
University of Mississippi University of Mississippi 

eGrove eGrove 

Electronic Theses and Dissertations Graduate School 

2017 

Lipid Based Frameworks And Topical Ocular Inserts For The Lipid Based Frameworks And Topical Ocular Inserts For The 

Delivery Of Small Molecule Therapeutics To The Posterior Delivery Of Small Molecule Therapeutics To The Posterior 

Segment Of The Eye Segment Of The Eye 

Sai Prachetan Balguri 
University of Mississippi 

Follow this and additional works at: https://egrove.olemiss.edu/etd 

 Part of the Pharmacy and Pharmaceutical Sciences Commons 

Recommended Citation Recommended Citation 
Balguri, Sai Prachetan, "Lipid Based Frameworks And Topical Ocular Inserts For The Delivery Of Small 
Molecule Therapeutics To The Posterior Segment Of The Eye" (2017). Electronic Theses and 
Dissertations. 729. 
https://egrove.olemiss.edu/etd/729 

This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been 
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more 
information, please contact egrove@olemiss.edu. 

https://egrove.olemiss.edu/
https://egrove.olemiss.edu/etd
https://egrove.olemiss.edu/gradschool
https://egrove.olemiss.edu/etd?utm_source=egrove.olemiss.edu%2Fetd%2F729&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/731?utm_source=egrove.olemiss.edu%2Fetd%2F729&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/etd/729?utm_source=egrove.olemiss.edu%2Fetd%2F729&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu


LIPID BASED FRAMEWORKS AND TOPICAL OCULAR INSERTS FOR THE 

DELIVERY OF SMALL MOLECULE THERAPEUTICS TO THE POSTERIOR SEGMENT 

OF THE EYE 

 

 

 

A Dissertation  

presented in partial fulfillment of requirements  

for the degree of Doctor of Philosophy  

in Pharmaceutical Sciences with an emphasis in Pharmaceutics and Drug Delivery 

The University of Mississippi 

 

 

 

 

 

By 

SAI PRACHETAN BALGURI 

August 2017 

 

 

 

 

 

 



                                                                                     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                  Copyright® Sai Prachetan Balguri 2017  

 

                                                            ALL RIGHTS RESERVED  



ii 
 

ABSTRACT 

Lipid based systems and topical ocular inserts of various drugs were developed for the 

intervention/treatment of posterior segment ocular complications. Indomethacin (IN) was 

developed into solid lipid nanoparticles (SLNs) and Nanostructured lipid carriers (NLCs). Effect 

of surface functionalization using chitosan (CS) on lipid nanocarriers was tested to evaluate 

corneal penetration. Surface modification of SLNs with CS increased ocular penetration of IN. 

NLCs maintained significantly higher IN concentrations in all ocular tissues tested, compared to 

the other formulations evaluated in vivo. 

Effect of surface poly (ethylene) glycol (PEG) functionalization of the NLCs on ocular 

disposition was studied using Ciprofloxacin (CIP) as a model drug. Transcorneal penetration of 

CIP from NLCs was optimum with PEG molecular weight in between 2K to 10K. In vivo ocular 

tissue CIP concentrations attained from the various formulations was consistent with the in vitro 

data obtained.  

Feasibility of melt-cast, topical, ocular inserts for delivery of drugs, with different 

physicochemical properties, to the posterior segment of the eye was studied. The model drugs 

tested include indomethacin (IN), ciprofloxacin hydrochloride (CIP) and prednisolone sodium 

phosphate (PSP). Transmembrane flux of IN, PSP and CIP were enhanced by ~3.5-folds, ~3.6-

folds and ~2.9-folds, respectively, from the polymeric inserts when compared to the control 

formulations, post 3 h. Moreover, ocular inserts generated significantly higher drug levels in all 

the ocular tissues, including the retina-choroid, when compared to their control formulations. 
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Cationic lipid nanoparticles of Natamycin (NT) were also evaluated. NT SLNs were 

compared with NT marketed formulation – 5% w/v ophthalmic suspension - in terms of 

transcorneal permeation and in vivo ocular tissue distribution. Compared to Natacyn® control, 

transcorneal permeability of NT was enhanced ~ 3-folds with the CLBN formulation. In vivo 

studies demonstrated that CLBN, at a 50-fold lower dose, was as effective as the control 

formulation in terms of NT delivery to the retinal tissues.  

Resveratrol (RES), a multi-faceted candidate was formulated into SLNs. Transcorneal flux 

of RES was increased ~ 1.5-folds with the SLN formulation, when compared to control 

formulation. The results from the all the above studies demonstrated that lipid based systems and 

melt-cast topical ocular inserts serve as viable platforms in the niche of ocular delivery.  
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CHAPTER 1 

INTRODUCTION  
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1.1. Introduction 

The eye is an extremely complex, secluded, and sensitive organ of the human body. Owing 

to its unique anatomical, physiological, metabolic, dynamic and efflux barrier functionalities, 

delivery of drugs / development of novel therapies targeting the posterior segment ocular tissues 

(retina & vitreous humor) remains a significant challenge. The human

  

Figure 1.1: Ocular anatomy showing different barriers 

ocular structure and the penetration pathways involved in topical delivery are shown in figure 1.1. 

The anterior and posterior segment of eye is demarcated by the transparent crystalline lens. Cornea, 

iris-ciliary (IC), lens, aqueous humor (AH), trabecular meshwork and Schlemm’s canal constitute 

anterior segment. The anterior segment occupies approximately one-third portion of the eye. The 

posterior segment consists of sclera, choroid, retina, vitreous humor and optic nerve (1). 

1.1.1. Ocular anatomy and physiology 

In humans, tear fluid often serves to clean and lubricate the eyes in response to irritation. 

Lacrimal gland located at the upper lateral region of each orbit secretes the tear fluid which 

continuously bathes the eye surface. Tear fluid forms tear film or pre-corneal film which consists 
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of three layers. The outermost lipid layer retards evaporation of water. The middle aqueous layer 

which contains mainly water and small amounts of proteins. The innermost layer consists of mucin 

and mainly water (95%). Mucins are typically large glycoproteins with molecular weight between 

0.5 to 20 MDa. Following ocular instillation, topical eye drops will be diluted with the tear fluid 

and get dispersed over the ocular surface with peak drug concentrations usually attained after 20 

to 30 minutes. Eye drops are eliminated from the precorneal area within 90 seconds and undergo 

systemic absorption. It is reported that precorneal half-life of topically applied drugs is between 1-

3 min (2-4).  

The cornea is major and primary structural component of the eye. The cornea is continuous 

with white sclera and semi-transparent conjunctival tissue. The cornea is divided into three major 

functional layers namely epithelium, stroma and endothelium. The corneal epithelium is lipophilic 

and consists of three to six layers of tightly adherent cells which contribute to about 90% of the 

barrier towards hydrophilic drugs.  The stroma is hydrophilic constituting 90% of the corneal 

thickness and acts as rate limiting barrier for lipophilic drugs. The endothelium is a one cell layer 

thick lipophilic membrane with large intracellular junctions which does not restrict hydrophilic 

drugs but may offer some resistance towards lipophilic drugs. The pore size of cornea is 

approximately 1 nm (permeable for drugs with molecular weight (MW) less than about 700 Da) 

while some studies indicate that some pores could be up to 5 nm in diameter. Pore density and 

intercellular pore size in the cornea are much smaller than in the conjunctiva (5-7). The space 

between the iris and the cornea is filled by fluid called aqueous humor, which maintains the 

intraocular pressure in the eye. The amount of aqueous humor in the human and rabbit eye varies 

between 200 and 300 µL. Reports indicated the entire fluid will be replaced in nearly 100 min (8). 
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Lipophilic drugs are cleared by aqueous humor at a turnover rate of approximately 3 μL per minute 

(9, 10).  

The sclera is composed primarily of collagen fibers with mean thickness of 0.53 mm and 

the mean total area of 16.3 cm2. The passive diffusion is primary route of drug penetration through 

sclera. The permeability of sclera is largely dependent on the hydrodynamic radius of the 

permeating drug molecule. Sclera is poorly vascularized and transport of large molecule may occur 

through perivascular spaces or as diffusion between scleral fibrils (11, 12).  

The conjunctival membrane is a vascularized tissue that covers ∼80% of the ocular surface 

and secretes mucus. Hydrophilic drugs traverse through tight junctions of epithelium by 

paracellular transport whereas lipophilic species penetrate through the transcellular route.  The 

conjunctiva–scleral route is alternative to major corneal absorption pathway for the topically 

applied drugs to reach intraocular tissues. Propranolol, with logP of 3.21, is absorbed through 

cornea and conjunctiva up to ten-fold greater than sotalol, a hydrophilic drug with a log P of −0.62. 

However, efflux pumps (P-gp) localized on the apical side of conjunctiva restrict permeation of 

lipophilic drugs. The conjunctiva is approximately 15 to 25 times more permeable than cornea 

(13-15).  

The blood ocular barriers comprise blood-aqueous barrier and the blood-retinal barrier 

protecting the eye from xenobiotics. The blood-aqueous barrier is formed by the non-pigmented 

epithelium of the ciliary body and the endothelium of the iris vessels. The blood-retinal barrier 

consists of the retinal pigment epithelium and the endothelial membrane of the retinal vessels. The 

two functional barriers restrict movement of drugs from oral or systemic administration into 

intraocular tissues. However, the tight junctions of ciliary epithelium in rabbit eye are not effective 

when compared to tight junctions of retina. Thus, blood-retinal barrier is superior to blood aqueous 



5 
 

barrier in terms of limiting molecular diffusion (16). Lipophilic compounds are eliminated by 

uveal blood flow at about 20 to 30 µL per minute (17-19). The choroid is a highly vascularized 

layer between retina and sclera. It is composed of layers of blood vessels that nourish the back of 

the eye of tissues. The choroidal vasculature serves as permeation barrier promoting clearance and 

thus decreasing the bioavailability of drugs in the posterior segment from the topically applied 

drugs.  The vitreous humor is a clear aqueous gel consisting of mainly collagen and hyaluronan.  

Long terms posterior complications require totally invasive intravitreal administration (20-22).  

1.1.2.  Posterior ocular segment complications 

 Diseases such as age-related macular degeneration (AMD), diabetic retinopathy (DR), 

Glaucoma, uveitis, choroidal neovascularization (CNV), retinitis pigmentosa and retinoblastoma 

account for most cases of irreversible blindness worldwide. However, statistical evidence suggests 

that DR and AMD are the leading causes for irreversible blindness in the United States. DR is the 

main cause of blindness in adults aged between 20 and 65 years, with incidence rates of 29% and 

56% for proliferative and non-proliferative DR, respectively. Macular edema (ME) occurs in 

approximately 10% of the diabetic population. AMD is the major cause of irreversible blindness 

in adults older than 65 years. The prevalence of all forms of AMD in the 65 to 74 year age group 

is 20%, and it is closer to 35% in older people (23). 

Inflammation and oxidative stress are the underlying principal factors involved in the 

etiology of most posterior segment ocular disorders.  The relationship between hyperglycemia and 

oxidative stress, which leads to the initiation and progression of several sight threatening ocular 

diseases such as DR, AMD and cataract formation, is well established. The retina is highly 

susceptible to oxidative damage due to the peroxidation of fatty acids present in its lipid bilayer. 

Also, reports demonstrate that the total antioxidant capacity of the vitreous humor and aqueous 
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humor is lowered in DR, accompanying generation of increased reactive oxygen species. 

Numerous studies substantiate the prominent and critical role of inflammatory and angiogenic 

pathways in the pathogenesis of DR. Thus, oxidative, inflammatory and angiogenic mechanisms 

are involved in DR (24, 25). The multifactorial etiology of DR could be manifested in other 

posterior diseases, hence there is increasing need for the development of multi-faceted candidates 

and robust formulation platforms for the effective treatment of chorio-retinal complications. 

DR can be broadly categorized into three stages; background DR, pre-proliferative DR and 

proliferative DR (PDR). In background DR, hyperglycemia is considered to induce death in 

endothelial cells of retinal blood vessels. Micro aneurysms and vascular leakage follow, and 

blockage of retinal capillaries take place. In pre-proliferative DR, increasing retinal hypoxia and 

multiple hemorrhages occurs in some areas. The angiogenic factors will be produced leading to 

the proliferation of vessels, which is a typical feature of PDR. The newly formed blood vessels by 

themselves do not lead to vision loss, but leakage of blood through their weak walls can result in 

visual impairment and can ultimately lead to complete loss of sight (26-28).  

Age-related macular degeneration (AMD) can be categorized into dry and wet AMD. 

Progression of AMD is linked to the activation of inflammatory and immunological pathways. 

Presence of excess ROS and decreased antioxidant capacity in the ocular tissues is also considered 

to play a significant role in the initiation and progression of AMD. Oxidative stress induced 

damage to the lens fibers is well documented in the case of cataracts. It is thought that these free 

radicals accelerate and aggravate cataract development (29-32).  
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1.1.3. Challenges encountered in topical drug delivery 

 

Topical delivery of drugs to the posterior segment ocular tissues is an extremely 

challenging task. Topical administration is the most favored route of administration, like other 

localized modes, due to minimum non-specific systemic exposure, safety and patient compliance. 

