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ABSTRACT 

Molecular-targeted antitumor therapy has found favor in antitumor drug discovery 

programs. Hypoxia (< 5% oxygen) is a common feature of solid tumors and hypoxia-inducible 

factor-1 (HIF-1) represents an important antitumor target. Bioenergetic homeostasis is typically 

altered in tumor cells and HIF-1 plays an important role to produce a glycolytic phenotype. 

Glycolysis inhibitors are an emerging class of potential tumor-selective adjuvant therapeutic 

agents. Natural product aerobic glycolysis inhibitors may enhance the effectiveness of current 

therapies. Mitochondrial oxidative phosphorylation inhibitors in botanical dietary supplements 

(BDS) possess a potential health hazard which should be identified and appropriately regulated. 

Chapter one briefly reviews the molecular-targeted natural product antitumor drug 

discovery process. Descriptions of tumor hypoxia, HIF-1, HIF-1 regulatory pathways and the 

effect of HIF-1 on tumor cell bioenergetics are presented. Cellular bioenergetic pathways and 

natural products that inhibit HIF-1 by interfering with cellular bioenergetics are discussed. 

Mitochondriotoxic small-molecule natural products reported previously are further reviewed. 

Chapter two discusses the effect of chromatographic media on molecular-targeted 

antitumor drug discovery. A panel of crude extracts was eluted through columns of various 

chromatographic media using a step gradient method. Total recoveries from the various columns 

and various elution protocols were compared and statistically analyzed. The crude extracts and 

column eluates were evaluated for HIF-1 inhibitory activity. 

Chapter three discusses the development of a bioenergetics-based screening method to 

screen crude extracts for glycolysis inhibitors. Crude extracts (10,648) were screened and seven 



iii 
 

hits (hit rate 0.72%) were identified. Bioassay-guided isolation of Moronobea coccinea crude 

extract resulted in isolation of a protonophoric compound moronone (1) (false positive). The 

structure of 1 was determined by a combination of spectroscopic and spectrometric means. The 

protonophoric compounds must be rapidly dereplicated for successful discovery of glycolysis 

inhibitors. 

Chapter four discusses the screening of BDS products and pure compounds for 

mitochondrial uncouplers or electron transport chain inhibitors. The blue cohosh (Caulophyllum 

thalictroides) extract and three saponins cauloside A (3), saponin PE (4) and cauloside C (5) 

permeabilize the mitochondrial membrane. Sesamin (6) and guggulsterol III (7) and guggul 

(Commiphora wightii) extract inhibit mitochondrial complex I. These extracts and compounds 

are cytotoxic in nature. 
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1.1 Molecular-targeted, natural product antitumor drug discovery  

1.1.1 Overview of molecular-targeted antitumor drug discovery 

 Cytotoxic compounds have until recently been the focus for antitumor drug discovery 

programs. With the completion of the human genome sequence in the1990s, along with a better 

understanding of the cellular and molecular biology of cancer, the focus of these programs has 

gradually shifted towards development of molecular-targeted drugs. Prior to the molecular-

targeted era, antitumor therapy was based on the premise that cancer cells can be eradicated by 

damaging cellular DNA or by blocking the cell division machinery. This approach stemmed 

from the limited concept that cancer cells divide more rapidly than normal cells, and that cancer 

cells need DNA replication in order to proliferate. Arguably, these cytotoxic drugs are 

considered the first generation of ‘targeted cancer therapy’ (Varmus, 2006). However, many of 

the processes targeted by these drugs were also critical for the survival of normal cells. Hence, 

low tumor cell specificities and narrow therapeutic windows limited the use of these cytotoxic 

compounds in the standard chemotherapeutic regimen. Molecular-targeted cancer therapies were 

recently developed to overcome these limitations. The goal of the contemporary molecular-

targeted approach is to eliminate tumor cells in a selective manner without affecting normal 

cells, which can be achieved by exploiting the pharmacokinetic, biochemical, and molecular 

biological differences between normal and malignant cells. 

 Understanding the molecular basis of cancer is the key factor in the development of 

antitumor molecular-targeted therapies. Elucidation of the genetic causes of cancer began as 

early as 1911 with the discovery of the first tumor-causing virus (Rous, 1911). However, the first 

oncogene was not identified until 1970 (Duesberg and Vogt, 1970). This discovery provided the 

conceptual breakthrough of gene mutation, which is one of the major factors that contribute to 



3 
 

tumorigenesis. To date, mutations of 487 human genes (~1%) have been shown to contribute to 

the etiology of cancer (Wellcome Trust Sanger Institute, 2012). Gain-of-function mutations for 

oncogenes and loss-of-function mutations of tumor suppressor genes both lead to tumorigenesis. 

These mutations are also often accompanied with epigenetic abnormalities, which results in 

altered gene expressions (Yoo and Jones, 2006). Such alterations in gene expression (pro-

oncogenic) are critical for the survival and maintenance of the malignant cancer cell phenotype. 

Any perturbation of these pro-oncogenic signaling pathways can profoundly impact cancer cell 

viability. This phenomenon is known as ‘oncogene addiction’ (Weinstein, 2002). Studies 

conducted in a mouse xenograft model revealed that brief pharmacological inactivation of the 

oncogene Myc could prolong animal survival and cause tumor regression (Jain et al., 2002). 

Numerous studies using transgenic mice that bear activated oncogenes have supported this 

concept (Varmus et al., 2005). These results support the development of molecular-targeted 

antitumor therapies. 

 The process of molecular-targeted drug discovery starts with identification of a target. 

The prospective target can be a receptor [i.e., human epidermal growth factor receptor2 (HER2)] 

(Shawer et al., 2002), an enzyme (metalloproteinase) (Li and Wu, 2010), or a transcription factor 

[i.e., hypoxia-inducible factor (HIF)-1] (Patiar and Harris, 2006). The major criteria for the 

selection of a molecular target are its unique presence in tumor cells and high importance in 

tumor cell survival, proliferation, and metastasis. In addition to these factors, feasibility for high-

throughput screening is also taken into consideration (Sun, 2006). Certain characteristics (e.g., 

growth factor-independent cellular proliferation, apoptosis resistance, immortality, angiogenesis, 

invasion, and metastasis) are attributed as inherent to the cancer cells, and are the distinguishing 

features from normal cells (Hanahan and Weinberg, 2000). In addition, aerobic glycolysis and 
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disabling immune destruction are considered to be emerging ‘hallmarks’ of cancer (Hanahan and 

Wienberg, 2011). These unique properties of cancer cells allow for targeted therapeutic 

intervention, and can be exploited for the development of tumor-selective molecular-targeted 

therapies.  

 Following its selection, a target must be validated (Benson et al., 2006). The goal of 

target validation is to assess the correlation between target modulation and disease progression. 

Target validation also helps to identify any undesirable effect(s) of target inhibition or 

stimulation. In oncology, an ideal target should enhance cellular survival/proliferation, 

metastasis or confer resistance when upregulated in tumor cells. On the other hand, inhibition or 

downregulation of the same target should rapidly and selectively eliminate cancer cells, stop the 

spread of tumor, reverse drug resistance, and/or have any other specific desirable effects 

determined by the evaluators (Sun, 2006; Collins and Workman, 2006). In addition, proteins 

with critical functions should be selected as targets, while proteins with redundant functions 

should not be pursued (Perry and Weitzman, 2005).  

 For lead generation, thousands of compounds can be screened, directly or indirectly, 

against a valid target in a high-throughput manner. The compounds used for screening can 

originate from either natural product or synthetic compound libraries.  This screening approach 

can be either ‘forward’ (phenotype to target) or ‘reverse’ (target to phenotype) (Bredel and 

Jacoby, 2004). The biochemical high-throughput screening (HTS) assays involving isolated 

targets have been partially successful in lead generation (Wesche et al., 2005; McDonald et al., 

2006). However, due to the overdependence on the assays using isolated targets, the global 

effects of modulating these targets do not always become clear until the later stages of drug 

development. A thorough investigation and prediction of possible unwanted effects arising from 
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the modulation of a particular target should be performed at the earlier stages, which would 

prevent late stage drug attrition and minimize drug development costs. One prominent example 

of late stage drug attrition is the farnesyltransferase (FTase) inhibitors, which were developed to 

treat advanced pancreatic, lung, and colon cancers. Ras (H-Ras/K-Ras) prenylation is essential 

for the plasma membrane association, as well as oncogenic activity. This prenylation is 

preferentially catalyzed by FTase in cancer cells; but in the event of pharmacologic inhibition of 

FTase, the enzyme geranylgeranyltransferase (GGTase) can prenylate and activate K-Ras, thus 

bypassing this inhibition of the Ras signaling pathway (Rowinsky, 2006). Efforts to 

simultaneously target FTase and GGTase have failed, due to high incidences of toxicity (Lobel et 

al., 2001). 

 Phenotypic screening using intact cells, organisms or animals can be employed for 

screening of natural product-rich extracts and other substances which are incompatible with 

isolated targets (Mishra et al., 2008). The main advantage of phenotypic screening is that one can 

monitor whether the targeted pharmacological intervention can produce the desirable effects at 

the cellular or organismic level. Phenotypic screening systems also allow for the discovery of 

novel targets or drug candidates with novel mechanisms of action. However, post-screening 

determination of the mechanisms of action is difficult, and the precise molecular targets often 

remain elusive. 

 Some of the established/validated and emerging antitumor molecular targets include: 

tyrosine kinases (TrK) (Shawer et al., 2002), endothelial growth factor receptors (EGFR) 

(Ciardiello and Tortora, 2008), histone deacetylases (HDAC) (Jones and Steinkühler, 2008), 

cyclin-dependent kinases (CDKs) (Malumbres and Barbacid, 2009), mammalian target of 

rapamycin (mTOR) (Bjornsti and Houghton, 2004), matrix metalloproteinases (MMP) (Overall 
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and Kleifeld, 2006), HIF-1 (Semenza, 2007), vascular endothelial growth factor (VEGF) 

(Ferrara, 2005), VEGF-receptors (Schwartz et al., 2010), proteasome (Adams, 2004), Bcl family 

proteins (Lessene et al., 2008), topoisomerase (Chikamori et al., 2010), tubulin (Cragg and 

Newman, 2004), kinesin (Cox and Garbaccio, 2010), 90 kDa heat-shock protein  (Hsp90) 

(Neckers, 2006), and protein kinase C (PKC) (Collins and Workman, 2006). High-throughput 

screening of synthetic and natural product libraries is carried out to identify novel leads that 

inhibit one or more of these targets. Some of the tumor phenotype-targeted screenings include 

screening for agents that target tumor angiogenesis (Spannuth et al., 2008), cancer stem cells 

(Gupta et al., 2009), multidrug efflux (Szakács et al., 2006), and aerobic glycolysis (Kitagawa et 

al. 2011).  

 

Figure 1.1 The process of molecular-targeted small-molecule drug discovery. The figure was 
reproduced with appropriate permission from the Nature publishing group (Collins and 
Workman 2006) 
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Critics of molecular-targeted antitumor drug discovery suggest that an overemphasis on 

isolated target-based screening has been the main reason for the lack of productivity in recent 

drug discovery (Hellerstein, 2008; Sams-Dodd, 2005). Two major problems plaguing the 

molecular-targeted drug discovery programs are late attrition of drugs due to lack of efficacy 

and/or toxic off-target effects. It is argued that the difference in functionality of any molecular 

target in a complex network, as well as the adaptability of cellular signaling pathways, are often 

overlooked while developing molecular-targeted drugs; these lead to late stage drug attrition 

(Hellerstein, 2008). Inhibition of drug targets that interconnect several pathways in the 

physiological setting will affect all the associated pathways, and may produce unwanted off-

target effects. Indeed, the immense theoretical potential of the molecular-targeted approach is yet 

to be fully realized at the clinical level (Broxterman and Georgopapadakou, 2004). However, 

these pitfalls can be avoided by, (a) employing initial cell-based assays instead of the isolated 

target-based assays; (b) employing toxicity studies at the earliest feasible stage; (c) careful 

patient population recruitment in whom the molecular target is overexpressed; and (d) 

determination of valid molecular target endpoints.    

 

1.1.2 Tumor hypoxia 

 Mammalian cells undergo oxidative metabolism to produce energy in an efficient 

manner. Under physiological conditions, most cells need oxygen as the ultimate electron 

acceptor, to synthesize adenosine triphosphate (ATP) through oxidative phosphorylation 

(Semenza, 2009). Intracellular O2 concentrations depend on O2 diffusion from the vasculature 

that supplies blood to the tissue.  The O2 diffusion geometry is inversely proportional to the 

distance of the cells from the vessel walls. A tissue-dependent 24 – 66 mm Hg oxygen partial 
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pressure [pO2] (normoxic condition) (Weeks et al., 2010) is usually maintained up to 70 µm 

from the vessel walls (Vaupel and Harrison, 2004). Apart from the diffusion geometry, the 

maintenance of tissue-specific normoxic conditions also depends on several factors, such as the 

O2 carrying capacity of the blood; morphological and functional normality of the vasculature; 

perfusion of blood through the vessels, and cellular oxygen demand. Formation of solid tumors is 

initiated through rapid and uncontrolled cell proliferation. Owing to the sharp increase in oxygen 

demand caused by rapidly dividing tumor cells, normal tissue vasculature is unable to maintain 

tissue-specific normoxic conditions (Vaupel et al., 2001). This imbalance in oxygen demand and 

supply creates ‘hypoxia/hypoxic conditions’, which can be defined as the oxygen deficiency 

level (~ 7 mm Hg) that compromises normal cellular functions, and triggers adaptive responses 

(Semenza, 2009; Goonewardene et al., 2002). One of these adaptive responses to hypoxic 

conditions is the occurrence of an aberrant and chaotic angiogenesis (formation of new blood 

vessels) in solid tumors. The new microvasculature, unlike the normal vasculature, is 

morphologically and functionally deformed, and hence, it is less efficient in supplying nutrients 

and oxygen to the surrounding tissue (Tredan et al., 2007). The difference between the rate of 

cell proliferation and the rate of angiogenesis is maintained during the growth of tumors. As a 

result, a heterogeneous pattern of oxygen partial pressure and chronically hypoxic areas are 

commonly observed throughout solid tumors. 

In the early twentieth century, tumor hypoxia was identified as a major factor in 

determining tumor sensitivity to ionizing radiation (Mottram, 1936). Since then, the effects of 

hypoxia on tumor cells have been extensively evaluated. Numerous clinical studies in various 

solid tumors have shown that tumor hypoxia (2.5 – 22 mm Hg of O2 partial pressure) is inversely 

correlated with disease-free and overall survival rates (Hockel and Vaupel, 2001). In an animal 
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model, several cytotoxic agents, such as doxorubicin, carboplatin, vincristine, etoposide, and 

cyclophosphamide, have been shown to affect tumors in an oxygen-dependent manner (Teicher 

et al., 1990). Hypotheses of hypoxic chemoresistance have been formulated, which include 

decreased cell proliferation, decreased drug penetration to the hypoxic cells, hypoxia-mediated 

clonal selection, and adaptive modification of the cellular genome and proteome (e.g., induction 

of multidrug resistance mechanism) (Cosse and Michiels, 2008; Zhu et al., 2005). Currently, 

tumor hypoxia (< 10 mm Hg of O2 partial pressure) is an accepted adverse prognostic marker for 

solid tumor chemo and radiosensitivity to standard antitumor therapeutic regimens.  

Measurement of tumor hypoxia had been primarily performed with polarographic needle 

electrodes. The polarographic needle electrode has been the gold standard in measuring tumor 

pO2. Currently, exogenous markers (e.g., pimonidazole and EF5) and endogenous markers (e.g., 

carbonic anhydrase IX and HIF-1α) of hypoxia are primarily used for clinical tumor hypoxia 

measurement (Rademakers et al., 2008). 

 

1.1.3 Hypoxia-inducible factor-1α 

Adaptive responses to tumor hypoxia are primarily mediated by a group of proteins 

known as hypoxia-inducible factors (HIF). These proteins are heterodimeric transcription factors 

that consists of an α and a β subunit protein of basic helix-loop-helix Per-ARNT-Sim (bHLH-

PAS) protein superfamily (Wang et al., 1995). Three HIF α subunit isoforms have been 

discovered, namely HIF-1α, HIF-2α and HIF-3α. The β subunit is also known as aryl 

hydrocarbon receptor nuclear translocator (ARNT) and is constitutively expressed. Among these 

three HIF isoforms, HIF-1 is the most prevalent and is ubiquitously expressed in all human 

tissues examined (Semenza et al., 1997). The HIF-1α subunit is a 120-kDa, 826 amino acid 
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protein that consists of several distinct functional domains. The major HIF-1α subunit domains 

that are involved in self-regulation and HIF-1 transcriptional activation are as follows: bHLH 

domain (amino acid residues 17 – 71, required for heterodimerization and DNA binding); PAS 

domain (amino acid residues 85 – 298, required for heterodimerization and DNA binding) 

(Wang et al., 1995); oxygen-dependent degradation domain (ODDD, amino acid residues 401– 

603, required for oxygen-dependent degradation) (Huang et al., 1998); N-terminal 

transactivation domain (N-TAD, amino acid residues 531 – 575); and C-terminal transactivation 

domain (C-TAD, amino acid residues 786 – 826, required for transcriptional coactivator binding) 

(Jiang et al., 1997). The HIF-1α subunit contains two nuclear localization signal (NLS) domains 

(amino acid residues 17 – 33 and 718 – 721). The C-terminal NLS is essential for the hypoxia-

induced nuclear localization of HIF-1α (Kallio et al., 1998). The HIF-1α protein also contains a 

nuclear export signal that is responsible for shuttling of HIF-1α between the cytosol and the 

nucleus (amino acid residues 616 – 658) (Mylonis et al., 2008). Each HIF-1β subunit (91 – 94 

kDa, 789 amino acid residues) contains a single transactivation domain. The HIF-1β subunits are 

devoid of ODDD but contain bHLH and PAS domains (Semenza, 1999). 

Under physiological conditions, the limiting factor for HIF-1 activation is the stability of 

the HIF-1α subunit, which is rapidly degraded in the presence of adequate oxygen (> 5% O2) 

(Huang et al., 1996). The lack of ODDD in HIF-1β prevents the oxygen-dependent degradation 

of HIF-1β and makes the subunit constitutionally active (Semenza, 1999). Hypoxia-inducible 

factor-1α stabilization allows HIF-1α and β to dimerize. This results in a transcriptionally active 

HIF-1 that translocates to the nucleus (Wang et al., 1995). Following the transcriptional 

activation, HIF-1 binds to the cis-acting DNA sequence 5' –(A/G)CGTG– 3' [hypoxia-response 

element (HRE)] located in the promoter regions of the target genes (Semenza et al., 1996). 
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Following DNA binding, HIF-1 typically recruits and binds to transcriptional coactivators, such 

as p300/CBP [CREB (cAMP reactive element binding protein) binding protein] and/or PKM2 

(pyruvate kinase isozyme M2) (Luo et al., 2011). However, the direct repression of a target gene 

by HIF-1 is rare and usually downregulation of genes by HIF-1 is achieved by an indirect 

mechanism (Semenza, 2011). The HIF-1–p300/CBP interaction is mediated by the first 

cysteine/histidine-rich region of p300 (p300-C/H1) and HIF-1α-C-TAD, and the HIF-1 

coactivator interaction is essential for the HIF-1-induced gene transcription (Bhattacharya et al., 

1999; Arany et al., 1996). 

 

1.1.4 Non-mitochondrial HIF-1α regulatory mechanisms 

The rapid degradation of HIF-1α under tissue-specific physiological normoxic conditions 

(>5% O2) is due to the presence of the ODDD in the subunit structure (amino acid residues 401 – 

603). A family of dioxygenases known as prolyl-4-hydroxylases (PHD) is primarily responsible 

for the oxygen-dependent degradation of the HIF-1α subunit. Three isoforms of PHD are known, 

namely PHD-1, PHD-2, and PHD-3. All three isoforms can hydroxylate the HIF-1α protein at 

the proline-402 and proline-564 residues, by using molecular oxygen as a substrate, and iron 

(Fe2+), 2-oxoglutarate, and ascorbate as cofactors (Figure1.2) (Bruick and McKnight, 2001; 

Hirota and Semenza, 2005). However, PHD-2 is thought to be the major HIF-1α hydroxylating 

enzyme in vivo (Berra et al., 2003). 

 

 
Figure 1.2 Prolyl-4-hydroxylation reaction catalyzed by prolyl-4-hydroxylases (PHDs) 
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Proline hydroxylation of HIF-1α (residues 402 and 564) allows the recognition of HIF-1α 

by the von Hippel-Lindau protein (pVHL), and subsequent HIF-1α polyubiquitination by the 

pVHL-E3 ubiquitin ligase complex [pVHL, elongins B and C, cullin 2, and ringbox protein1 

(Rbx1)] (Czyzyk-Krzeska and Meller, 2004; Kamura et al., 1999). Polyubiquitinated HIF-1α is 

recognized and degraded by the 26S proteasome (Kallio et al., 1999). Any perturbation of this 

pathway, such as inhibition of  the PHDs by small-molecules or transition metals [Co2+, Ni2+, 

and Mn2+] (Schofield and Ratcliffe, 2004), depletion of any of the cofactors (e.g., depletion of 

Fe2+ by an iron chelator) (Roy et al., 2004), pVHL deficiency (Maxwell et al., 1999), and/or 

inhibition of 26S proteasome, stabilize HIF-1α under normoxic conditions and cause intracellular 

accumulation of HIF-1α protein in the absence of hypoxia (Kallio et al., 1999). However, it has 

been reported that the accumulation of intracellular HIF-1α protein does not necessarily 

transform into the transcriptionally active HIF-1. In fact, inhibition of the 26S proteasome by 

bortezomib has been shown to inhibit the transcriptional activity of HIF-1 under both normoxic 

and hypoxic conditions, but caused significant accumulation of HIF-1α protein under normoxic 

conditions (Kaluz et al., 2006). The paradoxical response of HIF-1 in response to proteasome 

inhibitors is suggested to be partially mediated by a protein known as CITED2 [p300/CBP-

interacting transactivator with glutamate (E)/aspartic acid (D)-rich tail 2] (Shin et al., 2008). The 

CITED2 protein is a p300-CH1 domain-binding protein, which inhibits HIF-1 transcriptional 

response by preventing HIF-1α-p300 interaction (Bhattacharya et al., 1999).  Aspargine 

hydroxylation within the C-TAD at residue 803 by an aspargine hydroxylase (Factor inhibiting 

HIF-1 [FIH]) prevents the HIF-1-p300/CBP interaction and inhibits subsequent HIF-1 gene 

transcription (Mahon et al., 2001; Lando et al., 2002).  
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Other post-translational modifications (PTM) that have been reported to modulate HIF-

1α stability, and therefore HIF-1activity, include sumoylation (Bae et al., 2004; Cheng et al., 

2007), de-ubiquitination (Li et al., 2005), and phosphorylation of the HIF-1α subunits (Mylonis 

et al., 2006). In an in vitro study, covalent attachments of a SUMO (small ubiquitin-like modifier 

protein) at lysine-391 and lysine-471 have been shown to increase HIF-1α stability (Bae et al., 

2004). However, a later study using sentrin/SUMO-specific protease-1 (SENP-1)-knockout mice 

showed that sumoylation promotes HIF-1α degradation through the pVHL-proteasome pathway 

(Cheng et al., 2007). It has been argued that SUMO overexpression in presence of SENP-1 led to 

HIF-1 stabilization via sumoylation. A pVHL-interacting de-ubiquitinating enzyme (VDU2) has 

been identified that mediates the pVHL-dependent HIF-1α de-ubiquitination. De-ubiquitination 

of HIF-1α leads to intracellular accumulation of HIF-1α and expression of downstream target 

genes, such as VEGF (Li et al., 2005). Various kinases have been reported to phosphorylate 

amino acid residues in HIF-1α with opposing effects. Serine-641 and serine-643 phosphorylation 

by p42/p44 mitogen-activated protein kinase (MAPK) enhances nuclear accumulation and HIF-1 

transcriptional activity (Mylonis et al., 2006), whereas serine-551, threonine-555, and serine-589 

phosphorylation by glycogen synthase kinase 3 (GSK-3) causes a pVHL and proteasome-

dependent HIF-1α destabilization (Flugel et al., 2007). Polo-like kinase 3 (Plk3) has been shown 

to destabilize HIF-1α by directly phosphorylating serine-576 and serine-657 (Xu et al., 2010). 

Apart from post-translational modifications, various cellular signaling pathways can 

regulate HIF-1α at the translational level. Well-studied cellular signaling pathways that regulate 

HIF-1α translation include the PI3K (phosphatidylinositol-3-kinase)/Akt (protein kinase B, 

PKB)/mTOR (mammalian target of rapamycin) pathway and the MAPK pathway (Yee Koh et 

al., 2008). Growth factors and oncoproteins, such as Ras, upregulate HIF-1α cap-dependent 
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translation under normoxic conditions in a cell line-dependent manner (Patiar and Harris, 2006). 

Ras oncoprotein enhances the normoxic HIF-1α translation via Raf-MEK (MAPK kinase)-ERK 

(extracellular signal-regulated kinases) signaling cascade activation that phosphorylates 4E-BP1 

[eukaryotic initiation factor (eIF) 4E-binding protein]. Phosphorylation of 4E-BP1 causes 

dissociation of 4E-BP1 from eIF-4E and allows the initiation factor to be incorporated into the 

active eIF-4F, thereby facilitating enhanced HIF-1α translation (Yee Koh et al., 2008; De 

Benedetti and Graf, 2004). Under normoxic conditions, the PI3K/Akt/mTOR pathway also 

converges on eIF-4E phosphorylation. Activation of PI3K by the receptor tyrosine kinases (e.g., 

HER2) enhances the formation of PIP3 (phosphatidylinositol-3,4,5-triphosphate). Subsequently, 

PIP3 activates the Akt/mTOR signaling cascade that results in 4E-BP and ribosomal S6 kinase 

hyperphosphorylation (Yee Koh et al., 2008; Ruvinsky et al., 2005; Bronchud, 2007). Under 

normoxic conditions, this enhances HIF-1α translation. 

In an acute response to hypoxia, the phosphorylation of eIF-2α by PERK (protein kinase 

RNA-like endoplasmic reticulum kinase) prevents the formation of eIF2-GTP-met-tRNA ternary 

complex and thereby inhibits initiation of protein translation (Koumenis et al., 2002). 

Additionally, prolonged hypoxic exposure results in a decrease in mTOR activity and 4E-BP 

hypophosphorylation, which leads to repression of eIF-4F complex activity (Reiling and 

Sabatini, 2006). The mTOR inhibition is mediated through a hypoxia-inducible protein REDD1 

(regulated in development and DNA damage responses 1) and its downstream effector TSC-1/2 

(tuberous sclerosis) (DeYoung et al., 2008). However, HIF-1α translation is not compromised 

under hypoxia. A controversial cap-independent translation mechanism involving an internal 

ribosome entry site (IRES) has been suggested for hypoxic translation of HIF-1α (Zhou et al., 

2004; Lang et al., 2002; Young et al., 2008; Bert et al., 2006). An alternative mechanism that 
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involves PTB (polypyrimidine binding protein) and HuR (human antigen R) binding to the 3'- 

and 5'- untranslated regions (UTR) of HIF-1α mRNA, respectively, has also been proposed 

(Galban et al., 2008; Schepens et al., 2005). A recent study has identified HIF-2α as a translation 

facilitator under hypoxia. Recognition of an RNA hypoxia-responsive element (rHRE) by RBM4 

(RNA binding protein 4) is essential for translation under hypoxic stress in an eIF-4E2 dependent 

manner (Uniacke et al. 2012; Montoya, 2012). Modulation of HIF-1α translation by microRNAs 

(miRs, “noncanonical RNA species of 18 – 23 nucleotides in length”) (Loscalzo, 2010) is 

observed under both normoxic and hypoxic conditions. MicroRNA-199a inhibited HIF-1α 

translation under normoxia, but the hypoxic conditions downregulated miR-199a and reversed 

the HIF-1α inhibition (Rane et al., 2009). Conversely, enhanced miR-130 family levels under 

hypoxic conditions increased HIF-1α translation in an IRES-dependent manner (Saito et al., 

2011). 

