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Abstract

This thesis is focused on providing unequal error protection (UEP) to two disjoint

sources which are communicating to a common destination via a common relay by using

distributed LT codes over a binary erasure channel (BEC), and designing fountain codes

with error control property by integrating LT codes with turbo codes over a binary input

additive white Gaussian noise (BI-AWGN) channel.

A simple yet efficient technique for decomposing the RSD into two entirely different

degree distributions is developed and presented in this thesis. These two distributions are

used to encode data symbols at the sources and the encoded symbols from the sources are

selectively XORed at the relay based on a suitable relay operation before the combined

codeword is transmitted to the destination. By doing so, it is shown that the UEP can be

provided to these sources.

The performance of LT codes over the AWGN channel is well studied and presented in this

thesis which indicates that these codes have weak error correction ability over the channel.

But, errors introduced into individual symbols during the transmission of information over

noisy channels need correction by some error correcting codes. Since it is found that LT

codes alone are weak at correcting those errors, LT codes are integrated with turbo codes

which are good error correcting codes. Therefore, the source data (symbols) are at first

turbo encoded and then LT encoded and transmitted over the AWGN channel. When the

corrupted encoded symbols are received at receiver, LT decoding is conducted followed by

turbo decoding. The overall performance of the integrated system is studied and presented

in this thesis, which suggests that the errors left after LT decoding can be corrected to some

extent by turbo decoder.
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Chapter 1

Introduction

The main objective of this thesis is to integrate Luby Transform (LT) codes and turbo

codes for transmission of information over noisy channels so that better overall performance

of the system can be achieved over the performance of LT codes alone. Although LT codes

are good erasure correcting codes, they perform poorly over noisy channels, such as additive

white Gaussian noise (AWGN) channel. The idea is to determine whether or not turbo

pre-coding is effective in eliminating errors left over after LT decoding.

In this thesis, we have also worked on providing unequal error protection (UEP) to two

disjoint sources which are communicating to a common destination via a common relay.

To achieve this goal, we have used two entirely different but appropriately designed degree

distributions to encode the source data at the sources and adopted a suitable relay opera-

tion to selectively XOR the encoded symbols from the sources before transmitting them to

destination.

1.1 Problems and Thesis Work

Fountain codes are record-breaking sparse-graph codes for channels with erasures, such

as the Internet. In erasure channels, either the encoded packets are received without error

or simply not received, that is, the packets with errors are discarded. Once the enough

number of encoded error-free packets is received at the receiver, the original information can

be decoded by using suitable decoding algorithm. But, over noisy channels such as AWGN

channel, errors will be introduced into individual bits, that is, each of the transmitted bits
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is corrupted by noise. As fountain codes are erasure correcting codes, they are weak at

correcting the errors occurring in bits introduced during the transmission of data. But,

by using message passing algorithm (MPA) and propagating the soft information along the

tanner graph over a number of iterations, the fountain decoder can provide some useful

information about the transmitted bits. Since turbo codes are known as a class of limit-

approaching error correcting codes, we can argue that by combining these two codes together,

it is possible that the turbo decoder may exploit the useful soft information obtained from the

fountain decoder and correct the errors that are remained after fountain decoding. Therefore,

in this thesis, we have integrated LT codes with rate compatible punctured turbo (RCPT)

codes and studied their performances over AWGN channel. To do this, the information

symbols at the sources are at first encoded using turbo encoder and then the turbo encoded

symbols are LT encoded which are then transmitted over the channel. The transmitted

symbols are corrupted over the noisy channel and these corrupted symbols, which we call

soft information, received at the receiver are first fed into LT decoder which employs message

passing algorithm to produce log likelihood ratio (LLR) values of the transmitted bits. These

LLRs are further processed by turbo decoder using iterative decoding algorithm yielding

final soft outputs (LLRs) based on which final decision about the transmitted bits is made.

The simulations results are also presented which clearly show that the errors left after LT

decoding can be further corrected by turbo decoder.

[1] discusses two sources communicating to a sink via a common relay where both the

sources use the same degree distribution (deconvolved soliton distribution) for encoding the

data symbols. The encoded symbols are selectively XORed at the relay and are transmitted

to the sink such that the degree of the received symbols follows the RSD. Since the same

degree distribution is used, each of the sources are equally protected. But, when the in-

formation from one of the sources is more important than the information from the other

source, then the information from the more important source must be more protected than
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the other. Therefore, if the RSD can be decomposed into two different distributions (say

p1(.) and p2(.)) and these two distributions are used to encode data at two sources, then

one of the degree distributions may be able to provide better protection of data at one

source than the other, that is, the sources can be unequally protected. To implement this

idea, a simple yet efficient technique for decomposing the RSD into two entirely different

distributions by deconvolution is developed and implemented in this thesis. The data at

the sources are encoded by using these two different distributions and are transmitted along

the relay where the encoded symbols from the two sources are selectively XORed using a

suitable relay operation making sure that the degree of the received symbols at the receiver

follows the RSD, which is so far the best degree distribution guaranteeing a good decoding

performance. It is shown that by using these degree distributions and employing a proper

relay operation, it is possible to provide UEP to the sources. The simulation results are also

presented to support the idea.

1.2 Organization of this thesis
The contents of this thesis are organized as follows. Chapter 2 provides a more detailed

background on LT and distributed LT codes and discusses their properties, encoding and

decoding procedures. The technique that is capable of providing unequal error protection

to each of the two sources which are communicating to a common sink via a common relay

will be presented along with some simulation results. In Chapter 3, iterative decoding

techniques employed in low density parity check (LDPC) code will be discussed which will

be further used for the decoding of LT codes over AWGN channel. The simulation results

for the performance of LT codes over AWGN channel will also be presented. In chapter

4, we will provide background on convolutional and turbo codes along with the puncturing

and interleaving concept. We will also discuss the turbo decoder based on maximum-a-

posteriori (MAP) and iterative decoding algorithms. In Chapter 5, we will combine the

punctured turbo codes with the LT codes so that two layer of encoding (turbo encoding

3



followed by LT encoding) will be conducted at the source side and two layer of decoding

(LT decoding followed by turbo decoding) will be conducted at the receiver and finally the

performance will be evaluated based on SNR vs BER. Some simulations results will also be

presented. In Chapter 6, we will discuss future work and draw conclusions.
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Chapter 2

Distributed LT Codes

2.1 Digital Fountain Codes and LT Codes

Digital fountain codes are record-breaking sparse-graph codes for channels with erasures,

such as the Internet. Channels with erasures are of great importance. For example, files are

chopped into packets and are transmitted over the Internet. These transmitted packets are

either received without error or not received at the receiver, that is, packets with errors are

erased. Common methods for communicating over such channels employ a feedback channel

from receiver to sender that is used to control the retransmission of erased packets. For

example, the receiver might send back messages that identify the missing packets, which are

then retransmitted. Alternatively, the receiver might send back messages that acknowledge

each received packet; the sender keeps track of which packets have been acknowledged and

retransmits the others until all packets have been acknowledged. The advantage of such

simple retransmission protocols is that they work regardless of erasure probability p. How-

ever, the drawback is the need of feedback channel. According to Shannon, there is no need

for the feedback channel: the capacity of the forward channel is (1−p)l bits, whether or not

we have feedback. In the case of a broadcast channel with erasures, one sender broadcasts

to many receivers, and each receiver receives a random fraction (1 − p) of the packets. If

every packet that is missed by one or more receivers has to be retransmitted, those retrans-

missions will be terribly redundant since every receiver will have already received most of

the retransmitted packets.
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Therefore, the erasure-correcting codes that require no feedback or almost no feedback

is of great importance. The classic block codes for erasure correction are called Reed-

Solomon codes [2]. An (n, k) Reed-Solomon code has the ideal property that if any k of

the n transmitted symbols are received then the original k source symbols can be recovered.

However, Reed-Solomon codes have the disadvantage that they are practical only for small k

and n. These codes lose efficiency for large k and n, requiring quadratic encoding/decoding

time [3] [4]. Furthermore, with a Reed-Solomon code, as with any block code, one must

estimate the erasure probability p and choose the code rate r = k/n before transmission,

that is, the rate is fixed. In the case when p is larger than expected and the receiver receives

fewer than k symbols, decoding fails. To combat this problem, a better way is pioneered by

Michael Luby at his company Digital Fountain.

The idea of digital fountain codes is as follows: The encoder is a fountain that produces

an endless supply of water drops (encoded packets). Lets say the original source file has a

size of kl bits, and each drop contains l encoded bits. Now, anyone who wishes to receive the

encoded file holds a bucket under the fountain and collects drops until the number of drops

in the bucket is a little larger than k. They can then recover the original file. Digital fountain

codes are rateless in the sense that the number of encoded packets that can be generated from

the source message is potentially limitless, and the number of encoded packets generated can

be determined on the fly. Regardless of the statistics of the erasure events on the channel,

we can send as many encoded packets as needed in order of the decoder to recover the

source data. The source data can be decoded from any set of k′ encoded packets, for k′

slightly larger than k. Fountain codes also have fantastically small encoding and decoding

complexity. They are called universal because they are simultaneously near optimal for

every erasure channel.

Luby Transform (LT) codes, developed in [5], were invented by Michael Luby as random

rateless codes for erasure channels. They are the first practical realization of fountain codes

and are application layer codes. The symbol length for the codes can be arbitrary, from
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one-bit binary symbols to general l-bit symbols. An LT code produces for a given set of k

input symbols x1, x2, · · · , xk a potentially limitless stream of output symbols y1, y2, · · · on

the fly. The original k input symbols can be recovered from any set of n (n > k) output

symbols with high probability. Therefore, these codes are called rateless codes. Encoding

symbols can be generated as needed and sent over the erasure channel until a sufficient

number have arrived at the decoder in order to recover the data. Therefore, rateless erasure

codes have the potential of replacing transmission control protocol (TCP) which is based on

automatic repeat request (ARQ)[6]. LT codes are usually considered in erasure channels.