Conventional formulations such as eye drops, most favorably adopt the corneal route for delivery 

of drugs. However, only 5-10% of the applied drug dose will be able to penetrate the inner ocular 

tissues, following topical instillation, due to the pre-corneal factors. Moreover, efflux protein 

pumps namely P-gp, multi-drug resistance protein (MRP) and breast cancer resistance protein 

(BCRP) expression on the various ocular tissues play a critical role in lowering ocular 

bioavailability of drug molecules. Drugs administered through alternative oral and 
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systemic routes need to overcome the blood ocular barriers and may require higher doses, resulting 

systemic toxicity (33).  

1.2. Specific Objectives: 

       The goal of the present project is to develop topical lipid nanoparticulate and ocular 

insert formulations with wide classes of drugs with anti-bacterial, anti-inflammatory, anti-fungal 

properties. Model drugs tested include Indomethacin (IN), Ciprofloxacin (CIP), Prednisolone 

sodium phosphate (PSP) and Natamycin. These drugs can be used especially in the treatment of 

ocular inflammation/infections either alone or as a multi-drug combination therapy. The model 

drugs chosen were formulated and evaluated in vitro / in vivo to demonstrate the feasibility of lipid 

based systems and topical melt cast inserts for the back-of-the eye drug delivery.  

1.3. Specific Aims 

1. To evaluate the ocular penetration and distribution characteristics of IN loaded solid lipid 

nanoparticles (IN-SLNs), IN loaded nanostructured lipid carriers (IN-NLCs) and IN loaded 

chitosan coated SLNs (IN-CS-SLNs).  

2. To demonstrate the effect of PEGylation in improving the penetration and sterilization-

stabilization properties of CIP loaded NLCs.  

3. To investigate the feasibility of melt cast ocular inserts to deliver drugs with wide range of 

physico-chemical properties into the back-of-the eye. 

4. To assess the ocular permeability and disposition of Natamycin from lipid nanoparticles in 

comparison to marketed ophthalmic suspension. 

5. To investigate the corneal penetration of Resveratrol from solid lipid nanoparticle 

formulations.
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2. Introduction 

Indomethacin (IN), 2-{1-[(4-chlorophenyl) carbonyl] -5-methoxy-2-methyl-1H-indol-3-

yl} acetic acid, a topical non-steroidal anti-inflammatory drug (NSAID) is used in the treatment 

of the ocular inflammatory disorders such as conjunctivitis, uveitis, cystoid macular edema, and 

anterior segment inflammation, including post-operative pain following cataract surgery (34-36). 

The compound elicits its anti-inflammatory action through the inhibition of COX-2 enzymes, 

which are essential for prostaglandin biosynthesis, and thus possesses analgesic and anti-pyretic 

properties (37). The potential effects of prostaglandins include elevation of intraocular pressure, 

vasodilatation, disruption of blood ocular barriers, and leukocyte migration; hence, potent 

inhibition of COX-2 enzymes may provide therapeutic effects (38). NSAIDs are employed in the 

treatment of diabetic retinopathy and age-related macular degeneration (39). Formulating IN as a 

topical ophthalmic solution is challenging due to its poor solubility and stability (40). Indosol, 

which is an aqueous solution of IN complexed in TRIS-sodium salt (tromethamine), has been 

widely used in ophthalmic research to treat inflammation of the anterior segment and the uvea 

(41). Currently, topical ophthalmic formulations of IN are not marketed in the United States. 

Indocollyre® (hydro-poly(ethylene glycol) (PEG) ophthalmic) 0.1% w/v eye drops, which are 

commercially available in Europe, are associated with poor ocular bioavailability (42).    

Approaches for improving the pre-corneal residence time and transcorneal permeability 

characteristics could enhance intraocular bioavailability (1, 43). In recent years, colloidal 

nanoparticulate systems have gained popularity as a promising ocular drug delivery platform (44). 

Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) are colloidal 

nanoparticulate systems designed and developed to deliver lipophilic drugs. These particulates are 

composed of biocompatible and biodegradable materials and are in the nanometer size range. All 
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excipients used in these formulations are generally regarded as safe, and process scale-up is 

feasible. Several studies have demonstrated superior ocular bioavailability of therapeutic agents 

from these colloidal nanoparticulate systems, possibly because of improved retention and 

phagocytosis by epithelial cells. Furthermore, adsorption of polymers, such as chitosan, on the 

surface of SLNs may further improve the retention of the nanoparticles on the epithelial surface 

and increase cellular uptake of the nanoparticles (45, 46). Chitosan possesses favorable biological 

characteristics, such as biodegradability, biocompatibility and mucoadhesive properties (47, 48). 

The ability of chitosan and its derivatives in ophthalmic solutions to modulate characteristics of 

the epithelial barrier through the transient opening of the tight junctions, which results in enhanced 

transmembrane absorption, has been widely reported in the literature (49-51). In this study, 

chitosan was used to modify the surface characteristics of SLNs (chitosan adsorbed onto the SLN 

surface), and the ocular penetration of IN from the chitosan-coated SLNs was evaluated. 

NLCs, however, appear to be a viable alternative to SLNs in terms of drug loading 

efficiency and are prepared by incorporating liquid lipids within the solid lipid structure. 

Depending on the ratio and concentration of the solid and liquid lipids, NLCs with different 

structural matrices can be obtained (52, 53).  

The objective of the current study was to develop and characterize various formulations, 

such as SLNs, CS-SLNs and NLCs, and to evaluate the ocular delivery and disposition of IN from 

these topically administered formulations. 

2.1. Methods  

2.1.1. Saturation solubility studies 

Saturation solubility, as a function of pH, was studied by adding excess amount of IN to 

screw-capped glass vials containing 200 mM phosphate buffer at different pH values, namely 5.5, 
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6.0, 6.5, 7.0, and 7.4, and phosphate buffer with various solubilizers, such as HPβCD, RMβCD, 

poloxamer 188, and Tween® 80. To achieve uniform mixing, samples were stirred at 100 rpm for 

24 hrs at 25°C in a reciprocating water bath (Fisher Scientific). After 24 hrs, the samples were 

centrifuged (AccuSpin 17R), and the supernatant was analyzed for drug content.  

2.1.2. Chromatography system for in vitro sample analysis  

 Samples were analyzed for IN content using an high performance liquid chromatography 

(HPLC) -UV method. A Phenomenex Luna® C18 4.6 mm x 250 mm column was used for the 

analysis. The mobile phase used was methanol, water, and orthophosphoric acid (70:29.05:0.05). 

The detection wavelength λmax for IN was 270 nm. The flow rate was set to 1 mL/min during the 

analysis. 

2.1.3. Formulations 

IN-TSOL, IN-SOL and IN-CS-SOL formulations 

 IN-TSOL was prepared by dissolving 0.1% w/v IN in 1% w/v Tween® 80 solution, which 

was used to investigate the release characteristics compared to the test formulations and to evaluate 

barrier resistance. Additionally, IN-SOL was prepared by dissolving IN (0.1% w/v final 

concentration) in an aqueous solution containing Tween®80 (1% w/v) and propylene glycol 

(29.3% w/v). Sodium hydroxide (1N) was added in small increments to adjust the pH. IN-CS-SOL 

was prepared by adding chitosan chloride (CS; 0.1% w/v final concentration) to IN-SOL. The pH 

of the final formulations was maintained at 6.8 because Indocollyre®, a formulation marketed in 

Europe, is at this pH. 

IN-HPβCD and IN-CS- HPβCD solution formulations  

IN-HPβCD formulation was prepared by dissolving IN (0.1% w/v) in 2.5% w/v HPβCD 

solution prepared in isotonic phosphate-buffered saline (IPBS; pH 6.8). IN-CS-HPβCD was 
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prepared by the addition of 0.1% w/v CS to the IN-HPβCD formulation. The final pH of the 

formulations was adjusted to 6.8. 

Indomethacin solid lipid nanoparticles (IN-SLN) and IN-SLN-HPβCD formulations 

The solubility of IN in a wide variety of lipids was visually evaluated to select suitable 

lipid excipients for formulating the SLNs/NLCs. Solid lipid, namely Compritol® 888 ATO, was 

melted, and IN (5% w/w with respect to the lipid) was dissolved therein to obtain a clear lipid 

phase. Simultaneously, an aqueous phase prepared using the surfactants poloxamer 188 (0.25% 

w/v) and Tween® 80 (0.75% w/v) and glycerin (2.25% w/v) in bidistilled water, was heated. The 

hot aqueous phase was added to the melted lipid phase while stirring, and the premix was then 

subjected to emulsification at 16,000 rpm for 6 min using a T 25 digital Ultra-Turrax. The pre-

emulsion obtained was homogenized under high pressure, using previously optimized process 

parameters (15-20 K psi; 6 cycles; 6 min), using a thermostated Emulsiflex C5 (Avestin) resulting 

in the formation of a hot emulsion dispersion (42). The hot emulsion obtained was slowly cooled 

to room temperature to form the IN-SLNs. The final concentrations of Compritol® 888 ATO and 

IN in the formulation were kept constant at 2% w/v and 0.1% w/v, respectively. 

Additionally, a variation of the IN-SLN formulation was prepared wherein 2.5% w/v 

HPβCD (final concentration) was added to the aqueous phase described above prior to the 

preparation of the SLNs. The pH of the resulting formulations was adjusted to 6.8 using NaOH 

(1N). 

Indomethacin nanostructured lipid carriers (IN-NLCs) 

The NLCs contained both solid (Compritol 888® ATO) and liquid lipids (Miglyol® 812 or 

829), unlike the SLNs, which contained only solid lipids. The total amount of lipid employed in 

the NLCs was 4 and 8% w/v, of which Compritol 888® ATO constituted 60% and Miglyol® 812 
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or 829 made up the remaining 40% of the lipids. The concentration of surfactants (Tween 80® and 

poloxamer 188) and propylene glycol in the NLC formulations were maintained identical to that 

in the SLNs. Drug loading in all NLC formulations was kept constant at 0.8% w/v.  

Chitosan-coated IN solid lipid nanoparticles (IN-CS-SLNs) 

CS (mol. wt. < 200 kDa) was used for surface modification of the SLNs. CS (0.1% w/v) 

was incorporated into the aqueous phase prior to preparation of the SLNs, as described above (in 

vitro studies). CS at a concentration of 0.25% w/v was used in the SLNs for the in vivo 

experiments. Surface modification of the CS-coated formulations was confirmed through zeta 

potential measurements. 

2.1.4. Particle size, polydispersity index (PDI) and zeta potential measurements 

The hydrodynamic radius and the PDI of the SLN dispersion, the IN-CS-SLNs and the IN-

NLCs were determined by photon correlation spectroscopy using a Zetasizer Nano ZS Zen3600 

(Malvern Instruments, Inc.) at 25°C and with 173° backscatter detection in disposable folded 

capillary clear cells. Zeta potentials were measured at 25°C in folded capillary cells using the same 

instrument. To measure the particle size distribution and zeta potential, the SLN samples were 

diluted (1:500) with bidistilled and 0.2 µ filtered water.  

2.1.5.  Assay and entrapment efficiency (EE)  

The lipid in the IN-SLN dispersion, the IN-CS-SLNs and the IN-NLCs was precipitated 

using 190-proof alcohol (“over proof’’), or 95% alcohol by volume (“ABV”), and the drug content 

in the supernatant after centrifugation (13,000 rpm for 20 min), as such or after further dilution 

with 190-proof alcohol, was measured using an HPLC system. 

The percentages of IN entrapped (% EE) in the IN-SLNs and IN-NLCs were determined 

by measuring the concentration of free drug in the aqueous phase of an undiluted formulation. The 
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EE was evaluated by an ultrafiltration technique with a 100-kDa centrifugal filter device that 

included a regenerated cellulose membrane (Amicon Ultra). A 500- μL aliquot of the 

corresponding formulation was added to the sample reservoir and centrifuged at 5,000 rpm for 10

min. The filtrate was then further diluted with 190-proof alcohol and analyzed for drug content 

using HPLC-UV (Section 2.1). The % EE was calculated using Eq. (1). 

                                 % EE = [
Wi−Wf

Wi
] ×100                          (1) 

Where Wi is the total drug content, and Wf is the amount of free drug in the aqueous phase. 

2.1.6. Terminal moist-heat sterilization and stability assessment of IN formulations 

 Two batches each of the optimized IN lipid-based formulations, namely the IN-SLNs, the 

IN-CS-SLNs and the IN-NLCs, were prepared and subjected to moist-heat sterilization (121°C for 

15 min at 15 psi) in appropriately labelled glass vials using a thermo-controlled autoclave 

(AMSCO® Scientific Model SI-120). Following autoclaving, the sterilized samples were evaluated 

in terms of their physical appearance, color, particle size and physicochemical characteristics 

compared to un-sterilized reference formulations that were maintained at room temperature.  

Additionally, three batches of IN-SLNs, IN-CS-SLNs and IN-NLCs were evaluated for 

their physical and chemical stability upon storage for a period of 3 months at 40°C/60% RH, 

25°C/75% RH and 4°C. The particle size, PDI, zeta potential, EE and drug content were evaluated, 

as described in Sections 2.1.4 and 2.1.5.  

