
University of Mississippi University of Mississippi 

eGrove eGrove 

Electronic Theses and Dissertations Graduate School 

2012 

Characterizations Of Zero Divisor Graphs Determined By Characterizations Of Zero Divisor Graphs Determined By 

Equivalence Classes Of Zero Divisors Equivalence Classes Of Zero Divisors 

Amanda Catherine Acosta 
University of Mississippi 

Follow this and additional works at: https://egrove.olemiss.edu/etd 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Acosta, Amanda Catherine, "Characterizations Of Zero Divisor Graphs Determined By Equivalence Classes 
Of Zero Divisors" (2012). Electronic Theses and Dissertations. 1065. 
https://egrove.olemiss.edu/etd/1065 

This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been 
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more 
information, please contact egrove@olemiss.edu. 

https://egrove.olemiss.edu/
https://egrove.olemiss.edu/etd
https://egrove.olemiss.edu/gradschool
https://egrove.olemiss.edu/etd?utm_source=egrove.olemiss.edu%2Fetd%2F1065&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=egrove.olemiss.edu%2Fetd%2F1065&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/etd/1065?utm_source=egrove.olemiss.edu%2Fetd%2F1065&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu


CHARACTERIZATIONS OF ZERO DIVISOR GRAPHS DETERMINED BY

EQUIVALENCE CLASSES OF ZERO DIVISORS

A Thesis

presented in partial fulfillment of requirements

for the degree of Master of Science

in the Department of Mathematics

The University of Mississippi

by

Amanda Catherine Acosta

May 2012



Copyright Amanda Catherine Acosta 2012
ALL RIGHTS RESERVED



ABSTRACT

We study zero divisor graphs of commutative rings determined by equivalence classes of

zero divisors, specifically for a Noetherian ring R. We study the classification of these

graphs. Specifically, we add more criteria to the list of characterizations that disqualify

a graph as the zero divisor graph of a ring. We also briefly discuss Sage, a mathematical

software, which was an aid in providing visual pictures for the graphs under study.
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1 INTRODUCTION

The overall goal of this thesis is to continue the classification of zero divisor graphs of

commutative rings determined by equivalence classes of zero divisors. While the classi-

fication is a difficult problem and remains incomplete, we add more criteria to the list

of graph properties. To further the classification, we study the six vertices zero divisor

graphs determined by equivalence classes of zero divisors, with an eye towards determin-

ing which of these graphs is realizable.

In section 2, we provide the necessary background of Algebra terms and results. In sec-

tion 3, we provide the necessary background of Graph Theory terms. Section 4 contains

history and examples regarding zero divisor graphs of commutative rings determined by

equivalence classes of zero divisors. In section 5, we provide the working list of graph

properties which disqualify a graph G as the zero divisor graph of a commutative ring,

R, determined by equivalence classes. Section 6 contains the new results obtained in

the research for this paper. In section 7, we provide further examples of the new results

from section 6. The graphs for these examples contain 7 vertices. Section 8 provides

explanation of the mathematical software, Sage. Lastly, the Appendices classify the six

vertices graphs under study by method of disqualification as the zero divisor graph of a

commutative ring determined by equivalence classes of zero divisors.

In this paper, R will represent a commutative Noetherian ring with unity
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2 ALGEBRA

In this section, we give the necessary Algebra background by collecting definitions and

results. Some good general references for the material in this section are [4], [7], and

[11].

Definition 2.1 A ring R is a set with two binary operations, addition (denoted a + b)

and multiplication (denoted by ab) , such that for all a, b, c in R:

1. a + b = b + a.

2. (a + b) + c = a + (b + c).

3. There is an additive identity 0. That is, there is an element 0 in R such that

a + 0 = a for all a in R.

4. There is an element −a in R such that a + (−a) = 0.

5. a(bc) = (ab)c.

6. a(b + c) = ab + ac and (b + c)a = ba + ca.

Definition 2.2 When multiplication in a ring, R, is commutative, we say the ring is

commutative.

Definition 2.3 A unity (or identity) in a ring, R, is a nonzero element, denoted 1R,

that is an identity under multiplication.

Definition 2.4 A nonzero element, a, of a commutative ring, R, is a unit if a−1 exists

such that aa−1 = 1R.

Definition 2.5 A non-empty subset S of a ring R is a subring of R if S is itself a ring

with the operations of R.

Definition 2.6 A subring A of a ring R is called a (two-sided) ideal of R if for every r

in R and every a in A both ra and ar are in A.
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Definition 2.7 A prime ideal, A, of a commutative ring, R, is a proper ideal of R such

that a, b ∈ R and ab ∈ A imply a ∈ A or b ∈ A.

Definition 2.8 Let a be any element of a commutative ring R. The annihilator ideal

of a in R is denoted Ann(a) = { r ∈ R | ra = 0 }.

Definition 2.9 A zero-divisor is a nonzero element, a, of a commutative ring, R, such

that Ann(a) 6= (0). Z∗(R) denotes the zero divisors of R and Z(R) = Z∗(R) ∪ {0}.

Definition 2.10 If p is a prime ideal of a commutative ring R such that p = ann(y) for

some 0 6= y ∈ R, then p is an associated prime. Ass(R) denotes the set of associated

primes.

Definition 2.11 A maximal associated prime is an associated prime, p of a com-

mutative ring R, such that p is not properly contained in any other associated prime.

