—z’e”r/‘ljgﬁ (n[r — A(0)])

and Theorem [1.3.6] follows after multiplying these matrices.

4.5 Proof of Corollary |1.3.7}

As 0 — 0y+, we have

MO/2 — 1 4 o0 — 90)1/2’ gilam—x(0) — 1 00 — 90)1/2

and
2 _in©0) _ 1 . > !
A(B)2e™ O = Sn(00/2) <81n(9/2) + /2 — cos (6/2))
1 : . .
- s <sm(9/2) +\/Sm(0/2 + 0/2) sin(6/2 — 6, /2))
_ sin(0/2) Y
= n(60/2) (1+0(8—6)"?).
Hence,

M,?(0) =2+ 0(0 — 6y)'%,

) = (| 02— [ s 00 -1
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Also,

: )\(0>2 —i(m/2460)
M e tan(fo/2),
I A(0) T2 Sran (6, /2)
060+ (e — eito)=1/2 2 '

Using these observations together with (1.3.7)) and (1.1.2)) (or (3.2.2))), we obtain

2

Joa (nAO) <n>2a tan®(6y/2)

lim ——= 5
28 sin”(0y)1/h (i)

9—)90 w (ei9>

lim M4, (nA(6)) _ (2)26“ acot(fy/2) tan®(6y/2)
900 w(ei?) 2 2(2sin 0g)8+/h(e®)

and plugging these into the formula of Theorem [1.3.5| completes the proof. The behavior at

e~ is found analogously.

4.6 Proof of Corollaries|1.4.2| and [1.4.3

We first prove Corollary [1.4.2] If the arc v approaches the unit circle, that is, if

0y — 0, then
z, |z| >1,
b(z) =
1, |2| <L
Also, for |z| < 1, and as 6y — 0, we have
b(z) — e = z—costy+/(z—e®)(z—e ™)  (z—eP)(z—e ™) — (2 — cosby)?
2c 2¢(y/(z — i) (z — e=10) — (z — cos b))

_c sin?(6y/2)

o L+ o)
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Then, by (2.2.10) we have that for |z] < 1,

'¢)(z)—ei90/2 Qj)(z)—e_iGO/Q
2—ei00/2 —e—100/2 \/ w(z) —c B 1

csin®(0y/2)g(z) 1—2z

l- z — 1-
fos0 sin(fo/2) B30

Hence,

\/(2/}(2) _€i90/2> (w(z) —€—i90/2> 1+0(1)a |Z| > 17
2z — ¢io/2 z — e/ -
/2 (1 4 o(1)), |2 < L.

We now show that as 6y — 0,

i(a— 2 (z—1\tp 1 log h(¢)d¢ 1 log h(¢)d¢
cila—B)m/ (zz ) exp (—% P R el = I e >, lz| > 1,

D(z) —

i(B—a)mw/2 a+f 1 log h(Q)d¢ log h(¢)d¢
e B=m/2 (1 — 2)** P exp (%Jﬁq L r; +%f\c|=1 gg_z >, 2] < 1,

and, consequently,

D(00) = @=H7/2 gy (_%]l[q 1 loglhfgéd(>

This will follow from the expression

oo =[5 PR e (5 [ )

once we understand what the exponential factor approaches to.

By Cauchy’s theorem,

g(z) [logh(¢) d¢  g(2) [logh(() d¢  g(z) [ logh(¢) dC

i / g:(C) (—=z 2m/7 Q) C—z ' 2mi / g-(C) (=
g(z) [ logh(C) d¢  g(z) [ logh(C) d¢

" 2mi / 9(¢) c— " omi / g¢) (==

where 0 = 01 Uoy C U, with o7 and oy circles centered at the origin and of radii less than 1

and greater than 1, respectively. Here o, is positively oriented and o5 is negatively oriented,
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and they are chosen so close to the unit circle as to not have z in between them. Then, for

|2 > 1,

lim g(z)/logh(() d¢ _ hmz—l/ log h(¢) d¢ g z—1 logh(¢) d¢
Y g1

00—0 i ), g+(C) (—z  0—0 2mi 1-C C—z a0 2mi J,, C—1 C—=z

IS / logh()dc . 1 / log h(¢)dg

00—0 271 1-¢ 00—0 271 (—=z
1 log h(¢)d¢ 1 log h(¢)d¢
+9101a0%/ 1—-¢ —1—9101210%/ (—z
1 [ logh(Qd¢ 1 / logh(Q)d¢ 1 / log h(C)dC.
i J1, 1—C 21 Jo 1—( icl=1 C—z

where T, = {z : |z] =1, |z — 1] > €} and C. consists of two circular arcs

Co={z:]z| > 1, |z—1| =€} U{z:|2| <1, |z — 1| =€},

the first arc being oriented in counter clockwise direction, the second one in clockwise direc-