Another non-mitochondrial HIF-1 regulatory mechanism involves 90kDa heat-shock 

protein (Hsp90) and RACK1 (receptor of activated protein C kinase). Binding of Hsp90 to the 

HIF-1α PAS domain promotes HIF-1α nuclear localization and prevents O2/PHD/VHL-

independent degradation (Katschinski et al., 2004; Liu and Semenza, 2007). Conversely, 

RACK1 binding promotes HIF-1α polyubiquitination and proteasomal degradation by an 

O2/PHD/VHL-independent mechanism (Liu et al., 2007). Spermidine/spermine-N1-

acetyltransferase-1 (SSAT1) stabilizes the RACK1-HIF-1α complex and is essential for RACK1-

mediated HIF-1 polyubiquitination (Baek et al., 2007). Both Hsp90 and RACK1 compete for the 

same HIF-1α binding site, and downregulation of HIF-1 by the Hsp90 inhibitors [e.g., 17-

(allylamino)-17-demethoxygeldanamycin (17AAG) (1)] is mediated by RACK1 (Liu et al., 

2007; Isaacs et al., 2002). 
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1.1.5 Mitochondrial HIF-1α regulatory mechanism  

Hypoxia-inducible factor-1α stabilization by reactive oxygen species (ROS) from the 

hypoxic mitochondrial electron transport chain (ETC) is a well-studied HIF-1 regulatory 

pathway. Based on the pioneering study by Schumacker and Chandel (Chandel et al., 1998), it 

was proposed that ROS, generated by the mitochondrial ETC, are responsible for hypoxic (1.5% 

O2) HIF-1α stabilization and transactivation.  This study demonstrated that molecules that inhibit 

the electron transport chain complexes (specifically complex I and complex III), such as 

rotenone (2) (complex I inhibitor), diphenylene iodonium chloride (3) (complex I inhibitor), and 

myxothiazol (4) (complex III inhibitor), decrease mitochondrial ROS and inhibit hypoxic 

stabilization of HIF-1α. In addition, mitochondrial DNA depletion (ρ0 cells) or treatment with 

antioxidants abolished the ROS generation and transcription of erythropoietin (EPO, a target 

gene of HIF-1) in cells. In a later study, Chandel and coworkers proposed that ROS generation at 

the Qo site of mitochondrial complex III is essential for hypoxic HIF-1α transactivation (Bell et 

al., 2007).  

The electron transfers from complexes I and II to complex III is carried out by 

ubiquinone (Q), a membrane soluble electron carrier (Trumpower, 1990; Klimova and Chandel, 

2008). A ubiquinone molecule accepts two electrons and is subsequently converted to ubiquinol 

(QH2). The QH2 molecule transfers the electron pair to complex III via the Q cycle. In the Q 

cycle, QH2 transfers one electron to the Rieske iron-sulfur protein within complex III and is then 

oxidized to form a reactive semiubiquinone (QH·) radical. The formation of QH· occurs in the Qo 

site of mitochondrial complex III. The transport of the electron from the Rieske Fe-S protein to 

complex IV is performed by cytochrome c1 (complex III) and cytochrome c (electron carrier 
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from complex III to complex IV). The remaining electron on the ubisemiquinone radical reduces 

the bL reaction center of cytochrome b which is passed on to the cytochrome bH and finally to Qi 

site of complex III. The now fully oxidized ubiquinone, that is at the center “i” site of complex 

III again produce the semiquinone. The QH· radical is very reactive and can readily transfer the 

single electron to available molecular oxygen leading to production of superoxide radicals (O2·
−) 

at the Qo site (Figure 1.3) (Trumpower, 1990; Klimova and Chandel, 2008). In accordance with 

the ROS hypothesis, the Qo site inhibitor stigmatellin (5), prevents mitochondrial ROS 

generation while, the Qi site inhibitor antimycin A (6), had no effect on mitochondrial ROS 

generation (Guzy et al., 2005; Chandel et al., 1998). The ROS hypothesis is further supported by 

other independent studies. Using JunD−/− cells, Gerald and coworkers demonstrated that under 

normoxic conditions, oxidative stress could stabilize HIF-1α by decreasing the Fe2+ availability 

and thus inhibiting PHD activity (Gerald et al., 2004).  

 

 
Figure 1.3 Electron transfer and ROS production by the ubiquinone (Q) cycle in mitochondrial 
complex III at Qo site. The figure was reproduced with appropriate permissions from the Nature 
publishing group (Klimova et al., 2008).   
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Figure 1.4 Natural products that inhibit Hsp90 [17AAG (1)] and mitochondrial respiratory 
complexes (complexes I and III). 
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In a separate study, Pan and coworkers used a fusion protein containing HIF-1α ODDD 

to demonstrate that under hypoxic conditions (1.5% O2) a loss of PHD activity occurs, which can 

be restored by the presence of mitochondrial ETC inhibitors, such as rotenone (2) and 

myxothiazol (4). In addition, HIF-1α stabilization by exogenous H2O2 was also observed. 

However, this study was unable to determine whether the HIF-1α stabilization was ROS-

mediated or due to “oxygen redistribution” (Pan et al., 2007). This evidence indicates that 

hypoxic conditions enhance ROS generation by mitochondrial ETC and the enhanced ROS 

levels oxidize Fe2+ to Fe3+. Depletion of the intracellular Fe2+ pool inhibits the PDH-dependent 

degradation of HIF-1α, and activates HIF-1. Inhibition of the mitochondrial complexes I and III 

under hypoxia decrease mitochondrial ROS generation, and thus prevent HIF-1α stabilization. 

An “oxygen redistribution” hypothesis was later proposed for hypoxic HIF-1α 

stabilization. A study by Hagen and coworkers observed that inhibition of normal mitochondrial 

oxygen consumption under hypoxia by an NO donor increased oxygen concentrations in the 

cytosol. They further observed that inhibition of PHD activity under hypoxia (1% O2) could be 

reversed by the presence of a mitochondrial inhibitor. In addition, antioxidants (ascorbate, 

glutathione, and N-acetylcysteine) did not affect hypoxic HIF-1α stabilization. These 

observations led to the formulation of the hypothesis that under hypoxic conditions, normal 

mitochondrial activity inhibits PHD activity by limiting the availability of O2 for the HIF-1α 

hydroxylation reaction. On the other hand, mitochondrial ETC inhibitors increase the cytosolic 

O2 concentrations and destabilize HIF-1α under hypoxia by restoring PHD activity (Hagen et al., 

2003). 

The ‘oxygen redistribution hypothesis’ appears to be inconsistent with the ROS 

hypothesis. The observation that cells which lack cytochrome b showed drastically less oxygen 
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consumption, yet retained the ability for hypoxia-induced ROS generation and HIF-1α 

stabilization, contradicts the oxygen redistribution hypothesis (Bell et al., 2007). The observed 

interexperimental inconsistency in the effects of antioxidants on HIF-1α stabilization (Chandel et 

al., 1998; Hagen et al., 2003) may be due to the mechanistic nature of antioxidants used in the 

experiments or the inherent difference in the cell lines used (hepatoma vs. embryonic kidney 

cells). However, under physiological conditions both mitochondrial ROS and oxygen 

redistribution by mitochondria may act together to stabilize HIF-1α under hypoxic conditions 

(Taylor, 2008). 

Apart from mitochondrial respiration-mediated regulation, HIF-1α is also regulated by 

tricarboxylic acid (TCA) cycle intermediates, namely succinate and fumarate. Prolyl 

hydroxylases generate succinate from 2-oxoglutarate in the cytoplasm during hydroxylation of 

HIF-1α. The succinate is then transported to the mitochondrial matrix, and converted to fumarate 

by the enzyme succinate dehydrogenase (mitochondrial complex II). Theoretically, increased 

succinate/fumarate concentrations in the cytoplasm can stabilize HIF-1α by preventing HIF-1α 

hydroxylation by a negative feedback mechanism. Indeed, dysfunctional succinate 

dehydrogenase has been demonstrated to increase ROS, tumorigenecity and intracellular HIF-1α 

protein accumulation (Selak et al., 2005; Guzy et al., 2008). Similarly, accumulation of fumarate 

can inhibit the forward reaction by PHDs and a number of studies demonstrate that mutations in 

fumarate hydratase (FH) or FH deficiency can stabilize HIF-1α (Pollard et al., 2005; Isaacs et al., 

2005; Sudarshan et al., 2009). 

The mitochondrial deacetylase sirtuin-3 (SIRT3) has been shown to negatively regulate 

HIF-1α in a mitochondrial ROS and PHD-dependent manner (Finley et al., 2011a; Bell et al., 

2011). Knockout of SIRT3 imparts a glycolytic phenotype in the mouse embryonic fibroblasts 
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(MEF), which can be reversed by genetic HIF-1α removal (Finley et al., 2011a). Conversely, 

overexpression of SIRT3 under hypoxic conditions destabilizes HIF-1α and reduces HIF-1 

transcriptional activity. In addition, tumorigenicity in xenografts are reduced in mice that 

overexpressed SIRT3 (Bell et al., 2011). Sirtuin-3 can also affect HIF-1α stability via succinate 

dehydrogenase. It has been shown that succinate dehydrogenase is deacetylated by SIRT-3, and 

SIRT-3 is essential for normal succinate dehydrogenase activity. Loss of SIRT3 reduces 

succinate dehydrogenase activity, which may contribute to HIF-1α upregulation (Finley et al., 

2011b). The cytosolic sirtuins SIRT1 and SIRT6 have also been shown to regulate HIF-1 

activity. While SIRT1 decreases HIF-1 transcriptional activity by deacetylating HIF-1α at 

Lysine-674 (Lim et al., 2010), SIRT6 negatively regulates HIF-1 activity by acting as a 

transcriptional corepressor of HIF-1 target genes involved in glycolysis. In addition, SIRT6 

knockout cells show enhanced HIF-1α translation suggesting that SIRT6 may downregulate HIF-

1α protein synthesis under physiological conditions (Zhong et al., 2010). 

 

1.1.6 HIF-1 and tumor cell bioenergetics 

Metabolic analysis revealed that cellular ATP utilization regulates approximately 50% of 

mitochondrial respiration, in contrast to the less than 15% regulation by the actual electron 

transport (Brown et al., 1990). In this study, nicotinamide adenine dinucleotide (NADH) supply 

or concentration (15 – 30%) and proton leak (20%) were suggested as the other regulating 

factors for mitochondrial respiration. Later, a study by Chandel and his coworkers under hypoxic 

conditions demonstrated a control coefficient for NADH concentration similar to the earlier 

study (Chandel et al., 1997). Decreasing cellular ATP consumption is an acute adaptive response 

to hypoxia. Cellular processes that consume ATP, such as Na/K ATPase activity and protein 



22 
 

translation, are immediately shut down in response to decreased oxygen (< 5%) (Tormos and 

Chandel, 2010). Prolonged exposure to hypoxia has also been shown to decrease mitochondrial 

oxygen consumption in a time-dependent manner. Hypoxic activation of HIF-1 mediates long-

term adaptive responses to hypoxia, and plays a pivotal role in shaping tumor cell bioenergetics.  

Hypoxia-inducible factor-1 stabilization shifts cellular bioenergetics towards a glycolytic 

phenotype by actively downregulating mitochondrial oxidative phosphorylation and 

simultaneously upregulating glycolytic flux. One of the mechanisms by which HIF-1 

downregulates mitochondrial oxidative phosphorylation is by decreasing the availability of 

pyruvate to the TCA cycle (Kim et al., 2006; Papandreou et al., 2006). The glycolytic end 

product pyruvate is transported across the mitochondrial inner membrane by the pyruvate 

transporters and then decarboxylated to acetyl coenzyme A (AcCoA) by the pyruvate 

dehydrogenase (PDH) complex; the AcCoA then enters into the TCA cycle for further oxidation. 

The enzymatic activity of PDH is inversely proportional to the concentration of AcCoA, NADH 

and ATP. In addition, phosphorylation of the E1 subunit of PDH by pyruvate dehydrogenase 

kinase (PDK) deactivates PDH. Deactivated PDH can be dephosphorylated and subsequently 

reactivated by pyruvate dehydrogenase phosphatase (PDP) (Papandreou et al., 2006; Sugden et 

al., 2003). Pyruvate dehydrogenase kinase-1 was identified as a HIF-1 target gene, and it was 

demonstrated that under hypoxia, the absence of PDK1 in HIF-1−/− lymphoma cells enhanced 

mitochondrial ROS generation and hypoxia-induced cell death. In an independent study, 

exposure to prolonged hypoxia demonstrated decreased cellular oxygen consumption in a PDK1-

dependent manner (Papandreou et al., 2006). These results indicate that one of the mechanisms 

of HIF-1 mediated adaptation of cellular bioenergetics is by induction of PDK1. 
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 Activated HIF-1 can reduce the cellular mitochondrial content by inhibiting 

mitochondrial biogenesis via repression of c-Myc activity and induction of BNIP3-mediated 

mitophagy. The HIF-induced mitophagy and repression of mitochondrial biogenesis provide a 

selective advantage to hypoxic cells by preventing the lethal mitochondrial ROS generation 

under hypoxia (Zhang et al., 2007; Zhang et al., 2008). 

 Complementary to the effect of hypoxic conditions on PDK1 induction, HIF-1 activates 

conversion of pyruvate to lactate, in order to shunt pyruvate away from mitochondrial 

metabolism. Lactate dehydrogenase is an enzyme that converts pyruvate to lactate. Lactate 

dehydrogenase type 5 (LDH-5 or LDH-A, that consists of four LDH-A subunits) is a HIF-1 

target gene (Semenza et al., 1994). Hypoxia-inducible factor-1 also activates the gene MCT4, 

which encodes a plasma membrane lactate transporter to facilitate lactate efflux from the cell 

(Ullah et al., 2006). 

 Apart from the aforementioned modifications to mitochondrial metabolism, HIF-1 is 

responsible for modifying the mitochondrial respiratory complex structure and function. Under 

hypoxia, the composition of mitochondrial complex IV changes in a HIF-1-dependent manner. 

Mitochondrial complex IV (Cytochrome c oxidase, COX) consists of 13 subunits, and subunit 4 

(COX4) performs a regulatory role by mediating ATP-induced allosteric COX inhibition 

(Napiwotzki and Kadenbach, 1998). Under hypoxic conditions, HIF-1 mediates the substitution 

of COX4 isoform 1 (COX4-1) by COX4 isoform 2 (COX4-2) in vitro. The COX4-1 isoform 

substitution enhances COX oxygen utilization efficiency, and represents an adaptive response to 

hypoxia (Fukuda et al., 2007). Complex I inhibition by HIF-1 was observed in an in vitro model. 

Hypoxia induces NADH dehydrogenase [ubiquinone] 1 alpha subcomplex 4-like 2 

(NDUFA4L2), a HIF-1 target protein, which shares a 65% homology with NDUFA4, a subunit 
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of complex I.  Under hypoxia (1% O2), silencing of NDUFA4L2 prevents a decrease in 

mitochondrial complex I activity, causes an increase in mitochondrial oxygen consumption, and 

decreases the cell viability. The exact mechanism by which NDUFA4L2 inhibits complex I 

activity is not clear. However, within 24 h of hypoxia, a decrease in NDUFA4 and an increase in 

NDUFA4L2 levels were observed. It was proposed that these proteins may be independently 

regulated (Tello et al., 2007).  

 Chan and coworkers showed that mitochondrial oxidative metabolism could be 

suppressed by a HIF-1-induced microRNA miR-210. Induction of miR-210 prevents the 

assembly of iron-sulfur cluster assembly proteins ISCU1 and ISCU2 (Chan et al., 2009). Iron 

sulfur cluster assembly proteins 1 and 2 are responsible for the assembly of prosthetic groups 

that facilitate electron transfer and redox reactions at the respiratory complexes. However, in this 

study the relatively low oxygen concentration of 0.2% was used. 

 While mitochondrial oxidative metabolism is downregulated, glycolytic flux is 

upregulated by HIF-1 via an increase in glucose catabolising enzymes (Semenza et al., 1994). 

Tumor cells show enhanced glucose uptake and an increased expression of specific glucose 

transporter isoforms, namely glucose transporter type 1 (GLUT1) and glucose transporter type 3 

(GLUT3) (Macheda et al., 2005). The enhanced expression of glucose transporters (GLUT1 and 

GLUT3) is mediated by HIF-1 (Macheda et al., 2005). Activation of HIF-1 enhances tumor-

specific expression of glycolytic enzyme isoforms, such as hexokinase I and II (HKI and HKII), 

phosphofructokinase L (PFKL), aldolase A (ALDA), enolase 1 (ENO1), phosphoglycerate 

kinase 1 (PGK1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate kinase 

muscle isozyme (PKM2), and LDH-A (Semenza et al., 1994; Semenza, 2012; Higashimura et 

al., 2011). Apart from these glycolytic enzymes, HIF-1 also regulates the glycolysis-associated 
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enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-3 (PFKBF3). This bifunctional 

enzyme is responsible for fructose-2,6-bisphosphate (F2,6BP) synthesis; F2,6BP acts as a potent 

PFK1 activator. Because PFK1 catalyzes the first control of flux reaction in the glycolysis 

pathway, activation of PFK1 results in increased glycolytic flux. In addition, PFKBF3 also 

diverts fructose-6-phosphate (F6P) to the pentose phosphate pathway (PPP) for synthesis of 5-

phosphoribosyl-1-pyrophosphate (precursor for nucleic acid biosynthesis). The enzyme PFKBF3 

is reported to be constitutively active in human cancer cell lines and serves as one of the 

contributors to the aerobic glycolysis (Warburg effect) (Minchenko et al., 2002). In addition, 

HIF-1 mediates the PPP enzyme transketolase upregulation (Zhao et al., 2010). Luo and 

coworkers recently discovered a novel role for PKM2 in metabolic reprogramming (Luo et al., 

2011). Independent of its enzymatic activity, PKM2 acts as a HIF-1 coactivator, and enhances 

the expression of HIF-1 downstream targets, such as VEGF. Prolyl hydroxylation enhances the 

coactivator activity of PKM2. Because PKM2 is a HIF-1 target gene, PKM2 can create a positive 

feedback response that alters tumor cell bioenergetics (Luo et al., 2011). Taken together HIF-1 

alters tumor cell bioenergetics, and imparts a highly glycolytic tumor cell phenotype which is 

crucial for cellular survival and proliferation under hypoxic conditions. 

 

1.1.7 Downregulation of HIF-1α by natural product small-molecules that inhibits cellular 

bioenergetic pathways  

Inhibition of HIF-1 activation is a valid and attractive antitumor molecular target (Nagle 

and Zhou, 2011). Efforts to discover clinically useful natural product or synthetic small-

molecules that target HIF-1 or its downstream effectors (e.g., PDK1, LDH-A, and HK) have 

been undertaken by several antitumor drug discovery groups (Narita et al., 2009; Lin et al., 
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2008; Bobkova et al., 2010; Xu et al., 2009; Kalusmeyer et al., 2007; Ward et al., 2012; Vander 

Heiden et al., 2010). Natural product-derived small-molecules that have been shown to inhibit 

the cellular bioenergetic pathways (glycolysis and mitochondrial ETC) and affect HIF-1 activity, 

will be briefly discussed. In an effort to discover chemically and mechanistically novel HIF-1 

inhibitors, the molecular-targeted antitumor drug discovery group at the University of 

Mississippi has screened more than 60,000 natural product-rich extracts from plants and marine 

invertebrates (NCI Open Repository Program) in a T47D human breast tumor cell-based reporter 

assay system. A number of the HIF-1α inhibitors recently identified by this group are molecules 

that interfere with mitochondrial complex I or uncouple oxidative phosphorylation (Mohammed 

et al., 2004; Liu et al., 2009a; Mao et al., 2009; Liu et al., 2009b; Coothankandaswamy et al., 

2010; Morgan et al., 2010; Du et al., 2010; Du et al., 2011; Mahdi et al., 2011, Li et al., 2011). 

The first compound that was identified to inhibit mitochondrial respiration by this group was 

laurenditerpenol (7) (Mohammed et al., 2004). This algal-derived diterpene-type compound 

potently (IC50 0.4 µM) inhibited hypoxic (1% O2) HIF-1 activation in a human breast tumor 

T47D cell-based luciferase reporter assay system. Laurenditerpenol inhibits mitochondrial 

complex I in isolated mouse liver mitochondria (Mohammed et al., 2004). Subsequently, the 

marine sponge-derived compound furospongolide (8) inhibited hypoxia-induced HIF-1 (IC50 2.9 

µM, T47D) activation by suppressing cellular respiration at mitochondrial complex I (Liu et al., 

2008). The plant metabolite 4'-O-methylalpinumisoflavone (9) was the first mitochondrial 

inhibitor identified by this group from Lonchocarpus glabrescens Benth. (Fabaceae), and was 

reported to inhibit hypoxic HIF-1 activation (IC50 0.6 µM) by simultaneous inhibition of 

mitochondrial complex I and mammalian protein translation (Liu et al., 2009a). Numerous other 

natural product small-molecules that inhibited mitochondrial complex I in cell-based assays were 
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identified by the Nagle/Zhou group. These mitochondriotoxic compounds from plants and 

marine invertebrates preferentially abolished HIF-1 activation under hypoxic conditions. These 

include mycalenitrile-6 (10) (Mao et al., 2009), mycalenitrile-7 (11) (Mao et al., 2009), caulerpin 

(12) (Liu et al., 2009b), manassantin A (13) (Hossain et al., 2005), manassantin B (14) (Hodges 

et al., 2004), 4-O-methylsaucerneol (15) (Hossain et al., 2005), thyrsiferol (16) (Mahdi et al., 

2011),  mycothiazole (17) (Morgan et al., 2010), 10-hydroxyglaucanetin (18) 

(Coothankandaswamy et al., 2010), annonacin (19) (Coothankandaswamy et al., 2010), 

annonacin A (20) (Coothankandaswamy et al., 2010), skimmiarepin A (21) (Li et al., 2011) and 

skimmiarepin C (22) (Li et al., 2011) (Figures 1.4 – 1.5). Among these, 13 and 14 were the most 

potent complex I inhibitors (IC50 0.003 µM) discovered by this group. Skimmiarepin A (21) 

inhibits the initiation and elongation steps of protein translation in T47D and MDA-MB-231 

breast cancer cells by eIF2α and eEF2 hyperphosphorylation in a mitochondrial complex I 

inhibition-dependent manner (Li et al., 2011). Hypoxia-induced and iron chelator-induced HIF-1 

activation is inhibited by protonophoric compounds or uncouplers of oxidative phosphorylation. 

Fifteen isoprenylated dihydroxycoumarins that inhibit HIF-1 by this mechanism were identified 

(Du et al., 2011). Among these, mammea E/BB [IC50 0.96 µM, 1% O2, 16 h, T47D] (23), 

mammea F/BA [IC50 1.72 µM, 1% O2, 16 h, T47D] (24), and mammea F/BB1 [IC50 2.23 µM, 1% 

O2, 16 h, T47D] (25) were the most potent ones (Du et al., 2011) (Figure 1.7). The mechanisms 

for HIF-1 inhibition by uncouplers are not clearly understood. 

Apart from mitochondrial inhibitors, glycolysis inhibitors, such as 2-deoxy-D-glucose 

[2DG] (26) and sodium iodoacetate (27) (Figure 1.7), inhibit HIF-1α protein accumulation in 

response to hypoxia (0.1% O2) in HT-1080 human fibrosarcoma cells (Staab et al., 2007). 
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Glycolysis inhibitors also produced a dose-dependent decrease of HIF-1α accumulation in 

hypoxic (< 0.1% O2) HEK293 cells (Zhou et al., 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.5 Natural products that inhibit mitochondrial complex I and thereby inhibit HIF-1 
activation. 
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Figure 1.6 Natural products that inhibit mitochondrial complex I and thereby inhibit HIF-1 
activation. 
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Figure 1.7 Natural products that uncouple oxidative phosphorylation and thereby inhibit HIF-1 
activation. 

 

 

                                                        

 

Figure 1.8 Small-molecules that inhibit HIF-1 via inhibition of glycolysis. 
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1.2 Cellular bioenergetic pathways 

1.2.1 Glycolysis 

 Mammalian cells generate energy required for cellular reactions by catabolizing glucose 

(Lehninger et al., 2005). This process known as glycolysis occurs by a cascade of enzymatic 

reactions. Because glucose is a highly hydrophilic molecule, specialized glucose transporters 

(GLUTs) are required for cellular glucose uptake. The glycolytic reactions can be grouped into 

two phases: (a) the reactions that use ATP or the preparatory phase and (b) the reactions that 

generate ATP or the payoff phase. The preparatory phase consists of five reactions that convert 

one hexose molecule (glucose) into two triose molecules (glyceraldehyde-3-phosphate and 

dihydroxyacetone phosphate). Together, these reactions consume two molecules of ATP. Each 

glyceraldehyde-3-phosphate molecule is then converted to pyruvate by another series of 

reactions, generating two ATP molecules (Lehninger et al., 2005) (Figure 1.9). 

The first step towards glucose oxidation is entrapment of the glucose molecule by 

phosphorylation (Lehninger et al., 2005; Munoz-Pinedo et al., 2012). The enzyme hexokinase 

catalyzes the conversion of glucose to glucose-6-phosphate. Glucose-6-phosphate is then 

converted by hexosephosphate isomerase to F6P. Fructose-6-phosphate can subsequently be 

phosphorylated either at position-1 or position-2, generating either F1,6BP or F2,6BP. The 

conversion of F6P to F1,6BP is the first committed step in glycolysis. The F2,6BP molecule 

generated in this step is not further processed by the glycolytic pathway. Rather, F2,6BP is used 

by PPP to generate nucleic acid precursors. However, F2,6BP plays a critical role in glycolysis 

regulation, by potently activating PFK. The enzyme PFK catalyzes the conversion of F6P to 

F1,6BP.  Thus, increased F2,6BP levels can maintain a high cellular glycolysis rate. The F1,6BP 

is cleaved by aldolase to generate one molecule of glyceraldehyde-3-phosphate and one molecule 
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of dihydroxyacetone phosphate. Subsequently, the dihydroxyacetone phosphate molecule is 

converted to glyceraldehyde-3-phosphate by triosephosphate isomerase. Glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) converts glyceraldehyde-3-phosphate to 1,3-

bisphosphoglycerate with generation of NADH from NAD+. Pyruvate is generated from 1,3-

bisphosphoglycerate in four steps, generating two ATP molecules. Depending on the oxygen 

availability and/or pathological state of the cell, the pyruvate is either transported to the 

mitochondria where it enters the TCA cycle (after conversion to acetyl-CoA); or it can be 

converted into lactate (Figure 1.9) (Lehninger et al., 2005; Munoz-Pinedo et al., 2012). 
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Figure 1.9 The glycolysis pathway and its inhibitors. (Munoz-Pinedo, C. et al. Cell Death Dis. 
2012, 3, e248.) Glut: Glucose transporter; MCT: monocarboxylate transporter; G6P: Glucose-6-
phosphate; F6P: fructose-6-phosphate; F1,6BP: fructose-1,6-bisphosphate; F2,6BP: fructose-2,6-
bisphosphate; DHAP: dihydroxyacetone phosphate; GA3P: Glyceraldehyde-3-phosphate; 1,3-
BPG: 1,3-bisphosphoglycerate; 3-PGA: 3-phosphoglycerate; 2-PG: 2-phosphoglycerate; PEP: 
phosphoenolpyruvate; HK: hexokinase; PGI: phosphoglucoisomerase; PFK: 
phosphofructokinase; TPI: triose phosphate isomerase; GAPDH: glyceraldehyde 3-phosphate 
dehydrogenase; PGK: phosphoglycerate kinase; PGAM: phosphoglycerate mutase; ENO1: 
enolase 1; PK: pyruvate kinase; LDH: lactate dehydrogenase; 2-DG: 2-deoxy-D-Glucose; LND: 
lonidamine; 3BrPA: 3-bromopyruvate, KA: koningic Acid; TLN-232 is a synthetic cyclic 
heptapeptide which targets PK; DCA: dichloroacetate 
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1.2.2 Oxidative phosphorylation 
 
 Transfer of an electron pair to either complex I or complex II of the respiratory chain 

initiate the process of oxidative phosphorylation. Complex I (NADH:ubiquinone oxidoreductase 

or NADH dehydrogenase) is one of the entry points into the electron transport chain (Lehninger 

et al., 2005; Nicholls and Ferguson, 2002; Suski et al., 2011). Complex I is a large ‘L’ shaped, 

membrane bound enzyme complex that contains 45 subunits eight of which are iron-sulfur 

proteins. Complex I is comprised of a peripheral portion that extends to the mitochondrial matrix 

(cytoplasm in case of bacteria) and a membrane-embedded component (Lehninger et al., 2005; 

Nicholls and Ferguson, 2002).  The NADH molecules generated during glycolysis or from the 

TCA cycle interact with the peripheral arm of complex I and transfers electrons to the subunit 

that possesses flavin mononucleotide as a prosthetic group. Subsequently, the electrons are 

transferred through eight iron-sulfur proteins and ultimately delivered to ubiquinone (Q) by the 

N2 iron-sulfur cluster. Complete reduction of ubiquinone is mediated through formation of an 

ubisemiquinone molecule, since the N2 iron-sulfur cluster delivers the electron pair in two steps. 