Definition 2.12 A commutative ring R is said to be a Noetherian ring if any ascend-

ing chain of ideals, I1 ⊆ I2 ⊆ . . . Ik−1 ⊆ Ik ⊆ Ik+1, contains only a finite number of

distinct ideals; i.e., there exists n ∈ N such that In = In+k for all k ∈ N.

The following result is utilized in proving that a complete graph G cannot be realized as

the zero divisor graph of a commutative ring R determined by equivalence classes. See

Proposition 4.14.

Proposition 2.13 Let R be a commutative ring, I, P1, .., Pr ideals of R, and suppose

that P3, ..., Pr are prime, and that I is not contained in any of the Pi; then there exists

an element x ∈ I not contained in any Pi.

Proof We want to show that there exists an x ∈ I not contained in any Pi. Assume no

inclusion among the P ′is because if P1 ⊆ P2, then any x ∈ I\P2 also satisfies x 6∈ P1.

Note that for r = 1, I 6⊆ P1 implies there exists x ∈ I\P1. Consider r = 2. There exists

x ∈ I\P1 and there exists y ∈ I\P2. Hence, we have x + y ∈ I. We will now show that

one of x, y or x + y is the element we seek. If x ∈ I\(P1 ∪ P2), we are done. Similarly,

if y ∈ I\(P1 ∪ P2), we are done. Now, suppose x ∈ P2 and y ∈ P1. If x + y ∈ P1, then

this implies a contradiction since x = x+ y− y and y ∈ P1 implies x ∈ P1. If x+ y ∈ P2,

3



then this implies a contradiction since y = x + y − x and x ∈ P2 implies y ∈ P2. Thus,

x+ y is in neither P1 nor P2. We now proceed by induction on r ∈ N. Note that we have

already shown above the base case for r = 1 and r = 2. For the inductive hypothesis,

assume the result holds for all integers k with 2 ≤ k ≤ r− 1. We want to show the result

holds for r. Since Pr is prime, then IP1P2 · · ·Pr−1 6⊆ Pr as none of I, P1, P2, ..., Pr−1 is

contained in Pr. Thus, Pr 6⊇ IP1P2 · · ·Pr−1. Choose x ∈ IP1P2 · · ·Pr−1\Pr. Note that we

have ar ∈ I ∩P1 ∩P2 ∩ · · · ∩Pr−1 since ar ∈ IP1P2 · · ·Pr−1. By the inductive hypothesis,

choose y ∈ I\(P1 ∪ P2 ∪ · · · ∪ Pr−1). Consider y and x + y. If y 6∈ Pr, then we have

found the element which we seek. Suppose y ∈ Pr. Consider x + y. If x + y ∈ Pr, then

x = x+ y− y ∈ Pr which is a contradiction. If x+ y ∈ Pi, i < r, then y = y + x− x ∈ Pr

which implies y ∈ P1 ∪ P2 ∪ · · · ∪ Pr−1, a contradiction to the inductive hypothesis.

4



3 GRAPH THEORY

In this section, we give the necessary Graph Theory background by collecting definitions

and results. The definitions for the material in this section were taken verbatim from the

following general references [8] and [12].

Definition 3.1 A relation on a set S is a collection of ordered pairs from S. We say S

is an equivalence relation if S is reflexive, symmetric, and transitive.

Definition 3.2 A graph G consists of a vertex set V(G), an edge set E(G), and a

relation that associates with each edge two vertices (not necessarily distinct) called its

endpoints.

Definition 3.3 Given an equivalence relation ∼ on a set S, the equivalence class of s

∈ S is {t ∈ S | s ∼ t}.

Definition 3.4 A loop is an edge whose endpoints are equal.

Definition 3.5 Multiple edges are edges having the same pair of endpoints.

Definition 3.6 Let u and v be vertices. We say u and v are adjacent and are neighbors

when u and v are the endpoints of an edge.

Definition 3.7 A graph G is finite if its vertex set and edge set are finite.

Definition 3.8 A simple graph is a graph G having no loops or multiple edges.

Definition 3.9 G is a cycle graph if G is an n-gon for some integer n ≥ 3.

Definition 3.10 A simple graph G is a path if all vertices in G can be ordered such

that two vertices are adjacent if and only if they are consecutive in the list. A path in a

graph is a sequence of vertices such that from each of its vertices there is an edge to the

next vertex in the sequence.
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Definition 3.11 A subgraph of a graph G is a graph H such that V(H) ⊆ V(G) and

E(H) ⊆ E(G) and the assignment of endpoints to edges in H is the same as in G.

Definition 3.12 A graph G is connected if each pair of vertices in G belongs to a path.

Definition 3.13 A graph G is disconnected if G is not connected.

Definition 3.14 Let v be a vertex and e be an edge. We say that v and e are incident

if v is an endpoint of e.

Definition 3.15 The degree of vertex v in a simple graph is the number of incident

edges.

Definition 3.16 An end is a vertex of degree one.

Definition 3.17 A graph G is regular if every vertex has the same degree.

Definition 3.18 A simple graph G is complete if all vertices in G are pairwise adjacent.

Definition 3.19 A graph G is complete bipartite if there is a partition of all vertices

into two subsets {ui} and {vj} such that ui is adjacent to vj for all pairs i,j, but no two

elements of the same subset are adjacent.

Definition 3.20 A graph G is complete k-partite graph if the vertices can be par-

titioned into k distinct subsets such that each element of a subset is adjacent to every

element not in the same subset, but no two elements of the same subset are adjacent.

Definition 3.21 The girth of a graph G with a cycle is the length of a shortest cycle.