tion. Letting € — oo, we get that for |z| > 1,

0o—0 1 o o C—z

i 9(2) [logh(¢) dC 1 logh(¢)d¢ 1 log h(¢)d¢
o /y 9+(Q) (—= u I¢]=1 1_C /|g =1

For |z| < 1, we can follow the same argument, the change in sign of g(z) being the only

difference, and so we have that for |z| < 1,

9() [logh(Q) d¢ 1 [ logh(C)dC log h(¢)d
b0 i / () -z '][<|1 1—¢ 7 /ml (-2

Having found all the necessary limits, we can now use them in the formula of Theorem

to get Corollary

Corollary follows from Corollary by a straight forward limiting computa-
tion, since in the sense explained in Section [1.4] the asymptotic formula of Corollary

remains valid as the angle 6, — 0.
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Chapter 5 PROOFS OF THE AUXILIARY RESULTS

5.1 Non-hermitian representation of the orthogonal polynomials

0

For z = €, we have

| | d
dz = iedo,  |dz| = |ie?|d) = do =~

iz
Since z = 1/z for |z| = 1, we see that for all 0 < k <n — 1,

= [ BT == [ 2t

Kp

@
— L D, (2) 2 w(2)dz = —i L @n(z)zn_k_lwdz.

Zn

In particular, the last integral is 0 whenever 0 < k < n — 1. That is,

0, —1<m<n-—2,
/@;_l(z)zmmdz =
N z

—— m=n—-1.
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5.2  Proof of Theorem |1.2.1

Note that the jump condition Y2 implies that

Vi, (t) =Y _(t)

for all ¢ € 7°. Since the singularities of Y are removable, we have that Yj; is entire. The
asymptotic condition Y3 yields Y;; = 2"+ O(z" 1) as z — o0, so by Liouville’s theorem, Y,
is a monic polynomial of degree n.

The condition Y2 implies that for all z € 7,
Yig (t) = Yia_(t) + Yiu_(£)z""w(?).

That is, Y75 can be solved as an additive Riemann-Hilbert problem. By Corollary [2.1.3] we

know this problem has the solution

V(o) = 5 | Yu(tw(t)dt

T omi ), t(t—2)

We also note the relation

1 — t t
F_ . _sz—i—l T ot —2)
k=0
so that we may rewrite
n—1

Yis(2) = 0= 1) = 3 QLM /ml(t)t’f%dt (Z:H) |

k=0

Y-RH3 demands that as z — oo, Yio = O(z7""'). In order for this to be true, it
must be the case that each coefficient of z¥*! is 0 for 0 < k < n — 1. That is to say, Y1,
must satisfy the non-hermitian orthogonal requirements. Since we already deduced that Yi;

is monic, it must be the case that Y11(z) = p,(z) for all z € C.
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Similarly, Y-RH2 implies Y21, = Y2, on~°, and Y-RH4/5 imply Y2, is bounded at the
endpoints of 7, so Y, is entire. Meanwhile, Y-RH3 demands that as z — oo, Y51 = O(2"71).

Y-RH2 also implies that for all z € ~°,
Yoo, (t) = Yoo () + Yor_(8)t"w(?).
So that, as z — oo,
1 [ Yo (Hw(t)dt IR | / yw(t) 1
Y5 =— [ —F————=0(z"" — — [ Yo, ()" —=dt | — ] .
2(2) 2mi /7 tn(t — z) (2 ) Z 27 a(t) tn Zk+l
k=0 v
To satisfy Yoo = 27" + O(27""!) near oo, we must have

1 -1, k=n-—1,

¢
— m(t)t’“ﬂn)dt =
2mi ¢ 0, 0<k<n-2

After inspecting the non-Hermitian orthogonality condition, we may conclude that

Yo1(2) = —27mkn1®;, 4 (2),

and the construction of Y5y follows.

5.3  Proof of Proposition [2.2.1

By standard arguments, the only conformal map t(z) of the exterior of the arc 7

onto the exterior of the unit circle satisfying 1)(c0) = oo and ¢’'(c0) > 0 is

1 z+1 7
b (cot(90/2) =) <Cot(00/2)> —1

izl i ’
¥ <cot(00/2) zi_1> -y <cot(00/2))
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where ¢(z) = z 4+ v/2%2 — 1 is the conformal map of the exterior of the segment [—1, 1] onto

the exterior of the unit disk, with the branch of the square root chosen to be positive for

z > 1. Using ¢(2) + 1/¢(z) = 2z and the understanding that /(z — ei%)(z — e=0) = g(2),

exhaustive computation shows that ¢(z) can be written as

z4+1+4/(z—€f)(z — e—ieo)'

vlz) = 2 cos(6y/2)

We now prove the listed properties.

i. To find the inverse of ¥(z), we first notice that (z —e%)(z —e=) = (2 +1)% —4c?z.