During this process of electron movement, four protons are extruded in the intramembrane space, 

resulting in a proton pumping stoichiometry of 4H+/2e−. The ubiquinol molecule shuttles the 

electrons to complex III (ubiquinone:cytochrome c oxidoreductase or cytochrome bc1 complex) 

by diffusion through the mitochondrial inner membrane lipid bilayer. Mitochondrial complex I 

inhibitors like rotenone (2) and piericidin A (28) (Figure 1.11) inhibit the transfer of electrons 

from the iron-sulfur proteins to ubiquinone. 

 Three other enzymes may reduce ubiquinone and initiate oxidative phosphorylation 

(Lehninger et al., 2005; Nicholls and Ferguson, 2002). Mitochondrial complex II (succinate 

dehydrogenase) oxidizes succinate to fumarate and transfers two electrons to ubiquinone. 
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Electrons from succinate are rapidly transferred through flavin adenine dinucleotide (FAD) and 

three iron-sulfur proteins, before they are accepted by ubiquinone. No proton translocation takes 

place during mitochondrial complex II electron movement. 

 Apart from complexes I and II, electrons can be donated to ubiquinone by electron-

transferring flavoproteins (ETF): ubiquinone oxidoreductase and s,n-glycerophosphate 

dehydrogenase (Lehninger et al., 2005; Nicholls and Ferguson, 2002). Both of these contain one 

FAD and one iron-sulfur cluster, and are attached to the inner mitochondrial membrane. 

However, the former is attached to the matrix side of the mitochondria, while the latter is 

attached to the cytosolic side. The ubiquinol molecules generated in complexes I and II or in 

either of these proteins, translocate to complex III. 

 The cytochrome bc1 complex known as complex III (ubiquinol:cytochrome c 

oxidoreductase) oxidizes the reduced ubiquinol through the Q cycle (previously described, 

Figure 1.3) (Lehninger et al., 2005; Nicholls and Ferguson, 2002). Complex III structural 

features involved in the electron transfer process include cytochrome b, cytochrome c1, and the 

Rieske protein (iron-sulfur protein). The final electron acceptor in this step is the single-electron 

carrier cytochrome c, which shuttles the electrons to complex IV (cytochrome c oxidase). During 

the electron transfer process, two protons per electron (or 4H+ per 2e−) are extruded into the 

intermembrane space. 

 Mitochondrial complex IV carries out oxygen reduction, the final step of the electron 

transport process (Lehninger et al., 2005; Nicholls and Ferguson, 2002). Cytochrome c initially 

transfers an electron to one of the copper centers (CuA); the electron is subsequently transferred 

through cytochrome a, cytochrome a3, and a second copper center (CuB), in that order, before it 
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is accepted by the molecular oxygen. Translocation of one proton to the intermembrane space 

occurs for each electron transported through complex IV.  

 The protonmotive force generated by extrusion of protons into the intermembrane space 

is utilized by the mammalian F0F1-ATP synthase enzyme to generate ATP (Lehninger et al., 

2005; Nicholls and Ferguson, 2002; Suski et al., 2011). This enzyme channels the passive 

reentry of protons into the mitochondrial matrix and couples the process of energy generation 

with the electron transport. For every three protons reentering the mitochondrial matrix, one ATP 

molecule is generated and released into the matrix. In the absence of sufficient protonmotive 

force, F0F1-ATP synthase enzyme acts as an ATPase and pumps protons into the intermembrane 

space in order to maintain the protonmotive force. Since the phosphorylation of ADP is coupled 

to oxygen reduction, this process is known as oxidative phosphorylation (Figure 1.10). 

 

 

Figure 1.10 Mitochondrial electron transport chain and oxidative phosphorylation. Reproduced 
with permission from Dr. Dale G. Nagle (Nagle and Zhou, 2010).



37 
 

1.3 Natural product mitochondriotoxic small molecules  
 

Though mitochondrial inhibitors are valuable antitumor leads, exposure to 

mitochondriotoxic agents may lead to idiosyncratic toxicity. Over the past decade, it has become 

increasingly apparent that some of the FDA approved drugs have unexpected toxicity because of 

their effects on the mitochondria. The role of mitochondrial impairment in drug toxicity has 

gained considerable attention (Dykens and Will, 2007). Aerobically poised tissues with a high 

mitochondrial dependence, and tissues exposed to high drug concentrations (e.g., liver) are 

commonly affected by drug-induced mitochondrial dysfunction (Wallace, 2008; Labbe et al., 

2008). The most common manifestation of drug-induced mitochondrial impairment is 

hepatotoxicity (Sanchez et al., 2006). Other major symptoms include cardiotoxicity, 

nephrotoxicity, neuropathy, skeletal myopathy, retinopathy, ototoxicity, hepatic steatosis, and 

hematotoxicity (Haller and Benowitz, 2000; Gabardi et al., 2007; Palmer et al., 2003). Typically, 

chronic use of these drugs leads to mitochondria-mediated toxicity, because a threshold level of 

cellular mitochondrial dysfunction is required to trigger cell collapse and tissue injury (Scatena 

et al., 2007). However, high doses of certain drugs [e.g., acetaminophen] are capable of inflicting 

acute liver injury and hepatic failure (Chun et al., 2009). 

Every year, numerous new drug applications are denied, and a small percentage (2 – 3%) 

of clinically approved drugs is withdrawn from the market due to adverse effects. Most drugs 

with FDA Black Box Warnings for hepatotoxicity and cardiotoxicity are known mitochondrial 

poisons (Dykens and Will, 2007). 

Apart from the clinically approved drugs, many small-molecule natural products have 

been reported to cause mitochondrial dysfunction in experimental settings (Nagle and Zhou, 

2012). The most common mechanisms for mitochondrial dysfunction following an exposure to 
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drugs or natural phytohemicals/environmental toxins are: (a) inhibition of oxidative 

phosphorylation and (b) uncoupling of oxidative phosphorylation (Scatena et al. 2007). 

Inhibition of oxidative phosphorylation may occur at any of the electron transport chain 

(ETC) protein complexes (complexes I to IV) or at the F0F1-ATP synthase (aka complex V). 

Mitochondrial ETC complex I (NADH-ubiquinone oxidoreductase) is the most common target 

of small-molecule inhibitors (Degli Esposti, 1998). The simplistic structural feature for complex 

I inhibition is a cyclic head and a hydrophobic tail (Degli Esposti, 1998; Wallace, 2008). More 

than 60 classes of compounds have demonstrated complex I inhibitory activity (Wallace, 2008). 

The previously discussed group of natural products 2 and 7 – 22, inhibit mitochondrial complex I 

and subsequently inhibit HIF-1 activation. Natural products that inhibit complex I can be broadly 

categorized into six groups; (a) rotenoids, (b) piericidins, (c) annonaceous acetogenins, (d) 

antibiotics, (e) vanilloids, and (f) miscellaneous plant products (Degli Esposti, 1998). This 

classification is somewhat arbitrary, and according to this classification most of the earlier 

mentioned complex I inhibitors fall into the rotenoid, acetogenin, and miscellaneous categories.  

 Among the natural products, rotenone (2) was isolated from a variety of plants from the 

Fabaceae family (Jiang et al., 2012; Kamal and Mathur, 2010; Liu et al., 2009a; Mai et al., 2010; 

Cao et al., 2004). Rotenone is a well-studied complex I inhibitor that is the prototype for the 

rotenoid class of mitochondrial inhibitors. Rotenone is used as a natural insecticide, fish toxin 

and it is routinely used as a pharmacological/molecular probe in mitochondrial mechanistic 

studies (Radad et al., 2006; Liu et al., 2009a). Deguelin (29) (Figure 1.11) is another rotenoid 

that is produced by the African terrestrial plant Mundulea sericea (Willd.) A. Chev. 

(Leguminosae). Deguelin is a potent complex I inhibitor that is used as a pesticide (Clark, 1931).  
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Piericidin A (28) is a Streptomyces sp.-derived antibiotic that inhibits mammalian and 

bacterial NADH:ubiquinone oxidoreductase (Tamura et al., 1963). It is believed to inhibit 

ubiquinone reduction by preventing access of ubiquinone to the ubiquinone-binding site 

(Friedrich et al., 1994).  

 Annonaceous acetogenins are a group of natural product small-molecules, which are 

isolated from plants belonging to the family Annonaceae. The complex I inhibitory properties of 

acetogenins have been widely studied (McLaughlin, 2008). They have been shown to inhibit 

complex I at nanomolar concentrations, in various experimental models that include bovine heart 

mitochondria, bovine submitochondrial particles, and human cell lines. More than 350 

anonaceous acetogenins from 37 species have been identified from 1982 to 1998 (Alali et al., 

1999). Some of the representative compounds from this group include bullatacin (30), uvaricin 

(31), diepomuricanin B (32), and muconin (33) (McLaughlin, 2008; Alali et al., 1999).  

 Structurally diverse compounds from higher plants have also been shown to inhibit 

mitochondrial complex I. Many plant alkaloids are known mitochondrial toxins. The plant 

alkaloid berberine (34), inhibits complex I in rat skeletal muscle cells (IC50 15 µM) (Turner et 

al., 2008). The opium alkaloid papaverine (35) inhibits state 3 respiration at complex I in isolated 

mouse-brain mitochondria (IC50 6.45 µM) (Morikawa et al., 1996). Another group of 

phytochemicals which has shown to interfere with mitochondrial complex I activity are the 

flavonoids. Some of the flavonoids that inhibit complex I enzymatic activity include quercetin 

(36), kaempferol (37), and apigenin (38) (Lagoa et al., 2011).  

 Several antibiotics specifically inhibit mitochondrial complex I, these include phenoxan 

(39), thiangazole (40), aureothin (41), and cochlioquinone B (42) (Friedrich et al., 1994; Lim et 

al., 1996). Cinnamaldehyde (43) (Usta et al., 2002), acrolein (44) (Sun et al., 2006), eugenol (45) 
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(Usta et al., 2002; Cotmore et al., 1979), 2',4'-dihidroxy-5'-(1'''-dimethylallyl)-6-

prenylpinocembrin (6PP, 46) (Elingold et al., 2008), and 4,20-dideoxyphorbol-12,13-

bis(isobutyrate) (47) disrupt complex I activity (Betancur-Galvis et al., 2003). Apart from 

complex I inhibition, 44 and 45 inhibit complex II and uncouple oxidative phosphorylation, 

respectively (Sun et al., 2006; Cotmore et al., 1979).  

 Specific complex II (succinate dehydrogenase) inhibition by xenobiotics is uncommon 

relative to the inhibition of other complexes. Chloramphenicol succinate (48) (Ambekar et al., 

2004), surangin B (49) (Deng and Nicholson, 2005), siccanin (50) (Mogi et al., 2009), and 

doxorubicin (51) (Marcillat, 1989) inhibit complex II activity. Acrolein and surangin B have 

been shown to inhibit other respiratory complexes too (Sun et al., 2006; Deng and Nicholson, 

2005). 
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Figure 1.11 Natural products that inhibit mitochondrial complex I (NADH:ubiquinone 
oxidoreductase). 
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Figure 1.12 Natural products that inhibit mitochondrial complex I (NADH:ubiquinone 
oxidoreductase). 
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Figure 1.13 Natural products that inhibit mitochondrial complex II (succinate dehydrogenase). 
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Mitochondrial complex III (cytochrome bc1-complex, ubiquinol:cytochrome c 

oxidoreductase) is a major site for inhibition by small-molecules (Thierbach and Reichenbach, 

1981; Von Jagow et al., 1986; Bell et al., 2007; Brandt et al., 1988). Inhibition of complex III 

often produces significant toxicity. Hence, molecules that inhibit complex III are devoid of 

clinical utility. Natural product-derived quinol antagonists, such as myxothiazol (4) (Thierbach 

and Reichenbach, 1981), strobilurin A (52) (Von Jagow et al., 1986), stigmatellin (5) (Bell et al., 

2007), and oudemansin (53) (Brandt et al., 1988), inhibit complex III at the Qo site by blocking 

the oxidation of ubiquinol to ubiquinone. Compounds that contain a 6-hydroxyquinone moiety 

inhibit the transfer of electron between the Rieske protein and cytochrome c1 (Von Jagow and 

Link 1986). 

The complex III inhibitor, antimycin A (6), blocks electron transfer at the Qi center 

(Chandel et al., 1998). Together with funiculosin (54), the Qi center inhibitors comprise a third 

group of the complex III inhibitors (Von Jagow and Link, 1986). However, certain complex III 

inhibitors, such as myxothiazol (4) and stigmatellin (5) also inhibit complex I at higher 

concentrations (Degli Esposti et al., 1993). Sorgoleone (55), a benzoquinone derivative, inhibits 

plant mitochondria at complex III (Rasmussen et al., 1992). Rubratoxin B (56) (Hayes, 1976), 

lamellarin D (57) (Ballot et al., 2010), and polyalthidin (58) (Zafra-Polo et al., 1996) also inhibit 

complex III. 

 Natural product complex IV inhibitors are rare. The xanthone α-mangostin (59) inhibits 

mitochondrial complex IV and reduces oxygen consumption rates under state 3 respiration 

conditions. However, 59 increases state 4 respiration most likely by uncoupling oxidative 

phosphorylation (Martinez-Abundis et al., 2010). Cyanides or azides are used to inhibit complex 

IV in mitochondrial mechanistic studies. 
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Figure 1.14 Natural products that inhibit mitochondrial complex III (coenzyme Q:cytochrome c 
oxidoreductase) (52 – 58) and complex IV (cytochrome c oxidase) (59). 
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 The F0F1-ATP synthase generates ATP in the mitochondria and is also known as complex 

V. Several antibiotics potently inhibit this enzyme. Some of the macrolide natural products that 

inhibit F0F1-ATP synthase are apoptolidin (60) (Salomon et al., 2001), the oligomycins 

(oligomycin A, 61) (Linnett and Beechey, 1979), aurovertin B (62) (Gledhill and Walker, 2006), 

venturicidin A (63) (Matsuno-Yagi and Hatefi, 1993), ossamycin (64), and cytovaricin (65) 

(Salomon et al., 2000). Polyphenols bind to and inhibit mammalian F0F1-ATP synthase. Notable 

polyphenols that inhibit the enzymatic activity are resveratrol (66), piceatannol (67), quercetin 

(36), and epigallocatechin gallate (68) (Gledhill et al., 2007). Cruentaren A (69), a benzolactone, 

has been reported to inhibit F0F1-ATP synthase at low nanomolar concentrations by binding to 

the catalytic F1-subunit of the enzyme (Kunze et al., 2007). 

Protonophores uncouple oxidative phosphorylation by shuttling protons directly across 

the mitochondrial inner membrane to the mitochondrial matrix, and dissipate the mitochondrial 

membrane potential (Kessler et al., 1977). Thereby, uncouplers disrupt ATP synthesis by 

preventing proton channeling through the F0F1-ATP synthase. In order to maintain the 

mitochondrial membrane potential, the F0F1-ATP synthase starts hydrolyzing ATP and pumping 

protons into the intermembrane space, which can leads to cellular ATP depletion, and subsequent 

cytotoxicity (Das, 1998). 

 Usnic acid (70) is a popular lichen-derived dietary weight-loss supplement in the US 

(Sanchez et al., 2006). Usnic acid and the other lichen metabolite, vulpinic acid (71), potently 

uncouple isolated mice-liver mitochondria (Abo-Khatwa et al., 1996). Steviobiosides are natural 

product small-molecules from Stevia rebaudiana (Bertoni) (Asteraceae) that are used as natural 

sweeteners (Goyal et al., 2010). Isosteviol (72), obtained by stevioside acid hydrolysis, potently 

uncouples oxidative phosphorylation (Kelmer Bracht et al., 1985). Natural products, such as 
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rottlerin (73) (Soltoff, 2001), juglone (74) (Sailing et al., 2011), Δ9-tetrahydrocannabinol (75) 

(Sarafian et al., 2003), ferulenol (76) (Nadia et al., 2009), desaspidin (77) (Runeberg, 1962), and 

ochratoxin (78) (Wei et al., 1985), uncouple mitochondrial oxidative phosphorylation. Recently 

the three isocoumarins paepalantine (79), paepalantine-8,8'-dimer (80), and vioxanthin (81) that 

are produced by Paepalanthus bromelioides (Silveira) (Eriocaulaceae) have been identified as 

mitochondrial uncouplers (Calgaro-Helena et al., 2006). 

 Apart from purified compounds with well-defined mechanisms of action, several plant-

derived extracts and dietary supplement products disrupt mitochondrial electron transport or 

uncouple oxidative phosphorylation. The extract of Phyllanthus urinaria Linn. (Euphorbaceae) 

has been shown to exert a biphasic effect on isolated rat-liver mitochondria. Phyllanthus urinaria 

extract was reported to stimulate state 4 respiration but inhibits state 3 respiration at 500 µg/mL 

(Chudapongse et al., 2010). An extract of Cynara scolymus Linn.  (Asteraceae) was reported to 

inhibit more than one mitochondrial respiratory complex (Juzyszyn et al., 2010). Interestingly, a 

mixture of β-carotene cleavage products inhibited mitochondrial respiration (Siems et al., 2002). 

It was proposed that the inhibition of adenine nucleotide transporter was responsible for this 

effect. 
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Figure 1.15 Natural product small-molecules that inhibit mitochondrial F0F1-ATP synthase. 
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Figure 1.16 Natural product small-molecules that inhibit mitochondrial F0F1-ATP synthase. 
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Figure 1.17 Natural product small-molecules that uncouple oxidative phosphorylation. 
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1.4 Conclusions 
 

The contemporary oncology drug discovery process is increasingly focusing toward 

molecular-targeted approaches. Identification of molecular targets and HTS lead generation are 

at the core of this process. Molecular-targeted drug discovery approach has found only limited 

success in the generation of new therapeutic agents (e.g., tamoxifen, Gleevec®, and Velcade®). In 

order to increase the success rate of molecular-targeted antitumor drug discovery, the selection of 

a valid molecular target, a robust assay system and an appropriate endpoint are essential. 

Hypoxia-inducible factor-1 is a valid antitumor target in oncology research. Agents that inhibit 

HIF-1 are currently in clinical trials (e.g., topotecan, EZN-2968, and dutasteride). Natural 

products are extensively used in current antitumor therapies. Efforts to develop clinically useful 

HIF-1 inhibitors from natural products are underway (Onnis et al., 2009). 

As a transcription factor, HIF-1 controls expression of genes that modulate cellular 

metabolism and bioenergetics. It has been hypothesized that HIF-1 induces aerobic glycolysis by 

actively downregulating mitochondrial oxidative metabolism and upregulating glycolytic 

enzyme activities. Tumor cell metabolism, especially glycolysis, is an emerging target for 

antitumor therapy. In addition, mitochondria-targeted agents are also being evaluated as possible 

antitumor leads. Indeed, disruption of cellular bioenergetics by mitochondrial ETC inhibitors, 

uncouplers, and glycolysis inhibitors suppress HIF-1 activation. The inhibition of HIF-1 makes 

tumor cells more susceptible to the existing chemotherapy (Song et al., 2006; Chang et al., 2006; 

Moeller et al., 2005; Schwartz et al., 2009). In spite of the association between enhanced 

glycolytic metabolism and poor prognosis/advanced disease stage, there has only been limited 

effort to discover glycolysis inhibitors. 
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Mitochondrial inhibitors can be valuable antitumor leads, but toxic effects from off-target 

mitochondrial ETC inhibition may be observed in healthy individuals. This is exemplified by the 

fact that several clinically approved drugs (e.g., troglitazone and cerivastatin) (Dykens and Will, 

2007) have been withdrawn from the market due to their off-target mitochondrial effects. The 

possibility of idiosyncratic adverse effects from botanical dietary supplements may be 

underestimated relative to synthetic drugs, especially because natural products are becoming 

more recognized as a major source of mitochondrial toxins. Identification of mitochondrial 

toxins from botanical dietary supplements can facilitate better understanding the mechanisms 

responsible for the adverse effects associated with botanical dietary supplement (BDS) products 

and the possible withdrawal of potentially toxic supplements from the market. 
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2.1 Overview 

2.1.1 Introduction 

 Natural products and natural product-rich extracts have been extensively used for 

medicinal purposes in traditional medicinal systems worldwide (Harvey, 2008). Numerous 

natural product-based drugs have become available in the clinic for disease treatment and 

management over the past 30 years (Newman and Cragg, 2012). Most preliminary drug 

discovery efforts screen natural product-rich extracts or purified compounds for specific 

bioactivities in vitro. Once an extract is identified as an ‘active’ or a hit in the molecular-targeted 

bioassay, the extract is subjected to chromatographic separation to isolate the molecules 

responsible for the bioactivity.  Chromatographic separation can be chemistry-guided or 

bioassay-guided. In the chemistry-guided approach, compounds are isolated in a bioactivity-

blind manner. In the bioassay-guided isolation approach, the fractions are generated and 

evaluated in the molecular-targeted bioassay and only the active fractions are subjected for 

further purification. In both cases, suitable normal or reversed-phase chromatographic media or 

size-exclusion resins (Si gel, diol, C8, C18, Sephadex®LH-20) are used to fractionate the bioactive 

chemical constituents to pure form. The synthetic polymer-based medium DiaionTM HP20SS 

(cross-linked polystyrenic matrix) is an alternative to Si gel or more expensive bonded-phase 

media and size-exclusion resins. A common problem in the natural products drug discovery 

process is poor sample recovery or/and the loss of bioactivity of fraction(s) subsequent to the 

chromatographic separation process. Hence, selection of appropriate chromatographic media for 

each fractionation or purification step is critical for the successful isolation of bioactive 

compounds. However, no report is available that directly evaluates and compares these various 

chromatographic media used for natural product drug discovery. 
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 Hypoxia-inducible factor-1 (HIF-1) has emerged as an important molecular target for 

antitumor drug discovery (Semenza, 2008). A cell-based reporter assay was used to examine a 

library of extracts from the NCI’s Open Repository.  Bioassay-guided isolation had been 

hampered by the prevalence of biologically active, yet chromatographically unstable, extract 

components.  For a comparative evaluation of the chromatographic media, an array of 

chemically diverse extracts was selected as a representative test panel.  Diaion® HP20SS was 

evaluated side-by-side with normal-phase media for the loss of recovery due to irreversible 

binding. Additional recovery by EtOAc and other non-polar solvents added to a typical HP20SS 

elution system was examined. Various solvent fractions from a single column were pooled and 

subjected for TLC to observe any major chemical alterations. Chemical profiles of the individual 

solvent fractions including the final EtOAc elute from HP20SS were examined by TLC. The 

HIF-1 inhibitory activities of the recombined extracts were compared side-by-side with the 

activities of the original extracts to assess the impact of various chromatographic media on the 

HIF-1 inhibitory activity of natural product-rich extracts. 

 

2.1.2 Evaluation of natural products for drug discovery 

 The success of natural products as a source of chemically and mechanistically novel drug 

leads has been unparalleled. In the last three decades, 34% of small-molecules approved by the 

FDA to be used therapeutically were either natural products or were directly derived from them 

(Newman and Cragg, 2012). However, with the invention of high-throughput screening (HTS) 

technologies, the pharmaceutical industry has lost interest in natural products in a shift toward 

the screening of synthetic pure compound libraries as a primary source of new drug leads 

(McChesney et al., 2007). This decline in interest in natural products stems from the much more 
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resource and time intensive nature of traditional extract testing and isolation efforts when 

compared to the rapid HTS and identification of the ‘hits’ from the synthetic pure compound 

libraries. Dereplication of nuisance, ubiquitously active, or previously known compounds present 

in the extracts and potential new molecule structure elucidation problems present major 

challenges with natural product-based drug discovery efforts. Moreover, varying active principle 

potency and abundance in the extracts can add another level of complexity that leads to false 

positives or negatives (Koehn, 2008). Technological advances have helped to promote the 

development of new approaches to overcome some of these challenges. Recent improvements in 

the NMR spectroscopic and mass spectrometric methods have simplified minute sample natural 

product structural elucidation. Advances in screening technologies, such as the quantitative high-

throughput screening (qHTS) approach, is currently used to minimize the generation of false 

positives and negatives (Inglese et al., 2006). However, the generation of chemically diverse 

drug-like screening libraries still remains a limiting step for the success of many drug discovery 

programs (Koehn, 2008). To improve natural product screening library acceptability, 

prefractionated, semipurified and purified natural product libraries are slowly replacing the 

traditional extract-based sample libraries (Bugni et al., 2008a). Both pure compound libraries 

and extract-based libraries are being generated by the National Institutes of Health (NIH) at the 

National Cancer Institute (NCI), but the pharmaceutical industry has shifted away from the use 

of the extracts to focus only on the purified compounds (NIH Molecular Libraries Program: 

pathways to discovery, website accessed on 03/11/2012; Newman and Nagle, personal 

communication, 2008). 

 The University of Mississippi (UM), Department of Pharmacognosy’s Molecular-

Targeted Antitumor Discovery Group runs a HIF-targeted drug discovery program. Hypoxia-
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inducible factor-1 has been identified as an important potential molecular target in treatment of 

solid tumors (Semenza, 2008). Solid tumors often outgrow the blood vessels that supply them 

with essential oxygen and nutrients. This creates a low oxygen or ‘hypoxic’ environment within 

the tumor mass. Tumor-hypoxia causes activation of an oxygen-sensitive heterodimeric 

transcription factor HIF-1 constituted by an α and a β subunit. Though HIF-1α protein is 

constitutively expressed in the cytosolic compartment of cells, it is rapidly degraded by the 26S 

proteosome with a short half-life (approximately 5 min) under the normoxic conditions (Ke and 

Costa, 2006). However, hypoxic conditions prevent the oxygen-dependent degradation of HIF-

1α and cause HIF-1α stabilization. Stabilized HIF-1α subunit translocates into the nucleus, forms 

a complex with HIF-1β and transcriptionally regulates more than 100 genes that produce an 

overall effect that helps the tumor cells to adapt and survive under hypoxic stress (Sememza and 

Wang, 1992; Semenza, 2008). Activated HIF-1 has been associated with increased 

aggressiveness and resistance to both chemotherapeutic agents and radiation therapy (Tatum et 

al., 2006). To date, there is no approved therapeutic agent that specifically target HIF-1 for 

treatment of cancer. Considerable efforts are underway to discover clinically useful HIF-1 

inhibitors (Onnis et al., 2009). In our laboratory, over 60,000 extracts from the NCI Open 

repository of marine invertebrates and higher plants were evaluated for their abilities to inhibit 

hypoxia-induced HIF-1 activation in a cell-based reporter assay (a molecular-targeted assay for 

antitumor drug discovery). The hits were prioritized and then subjected to confirmatory assays 

and a dereplication process before subjecting them to bioassay-guided isolation. 
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2.1.3 Selection of chromatographic media for bioassay-guided isolation and natural 

products stability studies 

Traditionally a chemistry-based phytochemical approach was used to fractionate, isolate 

and purify the bioactive compounds from natural sources. However, bioassay-guided 

fractionation has found favor as laboratories shifted to an emphasis on the modern molecular-

targeted drug discovery. Following biological evaluation, active extracts are initially fractionated 

into 5-10 fractions which have distinctly different chemical compositions as determined by TLC. 