The distribution used for generating the output symbols lies at the heart of LT codes. They

have sparse generator matrices, that is, the number of data symbols contributing to a code

symbol is relatively small compared to the total number of data symbols and all the encoding

and decoding operations are merely bit-wise XORs. Therefore, the encoding and decoding

complexity is reduced.

LT codes are an excellent solution in a wide variety of situations. One is for storage:

for example, to make a backup of a large file. We know that the magnetic tapes and

hard drivers are all unreliable in the sense that some stored packets are permanently lost

within one device over a period of time. Therefore, LT codes can be used to spray encoded

packets all over the place, on every storage device available. Then to recover the backup

file, one simply needs to find k′ (slightly greater than k) packets from anywhere. Corrupted

packets do not matter; we simply skip over them and find more packets elsewhere. Another

application of LT codes is in broadcasting. For example, a broadcaster is broadcasting a

movie to thousands of it subscribers. In a standard approach in which the file is transmitted

as a plain sequence of packets with no encoding, each subscriber would have to notify the

broadcaster of its missing packets, and request retransmission. And, with the thousands of

subscribers all requesting such retransmissions, there would be retransmission request for

almost every packet. However, if the broadcaster uses LT codes to encode the movie, each
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subscriber can recover the movie from any k′ (slightly larger than k) packets. This saves a

lot of bandwidth and time.

2.1.1 Erasure Channel

Erasure channels constitute an important class of channels in communication. They

are so important because many lossy or noisy communication channels can be modeled

or simplified to approximate an erasure channel. Elias introduced the concept of erasure

channels in 1955 [7]. The binary erasure channel shown in Figure 2.1 transmits one of two

symbols, usually the binary digits x ∈ {0, 1}. However, the receiver either receives the bit

correctly or it receives a message “e” that the bit was not received (it was erased). The

BEC erases a bit with probability ε, called the erasure probability of the channel. Thus the

channel transition probabilities for the BEC are:

p(y = 0|x = 0) = 1− ε, P (y = e|x = 0) = ε, p(y = 1|x = 0) = 0,

p(y = 0|x = 1) = 0, P (y = e|x = 1) = ε, p(y = 1|x = 1) = 1− ε.
(2.1)

The BEC does not flip bits, so if y is received as a 1 or 0 the receiver can be completely

certain of the value of x:

p(x = 0|y = 0) = 1, p(x = 1|y = 0) = 0,

p(x = 0|y = 1) = 0, p(x = 1|y = 1) = 1.

(2.2)

The erasure channel is said to be memoryless, if the output of the channel at a given time

is affected only by the current input at that time, and is independent of the other (past of

future) inputs. Practical examples of channels that can be modeled as memoryless erasure

channels include communication networks (e.g, the Internet and data storage devices).

An erasure channel can be a bit erasure channel or a packet erasure channel. A chosen

erasure code can be on bit level or packet level accordingly. The communication between a
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source and a destination occurs via packets in the case of the Internet. The data intended

for the destination is partitioned into packets (binary strings) at the source and are then

transmitted in succession to the destination over the network. Packets may be lost over

the Internet or packets may be corrupted. The errors in the corrupted packets are detected

by means of a cyclic redundancy check (CRC) and are discarded if errors occurred. The

receiver only accepts errorfree packets. Thus, packets are either transmitted correctly or

“erased” by the channel - in this case, the Internet.

Figure 2.1. The binary erasure channel (BEC)

2.1.2 Encoding Procedure

For a given set of k data symbols, an encoding (code) symbol is generated by bitwise

XORing of a randomly chosen subset of the data. The process of generating an encoding

symbol is conceptually as follows:

• An integer d between 1 and k, called the degree of the code symbol, is randomly chosen

for each code symbol from a degree distribution.

• A set of d data or information symbols is chosen uniformly at random from the set of

k symbols. These d data symbols are called the neighbors of the code symbol to be

generated.
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• The d data symbols or neighbors are bitwise XOR-ed to produce the code symbol of

degree d.

By this process, an arbitrary number of code symbols can be generated. Each code

symbol is generated independently of all others.

2.1.3 Decoding Procedure

Bipartite graph is used for the decoding of LT codes where the data (source) and code

symbols can be viewed as the vertices. Edges connect every code symbol to all its neighbors.

Generator matrix is used to develop such a graph. When using the code symbols to recover

the original input symbols of the data, the decoder needs to know the degree and set of

neighbors of each code symbols. Therefore, the knowledge of the code graph is necessary

for decoding an LT code.

Let n be the total number of code symbols generated from the data symbols (k) where

n > k. The graph is shown in Figure 2.2. The belief propagation (BP) algorithm is used to

Figure 2.2. Graphical Representation of LT codes

decode the original data symbols. The decoding is done in the following manner:

1. The decoder identifies all code symbols of degree one (that is, those connected to a

single source symbol) in the code graph. If there is at least one code symbols that has
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exactly one neighbor, then the neighbor is recovered immediately since it is a copy of

the code symbol. If there exist no degree one code symbols, the decoding fails.

2. The code symbols of degree one and the associated edges are erased from the graph.

3. The value of the recovered input symbol is XORed with any remaining code symbols

that also have that input symbol as a neighbor. The corresponding edges are erased

from the graph thus decreasing the degree of such code symbols by one.

4. The decoder repeats steps 1− 3 using the new reduced code graph.

If the decoder fails to recover all the k data symbols from n code symbols, a decoding

failure occurs which can happen due to either of the following reasons:

1. If there exist information symbols that are not connected to any code symbol in the

code graph.

2. If the decoding fails before all the data has been decoded due to the absence of degree

one code symbols.

Therefore, the degrees and the neighbors of the code symbols chosen randomly during

encoding procedure are very important to avoid or minimize the decoding failure. For this,

degree distribution plays the vital role.

2.1.4 The Robust Soliton Distribution (RSD)

The most important part of LT codes is the degree distribution which gives the probabil-

ity distribution of degrees of the code symbols. LT codes use a specially constructed degree

distribution called the robust soliton distribution [5]. The RSD ensures that the average

number of degree one code symbols is large enough at each point in the decoding process so

that it never disappears completely with high probability.
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The robust soliton distribution is represented by µ(·). For constants c > 0 and δ ∈ (0, 1],

the probability mass function µ(·) is given by

µ(i) =
ρ(i) + τ(i)

β
, for 1 ≤ i ≤ k, (2.3)

where

β =
k∑
i=1

(ρ(i) + τ(i)) (2.4)

The ρ(i) (a probability mass function on 1 ≤ i ≤ k) and τ(i) are given by

ρ(i) =


1
k
, for i = 1,

1
i(i−1) , for 2 ≤ i ≤ k,

(2.5)

τ(i) =



S
ik
, for 1 ≤ i ≤ k

S
− 1,

S ln(S
δ
)

k
, for i = k

S
,

0, otherwise.

(2.6)

The parameter S represents the average number of degree one code symbols and is defined

as

S = c ·
√
k · ln

(
k

δ

)
. (2.7)

Luby has suggested in [5] that the k data symbols can be recovered from any set of n

code symbols with probability at least 1− δ and n is given by

n = kβ

= k + c ·
√
k · ln2(k/δ).

(2.8)

As shown above, the RSD has two components: ρ(·) and τ(·). The support of ρ(i) is

extending over the entire range of degrees from 1 through k while τ(i) is restricted to i in
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the range 1 through k/S. The distribution µ(i) has the spikes at two points: i = 2 and

i = k/S. The spike in τ(i) at i = k/S is to ensure that each of the data symbols is likely

to be connected to at least one code symbol. The plots for ρ(·), τ(·) and µ(·) are shown in

Figures 2.3, 2.4 and 2.5 respectively.

Figure 2.3. ρ(·) component of RSD for k = 200, c = 0.05, δ = 0.5.

Figure 2.4. τ(·) component of RSD for k = 200, c = 0.05, δ = 0.5.
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Figure 2.5. RSD µ(·) for k = 200, c = 0.05, δ = 0.5.

2.1.5 Overhead in LT codes

The extra number of code symbols that are required for decoding k data symbols with

probability at least 1− δ is called the overhead which is given by

m = n− k

= c ·
√
k · ln2(k/δ).

(2.9)

The fraction m/k is called the fractional overhead of LT codes and is given as c·ln2(k/δ)√
k

. So,

if k → ∞, m/k → 0. This means that LT codes are asymptotically optimal. On the other

hand, as the number of data symbols k decreases, the fractional overhead increases which is

observed in simulations as well.

2.2 Distributed LT codes

In [1] a novel distributed encoding procedure is proposed to realize codes that resemble

LT codes in both structure and performance which are called the distributed LT Codes. For

the case of two sources communicating with a single sink via a common relay, k/2 source

symbols are separately encoded into slightly more than k code symbols at each source. These

two codewords are then selectively XOR-ed at the relay, such that the result can be decoded
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at receiver to recover all k information symbols. The primary advantage of this technique

is that it exploits the improved efficiency of such codes for large block lengths; by forming a

single codeword at the destination representing all the distributed data sets. Thus, there is

a reduction in the overhead compared with a system in which each data set is encoded with

its own LT code having a smaller block length.

As suggested in [1][8], consider a scenario in which two independent sources in a network

transmit information to a sink through a common relay, that is, multiple access relay channel

as shown in Figure 2.6.

Figure 2.6. A two-source single-sink relay network.

The relay is assumed to have limited data processing capability, and communication

between the sources is impossible or not desired. Also, the relay has limited memory -

specifically, it can store only one packet (symbol) per source at any given time. In such a

situation, there are two distinct LT-based approaches to protect the data against erasures

as discussed below:

• Two different LT codes are used to independently encode the data at these two source

and the resulting two encoded sequences are time-multiplexed through the relay.

• The data at these two sources are encoded in such a way that the relay combines its in-

puts in some low-complexity operation and transmits a combined sequence which“looks

like” a single LT codeword.
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The second scheme possesses the following advantages over the first:

• LT codes over larger information blocklengths (such as those in the second scheme)

possess a smaller fractional reception overhead as discussed in Section 2.1.5.

• For fixed-rate coding techniques, a larger codeword length results in a smaller prob-

ability of decoding failure. For a given number of code symbols transmitted by the

relay, the second scheme can deliver fewer, longer LT codewords to the sink than the

first scheme.