Hence
(. 2¢ I g(z)
P(z) z4+14g(2) 2c ’
so that
2t (2) + J(Z) — 2242
and

P (2)[ev(z) —1]
v(z)—c

ii. Using that

Cg((;))_ ‘ <1l <= [W(z)]>1
and relation , we find
z | |ev(z) -1 —
sl = < setn
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iii. Orienting v clockwise from e~% to €%, the positive side of 7 lies outside the unit

circle and the negative side lies inside. From ([2.2.2)) we have

dj(e:l:ieo) — e:‘:i@o/Q’

and so the function given by the positive boundary values v, takes v to the clockwise

—ify/2 60/2

oriented arc of the unit circle going from e to €"0/% while the negative boundary values

0o /2 —i6p/2

1_ take 7 to the clockwise oriented arc of the unit circle going from e to e

We now want to understand how to obtain v, (¢) from _(¢) for any given value

t € 4°. Using (2.2.1)), we have

Ui (00 () = gog (14 1+ 0 (1)) (£ 1 +9_(1)

1

=2 (D2 + @+ 1) (90 () +9-(1) = G*(1)) =1

and

t+1

Vy(t) +-(t) = 2% (2t + 2+ g4(t) +9-(t) = —

Taking limits as z — ¢ from each side in ([5.3.1]), we get that

i)l () =1 -@)ctp () 1]

e~ h—e e (5.3.2)
Since we know that ¢, (t)_(t) = ¢, this yields
C¢+(t) _ Cw— (t) —1 0
O YTy 1S
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Alternatively, one can also argue by cross multiplying the two fractions in (5.3.2) and rear-

ranging terms, which gives

cp_(t)—1

0—c) "

[+ () = - O][Y-(t) — c] |4.() =

This proves (2.2.5)), and together with (5.3.2) gives another proof that ¢ (t)_(t) = t.
We can now also deduce from (2.2.5)) that

V_(t) +y(t) = %))__Cl U, (t) = %
M @)fe () —1+1] -1
Po(t)—c
_ ¥ty 1 _tHl

which allows one to prove the property that g, (t) = —g_(¢). In effect, since g(z) = 2c)(z) —

z — 1, we have

9+(t) + g-(t) = 2[4 () + - (1)] =2t =2 = 0.

iv. From (2.2.5)) we get

() =1 (t) =]+ =1 . sin?(6y/2)
L 3 B 1 R TN )y

= COS — Sin2<00/2) — COS

= os(t0/2) = [ conigeTa) (V-0 — cos(tu/2))

5.4  Proof of Proposition [2.2.3

% (such as,

ii. Let X be a Jordan contour oriented clockwise and passing through e
i.e. the circle —1 + | + 1]e” 0 <t < 27). Let ¥; and X, be, respectively, the arcs of 2

from e~ to e and from e to e~ both respecting the clockwise orientation. Then, we
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see that for every z outside ¥,
1 od¢ 1 1 d{ 1 d¢
Kerieh {/ PRGKS */_vg_<<><—z}
I O S RS W O S B
) {/ qOC- +/229<<>c—z} e
If now Cg = {Rew 0<0<27r} then by the residue theorem we find that for all R > |z|,
mo L LA L1 de
rEREE N TGIErAE ¥ T

and the result follows from the uniqueness principle for analytic functions, since
1 d
lim 7§ L =0.
R—oo Jo g(C) (—z

1 [logw(() d¢
omi J, G(Q) (-2

iii. Define

C(z) :=

so that C' (t) — C_(t) = G1(t) log w(t), for every ¢t € 4°. Since g, = —g_ across 7°, we have

D (tw) D (t;w) = exp [g: (O () + g-()C—(8)] = exp g () (1) — g1 (HC_()] = w(t).

iv. By definition, and since w(t) > 0,

- 1 [ logw(()dC 1 [ loguw(Q)d
D(0) = exp (—2—7”[/ g+(C) C) exp (—2—7”// O ) = D(00),

where we have used that g, (¢) = —g4(¢)/¢, see (5.12.1)) below.
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5.5  Proof of Proposition [2.2.4

Writing w = 1(z), we obtain from ({2.2.5)) that
—ie2P(2) = — ctan®(6y/2)p 7% |1 — cw ™+ —F—— — 2p] ,

where

itan(6p/2) 1
T 1+itan(6p/2) 1 —icot(6p/2)

Thus, making the change of variables
V= p_1<1 - Cw_l)a
we get
- i60/2 2 ~1 1
—ie"*F(z) = —ctan®(0y/2)p " v+ — —2].
v
That is,
1
F(z) = —tan(6y/2) |:U + - - 2] :
v

We know that w = 9(z) takes C\ 7 onto the exterior of the unit circle, and so p~*(1 — cw™)

takes C \ v onto the interior of the circle

C:={v:|v—ptl=c/lp|]} ={v:|v—(1—icot(fy/2)] = cot(fy/2)}.