These fractions are dried and dissolved in an assay-compatible solvent and evaluated in the 

original bioassay system. The steps are repeated until purified compounds are identified that are 

responsible for the observed bioactivity. The bioassay-guided approach has the advantage of 

ignoring the inactive fractions or compound, in favor of active constituents. Appropriate assay 

design can differentiate the cytotoxic compounds from the ‘active’ compounds and increase the 

hit rate with reduced effort. The selection of chromatographic media is a critical step for a 

successful bioassay-guided isolation of active compounds. Exposure to inappropriate 

chromatographic media can cause catalytic degradation or irreversible binding of the compounds 

to the solid phase. This can lead to a loss of bioactivity or the production of artifactual 

compounds. In a bioassay-guided isolation process, inappropriate medium selection in any one of 

the fractionation steps can result in partial or complete loss of bioactivity in the subsequent 

fractions. Routinely used chromatographic media can be broadly classified into normal-phased or 

bonded normal-phased (Si gel, diol), styrene-divinylbenzene polymers and bonded reversed-

phases (C8, C18, phenyl-hexyl). Inexpensive Si gel is often used for initial fractionation of 

extracts by normal-phase separation (Linington et al., 2007). However, Si gel irreversibly binds 

certain natural products and promotes the acid-catalyzed rearrangement or degradation of others. 
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To overcome this problem, Si gel is often substituted with C8, C18, phenyl-hexyl or diol bonded-

phase media. Among these, C8, C18, and phenyl-hexyl are used for reversed-phase separation and 

provide versatility in the separation process. Diol bonded-phase media is used as a chemically 

less reactive alternative for normal-phase separations where Si gel-like elution properties are 

required. However, large scale usage of these bonded-phase media is often limited by their 

relatively high cost. Diaion HP20SS is a synthetic styrene-divinylbenzene polymer used for 

reversed-phase like separation. It is less reactive, reusable and has emerged as a possible 

substitute for Si gel for mass use (Bugni et al., 2008b). Though HP20SS is more expensive than 

Si gel, it is much more economical than the bonded-phase materials and suitable for repeated 

use. Diaion HP20SS provides an aromatic surface on which aromatic molecules are adsorbed by 

Van der Waal’s forces (Shimizu, 2005). Sephadex® LH-20 is another chromatographic medium 

which is often used in natural product isolation. It is a hydroxypropylated dextran and works 

through gel permeation mechanisms (Seidel, 2005). Our HIF-1 bioassay-guided natural product 

isolation efforts were found to be severely hampered by the loss of bioactivity following routine 

fractionation protocols with Si gel. A variety of chromatographic media are used in the field of 

natural product drug discovery. However, these media have not been subjected to side-by-side 

comparison studies for their advantages/disadvantages in natural product based drug discovery 

efforts. Our objective of this study was to (a) characterize the elution profile of HP20SS; (b) 

compare the potential of various chromatographic media for irreversible binding of natural 

products present in plant extracts; and (c) examine the potential of these alternative media to 

reduce the loss of bioactivity in a typical reporter-based molecular-targeted (HIF-1) bioassay. 
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2.2 Materials and methods 

2.2.1 General Experimental Procedures 

 The TLCs were performed using Merck Si60F254 or Si60RP18F254 plates, visualized under 

UV at 254 nm and heated after spraying with a 10% H2SO4 solution in EtOH. The solvents were 

purchased from Fisher Scientific unless otherwise specified. The Si gel (32-63 μM) was 

purchased from Selecto Scientific and HP20SS ((Diaion 75 -100 μM, Supelco), Diol (50 µM, 

Discovery® Supelco) and Sephadex LH-20 was purchased from Sigma. 

 

2.2.2 Preparation of columns 

 Miniature columns of Si gel, HP20SS, Diol, and Sephadex LH-20, were prepared by 

packing the pasture pipettes (Corning) with each respective chromatographic medium. Each 

column was 7.5 cm long with 0.55 cm internal diameter. The Si gel and diol were activated 

before elution by heating at 110°C for 30 min and then cooling to room temperature immediately 

before packing the columns. The HP20SS columns were washed with EtOAc and then with 

MeOH  prior to the elution of the extracts. 

 

2.2.3 Preparation and elution of extracts 

 Punica granatum L. (Puniaceae) freeze-dried juice, Vaccinium macrocarpon A. 

(Ericaceae) spray-dried juice, P. granatum, Aspalathus linearis (Burm. F) Dahlg. (Fabaceae), 

and Cyclopia intermedia L. (Fabaceae) extracts were kindly provided by Dr. Daneel Ferreira, 

(University of Mississippi, Department of Pharmacognosy). Curcuma longa L. (Zingiberaceae) 

powder (McCormik) was purchased from local store and extracted with several volumes of 

EtOH (500 mL) at 24 hour intervals by maceration at room temperature until the supernatant was 
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almost colorless.   Podophyllum peltatum L. (Berberidaceae) root materials were collected from 

Oxford, Mississippi in the US and stored at -80°C and air dried at 40°C. Dried roots and 

rhizomes of P. peltatum were crushed in a mortar and pestle and extracted with EtOH (500 mL) 

at room temperature by several macerations at 24 hour intervals until the extract was almost 

colorless. Saururus cernuus sec-butanol/water partitionate was prepared previously by Dr. 

Chowdhury Faiz Hossain (Hossain et al., 2005). Briefly, S. cernuus underground parts were 

extracted with CH2Cl2 and MeOH and combined. The combined extract was dissolved in CHCl3 

and partitioned with water. Then the water residue was partitioned with sec-butanol to obtain the 

sec-butanol/water partitionate. Commercially available Asimina triloba dietary supplement 

capsules (Nature’s Sunshine) were purchased and the capsule contents were extracted with 

several volumes of 500 mL CH2Cl2 at room temperature by maceration till the supernatant was 

colorless. The solvent was replaced every 24 hours and the extract was used for the subsequent 

experiments. Citrus reticulata B. (Rutaceae) fruits were purchased from local store and the peels 

were air dried. The dried fruit peels were extracted with several volumes of EtOH until the 

supernatant was almost colorless. The C. reticulata EtOH-extract was used for subsequent 

experiments. All the extracts were dried and stored at -20 °C freezer. 

The dried extracts were first weighed accurately to one-tenth of a milligram in small vials 

and dissolved in EtOH at a concentration of 200 mg/mL. Because not all the extracts were 

completely soluble in EtOH, the partially soluble extracts were first dissolved in a small amount 

of a water-EtOH (50:50) mixture and then diluted with EtOH to get the target concentration. The 

columns were loaded with the stock solution (30 mg, 150 µL). As controls, identical volumes 

(150 µL) of the stock solutions were placed directly in pre-weighed vials and were dried (n = 3). 

These served as controls for the losses in recovery due to sample handling and in the TLC 
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analysis. For the Sephadex LH-20 columns, C. longa and C. reticulata extracts were dissolved in 

MeOH, filtered, and no significant extract residues remained on the filter papers. The columns 

were loaded with the MeOH soluble portions (150 µL). The extracts were allowed to sit on top 

of the columns for 30-45 min, and overnight for the diol columns.  The Si gel columns were 

eluted successively with hexanes (2 mL), EtOAc (5 mL), MeOH (5 mL) and water (2 mL), while 

the HP20SS columns were eluted successively with 50% MeOH-water (2 mL), MeOH (5 mL), 

EtOAc (5 mL) and hexanes (2 mL). Step gradients (100:0, 75:25, 50:50, 25:75, 0:100; 6 mL 

each) of water in isopropanol were applied for the elution of C. longa, C. reticulata and S. 

cernuus extracts. The combined dry weights of these fractions were used to calculate the total 

extract recoveries. Because solvent systems were unable to completely elute C. reticulata and C. 

longa from the columns (apparent yellow color on the columns, but the sample recovery loss was 

not statistically significant), we repeated the elution using a water-acetone step gradient in 

identical manner as the water-isopropanol system. Step gradients of hexanes-dichloromethane 

(9:1; 6 mL), dichloromethane-EtOAc (20:1; 6 mL), EtOAc (6 mL), EtOAc-MeOH (5:1; 6 mL) 

and MeOH (6 mL) were used to elute diol columns. Sephadex LH-20 columns were eluted with 

MeOH.  

 

2.2.4 Tumor cell culture and cell-based HIF-1 reporter assay 

 Human breast tumor T47D cells were purchased from ATCC and were maintained in 

Dulbecco’s Modified Eagle’s Mediun (DMEM) and Ham’s F-12 (1:1) media containing 2.5 mM 

L-glutamine (Mediatech). The medium was supplemented with fetal bovine serum (FBS, 10% 

v/v final concentration, Hyclone), penicillin (50 units/mL) and streptomycin (50 μg/mL) 

(pen/strep) (BioWhittaker). Exponentially grown T47D cells were transfected with the pTK-
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HRE3-luc reporter by electroporation using an ECM830 square wave electroporation system 

(BTX Inc) at 140 V for 70 ms (1 pulse). The transfected cells were plated at 3 x 104 cells per 

well into 96-well plates in a volume of 100 µL of DMEM/F12 medium supplemented with 10% 

FBS and antibiotics. After 24 h, the test compounds were diluted (2x final concentration) in 

DMEM/F12 medium with antibiotics, added in a volume of 100 µL per well, and the incubation 

continued for another 30 min at 37 °C. The cells were exposed to hypoxic (1% O2, 5% CO2, 94% 

N2) or normoxic (5% CO2, 95% air) conditions or hypoxia mimetic (1,10-phenanthroline, 10 

µM, Sigma) at 37 °C for 16 h. Hypoxic conditions were achieved by incubationg the cells in a 

humidified chamber (Billups-Rothenberg) that was purged with a hypoxic gas mixture (1% O2, 

5% CO2, 94% N2). The cells were then lysed using a lysis buffer (1%Triton X-100, 1 mM CaCl2, 

and 1 mM MgCl2 in 1 x phosphate buffered saline pH7.4) and luciferase activities determined 

following manufacturer’s instructions (Promega) using a microplate reader (Biotek).  The 

following formula was used to calculate the % inhibition data: 

% inhibition = (1 - luminescencetreated/luminescenceinduced) x 100 

Extracts for bioassay were prepared as stock solutions in DMSO and the final concentration of 

solvent was less than 0.5% (v/v) in all assays. 

 

2.2.5 Statistical Analysis  

Data was compared using the Student’s t test, one-way ANOVA and Bonferroni post hoc 

analyses (GraphPad Prism 5.0).  Differences were considered significant when p < 0.05. 
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2.3 Results and discussion 

2.3.1 Effects of chromatographic media and elution protocols on extract recovery  

 Ten natural product-rich extract samples from terrestrial plants, with chemically different 

HIF-1 inhibitory constituents were selected for evaluating the effects of chromatographic media 

on natural product metabolite recovery and HIF-1 inhibitory activity (Table 2.1).  

Natural product-rich mixtures Active constituents 

Pomegranate - Punica granatum( Punicaceae) extract Flavonoids, anthocyanins, tannins 
(Seeram et. al., 2006) 

Pomegranate juice - P.granatum juice  Flavonoids, anthocyanins (Seeram et. 
al., 2006) 

Cranberry – Vaccinium macrocarpon (Ericaceae) 
freeze-dried juice 

Polyphenols (Neto, 2007) 

Rooibos - Aspalathus linearis (Fabaceae) extract Flavonoids (Bramati et al., 2002)

Honeybush - Cyclopia intermedia (Fabaceae) extract Flavonoid glycosides (Kamara et al., 
2003) 

Tangerine - Citrus reticulata (Rutaceae) extract Flavonoid glycosides (Khan et al., 
2010) 

Turmeric - Curcuma longa (Zingiberaceae) extract Curcuminoids (Roth et al., 1998)

Lizard’s tail - Saururus cernuus (Saururaceae) sec-
butanol partitionate 

Sesquineolignans, dineolignans (Rao 
and Rao, 1990) 

Paw paw - Asimina triloba (Annonaceae) extract Annonaceous acetogenins 
(Coothankandaswamy et al., 2010) 

Mayapple - Podophyllum peltatum (Berberidaceae)  Lignans (Moraes et al., 2002)

 
Table 2.1 Selected extracts for comparative evaluation of chromatographic media 
 

Among the ten extract samples examined, V.  macrocarpon juice and extracts of A. 

triloba, and P. granatum showed a significant level of irreversible sample loss on Si gel columns 

when eluted with typically used solvent systems [hexanes, EtOAc, MeOH, and water for Si gel 

and MeOH-water (1:1), MeOH, EtOAc and hexanes for HP20ss] (Figure 2.1).  
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Figure 2.1 Recovery of extracts (30 mg; 150 µL stock solution) from various columns (     
HP20SS,      Si Gel) after elution with water-MeOH, MeOH, EtOAC and hexanes; (i) V. 
macrocarpon; (ii) A. triloba; (iii) P. granatum. Stock solutions (150 µL) was directly placed in a 
vial and dried (n = 3). The dried material served as sample recovery controls (     ). Data shown 
are average + standard deviation from three separate columns (n = 3). One-way ANOVA with 
Bonferroni post hoc test were applied to analyze the data using GraphPad Prism 5.0; Differences 
between data sets were considered statistically significant when p < 0.05 (* p < 0.05, ** p < 
0.01). 
 

Drastic losses in the masses of C. longa, C. reticulata and S. cernuus extracts were 

observed (approx 50%, data not shown) on both HP20SS and Si gel. Rather than irreversible 

binding, this suggested that these columns were insufficiently eluted by the initial solvent 

systems. Hence a water-isopropanol step gradient system was used to completely elute the C. 

longa, C. reticulata and S. cernuus extracts from the HP20SS columns. The weights of the 

combined water-isopropanol gradient fractions were used to calculate total recovery. This is 

particularly noteworthy that the use of the water-isopropanol gradient alone was unable to 

completely elute the C. longa and C. reticulata extracts from the HP20SS columns. A non-polar 

solvent such as EtOAc was required for significantly improve column recovery. The water-

isopropanol gradient system has been reported for natural product library production by the 

Ireland group (Bugni et al., 2008a; Bugni et al., 2008b) at the University of Utah and the Orjala 

group at the University of Illinois at Chicago to elute cyanobacterial extracts from HP20SS 

**

**

**

** *

i ii iii 
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columns (Sturdy et al., 2010). In the case of C. longa the total sample recovery was significantly 

increased (p = 0.0015) when a final EtOAc elution step was added to the typically used MeOH 

solvent system; while when compared with water-isopropanol gradient system alone, the 

increase in the total recovery with a final EtOAc elution step was marginally significant (p = 

0.0527). The recovery of A. triloba, and C. reticulata extracts also showed significant 

improvement following final elution with EtOAc (Figure 2.2). Previously reported water-acetone 

gradients (Boonlarppradab and Faulkner, 2007) completely eluted of C. longa extract from the 

HP20SS columns. 
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Figure 2.2 Eluting HP20SS column with non-polar solvent such as EtOAc can increase extract 
recovery. (i) Curcuma longa extract recovery using a water-MeOH system inclusive (     ) or 
exclusive (    ) of EtOAc elution (p = 0.0015); (ii) Curcuma longa extract recovery using a water-
IPA system inclusive or exclusive of EtOAc elution (p = 0.0527); (iii) Asimina triloba extract 
recovery using a water-MeOH system inclusive or exclusive of EtOAc elution (p = 0.0009); (iv) 
Citrus reticulata extract recovery using a water-MeOH system inclusive or exclusive EtOAc 
elution (p = 0.0036).  Data shown are average + standard deviation from three separate columns 
(n = 3). Student’s paired t-test (two-tailed) was used to compare the data using GraphPad Prism 
5.0; Differences between data sets were considered statistically significant when p < 0.05 (** p < 
0.01, *** p < 0.001). 

** **

***

iii i ii iv 



67 
 

The Si gel elute of the P. peltatum extract showed a noticeable change in its chemical 

composition as observed by analysis of its TLC profile (Figure 2.3A). The C. reticulata (Figure 

2.3B) and C. longa (Figure 2.3C) extract TLC profiles indicated that considerable loss on the 

HP20SS columns can occur unless the media is subjected to further elution with a non-polar 

solvent such as EtOAc. 

 

 

 
Figure 2.3A TLC analysis of the Podophyllum peltatum extract exposed to elution with various 
chromatographic media. Notable chemical alterations in (Blue arrow) and active phytochemicals 
retained in EtOAc eluent (solid circle); 1 – Podophyllum extract, 2 – Combined Podophyllum 
fractions from a Si gel column, 3 – Combined water-MeOH fractions of Podophyllum from a 
HP20SS column and 4 – EtOAc wash of Podophyllum  from a HP20SS columns after water-
MeOH elution. C18 reversed-phase TLC eluted with 60% MeOH in water; Pigments = 
“bracketed” spots, UV254-absorbing compounds = “dotted circles” and 10% ethanolic sulphuric 
acid-charred compounds = “arrows”. 
 
 

1 2 3 4
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Figure 2.3B TLC analysis of the Citrus reticulata extract and fractions exposed to elution with 
various chromatographic media. 1 – C. reticulata extract, 2 – Combined C. reticulata fractions 
from a Si gel column, 3 – Water fraction of C. reticulata extract from a HP20SS column, 4 – 
Isopropanol-water (1:3) fraction of C. reticulata extract from a HP20SS column, 5 – 
Isopropanol-water (1:1) fraction of C. reticulata extract from a HP20SS column, 6 – Ipropanol-
water fraction (3:1) of C. reticulata extract from a HP20SS column, 7 – Isopropanol fraction of 
C. reticulata extract from a HP20SS column and 8 – EtOAc wash after isopropanol-water elution 
of C. reticulata extract from a HP20SS column; active phytochemicals retained in EtOAc eluent 
(solid circle); Si gel normal phase TLC eluted with hexanes:EtOAc (1:1). Pigments = 
“bracketed” spots, UV254-absorbing compounds = “dotted circles” and 10% ethanolic sulphuric 
acid-charred compounds = “arrows”. 
 

1 2 3 4 5 6 7 8 
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Figure 2.3C TLC analysis of the Curcuma longa extract and fractions exposed to elution with 
various chromatographic media.   1 – C. longa  extract, 2 – Combined C. longa fractions from a 
Si gel column, 3 – Isopropanol-water(1:3) fraction of C. longa extract from a HP20SS column, 4 
– Isopropanol-water (1:1) fraction of C. longa extract from a HP20SS column, 5 – Isopropanol-
water (3:1) fraction of C. longa extract from a HP20SS column, 6 – Isopropanol fraction of C. 
longa extract and 7 – EtOAc wash of C. longa extract from a HP20SS column after isopropanol-
water elution; active phytochemicals retained in EtOAc eluent (solid circle); Si gel normal-
phased TLC eluted with hexanes:EtOAc (1:1).  Pigments = “bracketed” spots, UV254-absorbing 
compounds = “dotted circles” and 10% ethanolic sulphuric acid-charred compounds = “arrows”. 
 

The extracts of C. longa, C. reticulata and S. cernuus were subjected to elution on diol, a 

chromatographic medium used by Dr. Gustafson (National Cancer Institute) for generating 

natural product libraries, to evaluate its elution properties (Gustafson and Nagle, personal 

communication, 2008). Of the three extracts, C. reticulata showed a significant loss of recovery 

on diol. The elution profiles of C. longa and C. reticulata extract MeOH soluble portions were 

evaluated on Sephadex LH-20. Citrus reticulata extract also showed a significant loss of 

recovery from Sephadex LH-20 (Figure 2.4).  

1 2 3 4 5 6 7
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Figure 2.4 Total recovery of C. reticulata extract from various chromatographic columns.   (i – 
Control, ii – HP20SS, iii – Si Gel, iv – Diol, v – Sephadex LH-20) Data shown are average + 
standard deviation (n = 3) and was analyzed by one-way ANOVA with Bonferroni post hoc test; 
using GraphPad Prism 5.0; Differences between data sets were considered statistically significant 
when p < 0.05 (* p < 0.05, ** p < 0.01). 
 

These results clearly indicate the potential of Si gel, relative to other chromatographic 

media, to cause an irreversible binding or chemical alteration of the plant extract chemical 

constituents. Use of Si gel as a chromatographic medium for fractionation of extracts obtained 

from terrestrial or marine organisms with an unknown chemical profile can result in a loss of 

potential chemical diversity, sample quantity or produce corresponding experimental artifacts. 

Although the alternative media evaluated such as diol-bonded phase and Sephadex LH-20 also 

caused observable losses in sample recovery that were elution protocol dependant, Si gel caused 

the greatest sample recovery loss. The water-isopropanol solvent systems used for the elution of 

HP20SS columns appear to be insufficient for the complete elution of extracts, especially for 

extracts with lipophilic constituents. Elution of HP20SS with non-polar solvents, such as EtOAc, 

prevents the loss of the intermediate to highly non-polar compounds. While certain drug 

discovery programs may choose to exclude these constituents because they may not serve as 

promising drug candidates due to their high lipophilicity, but they may serve as valuable 
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molecular probes or as potential ‘template’ molecules from which to construct potential drug 

candidates. Such considerations are of special importance in the generation of natural product-

rich extracts/fraction libraries. Another observation worth noting is that the use of non-polar 

solvents, such as EtOAc, cause elution of fine HP20SS particles during the separation process. 

However, this is preventable by first washing the HP20SS columns with EtOAc and then 

washing the column with MeOH. 

 

2.3.2 Effects of chromatographic media on extract HIF-1 inhibitory activity  

We examined whether exposure of the extracts to these chromatographic media affects 

extract bioactivities. The HIF-1 inhibitory activity of the extracts was evaluated using a 96-well 

plate-based method. Of the 10 extracts, A. triloba (0.5 µg/mL), C. reticulata (50 µg/mL), P. 

peltatum (50 µg/mL), S. cernuus (50 µg/mL), and C. longa (25 µg/mL) extracts inhibited HIF-1 

activity by > 50% (Figure 2.5) in the T47D cell-based HIF-1 reporter assay. Other extracts were 

inactive. However, the P. peltatum extract was excluded from further evaluation because it was 

highly unstable and decomposed during storage. The HIF-1 inhibitory activity of these extracts 

was not secondary to cytotoxic effects (cytotoxicity < 25%). In addition, a review of literature 

indicated that some of these extracts contain known HIF-1 inhibitors and it is unlikely that these 

extracts interfere with the luciferase assay system (Coothankandaswamy et al., 2010; Hodges et 

al., 2004; Choi et al., 2006). 
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Figure 2.5 Inhibiton of physiological hypoxia (1% O2) and 1,10-phenanthroline-induced HIF-1 
activation by active extracts. Data shown are average + standard deviation from single 
experiment assayed in triplicate.  
 

  

When C. reticulata and C. longa extracts were eluted through HP20SS medium, 

considerable active materials remained on the column until ultimately eluted with EtOAc. The 

EtOAc eluted material inhibited both hypoxia-induced (1% O2) and 1,10-phenanthroline (10 

µM)-induced HIF-1 activation at 50 µg/mL (suppression of cell viability  < 25%, data not 

shown) (Figure 2.6).  
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Figure 2.6 Inhibition of HIF-1 activity under physiological hypoxia (1% O2) and 1,10-
phenanthroline-induced HIF-1 activation by Citrus reticulata and Curcuma longa EtOAc eluates 
(50 µg/mL) from HP20SS columns. Data shown are average + standard deviation from one 
representative experiment in triplicate.  
 

All fractions obtained from each extract/column combination were recombined and 

evaluated for HIF-1 inhibitory activity to assess the impact of each media exposure on the 

extracts’ total bioactivity. Under physiological hypoxic conditions (1% O2), reconstituted C. 

longa extract samples from the HP20SS, Si gel, and diol columns were significantly less active 

relative to the original extract (Figure 2.7A). Under chemical hypoxia (1,10-phenanthroline, 10 

µM), reconstituted C. longa extract samples from both Si gel and HP20SS columns exhibited 

significantly lower activities (Figure 2.7B). For the reconstituted extract samples eluted from the 

Sephadex LH-20 and diol columns, there was no difference in activity when compared with the 

original extract. The inhibitory activity towards 1,10-phenanthroline-induced HIF-1 activation by  

the Si gel eluted C. reticulata pooled material was markedly reduced (Figure 2.7C). In all cases 

suppression of cell viability was ≤ 25% (data not shown). 
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Figure 2.7A Inhibition of physiological hypoxia-induced HIF-1 activation by recombined 
Curcuma longa eluates (25 µg/mL) [i – Control, ii – HP20SS, iii – Si Gel, iv – Diol, v – 
Sephadex LH-20]. The stock solution used to load the columns were placed in dried vials in 
identical volumes (n = 3). The HIF-1 inhibitory activity of the dried material served as control. 
Data represent average + standard deviation from one representative experiment in triplicate. 
Data was analyzed by one-way ANOVA with Bonferroni post hoc test; Differences between data 
sets were considered statistically significant when p < 0.05. (* p < 0.05, ** p < 0.01). 
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Figure 2.7B Inhibition of 1,10-phenanthroline-induced HIF-1 activation by recombined  
Curcuma longa eluates (25 µg/mL) [i – Control, ii – HP20SS, iii – Si Gel, iv – Diol, v – 
Sephadex LH-20]. The stock solution used to load the columns were placed in dried vials in 
identical volumes (n = 3). The HIF-1 inhibitory activity of the dried material served as control. 
Data represent average + standard deviation from one representative experiment in triplicate. 
Data was analyzed by one-way ANOVA with Bonferroni post hoc test; Differences between data 
sets were considered statistically significant when p < 0.05. (** p <0.01, *** p < 0.001). 
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Figure 2.7C Inhibition of 1,10-phenanthroline-induced HIF-1 activation by recombined Citrus 
reticulata eluates (50 µg/mL) [1 – Control, 2 – HP20SS, 3 – Si Gel, 4 – Diol, 5 – Sephadex LH-
20]. The stock solution used to load the columns were placed in dried vials in identical volumes 
(n = 3). The HIF-1 inhibitory activity of the dried material served as control. Data represent 
average + standard deviation from one representative experiment in triplicate. Data was analyzed 
by one-way ANOVA with Bonferroni post hoc test; Differences between data sets were 
considered statistically significant when p < 0.05. (*** p < 0.001). 
 

Both the original and reconstituted S. cernuus and A. triloba extracts selectively inhibit 

hypoxia-induced HIF-1 activation (1% O2). The S. cernuus extract lost activity upon Si gel 

elution. Similar loss was not observed upon HP20SS elution. The reconstituted A. triloba extract 

lost considerable HIF-1 inhibitory activity when eluted through HP20SS but retained its activity 

when eluted through Si gel (Figure 2.8A and 2.8B). The suppression of cell viability by S. 

cernuus and A. triloba column eluates was ≤ 20% in all cases (data not shown). 
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Figure 2.8A Inhibition of physiological hypoxia-induced HIF-1 activation by recombined 
Asimina triloba eluates (0.05 µg/mL) [i – Control, ii – HP20SS, iii – Si Gel]. The stock solution 
used to load the columns were placed in dried vials in identical volumes (n = 3). The HIF-1 
inhibitory activity of the dried material served as control. Data represent average + standard 
deviation from one representative experiment in triplicate. Data was analyzed by one-way 
ANOVA with Bonferroni post hoc test; Differences between data sets were considered 
statistically significant when p < 0.05. (*** p < 0.001). 
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Figure 2.8B Inhibition of physiological hypoxia-induced HIF-1 activation by recombined 
Saururus cernuus eluates (3.125 µg/mL) [i – Control, ii – HP20SS, iii – Si Gel]. The stock 
solution used to load the columns were placed in dried vials in identical volumes (n = 3). The 
HIF-1 inhibitory activity of the dried material served as control. Data represent average + 
standard deviation from one representative experiment in triplicate. Data was analyzed by one-
way ANOVA with Bonferroni post hoc test; Differences between data sets were considered 
statistically significant when p < 0.05 (* p <0.05). 
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Many laboratories identify molecular-targeted antitumor natural products through the use 

of bio-assay guided isolation approach. Because bioassay-guided fractionation relies on the 

bioactivity of extracts and subsequent fractions, loss of activity due to inappropriate 

chromatographic media selection, can significantly impact the drug discovery outcome. Three of 

the four extracts that inhibited HIF-1 activation, exhibited a significant loss of bioactivity when 

subjected to Si gel-based chromatographic methods. For C. longa extract, no loss in sample mass 

recovery was detected upon HP20SS or Diol elution, while considerable loss in bioactivity was 

observed. Only the extracts of A. triloba and C. longa lost significant HIF-1 inhibitory activity 

upon HP20SS elution relative to the original extracts. Moreover, neither extract showed 

significant mass loss upon HP20SS elution but A. triloba lost mass upon Si gel elution. Because 

A. triloba extract contains unsaturated, lipophilic active acetogenin constituents, it is possible 

that its active constituents bind to the aromatic skeleton of HP20SS by π-bonding. Because these 

extremely potent acetogenins are relatively minor extract components, the overall loss of sample 

mass was not statistically significant. Such sample losses can be prevented by eluting HP20SS 

with a highly non-polar solvent such as CH2Cl2 or hexanes. Although the loss of bioactivity upon 

elution through Si gel was apparent for some extracts, HP20SS elution may also cause 

significant losses in bioactivity. Hence, chromatographic media selection should prioritize 

alternatives to Si gel when possible, but the specific elution protocol when the HP20SS medium 

is selected should be carefully considered. Unless the aim of the separation is to include a 

“defattening” step to remove lipophilic compounds, HP20SS elution protocols must include a 

final non-polar wash with EtOAc, CH2Cl2 or other lipophilic solvent to ensure a more complete 

elution of sample than that may be obtained with commonly used aqueous-MeOH or aqueous-

isopropanol gradients. However, HP20SS columns must be prewashed with EtOAc and 
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equilibrated with MeOH to avoid elution of small HP20SS particles when the elution protocol 

involves a final non-polar solvent wash. 
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3.1 Overview 

3.1.1 Introduction 

 Tumor cells produce lactate as an end product of glucose catabolism in the presence of 

adequate oxygen. This phenomenon is known as ‘aerobic glycolysis’ (Gatenby and Gillies, 

2004). Tumor cells with a high rate of aerobic glycolysis are usually associated with poor 

prognosis, malignant aggressiveness, and resistance to standard therapeutic regimens (Mason et 

al., 2010; Wolf et al., 2011; Zhou et al., 2010; Pitroda et al., 2009; Klawitter et al., 2009). 