The straightforward collective encoding of the sources’ data at the relay places a heavy

computational as well as memory requirement on the relay. The relay has to store all the

data symbols from both the sources before it can start encoding. This also leads end-

to-end transmission delay, as the relay initially needs to spend more time collecting data

from the sources. Therefore, some encoding operations that can be carried out at the sources

themselves help to minimize the computation at the relay as well as the delay in transmission.

To achieve this, a novel scheme [8] is developed by the means of which a code resembling an

LT code can be delivered to the sink. The basic steps involved in this scheme are as follows:

• The data symbols at each of the two sources are encoded by a specially designed code

called a distributed LT (DLT) code.

• The DLT code symbols from the two sources are combined at relay into an LT-like

code, called a modified LT (MLT) code. The combining operation at the relay consists

of selectively XORing of the DLT code symbols coming from the two sources.

The MLT code is similar to an LT code in the sense that its degree distribution approximately

follows the RSD. The two sources require some degree distributions based on which encoding

can be done and DLT code symbols can be generated.
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2.2.1 Decomposition of an LT code into two DLT codes

Consider the network as shown in Figure 2.6. Let the two sources s1 and s2 each have a

block of k
2

data symbols required to transmit to the sink t, denoted byD1 andD2 respectively.

Let X1 be a code symbol generated at s1 by XORing d1 information symbols from D1, and X2

be likewise generated at s2 from D2 and is of degree d2. Both d1 and d2 have the same degree

distribution. Since X1 and X2 are combined, that is, selectively XORed at the relay, the

code symbol being transmitted from the relay to the sink is X1⊕X2 and the corresponding

degree is clearly d1 + d2. Here, the degrees of X1 and X2 should be chosen in such a way

that the d1 + d2 should follow the RSD.

Assuming that d1 and d2 are chosen independently (that is, no co-operation among the

sources) according to the same distribution p(i), 1 ≤ i ≤ k
2
, d1 + d2 follows p ∗ p, where

“*” indicates convolution. Thus, to determine p(·) requires the deconvolution of the RSD.

The RSD has support over i = 1, 2, · · · , k. The distribution p(·) should have a support over

i = 1, 2, · · · , k/2 since it is to be used in encoding the data symbols at each source.

2.2.2 Deconvolution of RSD

Let y(n) be a real sequence such that y(n) = (x ∗ x)(n) ∀ n. The process that takes

y(n) and produces x(n) is called deconvolution. As suggested in [1], direct deconvolution of

the RSD does not yield a valid degree distribution p(·). The problems specific to the RSD

are:

1. For k ≥ 2, the only way of ensuring that (p ∗ p)(1) = µ(1) > 0 is if we let p(0) > 0.

This violates the condition on the support of p(·). Moreover, p(0) > 0 implies that

X1 ⊕X2 could have degree zero, that is, µ(0) = 0 which is not permitted by the RSD

and is wasteful.

2. If the degree-one symbols in the RSD are completely disregarded and µ(i) is attempted
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to be reproduced for i > 1 by recursively solving for p(·) from

p2(1) = µ(2),

2 · p(1) · p(2) = µ(3),

2 · p(3) · p(1) + p2(2) = µ(4),

2 · p(4) · p(1) + 2 · p(3) · p(2) = µ(5),

...

(2.10)

then a negative value for p(k/S) will be obtained due to the “spiky” behavior of the

RSD at k/S.

3. The support of p(i) is i = 1, · · · , k/2 since each source have only k/2 data symbols.

When 2.10 is solved for p(i), only the first k
2

+ 1 degrees of the RSD are made used.

Consequently, the “tail” of the RSD (for i = k/2 + 2, · · · , k) can not be reproduced

by p ∗ p.

4. Finally, if we restrict ourselves to deconvolving a portion of the RSD as dictated by

the preceding constraint, then it is not necessarily true that the resulting p(i) will sum

to one.

To avoid the direct deconvolution, the RSD µ(·) is first split into two distributions: µ′(·)

and µ′′(·) such that µ′′(·) captures the problematic part of the RSD (that is, the degree one

symbols and the spike at i = k/S) and µ′(·) is a smooth distribution that can be easily

deconvolved.

Assume that ρ(·) and τ(·) are given by 2.5 and 2.6, respectively. Then, µ′(·) is defined

as follows:

µ′(i) =


0, for i = 1

ρ(i)+τ(i)
β′

, for 2 ≤ i ≤ k
S
− 1

ρ(i)
β′
, for k

S
≤ i ≤ k

(2.11)

18



with the normalization factor β′ given by

β′ =
k∑
i=2

ρ(i) +

k/S−1∑
i=2

τ(i). (2.12)

Similarly, µ′′(·) is defined as

µ′′(i) =



ρ(i)+τ(i)
β′′

, for i = 1

τ( k
S
)

β′′
, for i = k

S

0, otherwise

(2.13)

with the normalization factor β′′ given by

β′′ = ρ(1) + τ(1) + τ

(
k

S

)
(2.14)

Thus, noting that β′ + β′′ = β, from 2.4 the RSD can be rewritten as

µ(i) =
β′

β
· µ′(·) +

β′′

β
· µ′′(i)

=
β′

β
· µ′(·) +

(
1− β′

β

)
· µ′′(i), for 1 ≤ i ≤ k.

(2.15)

Hence, the RSD µ′(·) can be viewed as a mixture of the distributions µ′(·) and µ′′(·) with

mixing parameter β′

β
.

Now, µ′(·) is deconvolved to yield a valid probability distribution f(·), and the final

degree distribution p(·) is obtained as a mixture of f(·) and µ′′(·) which is used to encode

the data symbols at the sources.

Using the approach in 2.10, the smooth distribution µ′(i) is deconvolved and the result

is used to construct the DLT codes. Let’s define the function f(·) as follow:

(f ∗ f)(i) = µ′(i) for 2 ≤ i ≤ k/2 + 1 (2.16)
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Then the solution to (2.16) is given by

f(i) =



√
µ′(2), for i = 1

µ′(i+1)−
∑i−1
j=2 f(j)f(i+1−j)
2f(1)

, for 2 ≤ i ≤ k
2

0, otherwise

(2.17)

The distribution f(i) ≥ 0 for all i and (f ∗ f)(i) ≈ µ′(i) for 1 ≤ i ≤ k/2 + 1 [1].

The final desired distribution p(·) which is obtained by mixing f(·) and µ′′(·) is called

the deconvolved soliton distribution (DSD) and is given by

p(i) = λ · f(i) + (1− λ) · µ′′(i), for 1 ≤ i ≤ k/2 (2.18)

The mixing parameter λ is given by

λ =

√
β′

β
. (2.19)

2.2.3 Distributed Encoding

The deconvolved soliton distribution p(·) is used to encode data symbols in the network

of Figure 2.6, such that the code symbols received by the sink t follow (approximately) the

RSD in degree.

Initially, the DSD is used as the degree distribution at each of the two sources to encode

the data symbols. The encoded symbols here is referred to as a DLT-2 code. The encoding

procedure [1] is as follows:

1. The code symbol’s degree d is generated by first randomly selecting either f(·) (with

probability λ) or µ′′(·) (with probability 1−λ) and then generating d with the selected

distribution.

2. The code symbol’s d neighbors are then selected equiprobably from among the
(
k/2
d

)
possibilities, and are XORed to give the code symbol.
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This process produces a sequence of DLT-2 code symbols. For every pair of DLT-2 code

symbols (X1, X2) received from the two sources (s1, s2), the relay generates a code symbol

Y which is a selective XOR of X1 and X2 in the following manner:

1. If both source symbols X1 and X2 were chosen according to the distribution f(·)

component of the DSD, then Y = X1 ⊕X2. This occurs with probability λ2 = β′

β
.

2. If exactly one source symbol Xi(i = 1 or 2) was chosen according to µ′′(·), then

Y = Xi and the other symbol is discarded.

3. If both X1 and X2 were chosen according to µ′′(·), then Y is randomly set to one of

them with probability 0.5 and the other one is discarded.

The relay transmits the sequence of symbols Y to the sink. Consequently, the symbol

transmitted to the sink is the XOR of two source symbols with probability λ2 = β′

β
and

has a degree distributed (approximately) according to µ′(·), while the symbol transmitted

to the sink is a copy of either X1 or X2 with probability 1 − λ2 = 1 − β′

β
and has a degree

distributed according to µ′′(·). Thus, by 2.15, the degree of the symbol transmitted by

the relay obeys (approximately) the RSD. In the operation described above, the relay must

know from which distribution - f(.) or µ′′(.) - the degree of each encoded symbol it receives

is drawn. This could be done by appending a single bit to the l-bit string making up each

code symbol. Alternatively, if the relay knows the actual degree of each symbol it receives,

it is possible to construct a randomized decision protocol [1] such that the relay transmits

a symbol whose degree obeys (approximately) the RSD. The randomized decision rule is as

follows:

1. Let X1 and X2 denote the symbols received from the two sources, and let d1 and d2

denote their degrees.

2. The relay generates two independent random variables U1 and U2, each uniformly

distributed on [0, 1].
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3. The relay generates two binary random variables b1 and b2 as follows:

bi =


1, if

(
di = 1 and Ui < 1− λ·f(1)

p(1)

)
or

(
di = 1 and Ui < 1− λ·f(k/S)

p(k/S)

)
0, otherwise.

(2.20)

4. The relay then transmits the binary random variable Y defined as follows:

Y =



X1 ⊕X2, if b1 = b2 = 0

X1, if b1 = 1 and b2 = 0

X2, if b1 = 0 and b2 = 1

flip(X1, X2), if b1 = b2 = 1

(2.21)

Here, flip(X1, X2) is a random variable taking the value of either X1 or X2 with equal

probability.

The decoding procedure at the sink is exactly the same as LT decoding discussed in

section 2.1.3.