The function v + 1/v is conformal on Iz < 0 and doubles angles at 1, so that it maps the

circle C' onto a cardioid shaped curve. The circle C' and the unit circle T, intersect at 1 and

108



—e | being orthogonal to each other, and thus C is the reflection of itself about T;. Thus
the portion of C interior (resp. exterior) to T; goes onto the upper (resp. lower) half plane,
and the cardioid is symmetric about the z-axis, intersecting this axis at 2 and —2 cos 6.

Therefore, the proposition will follow once we prove that if

vy = p’l(l —c/wy), wi =1Ys(T),

then v_ = 1/v,. Using (2.2.5)), that |ws| = 1, and that |p| = sin(6y/2), we compute

B _lsin2(90/2)

_ - c = _
vo=pt(I—c/w)=p"" ]'_cw+—1>: P m—_lzp(l—c/%r)l:l/%'

5.6 Proof of Proposition [2.2.5

By Proposition [2.2.4] the principal logarithm of F'(z) exists in C \ 7, and
[LOgF(’Z)]Jr + [LOgF(Z)]i = 2 ln |Z _ €i90|.

Therefore, for z € C )\ 7,

/ log [t — e dt / 2n|t — eif| dt
=qQ
voog(t) -z voog+(t) t—z

- [/7 [LogF(t)], dt +[/ [LogF(t)]_ dt }

g+(t)  t—z g+(t) t—z
. [/ [LogF(t)], dt _/ [LogF(t)]_ dt }
el -2 ) e -2
:aygLogF(t) dt
s g(t) t—2

where ¥ is the closed contour (oriented clockwise and passing through the points e*)

sufficiently close to v so that z is in its exterior.
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For R > |z|, let Cg = {Rew 0<0< 27T}. By the residue theorem,

%LogF(t) dt _QWiLogF(z)_yg LogF(t) dt
b Cr g(t) t—=z

gt) t—z  g(2)

Letting R tend to infinity, the integral vanishes, and we find

g(2) / log |z — e'®|?>  dt
= alLogF(z).
2mi J, g+ (1) P, 8 ()
By similar arguments,
g(2) /10g|z—ew°|25 dt BLogF(2)
= z
2mi ., g+ (1) t—2 & ’

and so

D(z;w) = exp {ozLogF(z) + BLogﬁ(z)} = {

U(z ¥(z)
5.7 Proof of Proposition [2.2.6

Again, we let w = 1 (z). From ({2.2.3)), we have

F(z,£600) % — eFito _aw? —w — weF 4 ceF

isin(£6,/2) w—c B (w—c)?
cw? — 2ceEi0/2, 4 cetifo w — eTibo/2 2
= = C _—

()

. (1 B isin(:l:@o/2))27
w—c
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or

Ww—cC

ZMO—M)Q‘

Ww—=cC

F(z,+00) = isin(£6y/2) cos(6y/2) (1 — M)

We know that w—c maps C\y onto the exterior of the circle of radius 1 centered at —c.

Hence 5% maps C\~y onto the exterior of the circle centered at — cot(fy/2) with radius
m, which crosses the z-axis at — cot(6p/4) and tan(fy/4), so that % maps to the

interior of the same circle. Multiplying by +i shifts the circle to one centered at Fi cot(6y/2)

and passing through the points Fi cot(6y/4) and +i tan(6y/4). By the Pythagorean Theorem,

isin(0y/2)

w—cC

this circle intersects the x-axis at both 1 and —1, so that 1 F maps C\~v onto

the interior of the circle centered at 1 F icot(fy/2) and passing through the origin and

2. Moreover, the line passing through the origin and the center of this circle is of the

+i(0g—)/2

form ¢, = {re : r € R}. That is, when we “square this circle”, we find that

w—cC

- 2 _
<1 — M) maps to a cardioid symmetric about the line £, = {re®@=m" .y ¢ R} and

lastly, multiplying by =+i and rescaling by w, we find that the co-domain of F(z,+6))
is the interior of the cardioid symmetric about the line £ = {re*%="/2) .y ¢ R} passing
through the origin, and lying in C\ {—re*®=7/2) .y > 0},

Hence a branch of logF(z, £6,) exists with

3
0y — g <argF(z,00) < 90+g

and

3
—0y — g <argF(z,—0y) < —0y + g
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5.8 Proof of Proposition [2.2.7]

Recall from (2.2.7)) that

—sin®(6y/2)
W (t) — cos(0o/2)

)1 (t) — cos(b/2) =

By uniqueness of branches of the logarithm, there exists m.4. € Z such that

log F(t, £6y)4 + log F(t, £60,)_ + 2momi = 2log(t — e=i%).

Note that

isin(£6y/2) (e — i)

Fi6 =
F(eT +6,) = eFio/2 — cos(0y/2)

= 2i sin(£6).

Taking limits as t — eT% in , we deduce

In |2isin(6)|* + im + 2mmi = In| — 4sin?(6,)| + 31,
+

In |2 sin(f)|* — 7i 4+ 2m_7i = In| — 4sin®(fy)| + 7.