If G contains no cycles, then G has infinite girth.

Definition 3.22 The length of a path is its number of edges.

Definition 3.23 Let G be a connected graph. The distance from u to v, denoted d(u, v),

is the least length of any path from u to v.

Definition 3.24 Let G be a connected graph. The diameter of G, denoted diam G, is

the greatest distance between any two vertices of G.

Definition 3.25 The neighborhood of a vertex v in a graph G, denoted N(v), is the

6



set of all vertices adjacent to v.

Definition 3.26 The closure of a neighborhood of a vertex v in a graph G, denoted

N(v), is the neighborhood of v along with v itself; i.e., N(v) ∪ {v}.

Definition 3.27 Two cycles joined by a path consisting of at least one edge is called a

bicycle.

7



4 HISTORY, EXAMPLES, AND PRIOR

RESULTS

All rings R are assumed to be commutative, Noetherian and contain a unity.

4.1 History and Examples

In 1988, Istvan Beck first introduced the idea of associating to a ring a graphic represen-

tation. Subsequently, other researchers altered Beck’s original definition. In this section

we detail the three main definitions of graphs associated to a ring R.

Definition 4.1 [3] Given a finite ring R, let G(R) denote the graph whose vertices are

the elements of R, and with pair of distinct vertices r and s joined by an edge if and only

if rs = 0.

Remark 4.2 The graph G(R) is connected and simple with diameter at most two since

0 ∈ R and every element in R is adjacent to 0.

Example 4.3 Consider R = Z/8Z = {0, 1, 2, 3, 4, 5, 6, 7}. The graph G(Z/8Z) is given

below.

2

1

7

3

4 0

6

5

Figure 1: The Beck Graph G(Z/8Z)
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In 1999, D. Anderson and P. Livingston introduced a simplified version of Beck’s zero

divisor graph. While the edges of the graph are defined as in Definition 4.1, the vertex

set is smaller.

Definition 4.4 [1] Given a ring R, let Z∗(R) denote the set of (non-zero) zero divisors

of R. Let Γ(R) denote the graph whose vertices are the elements of Z∗(R), and with each

pair of distinct vertices r and s joined by an edge if and only if rs = 0.

Remark 4.5 The graph Γ(R) is connected and simple with diameter at most three.

Example 4.6 Consider R = Z/8Z where {2, 4, 6} is the set of zero divisors of R. The

graph Γ(Z/8Z) is given below.

2

4

6

Figure 2: The Zero Divisor Graph Γ(Z/8Z)

The following theorem provides motivation for studying zero divisor graphs. Note that a

reduced ring is a ring that does not contain any nonzero nilpotent elements; i.e., if an = 0

for some a ∈ R and some n ∈ N, then a = 0.

Theorem 4.7 [2, Theorem 4.1] Let R and S be finite reduced commutative rings which

are not fields. Then Γ(R) ∼= Γ(S) as graphs if and only if R ∼= S as rings.

In 2002, S.B. Mulay introduced the concept of constructing a graph from equivalence

classes of zero divisors, further simplifying the zero divisor graph. Roughly speaking, this

graph is a condensed version of the Anderson and Livingston graph.

Definition 4.8 [10] Given a ring R, two zero divisors r, s ∈ Z∗(R) are equivalent if

Ann(r) = Ann(s). This is an equivalence relation. The equivalence class of r is denoted

[r].

Definition 4.9 [11, Definition 1.1] The graph of equivalence classes of zero divisors of

9



a ring R, denoted ΓE(R), is the graph associated to R whose vertices are the classes of

elements in Z∗(R), and with each pair of distinct classes [x], [y] joined by an edge if and

only if xy = 0 where classes are multiplied in the obvious way.

Remark 4.10 The graph ΓE(R) is connected and simple with diameter at most three.

Example 4.11 Consider R = Z/8Z where {[2], [4]} is the set of equivalence classes of

zero divisors of R. Note that ann(2) = ann(6), hence [2] = [6]. The graph ΓE(Z/8Z) is

given below.

[2]

[4]

Figure 3: The (Condensed) Zero Divisor Graph ΓE(Z/8Z)

Remark 4.12 The graph ΓE(R) can be finite even if R is infinite.

Example 4.13 Consider the ring R = (Z/8Z)[X]. R consists of polynomials in the

variable X where the coefficients belong to the ring Z/8Z. Note that R has infinitely

many elements, but R contains only two equivalence classes of zero divisors. The graph

ΓE(Z/8Z)[X] takes the same form as the graph ΓE(Z/8Z) given in Example 4.11.

4.2 Prior Results

We now collect past research on zero divisor graphs determined by equivalence classes of

zero divisors of a commutative ring R. These results are utilized in proving new results

in section 6.

Proposition 4.14 [11, Proposition 1.5] If G is complete with at least 3 vertices, then

G 6= ΓE(R) for any R.

Proof Take any three vertices [u], [v], and [z]. Without loss of generality, ann(z) 6⊂

ann(v) and ann(z) 6⊂ ann(u); otherwise, ann(z) = ann(v) = ann(u). Thus, there exists

x ∈ ann(z)\ann(v), and there exists y ∈ ann(z)\ann(u). Note that x 6∈ ann(v) and y 6∈

10



ann(u) implies we must have [x] = [v] and [y] = [u]. Thus, x ∈ ann(u) and y ∈ ann(v).

By Proposition 2.13, x + y ∈ ann(z)\(ann (v)∪ ann (u)). Contradiction, there is no such

element in the graph.