2.1.7.  Fourier transform infrared spectroscopy (FTIR) 

The infrared spectra (IR) of the SLN and NLC formulations were obtained using Cary 660 

series FTIR (Agilent Technologies) and MIRacle ATR (attenuated total reflectance) systems. The 

ratios of drug and lipids used in this set of studies were similar to the weight ratios in the IN lipid 

formulations. 
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2.1.8.  In vitro release studies 

 In vitro release profiles of IN from the respective formulations, such as the IN-Tween® 80 

solution (IN-TSOL), the IN-SLNs and the IN-NLCs (F-1 and F-2), were evaluated using Valia-

Chien cells (PermeGear, Inc.). Spectra/por® dialysis membranes (3.5K MWCO) were mounted on 

diffusion cell chambers and securely fastened with air tight clamps between the donor and receptor 

chambers through which the transport or release kinetics were being studied. The temperature of 

the cells was maintained at 34°C using a circulating water bath. Five milliliters of isotonic 

phosphate buffer (IPBS) (pH 7.4) containing 2.5% w/v RMβCD was used as the receptor media 

during the course of the study (6 hrs). Five hundred microliters of formulation was added to the 

donor chamber. The, 600-µL aliquots were withdrawn from the receiver chamber at predetermined 

time points and replaced with an equal volume of the 2.5% w/v RMβCD in IPBS (pH 7.4) solution. 

The donor concentration was maintained at 0.1% w/v in all the formulations. The samples taken 

were analyzed using a HPLC-UV system, as described in Section 2.1.2.  

2.1.9.  In vitro corneal permeation studies  

Corneas excised from whole eyes, obtained from Pel-Freez Biologicals, were used for the 

determination of in vitro transcorneal permeability. The whole eyes were shipped overnight in 

Hanks’ balanced salt solution over wet ice and were used immediately upon receipt. The corneas 

were excised with some scleral portion adhering to help secure the membrane between the 

diffusion half-cells during the course of the transport study. After excision, the corneas were 

washed with the IPBS (pH 7.4) and mounted on side-by-side diffusion half-cells (Perme Gear, 

Inc®) with the epithelial side facing the donor chamber. The temperature of the half-cells was 

maintained at 34°C via a circulating water bath. The IN contents in the IN-SLN, IN-CS-SLN and 

IN-NLC formulations were 0.1% w/v, 0.1% w/v and 0.8% w/v, respectively. Three milliliters of 
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the optimized IN-SLNs, IN-CS-SLNs or IN-NLCs was added to the donor chamber after adjusting 

the pH to 6.8. The donor IN concentration was maintained at 0.1% w/v in the SLN formulation 

and 0.8% w/v in the NLC formulation. The receiver chamber medium consisted of 3.2 mL RMβCD 

(2.5% w/v) in IPBS solution for all the transport studies. The contents of both chambers were 

stirred continuously with a magnetic stirrer. Aliquots (600 μL) were withdrawn from the receiver 

chamber at predetermined time points up to 3 hrs and replaced with an equal volume of 2.5% w/v 

RMβCD in IPBS. The samples were stored at −80°C until further analysis of IN using the 

chromatography system described in Section 2.1.2. Additionally, the transcorneal permeabilities 

of IN from the IN-SOL formulation (control) and IN-HPβCD in the presence of CS as a penetration 

enhancer were also determined. 

2.1.10. Trans-SCR permeability studies of IN formulations 

The scleral tissue with the retinal pigmental epithelium and choroid layers excised from 

whole eyes, obtained from Pel-Freez Biologicals, were used to determine the in vitro trans-SCR 

(sclera-choroidal RPE) permeability of IN from the formulations. After excision, the scleral 

membranes were washed with IPBS (pH 7.4) and mounted on Valia-Chien cells (Perme Gear, 

Inc®). The scleral tissues were mounted as an inverted cup onto diffusion cells between the donor 

and receptor chamber and fastened securely with air tight clamps such that the scleral membrane 

was exposed to the donor compartment (episcleral side) and the RPE-choroidal tissues were in 

contact with the receptor compartment (vitreous body side). Five milliliters of 2.5% w/v RMβCD 

solution prepared in IPBS (pH 7.4) was used as the media in the receiver chamber during the course 

of the study for 2.5 hrs. Five hundred microliters of IN-SOL, IN-HPβCD, IN-SLNs (pH 6.8 and 

7.4), and IN-SLNs+HPβCD were added to the donor chambers, and the concentration was 

maintained at 0.1% w/v. Aliquots (600 μL) were withdrawn from the receiver chamber at 
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predetermined time points (15, 30, 45, 60, 90, 120 and 150 min) and replaced with an equal volume 

of receiver medium. The samples taken were analyzed using the HPLC-UV system as discussed 

in Section 2.1.2.  

2.1.11.  In vivo bioavailability studies 

 In vivo bioavailability of IN was determined in Male New Zealand White albino Rabbits, 

weighing between 2-2.5 kg, procured from Harlan Labs. All the animal studies conformed to the 

tenets of the Association for Research in Vision and Ophthalmology statement on the use of 

animals in ophthalmic vision and research and the University of Mississippi Institutional Animal 

Care and Use Committee approved protocols. Rabbits were anesthetized using a combination of 

ketamine (35 mg/kg) and xylazine (3.5 mg/kg) injected intramuscularly and were maintained under 

anesthesia throughout the experiment. The IN formulations, namely the IN-SOL, IN-HPβCD, and 

IN-SLNs, were evaluated in vivo. All the above IN topical formulations (100 µL) were given as 

two doses (50 µL), 30 min apart, (T-30 min and 0 min) to reduce precorneal loss. Additionally, 

the IN-CS-SOL, IN-SLNs, IN-CS-SLNs (n=6) and IN-NLCs were administered to conscious 

rabbits to delineate the effects of anesthesia on the ocular bioavailability of IN. CS was used at a 

concentration of 0.25% w/v (in vivo). Two hours post-topical application, the rabbits were 

euthanized with an overdose of pentobarbital injected through a marginal ear vein. The eyes were 

washed thoroughly with ice-cold IPBS and were immediately enucleated. All the intraocular 

tissues were separated and stored at -80°C, and further analysis was carried out using the HPLC-

UV system (Section 2.1.2.). All experiments were performed in triplicate. 

2.1.12. Biosample preparation for the determination of IN content in ocular tissue 

homogenates 
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The in vitro analytical HPLC-UV method described above was employed for sample 

analysis following method validation. A protein precipitation technique was employed to 

determine the amount of IN in the ocular tissue homogenates. Briefly, tissues including the cornea, 

sclera, iris-ciliary (IC), and retina-choroid (RC) were cut into small pieces, and a mixture of ice-

cold acetonitrile and 0.1% v/v formic acid was added (1 mL) to precipitate proteins from each 

individual tissue. The supernatant was then collected via centrifugation for 1 hr at 13000 rpm prior 

to the analysis. The aqueous humor (AH) (200 µL) and vitreous humor (VH) (500 µL) were 

precipitated by adding an ice-cold mixture of acetonitrile and formic acid, 200 µL of each for the 

AH and 500 µL of each for the VH corresponding to a ratio of 1:1. Quantification of IN was 

performed using standard calibration curves constructed from various ocular tissues, such as the 

cornea (20-500 ng), the sclera (20-500 ng), the AH (10-200 ng), the VH (10-200 ng), the IC (10-

200 ng), and the RPE (10-200 ng). All the standard curves had a coefficient of determination r2 ≥ 

0.96. The recovery of IN was evaluated by spiking the drug in pure AH and VH and comparing 

the expected IN concentration with the standard concentration. Recovery values were determined 

for AH (93.1) and VH (91.5). Interference was not observed from co-eluted protein residues with 

respect to IN peaks in any of the tissues. The limit of detection (LOD) for various ocular tissues 

was determined and corresponded to 10 ng for AH, 10 ng or VH, 5 ng for the cornea, 5 ng for the 

sclera, 10 ng for the RPE, and 10 ng for the IC. 

2.3. Data analysis 

The steady-state flux (SSF) for transcorneal and trans-SCR experiments was calculated by 

dividing the rate of transport by the surface area. The slope of the cumulative amount of IN 

transported versus time plot was used to obtain the rate of IN transport across the excised rabbit 

cornea. The flux was calculated using the Eq. (2). 
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                                                Flux(J) = (dM/dt)/A                                          (2) 

where M is the cumulative amount of drug transported, and A is the surface area of the 

corneal membrane (0.636 cm2) exposed to the permeant (drug). 

The transcorneal permeability was determined by normalizing the SSF to the donor 

concentration, Cd, according to Eq. (3). 

                                        Permeability(Papp) = Flux/Cd                                    (3) 

2.3.1. Statistical analysis 

One-way-ANOVA coupled with a post hoc test was employed to analyze the differences 

between groups (in vivo). The difference in data obtained were considered statistically significant 

at level of p<0.05. 

2.4. Results 

2.4.1. Morphometrical and physico-chemical characteristics 

The particle size, zeta potential, PDI and EE of IN-SLN, the IN-CS-SLNs and the IN-NLCs 

were observed to be 226 ± 5, 265 ± 8, and 227 ± 11 nm; -22 ± 0.8, 27 ± 1.2, and -12.2 ± 2.3 mV; 

0.17, 0.30, and 0.23; and 81 ± 0.9, 91.5 ± 3.2 and 99.8 ± 0.2%, respectively. The quantitative 

compositions of the various IN formulations are presented in Table 2.1. The particle size of the 

IN-NLCs increased as the total lipid content increased, and IN-NLC-F1 appears to be a promising 

formulation, exhibiting a lower hydrodynamic radius and better physico-chemical characteristics 

compared to the other formulations (Table 2.2).  

Table 2.1: Composition of IN formulations with individual components represented by weight 

(mg).  

 

Formulation 

composition 

IN formulations 

IN-

TSOL 
IN-SOL 

IN-CS-

SOL 

IN-

HPBCD 

IN-SLN-

HPβCD 
IN-SLN 

IN-CS-

SLN 

F-1 

IN-

NLC  

IN (mg) 10 10 10 10 10 10 10 80 
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Compritol 

(mg) 
- - - - 200 200 200 260 

Miglyol® 

812 
- - - - - - - 140 

Poloxamer 

188 (mg) 
- - - - 25 25 25 25 

Tween® 80 

(mg) 
100 100 100 - 75 75 75 75 

Glycerin 

(mg) 
- - - - 225 225 225 225 

Propylene 

glycol (mg) 
- 2930 2930 - - - - - 

CS (mg) - - 10 - - - 25 - 

HPβCD (mg) - - - 250 250 - - - 

Water (mL) 10 10 10 10 10 10 10 10 

 

Table 2.2: Composition of lipid mixtures used in the NLC formulations. The particle size 

characteristics, PDI, zeta potential, entrapment efficiency and assay values for each formulation 

are presented below. 

 

IN-NLC formulations F-1 F-2 F-3 F-4 F-5 F-6 

IN (0.8% w/v) 80 80 80 80 80 80 

Compritol (60%) 240 240 240 240 240 240 

Miglyol 812 (40%) 160 - 320 640 - - 

Miglyol 829 (40%) - 160 - - 320 640 

Total lipid (%; mg) 4%;  400 4%;  400 8%;  800 16%;  1600 8%;  800 
16%;  

1600 

particle size (nm) 227 279.1 304.1 519.2 385.1 629.1 

Polydispersity index (PDI) 0.235 0.259 0.433 0.58 0.456 0.381 

Zeta potential (mV) -12.2 -5.57 -0.92 0.027 -2.58 -0.304 

Entrapment efficiency (%) 

EE 
99.8 99.74 100 100 100 99.9 

Assay (%) 96.8 97.8 97.4 91.3 96.2 92.5 

 

2.4.2. Solubility of IN in the presence of cyclodextrins and surfactants 

Cyclodextrins and surfactants are frequently employed as solubilizers in topical ophthalmic 

formulations. The solubilities of IN in 0.25 and 0.5% w/v poloxamer 188 at pH 7.4 were measured 

as 251.8 ± 78 and 657 ± 127 µg. The solubility of IN in 0.5% w/v Tween® 80 at pH 7.4 was 

determined to be 1055 ± 106 µg. The solubility profiles of IN in 5% w/v HPβCD and RMβCD 

were found to be similar. However, the solubility of IN is highly pH-dependent and tends to be 

predominantly solubilized at high pH (Figure 2.1).  
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Figure 2.1: pH-dependent saturation solubility of IN in phosphate buffer, 5% w/v HPβCD in 

phosphate buffer, and 5% w/v RMβCD in phosphate buffer (µg/mL). The results are depicted as 

the mean ± SD (n=3). 