Aerobic glycolysis is less efficient in producing adenosine triphosphate (ATP) compared to 

oxidative phosphorylation (OxPhos).  However, it is hypothesized that generating energy 

through the glycolytic pathway constitutes an advantageous metabolic environment for 

unrestricted cell proliferation and tumor growth (Vander Heiden et al., 2009; Kroemer and 

Pouyssegur, 2008; Brand and Hermfisse, 1997). Metabolic targeting of tumors has been in the 

limelight for several decades (Papandreou et al., 2011). Inhibitors of the enzymes required for 

aerobic glycolysis are currently being explored for their therapeutic potential (Scatena et al., 

2008). Small-molecules that target aerobic glycolysis, such as 2-deoxy-D-glucose (2) and 

lonidamine (3) (Figure 3.1B), have undergone clinical evaluation for the treatment of refractory 

tumors (ClinicalTrials.gov, website accessed on 04/03/2012; Di Cosimo et al., 2003). 

Natural products from plants and marine organisms have been widely investigated as a 

potential source of new anticancer agents (Newman and Cragg, 2012). Natural products that 

target the mitochondria have been explored as a class of potential antitumor therapeutic agents 

(Wolvetang et al., 1994) and screening methods have been developed to identify mitochondrial 

inhibitors (Lin et al., 2008). However, there have been limited efforts to discover small-molecule 

inhibitors of aerobic glycolysis from natural sources (Kitagawa et al., 2011). 
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More than 10,000 lipid extracts from the National Cancer Institute’s (NCI) Open 

Repository of higher plants and marine invertebrates were examined to identifyr inhibitors of 

aerobic glycolysis (glycolysis inhibitors) from natural sources (hit rate 0.72%). The extract of 

Moronobea coccinea Aubl. (Clusiaceae) was ‘active’ in our screening assay. Polyprenylated 

benzophenone derivatives (PBDs), which had been previously isolated from the plant, were 

initially hypothesized to be responsible for its glycolysis inhibitory activity (Marti et al., 2009). 

A wide spectrum of activities including cytotoxic, antimicrobial, antioxidant, and anti-

inflammatory activities have been attributed to prenylated benzophenones isolated from the 

plants belonging to the family Clusiaceae (Acuna et al., 2009). Bioassay-guided isolation and 

structure elucidation led us to the discovery of moronone (1), a PBD with a new carbon skeleton. 

In this report, we describe the development of an assay system to screen for glycolysis inhibitors 

and the discovery of a protonophoric benzophenone derivative. The well studied protonophore 2-

[{4-(trifluoromethoxy)phenyl}hydrazinylidene]propanedinitrile (4)[FCCP] was also found to be 

active in our assay system. It was concluded that the protonophoric compounds or extracts 

containing protonophoric components are possible nuiscance compounds and needs to be 

dereplicated in order to successfully discover the glycolysis inhibitors. 

 

 

 

 

 

 

Figure 3.1A Structure of FCCP (4) and proposed structure of moronone (1)

 

FCCP (4) 

 
Moronone (1) 
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3.1.2 Cancer cell metabolism and bioenergetics  

 Normal mammalian cells generate ATP by metabolizing glucose through two 

complementary cellular pathways, i.e., glycolysis and OxPhos. Under aerobic conditions, the 

cellular glycolytic flux is limited. However, under anaerobic conditions, the lack of oxygen 

inhibits mitochondrial OxPhos, and pyruvate generated in the glycolytic pathway is converted to 

lactate in the cytosol (Kim and Dang, 2006). Hence, for non-malignant cells under anaerobic 

conditions, glycolysis is the major supplier of cellular ATP, while under aerobic conditions the 

ATP demands of the same cells are mainly met by ATP synthesized by OxPhos. 

 This bioenergetic homeostasis is altered in tumors. In tumor cells, the glycolytic flux is 

high, even in the presence of adequate oxygen. Increased glucose uptake, increased production of 

lactate from pyruvate and lower OxPhos by tumor cells, even under aerobic conditions, are 

collectively considered to be one of the hallmarks of cancer (Yeung et al., 2008). This 

phenomenon was first reported in the early twentieth century by Otto Warburg (Warburg, 1956), 

and is currently termed as the ‘Warbug effect’ or aerobic glycolysis.  A previous study estimated 

that 40-75% of cellular ATP production is generated by aerobic glycolysis (Mathupala et al., 

2010). However, a newer study has challenged the paradigm that aerobic glycolysis is the 

universally predominant ATP supplier for tumor cells (Zu and Guppy, 2004). This study 

indicates that the extent of ATP contribution by aerobic glycolysis can be cell line and tumor 

type-dependent. In some tumor cell lines, mitochondrial OxPhos has been known to contribute 

50-97% of cellular ATP generation (Moreno-Sanchez et al., 2009). Although aerobic glycolysis 

may not be the predominant energy generating pathway in all tumor cells, enhanced cellular 

glycolytic metabolism is often associated with poor prognosis, aggressiveness, and 

chemotherapy resistance (Mason et al., 2010; Wolf et al., 2011; Zhou et al., 2010; Pitroda et al., 
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2009; Klawitter et al., 2009).  Hypoxic conditions in tumor masses are hypothesized to be a key 

mediator of cellular dependence on glycolysis. Hypoxic conditions activate HIF-1 and induce 

more than 100 HIF-1-regulated genes in tumor cells, including multiple glycolytic enzymes (Ke 

and Costa, 2006). Specific isoforms of several glycolytic enzymes induced by HIF-1 (hexokinase 

II, phosphofructokinase-1 and lactate dehydrogenase isoform A) contribute to the glycolytic 

tumor cell phenotype. A major redistribution of hexokinase II (HKII), one of the four isoforms of 

the enzyme hexokinase, from the cytosol to the outer mitochondrial membrane occurs in tumor 

cells (Nakashima et al., 1986). The binding of HKII to the voltage-dependent anion channels 

(VDAC) on the mitochondrial outer membrane is believed to give the glycolytic enzyme 

preferential access to mitochondrial ATP. This preferential access to ATP enhances the catalytic 

activity of the enzyme (Arora and Pedersen, 1988). This binding of HKII to VDAC also may 

disable the activation of the mitochondria-mediated apoptotic pathway via Bax, a pro-apoptotic 

Bcl-2 family protein (Pastorino et al., 2002). Aerobic glycolysis is inefficient from the 

bioenergetics perspective, since the net ATP gain/mole of glucose in this process is 17–18 fold 

less than that of OxPhos. However, the predominantly glycolytic metabolism is hypothesized to 

create a pro-proliferation and pro-survival environment for tumor cells. Rapidly dividing cells in 

living tissues undergo similar metabolic rearrangements (Vander Haiden et al., 2009; Wang et 

al., 1976; Almeida et al., 2010; Herrero-Mendez et al., 2009; Colombo et al., 2010). As the cells 

rapidly multiply, they require biosynthetic building blocks such as amino acids, nucleic acids and 

lipids. Certain glycolytic intermediates, such as glucose-6-phosphate, can be utilized by pentose 

phosphate pathway to generate some of the components required for continuous cell division 

(Barger and Plas, 2010). In addition, evidence suggests that lactate is used as a substrate for 
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OxPhos, and a possible symbiotic relationship exists between the hypoxic and oxygenated cells 

in solid tumors (Sonveaux et al., 2008). 

 

3.1.3 The glycolytic pathway as an antitumor target 

 Selective tumor cell targeting is the single most important objective in antitumor drug 

discovery. Cancer researchers aim to identify the genetic, biochemical and structural differences 

between malignant cell and non-malignant cells. Enhanced tumor cell glucose consumption and 

increased dependence on the glycolytic pathway for ATP synthesis can be exploited to 

selectively target tumor cells. Indeed, inhibition of aerobic glycolysis has emerged as one of the 

potential adjuvant therapies to treat various solid tumors (Rodriguez-Enriquez et al., 2009; 

Cheng et al., 2012). Targeting glycolysis in tumor cells can potentially interfere with the 

intracellular signaling that stimulate uncontrolled proliferation, as well as enhance the efficacy of 

the conventional antitumor regimens (Scatena et al., 2008; Cheng et al., 2012). In addition, ATP 

depletion due to the inhibition of glycolysis can lead to the circumvention of multidrug resistance 

mechanisms (Nakano et al., 2011). Because tumore cells are more dependent on glycolysis for 

their energy needs, proliferation and survival, a comparatively small perturbation of the 

glycolytic pathway is expected to have higher impact on tumor cells relative to normal cells and 

thus result in a selective tumor cell targeting. 

 The enzyme hexokinase catalyzes the first step of glycolysis, i.e., phosphorylation of 

glucose. To date, this enzyme has been the most common target for the discovery of agents that 

inhibit aerobic glycolysis. Compounds that result in a decrease in hexokinase enzymatic activity, 

such as 2-deoxy-D-glucose (2) [2-DG] and lonidamine (3) (Figure 3.1B), have undergone clinical 

evaluation for the treatment of advanced malignancies, both as monotherapies and in 
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combination with other chemotherapeutic agents (ClinicalTrials.gov, website accessed on 

04/03/2012; Di Cosimo et al., 2003). The phase II clinical trial of 2-DG for advanced prostate 

cancer was terminated due to slow patient accrual (ClinicalTrials.gov, website accessed on 

07/03/2012). However, a phase I clinical trial found that administering 2-DG in combination 

with taxol is feasible and safe (Raez et al., 2005). In preclinical studies, 3-bromopyruvate (5) 

[another HKII inhibitor] has shown promising results against hepatocellular carcinoma (Ko and 

Pedersen, 2001; Ko et al., 2004). However, 3-bromopyruvate (5) is reported to inhibit 

mitochondrial respiration and to have non-selective thiol-alkylating effects (Shoshan, 2012). 

Inhibition of HKII by 3-bromopyruvate (5) might be non-specific and only partly responsible for 

its demonstrated activity. Gossypol [AT-101] (6), a promiscuous inhibitor of glycolytic enzymes 

including glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Scatena et al., 2008) and 

lactate dehydrogenase (LDH) (Granchi et al., 2011), is currently being evaluated in multiple 

clinical trials as a treatment option for aggressive tumor phenotypes, such as glioblastoma 

multiforme (ClinicalTrials.gov, website accessed on 07/06/2012). Pyruvate kinase, the enzyme 

that converts phosphoenolpyruvate to pyruvate, has been identified as another plausible 

molecular target in the glycolysis pathway. Cancer cells overexpress the specific pyruvate kinase 

isoform PKM2, which is usually detected in early fetal tissues (Christofk et al., 2008). A seven 

amino acid peptide known as CAP-232/TLN-232 (7) targets PKM2, and recently underwent a 

phase II clinical trial for the treatment of metastatic renal cell carcinoma (ClinicalTrials.gov, 

website accessed on 07/07/2012). Lactate dehydrogenase isoform A (LDH-A) is another 

glycolytic enzyme that is overexpressed in tumor cells. It catalyzes the conversion of pyruvate to 

lactate. Tumor cell-specific LDH-A upregulation suggests that LDH-A may be a potential target 

to suppress aerobic glycolysis (Granchi et al., 2011). Inhibitors for almost all the enzymes 
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involved in the glycolytic process have been reported (Scatena et al., 2008). However, a 

clinically useful aerobic glycolysis inhibitor is yet to be discovered. Inhibitors of parasitic 

glycolysis have been evaluated for their therapeutic (anti-infetive) potential (Coley et al., 2011; 

Rosenthal, 2003; Sharlow et al., 2010), but drug discovery efforts to identify inhibitors of 

aerobic glycolysis have been limited. Only one study that describe glycolysis inhibitor screening 

using a cell-based assay has recently been published (Kitagawa et al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1B Small-molecule glycolysis inhibitors. 
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3.1.4 Benzophenones as bioactive natural products 

 Small-molecule natural products have been the single most successful source for 

antitumor drug discovery (Newman and Cragg, 2012). Apart from the clinically successful 

natural product-derived drugs, natural product-derived small-molecules that exhibit interesting 

bioactivities are widely used as both pharmacological and molecular probes. Benzophenones are 

a class of compounds that have demonstrated a broad spectrum of bioactivities (Acuna et al., 

2009). Approximately 150 known benzophenones from 13 different families have been isolated. 

More than 50% of these compounds are found in members of the Clusia, Garcinia and 

Hypericum genera from the family Clusiaceae. The core of a benzophenone type molecule is 

composed of a 13-carbon skeleton (Figure 3.2) which is later modified with substituent additions 

and subsequent cyclizations. Benzophenones are thought to be biosynthetically derived from the 

shikimate and mevalonate pathways. Benzophenones can be broadly classified into two 

categories: a) basic benzophenones and b) polyprenylated benzophenone derivatives (PBDs).  

 

 

 

 

 
Figure 3.2 Core structure of benzophenones. 
 

Prenylation of benzophenones occurs mainly on the B ring, and the prenyl units often 

undergo cyclization leading to bi-, tri- and tetracyclic molecules.  Only four compounds have 

been reported with prenylation on the A ring (cudraphenones A–D, 8–11) (Baggett et al., 2005). 

Cytotoxic, antimicrobial, antiviral and antioxidant activities have been attributed to 
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effects of HIV infection in human T-lymphoblastoid CEM-SS cells in vitro (EC50 1–23 µg/ mL), 

but were also toxic to the host cells (IC50 50–82 µg/ mL) (Gustafson et al., 1992; Fuller et al., 

1999a). Other known anti-HIV benzophenones include laxifloranone (18) (Bokesch et al., 1999), 

vismiaphenone D (19) (Fuller et al., 1999b), and garciosaphenone A (20) (Rukachaisirikul et al., 

2003). 

Numerous benzophenones have shown broad spectrum antibacterial, antifungal and 

antiprotozoal activities. Some prominent antibacterial benzophenones include: 7-epiclusianone 

(21), garcinol (22), guttiferone I (23), isogarcinol (24), microsphaerins A-D (25–28), 

nemorosone (29), isoxanthochymol (30) and xanthochymol (31). Among these, isoxanthochymol 

(30), isogarcinol (24), xanthochymol (31), microsphaerins A-D (25–28) and garcinol (22) are 

active against MRSA. Antiplasmodial activity was observed with coccinones A-E (32–36), 7-

epigarcinol (37), 7-epiisogarcinol (38), garcinol (22), isogarcinol (24), while 3-geranyl-2, 4, 6-

trihydroxybenzophenone (39), and pestalachlorides A–C (40–42) demonstrateded antifungal 

activity.  Trypanosidal and leishmanicidal activities were also reported for a number of 

benzophenone compounds (Acuna et al., 2009).  

In addition to the antiviral and antimicrobial activities, guttiferones A (12), E (16), G, 

(43), H (44), I (23), J (45), K (46), L (47), curdaphenones A–D (8–11), garcinol (22), isogarcinol 

(24), hyperibone K (48) and L (49), xanthochymol (31), isoxanthochymol (30) and nemorosone 

(29) showed broad spectrum cytotoxic effects against numerous cell lines derived from colon, 

breast, ovarian, oral, cervical, lung, prostate and hepatocellular carcinomas (Acuna et al., 2009). 

These PBDs have been shown to (a) induce cell cycle arrest and apoptosis; (b) bind and inhibit 

tubulin disassembly during cell division; (c) activate caspase-3; and (d) inhibit enzymatic activity 

of histone acetyl transferase, proteases and kinases (Acuna et al., 2009). However, this type of 
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broad spectrum inhibition may be indicative of nonspecific suppression of cell viability or the 

targeting of a central pathway that affects many cellular reactions. 

The keto-enol equilibria within PBD structures are essential for their bioactivity, and the 

compounds devoid of this functional group are drastically less active. Guttiferones A-F (12–17) 

have been shown to be active in HIV-inhibitory assay in vitro. However, isoxanthochymol (30), 

a cyclized derivative of guttiferone E (16), which was missing the enol functionality, was 

inactive (Gustafson et al., 1992). 

A recent study showed that nemorosone (29), a strong antiplasmodial and cytotoxic 

benzophenone, potently uncoupled mitochondria and depleted intracellular ATP levels in HepG2 

cells. The keto-enol tautomerism had been shown to be responsible for the protonophoric activity 

of nemorosone (29) (Pardo-Andreu et al., 2011). Uncoupling of oxidative phosphorylation owing 

to the enolic functionality present in the benzophenone compounds can explain the broad 

spectrum of the antimicrobial and cytotoxic activity of this class of compounds. 
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Figure 3.3 Bioactive polyprenylated benzophenone derivatives (PBDs). 
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Figure 3.4 Bioactive polyprenylated benzophenone derivatives (PBDs). 
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Figure 3.5 Bioactive polyprenylated benzophenone derivatives (PBDs). 
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Figure 3.6 Bioactive polyprenylated benzophenone derivatives (PBDs).
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3.2 Materials and methods 

3.2.1 General experimental procedures 

 A Varian 50 Bio spectrophotometer was used to record UV spectrum and IR spectrum 

was obtained by a Bruker Tensor 27 Genesis Series FTIR. Bruker AMX-NMR 

spectrophotometers operating at 400 MHz for 1H and 100 MHz for 13C were used to record the 

NMR spectra. Moronone (1) was dissolved in pyridine-d5 (Sigma) to record the NMR spectra, 

and solvent resonances were used as internal references [8.74 (s) for 1H and 150.35 (t) for 13C]. 

A Bruker Daltonic micro TOF fitted with an Agilent 1100 series HPLC and an electrospray 

ionization source was used to obtain the HRESIMS. Merck Si60F254 or Si60RP18F254 (Sorbent 

Technologies) were used to obtain TLC. Ethanolic sulfuric acid (10% H2SO4 in EtOH) was used 

as visualizing agent. The TLC plates were first observed under UV at 254 nm, and sprayed with 

the visualizing agent, followed by heating. HPLC was performed on a Waters system equipped 

with a 600 controller and a 2998 photodiode array detector. Semi-preparative HPLC column 

(Phenomenex Luna RP-18, 5 μm, 250 × 10.00 mm) was employed for isolation. Solvents and 

formic acid for HPLC were purchased from Fisher unless specified otherwise. The purity of the 

compound was judged on the percentage of the integrated signal at UV 220 nm. The compound 

submitted for bioassay was at least 95% pure as judged by this method. 

 

3.2.2. Plant material 

 Moronobea coccinea Aubl. (Clusiaceae) stem woods were collected from British Guyana 

(October 21, 1991) and identified by Dr. S. Tiwari (New York Botanical Gardens, Bronx, NY). 

A voucher specimen was deposited at the Smithsonian Institution National Museum of Natural 

History, Washington, DC, and a collection number 0CKF0401 was assigned to the sample. 
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3.2.3 Extraction and isolation 

 The plant material was extracted with CH2Cl2-MeOH (1:1). The extract was vacuum-

dried and stored at -20 °C in the NCI repository at the Frederick Cancer Research and 

Development Center (Frederick, Maryland). An NCI Open Repository Sample number, 

N063783, was assigned to the extract. The extract (3.0 g) showed enhanced suppression of cell 

viability in a MDA-MB-231 cell-based viability assay under a glycolysis-dependent condition 

compared to regular culture conditions. The extract was eluted through Sephadex LH-20 to 

prepare preliminary fractions. Seven fractions were obtained using step gradients of CH2Cl2-

MeOH (1:1), CH2Cl2-MeOH (1:2), and MeOH. The second fraction (373.1 mg), eluted with 

CH2Cl2-MeOH (1:1) at 1 column volume, was active in the glycolysis inhibitor screening assay. 

The active fraction was subjected to Si gel column chromatography using step gradients of 

hexanes-EtOAc (6:1, 4:1, 2:1, 1:1, 0:1). The column was washed with MeOH. Eight sub-

fractions were obtained; the second fraction (112.2 mg), eluted with hexanes-EtOAc (6:1), being 

active in the glycolysis inhibitor screening assay. TLC of the active fraction showed a UV-active 

yellow char, indicating that it might be similar to the PBDs previously isolated from this plant 

(Marti et al., 2011). The active fraction was dissolved in MeOH and centrifuged. Subsequently, 

the supernatant was filtered and subjected to semi-preparative isolation (Phenomenex Luna RP-

18, 5 μm, 250 × 10 mm) using acetonitrile : formic acid (0.1% ) [87:13]. This reversed-phase 

separation produced the pure compound moronone (83.5 mg, 2.78% yield).  The purity of the 

compound was determined by the percentage of the integrated signal at UV 220 nm and the 

compound was at least 95% pure as judged by this method. 
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3.2.4 Moronone (1) 

 Dark brown oil; optically inactive; UV (MeOH) λmax (log ε) 237 (4.29), 281 (4.04), 351 

(4.39) nm; IR (NaCl block) νmax 3510, 2968, 2918, 1642, 1566, 1504, 1446, 1384, 1316, 1220, 

1105, 1066 cm-1; 1H NMR and 13C NMR data, see Table 1; HRESIMS m/z 525.2997 [M+Na]+ 

(calcd. for C33H42O4Na, 525.2981). 
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3.2.5 Tumor cell culture 

 Human breast tumor T47D and MDA-MB-231 cells were purchased from American type 

culture collection (ATCC). These cells were maintained in the Roswell Park Memorial Insitute 

1640 medium containing 2 mM L-glutamine (Mediatech). The medium was supplemented with 

fetal bovine serum [FBS, 10% v/v final concentration, Hyclone] and a mixture of penicillin (50 

units/mL final concentration) and streptomycin (50 μg/mL final concentration) (pen/strep) 

(Lonza). 

 

3.2.6 Glycolysis inhibitor screening assay 

 MDA-MB-231 cells were plated at 3 x 104 cells per well into 96-well plates in a volume 

of 100 µL RPMI 1640 medium supplemented with FBS and penicillin/streptomycin (pen/strep) 

as described in the previous section. After 24 h, extracts or test compounds were diluted with the 

serum free RPMI 1640 medium with pen/strep (2x final concentration) and added in a volume of 

100 µL per well. The final concentration of each extract was 20 µg/mL. The cells were treated 

with extracts in the presence or absence of rotenone (0.1 µM) and incubated at 37 °C under 

normoxic conditions (95% air, 5% CO2) for 48 h. At the end of the specified incubation period, 

cell viability was measured using the sulforhodamine B method (Skehan et al., 1990). The cell 

viability was measured for each extract Extracts with a differential cytotoxicity index of ≥ 1.5 

that exerted ≥ 45% cytotoxicity in the presence of rotenone (0.1 µM), were considered ‘active’. 

The differential cytotoxicity index was calculated using the following formula: 

                                                                 cytotoxicity in the presence of rotenone (0.1 µM) 
                                                                       cytotoxicity in the absence of rotenone 

 

 

Differential cytotoxicity index = 
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The Z-factor for each plate was calculated by the following formula: 

                      3 x standard deviation [2-DG or (2-DG + rotenone)] – 3 x standard deviation media  
                                          Mean [2-DG or (2-DG + rotenone)] – Mean media control 

 

3.2.7 Cell viability assay by the sulforhodamine B method 

 MDA-MB-231 cells were plated at 3 x 104 cells per well into 96-well plates in a volume 

of 100 µL of RPMI1640 medium supplemented with FBS (10% v/v final concentration) and 

pen/strep. After 24 h, each test compound was diluted with the serum free DMEM/F12 medium 

with pen/strep (2x final concentration) and added in a volume of 100 µL per well, and the 

incubation continued for another 2 days or 6 days at 37 °C (95% air, 5% CO2). For the 6-day 

exposure study, the conditioned media were replaced after 3 days with fresh culture media that 

contained test compounds. Following a 2- or 6-day incubation period, the cells were fixed by 

replacing 100 µL of conditioned medium with 100 µL trichloroacetic acid solution (20% w/v in 

1x PBS, pH 7.4) per well. Following incubation at 4 °C for 1 h, the supernatant was removed, 

and the cells were washed with tap water (4x) and air dried. A sulforhodamine B solution (0.4% 

w/v, in 1% actetic acid) was added in a volume of 100 µL per well and incubated at room 

temperature for 10 min. The stained cells were washed with 1% acetic acid (4x) and air dried. 

The dye was eluted by adding 200 µL of Trizma® base (10 mM) per well and incubating for 10 

min at room temperature. The plates were gently shaken for 2–3 min, and absorbance was 

measured at 490 nm and background absorbance at 630 nm, on a BioTek Synergy plate reader. 

The ΔOD values were used for subsequent data analysis and were calculated by subtracting the 

background absorbance from the absorbance at 490 nm. The following formula was used to 

calculate the percentage inhibition data: 

% inhibition = (1 - ΔODtreated/ΔODcontrol) x 100 

Z-factor = 1 -  
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3.2.8 Cellular respiration assay 

 The effects of compound on MDA-MB-231 or T47D cellular oxygen consumption were 

measured by a Clarke-type electrode system (Oxytherm, Hansatech). To determine the effect of 

1 on cellular respiration, 5 × 106 T47D or MDA-MB-231 cells were added to the chamber of an 

Oxytherm Clark-type electrode system (Hansatech), containing 1 mL of DMEM/F-12 medium 

(JRH) (equilibrated to 37 °C) free of serum and antibiotics. Glucose (17.5 mM) in the DMEM/F-

12 medium served as the major metabolic substrate. Once the base-line respiration had been 

established (for a 12 min interval), 1 dissolved in DMSO was injected into the chamber 1–2 min 

after the establishment of steady-state respiration, using a 10-μL syringe (Hamilton). The data 

were presented as “Respiration rate relative to untreated control” and was calculated using the 

following formula: 

                                                                                              oxygen consumption rate compound 
                                                                                              oxygen consumption rate control 
   

The mitochondrial uncoupler FCCP (Sigma) was used as a positive control. For mechanistic 

studies, state 4 respiration was initiated by the addition of oligomycin (1 µM, Sigma). Following 

subsequent addition of either FCCP or 1, the effects of each compound on state 4 respiration 

were determined by monitoring the rates of cellular oxygen consumption. 

 

3.2.9 Mitochondrial membrane potential assay 

 MDA-MB-231 and T47D cells were plated into four-well Lab-Tek II coverglass 

chambers (Nunc) at a density of 1 x 105 cells per well and incubated at 37 °C. Following 

overnight incubation, the conditioned media were replaced with a buffer which contained TES 

(20 mM), pH 7.3, NaCl (150 mM), KCl (5 mM), CaCl2 (1.3 mM), MgCl2 (1.3 mM), glucose (5 

Respiration rate relative to untreated control = 100 x 
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mM), Na2SO4 (1.2 mM), KH2PO4 (0.4 mM), BSA (0.3% w/v), and tetramethylrhodamine 

methylester (TMRM+) (2 nM). The cells were incubated with the membrane potential-dependent 

dye TMRM+ [Molecular Probe] at 37 °C for 2 h, for equilibration of the dye across the 

membrane. At the end of incubation, test compounds were added, and incubation continued for 

another 30 min. Live cell imaging was performed with an Axiovert 200M epifluorescence 

microscope (Zeiss). 

 

3.2.10 Glucose uptake and lactate secretion assays 

 MDA-MB-231 cells were plated at 3 x 104 cells per well into 96-well plates in a volume 

of 100 µL RPMI 1640 medium supplemented with FBS and pen/strep as described in the 

previous section. After 24 h, test compounds were diluted with serum free RPMI 1640 medium 

with pen/strep (2x final concentration) and added in a volume of 100 µL per well. The cells were 

incubated at 37 °C under normoxic conditions (95% air 5% CO2) for 24, 48 or 72 h. The levels 

of glucose and lactate in the conditioned media samples were measured spectrophotometrically 

using enzymatic assays. To determine glucose level in the conditioned media samples, 6 µL of 

the conditioned media were added to 194 µL of reaction buffer that contained triethanolamine 

(100 mM, pH 7.3), MgCl2 (7 mM), ATP (2 mM), nicotinamide adenine dinucleotide phosphate 

(NADP+, 2 mM), hexokinase (1 unit/mL) and glucose-6-phosphate dehydrogenase (1 unit/mL). 