Remark 4.15 Since every associated prime is of the form ann(v), we will often abuse

terminology and refer to [v] as an associated prime.

Lemma 4.16 [11, Lemma 1.2] Any two distinct elements of Ass(R) are adjacent. Fur-

thermore, every vertex [v] of ΓE(R) is either an associated prime or adjacent to a maximal

associated prime.

Proposition 4.17 [11, Proposition 1.7] Let R be a ring such that ΓE(R) is complete

r-partite. Then r = 2 and ΓE(R) = Kn,1 for some n ≥ 1.

Proposition 4.18 [11, Proposition 3.2] If R is a ring such that |ΓE(R)| > 3, then no

associated prime of R is an end.

Theorem 4.19 [11, Theorem 3.6] Let R be such that 2 < |ΓE(R)| < ∞. Then any

vertex of maximal degree is a maximal associated prime.

Proposition 4.20 [6, Proposition 5.2] Associated primes are “edge dominating”; i.e.,

every associated prime contains an end of every edge in the graph ΓE(R).

Corollary 4.21 [6, Corollary 5.3] If |ΓE(R)| > 3 and the graph has at least one vertex

[x] with two or more ends, then

(a) Ass (R) = {Ann (x)};

(b) every vertex [y] 6= [x] must be adjacent to [x]; in particular,

(1) deg([x]) = |ΓE(R)| - 1 if |ΓE(R)| is finite, and

(2) no vertex other than [x] can have an end.

11



5 CHARACTERIZATIONS OF ZERO DIVISOR

GRAPHS DETERMINED BY EQUIVALENCE

CLASSES

Below is the current known list of characterizations concerning whether or not a graph G

is realizable as a zero divisor graph. Characterizations 9 - 20 represent the new results,

and form the basis for the work in this thesis.

A graph G cannot be the (condensed) zero divisor graph of a Noetherian, commutative

ring R with unity 1 if:

1. (Connected) G is not connected.

2. (Diameter) The diameter of G is greater than 3.

3. (Girth) The girth of G is greater than 3 and finite.

4. (Regular) For 2 < |G| <∞, G is a regular graph.

5. (Complete) For |G| > 2, G is complete. See Propostition 4.14.

6. (Complete r-Partite) For |G| > 2 and r 6= 2, G is complete r-partite. See Proposition

4.17.

7. (Cycle) G is a cycle graph.

8. (Associated Primes and Ends Theorem) For |G| > 3, G has a vertex [x] with two or

more ends, and

(a) there exists a vertex [y] 6= [x] not adjacent to [x], or

(b) there exists another vertex other than [x] that has an end. See Corollary 4.21.

9. (Hinge Theorem) G is connected with at least five vertices and contains a hinged end.

See Theorem 6.6.

12



10. (Maximum Degree Theorem) G is finite and connected with two non-adjacent vertices

of maximal degree. See Theorem 6.7.

11. (“Looped End” Theorem) G is a connected graph with a vertex d that has an end

represented by a self-annihilating element and another vertex b /∈ N([d]). See Theorem

6.2.

12. (“Looped End” Corollary 1) G is connected with two distinct vertices each having an

end and one of the ends is represented by a self-annihilating element. See Corollary 6.3.

13. (“Looped End” Corollary 2) G is a connected graph with a vertex d having two ends,

and there exists [b] 6∈ N([d]). See Corollary 6.4.

14. (Bridge Theorem) G is a connected graph such that G = N([a]) ∪ N([c]), where

|N([a])| ≥ 1, |N([c])| ≥ 2, and where a and c are two distinct vertices such that ac = 0,

and no vertex in N([a]) is adjacent to any vertex in N([c]). See Theorem 6.9.

15. (Bicycle Corollary) G is a bicycle. See Corollary 6.11.

16. (The Book Theorem) G is a book graph. See Theorem 6.13.

17. (The Modified Book Theorem) G is a modified book graph. See Theorem 6.15.

18. (Missing Chord Theorem) G is a connected graph with two distinct non-adjacent

vertices a, b such that for every v ∈ G, N([a]) ∪N([b]) 6⊂ N([v]). See Theorem 6.18.

19. (Missing Sum Theorem 1) G is a connected graph with two distinct adjacent vertices

a, b such that

(a) there exists a vertex [v] ∈ N([a])\N([b]);

(b) there exists a vertex [w] ∈ N([b])\N([a]);

(c) N([a]) ∩N([b]) 6= (0),

and u 6= [a + b] for any u ∈ G. See Theorem 6.19.

20. (Missing Sum Theorem 2) G is a connected graph with two distinct non-adjacent

vertices a, b such that

(a) there exists a vertex [v] ∈ N([a])\N([b]);

(b) there exists a vertex [w] ∈ N([b])\N([a]);

(c) N([a]) ∩N([b]) 6= (0),

and u 6= [a + b] for any u ∈ G. See Theorem 6.20.
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6 NEW RESULTS

All rings R are assumed to be commutative, Noetherian, with unity. The following remark

describes two strategies which are utilized throughout this paper to disprove a graph as

ΓE(R).

Remark 6.1 We note the following two strategies given in [9].

I. If two vertices in the zero divisor graph are adjacent to the same set of

vertices, but are not adjacent to one another, then at least one is represented

by a self-annihilating element; otherwise, the two vertices would represent the

same class.

II. If two vertices in the zero divisor graph are adjacent to the same set of

vertices and are also adjacent to one another, then at least one of the vertices

must not be represented by a self-annihilating element; otherwise, the two

vertices would represent the same class.