 

2.4.3. Stability, moist-heat sterilization and FTIR studies 

IN-CS-SLNs and IN-NLCs exhibited good stability when compared to the IN-SLN 

formulation. The particle size of the IN-SLN formulation after storage for 90 days at 40°C was 

increased by 65%, whereas the IN-CS-SLNs and IN-NLCs displayed a 15-20% increase in particle 

size (Figure 2.2). Additionally, the EE of the SLN formulations decreased by 12% compared to 

the IN-CS-SLNs (6%) and IN-NLCs (5%) (Figure 2.3a). The zeta potential and PDI of the IN 

formulations were not changed significantly under the storage conditions tested here (Figure 2.3b 

and 2.3c). Figure 2.4 shows the effect of sterilization on the physicochemical characteristics of 

the IN lipid-based formulations. No significant differences were observed post-sterilization. The 

particle size of the IN-CS-SLNs and IN-NLC formulations slightly increased compared to the IN-

SLNs following autoclaving. Additionally, the FTIR spectra revealed a slight drug-excipient 

interaction in the lipid formulations (Figure 2.5). 
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Figure 2.2: Particle size characteristics of various IN formulations following storage at 4°C,     

25°C/60% RH, and 40°C/75% RH. The data represent the mean ± S.D (n=3). 

 

 

Figure 2.3a: Entrapment efficiency (% EE) of various IN formulations following storage at 4°C, 

25°C/60% RH, and 40°C/75% RH. The data represent the mean ± S.D (n=3). 
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Figure 2.3b: Zeta potential of various IN formulations following storage at 4°C, 25°C/60%  

RH, and 40°C/75% RH. The data represent the mean ± S.D (n=3). 

 

 

Figure 2.3c: Polydispersity indices (PDI) of various IN formulations following storage at  

4°C, 25°C/60% RH, and 40°C/75% RH. The data represent the mean ± S.D (n=3). 
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Figure 2.4: Physico-chemical characteristics of the IN SLN and NLC formulations pre  

(Fig 2.4A) and post-sterilization (2.4B). The data represent the mean ± S.D (n=3). 

 

 
Figure 2.5: FTIR spectral images of the IN + Compritol physical mixture, Compritol, IN, 

IN-SLN, IN-CS-SLN and IN-NLC F-1 formulations. 

 

2.4.4. In vitro release studies 
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Based on the solubility profile of IN in different solubilizing agents, RMβCD in IPBS at 

pH 7.4 was chosen as the receptor media for the in vitro release and transcorneal permeability 

experiments. The in vitro releases of IN from the IN-TSOL, the IN-SLNs, the F-1IN-NLCs, and 

the F-2 IN-NLCs were observed to be 81.6 ± 2.1 µg, 18.7 ± 0.9 µg, 31.8 ± 3.9 µg, and 23.3 ± 3.1 

µg within the time period tested (6 hrs). The in vitro release of IN from these formulations is 

depicted in Figure 2.6.  

 

Figure 2.6: In vitro release of IN from various formulations across Spectra/Por® membranes at 

34°C. Receiver solution consisted of IPBS containing 2.5% w/v RMβCD (pH 7.4). The results are 

depicted as the mean ± S.D (n=3). 

 

2.4.5. Transcorneal permeability studies 

The transmembrane permeabilities of IN from the IN-SLNs, the F-1IN-NLCs, and the F-2 

IN-NLCs were observed to be 1.93 ± 0.17 x 10-5, 1.34 ± 0.13 x 10-5, and 1.2 ± 0.1 x 10-5 cm/s, 

respectively. The transcorneal flux of IN was increased by two-fold when CS was used as a 

permeation enhancer in the SLN formulation. Moreover, the effect of including CS as a penetration 

enhancer in the solution formulations, namely in IN-SOL and IN-HPβCD, was also investigated. 

CS significantly enhanced the transcorneal flux of IN by ~3.5 and ~2-fold for the IN-SOL and IN-

HPβCD formulations, respectively (Figure 2.7).  
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Figure 2.7: Transcorneal flux across isolated rabbit cornea from various IN topical formulations  

at 34ºC. The receiver solution consisted of IPBS containing 2.5% w/v RMβCD (pH 7.4). The  

results are depicted as the mean ± S.D (n=4). 

 

2.4.6. Trans-sclera-choroid-RPE (SCR) permeability studies 

Trans-SCR permeability experiments were carried out to assess the scleral penetration 

capability of IN from the formulations compared to the corneal absorption route. The trans-SCR 

permeability of IN-HPβCD was markedly higher compared to IN-SOL. The trans-SCR 

permeabilities of the SLN increased in the order of IN-SLNs (pH 6.8) < IN-SLNs (pH 7.4) < IN-

SLNs + HPβCD (pH 6.8). The SLNs in combination with HPβCD demonstrated a higher trans-

SCR permeability than the SLN formulation alone (Figure 2.8).  

  

Figure 2.8: Trans-SCR permeability of IN from various topical ocular formulations at 34ºC.  
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The receiver solution consisted of IPBS containing 2.5% w/v RMβCD (pH 7.4). The results 

 are depicted as the mean ± S.D (n=3). 

 

2.4.7. In vivo bioavailability studies 

Based on the transcorneal and trans-SCR data obtained, the IN formulations were 

investigated for their ocular bioavailability and disposition of IN 2 hrs post-topical administration 

in anesthetized and conscious rabbits. The IN-SOL formulation could not deliver the drug to the 

posterior ocular tissues. However, the IN-SOL formulation was able to achieve drug levels in the 

anterior segments of the eye, including 463.5 ± 15 ng/g in the cornea and 224 ± 8.6 ng/g in the 

scleral tissues. CS as a penetration enhancer further improved the ocular bioavailability of IN-

SOL. Significant drug levels were attained from the IN-HPβCD formulation in most of the ocular 

tissues tested, namely in the cornea (3267.3 ± 1867.6 ng/g), the sclera (575.7 ± 433.5 ng/g), the 

AH (877.4 ± 492.5 ng/g), the RC (94.4 ± 79.9 ng/g) and the IC (1203.9 ± 547 ng/g). Significantly 

higher levels of IN were observed in the posterior segments of the eye for the use of the SLN 

formulation compared to the IN-SOL and IN-HPβCD formulations. The formulation of SLNs in 

combination with 0.25% w/v CS achieved higher levels of IN in conscious rabbits (n=6). The NLC 

formulations, however, were the most effective in terms of drug loading and ocular IN levels. The 

ocular tissue IN concentrations obtained from the above formulations are shown in Figures 2.9 

and 2.10.  
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Figure 2.9: IN ocular tissue concentrations (ng/g of tissue) obtained from the IN-SOL, IN-

HPβCD, and IN-SLN formulations 2 hrs post-topical administration in the anesthetized rabbit 

model. The data represent the mean ± S.D. (n=3). AH: Aqueous humor; VH: Vitreous humor; 

IC: Iris-Ciliary; RC: Retina-Choroid. (N.D., not detected). Different symbols, such as µ and β, 

indicate significant differences (p<0.05) of the IN-HPβCD and IN-SLN formulations compared 

to IN-SOL. ¥ represents a significant difference in the ocular tissue concentrations of IN for use 

of the IN-SLNs compared to all other formulations. 

 

  

Figure 2.10: IN ocular tissue concentrations (ng/gm of tissue) obtained from the IN-CS-SOL, IN-

SLN, IN-CS-SLN (n=6) and IN-NLC formulations 2 hrs post-topical administration in the 

conscious rabbit model. The data represent the mean ± S.D. All the experiments were performed 

in triplicate if not indicated otherwise. Different symbols, such as ¶ and β, indicate significant 

differences (p<0.05) of the IN-SLN and IN-CS-SLN formulations compared to IN-CS-SOL. ¥ 

represents a significant difference in the ocular tissue concentrations of IN for use of the IN-

NLCs compared to all other formulations. 
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2.5. Discussion 

The objective of the current work was to develop IN-loaded lipid-based nanoparticles and 

to investigate the in vitro corneal permeation and in vivo ocular disposition of IN from these 

formulations. Most NSAIDs are inherently weak acidic drugs with poor corneal penetration due 

to their ionization at lacrimal pH. Lowering the pH of these formulations increases corneal 

penetration but also increases potential irritation. Additionally, it has been reported that due to the 

anionic nature of NSAIDs, they are incompatible with preservatives such as benzalkonium 

chloride and could form insoluble complexes (54-56). IN (pKa of 4.5) exhibits pH-dependent 

solubility, which increases as a function of higher pH (acidic to neutral/alkaline: 1.5 µg/mL at pH 

1.2 and 105.2 µg/mL at pH 7.4). IN displayed a solubility of 0.64 ± 0.02 mg/mL in phosphate 

buffer at pH 7.0, which is consistent with previously reported data (57, 58). Additionally, the 

solubility of IN was increased by ~5 and ~6-fold with 5% w/v HPβCD and RMβCD in phosphate 

buffer at pH 7.0. 

SLNs and NLCs are colloidal nanoparticulate dispersions that can be administered 

topically in the form of eye drops. A major advantage of the nanoparticulate systems is their uptake 

by epithelial cells, which allows for greater penetration into the surface layers (59-61). Moreover, 

the small size, biocompatibility and mucoadhesive properties of SLNs improve their interactions 

and prolong the pre-ocular residence time of drugs, thus enhancing drug bioavailability (62, 63). 

The literature suggests that surface modification of SLNs by coating with hydrophilic agents such 

as poly (ethylene) glycol derivatives (PEGs) or chitosan can further improve ocular penetration, 

mainly due to enhancing interactions with the ocular mucosa and increasing cellular uptake and 

internalization (64, 65). Additionally, previous reports have demonstrated the ability of chitosan 

nanoparticles to produce a sharp, reversible decrease in the transepithelial electrical resistance 
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(TEER) and to improve the permeability of model macromolecules (66). The mechanism of 

mucoadhesion is possibly through the electrostatic interaction between the positively charged 

amino groups of chitosan and the negatively charged sialic acid residues of ocular mucosa (67).  

The corneal route is a major absorption pathway for topically administered medications 

(68). Compared to other formulations, IN-SLNs demonstrated higher transcorneal permeability, 

which may be ascribed to endocytosis or transcytosis uptake mechanisms (69, 70). The in vitro 

transcorneal permeability of IN from the NLC formulations was comparatively lower than that of 

the SLNs, probably because of higher entrapment in the oily phase and thus lower partitioning into 

the membrane. Reports have suggested that chitosans with a moderate degree of deacetylation (65-

80%) and a relatively high molecular weight (170-200 kDa) is required for the exertion of optimal 

transepithelial penetration and low toxicity (71-73). The in vitro transcorneal flux of IN from the 

IN-SOL, IN-HPβCD, and IN-SLN formulations increased by ~3.5-fold, ~2-fold and ~2-fold, 

respectively, in the presence of CS, which is consistent with previous reports. 

Numerous reports have demonstrated that sclera is more permeable to hydrophilic than to 

lipophilic molecules and approximately 10 times more permeable than the cornea (74, 75). Based 

on trans-scleral transport studies, the higher permeability across several static layers of ocular 

tissues (sclera, Bruch’s membrane-choroid, RPE, and neural retina) demonstrates the diffusional 

ability of drugs to the back of the eye through the conjunctival-scleral pathway (76, 77). To 

investigate drug delivery to the posterior ocular segments, scleral diffusion of IN was assessed in 

trans-SCR experiments. The higher observed trans-scleral permeability of IN from the SLNs 

compared to the IN-SOL and IN-HPβCD formulations demonstrated that lipid carriers could 

enhance accumulation in scleral tissue, prolonging the ocular residence time in vivo. The increased 

permeability of IN from SLNs with HPβCD in external aqueous phase could be due to the 
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complexation effect of cyclodextrin with the free drug. The trans-scleral permeability of SLNs at 

pH 7.4 (2.99 ± 0.1 x 10-5 cm/s) was considerably higher than that of the SLNs at pH 6.8 (2.13 ± 

0.3 x 10-5 cm/s), which is likely due to an increase in the ionized fraction of IN at pH 7.4. 

Castelli et al. (78) fabricated SLNs and NLCs of IN and characterized the formulations 

with respect to drug distribution and entrapment efficiencies in the lipid matrices. However, the 

loaded drug in the SLNs and NLCs of IN was maintained at 2 and 1.5% w/w with respect to the 

total lipid, whereas in the present study, drug loading of IN in the SLNs and NLCs was achieved 

at 5 and 20% w/w, respectively. The IN lipid formulations demonstrated higher drug loading and 

entrapment efficiencies at lower lipid contents compared to Castelli’s formulations. Bucolo et al. 

(79) investigated the ocular pharmacokinetics of IN following a multiple dosing treatment regime 

(30 µL/eye; four times in 8 hrs) of 0.5% IN + hydroxypropylmethylcellulose, IN-HPMC and 

Indocollyre® eye drops in conscious rabbits. The drug levels in the AH, RC and VH obtained 2 hrs 

post-topical administration of IN-HPMC and Indocollyre® solution were 360 ± 40 and 100 ng/mL, 

65 and 20 ng/g, and 7± 2 and 5 ± 2 ng/mL, respectively. Campos et al. (67) studied the ocular 

distribution of chitosan-fluorescein nanoparticles (0.25% w/v, dose: 100 µL, 250 µg) and their 

interaction with the corneal and conjunctival epithelia in conscious rabbits. The drug levels in the 

cornea and conjunctiva 2 hrs post-topical application were 760 ± 60 and 1000 ± 150 ng/g, 

respectively. In another study, Klang et al. (80) formulated positively charged submicron 

emulsions (0.1% w/v) and compared the formulation with Indocollyre®. The drug concentrations 

obtained in the cornea and conjunctiva 1 hr after topical instillation of 50 µL of the test formulation 

were nearly 40 and 30% lower, respectively, compared to the marketed formulation. The drug 

concentrations obtained in the AH and sclera-retina were found to be 75 ± 38 ng/mL and 800 ± 

310 ng/g (submicron emulsion) vs 110 ± 50 ng/mL and 450 ± 200 ng/g (Indocollyre®), 
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respectively. Yamaguchi (81) et al. investigated ocular tissue IN concentrations upon use of 

chitosan-coated emulsion (0.1% w/v) formulations 1 hr post-topical instillation (50 µL) in both 

eyes of anesthetized male Japanese albino rabbits. The drug levels attained were predominantly in 

the cornea (3596±425 ng/g), aqueous humor (434±90 ng/mL) and conjunctiva (668 ± 188 ng/g). 