Hence, my+ =1 and

/log(t—eiwo) a1 {/ 2log(t — eF) dt 1
vt t=z 20, g()  t-=z

dt

1 U log F(t, £00)+ dt / log F(t, £6p)- dt +/ 27i
T2 g:(t) t—z ),  g(t) t—=z

1 §£log F(t,+60) dt / i dt / w o dt

- +

T2 g(t) t—z gt)t—2z J,g-(t)t—=2
_ 1 (2m log F(t, +6,) 2(7m ) i logSt 2 i@o) N (mi)?
2 9(z)

9(2) 9(2
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5.9 Proof of Proposition [2.2.8

Choosing the branches of log(t —e*?) on v° according to (2.2.11]), and since arg(—1—

e) =7+ 6y/2 and arg(—1 — e ) = 1 — 6, /2, we see that
21og w(t) = log(t — e'®) — log(t — e — i

Applying Proposition and ([2.2.8)), we find

D(z:w(t)) = exp (}1 log (=, 0y) — ilog F(z, —00) — %) exp (i log {;i(—z_zg]) |

the last equality being true in view of (2.2.12)) and the fact that arg F(0, +60y) = £(0p —7/2).

5.10 Proof of Proposition [2.2.9

Clearly, there exists some m € Z such that

1 . )
2log m = —log(t — ™) — log(t — e 4 2mmi.

Since the branches of log(t — e*%) on v° are chosen according to ([2.2.11]), we have arg(—1 —
e) = m+0,/2, arg(—1 —e"%) = 1 — 0,/2, so that being 1/G(—1) = —|e? — 1|71 we must

have m = 2. Therefore,

1 1 . 1 )
log @ =-3 log(t — i) — 5 log(t — ™) + 27,

and ([2.2.13)) follows from Proposition and (2.2.8).

Let us now define the function
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with b(oco) = 1. Then, clearly b(z) = a(z)%.

Now,

2 (z2—e®)2 4 (2 —e70)2 4 2(z — ) (2 — e70)
B (z — €if0)(z — e~i0)
422 — 4zeifo _ 4re—ifo 1 200 4 =20 1 o
(z — €i)(z — e~i)

42% — 8z cos Oy + 2(cos(26y) + 1)

(z — €i)(z — ™)
 42® — 8z cos(fy) + 4 cos® by

EEr P
4z —cosby)?
= G —e )

_ {Q(z — Cosﬁo)r |

9(2)
while
: B 2 — cosd
lim b(z) +b(z)"" =2 = lim (2 g(czc;s 0)
Thus,
L 2(z—cosf
o) + () = 2 el !
Also,
_ oo o 4i(s — cos ) sind
[b(2) — b(2)[b(=) + b(2) "] = zZ— ;iao - Zz —eeieo - s g(;(zz) o) sin 0,
so that
—2isin 6y

(5.10.1)
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Hence, we have
[a(=) + a(=)"']* = [b(z) + b(z)"* +2]% = {W n 2}
A {Z‘i“ 1+g(z)—(1 +COSQO)]2

e (5.10.2)

¢("7’) — COS(GO/Z)) _ L(Z)4,

= 16 cos®(6y/2) ( 9(2)

where

L(z) = /2sin b [F(z,00)]* [F(z, —00)] /"

So a + a~! and F are both branches of the fourth root of a same function, and since they

have the same limit at infinity, they must be equal.

5.11 Proof of Proposition [2.2.10

The equality (2.2.15]) is exactly what we got in (5.10.1). Taking square roots in
(5.10.2)) we get

1, [cl(z) —¢)
a(z)+a(z)” =2 o) (5.11.1)
Because of , we see that
(0 = e = ) = (00 = ) (ST ) = clwla) - PP,
or what is the same,
w(z) —c= 6(7/1(2) — €i00/2)2 _ C(WZ) — 6_2190/2)27 (5112)

z — etbo 2z — e~ o

where the last equality is true since (2) = ¢(2).
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Then, (2.2.14)) follows from (5.11.1f) and ((5.11.2]), while (2.2.16)) follows from ([2.2.14]),
(2.2.15)) and (5.11.2)).

5.12  Proof of Proposition [2.2.11

To deduce (i), we combine the second and third relations in Proposition [2.2.1{(iii) to

get that
V() = € [ (e”),

1 [y (e") 2\ cos(0/2)
(" im0

Writing ¢ () = e'a8¥+(") with 0,/2 < arg ¢ (e") < 2 — /2, we find

cos(arg (¢ — 0/2) = 02
and so either
arg Y, (") — 0/2 = arccos (M) +2kr (ke Z)
or
arg (e) — 0/2 = — arccos <M) + 2k (ke Z).