2.3 Unequal Error Protection of the Sources

The initial studies on rateless codes considered the equal error protection (EEP) of all

data. The EEP property would be sufficient for applications such as multicasting bulk data

(e.g., a software file)[9]. However, in several applications, a portion of data may need more

protection than the rest of data. For example, in an MPEG stream [10], I-frames need more

protection than P-frames. Such applications raise a need for having codes with unequal

error protection property. UEP codes were first studied in [11]. Rateless codes that can

provide UEP property were for the first time discussed in [12]. Similarly, for the network
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scenario of 2.6, information from one of the sources may be more important and needs

better protection than that from the other source. So, this section is focused in developing

a technique for providing unequal error protection to these sources.

2.3.1 Decomposing RSD into p1(·) and p2(·)
Let p1(·) and p2(·) be the degree distribution used for encoding the data symbols at the

sources s1 and s2 respectively. The code symbols coming from the sources s1 and s2 are

selectively XORed at relay and are sent to the destination. We want the degree of the code

symbols received at the sink to follow RSD.

We know from 2.15 that the RSD can be rewritten as:

µ(i) =
β′

β
· µ′(·) +

β′′

β
· µ′′(i)

=
β′

β
· µ′(·) +

(
1− β′

β

)
· µ′′(i), for 1 ≤ i ≤ k.

(2.22)

The distribution µ′(·) is the smooth one. So, it can be deconvolved directly. Let the

deconvolved components of µ′(·) be f1(·) and f2(·). Then, we can write the following:

f1(1) · f2(1) = µ′(2),

f1(1) · f2(2) + f1(2) · f2(1) = µ′(3),

f1(1) · f2(3) + f1(2) · f2(2) + f1(3) · f2(1) = µ′(4),

f1(1) · f2(4) + f1(2) · f2(3) + f1(3) · f2(2) + f1(4) · f2(1) = µ′(5),

...

(2.23)

If either of the distributions f1(·) or f2(·) is known, then the other can be calculated by

using 2.23 easily. Let us suppose that the values of the distribution f1(·) are known, then
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we can write the following:

f2(i) =


µ′(2)
f1(1)

, for i = 1

µ′(i+1)−
∑i−1
m=1 f1(i+1−m)f2(m)

f1(1)
, for 2 ≤ i ≤ k

2

(2.24)

For 2.24 to give a valid distribution f2(·), the other distribution f1(·) should be similar in

nature to µ′(·), that is, f1(·) must be decreasing with increasing values of i. Otherwise,

convolution of f1(·) and f2(·) will not give µ′(·) with the decreasing degree probabilities.

Since we know,

f1(1) · f2(1) = µ′(2), (2.25)

we can set

f1(1) = a where µ′(2) ≤ a ≤ 1. (2.26)

The value of a should never be set to any value that is less than µ′(2) because this makes

the value f2(1) > 1 which is undesirable. Now, we need to calculate all other values of the

distribution, that is, f1(i) for i ≥ 2. One of the simple ways to get these values is as follows:

f1(i) =
f(i)

1− f(1)
· (1− f1(1)) for 2 ≤ i ≤ k

2
(2.27)

where f(·) is the case when f1(·) equals f2(·), that is, when both the sources use the same

distribution which is given in 2.17 and is as by

f(i) =



√
µ′(2), for i = 1

µ′(i+1)−
∑i−1
j=2 f(j)f(i+1−j)
2f(1)

, for 2 ≤ i ≤ k
2

0, otherwise

(2.28)

Once we have f1(·) and f2(·), we can calculate the distributions p1(·) and p2(·) for the
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sources s1 and s2 respectively as following:

p1(i) = λ · f1(i) + (1− λ) · µ′′(i) (2.29)

p2(i) = λ · f2(i) + (1− λ) · µ′′(i) (2.30)

where λ =
√

β′

β′+β′′
. The µ′′(i), β′ and β′′ are given in 2.13, 2.12 and 2.14 respectively.

Now, we see that by adjusting a, we can obtain different sets of p1(·) and p2(·) which will

be used to encode the data symbols at the sources s1 and s2 respectively. The degrees of the

code symbols coming from each of the sources will vary from 1 to k/2. From 2.29 and 2.30,

it is clear that a code symbol with degree d is generated by first randomly selecting f1(d) at

source s1 (similarly, f2(d) at source s2) with probability λ, or µ′′(d) with probability 1− λ.

2.3.2 Operation at Relay

Once the code symbols from the sources s1 and s2 with degrees according to the distri-

butions p1 and p2 arrive at relay, they are selectively XORed and transmitted to the sink

based on the following rules:

1. If the encoded symbols coming from the sources s1 and s2 are generated with the

distributions f1(·) and f2(·) respectively, then they are XORed and the single combined

symbol is transmitted to the sink.

2. If one of the encoded symbols coming from the two sources is encoded by using the

distribution µ′′(·), then that particular symbol is transmitted to the sink while the

other one is discarded.

3. If both the encoded symbols coming from the sources s1 and s2 are generated with

the distribution µ′′(·), then one of these two symbols is randomly selected and is

transmitted to the sink.

25



The detection of whether a coded symbol arriving at relay is generated by fi(·) or µ′′(·)

can be done by knowing the seeds of random generators in both the sources and the relay

[5]. We see that the symbol transmitted to the sink is the XOR of two source symbols with

probability λ2 = β′/β and the degree is distributed closely according to µ′(·). Similarly,

with the probability 1 − λ2 = 1 − β′/β, the degree of the symbol being transmitted to the

sink is according to µ′′(·). Therefore, the degrees of the symbols being transmitted to the

sink follow the RSD.

Figure 2.7. Comparison of average decoding probability. Dashed (or solid) lines represent
the case when the sources use different distributions (or the same distribution). f1(1) = 0.80
and (c,δ)=(0.05, 0.5). Overhead is the number of encoded symbols additional to k that are
also used in decoding.
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Figure 2.8. Decoding probability with different distributions, k = 1000 and f1(1) = 0.90. UEP
of s1 and s2 and the average decoding probability are shown. (c,δ)=(0.05, 0.5).

2.3.3 Simulation and Results

Simulations were done in Matlab. Data symbols in the sources s1 and s2 were encoded

using the distributions p1(·) and p2(·) respectively and were transmitted to the sink via relay

based on the relay operation mentioned in 2.3.2.

The values shown in all the figures are the average values of the 2000 different values

obtained from 2000 number of simulations. The overall decoding probabilities when the

two sources used the different distributions are compared with that when both the sources

used the same distribution which is depicted in Figure 2.7. We can see the comparable

performances although using different distributions is slightly inferior to using the same dis-

tribution in terms of average decoding probability. However, by using different distributions

at the two sources, we can observe the distinct difference between the decoding probabilities
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Figure 2.9. Difference in the decoding probabilities, (that is, decoding probability of s2 minus
that of s1), when k = 1000 for different values of f1(1) and (c,δ)=(0.05, 0.5).

of the source s1 and that of source s2, as shown in Figure 2.8. Interestingly, it can also be

observed that the source s2 with a lower value of f2(1) is more protected and vice-versa.

This is because a high f1(1) value leaves more symbols in s1 uncovered at encoding and thus

cannot be recovered at decoding. When one of the sources is more protected, the perfor-

mance of the other is degraded to some extent. We observed that by varying the value a, the

difference between the decoding probabilities of sources s1 and s2 changes. The difference

between the decoding probabilities of two sources was calculated using (ds2 − ds1),where,

ds2 is the decoding probability of s2 and ds1 is that of s1, for different values of f1(1), that

is, for f1(1) = 0.75, f1(1) = 0.80, f1(1) = 0.85, f1(1) = 0.90, f1(1) = 0.95 and f1(1) = 1 over

the overhead range of 50−600 at an interval of 50 and was plotted. As shown in Figure 2.9,

the presented technique clearly suggests the unequal error protection for the two sources.
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Chapter 3

LT Decoding Over BI-AWGN Channel

Originally, fountain codes were exclusively proposed for the reliable multicasting problem

over the wired Internet, and therefore, have almost exclusively been investigated on erasure

channels. The loss behavior on the wired Internet is appropriately modeled by an erasure

channel as usually packets are dropped in intermediated routers. On BEC, theoretical

analysis of the performance of fountain codes is feasible, and has been shown to have excellent

performance. In fact, raptor codes [13] are currently being used by Qualcomm to provide

fast and reliable transfer of large files over the Internet. Apart from erasure channels, there is

a growing interest in exploiting rateless codes in physical layer. On channels such as binary

symmetric channel (BSC) and additive white gaussian noise channel (AWGNC), there are

also many potential applications (e.g., transfer of larger files over a wireless link, multicasting

over a wireless channel). These issues have been addressed in [14] [15]. In this chapter we

will present the decoding part of LT codes over AWGN channel and its performances. In

noisy channel decoding, the message passing rules of fountain decoder resemble those of

LDPC decoder. This chapter starts with an introduction to AWGN channel, LDPC codes

and its decoding technique.

3.1 Binary Input AWGN channel

The noise sources on the communication channel can be man-made and natural types.

The Gaussian noise channel we deal with is memoryless and the power spectral density

29



(PSD) of the noise is assumed to be the same for all frequencies. The PSD of AWGN is

given by:

Sn(f) =
N0

2
, (3.1)

where N0 is the single-sided power spectral density.

The binary-input AWGN channel can be described by the equation

yi = xi + zi, (3.2)

where xi ∈ {−1,+1} is the ith transmitted symbol, yi is the ith received symbol and zi is

the additive noise sampled from a Gaussian random variable with mean 0 and variance σ2.

This is sometimes written as zi = AWGN(0, σ).

The probability density function for z is:

p(z) =
1√

2πσ2
e−

z2

2σ2
, (3.3)

where ex = exp(x) is the exponential function.

3.2 LDPC Codes

Low-density parity-check (LDPC) codes are a class of linear block codes which provide

near capacity performance on a large collection of data transmission and storage channels

while simultaneously admitting implementable decoders. LDPC codes were first proposed

by Gallager in his 1960 doctoral dissertation [16]. The study of LDPC codes was resurrected

almost after 35 years with the work of MacKay, Luby, and others [17] [18]. The matrix and

graphical representation of the any codes is the most important part while applying message

passing algorithms at the decoder.
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3.2.1 Representation of LDPC Codes

The LDPC code is given by the null space of an (n− k)× n parity-check matrix H that

has a low density of 1s where k is the number of data bits and n is the number of code bits.