The above strategies are utilized throughout Section 6 and Appendix II.

6.1 Negative Results

In this section, we collect the new characterizations that disqualify a graph from being

realized as ΓE(R), developed during the research for this paper.

A graph G cannot be the (condensed) zero divisor graph of a Noetherian, commuta-

tive ring R with unity 1 if:

9. (Hinge Theorem) G is connected with at least five vertices and contains a hinged end.

See Theorem 6.6.
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10. (Maximum Degree Theorem) G is finite and connected with two non-adjacent vertices

of maximal degree. See Theorem 6.7.

11. (“Looped End” Theorem) G is a connected graph with a vertex d that has an end

represented by a self-annihilating element and another vertex b /∈ N([d]). See Theorem

6.2.

12. (“Looped End” Corollary 1) G is connected with two distinct vertices each having an

end and one of the ends is represented by a self-annihilating element. See Corollary 6.3.

13. (“Looped End” Corollary 2) G is a connected graph with a vertex d having two ends,

and there exists [b] 6∈ N([d]). See Corollary 6.4.

14. (Bridge Theorem) G is a connected graph such that G = N([a]) ∪ N([c]), where

|N([a])| ≥ 1, |N([c])| ≥ 2, and where a and c are two distinct vertices such that ac = 0,

and no vertex in N([a]) is adjacent to any vertex in N([c]). See Theorem 6.9.

15. (Bicycle Corollary) G is a bicycle. See Corollary 6.11.

16. (The Book Theorem) G is a book graph. See Theorem 6.13.

17. (The Modified Book Theorem) G is a modified book graph. See Theorem 6.15.

18. (Missing Chord Theorem) G is a connected graph with two distinct non-adjacent

vertices a, b such that for every v ∈ G, N([a]) ∪N([b]) 6⊂ N([v]). See Theorem 6.18.

19. (Missing Sum Theorem 1) G is a connected graph with two distinct adjacent vertices

a, b such that

(a) there exists a vertex [v] ∈ N([a])\N([b]);

(b) there exists a vertex [w] ∈ N([b])\N([a]);

(c) N([a]) ∩N([b]) 6= (0),

and u 6= [a + b] for any u ∈ G. See Theorem 6.19.

20. (Missing Sum Theorem 2) G is a connected graph with two distinct non-adjacent

vertices a, b such that

(a) there exists a vertex [v] ∈ N([a])\N([b]);

(b) there exists a vertex [w] ∈ N([b])\N([a]);

(c) N([a]) ∩N([b]) 6= (0),

and u 6= [a + b] for any u ∈ G. See Theorem 6.20.
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Theorem 6.2 (“Looped End” Theorem) If G is a connected graph with a vertex d

that has an end represented by a self-annihilating element and another vertex b /∈ N([d]),

then G is not the zero divisor graph of a ring.

Figure 6.2a

[f ]

[d][b]

G

Figure 6.2b

[f ]

[d][b]

[c]

G

Figure 4: “Looped End” Graphs

Proof As G is a connected graph, there exists a path between b and d, see Figure 6.2a.

But, b 6∈ ann (d) and diam(G) ≤ 3 which implies there exists a distinct vertex c creating

a path between b and d, see Figure 6.2b. Note that we have ann (c)∪ ann (f) ⊆ ann (cf).

Thus, f ∈ ann (cf) implies [cf ] = [d] or [f ], but b ∈ ann (cf), contradiction.

Corollary 6.3 If G is a connected graph with two distinct vertices each having an end,

and one of the ends is represented by a self-annihilating element, then G is not the zero

divisor graph of a ring.

Proof This follows immediately from the Theorem.

Corollary 6.4 If G is a connected graph with a vertex d having two ends, and there

exists [b] 6∈ N([d]), then G is not the zero divisor graph of a ring.

Proof By Strategy I from Remark 6.1 one of the ends of d is represented by a self-

annihilating element, say f . The proof now follows immediately from the Theorem.

Definition 6.5 A hinged end in a graph G (containing at least three vertices) is a pair
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of adjacent vertices e and f such that deg f = 1 and deg e = 2.

Theorem 6.6 (Hinge Theorem) If G is a connected graph with at least five vertices

and contains a hinged end, then G is not the zero divisor graph of a ring.

[s]

[r] [t]

G Figure 5: Hinge Graph

Proof Consider cs for some vertex [c] which lies in the remaining graph other than

[r]. It is not 0 since no edge exists between c and s, but it is a zero divisor since

r(cs) = (rc)s = (0)s = 0. Note that cs is annihilated by r and t. Thus, we have [cs] =

[s]. We now consider the vertex [b] which lies in the remaining graph other than [c] and

[r]. Note that we must have br = 0, else the diameter of G is greater than 3. Consider

bs. It is not 0 since no edge is drawn, but it is a zero divisor since r(bs) = (rb)s = (0)s

= 0. Note that bs is annihilated by r and t. Thus, we have [bs] = [s]. We now consider

the following two cases; otherwise, [b] = [c].

Case I deg b = deg c = 1 implies b2 = 0 or c2 = 0.

Without loss of generality, b2 = 0. Thus, we have that b also annihilates bs; i.e., b(bs) =

(bb)s = 0(s) = 0. Contradiction, since [bs] = [s] , but bs 6= 0.