Since 1, (—1) = —1, it follows that argt (t) = 0/2 + arccos (¢! cos(6/2)). Hence,

(€)= exp {i(A(0) +0/2)}

with

A(0) = arccos (¢ cos(6/2)) .
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Then,

[4(e") = | = V/[cos(A(0) +0/2) — c]? + [sin(A(0) + 0/2)]2

= /2 —2ccos(\(H) +0/2) + 1

— (/e sin? A(6) + 2c sin A(0) sin(6/2) + sin®(9/2)

= sin(0/2) + csin A(0) = cos(0/2)[tan(0/2) + tan A(6)].
We now prove (ii). First, we note that

g (€?) = 2c1p (€?) — e — 1 = 2ce'NOH/D) _ 9 c05(0/2)e™/?
= ¢/2(2c cos \(A) + 2¢iy/1 — cos? A\(A) — cos(/2)) (5.12.1)

= 2ie%/2\ /2 — cos?(0/2) = 2ie/*csin A(6).
Second, using the second and fourth relations of Proposition [2.2.1{(iii), we get

i) W @OW () —c) i) —c Yu(t) —c  (W(t) — )

t 1—cpy () m—c Vi(t)—c  Je(t) — ¢

That is,

(Vi (t) — ) = |1y (t) — c]* exp {i [r + 2 arccos (¢ cos(6/2))] } .

Using ([2.2.14]), we then find that for some integer k,

(a n a—l) (o) _ Vo0 an@72) T N0 { o) % . k;rz} |
.

2 2sin A(6) 2 2

Knowing that (@ + a™ '), (=1) = 2cos(fy/4), we conclude that (ii.) holds true. To derive

(iii) we simply use ([2.2.15)).
Finally, (iv) is a direct consequence of Theorem and the definition of the Szegd

function for w.
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5.13 Analytic Continuation of w(z)

We will continue |z — €i%]?® analytically from =, to the domain C \ ([0, c0) U {e¥ :

0<0<6}). If |z| =1, then

|Z o €i90|2a _ [(Z . 6i00)<§— 6—1‘90)}0‘ — |:<z _ 61’60)(1 . e—ieo):|a

Tl e — )] (s oyt ]
_ %Ze“’o)jez(mgo)}l { z ]

If we wish for the function

= exp {a [2 log(z — 6%) —logz — (7 + 80)2} } )

(z _ ei00)267i(7r+90) @
]

()= |

defined for z € C\ ([0,00)U{e® : 0 < § < 6y}), to be the analytic continuation of |z — ei?%|?*,

it must be the case that argw,(—1) = 0. Since
—1 — e = —¢%/29 co5(6,/2),

the choice of the branches of logz and log(z — €) corresponding to arg(—1) = 7 and

arg(—1 — €¥%) = 7 + 6, /2, respectively, yields
argwe(—1) =a2r+ 6y —m— (7 +6y)) =0,

as desired. A similar analysis justifies the choice of arguments for ws in C \ ([0, 00) U {e® :

—0y <0 <0}).
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5.14  Solution of the Riemann-Hilbert problem for A

Condition A2 implies that for ¢t € 7°

Anyg(t) = = A (1), A (1) = An-(t).

Define k(z) = g(2)A11(2)A12(z). Across 7°, k. (t) = k_(t), and k is bounded near

e 50 k(z) is entire. Since Aj5 — 0 as z — 0o, Az has an expansion of the form

Hence

lim k(z) = k&,
ramde el

and by Liouville’s theorem, k(z) = k.
Note that if K = 0, then g(2)A;1(2)A12(2) = 0. For in such a case, since A;; — 1
as z — 0o, we also have A;5 = 0. But then A;;, = A;;- = 0 implies that Ay is entire, so

Ay = 0, contradicting A3. So k # 0. Therefore, Aj1(2) # 0 and Aj5(2) # 0 for all z € C\n°.

Now we may write

K
Ap(z) = —————
RREymeE
and use A1y = —Ajo_ to deduce
—K K
A Aj_(t) = = —.
w040 =570 = o)

Since A7 — 1 as z — 00, Aqp can be solved as a multiplicative Riemann-Hilbert problem
with a Szeg6 function solution. In order to compute D (z; xk/G), we rely on the multiplicative
property of the Szeg6 function and Proposition to get

a(z) + a’l(z)‘

A =D (26/G) = D (2;5) D (2;1/G) = £k V2sin O,
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Notice that

o-en{) [ 2502

— exp {logn {% <%£g+1(t)titz+%/79+1<t)titz)”

1 iarg K
:exp{log/ﬁ-ﬁ}: |K|e T

From the asymptotic condition on A;; and the fact that

 sin (=6, /2
lim F(z, £0,) = lim M = +isin(f/2) cos(6o/2),
Z—00 2—00 Toos(00/2)

which implies that

. 1 o —1/4 —1/4 i

lim D ——,2) = lim i [F(z, 6 F(z,—0 = ;

2 (G(Z> z) Foo (e o) o o) \/sin(0y/2) cos(6p/2)
we find |k| = sin(6y/2) cos(fy/2) and arg/i = %ﬂ Hence

k= —sin(fy/2) cos(fp/2) and D (k,z) = —iy/sin(fy/2) cos(y/2).