Tanner in 1981 [19] generalized LDPC codes and introduced a graphical representation of

LDPC codes, now called Tanner graphs. The two types of nodes in a Tanner graph are

the variable nodes (v-nodes) and the check nodes (c-nodes). The Tanner graph of a code is

drawn according to the following rule: check node j is connected to variable node i whenever

element hji in H is a 1. So, there are n− k check nodes, one for each check equation, and n

variable nodes, one for each code bit vi. An example of H matrix for a (10, 5) linear block

code is shown below. The corresponding Tanner graph is shown in Figure 3.1. For all the

check nodes, the sum of the neighboring positions among the variable nodes is zero, that is,

the value of check node is always zero.

H =



1 1 1 1 0 0 0 0 0 0

1 0 0 0 1 1 1 0 0 0

0 1 0 0 1 0 0 1 1 0

0 0 1 0 0 1 0 1 0 1

0 0 0 1 0 0 1 0 1 1


(3.4)

3.2.2 Iterative Decoding Algorithm

In addition to introducing LDPC codes, Gallager also provided a decoding algorithm that

is typically near optimal. Since that time, other researchers have independently discovered

that algorithm and related algorithms. The algorithm iteratively computes the distribu-

tions of variables in graph-based models and comes under different names, depending on the

context. These names include: the sum-product algorithm (SPA), the belief propagation

algorithm (BPA), and the message passing algorithm (MPA). The term “message passing”

usually refers to all such iterative algorithms, including the SPA, BPA and its approxima-
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Figure 3.1. Tanner graph for example code.

tions. The concept of such algorithm is as follows:

The a posteriori probability (APP) that a given bit in the transmitted codeword v =

[v1 v2 · · · vN ] equals 1, given the received word y = [y1 y2 · · · yN ] is computed

initially. So, for the decoding of bit vi, the APP is computed as follow

Pr(vi = 1|y) (3.5)

The APP ratio (also called likelihood ratio, LR) is given by

l(vi) ,
Pr(vi = 0|y)

Pr(vi = 1|y)
. (3.6)

The more numerically stable computation of the log-APP ratio, also called the log-likelihood

ratio (LLR) is given by:

L(vi) , log

(
Pr(vi = 0|y)

Pr(vi = 1|y)

)
. (3.7)
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Hereafter, the natural logarithm is assumed for LLRs.

The MPA for the computation of Pr(vi = 1|y), l(vi), or L(vi) is an iterative algorithm

which is based on the code’s Tanner graph. Specifically, it is imagined that the variable nodes

(VNs) represent processors of one type, check nodes (CNs) represent processors of another

type, and the edges represent message paths. In one half iteration, each variable node pro-

cesses its input messages and passes its resulting output messages up to neighboring check

nodes (two nodes are said to be neighbors if they are connected by an edge). This is depicted

in Figure 3.2 for the message m↑14 from v-node v1 to c-node e4 (the subscripted arrow indi-

cates the direction of the message, keeping in mind that our Tanner graph convention places

c-nodes above v-nodes). The information passed concerns Pr(v1 = b | input messages),

b ∈ {0, 1}, the ratio of such probabilities, or the logarithm of the ratio of such probabilities.

Note in the figure that the information passed to c-node e4 is all the information avail-

able to v-node v1 from the channel and through its neighbors, excluding c-node e4; that is,

only extrinsic information is passed. Such extrinsic information m↑ij is computed for each

connected v-node / c-node pair vi/ei at each half-iteration.

In the other half iteration, each c-node processes its input messages and passes its re-

sulting output messages down to its neighboring v-nodes. This is depicted in Figure 3.3

for the message m↓14 from c-node e1 down to v-node v4. The information passed concerns

Pr(check equation e1 is satisfied | input messages), b ∈ {0, 1}, the ratio of such proba-

bilities, or the logarithm of the ratio of such probabilities. Note, as for the previous case, only

extrinsic information is passed to v-node v4. Such extrinsic information m↓ji is computed

for each connected c-node/v-node pair ej/vi at each half-iteration.

After a prescribed maximum number of iterations or after some stopping criterion has

been met, the decoder computes the APP, the LR, or the LLR from which decisions on the

bits vi are made.
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Figure 3.2. Subgraph of a Tanner graph corresponding to an H matrix whose first column is
[1 1 1 1 0 · · · 0]. The arrows indicate message passing from node v1 to node e4.

Figure 3.3. Subgraph of a Tanner graph corresponding to an H matrix whose first row is
[1 1 1 1 0 · · · 0]. The arrows indicate message passing from node e1 to node v4.
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3.3 LT decoding using Iterative Decoding Algorithm

In noisy channel decoding, the message passing rules of fountain codes resemble those of

LDPC decoder. We see that for LDPC codes, all the check nodes have value 0 but in LT

codes the output values can be 0 or 1. Therefore, we need to create a H matrix (as one

discussed in LDPC codes) such that every check node has value 0.

3.3.1 Creation of H matrix

To use the message passing algorithm for decoding the LT codes over AWGN channel,

we developed a H matrix for LT codes. We have used the optimized degree distribution

mentioned in Shokrollahi’s paper [15] as our degree distribution to generate code symbols,

which is as follows:

Ω(x) = .008x+ .494x2 + .166x3 + .073x4 + .083x5 + .056x8 + .037x9

+ .056x19 + .025x65 + .003x66
(3.8)

where the exponents of x denote the degrees of the input symbols and the corresponding

coefficients denote the probability of choosing such a degree.

Let X represent the data symbols (X = [x1 x2 · · · xk]) and C represent the code

symbols (C = [c1 c2 · · · cn]) for LT codes such that C = XG where G is a generator

matrix of size k×n. These encoded symbols are transmitted over the AWGN channel. The

tanner graph for this LT code is given in Figure 3.4.

The values of data symbols are either 0 or 1 and the values of code symbols are also

either 0 or 1 as the encoded symbols are created by the XORing of the randomly selected

data symbols. Now, we need to create variable nodes and check nodes such that the sum

of the values of the variable nodes being connected to a corresponding check node in a

Tanner graph should equal to zero. To do this, we first aligned both the data symbols

X and code symbols C horizontally to get VNs as shown in Figure 3.5 and then created

the corresponding CNs. Let V be the horizontal concatenation of X and C such that
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Figure 3.4. Tanner graph of LT codes

V = [X C], that is, V = [x1, x2, · · ·xk, c1, c2, · · · cn]. We see that the tanner graph of

LT codes contain two kinds of variable nodes as shown in Figure 3.5. One kind is the

information variable nodes X = [x1 x2 · · · xk] which are not transmitted and have no

channel information. Another is encoding variable nodes C = [c1 c2 · · · cn] which are

transmitted over the channel and contain channel information.

Let N be the total number of VNs and N = k + n. Once we create our VNs and CNs,

the H matrix can be developed which will be the same as the one we get by the horizontal

concatenation of the transpose of G matrix and the identity matrix of size n×n as following:

H =

[
GT , I

]
(3.9)
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Figure 3.5. Tanner graph showing VNs and CNs for LT codes over AWGN channel

3.3.2 Calculation of L(vi) for BI-AWGN channel

The initial input to the decoder is the log-likelihood ratio (LLR), L(vi), which is defined

by the following equation:

L(vi) = log

(
Pr(vi = 0 | channel output for vi)

Pr(vi = 1 | channel output for vi)

)
(3.10)

The first k symbols of the V are the source symbols and they are not transmitted over the

channel. Only the encoded symbols are transmitted over the channel and are received at

the receiver. So, for i = 1, 2, · · · , k, L(vi) = 0 and for all the received symbols, L(vi) is

calculated by using (3.10).

When transmitting a binary codeword on the BI-AWGN channel, the codeword bits vi ∈

{0, 1} can be mapped to the symbols xi ∈ {−1,+1} in one of two ways: {0 → 1, 1 → −1}

or {0→ −1, 1→ 1}. We use the traditional convention {0→ 1, 1→ −1}.
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The received LLRs for the BI-AWGN channel are then

L(vi) = L(xi|yi) = log
p(vi = 0|yi)
p(vi = 1|yi)

= log
p(xi = 1|yi)
p(xi = −1|yi)

= log
p(yi|xi = 1)p(xi = 1)/p(yi)

p(yi|xi = −1)p(xi = −1)/p(yi)

= log
p(yi|xi = 1)p(xi = 1)

p(yi|xi = −1)p(xi = −1)
.

(3.11)

where we have used Bayes’ rule as defined below:

p(xi|yi) = p(xi, yi)/p(yi) = p(yi|xi)p(xi)/p(yi). (3.12)

to substitute for p(xi = 1/yi) and p(xi = −1/yi). If the source is equiprobable then p(xi =

−1) = p(xi = 1), and we have,

L(vi) = L(xi|yi) = log
p(yi|xi = 1)

p(yi|xi = −1)
. (3.13)

For the BI-AWGN channel:

p(yi|xi = 1) =
1√

2πσ2
exp

(
−(yi − µ)2

2σ2

)
, (3.14)

p(yi|xi = −1) =
1√

2πσ2
exp

(
−(yi + µ)2

2σ2

)
; (3.15)
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thus

L(vi) = L(xi|yi) = log

1√
2πσ2

exp
(
− (yi−µ)2

2σ2

)
1√
2πσ2

exp
(
− (yi+µ)2

2σ2

)
= log exp

(
−(yi − µ)2

2σ2
+

(yi + µ)2

2σ2

)
=

1

2σ2
(−(y2i − 2µyi + µ2) + (y2i + 2µyi + µ2))

=
2µ

σ2
yi.

(3.16)

The LLR value for a bit vi is sometimes called a soft decision for vi. A hard decision

for vi will return vi = 0, equivalently xi = 1, if L(vi) is positive and vi = 1, equivalently

xi = −1, if L(vi) is negative.