Case II at least one of b or c has deg > 1

Without loss of generality, deg b ≥ 2. Thus, there exists [d] other than [b] and [c] in

the remaining graph such that bd = 0. Hence, we have that d also annihilates bs; i.e.,

d(bs) = (db)s = 0(s) = 0. Contradiction, since [bs] = [s] , but ds 6= 0.

We now provide an alternate proof to the Hinge Theorem using an associated prime

argument.

Proof No end, if |G| >3, can be an associated prime by Proposition 4.18. (See Remark

4.15.) Thus, by Lemma 4.16, q = ann(s) is an associated prime. Consider some [x] and

[y] in the remaining graph other than [b], [c] or [r]. The fact above implies x or y must

be contained in q, a contradiction as deg (s) = 2 by definition of a hinged end.
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Theorem 6.7 (Maximum Degree Theorem) If G is a finite, connected graph with

two non-adjacent vertices of maximal degree, then G is not the zero divisor graph of a

ring.

Proof Each vertex of maximal degree, by Theorem 4.19, must be an associated prime.

By Lemma 4.16, all of these vertices must be adjacent, which is a contradiction if a pair

of these vertices is not adjacent.

Example 6.8 By Theorem 6.7, the following graph G cannot be realized as ΓE(R) for

any ring R since [a] and [c] have maximal degree 3, but are not adjacent.

[a]

[d]

[b]

[c]
[e] [f ]G

Figure 6: Maximum Degree Theorem Example

Theorem 6.9 (Bridge Theorem) If G is a connected graph such that G = N([a]) ∪

N([c]), where |N([a])| ≥ 1, |N([c])| ≥ 2, and where a and c are two distinct vertices such

that ac = 0, and no vertex in N([a]) is adjacent to any vertex in N([c]), then G is not

the zero divisor graph of a ring.

Proof Without loss of generality, N([v]) has two vertices, x and y, and N([a]) has one

vertex, b. For diameter reasons, both x and y must be adjacent to v. Similarly, b must be

adjacent to a. By Proposition 4.18 for |ΓE(R)| > 3 as no ends are associated primes, if x

and y were associated primes, then by edge domination b or a ∈ ann (x), contradiction. By

a similar argument, b is not an associated prime. Hence, a and v are the only associated

primes. Note that if any vertices, xi ∈ N([v]) are adjacent to one another, then implies a

contradiction as xi, x, y 6∈ ann (a). Thus, we have x and y are non-adjacent which implies

x or y is self-annihilating. Without loss of generality, say x is self-annihilating. Thus, by

edge domination, we must have x ∈ annR (a), contradiction. A similar argument holds

for y.
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Example 6.10 By Theorem 6.9, the following graph G cannot be realized as ΓE(R) for

any ring R.

[f ]

[e]

[a] [v]

[b]

[d]

G

Figure 7: Bridge Theorem Example

Corollary 6.11 If G is a bicycle, see Definition 3.27, then G 6= ΓE(R).

Proof The proof follows from the Bridge Theorem. See Theorem 6.9.

Definition 6.12 A (possibly infinite) graph G is called a book if G takes the form of

the graph given below. [si]

[a] [x]

[r]

G

Figure 8: Book Graph

We note that the dashed edges of the graph in Definition 6.12 represent a (possibly

infinite) number of pages, or vertices, in the book.

Theorem 6.13 (The Book Theorem) If a graph G is a book, then G 6= ΓE(R).

Proof Suppose that R is a ring such that ΓE(R) takes the form of a book graph, G. If

i = 0 (i.e., {si}= ∅), then G is a 3-cycle. Thus by [11, Proposition 1.8], G 6= ΓE(R).

Suppose i ≥ 1 (i.e., {si}6= ∅). Then, G is complete tri-partite with partitioning sets

{a}, {x}, {r, si}i∈I , and thus by [11, Proposition 1.7], G 6= ΓE(R).
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Definition 6.14 A (possibly infinite) graph G is called a modified book if G takes the

form of the graph given below where there must exist vertices b, y such that ab = 0 and

xy = 0.

[b]
[si]

[y]

[a] [x]

[r]

G

Figure 9: Modified Book Graph

We note that the dashed edges of the graph in Definition 6.14 represent a (possibly

infinite) number of vertices in the modified book.

Theorem 6.15 (The Modified Book Theorem) If G is a modified book graph, then

G 6= ΓE(R).

Proof Suppose that R is a ring such that ΓE(R) takes the form of a modified book

graph, G. If i = 0 (i.e., {si}= ∅), then, by [9, Proposition 3.1], the result holds. Suppose

i ≥ 1 (i.e., {si}6= ∅). Consider a + x. It is not 0 since a and x represent distinct classes,

but it is a zero divisor since it is annihilated by r and si, but not b or y. Thus, the

only candidates for [a + x] are [r] and [s1]. Without loss of generality, say [a + x] = [s1].

But, r(a + x) = ra + rx = 0 which implies r(s1) = 0. This implies [r] = [s1] which is a

contradiction.

Remark 6.16 It is natural to consider graphs which can be classified as intermediates

between a book graph and a modified book graph, namely G which takes the form of the

following graph given below.

[si]
[y]

[a] [x]

[r]

G

Figure 10: Intermediate Book Graph

The following example provides two graphs from this class. At this time, it is not clear
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whether all graphs taking this general form are realizable.