That is,

Ay = /sin(8/2) cos(6o/2) [F(z,00)] " [F (2, —60)] —
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and

_ K _ _sin(fo/2) cos(6o/2)
9(2)An(2) g9(z)(a+a"1)/2

R () (1)
_ 2sin(6/2) cos(6/2) (a R )

A12

(5.14.1)

9(2) 2= (a71)?
1, (2sin(6p/2) cos(6p/2)\  a—a!
=—(a-a )< —2isin b, )_ 2

Proceeding in the same manner as above, and writing

TN
An(2) ="+ 5+ G+,

we obtain
L
Ag(z) = — M
z1(2) 9(2) Az (2)
and
Agz i (t)Asa—(t) = £ ten
g+ (t)

We now see that in order to satisfy the asymptotic condition for Asy we must have D (—pu, z) =

arg(—p) — _TW (i.e. p = —r =sin(hy/2) cos(0y/2)),

D (k, z). Hence, |u| = sin(6y/2) cos(6p/2) and

and

cos(6o/2) [F(z,00)] 7 [F(z, —60)] V2,
0s(6y/2)

Agy = /sin(0y/2)
Ay — \/sin(0o/2)

9(2)

[F (2, 00)]* [F (2, —00)]* .
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5.15 Relations involving W and W

We aim to verify that

(0% _2Tria7 17 07 9
W2(z) = welee At 22000 (5.15.1)

we(2)e*™ |z| > 1, 2 € [0,00).
Let us denote by w/? the branch of the square root of w, given by
w?(2) == exp {% (2log(z — €”) —log z — (7 + 00)@')} :
and recall that
W (2) = exp {% (2log(z — €) —log z + (7 — 90)2')} :

From the way the branches of log(z — ¢%0) and log z are chosen in (3.2.2)) and ([3.4.2)), we see
that
Wa(2) = w?(2)e ™, |2| > 1, 2 ¢ [0, 00),

and

Wa(2) = wy/*(z)e™™", |2| <1, 2 £ [0,00),

«

which, after taking squares, yields ((5.15.1)), and moreover, it also yields that for t € Us N ~°,
Wa, ()Wo_(t) = wy(1).
Since wg and h are analytic in Us, we have

W (OW_(t) = w(t), teUsnry®
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Similarly, we want to show

o ws@e <1, 2 ¢ 000),
Wi(z) = (5.15.2)

wg(2)e™ 2 |z] > 1, 2 € [0, 0).

Let us denote by w’/? the branch of the square root of wg given by
Yy Wg 8

wé/Q(z) ‘= exp {g (2log(z — ™) —log z — (7 — 90)2')} :

and recall that
Ws(z) = exp {g (2log(z — e ™) —logz + (7 + 00)@')} :

From the way the branches of log(z — e~) and log z are chosen in (3.2.2)) and (3.4.22)), we
see that

Ws(z) = wy*(2)e™™,  |2] > 1, 2 & [0,00),

and

Ws(z) = wy*(2)e?™,  |2] <1, 2 € [0, 00),

which, after taking squares, yields (5.15.2)), and moreover, it also yields that for ¢ € Us N ~°,

W, ()Wps_(t) = wp(t),

and

WL (OW_(t) =w(t), teUsnA°
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We now prove Lemmas [3.4.1] and [3.4.3, From Proposition [2.2.5] we see that the Szegé

function D(z) for the weight w is given, for all z € C \ v, by

o =[5 R e (52 [ )

Combining (2.2.9) and (2.2.10) with the definitions (3.4.2) and (3.2.2), we find that for
z € Us \ v,

, | e2eloB(z—e'®0) tia(n—ty) 28 log(z—e™"%0)+iB(Bo—) 9(2) [logh(¢) d¢
D(z)" = b (2)2@+B) eXp( i L G(¢) C—Z)'
_ Wal(2)wp(z)z"2" g(z) [logh(¢) d¢
= T (R eXp( i /,7 G ¢- z) |

Let o be a closed contour in U going around < is the positive direction and leaving

every point z € Uy \ 7y inside. Using ([2.2.1)) and the residue theorem we find

o) [logh(Q) dC _ . g(2) [logh(Q) d
i / 0:(Q) Gz logh() 2m'/a o0 (-7

Hence (see (3.4.3))
W2 (@ (9(z) [logh(¢) d¢
mw‘(ﬁ) em@m[gmc—g
) 2@th) oo .
— (q’b\;;) exp (g(z) nzzocn(z —e") > ;
with ¢, given by .