When considering the relative noise level of a BI-AWGN channel, it is convenient to

assume that µ = 1 and adjust σ to reflect the noise quality of the channel. In this case L(vi)

can be written as:

L(vi) =
2

σ2
yi. (3.17)

3.3.3 Decoding Algorithm

Once the H matrix is created we can apply the iterative decoding algorithms used in

LDPC codes [20].

The other three key variables other than L(vi) used in the decoding algorithm are: L(rji),

L(qij), and L(Qi) where, L(rji) represents the outgoing CN message from check node j to

variable node i and is calculated for all the check nodes, L(qij) represents the outgoing VN

message from variable node i to check node j and is calculated for all the variable nodes and

L(Qi) is the final LLR value computed for every variable node from which final decision on

source symbols will be made. These three key variables are given by the following equations:

L(rji) = 2 tanh−1

 ∏
i′∈N(j)−{i}

tanh

(
1

2
L(qi′j)

) (3.18)
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L(qij) = L(vi) +
∑

j′∈N(i)−{j}

L(rj′ i) (3.19)

L(Qi) = L(vi) +
∑
j′∈Ci

L(rj′ i) (3.20)

Once we have these equations, we can apply the following algorithm for decoding:

1. Initialization: For all i, initialize L(vi) for the appropriate channel model. Then, for

all i, j for which hji = 1, set L(qij) = L(vi).

2. CN update: Compute outgoing CN messages L(rji) for each CN and then transmit

to the VNs.

3. VN update: Compute outgoing VN messages L(qij) for each VN and then transmit

to the CNs.

4. LLR total: For i = 1, 2, · · · , N , compute L(Qi).

5. Stopping criteria: For i = 1, 2, · · · , N , set

v̂ =


1, if L(Qi) < 0

0, otherwise

to obtain v̂. If v̂HT = 0 or the number of iterations equals the maximum limit, stop;

else, go to Step 2.

3.4 Simulation Results and Discussion

All the simulations were done using C/C++ programming. The original data is encoded

using the LT encoding algorithm. The simulation is performed 1000 times for a data block

of 1000 bits. The encoded symbols are transmitted over the AWGN channel and collected at

the receiver where decoding algorithm is applied over a number of iterations on the Tanner
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graph generated from the H-matrix to calculate the LLRs of input symbols. Based on these

LLRs, whether the input symbol is “0” or “1” is determined. Simulation results are shown

in Figures 3.6 and 3.7 where the dependence of bit error rate (BER) on signal to noise

ratio (SNR) is shown. The value of SNR (Eb/N0) changes from 0 to 6 dB. The number of

iterations used is 50. Overhead is the fraction of extra symbols received at the receiver and

this value is varied from 0.2 to 1.0 at an interval of 0.2.

he

Figure 3.6. LT Decoding over AWGN channel using the degree distribution optimized for LT
codes used in Raptor codes.

Observing both figures, it is clear that as the SNR increases, the BER decreases. Also,

as the overhead increases, the BER again goes on decreasing. Even at the higher SNR the
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Figure 3.7. LT Decoding over AWGN channel using revised degree distribution

BER is not impressive and also with increasing overhead the improvement in BER in not

impressive either. This suggests that the LT codes alone are not good at correcting errors.

Regarding Figure 3.6, the distribution used while encoding the input symbols at the

source is the one given in (3.8). This distribution was used as an optimized degree distri-

bution for LT codes while using in Raptor codes which was suitable for a higher data block

size. In our case, as the data block size is 1000 bits only and the probability for generating

degree one symbols is low (just 0.8%), there are possibilities that degree one symbols are

never generated and decoding never starts, which leads to a poor performance. Therefore,

to make sure that degree one symbols are always generated and decoding never fails to start,
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we revised the distribution and increased the probability of generating degree one symbols

to 2% and the probabilities of generating other degree symbols are adjusted accordingly.

The revised distribution is as follows:

Ω(x) = .020x+ .488x2 + .159x3 + .073x4 + .083x5 + .056x8 + .037x9

+ .056x19 + .025x65 + .003x66
(3.21)

This revised degree distribution was used for encoding data symbols while generating

graph depicted in Figure 3.7 where we can clearly see the improvements in the curve as

compared to those in Figure 3.6. Thus, it can be inferred that the performance of LT codes

over AWGN channel can be improved by optimizing the degree distribution and this requires

further research.
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Chapter 4

Turbo Codes

4.1 Introduction

In 1949 Claude Shannon published a classic paper [21] that established a mathematical

basis for the consideration of the noisy communications channel. In his analysis he quantified

the maximum theoretical capacity for a communication channel, the Shannon limit, and

indicated that error-correcting channel codes exist that allowed this maximum capacity to

be achieved.

In 1993 Berrou, Glavieux and Thitimajshima [22] proposed a new class of convolution

codes called turbo codes whose performance in terms of bit error rate (BER) are close to the

Shannon limit. They indicated that it was possible to operate within 0.7 dB of the Shannon

limit. Finally, advancements and high demands in the fields of mobile, satellite and space

communication systems soon realized turbo codes as a channel coding standard in many

modern day areas of communication.

4.2 Principles of Turbo Codes

It is theoretically possible to approach the Shannon limit by using a block code with

large block length or a convolutional code with a large constraint length. The processing

power required to decode such long codes makes this approach impractical. Turbo codes

overcome this limitation by using recursive coders and iterative decoders. Most frequently,

a turbo code refers to a concatenation of two (or more) convolutional encoders separated
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by interleavers. The turbo decoder consists of two (or more) soft-in/soft-out convolutional

decoders which iteratively feed probabilistic information back and forth to each other. The

recursive coder makes convolutional codes with short constraint length appear to be block

codes with a large block length, and the iterative soft decoder progressively improves the

estimate of the received message.

4.3 Convolutional Codes

Convolutional codes [20], invented by Elias in 1955 [23] are linear codes with a very

distinct algebraic structure. Multiple convolutional codes are concatenated to get turbo

(-like) codes. The encoders of convolutional codes are usually described as stream-oriented

although they can be utilized in block-oriented situations. In contrast with a block code,

whose encoder assigns an n-bit codeword to each block of k data bits, a convolutional encoder

assigns code bits to an incoming information bit stream continuously, in a stream-oriented

fashion.

An example of classical non systematic convolutional encoder with rate -1/2 is depicted in

Figure 4.1. Two code bits are produced for each data bit that enters the encoder; hence, the

rate is 1/2. The contents of the four binary memory cells (D) define the state of the encoder;

hence, the encoder is a 16-state device. The two adders are the modulo-2 adders. When a

feedback is presented in the encoder realization and when one of the encoder output is the

copy of input itself, then the code is termed as systematic recursive code. Thus, Figure 4.2

is an example of recursive systematic convolutional (RSC) encoder where the output yk is

equal to the input bit uk.

4.4 Turbo Encoder

The classical turbo-code encoder is a rate R = 1/3 parallel concatenated code composed

of two binary rate-1/2 recursive systematic convolutional codes separated by a K-bit in-

terleaver or permuter, together with an puncturing mechanism. The overall turbo encoder
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Figure 4.1. Classical Non-Systematic Convolutional Encoder.

Figure 4.2. Recursive Systematic Convolutional Encoder

produces a codeword for an input sequence uk consisting of K bits by combining this message

sequence, which is often called the systematic bit yk together with the two parity sequences

p1k and p2k, which are obtained by encoding the message stream with two identical encoders

to produce an output encoded stream. The second encoder operates on the interleaved ver-

sion of the message sequence in order to produce a different output stream. Therefore, the

interleaver is an important design parameter in the performance evaluation of turbo codes.

Clearly, without the puncturer, the encoder is rate 1/3, mapping K data bits to 3K code

bits. The general structure for the classical rate 1/3 turbo encoder is shown in Figure 4.3.

Figure 4.4 is the detailed version of Figure 4.3, where two identical RSC codes with parallel

concatenation is shown. Both elementary encoder (C1 and C2) inputs use the same bit uk
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but according to a different sequence due to the presence of an interleaver. For an input

bit sequence {uk}, encoder outputs xk and yk at time k are respectively equal to uk and

interleaved version of uk (systematic encoder) and to encoder C1 output p1k, or to encoder

C2 output p2k which are the parity bit sequence. The systematic output of Encoder-2 is not

transmitted because this is just the interleaved version of systematic output of Encoder-1.

Figure 4.3. A general rate 1/3 turbo encoder

4.5 Puncturing

Puncturing [20] is the process of achieving higher code rates from a lower-rate code,

which means that code bits at the encoder output are periodically deleted and hence not

transmitted. For example, to achieve a rate 2/3 convolutional code by puncturing a rate-1/2

encoder, one need only puncture every fourth code bit at the encoder output. Since each

group of four code bits is produced by two information bits, but only three of the four will

be sent, rate 2/3 has been achieved, that is, overhead is reduced.

Similarly, to get a rate-1/2 for the a general 1/3 turbo encoder shown in Figure 4.3, odd

bits coming from the Encoder 1 can be punctured and even bits coming from Encoder 2 can

be punctured.

Generally speaking, puncturing can set the code rate to an arbitrary value, not just 1/2

for the above example. Let N be the size of the message block. Let n1 bits per block

from Encoder 1 and n2 bits per block from Encoder 2 are chosen, that is, rest of others are
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Figure 4.4. Recursive Systematic Codes with parallel concatenation.

punctured, then the two elementary code rates R1 and R2 associated with Encoder 1 and

Encoder 2 are:

R1 =
N

n1 +N
(4.1)

and

R2 =
N

n2 +N
(4.2)

The overall rate R can be expressed as suggested in [24] as:

1

R
=

1

R1

+
1

R2

− 1

=
R1 +R2 −R1R2

R1R2

.

(4.3)

where R1 and R2 are different, and if R1 ≤ R2, optimum decoding performance can be
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obtained [24].

4.6 Interleaving

Interleaving [20] is the process of taking each incoming block of bits and rearranging them

prior to encoding by the second RSC encoder. Conventionally, interleaving is used to spread

bursts of errors over multiple code-words that can be corrected by error-correcting codes.