Example 6.17

[p5]

[p4]

[p2]

[p]

Figure 11: The Zero Divisor Graph ΓE(Z/p5Z)

[p3]

[p5]

[p4]

[p2]

[p]

Figure 12: The Zero Divisor Graph ΓE(Z/p6Z)

Theorem 6.18 (Missing Chord Theorem) Let G be a connected graph with two dis-

tinct non-adjacent vertices a, b. If for every v ∈ G N([a]) ∪ N([b]) 6⊂ N([v]), then

G 6= ΓE(R).

Proof Suppose G is a connected graph with two distinct non-adjacent vertices a, b. Note

that [ab] ∈ G and N([a]) ∪ N([b]) ⊆ N [ab] by [6, Proposition 5.1 (a)] or [5, Theorem 1

(4)]. By hypothesis, there is no v = [ab]. Hence, G 6= ΓE(R).

Theorem 6.19 (Missing Sum Theorem 1) Let G be a connected graph with two dis-

tinct adjacent vertices a, b. If

(a) there exists a vertex [v] ∈ N([a])\N([b]);

(b) there exists a vertex [w] ∈ N([b])\N([a]);

(c) N([a]) ∩N([b]) 6= (0),

and u 6= [a + b] for any u ∈ G, then G 6= ΓE(R).

Proof Note that [a+b] is a zero divisor since N([a])∩N([b]) 6= (0). But, [a+b] represents

a new class. Thus, G 6= ΓE(R).

Theorem 6.20 (Missing Sum Theorem 2) Let G be a connected graph with two dis-
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tinct non-adjacent vertices a, b. If

(a) there exists a vertex [v] ∈ N([a])\N([b]);

(b) there exists a vertex [w] ∈ N([b])\N([a]);

(c) N([a]) ∩N([b]) 6= (0),

and u 6= [a + b] for any u ∈ G, then G 6= ΓE(R).

Proof Note that [a+b] is a zero divisor since N([a])∩N([b]) 6= (0). But, [a+b] represents

a new class. Thus, G 6= ΓE(R).

6.2 Positive Results

The graphs in the following examples can be realized as the zero divisor graph determined

by equivalence classes of a ring R.

Example 6.21 [6, Example 2.14] If R = (Z/2Z)[X1,X2,Y ]

(X2
1 ,X

2
2 ,X1X2,Y 2,X1X2Y )

, then ΓE(R) takes the

form of the graph below. Note that lower case letters represent the cosets in R of the

upper case letters. Let m be the ideal (x1, x2, y) in R.

[x1]

[x1 + y]

[x1 + x2 + y]

[x2 + y][y]

[x1y]

Figure 13: The Zero Divisor Graph ΓE( (Z/2Z)[X1,X2,Y ]

(X2
1 ,X

2
2 ,X1X2,Y 2,X1X2Y )

)

First Class Ann(x1y) = (x1, x2, y) = Ann(x2y)

Second Class Ann(x2) = (x1, x2,m
2) = Ann(x2y) = Ann(x1) = Ann(x1 + x2)

Third Class Ann(y) = (y,m2)

Fourth Class Ann(x1 + y) = (x1 + y,m2)

Fifth Class Ann(x2 + y) = (x2 + y,m2)
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Sixth Class Ann(x1 + x2 + y) = (x1 + x2 + y,m2)

Example 6.22 If R = Z/p7Z, then ΓE(R) takes the form of the graph below.

[p5]

[p4]

[p6]

[p3]

[p2]

[p]

Figure 14: The Zero Divisor Graph ΓE(Z/p7Z)

Example 6.23 If R = Z/pqrZ, then ΓE(R) takes the form of the graph below.

[pr]

[q]

[qr]

[r]

[pq]

[p]

Figure 15: The Zero Divisor Graph ΓE(Z/pqrZ)

Example 6.24 If R = F2 × Z/8Z, then ΓE(R) takes the form of the graph below. See

[6, Proposition 4.8].

[(0, 2)]

[(1, 4)]

[(0, 4)]

[(0, 1)]

[(1, 0)]

[(1, 2)]

Figure 16: The Zero Divisor Graph ΓE(F2 × Z/8Z)
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7 GRAPHS WITH 7 VERTICES

Figure 17: Some Examples of Graphs with 7 Vertices

The above graphs were drawn in Sage. The following section provides information about

Sage. We will refer to the graphs using matrix notation. Note that aij denotes the entry

of the above matrix, A, which is in the ith row and the jth column. We will refer to this

entry as the (i, j) entry of A. A is a 5 x 4 matrix.

We now prove that several of the entries in A cannot be realized as ΓE(R) for any ring R

using the list of characterizations in Section 5 that disprove a graph as the (condensed)

zero divisor graph.

Entries (2, 1) and (2, 3) of A are not realizable by the Hinge Theorem. See Thm. 6.6.

The (5, 2) entry is not realizable by the Bridge Theorem. See Thm. 6.9.

The (3, 2) entry is not realizable by the Maximum Degree Theorem. See Thm. 6.7.

The (1, 2), (1, 3) and (5, 1) entries are not realizable by Theorem 4.21.

The (3, 4) and (4, 1) entries are not realizable by the Missing Chord Theorem. See Thm.

6.18.
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8 SAGE

Sage is a free mathematics open-source software which can be used alternatively to Math-

ematica or Matlab. The code referred to in this section is indented and italicized.