Now, from ([2.2.2]) we see that for some by # 0,

Qp\;? —1=bVz—e%+0(z—e®?), zeUs\~.
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Using the Maclaurin expansions of Log(1 + z) and of the exponential function, we get that

for z near e,

a+f
(¢(2)> — 14+ (Oz + B)e—i00/2ei7r/4 tan(90/2)(z N ei90)1/2

Vz
(a + B3)%ie tan(6y/2) (2 — ™) 4 Oz — )32,

* 2
Then
W(Z)j = (1 +2(a+ B)byV z — et + O(|z — ewo|)> (1 + cog(2) + O(]z — 6i90|3/2)) :
D(z)
and moreover
W) _ (v .
D(z) < NG ) ( Z . )
(5.15.3)

a+p 27r/4 ) )
_ <¢\§f)) exp (coe \2/2 sin 6y (2 — 6190)1/2 L O(z — 6100>3/2)
z

=1+ ™\ /tan(0y/2) ((a + B)e ™/ + coc) (z — €®)V2 + O(z — ™)

and
D(z) _ _im/4 —i0/2 _ifo\1/2 o
) - 1—e tan(6/2) ((o + B)e + coc) (z — €®)2 4+ Oz — ™).
Similarly, from (2.2.9)), (2.2.10) and the definitions (3.4.2)) and (3.2.2), we find that
for z € Us \ 7,

=
—~
w
N—
g
S
—~

) 2wy (2)222° o g9(z) [logh(¢) d¢
D(z)” = P(2)2@+6) p( e /7 G(Q) C_Z>’

and the remainder of the proof follows from here along the same lines.
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5.16 The solution ¥,

To observe that ¥, is a solution, we utilize the following properties (see [1]), where

Jow, Yo, are ordinary Bessel functions of the first and second kind:

(i) Héi)(z) : Héi)(z) , Ira(2), and Ky, (2) (and their derivatives) are analytic in C\ (—o0, 0]

(cf. (9.1), (9.6) in [1]).

(i) HY(2) = Jaa(2) + iYaa(2) (cf. (9.1.3) in [1]).
H (2) = Jaa(2) — iYaa(2) (cf. (9.1.4) in [1]).

(iii) €72 Joo (2€™) = Jou(2) (cf. (9.1.35) in [1]).
(iv) La(2) = €™ Iy (2e™/2) for —7 < argz < 7/2 (cf. (9.6.3) in [1]).

(v) Kaon(z) = %ieo‘”i]-léQ)(ze*”i/?) for —m/2 < argz < (cf. (9.6.4) in [1]).

a

That U, (C) satisfies W1 is a direct application of (i).

We now consider the jump condition W2. Across X9, a straightforward calculation
along with (i) proves the jump condition for the (11) and (12) entries. For the (21) and (22)
entries, we use (i) together with the fact that (¢'/2), = —(¢'/?)_.

Across X, we verify the jump condition

1 0
Vi (C) = Ya_(C)

€2o¢7ri 1

in each entry:
(11) Ba(262) = 5 (B @(-0)V) + B (2(~0)1/2).
(21) 2miC215,(2¢12) = meomi ¢V ((HIE) ) (2(=C)M2) + (HIE)) (2(=C)12) ).

Koa(2¢12) = <X HP (2(~O)V?).

(12) 5

Z
7r
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(22) —2¢ 23, (2¢1?) = eV (HEY (2(—)V?).

To show equality of the (11) entries, we consider the right hand side and apply (ii),

(iii) and (iv), together with the fact that for ¢ € X9, (—()Y/2 = ¢/2e~™/2:

e ) ) ) )
5 (Hg(i[)(Q(_g)l/Q) +H§i)(2<_C)1/2)> _ 6047r1J2a(2cl/26—7m/2) _ 6—0¢7TZJQQ(2C1/2627T/2)

= [2a(2<1/2)~

Equality for (21) follows by taking the derivatives of the (11) entries and multiplying
by a factor of 2w (e™/?.

Proving equality forn (12) is a direct application of (v), and for (22) we take the
derivatives and again multiply by 27(e™/2.

With the understanding that for ¢ € %3, (—¢)¥/? = (/2e"/2, similar calculations
show that U, satisfies the jump condition across X

We deduce the limiting behavior near zero for these functions by examining the

following formulae in [1]:

(vi) as z = 0, Ia(2) ~ (52)**/T(2a+1)  (9.6.7).

(vii) For £ = Ipy or £ = €™ Kyo, L(2) = Loat1(2) + 22 Loa(z)  (9.6.26).
(vii) as z — 0, if 2a > 0, Ksa(2) ~ iT(20)(32) 72 (9.6.9).

(iX) [ 90(2) = Ia(2), K_24(2) = K2 (2) (9.6.6).

(x) as z = 0, Ko(z) ~ —Inz (9.6.8).

(xi) Kau(z) = %m’ea”Hz(B(zem/Q) for —m < argz <7/2 (9.6.4).

In the domain {( : |arg z| < 27/3}, for a > 0, applying (vi), (vii), and (viii.) shows
that W, (() satisfies U3. For o < 0, the same arguments together with (x) yield the desired
results. Finally, for a = 0, (vi) together with (x) shows that U,(z) satisfies ¥3 in the given

region.
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In the two remaining regions, we apply (v) and (xi) together with the previous argu-

ments for Ks,.
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