After an 8 min incubation at the room temperature, the absorbance was measured at 340 nm on a 

BioTek Synergy plate reader. Distilled deionized (dd) water and the glucose free RPMI 1640 

medium were used as the blanks. The average reading from the media wells (used as the blank 

reading) was subtracted from the sample readings. The average reading from the water wells 

(used as the blank reading) was subtracted from the standard wells. A glucose stock solution of 
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30 mM in dd water was diluted with dd water to achieve the final concentration of 1.25, 2.5, 5, 6, 

10, 15, 20 and 30 mM. This set of glucose standards was used to generate the standard curve. 

Glucose concentrations of the conditioned media samples were determined from the standard 

curve.  

To determine lactate concentration in the conditioned media, 8 µL of conditioned media 

was added to 192 µL of reaction buffer composed of glycylglycine (100 mM, pH 8.0), glutamate 

(100 mM), nicotinamide adenine dinucleotide (NAD+, 1mM), lactate dehydrogenase (LDH,        

1 unit/mL), and glutamate/pyruvate transaminase (1 unit/mL). After 1 h incubation at room 

temperature, fluorescence was measured at an excitation wavelength of 340 nm and an emission 

wavelength of 460 nm, on a BioTek Synergy plate reader. Distilled deionized water and the 

RPMI 1640 medium supplemented with FBS and pen/strep were used as the blanks. The average 

reading from the media wells (used as the blank reading) was subtracted from the sample 

readings. The average reading from the water wells (used as the blank reading) was subtracted 

from the standard wells. A lactate stock solution of 20 mM in dd water was diluted with dd water 

to achieve the final concentration of 2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20 mM. This set of lactate 

standards was used to generate the standard curve. Lactate concentrations in the conditioned 

media samples were determined from the standard curve. Enzymes, NAD+ and NADP+ were 

purchased from Calzyme, and other reagentss were purchased from Sigma. The test compounds 

may produce cytotoxic effects and affect the net glucose uptake or lactate production. Hence the 

net glucose uptake or lactate production was normalized to protein concentrations. Following 

extraction of the cellular proteins with M-PER (Pierce), in presence of protease inhibitor cocktail 

(Sigma; 1:10 dilution), the protein concentrations were determined using a Micro BCA assay kit 

(Pierce, manufacturer’s instructions). 
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3.2.11 Statistical analysis 

 The cytotoxicity data for FCCP and 1 were analyzed using two-way ANOVA, followed 

by Bonferroni post hoc analyses (GraphPad Prism 5). The glucose and lactate concentration data 

was analyzed using one-way ANOVA, followed by Dunnett’s post hoc analysis for each time 

point. Differences between the data sets were considered significant when p < 0.05. 

 

3.3 Results and discussion 

3.3.1 Development of the bioenergetics-based screening system for the identification of 

glycolysis inhibitors 

For the identification of the inhibitors of aerobic glycolysis, MDA-MB-231, a well 

characterized triple negative human breast cancer cell line was used as the in vitro experimental 

model. This cell line was selected for its glycolytic, aggressive, and hormone refractory 

phenotype that resembles tumor tissues in advanced state of malignancy (Robey et al., 2008). At 

the concentration of 0.1 µM rotenone exerts maximal mitochondrial complex I inhibition (Liu et 

al., 2009) but exhibits only marginal cell proliferation/viability suppression in MDA-MB-231 

cells. In breast and colon tumor cells, the simultaneous inhibition of glycolysis and OxPhos 

displays enhanced cytotoxicity than either of them alone (Cheng et al., 2012; Fath et al., 2009). 

Hence, it was hypothesized that the potential glycolysis inhibitors can be identified by enhanced 

suppression of MDA-MB-231 cell viability in the presence of OxPhos inhibitors. Rotenone (50, 

Figure 3.8A) and 2-deoxy-D-glucose (2-DG, 2) were selected as prototypical OxPhos and 

glycolysis inhibitors, respectively. We evaluated the concentration-dependent effects of 2-DG (1 

to 30 mM, in half log increments) and rotenone (0.001 to 0.1 µM, in half-log increments) on 

MDA-MB-231 cell viability. Cell viability was measured by the sulforhodamine B method after 
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48 h of compound treatment at 37 °C (Skehan et al., 1990). Combinations of rotenone and 2-DG 

at different concentrations were also evaluated. Rotenone enhanced the cytotoxic effects of 2-DG 

at lower concentrations (1 and 3 mM). A the concentrations of 10 and 30 mM, 2-DG was 

cytotoxic and rotenone did not further enhance the cytotoxicity of 2-DG (Figure 3.8B).  

 

 

 

 

 

 

Figure 3.8A Structure of rotenone (50) and kolanone (51) 
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Figure 3.8B Effects of rotenone and 2-DG combinations on MDA-MB-231 cell viability. MDA-
MB-231 cells were treated with 2-DG [( ) 1 mM, ( ) 3 mM, ( ) 10 mM, ( ) 30 mM], and 
cycloheximide [( ) 100 µM], in the presence or absence of rotenone [( ) 0.0, 0.001, 0.003, 
0.01, 0.03, and 0.1 µM] for 48 h under normoxia (37 °C, 95% air, 5% CO2). Cell viability was 
measured by the sulforhodamine B method. Data shown are average ± standard deviation from 
three independent experiments performed in duplicate. 
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Concentration of MDA-MB-231 cells with rotenone (0.1 µM) and 2-DG (3 mM) exerted 

a ~2.5-fold increase in cytotoxicity, in comparison to the additive effects of rotenone and 2-DG 

(Figure 3.9A). The mitochondrial respiration inhibitor antimycin (1 µM) and an F1F0-ATPase 

inhibitor oligomycin (1 µM) were also evaluated in combination with 2-DG for their effects on 

the MDA_MB-231 cells. These agents produced results similar to those observed with rotenone 

(data not shown). To confirm that the cytotoxicity-enhancing effect of rotenone is specific to the 

glycolysis inhibitor 2-DG, we also evaluated a protein synthesis inhibitor, cycloheximide (100 

µM). There was no additive or synergistic effects of rotenone on the suppression of MDA-MB-

231 cell viability by cycloheximide (Figure 3.9A). 
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Figure 3.9A Effect of rotenone on 2-deoxy-D-glucose (2-DG) cytotoxicity. MDA-MB-231 cells 
were treated with 2-DG (3 mM) and cycloheximide (100 µM) in the presence (or absence) of 
rotenone (0.1 µM) and incubated for 48 h under normoxic conditions (37 °C, 95% air, 5% CO2). 
Cell viability was measured by the sulforhodamine B method. Data shown are average + 
standard deviation from three independent experiments performed in duplicate (n = 6). [i (2-DG), 
ii (rotenone), iii (2-DG + rotenone), iv (cycloheximide), v (cycloheximide + rotenone)] The “*” 
denotes statistical significance (p < 0.05) when compared with cytotoxicity of either 2-DG or 
rotenone. 
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enhancement of the cytotoxicity of 2-DG (3 mM). This rotenone concentration was used to force 

the cells to survive under glycolysis-dependent conditions. The combination of a mitochondrial 

inhibitor and a glycolysis inhibitor was significantly more cytotoxic than either one alone. For 

this reason, we used the aforementioned system as the primary screening assay for the discovery 

of natural product-based inhibitors of glycolysis. We evaluated the NCI’s Open Repository of 

higher plant and marine invertebrate extracts for aerobic glycolysis inhibitory activities. A total 

of 10,648 samples (121 plates, 88 samples/plate) were evaluated in this bioenergetics-based 

cytotoxicity assay, and cell viability was measured 48 h post sample treatment (20 µg/mL) in the 

presence (plate #1) or absence (plate #2) of rotenone (0.1 µM), using the sulforhodamine B 

method (Figure 3.9B). For plate #1, media and 2-DG (3 mM) in the presence of rotenone (0.1 

µM) were used as the negative and positive control, respectively, while for plate #2, media and 

2-DG (3 mM) were used as the negative and positive control, respectively. The controls were 

plated in triplicate (n = 3) in each plate. The ‘Z-factor’ was calculated for individual plates. 

While the mean Z-factor from 121 screened plates for media control relative to the 2-DG + 

rotenone combination was 0.856 (Figure 3.9C), the Z-factors for media control vs. 2-DG alone 

(plate #2) were highly variable. This variation may be due to the low cytotoxic effect of 2-DG (3 

mM). The extracts (20 µg/mL) with a differential cytotoxicity index of ≥ 1.5 [cytotoxicity in the 

presence of rotenone (0.1 µM)/cytotoxicity in absence of rotenone (0.1 µM)], that showed ≥ 45% 

inhibition of cell viability in the presence of rotenone (0.1 µM), were selected for further 

evaluation (highly potent glycolysis inhibitors may not be selected in this assay system as they 

may completely block the glycolytic pathway, prevent the substrate availability to the 

mitochondria, and produce toxicity irrespective of the presence of rotenone). The 77 hits 

identified in the primary assay (0.72% hit rate) were prioritized according to their potency and 
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differential cytotoxicity index, and the top 23 extracts were subjected to reconfirmation. The 

active extracts (20 µg/mL) were reevaluated in triplicate using the primary assay system. Seven 

of the 23 extracts were active in the confirmatory assay.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9B A schematic diagram of the assay system for the identification of glycolysis 
inhibitors. 
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Figure 3.9C Frequency distribution of calculated Z-factors between media control and 2-DG (3 
mM) + rotenone (0.1 µM). The dotted line indicates the average Z-factor (0.856) from all the 
plates screened. 
 
 
 
3.3.2. Moronone (1) structural elucidation  
 

Species identification of the active extracts and additional extract material for chemical 

studies were obtained from the NCI repository. Bioassay-guided isolation of a  Moronobea 

coccinea plant extract resulted in the identification of a new, active compound that was named 

moronone (1) (Figure 3.10). The HREISMS data of 1 showed a pseudomolecular ion (m/z) at 

525.2997 [M + Na]+, suggesting a molecular formula of C33H42O4. This formula indicated that 

the structure contained 13 hydrogen deficiency indices. The UV spectrum showed absorptions at 

237, 281, and 351 nm indicating the presence of a conjugated benzophenone chromophore (1,3-

dicarbonyl system) (Hussain et al., 1982). The IR spectrum supported the presence of an α, β-

conjugated carbonyl group (1642 cm-1) and a hydroxy group (3510 cm-1) in 1. NMR spectra of 1 

(Figure 3.11–3.12) contained resonances for a benzophenone group [δH 7.84 (2H, d, J = 7.2 Hz, 

H-9, 13), 7.46 (3H, overlapped, H-10, 11, 12); δC 198.0 (C-7), 142.0 (C-8), 132.1 (C-11), 130.0 
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(C-9, 13), 129.1 (C-10, 12)] and two geranyl moieties [δH 5.51 (2H, t, J = 7.2 Hz, H-2', 2''), 5.17 

(2H, t, J = 6.4 Hz, H-6', 6''), 3.02 (4H, overlapped, H2-1', 1''), 2.15 (4H, overlapped, H2-5', 5''), 

2.07 (4H, overlapped, H2-4', 4''), 1.79 (6H, s, H3-10',10''), 1.66 (6H, s, H3-8',8''), 1.56 (6H, s, H3-

9', 9''); δC 139.5 (C-3', 3''), 132.6 (C-7', 7''), 125.9 (C-6', 6''), 120.8 (C-2', 2''), 41.4 (C-4', 4''), 39.3 

(1', 1''), 28.2 (C-5', 5''), 27.0 (C-8', 8''), 19.0 (C-9', 9''), 17.9 (C-10', 10''], which were assigned on 

the basis of HSQC (Figure 3.13) and HMBC experiments (Figure 3.14). In addition, one 

carbonyl (δC 190.2), one quaternary carbon (δC 60.2) and four olefinic (δC 196.3, 109.9, 184.6, 

100.4) resonances were observed in the 13C NMR spectrum of 1. According to the hydrogen 

deficiency indices, the structure was deduced to contain an additional ring. Accordingly, six 

additional carbons were attributed to an α, β-conjugated cyclohexenone moiety as proposed in 

Figure 3.10 (partial structure C1–C6). The NMR data of partial structure C1–C13 was comparable 

to that of kolanone (51) (Hussain et al., 1982) (Figure 3.8A), except that an additional proton 

singlet (δH 6.15) was present in the 1H NMR spectra of 1. The position of this singlet proton was 

located at C-6, as confirmed by the HMBC correlations between H-6 (δH 6.15) and C-1 (δC 

190.2), C-5 (184.6), C-2 (109.5), C-4 (60.2). The connection of two geranyl groups to C-4 in the 

partial structure C1–C13 was established on the basis of HMBC correlations between H-1' and C-

3, C-4, C-5, C-1'', and between H-1'' and C-3, C-4, C-5, C-1'. The observation of NOESY 

correlation (Figure 3.16) between H-2'/2'' (δH 5.51) and H-4'/4'' (δH 2.07) suggested E-

configurations of the Δ2',3' and Δ2'',3'' double bonds. Therefore, the structure of moronone was 

determined to be 1 (Figure 3.10). 
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Figure 3.10 Structure and selected HMBC, 1H-1H COSY, and NOESY of moronone (1). 

Moronone (1) 
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Position δC, type δH (J in Hz) HMBC 
1 190.2, C   
2 109.5, C   
3 196.3, C   
4   60.2, C   
5 184.6, C   
6 100.4, CH 6.15, s 1, 2, 4, 5 
7 198.0, C   
8 142.0, C   
9 130.0, CH 7.84, d (7.2) 7, 8, 10, 11, 13 
10 129.1, CH 7.47, overlapped 8, 9, 11, 12 
11 132.1, CH 7.47, overlapped 9, 10, 12, 13 
12 129.1, CH 7.47, overlapped 8, 10, 11, 13 
13 130.0, CH 7.84, d (7.2) 7, 8, 9, 11, 12 
1'   39.3, CH2 3.02, overlapped 3, 4, 5, 2', 3', 1'' 
2' 120.8, CH 5.51, t (7.2) 4, 3', 4', 10' 
3' 139.5, C   
4'   41.4, CH2 2.07, overlapped 2', 3', 5', 6', 10' 
5'   28.2, CH2 2.15, overlapped 3', 4', 6', 7' 
6' 125.9, CH 5.17, t (6.4) 4', 5', 8', 9' 
7' 132.6, C   
8'   27.0, CH3 1.66, s 6', 7', 9' 
9'   19.0, CH3 1.56, s 6', 7', 8' 
10'   17.9, CH3 1.79, s 2', 3', 4' 
1''   39.3, CH2 3.02, overlapped 3, 4, 5, 2'', 3'', 1' 
2'' 120.8, CH 5.51, t (7.2) 4, 3'', 4'', 10'' 
3'' 139.5, C   
4''   41.4, CH2 2.07, overlapped 2'', 3'', 5'', 6'', 10'' 
5''   28.2, CH2 2.15, overlapped 3'', 4'', 6'', 7'' 
6'' 125.9, CH 5.17, t (6.4) 4'', 5'', 8'', 9'' 
7'' 132.6, C   
8''   27.0, CH3 1.66, s 6'', 7'', 9'' 
9''   19.0, CH3 1.56, s 6'', 7'', 8'' 
10''   17.9, CH3 1.79, s 2'', 3'', 4'' 
OH  8.85, br s  

 
Table 3.1 NMR spectroscopic data for 1 at 400 MHz (1H) and 100 MHz (13C) in pyridine-d5. 
Carbon (13C) assignments were assigned from HSQC data.  
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3.3.3 Bioactivity of moronone (1) 
In order to confirm the glycolysis inhibitory effect of 1, glucose uptake and lactate 

production by MDA-MB-231 cells were measured in the presence of 1 (1, 3, 10 and 30 µM) after 

24, 48 and 72 h. Moronone (1) significantly increased cellular glucose uptake at the 

concentrations of 10 and 30 µM, at all the time points, with a corresponding increase in lactate 

production (Table 3.2). This was suggestive of a stimulatory effect on the glycolytic pathway 

instead of a glycolysis inhibitory effect. When cells were treated with a well-known 

mitochondrial uncoupler FCCP (0.1, 0.3, 1 and 3 µM), similar changes to cellular glucose uptake 

and lactate production was observed at the concentrations of 1 and 3 µM. Rotenone (0.1 µM) 

enhanced the cellular glucose uptake and lactate production at all the time points. The 

observation that FCCP stimulate glycolysis is consistent with an earlier report of glycolysis 

stimulation in mammalian tumor cells by uncouplers (Sturdik et al., 1986). 
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Based on the observations that 1 contains two geranyl moieties and keto-enolic 

functionalities in the structure, and stimulate cellular glucose uptake and lactate production, it 

was hypothesized that 1 might penetrate the mitochondrial membrane and act as a protonophore. 

Hence, we evaluated 1 in MDA-MB-231 and T47D cell-based mitochondrial respiration assays 

(Liu et al. 2009). Moronone (1) exerted a biphasic effect on cellular oxygen consumption in both 

MDA-MB-231 and T47D cells. At lower concentrations (0.1, 0.3, and 1 µM), 1 increased 

cellular oxygen consumption. A decline in the respiration rate was observed at a higher 

concentration (3 µM) (Figure 3.17A). When the prototypical uncoupler FCCP was added to both 

cell lines at increasing concentrations (0.03, 0.1 0.3 and 1 µM), a similar change was observed 

on cellular oxygen consumption. The magnitude of the enhancement of the relative respiration 

rate was higher in MDA-MB-231, compared to that of T47D. This phenomenon might be 

explained by a lower baseline oxygen consumption rate in MDA-MB-231 cells compared to that 

of T47D cells (Li et al., 2011). In order to eliminate possible effects of 1 on ATP turnover, and 

determine if 1 acts as a protonophore (increases cellular oxygen consumption), we evaluated the 

effect of 1 on cellular respiration in the presence of an F0F1-ATPase inhibitor oligomycin. 

Inhibition of F0F1-ATPase by oligomycin increases the mitochondrial membrane potential by 

preventing proton re-entry into the mitochondrial matrix, which in turn inhibits electron transfer 

through the respiratory chain. Protonophores, such as FCCP, release the inhibition of respiration 

by translocating protons to the mitochondrial matrix through the inner mitochondrial membrane. 

Moronone (1) and FCCP each overcame oligomycin exerted inhibition on cellular oxygen 

consumption in MDA-MB-231 (Figure 3.17B, 3.17C) and T47D cells (data not shown), and 

accelerated oligomycin-induced state 4 respiration. 
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Figure 3.17A Concentration-response effects of 1 and FCCP on cellular respiration in T47D and 
MDA-MB-231 cells. Moronone was tested at 0.1, 0.3, 1 and 3 µM, while FCCP was tested at 0.3 
µM in T47D cells and at 0.03, 0.1, 0.3 and 1 µM in MDA-MB-231 cells. Oxygen consumption 
rates were recorded before and after treatments and the data were presented as relative 
respiration rates. Data shown are average + standard deviation from three independent 
experiments (n = 3). 
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Figure 3.17B Accelaration of state 4 respiration initiated by oligomycin (1 µM) in MDA-MB-
231 cells by moronone (1 µM) 
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Figure 3.17C Accelaration of state 4 respiration initiated by oligomycin (1 µM) in MDA-MB-
231 cells by FCCP (0.3 µM). 

 

In order to confirm the protonophoric activity of 1 and to exclude enhanced substrate 

oxidation as the cause of an increase in the relative respiration rate, we evaluated the effect of 1 

on mitochondrial membrane potential in MDA-MB-231 and T47D cells. A cationic, fluorescent 

dye, TMRM+, was used to assess mitochondrial membrane potential. Owing to its cationic 

charge, TMRM+ accumulates into the mitochondrial matrix under the normal mitochondrial 

membrane potential, and stains the mitochondria. Protonophores, such as FCCP, dissipate 

mitochondrial membrane potential and cause diffusion of the TMRM+ dye, which results in 

reduction of the fluorescent dye intensity. Moronone (1) decreased mitochondrial membrane 

potential significantly in MDA-MB-231, which supported the protonophoric nature of this 

compound (Figure 3.18). 
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Figure 3.18 Dissipation of mitochondrial membrane potential by 1 and FCCP. MDA-MB-231 
(upper panel) and T47D (lower panel) cells were incubated with 2 nM TMRM+ for 2 h. The cells 
were treated with either 1 (1 µM) or FCCP (1 µM) for 30 min, and the cells were imaged with an 
Axiovert 200 M epifluorescent microscope. Images representative of each condition are shown 
above. 

 

Since bioassay-guided fractionation of the active extract led us to the isolation of 1 that 

acts as a protonophore, we decided to evaluate the effect of the uncoupler standard FCCP in our 

assay system. MDA-MB-231 cells were treated with either FCCP or 1, in the presence (or 

absence) of a mitochondrial inhibitor, such as rotenone. Rotenone (0.1 µM) significantly 

enhanced the cytotoxic effect of both FCCP and 1 on the normoxic MDA-MB-231 cells under 

normoxia (Figure 3.19).  
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Figure 3.19 Differential suppression of MDA-MB-231cell viability by moronone and FCCP in 
the presence (or absence) of rotenone. MDA-MB-231 cells were treated with moronone [1, 3, 10, 
and 30 µM] or FCCP [0.1, 0.3, 1 and 3 µM], with (or without) rotenone and incubated for 48 h 
under normoxic conditions (37 °C, 95% air, 5% CO2). Data shown are average + standard 
deviation from two independent experiments assayed in triplicate [i (rotenone), ii (2-DG), iii (2-
DG + Rotenone), iv (FCCP), v (FCCP + Rotenone), vi (moronone), vii (moronone + rotenone)]. 
The “*” denotes statistical significance (p < 0.05) when compared with cytotoxicity in the 
absence of rotenone. 

 

The results indicate that, mitochondrial respiration inhibitors enhance the 

cytostatic/cytotoxic effects of mitochondrial uncouplers, similar to those reported for glycolysis 

inhibitors. The concentration that produced optimum uncoupling in the cell-based respiration 

assay was lower than the concentration at which FCCP (1 µM) and moronone (10 µM) produced 

optimum differential cytotoxicity [≥45% cytotoxicity in the presence of rotenone (0.1 µM) with 

a differential index of ≥ 1.5].  

The glucose analog 2-DG inhibits glycolysis by indirectly decreasing enzymatic 
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terminated due to slow patient enrollment (ClinicalTrials.gov, website accessed on 04/03/2012). 

Inhibition of aerobic glycolysis by small molecules is a promising approach to treat advanced 

stages of cancer (Scatena et al., 2008); hence, the discovery of natural product-derived small-

molecules that inhibit aerobic glycolysis more potently than 2-DG is a critical step towards 

finding an effective agent for cancer therapy. The stem wood extract of Moronobea coccinea 

showed a differential cytotoxicity index of 1.5 ( ≥ 45% cytotoxicity in the presence of rotenone) 

in the initial screening assay. Bioassay-guided fractionation of Moronobea coccinea led to the 

isolation of polyprenylated benzophenone derivative moronone (1). Rotenone, FCCP, and 1 

stimulated cellular glucose uptake and enhanced lactate secretion, in a concentration and time-

dependent manner. Moronone uncoupled mitochondrial respiratory chain in both the cellular 

respiration assay and the mitochondrial membrane potential assay. When evaluated in the 

primary screening system, an increased cytotoxicity was observed for both FCCP and 1 in the 

presence of rotenone. The observed differential suppression of cell viability under glycolysis-

dependent conditions by either FCCP or 1 might be due to glucose deprivation and subsequent 

ATP depletion. Further investigations are needed to reveal the actual mechanism. It has been 

reported that the combination of a mitochondrial respiratory chain inhibitor and a mitochondrial 

uncoupler stimulate cellular sugar uptake, depletion of cellular ATP levels (due to ATP 

hydrolysis by the F1F0-ATPase), and suppression of cell viability in mammalian cells. 

Oligomycin, an F1F0-ATPase inhibitor, protected the cells from the cytotoxic effect (Nieminen et 

al., 1994). Alternatively, one school of thought contends that, under normoxic conditions, the 

presence of an uncoupler with a mitochondrial complex I inhibitor lead to enhanced superoxide 

production, which cause enhanced cytotoxicity (Cadenas and Han, 2007). The protonophoric 

nature of some polyprenylated benzophenone analogs may possibly explain general 
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antimicrobial, cytotoxic and some other activities exhibited by these analogs. In this bioassay 

system, the mitochondrial uncouplers tend to mimic the effect of glycolysis inhibitors on MDA-

MB-231 cell viability under glycolysis-dependent conditions. In order to discover inhibitors of 

aerobic glycolysis by using this system, one must rapidly dereplicate the mitochondrial 

uncouplers from specific glycolysis inhibitors. A tumor cell-based respiration assay may be 

employed to dereplicate extracts with protonophoric properties, after primary screening and 

identification of the hits. Alternatively, rotenone may be substituted with oligomycin in order to 

prevent experimental artifact resulting from ATP hydrolysis by F0F1-ATPase.  
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MITOCHONDRIAL TOXINS FROM BOTANICAL DIETARY SUPPLEMENTS 
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4.1 Overview 

4.1.1 Introduction 

 Only recently has the potential for drug-induced mitochondrial dysfunction become 

recognized to significantly limit pharmaceutical development, and has forced the withdrawal of 

major drugs used to treat diabetes [troglitazone (1)] and hyperlipidemia [cerivastatin (2)].  Nearly 

half of the drugs with hepatoxicity and cardiovacular toxicity-associated FDA Black Box 

Warnings are known to interfere with mitochondrial function (Dykens and Will, 2007). These 

safety issues highlight the critical importance of employing measures to assess the potential 

mitochondrial toxicity of new drug leads early in the drug development process. While the 

pharmaceutical industry has only recently begun to recognize and test for the potential 

mitochondrial liability of new therapeutic agents, similar efforts have not been applied to the 

plethora of phytochemicals in botanical dietary supplement (BDS) products. As an initial 

exploratory study, extracts from more than 350 species of plants and other organisms used in 

traditional Chinese, Ayurvedic, and Western Herbal Medicine were evaluated for their ability to 

disrupt mitochondrial function. 

 Extracts from 24 different plant species suppressed mitochondrial respiration in 

mammalian cells. The extracts from five species uncoupled oxidative phosphorylation. Several 

species that were identified in our assays [i.e., Glycyrrhiza glabra L. (Fabaceae), Chenopodium 

botrys L. (Amaranthaceae), Larrea tridentata (Sessé & Moc. ex DC.) Coville (Zygophyllaceae), 

and Tripterygium wilfordii Hook.f. (Celastraceae)], contain compounds that interfere with 

mitochondrial function (Pardini et al., 1973; Monzote et al., 2009; Su et al., 2007). Extracts of 

Caulophyllum thalictroides (L.) Michx. (Berberidaceae) and Commiphora wightii (Arn.) 

Bhandari (Burseraceae) contain components that can disrupt mitochondrial function and 
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potentially produce idiosyncratic mitochondria-mediated toxicities. The three blue cohosh (C. 

thalictroides) saponins, cauloside A (3), saponin PE (4), and cauloside C (5) were preliminarily 

identified as potential mitochondriotoxic components using a cell-based HIF-1 reporter gene 

assay. In addition to permeabilizing the plasma membrane, these saponins disrupt mitochondrial 

function in the Clarke-type electrode-based cellular respiration assay by permeabilizing 

mitochondrial membranes. Sesamin (6) and guggulsterol III (7) from guggul (C. wightii) extract 

preferentially inhibited hypoxia-induced HIF-1 activation, and disrupted mitochondrial complex 

I. Further investigation of guggul compounds is required because the extract was more active 

than the samples of pure compounds evaluated. Our results indicate the presence of 

mitochondriotoxic substances in popular dietary supplements and the need for systematic 

investigation of BDS products to identify the components that disrupt mitochondrial function. 

 

4.1.2 General mechanisms of mitochondria-mediated toxicity 

The term ‘toxicity’ means the harm caused to a living being by chemical, physical or 

biological agents (Society of Toxicology, accessed on 05/04/2012). Toxicity is often the end 

result of a cascade of events initiated by the initial exposure of an organism to toxic agents. 