In another study, an IN (0.1% w/v) ophthalmic solution was prepared using Poloxamer® 407 (10% 

w/w) and compared with an Indocollyre® formulation in terms of AH concentration 2 hr after a 

multiple post-topical administration regime of 150 µL (6 x 25 µL at 90 sec intervals). The IN 

concentration in the AH was enhanced by ~2-fold compared to the use of Indocollyre®  (40).  

In comparison to all the ocular tissue levels obtained with the above-discussed 

formulations, the IN-CS-SLNs delivered significantly higher levels of IN to the anterior and 

posterior segment ocular tissues, which could be attributed to mucoadhesive and epithelial barrier-

modulating properties of chitosan. Compared to IN-SOL without CS, the incorporation of CS in 

the IN-SOL formulation improved penetration of IN into the AH and IC bodies, but retinal tissue 

IN levels remained below the detection limit. The addition of viscosity modifiers, such as 

hydroxypropyl methylcellulose, in the IN-CS-SOL formulation may further prolong the precorneal 

residence and thus increase ocular drug levels. IN concentrations were reduced by ~4- to 5-fold in 

conscious animals compared to the anesthetized model, delineating the effects of anesthesia on 

ocular pharmacokinetics. In comparison, at higher doses (0.8% w/v; 8-fold dose) the IN-NLCs 

delivered ~4- to 5-fold higher concentrations than the IN-CS-SLNs, which could be due to higher 

drug loading, EE and pre-ocular retention of IN for the use of the NLC formulation. NLCs are 

superior to SLNs in terms of higher drug loading, higher EE, improved storage stability and less 

drug expulsion during storage.  
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The effect of storage conditions and sterilization on the morphometrical and physico-

chemical characteristics of IN formulations are shown in Figures 2.2-2.4. There was initially no 

significant difference in particle size, zeta potential, or PDI between the SLNs and NLCs, but as 

the time progressed, the IN-NLC and IN-CS-SLN formulations were found to be more stable than 

the IN-SLNs. The EE of the formulations decreased slightly as the storage time increased, although 

the change was not statistically significant (Figure 2.3a). Sterilization trials suggested that the IN 

lipid-based formulations were autoclavable (Figure 2.4). A qualitative FTIR spectral analysis was 

employed to investigate any interactions and/or incompatibility among the lipid, drug and other 

excipients. The FTIR spectra of the physical mixture indicated slight molecular interactions 

between the drug and Compritol. The characteristic peaks of IN at 1,711 cm-1 (carbonyl stretching-

acid group), 1,221 cm−1 (asymmetric aromatic O–C stretching) and 1,086 cm−1 (symmetric 

aromatic O–H stretching) are masked in the formulations possibly due to the amorphous transition 

and entrapment of IN in the lipid matrices. In conclusion, the results obtained here indicate that 

lipid-based systems can dramatically improve the transcorneal permeability and retention 

characteristics of IN compared to conventional formulations in vivo. Thus, colloidal frameworks 

could be exploited to enhance ocular bioavailability significantly, including back-of-the-eye ocular 

tissues. 

2.6. Conclusion 

 Targeting NSAIDs to the posterior segment of the eye via a topical route is a challenging 

task due to formulation constraints and the anatomical, physiological and efflux barriers present 

in ocular tissues. IN-loaded NLC formulations displayed higher drug-loading capabilities and 

entrapment efficiencies, which resulted in higher IN levels in the ocular tissues. The IN-CS-SLNs 

demonstrated superior trans-membrane IN permeation characteristics compared to the IN SLNs, 

confirming the penetration-enhancing properties of chitosan. It is worth noting that the IN-CS-
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SLNs, containing a tenth of the loaded drug of the IN-NLCs, induced IN concentrations in the 

inner ocular tissues (the AH, IC and RPE-choroid) that were 3- to 4-fold lower than those obtained 

for IN-NLCs. The corneal and scleral IN concentrations achieved using the IN-NLCs were 

significantly higher, indicating the effect of the increased drug loading in the formulation. Thus, 

both the IN-CS-SLNs and IN-NLCs are viable platforms for the posterior ocular delivery. 
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CHAPTER 3 

OCULAR DISPOSITION OF CIPROFLOXACIN FROM TOPICAL, PEGYLATED  

NANOSTRUCTURED LIPID CARRIERS: EFFECT OF MOLECULAR WEIGHT 

AND DENSITY OF POLY (ETHYLENE) GLYCOL 

 

 

 

 

 

 

 

 

 

 

 

 

 



37 
 

3. Introduction 

Delivery of drugs, especially to the back-of-the eye tissues comprising sclera, choroid, 

retina, and vitreous body, is restricted by multiple physiological processes, anatomic, static, 

dynamic and efflux barrier functionalities (1, 82). Efflux protein pumps expressed on ocular tissues 

restrict transmembrane permeability of drugs, thus lowering penetration of substrates from the 

systemic, topical or periocular routes (83, 84). Topical application is the most favored route 

because of the ease of administration, lack of associated complications and minimal non-specific 

systemic exposure. Only 5-10% of the topically administered dose, however, reaches the inner 

ocular tissues (85, 86). Although advances have been made with respect to delivery into the 

anterior segment ocular tissues, significant challenges still exist for very lipophilic molecules in 

view of the formulation restrictions placed by the sensitivity of the ocular tissues. Several 

formulation approaches such as inclusion of viscosity enhancers in aqueous ophthalmic solution 

or suspension formulations, ion-exchange resin based formulations, implants, transporter targeted 

systems, emulsions, films and other nanoparticle mediated drug delivery strategies have been 

described in the literature, and some are commercially available (87-90). Despite technological 

advancements in the formulation strategies, delivery of therapeutic agents efficiently into the back-

of-the eye ocular tissues through the topical route remains elusive (91). Ointments have been 

successful to some extent but various drawbacks, including difficulty in application and problems 

in vision, have limited its usefulness. Success in back-of-the eye delivery mainly depends on 

formulation platform, candidate’s physicochemical properties and absorption pathway. 

Penetration of drugs across alternatively polarized (lipophilic and hydrophilic) ocular layers, and 

through the corneal tight junctions, is highly dependent upon their physicochemical properties. 
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Thus, the molecules should exhibit optimum physicochemical aspects and are to be formulated in 

appropriate dosage forms for enhanced retinal delivery (92, 93).  

Kinetics, bio-distribution and release profile of drugs could be dramatically modulated with 

nano particulate systems (94, 95). Nanoparticles have been observed to exhibit superior 

penetration characteristics into the inner ocular tissues compared to solution or suspension 

formulations (96). Lipid based systems such as nanostructured lipid carriers (NLCs) are potential 

carriers for therapeutic agents, especially hydrophobic molecules, and possess favorable properties 

including but not limited to biocompatibility, mucoadhesion, penetration /retention capability, 

lower clearance rate, controlled release, greater stability and protection of the drug candidate from 

chemical degradation. NLC’s can be formulated from a wide variety of lipids (solid/liquid) and 

phospholipid combinations with varying composition, to achieve desired morphometrical, 

physicochemical, surface charge and release characteristics. Mixture of solid and liquid lipids used 

in NLC’s create imperfections in the crystal lattice accommodating higher drug loads while 

maintaining similar penetration capabilities as the solid lipid nanoparticulates (SLNs). In addition, 

NLCs allow higher drug loading compared to SLNs, exhibit better encapsulation efficiency, lesser 

drug expulsion and higher stability (97-99). Reports suggest that PEGylated amphiphilic lipids 

possess the ability to transform into lipid based lyotropic crystals with thermodynamically stable 

self-assembled structures in aqueous environment (100, 101). In recent years, PEGylation 

technology (functionalization of nano carriers with PEG’s and appropriate ligands) has been 

widely used to improve the pharmacokinetics, bioavailability and tissue distribution characteristics 

of a variety of nanoparticles, because the hydrophilic and inert PEG creates a steric barrier on the 

surface of nanoparticles and minimizes protein binding (102). The bulky and highly hydrated 

corona of the PEG extending from the lipid bilayer into the aqueous phase is critical for enhancing 
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steric stabilization of the nanoparticles (103). Also, incorporation of PEG could allow better 

stabilization against aggregation, on storage and on sterilization - by amorphization and inducing 

imperfections in crystal lipid lattices (104, 105). 

Ciprofloxacin (CIP) belongs to class of fluoroquinolone antibiotics and is active against a 

broad spectrum of gram-positive and gram-negative bacteria. It is usually prescribed as the first 

line of treatment for corneal keratitis, allergic conjunctivitis and other bacterial infections of the 

eye. CIP is a zwitterion with pKa values of 6.0 (acidic group) and 8.8 (basic group) and an 

isoelectric point of 7.2 where it is least soluble (neutral species). The compound is currently 

marketed as an ophthalmic solution and needs frequent dosing due to its poor ocular bioavailability 

(106). Because of solubility issues, the formulation has to be maintained at an acidic pH. On topical 

application, however, because of the buffering action of the tear fluid, the pH of the instilled 

formulation is quickly neutralized as a result of which the solubility of CIP in that environment is 

significantly reduced and precipitation can take place. Consequently, penetration of CIP into the 

interior ocular tissues is hampered. In general, there exists a need to enhance drug penetration into 

the ocular tissues through the topical route. Moreover, improved delivery and penetration of ocular 

drugs with solubility issues, such as CIP, would be highly beneficial for intervening in 

complications associated with bacterial infections. 

The objective of the current research is to assess the effect of type and density of surface 

PEGylation of CIP loaded NLCs in terms of process (including autoclave sterilization) and storage 

stability characteristics and ocular disposition.  

3.1. Materials and Methods 

CIP was obtained from Sigma Aldrich (St. Louis, MO). DSPE-mPEG-1000, DSPE-mPEG-

10000, DSPE-mPEG-20000, (N-Carbonyl-methoxypolyethylene glycol-5000)-1,2 di-myristoyl-
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sn-glycero phosphoethanolamine (DMPE-mPEG-5000) were received from Creative PEG Works 

(Winston Salem, NC). 1,2-dipalmitoyl-sn-glycero phosphoethanolamine (DPPE), DMPE-mPEG-

2000, and DPPE-mPEG-2000 were obtained from NOF America Corporation (White Plains, NY). 

DSPE-sodium (C18), DMPE- sodium (C14), DPPE- sodium (C16), DSPE-mPEG-2000 and DSPE-

PEG-5000 were obtained from Lipoid® (Ludwigshafen Germany). Glyceryl Monostearate was 

obtained as a gift sample from Gattefossé (Paramus, NJ). Amicon® Ultra centrifugal filter devices 

with regenerated cellulose membrane (molecular weight cut off 100 kDa), Poloxamer 188, 

Tween®80, high performance liquid chromatography (HPLC) - grade solvents, and other 

chemicals (analytical grade) were obtained from Fisher Scientific (Hampton, NH). Whole eyes of 

male albino New Zealand rabbits were obtained from Pel-Freez Biologicals (Rogers, AR). Male 

albino New Zealand rabbits were procured from Harlan Labs (Indianapolis, IN). 

3.1.1. Formulations 

CIP-NLCs and PEGylated CIP-NLCs (PEG-CIP-NLCs) 

Glyceryl monstearate (GMS), DSPE-sodium C18 (phospholipid) and oleic acid (liquid 

lipid) were used to prepare the DSPE-CIP-NLCs by ultra-sonication method. Briefly, GMS and 

oleic acid were melted, DSPE-sodium salt was added in small increments to form homogenous 

lipid mixture and then CIP was dispersed therein to obtain a lipid phase. An aqueous phase, 

containing surfactants (Poloxamer 188 (0.25% w/v) and Tween® 80 (0.75% w/v) and glycerin 

(2.25% w/v) in bi-distilled water, was heated. The hot aqueous phase was then added to the melted 

lipid phase under stirring to form a premix. The premix was then sonicated at 16,000 rpm for 6 

min using T 25 digital Ultra-Turrax to form a hot pre-emulsion. The pre-emulsion obtained, was 

subjected to ultra-sonication (VibracellTM) at an amplitude of 80 for 6 min resulting in the 

formation of hot emulsion dispersion. The hot emulsion obtained was slowly cooled to room 
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temperature to form NLCs. The pH of the resulting formulation was adjusted to 5.0 using 0.1 N 

NaOH.   

A portion of the phospholipids in the DSPE-CIP-NLC formulations were replaced with 

PEGylated phospholipids, N-(Carbonyl-methoxypolyethylene glycol-2000)-DSPE (DSPE-

mPEG2000), to prepare the PEG-CIP-NLCs (PEG(2K)-CIP-NLC). Total amount of the lipid in 

the NLCs was 6% of which solid lipid constituted 50% and oleic acid made up the remaining 50%. 