The following code, which is a list comprehension, defines a function which lists all the

graphs with 6 vertices.

graphs6 = list(graphs(6))

The next line of code determines the total number of graphs with 6 vertices.

len(graphs6)

There are a total of 156 graphs with 6 vertices. The next line of code will produce a

visual picture for each graph.

show(graphs6)

As there are so many of these graphs we will not provide the pictures of the 156 graphs

here. The following line of code defines a function to determine and filter all connected

graphs in the set of graphs with 6 vertices.

connectedgraphs6=[g for g in graphs6 if g.is connected()]

By using the following line of code, we are able to determine from the original 156 graphs

with 6 vertices only 112 are connected.

len(connectedgraphs6)

The next line of code defines a filter function to determine and filter all graphs with

diameter less than 4 in the set of 112 connected graphs.

connectedgraphs6diameter4 = filter(lambdax : x.diameter() < 4, connectedgraphs6)
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By using the following line of code, we are able to determine from the original 112

connected graphs with 6 vertices only 103 are connected.

len(connectedgraphs6diameter4)

The next line of code will produce a visual picture for each graph of these 103 graphs.

We provide a visual picture for these graphs in Appendix I.

show(connectedgraphs6diameter4)
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A APPENDIX I

We will refer to the graphs in this appendix using matrix notation. Note that ajk denotes
the entry of the matrices, on pages 1 - 5 of this appendix, which is in the jth row and the
kth column. We let i denote the page number of this appendix containing the matrix.
We will refer to this entry as the (i, j, k) entry of the matrix. The matrices on pages
1 - 4 are 5 x 4 matrices. On page 5, the matrix is a 6 x 4 matrix with a null value in
entry (6, 4). The vertices are labeled, starting at the twelve o’clock position and going
clockwise, as r, s, t, u, v, and w.

Figure 18: 6 Vertices Graphs page 1

The entries of the above matrix are referred to in the following notation: (1, j, k).
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Figure 19: 6 Vertices Graphs page 2

The entries of the above matrix are referred to in the following notation: (2, j, k).
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Figure 20: 6 Vertices Graphs page 3

The entries of the above matrix are referred to in the following notation: (3, j, k).
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Figure 21: 6 Vertices Graphs page 4

The entries of the above matrix are referred to in the following notation: (4, j, k).
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Figure 22: 6 Vertices Graphs page 5

The entries of the above matrix are referred to in the following notation: (5, j, k).
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A APPENDIX II

The following appendix categorizes the graphs of Appendix I which are not realizable,
detailing the method of disproof, as well as the graphs which are realizable, and the
remaining 6 graphs which have not yet been determined. Strategy I and II are stated in
Remark 6.1.

Remark A.1 Tables 10 - 13 use a version of the Missing Sum Theorems. Many of the
graphs in these tables use a version of the theorems, in conjunction with Strategies I and
II.

Table 1: Bridge
(1,1,2) (1,1,4) (1,4,1) (2,1,3)

Table 2: Maximum Degree
Missing Edge

ru (3,1,1) (4,5,2)
rt (3,3,2) (3,4,1)
tu (4,1,2) (5,1,2)
uw (3,5,2) (4,3,1)
rv (1,5,1)
sv (4,3,3)
tv (5,2,4)
vw (5,4,2)

Table 3: Chordal
Missing Edge

tv (1,4,4) (2,3,3) (2,3,4) (3,2,3)
tu (2,3,1) (2,5,2) (3,5,4)
rv (1,3,3)
st (2,1,1)
sv (3,5,1)
sw (2,1,4)
tw (3,1,2)
uw (3,2,1)
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Table 4: Hinged End
(1,1,2) (2,2,2) (2,2,4) (2,5,1)

Table 5: Book
(1,3,1) (1,3,2)

Table 6: Modified Book
(1,2,2)
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Table 7: Regular
(5,2,1) (5,3,2) (5,5,1)

Table 8: Miscellaneous (Violations of Cycle, Girth, Complete, respectively)
(3,4,4) (4,4,3) (5,4,1)

Table 9: Realizable
(1,1,1) (1,5,4) (3,1,3) (3,2,2)

Table 10: Neither Strategy I nor II
Missing
Element
s + v (3,5,3) (4,4,1) (4,4,2) (4,4,4) (4,5,4) (3,3,4)
u + w (4,3,4) (5,2,3)
t + v (4,2,4)
r + t (5,3,1)

Table 11: Strategy I
Missing
Element Self-Ann.
r + w w (2,5,3) (5,1,1)
u + w w (3,4,3) (5,1,4)
v + w r, t, v, w (3, 3, 3)
r + t r (2, 4, 3)
r + w r,w (2,5,4)
v + w w (3,2,4)
s + w s (4,2,2)
s + v v (4,1,1)
s + t s, t (5,3,3)
r + v r, s, t (5, 6, 2)

Table 12: Strategy II
Missing
Element Not Self-Ann.
r + w r,w (1,4,3) (2,2,1) (2,4,1) (2,4,2) (4,1,3)
t + w w (2,3,2) (4,1,4)
t + w t, w (5, 4, 4)
u + v u, v (5, 5, 3)
u + v t, u, v (5, 3, 4)
r + v v (5, 5, 2)
t + u u (4, 3, 2)
t + u t, u (5, 6, 1)
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Table 13: Combination of Strategy I and II
Missing
Element Not Self-Ann. Self-Ann.
r + w w r (2,4,4)
r + s s r (5,6,3)
u + v u v (5,5,4)
s + v r, t s, v (4,5,1)
t + v t w (5,1,3)
t + w w t (5,4,3)

Table 14: Unclassified
(1,1,3) (2,2,3) (1,2,4) (3,1,4) (1,3,4) (3,4,2) (2,2,1) (3,3 1)
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