Toxins elicit a wide variety of toxic effects ranging from nonlethal biochemical dysfunction to 

massive tissue/organ injury and even death of the organism (Society of Toxicology, accessed on 

05/04/2012). Based on the pathological effects induced by the toxins, toxicity can be broadly 

categorized into the following: (a) cell death/tissue injury; (b) altered phenotype/function; (c) 

immunological hypersensitivity; and (d) cancer (Liebler and Guengerich, 2005). Among these, 

the most prevalent toxic response is the cell death/tissue injury. 
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Mitochondria are double membrane-bound cellular organelles which synthesize ATP via 

oxidative phosphorylation to provide energy for cellular reactions. Apart from meeting the 

cellular energy demand, mitochondria also regulate a number of pathways critical for cellular 

homeostasis and specialized metabolic processes such as fatty acid β-oxidation and the Kreb’s 

cycle (Eaton et al., 1996; Alberts et al., 2002). Certain biosynthetic processes, such as heme and 

urea syntheses, partially occur in the mitochondrial matrix (Fontenay et al., 2006; Mori et al., 

1983). Additionally, mitochondria play a key role in resulting cellular injury or cell death (Green 

and Kroemer, 2004). Mitochondrial content may vary widely depending on cell type. Cells with 

high ATP turnover contain more mitochondria than cells with low ATP turnover. It is 

hypothesized that cells have some functional mitochondrial reserve capacity; and when 

mitochondrial damage exceeds a certain threshold, cells initiate the process of either apoptotic or 

necrotic cell death (Jones et al., 2010). When cellular injury or cell death is widespread in a 

particular tissue or organ, it results in tissue or organ toxicity, such as cardiotoxicity, 

neurotoxicity, nephrotoxicity and hepatotoxicity. 

Cell death pathways can be broadly categorized into the following, based on the 

molecular mechanisms: (a) apoptosis; (b) necrosis; (c) autophagy; and (d) mitotic catastrophe 

(Kroemer et al., 2007). Mitochondria are involved in effecting cell death through all four 

pathways. However, we will mainly focus on apoptosis and necrosis, as these are the most 

relevant pathways in drug/chemical-induced toxicity.   

Apoptotic or programmed cell death is mediated by either of the two major pathways: (a) 

the extrinsic or death receptor pathway and (b) the intrinsic or mitochondrial pathway. Both 

pathways can be further divided into initiation, integration, and execution stages (Kroemer et al., 

2007; Jin and El-Deiry, 2005).  Extracellular ligands bind to the cell surface death receptors 
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[tumor necrosis factor (TNF) receptor-1, Fas, and TRAIL receptors-1 and -2] to initiate the 

extrinsic apoptotic pathway. Following ligation, the death receptors undergo oligomerization, 

forming a death-inducing signaling complex (DISC). The DISC contains Fas-associated death 

domain (FADD) and an initiator caspase (i.e., caspase-8). Caspase-8 in the DISC undergoes 

autoactivation, leading to the activation of executioner caspases (i.e., caspase-3, -6 and -7) 

(Ashkenazi and Dixit, 1998). Activated caspase-8 cleaves and activates Bid, a proapoptotic Bcl-2 

family protein, which results in mitochondrial membrane permeabilization. Activated 

executioner caspases (caspase-3, -6 and -7) cleave specific cellular substrates, resulting in 

apoptotic cell death (Kroemer et al., 2007).  

The intrinsic apoptotic pathway is the predominant apoptotic pathway in mammalian 

cells (Green and Kroemer, 2004). This pathway is initiated by diverse intracellular signals, such 

as damaged cellular organelles or DNA, and/or toxic substances. Permeabilization of the 

mitochondrial outer membrane occurs in response to intracellular apoptotic stimuli, and 

cytochrome c is released from the mitochondrial intermembrane space to cytosol (Kroemer et al., 

2007). The presence of cytochrome c in cytosol activates caspase-9 via formation of the 

apoptosome [a multiprotein complex that consists oligomerized apoptotic protease activating 

factor-1 (Apaf-1)] (Cain et al., 2002). Following activation, caspase-9 cleaves, and activates 

procaspase-3, -6, and -7, resulting in apoptotic cell death. Irrespective of the pathway involved, 

apoptotic cell death is characterized by cell shrinkage, nuclear pyknosis, karyorhexis and 

phosphatidylserine exposure to the extracellular environment. During apoptosis, apoptotic bodies 

are formed and cleared phagocytically without producing an inflammatory reaction (Elmore, 

2007).  
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Necrosis, on the other hand, usually results from a highly intense toxicological insult. 

Necrosis is typically accompanied with oncosis, including mitochondrial swelling and eventual 

mitochondrial and cell membrane rupture. Spillage of cytosolic content into the extracellular 

space results in inflammatory responses (Kroemer et al., 2007; Robertson and Orrenius, 2002).  

Mitochondria also play an important role in cell death via necrosis. Opening of a 

mitochondrial membrane permeability transition pore (mPTP) is often associated with necrosis. 

Opening of mPTP dissipates the mitochondrial membrane potential (ΔΨm), disrupts the 

intracellular electrochemical and pH gradients, and results in mitochondrial and cellular 

swelling. Eventually, cellular and mitochondrial lyses occur due to increased osmotic pressure 

(Gregus, 2008). Some of the key factors that determine whether a cell will undergo necrosis or 

apoptosis in response to a toxicant include the toxin concentration, exposure time, and 

intracellular ATP concentration. High toxin concentrations, prolonged exposure period and 

intracellular ATP depletion usually lead to necrotic cell death (Kroemer et al., 1998). In spite of 

the differences in the molecular mechanisms, mitochondrial dysfunction is often the final 

common step that leads to cellular death. 

 

4.1.3 Drug or small-molecule-induced mitochondrial toxicity  

From the discussion in the introduction section, it is obvious that both clinically approved 

drugs and natural products, may potentially cause mitochondrial dysfunction. However, natural 

products are commonly thought to be free of adverse effects, compared to clinically approved 

drugs. Hence, the rigorous scrutiny that is mandatory for clinically approved drugs are not 

applied for over-the-counter (OTC) natural products. Several drugs, such as troglitazone (1) and 

cerivastatin (2) (Figure 4.1), have been withdrawn from the market for their mitochondrial 
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liabilities. Similarly, the mitochondrial toxins in natural product dietary supplements should be 

identified and a regulatory standard comparable to clinically approved drugs should be set for 

OTC natural products with mitochondrial toxins. 

  

 

 

 

 

 

Figure 4.1 Examples of clinically approved drugs withdrawn from the market due to 
mitochondrial toxicity. 
 

4.1.4 Saponin glycoside toxicity 

 Saponins are ubiquitous plant secondary metabolites with surfactant properties (Sparg et 

al., 2004). Multiple dietary supplements containing saponin glycosides for various indications 

are currently marketed in the US (Avula et al., 2011; Kozlova et al., 2011; Yeh et al., 2003). A 

number of biological properties have been attributed to this class of compounds, with hemolytic 

or membrane permeabilizing activity being the most prominent (Francis et al., 2002). Based on 

the sapogenin (aglycone) structure, saponins are categorized into two broad classes: (a) steroidal 

saponins [e.g., diosgenin (8)] and (b) triterpenoid saponins [e.g., oleanolic acid (9)]. Owing to 

their surfactant properties, saponins interact with the lipid bilayers of cellular membranes and 

alter their permeability by irreversibly forming pores. Mechanistically, they are hypothesized to 

sequester cholesterol from membranes (Melzig et al., 2001). Alternatively, saponins are 

proposed to interact with the aquaporins on the cell surface, resulting in unregulated water 

 
(1) (2) 
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transport inside cells and subsequent hemolysis (Gauthier et al., 2009). Following parenteral 

administration, saponins show high levels of toxicity in animals. Holothurin A (10), a sea 

cucumber-derived saponin, had an LD50 of 0.75 mg/kg in mice upon intravenous administration. 

Due to their poor oral bioavailability, saponins are significantly less toxic upon oral ingestion 

(LD50 50-1000 mg/kg). Aberrant salivation, vomiting, diarrhea, loss of appetite and paralysis 

have been reported after saponin intoxication (Hostettmann et al., 1995). Lethal doses of 

saponins have been shown to cause liver necrosis, as well as bleeding in alveoli and other vessel 

walls (Hostettmann et al., 1995). However, conflicting results were reported in regard to the 

correlation of the hemolytic/surfactant activity and saponin toxicity profiles (Wang et al., 2007a; 

Böttger et al., 2012). Saponins permeabilize respiratory membranes of cold-blooded animals and 

have been reported to be highly toxic to frogs, fish, and mollusks. Saponins exert cytotoxic 

effects on a variety of human tumor cell lines (Hostettmann et al., 1995). It has been proposed 

that cellular internalization is required for steroidal saponin glycoside cytotoxicity (Wang et al., 

2007b). Release of cytochrome c from mitochondria was observed while investigating the 

mechanism of cytotoxic activity by avicins, a group of plant saponins. The cytochrome c release 

by avicins resulted from direct mitochondrial membrane permeabilization (Haridas et al., 2001; 

Lemeshko et al., 2006). Another plant saponin OSW-1 (11) has been reported to permeabilize 

mitochondrial membrane and activate calcium-dependent apoptosis in both leukemia and 

pancreatic cancer cells (Zhou et al., 2005). Numerous saponins have been reported to affect a 

number of cellular pathways that result in cytotoxicity (Man et al., 2010; Podolak et al., 2010). 

However, it is unclear whether the effect observed on the cellular signaling is secondary to a 

toxic mitochondrial insult. In addition, most cytotoxicity studies do not report whether the effect 

of the saponins are selective to tumor cell lines, relative to their effects on normal cells. The 
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potential for saponin selectivity toward tumor cells and a possible correlation between 

mitochondrial membrane permeabilization and general saponin cytotoxicity warrants further 

investigation. 

 The potential of mitochondrial toxicity from BDS has not been well characterized. One of 

the major challenges for identification of BDS-induced mitochondrial toxicity is that these 

dietary supplements are often consumed in conjunction with clinically approved drugs, which 

have off-target effects on the mitochondria. In addition, consumption of BDS is perceived as safe 

and often goes unreported. From the earlier discussions, it is apparent that natural products are a 

rich source for mitochondrial toxins and they impair mitochondrial functioning in the same way 

as synthetic compounds or clinically approved drugs. The presence of mitochondriotoxic 

substances in BDS may pose a potential health hazard and the characterization of these 

molecules is necessary to better understand, and potentially prevent, idiosyncratic adverse 

reactions. 
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Figure 4.2 Examples of sapogenins and saponins.
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4.2 Materials and methods 

4.2.1 Acqusition of extracts and pure compounds 

 Among 46 active extracts blue cohosh and guggul extracts and the purified compounds 

from blue cohosh [N-methylcytisine (12), cauloside H (13), cauloside D (14), cauloside B (15), 

cauloside G (16), leonticin D (17), cauloside A (3), saponin PE (4), cauloside C (5), and 

ciwujianoside A1 (18) (Figures 4.3 – 4.4)] and guggul [(13E,17E,21E)-8-hydroxypolypodo-

13,17,21-trien-3-one (19), (13E,17E,21E)-polypodo-13,17,21-trien-3,8-diol (20), sesamin (6), Z-

guggulsterone (21), E-guggulsterone (22), guggulsterol III (7), and (20S)-20-acetoxy-4-

pregnene-3,16-dione (23) (Figures 4.5A)] were further investigated. These extracts and 

compounds were kindly provided by Dr. Ikhlas A. Khan (National Center for Natural Products 

Research, University of Mississippi). The extracts and purified compounds were dissolved in 

either DMSO or isopropanol and 10 mM stock solutions of each were prepared. 
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Figure 4.3 Purified blue cohosh compounds that were evaluated for mitochondrial toxicity. 
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Figure 4.4 Purified blue cohosh compounds that were evaluated for mitochondrial toxicity. 
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Figure 4.5A Purified guggul compounds that were evaluated for mitochondrial toxicity. 
 

 

 

 

 

 

 

Figure 4.5B Prototypical mitochondrial inhibitors and uncoupler.
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4.2.2 Tumor cell culture and HIF-1 reporter assay 

 Human breast tumor T47D cells (ATCC) were maintained in Dulbecco’s Modified 

Eagle’s Medium (DMEM) and Ham’s F-12 (1:1) media with 2.5 mM L-gultamine (Mediatech), 

supplemented with fetal bovine serum (10% v/v final concentration, Hyclone) and penicillin (50 

units/mL) and streptomycin (50 μg/mL) (pen/strep, BioWhittaker). Exponentially grown T47D 

cells were transfected with the pTK-HRE3-luc reporter by electroporation using an ECM830 

square wave electroporation system (BTX Inc) at 140 V for 70 ms (1 pulse). The transfected 

cells were plated at 3 x 104 cells per well in a volume of 100 µL of FBS (10% v/v final 

concentration) and antibiotics supplemented DMEM/F12 medium, into 96-well plates, and was 

incubated under normoxic conditions (5% CO2, 95% air, 37 °C) for overnight. After 24 h, each 

test compound was diluted (2x final concentration) in serum free DMEM/F12 medium with 

antibiotics and added in a volume of 100 µL per well. Following the addition of the test 

compounds, the incubation continued at 37 °C for an additional 30 min. Subsequently, the cells 

were exposed to hypoxic (1% O2, 5% CO2, 94% N2) or normoxic (5% CO2, 95% air) or iron 

chelator-induced hypoxia-mimetic conditions (10 µM 1,10-phenanthroline, Sigma, 5% CO2, 

95% air) at 37 °C for 16 h. The cells were then lysed, and luciferase activities were determined 

according to manufacturer’s instructions (Promega) using a microplate reader (Biotek).  The 

following formula was used to calculate the percentage inhibition data: 

% inhibition = (1 - luminescencetreated/luminescenceinduced) x 100 

Extracts and compounds for bioassay were prepared as stock solutions in DMSO (or 

isopropanol) and the final concentration of solvent was less than 0.5% (v/v) in all HIF-1 reporter 

assays. 
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4.2.3 Cellular respiration assay 

 Human T47D or Hep3B cells (5 × 106) suspended in 100 µL of 1x phosphate-buffered 

saline (PBS), pH 7.4  (Fisher Scientific) were added to the chamber of an Oxytherm Clark 

electrode system (Hansatech) containing 900 µL of DMEM/F-12 medium (JRH) free of serum 

and antibiotics (equilibrated to 30 °C). Glucose (17.5 mM) in the DMEM/F-12 media served as 

the metabolic substrate. Steady state base-line respiration was established (for a 10-min interval) 

by recording the oxygen consumption of untreated cells. Subsequently, compounds dissolved in 

DMSO (or isopropanol) were injected into the chamber using a 10-μL syringe (Hamilton). For 

the compounds that initially stimulated cellular oxygen consumption, the average oxygen 

consumption rates were measured for a one-minute window 30, 115 and 295 seconds after each 

addition. For the compounds that inhibited oxygen consumption, the average rate was recorded 

for a one-minute window 2 min after each addition. For mechanistic studies, the cells were 

suspended in a buffer that contained 20 mM HEPES, pH 7.3, 120 mM KCl, 2 mM KH2PO4, 2 

mM MgCl2 and 1 mM EGTA [ethylene glycol bis(2-aminoethyl ether)-N,N,N’,N’-tetraacetic 

acid], in place of the DMEM/F-12 medium. Plasma membranes were selectively permeabilized 

with digitonin (4 μM) so that the substrates available to the mitochondria could be manipulated. 

The buffer was supplemented with the following substrates that provide electrons to different 

complexes within the mitochondrial respiratory chain: 5 mM sodium pyruvate and 5 mM sodium 

malate (complex I), 5 mM sodium succinate dibasic hexahydrate (complex II), and 5 mM L-

ascorbic acid plus 0.2 mM TMPD (N,N,N′,N′-tetramethyl-p-phenylenediamine) (complex IV). 

The prototypical complex I and III inhibitors rotenone (24) and antimycin A (25) (Figure 4.5B), 

respectively, were added from EtOH stock solutions to a final concentrations of 1 μM where 

indicated. All the chemicals were from Sigma, and the final concentration of solvent used in 
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assays was maintained at less than 0.1% (v/v). The data were presented as percentage inhibitions 

or relative respiration rates wherever appropriate and were calculated by the following formulas:  

                                                         oxygen consumption ratecompound 
                                                         oxygen consumption ratecontrol 
 
 
                                                                                               oxygen consumption ratecompound 
                                                                                               oxygen consumption ratecontrol 
 

4.2.4 Sulforhodamine B cell viability assay 

 Exponentially grown T47D or Hep3B cells were plated at 3 x 104 cells per well into 96-

well plates in a volume of 100 µL of DMEM/F12 medium supplemented with FBS (10% v/v 

final concentration) and antibiotics. After 24 h, each test compound was diluted (2x final 

concentration) in the serum free DMEM/F12 medium with antibiotics, added in a volume of 100 

µL per well, and incubated for an additional 2-day (or 6-day) period at 37 °C (95% air, 5% CO2). 

For the 6-day exposure study, the conditioned media were replaced after 3 days by fresh culture 

media that contained test compounds. Following a 2-day (or 6-day) incubation period, the cells 

were fixed by replacing 100 µL of culture medium with 100 µL trichloroacetic acid solution 

(20% w/v in 1x PBS, pH 7.4) per well. Following incubation at 4 °C for 1 h, the supernatant was 

removed, and the cells were washed with tap water (4x) and air-dried. A sulforhodamine B 

solution (0.4% w/v, in 1% actetic acid) was added in a volume of 100 µL per well and incubated 

at room temperature for 10 min. The stained cells were washed with 1% acetic acid (4x) and air-

dried. The dye was eluted by using 200 µL of Trizma® base (10 mM) per well and incubating for 

10 min at room temperature. The plates were gently shaken for 2 – 3 min, and absorbance was 

measured at 490 nm and background absorbance at 630 nm on a BioTek Synergy plate reader. 

The ΔOD values were used for subsequent data analysis and were calculated by subtracting the 

% Inhibition = 1 - x 100 

Respiration rate relative to untreated control = 100 x 
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background absorbance from the absorbance at 490 nm. The following formula was used to 

calculate the percentage inhibition: 

% inhibition = (1 - ΔODtreated/ΔODcontrol) x 100 

 

4.3 Results and discussion 

4.3.1 HIF-1 inhibitory activity of herbal dietary supplements due to suppression of 

mitochondrial electron transport chain 

 The evaluation of 352 extracts of botanical dietary supplement products was performed 

by Ms. Mahdi in the previously described T47D cell-based HIF-1 reporter assay. Transfected 

T47D cells (pTK-HRE3-Luc) were treated with the extracts (5 µg/mL) and then exposed to 

either hypoxic conditions (1% O2) or the iron chelator 1,10-phenanthroline (10 µM) to induce 

HIF-1 reporter activity. In this assay, mitochondrial ETC inhibitors typically more potently 

inhibit hypoxia-induced HIF-1 relative to their effect on iron chelator-induced HIF-1 activation 

(Coothankandaswamy et al., 2010). Protonophores demonstrate nonspecific inhibition of HIF-1 

induction irrespective of the inducing conditions (Du et al., 2010). Forty six extracts that 

displayed an activity profile similar to either a mitochondrial inhibitor or an uncoupler were 

reconfirmed in a cell-based respiration assay by Ms. Mahdi. Sixteen extracts strongly (> 50%) 

inhibited cellular respiration, while six extracts only weakly (25 – 50%) inhibited respiration.  

Five extracts increased cellular oxygen consumption, indicating that they may uncouple 

oxidative phosphorylation. Active extracts were reconfirmed and subjected for further 

phytochemical identification and dereplication studies. Among the active extracts, blue cohosh 

and guggul extracts were identified for further investigations. 

 



145 
 

 

4.3.2 Effects of herbal dietary supplement compounds on cellular respiration 

4.3.2.1 Blue Cohosh (Caulophyllum thalictroides) 

 The extract of blue cohosh [Caulophyllum thalictroides (L.) Michx. (Berberidaceae)] 

inhibited HIF-1 activity and its effects on cell respiration were reconfirmed in the oxygen 

consumption assay. Ten purified compounds from blue cohosh were obtained from Dr. Khan’s 

pure compound repository for further evaluation (Figures 4.3 – 4.4).  

The compounds were evaluated in the HIF-1 assay at multiple concentrations (1, 10 and 

30 µM) (Figures 4.6A – B). These concentrations were within the concentration range that was 

reported to be present in the commercial dietary supplements (Avula et al. 2011) 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.6A Inhibition of hypoxia-induced HIF-1 by blue cohosh pure compounds. Transfected 
(pTK-HRE3-luc) T47D cells were treated with compounds (1, 10 and 30 µM) and exposed to 
hypoxic (1% O2) conditions for 16 h. Data shown are average + standard deviation from single 
representative experiment performed in triplicate.  Absence of error bars due to identical 
readings for any data point is denoted by ‘*’. 
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Figure 4.6B Inhibition of 1,10-phenanthroline-induced HIF-1 by blue cohosh compounds. 
Transfected (pTK-HRE3-luc) T47D cells were treated with compounds (1, 10 and 30 µM) and 
exposed to 1,10-phenanthroline (10 µM) for 16 h. Data shown are average + standard deviation 
from single representative experiment performed in triplicate. Absence of error bars due to 
identical readings for any data point is denoted by ‘*’. 
 

Among the 10 compounds tested, cauloside A (3), Saponin PE (4), and cauloside C (5) 

demonstrated inhibition of both hypoxia, and 1,10-phenanthroline-induced HIF-1 activation. 

Because the HIF-1 activity profiles of 3, 4 and 5 were similar to mitochondrial protonophores, 

these compounds were further evaluated for their effects on cell respiration. The compounds 

exhibited a time and concentration-dependent biphasic effect on T47D (intact) cell oxygen 

consumption in the respiration assay (Figures 4.7A – C). The blue cohosh extract also showed 

similar a concentration-response effect on T47D cell respiration (Figure 4.7D). Saponin PE (4) 

most potently perturbed mitochondrial respiration. The solvent being DMSO (a well-

characterized solvent), possibility of any solvent effect was ruled out. 
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Figure 4.7A Concentration-response effect of cauloside A (3) on T47D respiration. Cauloside A 
(3) was tested at 5.6, 10.0, 17.8 and 30.0 µM. Oxygen consumption rates were recorded 30, 115 
and 295 seconds after each treatment and the data were presented as percentage inhibition of 
oxygen consumption rate compared to the average oxygen consumption rate of untreated T47D 
cells. Negative values indicate a relative stimulation of oxygen consumption. Data shown are 
average + deviation from the mean for the 5.6 µM data point from two independent experiments 
(n = 2) and average + standard deviation for the rest of the data points from three independent 
experiments (n = 3). 
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Figure 4.7B Concentration-response effect of saponin PE (4) on T47D cell respiration. Saponin 
PE (4) was tested at 5.6, 10.0, 17.8 and 30.0 µM. Oxygen consumption rates were recorded 30, 
115 and 295 seconds after each treatment and the data were presented as percentage inhibition of 
oxygen consumption rate compared to the average oxygen consumption rate of untreated T47D 
cells. Negative values indicate a relative stimulation of oxygen consumption. Data shown are 
average + standard deviation from three independent experiments (n = 3). 
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Figure 4.7C Concentration-response effect of cauloside C (5) on T47D cell respiration. 
Cauloside C (5) was tested at 5.6, 10.0, 17.8 and 30 µM. Oxygen consumption rates were 
recorded 30, 115 and 295 seconds after each treatment and the data were presented as percentage 
inhibition of oxygen consumption rate compared to the average oxygen consumption rate of 
untreated T47D cells. Negative values indicate a relative stimulation of oxygen consumption. 
Data shown are average + standard deviation from three independent experiments (n = 3). 
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Figure 4.7D Concentration-response effect of blue cohosh extract on T47D cell respiration. Blue 
cohosh extract was tested at 5.6, 10.0, 17.8 and 30.0 µg/mL. Oxygen consumption rates were 
recorded 30, 115 and 295 seconds after each treatment and the data were presented as percentage 
inhibition of oxygen consumption rate compared to the average oxygen consumption rate of 
untreated T47D cells. Negative values indicate a relative stimulation of oxygen consumption. 
Data shown are average + standard deviation from three independent experiments (n = 3). 
 

Hepatocyte mitochondrial impairment is one of the major reasons for drug-induced 

hepatotoxicity. The potential of 3, 4, 5 and the original extract to disrupt the hepatic 

mitochondrial respiration was evaluated in Hep3B (a human hepatocellular carcinoma cell line) 
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cell-based respiration assay, using intact Hep3B cells. Compounds 3 – 5 exerted time- and 

concentration-dependent biphasic effects on the Hep3B cell oxygen consumption similar to their 

effects on T47D cell respiration. However, Hep3B cells were more sensitive to the effects of the 

compounds, compared to the T47D cells (Figures 4.8A – D). Since Hep3B cells are of 

neoplasmic origin, these compounds needs to be further evaluated against primary hepatocytes or 

purified mammalian liver mitochondria to eliminate the possibility of tumor cell-selective 

toxicity. The magnitude of toxicity toward primary hepatocytes or purified mitochondria by 

these compounds will be indicative of the potential adverse effects in the healthy population. 
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Figure 4.8A Concentration-response effect of cauloside A (3) on Hep3B cell respiration. 
Cauloside A (3) was tested at 5.6, 10.0, 17.8 and 30.0 µM. Oxygen consumption rates were 
recorded 30, 115 and 295 seconds after each treatment and the data were presented as percentage 
inhibition of oxygen consumption rate compared to the average oxygen consumption rate of 
untreated T47D cells. Negative values indicate a relative stimulation of oxygen consumption. 
Data shown are average + standard deviation from three independent experiments (n = 3). 
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Figure 4.8B Concentration-response effect of saponin PE (4) on Hep3B cell respiration. Saponin 
PE (4) was tested at 5.6, 10.0, 17.8 and 30.0 µM. Oxygen consumption rates were recorded 30, 
115 and 295 seconds after each treatment and the data were presented as percentage inhibition of 
oxygen consumption rate compared to the average oxygen consumption rate of untreated T47D 
cells. Negative values indicate a relative stimulation of oxygen consumption. Data shown are 
values obtained from a representative experiment (n = 1). 
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Figure 4.8C Concentration-response effect of cauloside C (5) on Hep3B cell respiration. 
Cauloside C (5) was tested at 5.6, 10.0, 17.8 and 30.0 µM. Oxygen consumption rates were 
recorded 30, 115 and 295 seconds after each treatment and the data were presented as percentage 
inhibition of oxygen consumption rate compared to the average oxygen consumption rate of 
untreated T47D cells. Negative values indicate a relative stimulation of oxygen consumption. 
Data shown are average + standard deviation from three independent experiments (n = 3). 
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Figure 4.8D Concentration-response effect of blue cohosh extract on Hep3B cell respiration. 
Blue cohosh extract was tested at 5.6, 10.0, 17.8 and 30.0 µg/mL. Oxygen consumption rates 
were recorded 30, 115 and 295 seconds after each treatment and the data were presented as 
percentage inhibition of oxygen consumption rate compared to the average oxygen consumption 
rate of untreated T47D cells. Negative values indicate a relative stimulation of oxygen 
consumption. Data shown are average + deviation from the mean from two independent 
experiments (n = 2). 
 
 The protonophore control 2-[{4-

(trifluoromethoxy)phenyl}hydrazinylidene]propanedinitrile (FCCP, 26, Figure 4.5B) [0.3 µM] 

stimulated oxygen consumption in both T47D and Hep3B cells; although the effect was greater 

in Hep3B cells, relative to the effect on T47D cells. However, 26 (0.3 µM) did not show a time-

dependent biphasic effect on cell respiration (Figure 4.9).  
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Figure 4.9 Effect of FCCP (26) on T47D and Hep3B cell respiration. Compound 26 was tested 
at 0.3 µM in both the cell lines. Oxygen consumption rates were recorded 30, 115 and 295 
seconds after each treatment and the data were presented as relative respiration rates. Positive 
values indicate a relative stimulation of oxygen consumption. Data shown are average + standard 
deviation from three independent experiments (n = 3). 
 

 Since 26 did not show a time-dependent biphasic response on cell respiration, it is 

unlikely that simple protonophoric activity is responsible for the observed effects of 3 – 5 on 

mitochondrial respiration. Structurally, these compounds are plant saponins and plant saponins 

are reported to interact with, and solubilize cell membranes (Wassler et al., 1987). Hence, we 

hypothesized that blue cohosh saponins disregulate cell respiration by permeabilizing the plasma 

and mitochondrial membranes. We further hypothesized that digitonin (27, Figure 4.2), a plant 

saponin commonly used in mechanistic mitochondrial studies, would exert similar a similar 

effect on cellular respiration. To selectively permeabilize the plasma membrane, we used a 

relatively low concentration of 27 (4 µM). Addition of 27 (4 µM) to intact cells did not alter 

oxygen consumption rates of the cells and did not permeabilize the mitochondrial membrane 

(data not shown). However, at elevated concentrations, 27 (17.8 and 30 µM) produced a time-

FCCP (26) (0.3 µM) 
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dependant biphasic effect on the cellular oxygen consumption similar to the effect observed with 

the blue cohosh saponins (Figure 4.10). 
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Figure 4.10 Concentration-response effect of digitonin (27) on T47D cell respiration. Digitonin 
(27) was tested at 10.0, 17.8 and 30.0 µM. Oxygen consumption rates were recorded 30, 115 and 
295 seconds after each treatment and the data were presented as percentage inhibition of oxygen 
consumption rate compared to the average oxygen consumption rate of untreated T47D cells. 
Negative values indicate a relative stimulation of oxygen consumption. Data shown are 
recording from a single experiment. 
 