Drug load in the formulations was maintained at 0.3% w/v.   

Additional PEG-CIP-NLCs were prepared wherein the molecular weight of the PEG (1K, 

2K, 5K,10K and 20K) grafted to DSPE was varied (DSPE-mPEG-1K / DSPE-mPEG-5K /DSPE-

mPEG-10K / DSPE-mPEG-20K) to study the effect of the PEG molecular weight on the 

biopharmaceutical characteristics of the NLCs. CIP formulations were also prepared with mPEG-

2K derivatized phospholipids of different chain lengths such as PEG 2000-1,2-

dimyristoyl/dipalmitoyl-sn-glycero-3-phosphoethanolamine, sodium salt (DMPE C14 / DPPE C16). 

These formulations, wherein the PEG molecular weight is constant (2K) but the lipid chain length 

is different (DPPE and DMPE), were designed to understand the role of the phospholipid chain-

length on the PEG-CIP-NLC characteristics. A detailed description of the composition of all the 

CIP-NLC and PEG-CIP-NLC formulations tested, including the associated formulation codes 

used, have been presented in Table 1. All the components (lipids/surfactants) used in the 

formulations are represented by weight (mg).   

Table 5 includes several placebo formulations (SLNs/NLCs) prepared using different lipid 

(solid/liquid) mixtures (combinations varying composition and/or total lipid content) tested for 

physical autoclave stability. The lipid excipients and surfactants used in the formulation are 

represented by weight (mg). Two batches (n=2) of formulations each with batch size of 10.6 g 
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(volume ~10 mL) were used for stability testing. NLCs that were unstable on autoclaving were 

reformulated by replacing 50% of the phospholipid (DSPE) with PEGylated (2K) DSPE to yield 

PEG(2K)-NLCs. The effect of PEG surface packing density (0-40%) and molecular weight (1K, 

2K and 5K) on the autoclave stability of the PEG-NLCs was subsequently studied. 

Chitosan coated NLCs (CIP-ChCl-NLCs) and CIP control solution 

The DSPE-CIP-NLC formulation was coated with chitosan chloride (ChCl – 0.25% w/v) 

by adding ChCl solution into the final formulation (Table 1). Surface adsorption was confirmed 

by way of change in the zeta potential value.  

CIP control formulation 

      Marketed CIP ophthalmic Solution 0.3% w/v was used as control formulation for the 

studies (Mfg. By: Hi-Tech Pharmacal; Lot # 622553).  

3.1.2. Particle size, zeta potential and polydispersity Index (PDI) measurement 

The hydrodynamic radius and the PDI of the NLC formulations were determined by photon 

correlation spectroscopy, using Zetasizer Nano ZS Zen3600 (Malvern Instruments, Inc.) at 25°C 

and 173° backscatter detection, in disposable clear cells. The measurements were obtained using 

a helium-neon laser of 633 nm, and the particle size analysis data was evaluated using volume 

distribution. Zeta potential measurements were carried out at 25°C in disposable cells using the 

same instrument. For measurement of particle size distribution and zeta potential, NLC samples 

were diluted (1:500) with water. Bi-distilled and 0.2 μM filtered water was used for these 

measurements, and were performed in triplicates. 

3.1.3. Scanning transmission electron microscopy (STEM) studies  

Lipid nanoparticulate formulations were characterized by scanning transmission electron 

microscope (Zeiss Auriga®-40 dual beam) using 1% w/v uranyl acetate as a stain. A freshly glow 



43 
 

discharged 200 mesh copper grid with a thin carbon was used as a base support for the sample. A 

small drop (10-20 µL) of sample was placed on a piece of parafilm and the grid was floated on top 

of the sample for 30 sec, then the grid was removed and excess sample was blotted using a piece 

of filter paper. Grid was then floated on a drop of distilled water for 10 sec, the water was removed 

and the grid with sample was floated on a drop of stain for 1 min after which excess stain was 

blotted again. After drying for at least 30 min, the samples were imaged in a Zeiss Libra operating 

at 30kV and in STEM mode. 

3.1.4. Analytical method for in vitro sample analysis  

Samples were analyzed for CIP content using an HPLC-UV method. The system comprised 

of Waters 717 plus Autosampler, Waters 2487 Dual λ Absorbance detector, Water 600 controller 

pump, and Agilent 3395 Integrator. A Phenomenex Luna® C18 4.6 mm x 250 mm column was used 

under isocratic elution for chromatographic analysis. The mobile phase used was mixture of 

acetonitrile and triethanolamine buffer (150:850 v/v) with pH adjusted to 2.36 using ortho-

phosphoric acid. Triethanolamine buffer is made up of water, triethanolamine and 25 mM 

phosphoric acid in the ratio of (996:1.6:1.57 v/v). The flow rate was set at 1 mL/min with 

λmax (detection wavelength) of 299 nm during the analysis (107).  

3.1.5. Assay and Entrapment Efficiency  

The assay (total drug content) is determined in the CIP NLC formulations. The lipid in the 

DSPE-CIP-NLC and PEG-CIP-NLC formulations was precipitated using 50:50 binary mixture of 

0.1N HCl and 190-proof alcohol and, drug content in the supernatant after centrifugation (13,000

rpm for 20 min), was measured using an HPLC system following appropriate dilution. 

The percentage of CIP entrapped (% EE) in DSPECIP-NLC and PEG-CIP-NLC was 

determined by measuring the concentration of free drug in the aqueous phase of an undiluted 
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formulation. The EE was evaluated by an ultrafiltration technique with a 100 kDa centrifugal filter 

device (Amicon Ultra). An aliquot (500 μL) of the corresponding formulation was added to the 

sample reservoir and centrifuged at 5,000 rpm for 10 min. The filtrate was analyzed for drug 

content using HPLC. The %EE was calculated using Eq. (1) below. All the measurements were 

carried out in triplicates.                                                                                                                         

                                      %EE = [
Wi−Wf

Wi
] ×100                               (1) 

Where Wi =total drug content, and Wf =amount of free drug in aqueous phase. 

3.1.6. Terminal moist heat sterilization and stability assessment of CIP formulations 

CIP loaded NLCs (DSPE-CIP-NLC and PEG-CIP-NLCs) and placebo formulations were 

prepared and put into appropriately labelled glass vials, affixed with sterilization indicator tapes, 

subjected to moist-heat sterilization (121°C for 15 min under 15 psi), in thermo-controlled 

autoclave (AMSCO® Scientific Model SI-120). Stabilizing agents and cloud point modifiers such 

as polyvinyl pyrrolidone (PVP K30), polyvinyl alcohol (PVA Avg Mol wt 30K -70K Da), PEG 

400, PEG 1000, PEG 4000, PEG 6000 at concentrations of 0.25% and 0.5% w/v were used in the 

DSPE-CIP-NLCs. Following autoclaving, sterilized samples were evaluated in terms of physical 

appearance, color, morphometrical and physicochemical characteristics against unsterilized 

reference formulations kept at room temperature. Sterilization cycle was confirmed by change in 

the color of indicator tapes on the glass vials. 

3.1.7. In vitro release studies 

In vitro release of CIP from the respective formulations such as marketed CIP ophthalmic 

control solution (0.3% w/v), DSPE-CIP-NLCs and PEG (2K)-CIP-NLCs were evaluated using 

Valia-Chien® cells (PermeGear, Inc.). Spectra/por® membrane (3.5K MWCO) was mounted on 
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diffusion cells between donor / receptor chambers and fastened with clamps, through which 

transport kinetics were studied. The temperature of the cells was maintained at 34°C with the help 

of a circulating water bath. Five milliliters of isotonic phosphate buffer (IPBS - pH 7.4) containing 

2.5% w/v RMβCD was used as the receptor media during the course of the experiment (6 h). Five 

hundred microliters of the formulations was added into the donor chamber. Aliquots (600 µL) were 

withdrawn from the receiver chamber and replaced with an equal volume of the 2.5% w/v RMβCD 

in IPBS (pH 7.4) solution at predetermined time points. Donor CIP concentration was maintained 

at 0.3% w/v in all the formulations. Samples taken were analyzed using high performance liquid 

chromatography-UV (HPLC-UV) system. 

3.1.8. In vitro corneal permeation studies  

The corneas excised from whole eyes, obtained from Pel-Freez Biologicals, were used for 

the determination of in vitro transcorneal permeability. Whole eyes were shipped overnight in 

Hanks balanced salt solution, over wet ice, and were used immediately upon receipt. The corneas 

were excised with some scleral portion to help secure the membrane onto the diffusion cells. After 

excision, the corneas were washed with the (IPBS; pH 7.4) and mounted on Valia-Chien cells 

(PermeGear, Inc®) with the epithelial side facing the donor chamber. The temperature of the cells 

was maintained at 34°C with the help of a circulating water bath. Five hundred microliters of CIP 

formulations (CIP ophthalmic control solution, DSPE-CIP-NLCs and PEG (2K)-CIP NLCs was 

added to the donor chamber and the CIP concentration was maintained at 0.3% w/v in 

formulations. The receiver chamber consisted of 5 mL of RMβCD (2.5% w/v) in IPBS (pH 7.4) 

solution for all the transport studies. Aliquots (600  µL) were withdrawn from the receiver chamber 

at predetermined time points, until 3 h, and replaced with an equal volume of receiver medium. 

Samples were stored at −80°C until further analysis.  
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Additionally, effect of carbon chain length (DMPE / DPPE / DSPE- mPEG -2000) and 

molecular weight of PEG’s (DSPE-PEG-1K / 2K / 5K) on transcorneal permeability of CIP from 

PEG-CIP-NLCs was investigated using side-by-side diffusion apparatus. Three milliliter’s of CIP 

formulations was added to the donor chamber and receiver medium consisted of 3.2 mL of 

RMβCD (2.5% w/v) in the IPBS (pH 7.4). A slight difference in the donor and receiver chamber 

volumes helped to maintain the normal corneal curvature through marginally elevated hydrostatic 

pressure. The contents of both chambers were stirred continuously with a magnetic stirrer. Aliquots 

(600  µL) were withdrawn from the receiver chamber at predetermined time points until 3 h and 

replaced with an equal volume of the solution. 

3.1.9. Biosample preparation for determination of CIP in ocular tissue homogenates 

In vivo sample analysis was carried out using the HPLC-UV method mentioned above 

following method validation. Mixture of ice cold acetonitrile and 0.1% formic acid (1 mL) was 

added to the sample to precipitate proteins and extract the drug from individual, tissues namely 

cornea, sclera, iris-ciliary (IC) and retina-choroid (RC), after cutting them into small pieces. The 

samples were centrifuged for 1 h at 13,000 rpm and the supernatant was then collected for further 

analysis. Aqueous humor (AH) (200 µL), vitreous humor (VH) (500 µL) tissues were precipitated 

by adding an ice cold mixture of acetonitrile & formic acid; 200 µL for AH and 500 µL for VH in 

the ratio (1:1). Standard calibration curves constructed from various ocular tissues such as cornea 

(20-500 ng/mL), sclera (20-500 ng/mL), AH (10-200 ng/mL), VH (10-200 ng/mL), IC (10-200 

ng/mL), RC (10-200 ng/mL) were used to determine the drug concentration in the samples. All 

the standard curves had a coefficient of determination r2 ≥ 0.96. The accuracy and precision of the 

bio-analytical method was determined by analyzing the quality control (QC) drug samples of all 

ocular matrices at three different concentration levels (50,100,200 ng/mL) each prepared in 
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sextuplicate (n=6). The inter-day and intra-day variabilities in precision (% RSD) ranged between 

3.97-12.6% and 4.57-9.78% in ocular tissue homogenates tested. The intra-assay and inter-assay 

accuracies, expressed as the percentage difference between the measured concentration and the 

nominal concentration ranged from -7.57% to 11.35% and -10.3% to 12.6% in ocular tissues 

respectively. The precision and accuracies of the QC samples obtained met the requirements set 

forth under bioanalytical guidance (Guidance for Industry: bioanalytical method validation in Food 

and Drug Administration guidelines of September 2013) (108). Recovery of CIP was evaluated by 

spiking drug in blank tissues and comparing the expected CIP concentration with standard 

concentration. Recovery values were observed in AH (90.3), VH (92.9), cornea (89.7), sclera 

(87.2), IC (91.5) and RC (93.3). Interference was not observed from co-eluted protein residues 

with respect to CIP peaks in all the tissues. Limit of Detection (LOD) in various ocular tissues was 

determined in AH (10 ng/mL), VH (10 ng/mL), cornea (20 ng/mL), sclera (20 ng/mL), RC and IC 

(10 ng/mL).  