By converting bursts of errors into random-like errors, it thus becomes an effective means

to combat error bursts. For turbo codes, the interleaver has more functions. Interleaving is

used to feed the encoders with permutations so that the generated redundancy sequences can

be assumed independent. Some interleaver types used in turbo codes are: “Row-Column”

interleavers, “Helical” interleavers, “Odd-even” interleavers,“Simile” interleavers, “Frame”

interleavers, “Pseudo-random” interleavers, “S-type” interleavers, “Uniform” interleavers,

which are discussed in [25].

4.7 Turbo Decoder

The structure of the turbo decoder is shown in Figure 4.5. It consists of a pair of

decoders which work cooperatively to refine and improve the estimate of the original in-

formation bits. The decoders are based on the MAP (maximum a-posteriori probability)

algorithm and output soft decision information learned from the corrupted parity bits. Ini-

tially decoder-1 starts without initial information (a-priori estimates are set to zero). In

subsequent iterations, the soft decision information of one decoder is used to initialize the

other decoder. The decoder information is cycled around the loop until the soft decisions

converge on a stable set of values. The latter soft decisions are then sliced to recover the

original binary sequence.

Lets start by summarizing what is meant by the terms a-priori, a-posteriori, and extrinsic

information which are central concepts behind the iterative decoding of turbo codes.
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• a-priori The a-priori information about a bit is the information known before decoding

starts, from a source other than the received sequence or the code constraints. It is also

sometimes referred to as intrinsic information to contrast with the extrinsic information

described next.

• extrinsic The extrinsic information about a bit uk is the information provided by

a decoder based on the received sequence and on a-priori information excluding the

received systematic bit and the a-priori information L(uk) for the bit uk. Typically,

the component decoder provides this information using the constraints imposed on

the transmitted sequence by the code used. It processes the received bits and a-priori

information surrounding the systematic bit uk, and uses this information and the code

constraints to provide information about the value of uk.

• a-posteriori The a-posteriori information about a bit is the information that the

decoder gives taking into account all available sources of information about uk. It is

the a-posteriori LLR, that is, L(uk|y′), that MAP algorithm gives as its output.

Figure 4.5. Turbo decoding schematic.
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As seen in the figure, each decoder takes three inputs: 1) the systematically encoded

channel output bits; 2)the parity bits transmitted from the associated component encoder;

and 3) the information from the other component decoder about the likely values of the bits

concerned. This information from the other decoder is referred to as a-priori information.

The component decoders have to exploit both the inputs from the channel and this a-priori

information. They must also provide what are known as soft outputs for the decoded bits.

This means that as well as providing the decoded output bit sequence, the component

decoders must also give the associated probabilities for each bit that it has been correctly

decoded.

The soft outputs from the component decoders are typically represented in terms of the

so-called log likelihood ratios (LLRs), the magnitude of which gives the sign of the bit, and

the amplitude the probability of a correct decision. The LLR L(uk) (a-priori information)for

the value of a decoded bit uk is given by:

L(uk) = log

(
P (uk = +1)

P (uk = −1)

)
(4.4)

where P (uk = +1) is the probability that the bit uk = +1, and similarly for P (uk = −1).

4.7.1 MAP Decoding

The MAP algorithm minimizes the probability of bit error by using the entire received

sequence to identify the most probable bit at each state of the trellis. It provides not only

the estimated bit sequence, but also the probabilities for each bit that has been decoded

correctly. This algorithm has also become known as BCJR algorithm [26], named after its

inventors.

Lets use the following shorthand for the transmitted and received symbol pairs:

yk = {uk, pk} y = y1,K = {y1, y2, · · · , yk} y
′

k = {u′k, p
′

K} y′ = y′1,K = {y′1, y′2, · · · , y′K}
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The MAP algorithm gives, for each decoded bit uk, the probability that this bit was +1

or -1, given the received symbol sequence y′. This is equivalent to finding the a-posteriori

LLR L(uk/y
′) given below:

L(uk/y
′) = log

(
P (uk = +1|y′)
P (uk = −1|y′)

)
. (4.5)

As mentioned in [27], for a convolutional code, the likelihood ratio can be expressed in

terms of the trellis. If the previous state Sk−1 = s′ and the present state Sk = s are known

in a trellis then the input bit uk which caused the transition between these states will be

known. This, along with Bayes rule and the fact that the transitions between the previous

state and the present state in a trellis are mutually exclusive (that is, only one of them could

have occurred at the encoder) allow us to write the following:

P (uk = +1|y′)
P (uk = −1|y′)

=

∑
(s′,s)∈S+ P (sk−1 = s′, sk = s|y′)∑
(s′,s)∈S− P (sk−1 = s′, sk = s|y′)

=

∑
(s′,s)∈S+ P (sk−1 = s′, sk = s, y′)∑
(s′,s)∈S− P (sk−1 = s′, sk = s, y′)

(4.6)

The numerator sum is over all possible state transitions associated with a “+1” data bit,

and the denominator over all possible state transitions associated with a “-1” data bit.

The probability of a particular state transition and the noisy observation associated with

a trellis transition can be expressed (using Bayes theorem) as:

P (sk−1 = s′, sk = s, y′1,K) = P (sk−1 = s′, y′1,k−1) · P (sk = s, y′k|sk−1 = s′) · P (y′k+1,K |sk = s)

= αk−1(s
′) · γk(s′, s) · βk(s)

(4.7)

The probabilities associated with the continuous valued received observation taking a

particular value are infinitesimally small. As the final result will be a probability ratio (the

likelihood ratio) we can relax the notation and work with probabilities to help keep the
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mathematics simple.

In terms of the above definitions of αk−1(s
′), γk(s

′, s), βk(s), the a-posteriori likelihood

ratio can be rewritten as the ratio as in [27] as follows:

P (uk = +1|y′)
P (uk = −1|y′)

=

∑
(s′,s)∈S+ αk−1(s

′) · γk(s′, s) · βk(s)∑
(s′,s)∈S− αk−1(s

′) · γk(s′, s) · βk(s)
(4.8)

The term αk(s
′) is the probability of arriving at a branch in a particular state and the

sequence of noisy observations y′1,k = y′1, y
′
2, · · · , y′k which led up to that state. By summing

over all paths leading into that state we get a forward recursion for calculating αk(s
′) in

terms of γk(s
′, s).

αk(s) = P (sk = s, y′1,k) =
∑
s′

P (sk−1 = s′, y′1,k−1) · P (sk = s, y′k|sk−1 = s′)

=
∑
s′

αk−1(s
′) · γk(s′, s)

(4.9)

To begin the forward recursion, the forward state probabilities should be initialized. In

turbo coders all convolutional encoders are started in state 0. Thus the forward recursion

is started with:

α0(s) = P (s0 = s)


1 for s = 0

0 for s 6= 0

(4.10)

The term βk(s) is the probability of exiting a branch via a particular state s and the sequence

of noisy observations y′1,k = y′1, y
′
2, · · · , y′k which finish off the trellis. By summing over all

paths exiting that state we get a backward recursion for calculating βk(s) in terms of values
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γk(s
′, s) as following:

βk(s
′) = P (y′k+1,K |sk = s) =

∑
s

P (sk+1 = s, y′k+1|sk = s′) · P (y′k+2,K |sk = s′)

=
∑
s

γk+1(s
′, s) · βk+1(s)

(4.11)

To begin the backward recursion, the backward state probabilities should be initialized.

Convolutional encoder#1 is usually terminated at state 0. However, in general, the final

state for convolutional encoder#2 is data dependent, and unknown beforehand. So, an

uniform distribution for the final state of encoder#2 is assumed. A suitable initialization

(where the number of states in the convolutional encoder is 2v, v being the memory cells

used) is as follows:

MAP #1 : βK(s) = P (sK = s)


1 for s = 0

0 for s 6= 0

MAP #2 : βK(s) = P (sK = s) =
1

2v
for all s

For a given state transition, the transmitted signal is the data bit and parity pair yk.

Also, for a given starting state, the next state is completely determined by the value of the

data bit. Using the Bayes theorem, the branch probability can be expressed as following:

γk(s
′, s) = P (sk = s, y′k|sk−1 = s′) = P (y′k|sk−1 = s′, sk = s)·P (sk = s|sk−1 = s′) = P (y′k|yk)·P (uk)

(4.12)

The probability of the data bit taking a particular value can be expressed in terms of the
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log likelihood of the a-priori probability ratio as

P (uk) =
exp

[
1
2
La(uk)

]
1 + exp[La(uk)]

· exp

[
1

2
ukLa(uk)

]
= Bk · exp

[
1

2
ukLa(uk)

] (4.13)

where La(uk) = log
[
P (uk=+1)
P (uk=−1)

]
The probability of the observed noisy data bit and parity symbols taking particular

values can be expressed in terms of Gaussian probability distribution as

P (y′k|yk) = P (u′k|uk) · P (p′k|pk)

=
1√

2πσ2
· exp

[
−(x′k − xk)2

2σ2

]
·∆ · 1√

2πσ2
· exp

[
−(p′k − pk)2

2σ2

]
·∆

= Ak · exp

[
u′kuk − p′kpk

σ2

] (4.14)

Here, the ∆ terms are infinitesimally small ranges about the particular values. These

terms will cancel out in the final expressions for the likelihood ratios.

Now, the transition probability γk(s
′, s) can be expressed in terms of log likelihood ratios

and the noisy observations as

γk(s
′, s) = Ak ·Bk · exp

[
1

2
(ukLa(uk) + ukLcu

′
k + pkLcp

′
k)

]
(4.15)

where Lc = 2
σ2 is the channel information.