 Dicarboxylic acids, and succinic acids, are Kreb’s cycle intermediates that serve as 

substrates for mitochondrial oxidation at mitochondrial and complex II. However, because 

succinate forms anion in solution, it cannot penetrate the plasma membrane. The mitochondrial 

inner membrane contains specialized transporters that transport succinate into the mitochondrial 

matrix. When added externally, succinate acts as a substrate for complex II and overcome 

mitochondrial complex I inhibitor-induced inhibition of cell respiration only when the plasma 

membrane is permeabilized. Digitonin (27) [4 µM] is routinely used to selectively permeabilize 

the plasma membrane. Selective plasma membrane permeabilization with 27 is performed in 

whole cell-based mitochondrial mechanistic studies to manipulate substrates at specific 

mitochondrial complexes. To assess whether blue cohosh saponins permeabilize the cellular 
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membranes, we examined cauloside A (3) as a representative compound. In the presence of 3 (10 

µM), externally supplemented succinate (5 mM) restored T47D cell oxygen consumption in the 

presence of the complex I inhibitor rotenone (1 µM). However, at a reduced concentration, 3 (5.6 

µM) did not produce an observable membrane permeabilization effect (Figures 4.11A – C). 

These observations correlate with the previously observed effects of 3 on cell respiration. 

 

 

 

 

 

 

 

 

 
 
Figure 4.11A Effect of cauloside A (3) membrane permeabilization on T47D cell respiration. 
Cauloside A (3) was tested at 10 µM. Oxygen consumption rates were recorded after each 
treatment and the average oxygen consumption rate for each section are given in the parentheses. 
Data shown are recordings from a representative experiment (n = 1). 
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Figure 4.11B Effect of cauloside A (3) membrane permeabilization on T47D cell respiration. 
Cauloside A (3) was tested at 5.6 µM. Oxygen consumption rates were recorded after each 
treatment and the average oxygen consumption rate for each section are given in the parentheses. 
Data shown are recordings from a representative experiment (n = 1). 
 
 
 
 

 

 

 

 

 

 
 
 
Figure 4.11C Effect of digitonin (27) membrane permeabilization on T47D cell respiration. 
Digitonin (27) was tested at 4 µM. Oxygen consumption rate was recorded after each treatment 
and the average oxygen consumption rate for each section are given in the parentheses. Data 
shown are recording from a representative experiment (n = 1). 
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 The results observed in Figures 4.11A – C support our hypothesis that 3 – 5 exert their 

effects on cellular oxygen consumption indirectly by permeabilizing cell membranes. The initial 

stimulation of cellular respiration is possibly due to the saponins disrupting the lipid packing of 

mitochondrial inner membrane leading to proton leak into the matrix. Exposure of mitochondrial 

inner membrane to the saponins for longer period of time possibly result in complete 

solubilization of the membrane causing complete disruption of oxidative phosphorylation and 

thus leads to time-dependent biphasic effects. These compounds are not selective mitochondrial 

inhibitors. However, when present in sufficient concentrations, they cause mitochondrial 

dysfunction due to their detergent-like properties. 

 

4.3.2.2 Ursolic and oleanolic acids 

 Lipophilic weak organic acids such as ursolic acid (28) have been previously reported to 

uncouple oxidative phosphorylation in isolated rat heart mitochondria (Liobikas et al., 2011). 

Oleanolic acid (9), a weak organic acid, is a regioisomer of ursolic acid. The oleanane-type 

saponins found in blue cohosh contain oleanolic acid or a modified oleanolic acid moiety as their 

core sapogenin. To rule out the potential for mitochondrial uncoupling caused by the free 

carboxylic group in the aglycone moiety, the effects of 9 on cell respiration was investigated. 

Oleanolic acid (up to 30 µM) did not exert any observable effects on cell respiration using intact 

T47D and Hep3B cells (data not shown). When 28 (0.03 – 30 µM) was examined at the 

concentrations within the range that was previously reported to uncouple oxidative 

phosphorylation, 28 did not affect respiration in either intact or digitonin-permeabilized T47D 

cells.  Similarly, 28 (0.03 – 30 µM) treatment did not affect Hep3B (intact) respiration (Figure 

4.12). These results contradict a previous report that 28 uncouples mitochondria (Liobikas et al., 
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2011).  Our results suggest that the inability of 28 to uncouple mitochondrial respiration may 

result from differences in the experimental models (intact/permeabilized cells vs. isolated 

mitochondria or the use of heart mitochondria vs. breast/liver cancer cells). 
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Figure 4.12 Concentration-response effects of ursolic acid (28) on intact (A) and digitonin-
permeabilized (B) T47D and intact Hep3B (C) cell respiration. Compound 28 was tested at 0.03 
– 30 µM in both the cell lines in half-log increments and FCCP (26) [0.3 µM] was used as a 
standard (S). Oxygen consumption rates were recorded after each treatment and the data were 
presented as percentage inhibition of oxygen consumption rates compared to the average oxygen 
consumption rate of untreated intact T47D and Hep3B cells. For the digitonin-permeabilized 
T47D cells digitonin (4 µM) was used to selectively permeabilize the plasma membrane and the 
percentage inhibition of oxygen consumption was calculated by comparing with the initial 
(untreated) oxygen consumption rates of the cells. Data are from a single representative 
experiment (n = 1). 
 
4.3.2.3 Guggul (Commiphora wightii) 

 The extract of guggul [Commiphora wightii (Arn.) Bhandari (Burseraceae)] was 

identified as a possible mitochondriotoxic herbal dietary supplement. Seven pure compounds 

from guggul gum resin were obtained from Dr. Khan’s pure compound repository (Figure 4.5A) 

and examined in the T47D cell-based HIF-1 reporter assay (Figures 4.13A – B).  
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Figure 4.13A Inhibition of hypoxia-induced HIF-1 by guggul compounds. Transfected (pTK-
HRE3-luc) T47D cells were treated with compounds (1, 10 and 30 µM) and exposed to hypoxia 
(1% O2) for 16 h. Data shown are average + standard deviation from a representative experiment 
performed in triplicate. Absence of error bars due to identical readings for any data point is 
denoted by ‘*’. 
 
 

 

 

 

 

 
 
 
 
 
 
Figure 4.13B Inhibition of 1,10-phenanthroline-induced HIF-1 by guggul compounds. 
Transfected (pTK-HRE3-luc) T47D cells were treated with compounds (1, 10 and 30 µM) and 
exposed to 1,10-phenanthroline (10 µM) for 16 h. Data shown are average + standard deviation 
from a representative experiment performed in triplicate. 
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 Of the seven compound tested, compounds (13E,17E,21E)-8-hydroxypolypodo-13,17,21-

trien-3-one (19), sesamin (6), and guggulsterol III (7) showed increased potency against hypoxia-

induced HIF-1 activity relative to iron chelator-induced HIF-1, which suggested that they may 

inhibit mitochondrial respiration. These compounds were further evaluated in a T47D cell-based 

respiration assay. The concentration-response effects of these three compounds and the guggul 

extract (G) were determined. Among the three compounds 6 (30 µM) and 7 (10 µM) strongly 

suppressed cellular respiration while 19 was inactive (Figure 4.14). Compound 20 and 21 were 

weak (< 30% inhibition at 30 µM) suppressors of mitochondrial respiration (data not shown). 

 

 

 

 

 

 

 

 

 
 
Figure 4.14 Concentration-response effects of 19, 6, 7 and guggul extract (G) on the T47D cell 
respiration. Compound 19 was tested at 10 and 30 µM. Compound 6 was tested at 3, 10 and 30 
µM.  Compound 7 was tested at 1, 3, and 10 µM. Guggul extract (G) was tested at 10, 30 and 
100 µg/mL. Oxygen consumption rates were recorded after each treatment and the data were 
presented as percentage inhibition of oxygen consumption rates compared to the average oxygen 
consumption rate of untreated T47D cells. Data are average + deviation from the mean for 19, 6, 
and 7 from two independent experiments (n = 2), while for G data are from a single 
representative experiment (n = 1).  
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 Mechanistic studies were performed to identify the mitochondrial complex(es) targeted 

by the guggul compounds. In digitonin-permebilized cells, addition of exogenous succinate (5 

mM) restored cell respiration that had been inhibited by sesamin (6) and guggulsterol III (7). 

This indicates that these compounds selectively inhibit mitochondrial complex I (Figures 4.15A 

– B). 
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Figure 4.15A Sesamin (6) [30 µM] inhibits mitochondrial respiration by selectively targeting 
mitochondrial complex I. Exponentially cultured T47D cells (5 x 106) were permeabilized with 
digitonin (4 µM) and respiratory complex substrates and 6 (30 µM) were added sequentially as 
specified. Sesamin (6) [30 µM] did not affect complex II, III or IV. Data are from a 
representative experiment. 
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Figure 4.15B Guggulsterol III (7) [10 µM] inhibits mitochondrial respiration by targeting 
complex I. Exponentially cultured T47D cells (5 x 106) were permeabilized with digitonin (4 
µM) and respiratory complex substrates and 7 (10 µM) were added sequentially as specified. 
Guggulsterol III (7) [10 µM, did not affect complex II, III or IV. Data are from a representative 
experiment. 
 
 
 
4.3.3 Cytotoxicity of herbal dietary supplement compounds  
 
4.3.3.1 Blue Cohosh (Caulophyllum thalictroides)   

 The cytotoxic potential of cauloside A (3), saponin PE (4), cauloside C (5), cauloside B 

(15), and blue cohosh extract were evaluated in both 2-day and 6-day cell viability assays using 

the sulforhodamine B method. Both human breast tumor (T47D) and hepatocarcinoma (Hep3B) 

cells were used as experimental models. The purified blue cohosh saponins and the extract 

demonstrated potent cytotoxic activity in both cell lines (Figures 4.16A – E). The saponins and 

the extract were more toxic to Hep3B cells. This preferential cytotoxicity was consistent with the 

results obtained in respiration studies. The cytotoxicity also increased with extended cell 

exposure, as the IC50 values were significantly lower in the 6-day cell viability assay, relative to 
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the 2-day cell viability assay (Tables 4.1 and 4.2). We have observed this kind of activity profile 

with the compounds that interfere with mitochondrial function. The maximum solvent present in 

the assay was 1.1% v/v. The effect of solvent alone on cell viability was minimal (< 10%) even 

after 6 days of incubation. 
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Figure 4.16A Effect of blue cohosh compounds on Hep3B cell viability following short-term (48 
h) incubation. Exponentially cultured Hep3B cells were incubated for 48 h with the test 
compounds (3, 4, 5 and 15) and cell viability was measured using the sulforhodamine B method. 
Data shown here are average ± standard deviation from a representative experiment performed in 
triplicate. 
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Figure 4.16B Effect of blue cohosh compounds on Hep3B cell viability following prolonged (6-
day) incubation. Exponentially cultured Hep3B cells were incubated for 6 days with the test 
compounds (3, 4, 5 and 15) and cell viability was measured using the sulforhodamine B method. 
Data shown here are average ± standard deviation from a representative experiment performed in 
triplicate. 
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Figure 4.16C Effect of blue cohosh compounds on T47D cell viability following short-term (48 
h) incubation. Exponentially cultured T47D cells were incubated for 48 h with the test 
compounds (3, 4, 5 and 15) and cell viability was measured using the sulforhodamine B method. 
Data shown here are average ± standard deviation from a representative experiment performed in 
triplicate. 
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Figure 4.16D Effect of pure blue cohosh compounds on T47D cell viability following prolonged 
(6-day) incubation. Exponentially cultured T47D cells were incubated for 6 days with the test 
compounds (3, 4, 5 and 15) and cell viability was measured using the sulforhodamine B method. 
Data shown here are average ± standard deviation from a representative experiment performed in 
triplicate. 
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Figure 4.16E Effect of the blue cohosh extract on T47D and Hep3B cell viability following 2-
day and 6-day incubation periods. Exponentially grown T47D and Hep3B cells were incubated 
for 48 h or 6 days with blue cohosh extract and cell viability was measured using the 
sulforhodamine B method. Data shown here are average ± standard deviation from a 
representative experiment performed in triplicate. 
 

 

Compound/ 
Extract 

IC50 (95% CI) µM (or µg/mL*) 

T47D 

48 h 6 days 

3 12.98 (12.21 - 13.80) 11.52 (11.21 – 11.85) 

4 12.60 (12.23 - 12.99) 10.21 (10.08 – 10.35) 

5 30.07 (29.30 - 30.86) 25.60 (25.03 – 26.18) 

15 > 56 >56 
*Blue cohosh 

extract 
55.61 (52.69 – 58.68) 32.03 (30.92 – 33.19) 

 

Table 4.1 IC50 values of 3, 4, 5, 15 and the blue cohosh extract on T47D cell 
proliferation/viability in a concentration-response study (2-day and 6-day). Data shown are from 
a representative experiment performed in triplicate. 
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Compound/ 
Extract 

IC50 (95% CI) µM (or µg/mL*) 

Hep3B 

48 h 6 days 

3 7.53 (7.11 – 7.98) 6.63 (6.41 – 6.87) 

4 7.00 (6.63 – 7.39) 3.45 (3.32 – 3.58) 

5 27.83 (22.31 – 34.72) 8.99 (8.46 – 9.56) 

15 41.49 (40.13 – 42.89) 30.44 (28.95 – 32.00) 
*Blue cohosh 

extract 
30.77 (29.93 – 31.64) 24.66 (23.91 – 25.43) 

 

Table 4.2 IC50 values of 3, 4, 5, 15 and the blue cohosh extract in Hep3B cell 
proliferation/viability in a concentration-response study (2-day and 6-day). Data shown are from 
a representative experiment performed in triplicate. 
 

Oleanolic acid (9) was examined for its cytotoxic effect on T47D cells. Compound 9 (30 

µM) was mildly cytotoxic only in 6-day cell proliferation/viability assay (< 30% inhibition of 

cell viability at 30 µM). 

 

4.3.3.2 Guggul (Commiphora wightii) 

 Six pure compounds isolated from guggul were evaluated in the T47D cell 

proliferation/viability assay. The compounds and the guggul extract showed time- and 

concentration-dependent suppression of the T47D cell proliferation/viability (Figures 4.17A – 

C). Guggulsterol III (7) was the most potent among the compounds tested (IC50 values 13.8 µM 

and 3.38 µM, in 2-day and 6-day cell viability assays, respectively (Table 4.3). The guggul 

extract was more cytotoxic upon extended exposure, suggesting mitochondrial disruption may be 

responsible for the observed cytotoxicity. 
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Figure 4.17A Effect of guggul compounds on T47D cell viability following short-term (48 h) 
incubation. Exponentially cultured T47D cells were incubated for 48 h with the test compounds 
and cell viability was measured using the sulforhodamine B method. Data are average ± standard 
deviation from a representative experiment performed in triplicate. 
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Figure 4.17B Effect of guggul compounds on T47D cell viability following long-term (6-day) 
incubation. Exponentially cultured T47D cells were incubated for 6 days with the test 
compounds and cell viability was measured using the sulforhodamine B method. Data here are 
average ± standard deviation from a representative experiment performed in triplicate. 
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Figure 4.17C Effect of guggul extract on T47D cell viability following 2-day and 6-day 
incubation periods. Exponentially cultured T47D cells were incubated for either 48 h or 6 days 
with the guggul extract and cell viability was measured using the sulforhodamine B method. 
Data are average ± standard deviation from a representative experiment performed in triplicate 
. 
 
 

Compound/ 
Extract 

IC50 (95% CI) µM (µg/mL*) 

T47D 

48 h 6 days 

19 > 30 10.60 (9.69 – 11.61) 

20 28.75 (25.26 – 32.72) 9.28 (8.82 – 9.76) 

6 >30 22.15 (19.78 – 24.81) 

21 > 30 17.90 (16.88 – 18.99) 

22 > 30 10.12 (9.01 – 11.38) 

7 13.80 (12.13 – 15.70) 3.38 (3.06 – 3.73) 
*Guggul 
extract 

49.33 (40.72 – 59.78) 5.75 (5.03 – 6.58) 

 

Table 4.3 Human breast cancer T47D cell proliferation/viability study. The IC50 values of 6, 7, 
19, 20, 21, 22 and the guggul extract on in a 2-day and 6-day exposure concentration-response 
study. Data are from a representative experiment performed in triplicate. 
 
 Mitochondria are important cellular organelles, mediating cell death (Green and 

Kroemer, 2004). Drug-induced toxicity is often mediated through the induction of mitochondrial 
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dysfunction and resulting cell death (Begriche et al., 2011). Botanical dietary supplements and 

herbal remedies are widely consumed for a variety of health conditions. They are often perceived 

as safe and devoid of adverse effects or toxicity due to their natural origin. However, toxicities 

due to botanical dietary supplement consumption have been reported (Stickel et al., 2011). The 

toxicities are often similar in nature to the toxicities observed with compounds that target the 

mitochondria (Frazier and Krueger, 2009). Mitochondriotoxic substances are common in nature 

and, while chemically undefined, botanical dietary supplements and other herbal remedies are 

likely to have a similar potential to induce mitochondrial dysfunction as clinically approved 

drugs or other synthetic molecules. Currently the data on the presence of possible 

mitochondriotoxic substances in the dietary supplements and their daily consumption, percentage 

yield, bioavailability, metabolism, and pharmacokinetics are unavailable. Hence, it is difficult to 

predict whether or not these compounds are in high enough concentrations to cause toxicity in 

vivo. Mitochondria play an important regulatory role in hypoxia-induced HIF-1 activation 

(Agani et al., 2000). Inhibition of the mitochondrial ETC strongly prevents activation and 

stabilization of hypoxia-induced HIF-1 relative to iron chelator-induced HIF-1 

(Coothankandaswamy et al., 2010). Uncoupling of oxidative phosphorylation abolishes HIF-1 

activation, regardless of the nature of the inducing stimulus (Du et al., 2010). Even though the 

class of mitochondrial inhibitors can be a valuable tool in antitumor therapy, these compounds 

can produce serious adverse effects in healthy individuals.  

A T47D cell-based HIF-1 reporter gene assay, in conjunction with an intact cell-based 

respiration assay, was used to preliminarily identify mitochondriotoxic extracts from plants used 

in botanical dietary supplement products. Over 350 botanical dietary supplement plant extracts 

from the National Center for Natural Products Research (NCNPR) repository were evaluated in a 
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human breast cancer T47D cell-based HIF-1 reporter gene assay. The extracts that preferentially 

inhibited hypoxia-induced HIF-1 activation were selected and reconfirmed in a T47D cell-based 

cell respiration assay. Blue cohosh and guggul extracts were identified as hits in the screening 

and confirmatory assays. Pure compounds previously isolated from blue cohosh and guggul were 

obtained from Dr. Ikhlas A. Khan’s pure compound repository. The saponin glycosides from 

blue cohosh [cauloside A (3), saponin PE (4), and cauloside C (5)] disrupted both hypoxia-

induced and 1,10-phenanthroline-induced HIF-1 activation. Saponins are amphiphylic in nature 

and are known to form pores in the lipid bilayer of cellular membranes. Further investigation 

revealed that HIF-1 inhibition and the biphasic effect on cellular oxygen consumption by these 

compounds and blue cohosh extract were due to the membrane disrupting properties of the 

saponins. Oleanolic acid (9), which is structurally similar to the aglycone part of the saponin 

glycosides, was inactive in the mitochondrial respiration assay. The presence of an additional 

hydroxy group on the aglycone core reduced the bioactivity of the saponins. The hepatocellular 

carcinoma cell line Hep3B was more sensitive to the saponins 3 – 5 relative to its effect on the 

breast cancer T47D cell line. This difference in sensitivity may result from differences in their 

membrane lipid composition, a concept that may warrant further study. The cytotoxicity of 

saponins in various tumor cell lines has been reported previously (Podolak et al., 2010). The blue 

cohosh extract and the blue cohosh pure compounds were cytotoxic to both T47D and Hep3B 

cells, with higher potency in Hep3B cells. It is particularly noteworthy that oleanolic acid (9) 

was inactive in the T47D-cell based cellular respiration and the viability assays indicate that the 

sugar moieties are essential for the activities. Since the overall tumor cell selectivity profile of 

these compounds are yet to be established, it is possible that mammalian hepatocytes could be 

similarly susceptible to the membrane disrupting activity of blue cohosh saponins and blue 
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cohosh extract. In that case, the potential for hepatotoxicity from consuming herbal remedies that 

contain blue cohosh is greater than previously estimated. Blue cohosh (Caulophyllum 

thalictroides) is a plant indigenous to North America that has a history of traditional use. As a 

dietary supplement it is used as an antispasmodic, emenagogue (menstrual flow stimulator), 

parturifacient (labor inducer) and abortifacient (Dugoua et al., 2008). In 1999, it was estimated 

that 64% of midwives in the US used blue cohosh as a labor-inducer (McFarlin et al., 1999). 

However, the safety profile and adverse effects of blue cohosh in pregnant women and neonates 

are unknown. Perinatal stroke, acute myocardial infarction, congestive heart failure, multiple 

organ injury and shock in neonates have been associated with consumption of blue cohosh 

tincture/dietary supplements (Dugoua et al., 2008). Such idiosyncratic toxicities may be 

explained by the plasma and mitochondrial membrane permeabilizing effects of saponin 

glycosides. Further monitoring and reporting of adverse effects due to blue cohosh consumption 

is required to better understand the toxic potential of this over-the-counter dietary supplement. 

 Guggul gum resin is a popular dietary supplement used for its hypolipidemic and anti-

inflammatory effects (Shishodia et al., 2008). Sporadic cases of guggul-associated hepatotoxicity 

had been reported (Yellapu et al., 2011; Grieco et al., 2009). However, this work is the first to 

report that guggul extract and purified guggul gum resin compounds act as mitochondrial ETC 

inhibitors. Sesamin (6) and 7 both inhibit mitochondrial complex I in cellular respiration assays 

in a concentration-dependent manner. Guggulsterol III (7) was more potent than 6. Compound 

19 was inactive in the mitochondrial respiration assay although it preferentially suppressed 

hypoxia-induced HIF-1 activation. Other compounds (i.e, 20 and 21) were weak inhibitors (< 

30% inhibition at 20 µM, data not shown) of T47D cell respiration. The potency of guggul 

extract to suppress mitochondrial respiration cannot be fully explained by the activity of these 
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two compounds. It is possible that other known or unreported, compounds present in the guggul 

extract contribute towards the enhanced mitochondrial suppression observed with guggul extract. 

Irrespective of their activity profile in the mitochondrial respiration assay, six out of seven 

guggul compounds strongly suppressed T47D cell viability (IC50 values 3.38 – 22.15 µM, 6-day 

assay). However, these guggul compounds were only weakly cytotoxic in 2-day cell viability 

studies. Direct mitochondrial ETC targeting does not seem to be the main cytotoxic mechanism 

for some of these compounds and it is possible that these substances exert their effects through 

non-mitochondrial mechanism. Alternatively, weak mitochondrial inhibition for a prolonged 

period or metabolic activation of the compounds may produce the observed suppression of cell 

proliferation/viability. It must be noted that while the guggul extract, E- and Z-guggulsterone, 

and other isolated guggul compounds are cytotoxic to T47D cells; their selectivity profile has not 

been established. Further investigations to characterize the toxicity and selectivity profile of the 

guggul extract and isolated guggul compounds are required. Until the toxicity profiles and 

mechanisms for toxicity are completely defined, caution should be exercised with the use of 

botanical dietary supplements/herbal remedies that contain guggul. 

 Another notable observation during this investigation was the inability of ursolic acid 

(28) (0.03 – 30 µM) to uncouple oxidative phosphorylation in both intact and permeabilized 

T47D and Hep3B cells. This contradicts a previous report that demonstrated the mitochondrial 

uncoupling effect of 28 in isolated rat heart mitochondria (Liobikas et al., 2011). However, the 

selection of the experimental model to evaluate the mitochondrial function during screening and 

respiration studies of mitochondriotoxic agents is critical. Intact or permeabilized cells are more 

complex systems than isolated mitochondria. The difference in plasma membrane permeability 

and/or protein binding between intact and permeabilized cells might affect the activity observed 
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in either system. While it can be argued that respiration in cell-based systems may be influenced 

by non-mitochondrial factors, intact cells may be more physiologically relevant as models for the 

study of chemical toxins with unknown membrane permeability profiles. Further, the loss of 

intracellular communication between organelles and the loss of mitochondrial network structure 

might also produce artifactual results in studies that evaluate potential mitochonriotoxic agents in 

isolated mitochondria (Brand and Nicholls, 2011). 
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SUMMARY
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 Small-molecules that target cellular bioenergetics are an emerging class of antitumor 

agents. Successful discovery of natural product small-molecules that inhibit glycolysis and/or 

oxidative phosphorylation depends on proper identification and valiadation of a target; a robust 

screening system; bioassay-guided fractionation; structure elucidation; biological 

characterization, and multiple other factors. Selection of chromatographic media for bioassay-

guided isolation is one of the many critical steps in the drug discovery process. Hypoxia-

inducible factor-1 (HIF-1) is an important antitumor target that regulates cellular bioenergetics. 

One of the major functions of HIF-1 is regulation of cellular bioenergetics. Mitochondrial 

inhibitors and uncouplers inhibit HIF-1 activation. During a controlled evaluation of 

chromatographic media in HIF-1-targeted natural product antitumor drug discovery, it was 

observed that Si gel has the highest potential to cause poor sample recovery, chemical 

alterations, and loss of bioactivity. HP20SS, a polystyrenic resin, can be used as an alternative to 

Si gel in the large scale pre-fractionation of plant or marine organism-derived extracts. However 

a final wash with an organic solvent, such as EtOAc, is required to completely elute the materials 

from the HP20SS columns. Highly lipophilic extracts also tend to lose bioactivity after elution 

through HP20SS columns. 

A high rate of aerobic glycolysis in tumor cells is an attractive antitumor target. To 

discover natural product aerobic glycolysis inhibitors, a bioenergetics-based screening system 

was developed to evaluatea total of 10,648 10,000 extracts fom the NCI’s Open Repository 

Program... Bioassay-guided isolation of the Moronobea coccinea extract resulted in isolation of a 

new compound named moronone (1). Moronone (1) is a protonophore that was active in the 

glycolysis inhibitor screening system. A prototypical protonophore (FCCP) was similarly active. 
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For successful identification of glycolysis inhibitors, the protonophoric compounds (nuisance 

compounds or false positives) should be rapidly dereplicated. 

Even though mitochondrial inhibitors are useful as potential antitumor agents, long term 

exposure to mitochondrial inhibitors may result in adverse effects. The potential of 

mitochondrotoxic agents to cause idiosyncratic adverse effects was evident in the withdrawal of 

FDA-approved drugs from the market, due to their mitochondrial toxicity. Plant extracts used in 

botanical dietary supplement (BDS) products were evaluated for mitochondriotoxic activity. 

Among 46 active extracts, two extracts (blue cohosh and guggul) were subjected to further 

investigations. Three saponin-type compounds from blue cohosh [cauloside A (3), saponin PE 

(4), and cauloside C (5)] permeabilized the plasma and mitochondrial membranes, and produced 

cytotoxic effects in human breast tumor (T47D) and hepatocellular carcinoma (Hep3B) cell 

lines. Sesamin (6) and guggulsterol III (7) from guggul selectively inhibited complex I of the 

electron transport chain. Six compounds from guggul (including 6 and 7) produced cytotoxic 

effects in a human breast tumor cell line (T47D). However, guggul extract was more potent than 

any of the individual compounds. Further investigation is required to identify the presence of 

other mitochondrial inhibitors in guggul extract. Purified compounds from blue cohosh 

andguggul, as well asthe extracts, need to be evaluated in primary cell lines or purified 

mitochondria, in order to assesstheir tumor selectivity profiles and potential in vivo toxicity. 

These results indicate a necessity for a large scale, systematic investigation of dietary 

supplements for the presence of the mitochondrial inhibitors.
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