3.1.10. In vivo bioavailability studies 

In vivo bioavailability of CIP was determined in conscious Male New Zealand albino 

rabbits weighing between (2-2.5 kg), procured from Harlan labs. All the animal studies conformed 

to University of Mississippi Institutional Animal Care and Use Committee (IACUC) and 

Association for research in vision and ophthalmology (ARVO) approved protocols. CIP 

formulations namely marketed ophthalmic control solution, DSPE-CIP-NLCs and PEG (1K / 2K 

/ 5K / 20K)-CIP-NLCs were evaluated in vivo. These topical formulations (100 µL) were instilled 

as two doses (50 µL each dose) at two different time points, -30min and 0 min, to reduce pre-

corneal loss. At the end of 2 h post application of the second drop (0 min), rabbits were euthanized 

with an overdose of pentobarbital, injected through a marginal ear vein. The eyes were washed 
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thoroughly with ice cold DPBS and were immediately enucleated. The intraocular tissues were 

separated and stored at -80 °C until further analysis using an HPLC-UV system. All experiments 

were carried out in triplicate. 

3.2. Data analysis 

The steady-state flux (SSF) for transcorneal experiments was calculated by dividing the 

rate of transport by the surface area. Flux was calculated using Eq. (2). 

                                                Flux(J) = (dM/dt)/A                                          (2) 

 

Where, M is the cumulative amount of drug transported, and A is the surface area of the 

corneal membrane (0.636cm2) exposed to the permeant (drug). 

The transcorneal permeability was determined by normalizing the SSF to the donor 

concentration, Cd, according to Eq. (3). 

                                        Permeability(Papp) = Flux/Cd                                    (3) 

3.3. Statistical analysis 

One way-ANOVA coupled Post-Hoc test was employed to analyze the differences between 

groups. Data obtained was considered to be statistically significant at level of (p<0.05). 

3.4. Results 

3.4.1. Physicochemical characteristics of CIP containing lipid nanoparticle formulations  

A detailed description of the composition of all the CIP-NLC and PEG-CIP-NLC 

formulations tested, including the associated formulation codes used, have been presented in Table 

3.1. Physicochemical characteristics of the various NLCs are presented in Table 3.2. 

Hydrodynamic radii of all the NLC formulations did not vary significantly whereas the entrapment 

efficiency values with the PEG-CIP-NLC formulations were comparatively higher than that with 
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the CIP-NLCs. PEG(2K)-CIP-NLCs displayed higher entrapment efficiency – a 10% increase in 

entrapment in comparison to DSPE-CIP-NLCs. Zeta potential of DSPE-CIP-NLCs decreased with 

PEG derivatization from -12 to -2 mv, confirming surface charge neutralization by the PEG. 

Coating of the CIP-NLCs (DSPE-CIP-NLC) with chitosan (ChCl), on the other hand, increased 

the positive charge on the NLCs (Table 3.2). Physicochemical characteristics of the various NLC 

formulations, post terminal moist heat sterilization are presented in Table 3.3.  

Table 3.1: Composition of CIP-NLCs and PEGylated CIP-NLCs (PEG-CIP-NLC)             

formulations. Various PEG-CIP-NLCs were prepared using PEG conjugated phospholipids of 

different carbon chain lengths and PEG molecular weights. 

Formulations 
CIP 

(mg) 

Oleic acid 

(liquid 

lipid - 

mg) 

GMS (solid 

lipid -mg) 
Phospholipid 

(mg) 

PEGylated 

Phospholipid (mg) 

Chitosan 

Chloride 
Poloxamer 

188 (mg) 
Tween® 

80 (mg) 
Glyceri

n (mg) 
Water 

(mL) 

 

CIP-NLCs 
 

DMPE-CIP-

NLCs 
30 300 150 150 (DMPE) - - 25 75 225 10 

DPPE-CIP- 

NLCs 
30 300 150 150 (DPPE) - - 25 75 225 10 

DSPE-CIP- 

NLCs 
30 300 mg 150 150 (DSPE) - - 25 75 225 10 

  

PEGylated CIP-NLCs (PEG-CIP-NLCs) 
 

PEG(1K)-

CIP-NLCs 
30 300 mg 150 - 

150 

(DSPE-PEG-1K) 
- 25 75 225 10 

PEG(2K)-

CIP-NLCs 
30 300 mg 150 - 

150 

(DSPE-PEG-2K) 
- 25 75 225 10 

PEG(5K)-

CIP-NLCs 
30 300 mg 150 - 

150 

(DSPE-PEG-5K) 
- 25 75 225 10 

PEG(10K)-

CIP-NLCs 
30 300 mg 150 - 

150 

(DSPE-PEG-10K) 
- 25 75 225 10 

PEG(20K)-

CIP-NLCs 
30 300 mg 150 - 

150 

(DSPE-PEG-20K) 
- 25 75 225 10 

DMPE(2K)-

CIP-NLCs 
30 300 mg 150 - 

150 

(DMPE-PEG-2K) 
 25 75 225 10 

DPPE(2K)- 

CIP-NLCs 
30 300 mg 150 - 

150 

(DPPE-PEG-2K) 
 25 75 225 10 

Chitosan coated CIP-NLCs (CIP-ChCl-NLCs) 
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Formulations 
CIP 

(mg) 

Oleic acid 

(liquid 

lipid - 

mg) 

GMS (solid 

lipid -mg) 
Phospholipid 

(mg) 

PEGylated 

Phospholipid (mg) 

Chitosan 

Chloride 
Poloxamer 

188 (mg) 
Tween® 

80 (mg) 
Glyceri

n (mg) 
Water 

(mL) 

CIP-ChCl-

NLCs 
30 300 mg 150 150 (DSPE) - 25 mg 25 75 225 10 

 

            Table 3.2: Physicochemical characteristics of CIP-NLCs and PEGylated CIP-NLC  

            Formulations.  

 

 

    Table 3.3: Effect of autoclaving on the physicochemical attributes of CIP-NLCs and PEG 

    -CIP-NLCs (pre and post sterilization).  

 

Formulations 

 

 

Particle Size 

(nm) 

 

Polydispersity 

index (PDI) 

 

Assay 

 

 

pH 

 

 

Zeta potential 

(mV) 

Sterilization 

Stage 
Sterilization Stage Sterilization Stage Sterilizatio

n Stage 

Sterilization 

Stage 

Pre Post Pre Post Pre Post P

re 
Post Pre Post 

Characteris

tics 

CIP-

NLCs 

 

 

PEGylated CIP-NLCs 

 

CIP-

ChCl-

NLCs 

DSPE-

CIP 

-NLCs 

PEG(1K)-

CIP-NLCs 

PEG(2K)-

CIP-NLCs 

PEG(5K)-CIP-

NLCs 

DMPE(2K)-

CIP-NLCs 

DPPE(2K)-

CIP-NLCs 

CIP-

ChCl- 

NLCs 

Particle size 

(nm) 
190±15 165±12 180.6±13 217±18 176±4.8 184±3.6 220±16 

Polydispersi

ty index 

(PDI) 

0.26±0.03 0.29±0.01 0.31±0.01 0.37±0.03 0.28±0.02 0.27±0.03 0.33±0.06 

Zeta 

potential 

(mV) 

-

12.2±1.08 
-1.0±0.02 -1.8±0.08 -2.6±0.06 -2.3±0.03 -2.1±0.06 29.2±3.9 

Entrapment 

Efficiency 

(% EE) 

72.5±3.9 79.6±2.4 83.6±4.7 84.2±2.3 79.8±1.9 81.2±2 73.6±3.6 

Assay (%) CIP content was 90-95% of the theoretical value in all the formulations 
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DSPE-

CIP-

NLCs 

CIP-

NLCs 

190

±15 

230±7.

5 
0.26±0.03 

0.35±0

.05 
90.9±4.5 

87.1±2.

1 5 3.6 
-

12.2±1.08 

-

14.6
±1.9

5 

PEG(1K

)-CIP-

NLCs 

PEGylat

ed 

CIP-

NLCs 

165

±12 
169±8 0.29±0.01 

0.29±0

.02 
90.2±2.8 

89.1±2.

6 5 4.76 -1.0±0.02 

-

1.12
±0.0

1 

PEG(2K

)-CIP-

NLCs 

180.

6±1

3 

192±8 0.31±0.01 
0.32±0

.01 
90.1±3.1 

88.4±3.

6 5 4.8 -1.8±0.08 

-

1.9±

0.06 

PEG(5K

)-CIP-

NLCs 

217

±18 

231±9.

1 
0.37±0.03 

0.42±0

.02 
92.6±1.8 

91.9±2.

9 5 4.4 -2.6±0.06 

-

3.4±

0.04 

DMPE(

2K)-

CIP-

NLCs 

176

±4.8 

191±7.

6 
0.28±0.02 

0.31±0

.04 
91.4±1.1 

89.4±0.

67 5 4.58 -2.3±0.03 

-

2.9±

0.053 

DPPE(2

K)-CIP-

NLCs 

184

±3.6 

189±8.

5 
0.27±0.03 

0.3±0.

02 
93.2±0.9 

91.8±1.

2 5 4.82 -2.1±0.06 

-

3.3±
0.04 

 

3.4.2. Scanning transmission electron microscopy (STEM) studies  

The STEM images of the representative samples are shown in Figure 3.1. STEM images 

of CIP NLCs showed the presence of spherical as well as rod-shaped nanoparticles whereas PEG-

CIP-NLs appeared to be spherical in shape with a well-defined periphery. Particle sizes obtained 

with TEM and DLS techniques may not be in agreement for the polydisperse formulations due to 

the respective operating principles and other contributing factors. Zeta sizer measures particle size 

based on intensity of scattered light whereas STEM measures it from each individual particle. 

Particle size agreements may hold true in monodisperse formulations (109-111).  

 



52 
 

      

         Figure 3.1. STEM images of CIP loaded NLCs. A) CIP NLCs. B) PEG(2K)-CIP-NLCs.  

3.4.3. Autoclave stability of CIP formulations 

Physicochemical characteristics of the various NLC formulations, post terminal moist heat 

sterilization are presented in Table 3.3. Following sterilization, PEGylated NLCs were able to 

preserve their characteristics, whereas particle size and PDI was increased in the DSPE-CIP-NLCs 

and was also accompanied by a 14% decrease in entrapment efficiency. Moreover, the DSPE-CIP-

NLC formulation was observed to be physically unstable (color, lipid phase separation) on steam 

sterilization. Addition of various reported stabilizing agents and cloud point modifiers such as 

polyvinyl pyrrolidone (PVP K30), polyvinyl alcohol (PVA Avg Mol wt 30K -70K Da), PEG 400, 

PEG 1000, PEG 4000, PEG 6000 at concentrations of 0.25% and 0.5% w/v in the DSPE-CIP-NLC 

formulations did not stabilize the phospholipids during the sterilization process. 

Particle size and PDI of PEG-CIP-NLC formulations increased and entrapment efficiencies 

decreased as a function of increasing molecular weights of PEG (2K to 20K) used in the 

formulation. Moreover, PEG (20K)-CIP-NLCs appeared to be unstable during the sterilization 

process, with visible supernatant oil droplets. PEGs with molecular weights of up to 10K were 

observed to stabilize the DSPE-CIP-NLC formulations (Table 3.4). Formulations (represented in 

tables 3 and 4) did not exhibit any statistically significant difference in physico-chemical 
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characteristics, pre and post terminal moist heat sterilization except DSPE-CIP-NLCs and 

PEG(20K)-CIP-NLCs, which were unstable. 

Studies were then undertaken to delineate the effect of the formulation components on 

autoclave stability. For this purpose, placebo formulations were used. Data on the effect of 

autoclaving on the physical stability of different placebo formulations, prepared using different 

lipids/phospholipids, is summarized in Table 3.5. Non-PEGylated NLCs prepared using 

phospholipids (DSPE) in combination with high melting triglyceride oils such as sesame, castor 

and soybean oils were stable post sterilization. NLCs prepared using a combination of the 

phospholipid with a fatty-acid (oleic acid) or caprylic/capric triglyceride (Miglyol®829) or 

Transcutol P were, however, unstable. These formulations were stabilized when PEGylated 

phospholipid (PEG(2K)-DSPE) was used - 50% of the total DSPE used was PEGylated in these 

experiments. 

The effect of PEG concentration (surface packing density) on autoclave stability of 

phospholipid containing DSPE-CIP-NLC formulations is presented in Table 3.6. In these 

experiments the fraction of PEGylated lipid was varied from 0 to 40%, out of the total phospholipid 

content in the DSPE-CIP-NLCs, using PEG grafted lipids of different molecular weights - DSPE-

PEG-1K/2K/5K. It was observed that DSPE-mPEG-5K stabilized the CIP-NLCs when used at a 

concentration of 30% w/w of total phospholipid in the formulation. Also, DSPE-mPEG-2K had to 

be used at a minimum of 40% w/w of the total phospholipid in the formulation for stabilization.  

Thus, higher molecular weight PEGs required lower PEGylated lipid concentrations to impart 

stability to the CIP-NLCs composition containing phospholipid and oleic acid. 