Recalling the definition of the MAP log likelihood ratio:

L(uk) = log

[
P (uk = +1|y′)
P (uk = −1|y′)

]
= log

[
P (y′k|uk = +1)

P (y′k|uk = −1)

]
+ log

[
P (uk = +1)

P (uk = −1)

]
(4.16)
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Now, we can write the following:

L(uk) = log

[∑
(s′,s)∈S+ αk−1(s

′) · γk(s′, s) · βk(s)∑
(s′,s)∈S− αk−1(s

′) · γk(s′, s) · βk(s)

]

= log

 ∑
s′,s∈S+ exp

(
La(uk)

2

)
· exp

(
Lcu′k
2

)
· αk−1(s′) · exp

(
pkLcp

′
k

2

)
· βk(s)∑

s′,s∈S− exp
(
−La(uk)

2

)
· exp

(
−Lcu′k

2

)
· αk−1(s′) · exp

(
pkLcp

′
k

2

)
· βk(s)

 (4.17)

Noting that the summation in the numerator is over all state transitions associated with a

data bit symbol uk equal to +1, and that the summation in the denominator is over all state

transitions associated with a data bit symbol uk equal to -1, we have:

L(uk) = La(uk) + Lcu
′
k + log

∑(s′,s)∈S+ αk−1(s
′) · exp

(
pkLcp

′
k

2

)
· βk(s)∑

(s′,s)∈S− αk−1(s
′) · exp

(
pkLcp

′
k

2

)
· βk(s)

 (4.18)

Now, the MAP log likelihood can be separated into three distinct components as following:

L(uk) = La(uk) + Lcu
′
k + Le(uk) (4.19)

The first term La(uk) is the a-priori information. This will the initial estimate prior to

running the MAP algorithm.

The second term Lcu
′
k is the information provided by that part of the noisy observation

which does not depend on the convolutional code constraints.

The third term Le(uk) is the information learned via the parity constraint. This infor-

mation is referred to as extrinsic information.

In a turbo decoder the extrinsic information of one MAP decoder is used as the a-priori

input to the other MAP decoder and is ping ponged back and forth between MAP decoders

in each iterations. The iterative process continues, and with each iteration on average the

BER of the decoded bits will improve.
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Chapter 5

Turbo + LT codes

Turbo codes are high-performance forward error correction codes and are the first practi-

cal codes which have shown performance close to the Shannon limit. They are very efficient

over noisy channel and are physical layer codes. On the other hand, LT codes are the first

class of practical fountain codes that are near-optimal erasure correcting codes. It has been

found that over noisy channels, the performance of LT codes is not impressive. Therefore,

the objective here is to integrate LT codes and turbo codes and study the overall perfor-

mance of the integrated system. Hence, the information at the source is first encoded by

using turbo encoder followed by LT encoder and are transmitted over the noisy channel.

Over noisy channels, errors may be introduced into individual symbols and at the receiver

corrupted symbols are obtained which are processed by LT decoder followed by turbo de-

coder and a final decision about the obtained soft information is made. We would like to

see whether the errors left after LT decoding can be corrected by using turbo decoding. The

details of the method is explained in the following section.

5.1 System Model

The system model for our work is shown in Figure 5.1. Two layers of encoding of

source information are done at the transmitting side. The source information which are the

streams with binary bits, are at first encoded by using turbo encoder. We have used the rate

compatible punctured turbo (RCPT) codes with a rate of 4/5. The turbo encoded symbols

are then encoded by using LT encoder. The distribution used for LT encoding is not RSD
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Figure 5.1. A system model for turbo + LT encoding decoding over BI-AWGN channel.

but the one mentioned in (3.8), which is optimized for LT codes while using in raptor codes

where LDPC codes are considered but not turbo codes. Then the encoded information is

sent over the BI-AWGN channel. When transmitting a binary codeword on the BI-AWGN

channel with the BPSK assumption, the encoded bits ui ∈ {0, 1} can be mapped to the

symbols ci ∈ {1,−1} ( or {0 → 1, 1 → −1} ). As the channel is noisy (Gaussian), errors

will be introduced into individual bits. Therefore, corrupted symbols (bits) are be obtained

at the receiver side. Before decoding starts, the LLR of each bit (VN) is calculated, which

is termed as channel information (LCs). Now, these LCs are fed into the LT decoder. The

message passing algorithm is applied over a number of iteration on the Tanner graph of

the H-matrix to find out LLR (R) values of the turbo encoded symbols. The detail of the

decoding process and calculations for LT decoding over noisy channel is already discussed

in Section 3.3. These LLR (R) values of turbo encoded symbols are then fed into turbo

decoder as a priori information which are processed by using iterative decoding algorithm

(BCJR algorithm) over a number of iteration. The details of turbo decoding is discussed

in Section 4.7. The LLR (L) values at the output of the Turbo Decoder are the final
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soft information about the source symbols. Based on these final soft information, the final

decision about whether the transmitted bit was 0 (if LLR (L) > 0) or 1 (if LLR (L) < 0) is

made at the receiver (destination).

5.2 Simulation and Results

Computer simulations were done using C/C++ programming. The data block of size 800

bits was encoded at first by using RCPT codes of rate 4/5 giving a turbo encoded message

of block size 1000 bits. This turbo encoded message block of 1000 bits were then further

encoded by using LT encoder to get a block of 1300 bits. Therefore, for LT codes, the size

of message block is K = 1000 and size of encoded message is N = 1300. The simulations

were done for 1000 different data blocks at different SNR ranging from 0 to 5.5 dB. The

BER for both LT and turbo decoder were calculated for each data blocks at all the SNR

values. We wanted to see whether the BER that we obtained after LT decoding is reduced

or not after turbo decoding. What we have found is that if the number of bits in error after

LT decoding is high, turbo decoder can not correct those errors. But, if the number of bits

in error after LT decoding is low, turbo decoder is capable of correcting few or all of those

errors thus reducing the BER. We have used the scattering graph to present our results.

In all the graphs presented here, the x-axis represents the number of data blocks included

in the graph while y-axis represents the BER for both LT and turbo decoding. Only 100

BER values are presented in first three graphs and 1000 BER values are presented in the

last one. The “ • ” represent the BER for LT decoding while “ + ” represent the BER for

turbo decoding. We can see in all the graphs that on the top where the BER is very high,

“ • ” and “ + ” tends to coincide with each other or are very close to each other indicating

that the number of errors after LT decoding are not at all corrected by turbo decoding. As

we go down the graph, we can see that “ + ” starts falling below the “ • ” which indicates

that the errors left after LT decoding are being corrected by turbo decoding to some extent.

In Figure 5.3, we can see that there is no “ + ” sign below many “ • ” signs. It means
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that the errors left after LT decoding in those particular data blocks have been completely

corrected by turbo decoding. Observing the graph, we can see that up to 40 out of 1000

bits in errors left after LT decoding can be corrected by turbo decoding. We have seen

such pattern throughout all the SNR levels. Particularly, when LT decoding is unsuccessful

resulting into few bits in error (around < 4−5% of total bits), then turbo decoding corrects

almost all those errors most of the time. In Figure 5.4, we can see 48 “ • ” signs. This

means that 48 out of 100 data blocks have certain BER indicating that they have some

bits in errors after LT decoding. These data blocks with some bits in errors when further

processed by turbo decoding, only 4 of them contain some errors as indicated by “ + ” sign

while the errors in all other 44 data blocks are completely corrected. In Figure 5.5, we can

still see the similar performances where BER of LT and turbo decoding for 1000 different

data blocks are presented. So, we can see that some of the errors left after LT decoding can

be corrected by using turbo decoding thus providing the error controlling to the LT codes.

The performance is even better as the SNR increases.
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Figure 5.2. Comparison of BER between LT and turbo decoding at SNR of 2 dB.
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Figure 5.3. Comparison of BER between LT and turbo decoding at SNR of 3 dB.
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Figure 5.4. Comparison of BER between LT and turbo decoding at SNR of 4 dB.
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Figure 5.5. Comparison of BER between LT and turbo decoding at SNR of 4 dB. BER for
1000 different data blocks are shown.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we integrated LT codes and turbo codes for transmission of information

over BI-AWGN channel to achieve better overall performance of the system compared to the

performance of LT codes alone. To implement the idea, the source data are at first encoded

using RCPT codes followed by LT codes and at the receiving end, LT decoding is followed

by turbo decoding. Turbo codes, which are good error correcting codes are found to correct

some of the errors left after LT decoding. The simulation results are also presented here

but the detailed analysis is not done. This concept can be further researched and used to

provide better error control property for fountain codes. As the channel considered for the

work is AWGN, the performance of LT codes over the channel is also investigated. The

algorithm used in the decoding of LDPC codes are used for the decoding of LT codes over

AWGN channel. Tanner graphs were used to show the connections between source and

encoded packets, where the soft information were propagated along the edges iteratively

over a number of iterations. Simulation results show that its performance is not impressive

even through the complexity is quite high.

The other objective of the thesis was also met as we provided unequal error protection to

two disjoint sources which are communicating to a common destination via a common relay.

The RSD is decomposed into two entirely different degree distributions by deconvolution

and these distributions are used to encode the information of two sources. One of the degree
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distributions is found to provide better protection of the data than the other, which is clearly

observed in the simulation results presented.

6.2 Future Work

In the ending section, we present some possible future work based on the theories and

results provided in this thesis.

1. We have not achieved good results of LT codes over AWGN channel. There are some

possible ways for carrying out further research in this area. The robust soliton distri-

bution and the one we used in our case limit a very small fraction of degree-1 encoded

symbols. A suitable degree distribution can be expected.

2. Regarding LT decoding, there might be one or more stopping sets in the generator

matrix of the LT code or some particular structures which is forcing for decoding

process to fail. If we can find out this, the decoder can further correct more errors

and lower the bit error rates. This will also affect the performance when LT codes

combined with turbo codes are implemented.

3. The concept of LT codes combined with turbo codes can be implemented in the broad-

casting and multicasting scenario to investigate the performances. The work can fur-

ther be extended to provide unequal error protection to source data when transmitted

over noisy channel.

4. In this thesis, LT decoding is followed by turbo decoding. The soft information pro-

duced by LT decoder are fed into turbo decoder but the soft information obtained

after turbo decoding is not fed back to LT decoding. Therefore, the process of passing

the soft information from LT to turbo decoder and from turbo to LT decoder can be

performed over a number of iterations to evaluate the performance of the combined

codes (LT + turbo).
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5. Both LT and turbo codes have their own code rates. Given an overall code rate,

tradeoff of code rates between LT and turbo codes can be made and the performances

can be compared.

6. We know that the RCPT codes provide layered protection. Further research can be

carried out to study whether the layered protection can be provided when LT codes

are combined with RCPT codes.
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