Table 3.4: Effect of autoclaving on the physicochemical characteristics of PEG-CIP-                                       

NLC formulations prepared with higher molecular weight PEG’s pre and post sterilization. 
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Formulations 

(PEGylated 

CIP-NLCs) 

 

 

Particle Size (nm) 

 

Polydispersity Index 

(PDI) 

 

Entrapment efficiency 

(%EE) 

 

 

Zeta potential 

(mV) 

Sterilization Stage Sterilization Stage Sterilization Stage 
Sterilization Stage 

Pre Post Pre Post Pre Post 
Pre Post 

PEG(2K)-

CIP-NLCs 
175.6±13 172±8 0.27±0.02 0.26±0.03 88.8±2.2 88.1±0.7 -

0.4±0.03 

-

0.7±0.06 

PEG(5K)-

CIP-NLCs 
207±9 209±12 0.31±0.02 0.32±0.04 80.4±6.7 76.9±2.3 -

1.9±0.06 

-

2.1±0.03 

PEG(10K)-

CIP-NLCs 
280±7 297±11.3 0.36±0.04 0.42±0.07 76.1±4.51 69.2±4.27 -

1.4±0.07 

-

1.5±0.02 

PEG(20K)-

CIP-NLCs 
320±18 cracked 0.45±0.07 cracked 73.6±.9.68 cracked -

0.2±0.03 
cracked 

 

     Table 3.5: Physical stability of placebo NLC formulations (n=2) prepared with different 

      lipids (solid and / or liquid) post autoclave sterilization. 

Table 3.5 

Formulation  Solid lipid (mg) Liquid lipid (mg) Poloxamer 

188 (mg) 

Tween 80 

(mg) 

Glycerin 

(mg) 

Result 

       

F-1 GMS (400) _ 5 _ _ No change 

F-2 GMS, DSPE 

(1:1) 9 parts 

(270, 270) 

Oleic acid 1 part 

(60) total 9:1 

(S:L) 

25 75 225 Failed 

F-3 Precirol (360) 9 

parts  

Oleic acid 1 part 

(40) total 9:1 (S:L) 

_ 250 _ Discoloration 

in one 

formulation 

F-4 GMS (300) 3 

parts 

Castor oil (100) 1 

part ; 3:1 (S:L) 

5 _ _ No change 

F-5 Compritol (200)  Castor oil (200)  25 75 225 No change 

F-6 GMS (200) Castor oil (200)  25 75 225 No change 

F-7 GMS (200) Oleic acid (200) 25 75 225 No change 

F-8 GMS (300) Soyabean oil (300) 25 75 225 No change 

F-9 GMS, DSPE 

(150,150) (1:1)  

Soyabean oil (300) 25 75 225 No change 

F-10 GMS (300) Sesame oil (300) 25 75 225 No change 

F-11 GMS, DSPE 

(150,150) (1:1)  

Sesame oil (300) 25 75 225 No change 
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Table 3.5 

Formulation  Solid lipid (mg) Liquid lipid (mg) Poloxamer 

188 (mg) 

Tween 80 

(mg) 

Glycerin 

(mg) 

Result 

       

F-12 GMS, DSPE 

(150,150) (1:1)  

Castor oil (300) 25 75 225 No change 

F-13 GMS (300) Miglyol 829 (300) 25 75 225 No change 

F-14 GMS, DSPE 

(150,150) (1:1)  

Miglyol 829 (300) 25 75 225 Discoloration 

F-15 GMS (300) Capryol 90 (300) 25 75 225 No change 

F-16 GMS, DSPE 

(150,150) (1:1)  

Capryol 90 (300) 25 75 225 No change 

F-17 GMS (300) Lauroglycol (300) 25 75 225 No change 

F-18 GMS, DSPE 

(150,150) (1:1)  

Lauroglycol (300) 25 75 225 No change 

F-19 GMS (300) Lauroglycol (300) 25 75 225 No change 

F-20 GMS, DSPE 

(150,150) (1:1)  

Lauroglycol (300) 25 75 225 No change 

F-21 GMS (300) Labrafac (300) 25 75 225 No change 

F-22 GMS, DSPE 

(150,150) (1:1)  

Labrafac (300) 25 75 225 No change 

F-23 GMS (300) Isopropyl 

Myristate (300) 

25 75 225 No change 

F-24 GMS, DSPE 

(150,150) (1:1)  

Isopropyl 

Myristate (300) 

25 75 225 No change 

F-25 GMS (300) Labrafil (300) 25 75 225 No change 

F-26 GMS, DSPE 

(150,150) (1:1)  

Labrafil (300) 25 75 225 No change 

F-27 GMS (300) Transcutol (300) 25 75 225 No change 

F-28 GMS, DSPE 

(150,150) (1:1)  

Transcutol (300) 25 75 225 Failed 

 

      Table 3.6: Effect of PEGylated to unPEGylated phospholipid ratio and PEG molecular  

      weight on physical stability of placebo PEG-NLC post autoclave sterilization.  

% of PEG-

lipid 

DSPE-PEG- 1K/2K/5K 

lipid (mg) 

DSPE Phospholipid 

(mg) 
Oleic acid (mg) GMS (mg) Result 

PEG(1K)-CIP-NLCs 

15 22.5 127.5 300 150 Cracked 

30  45 105 300 150 Cracked 

40 60 90 300 150 Cracked 
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PEG(2K)-CIP-NLCs 

0 (Control)  (0) 150 300 150 Cracked 

10  15 135 300 150 Cracked 

15  22.5 127.5 300 150 Cracked 

25  37.5 112.5 300 150 Cracked 

30  45 105 300 150 Droplets 

35  52.5 97.5 300 150 Droplets 

40  60 90 300 150 
No 

change 

PEG(5K)-CIP-NLCs 

15  22.5 127.5 300 150 Cracked 

30  45 105 300 150 
No 

change 

 

3.4.4. In vitro release studies 

These studies combined release and transmembrane diffusion – simulating ocular CIP 

penetration following topical application of the formulations. CIP flux from the DSPE-CIP-NLC 

and PEG(2K)-DSPE-CIP-NLC formulations, under the test conditions employed, were similar but 

the control formulation (0.3% Ophthalmic marketed control solution) showed a higher flux across 

the membrane – presumably because of the elimination of the release step from the process (Figure 

3.2). 
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Figure 3.2: In vitro release of CIP obtained across Spectra/Por® membrane (MWCO: 3.5 KDa) 

from CIP loaded PEGylated NLCs (PEG(2K)-CIP-NLCs), 0.3% w/v CIP ophthalmic Solution, and 

CIP-NLCs (DSPE-CIP-NLCs) obtained using Valia-Chien cells at 34°C. (Dose: 500 µL; 1500 µg). 

3.4.5. In vitro corneal permeation studies 

In vitro transcorneal flux of CIP from the PEG(2K)-CIP-NLCs was almost 3-fold greater than 

that achieved with control solutions. CIP flux from the PEG(2K)-CIP-NLCs was about 2-fold higher 

compared to the DSPE-CIP-NLCs. Transcorneal flux of CIP from the chitosan coated NLCs (CIP-

ChCl-NLC) was slightly better than that from the PEG(2K)-CIP-NLCs (Figure 3.3).  

Carbon chain length of the phospholipid did not appear to affect transcorneal penetration 

of CIP from the PEG-CIP-NLCs. The molecular weight of PEG used to derivatize the 

phospholipid, however, had a significant effect on transcorneal flux of CIP (Figure 3.4). PEG (2K)-

CIP-NLCs (DSPE-mPEG-2000) and PEG (5K)-CIP-NLCs (DSPE-mPEG-5000) enhanced 

transcorneal permeability of CIP by about 1.8-fold and 2.5-fold, respectively, when compared to 

non PEGylated CIP-NLCs (DSPE-CIP-NLCs). PEG (1K)-CIP-NLCs did not exhibit a significant 
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increase over the CIP-NLCs. Thus, based on the data presented in Figures 3.3 and 3.4, it can be 

inferred that PEG-NLCs prepared with PEG-lipids with PEG molecular weights of 2K or greater 

are preferred to enhance ocular penetration of CIP. 

In another set of studies, comparative corneal permeability of PEG-CIP-NLCs prepared 

with phospholipids (DSPE) grafted with higher molecular weight PEGs namely DSPE-PEG- 

2K/5K/ 10K/20K was determined. Although, transcorneal penetration of CIP exhibited an 

increasing trend with an increase in molecular weight of PEG from 2K to 10K, the difference in 

flux was not significantly different (Figure 3.5). 

Figure 3.3: Transcorneal flux of CIP obtained from CIP ophthalmic Solution, DSPE-CIP-NLCs, PEG(2K)-

CIP-NLCs and Chitosan Chloride coated DSPE-CIP-NLCs (CIP-ChCl-NLCs) using Valia-Chien cells at 

34°C (Dose: 500 µL; 1500 µg; n=4). * symbol denotes statistical significance of PEG(2K)-CIP-NLCs and 

CIP-ChCl-NLCs when compared to control and DSPE-CIP-NLCs p<0.05) . 
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 Figure 3.4: Transcorneal flux of CIP obtained from various topical NLC formulations tested with different molecular weights of PEG 

grafted, DSPE phospholipid (PEG-1K (PEG(1K)-CIP-NLCs / 2K (PEG(2K)-CIP-NLCs / 5K (PEG(5K)-CIP-NLCs) and varied chain 

lengths of PEG-2000 conjugated phospholipids (DMPE(2K)-CIP-NLCs, DPPE(DPPE(2K)-CIP-NLCs) using side-by-side diffusion 

cells (PermeGear, Inc) at 34°C (Dose: 3 mL; 0.3% w/v) (n=4). * symbol denotes statistically significant difference of CIP flux from 

PEG(2K)-CIP-NLCs when compared to DSPE-CIP-NLCs whereas ɸ symbol indicates statistically significant difference of CIP flux 

from PEG(5K)-CIP-NLCs in comparison to all the formulations (p<0.05). 
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Figure 3.5: Transcorneal flux of CIP obtained from NLC systems with higher molecular weights 

of PEG’s grafted to DSPE phospholipid (2K / 5K / 10K (PEG (10K)-CIP-NLCs / 20K (PEG (20K)-

CIP-NLCs), using side-by-side cells at 34° C (Dose: 3 mL; 0.3% w/v; n=4).  

 

3.4.6. In vivo bioavailability studies 

Following topical application of the formulations (Table 3.1) in conscious NZW rabbits, 

CIP levels in all ocular tissues tested, 2 h post dosing, were observed to be nearly 2-folds higher 

with the PEG(2K)-CIP-NLCs compared to DSPE-CIP-NLCs (non-PEGylated CIP-NLCs). The 

results were consistent with the in vitro observations. PEG(2K)-CIP-NLCs generated higher CIP 

concentrations in all ocular tissues tested except for the cornea – where CIP-ChCl-NLCs were 

observed to be slightly better (Figure 3.6).  

Retinal CIP concentrations achieved with the PEG(2K)-CIP-NLCs is significantly higher 

compared to all other topical formulations. PEG(5K)-CIP-NLCs was similar, if not slightly better 

than the PEG(2K)-CIP-NLCs with respect to CIP levels obtained in the anterior segment tissues – 
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AH, cornea and IC. CIP levels in the posterior segment or back-of-the eye tissues (retina-choroid) 

was, however, below detection levels with the PEG (5K)-CIP-NLCs. The PEG(10K)-CIP-NLCs 

and PEG(20K)-CIP-NLCs achieved much lower CIP concentrations in all ocular tissues tested in 

comparison to the PEG(2K)-CIP-NLCs (Figure 3.6). CIP concentrations in the AH and IC, 

achieved with the PEG(2K)-CIP-NLC and PEG(5K)-CIP-NLC formulations, were far greater than 

the minimum inhibitory concentration (MIC90), approximately 0.5 µg/mL (112), even 2 h post 

topical dosing. In contrast, commercial CIP eye drops barely maintained MIC90 levels in the AH, 

IC and cornea, 2 h post dosing, while CIP levels were undetectable or below MIC in the other 

ocular tissues tested.  
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Figure 3.6: Ocular tissue concentrations of CIP obtained from CIP Ophthalmic Solution, 

DSPE-CIP-NLCs with and without Chitosan Chloride (ChCl) and CIP loaded PEGylated NLCs 

with different molecular weights of PEGs (DSPE-PEG-2K, DSPE-PEG-5K, DSPE-10K, DSPE-

20K) 2 h post topical application (Dose: 300 µg; 100 µL at -30 and 0 min) in a conscious rabbit 

model. (AH- Aqueous humor, IC-Iris ciliary bodies and RC- Retina choroid). MIC90 of CIP is 

marked as a horizontal line in the figure. Statistical analysis by One way ANOVA with post-hoc 

test was performed, where symbol (*) on the ocular tissues represent statistically significant 

difference of CIP concentrations from different formulations in comparison to control solution. (¥) 

represents statistically significant difference of retinal concentrations obtained from PEG (2K)-

CIP-NLCs compared to all the formulations. 

 

3.5. Discussion 

The focus of this project was to evaluate the effect of surface functionalization on ocular 

penetration of drugs from lipid nanocarriers and formulation stability. CIP was chosen as the model 

drug for preparing these formulations. Entrapment efficiency and release properties of drugs from 

lipid nanocarriers are highly dependent upon interfacial area, surface charge, inner structural 

organization, as well as nanoparticulate dimensions (113, 114). The size of the NPs plays a key 

role in their adhesion to and interaction with the biological cells. Smaller particles can be best 

internalized by receptor-mediate endocytosis uptake mechanism, while larger particles have to be 

taken up by phagocytosis (115-119).  

In recent years, NLCs are increasingly being considered as viable carriers in drug delivery, 

but the present work introduces a new paradigm involving the concept of surface functionalization 

/ modification of nanoparticles and their sterilization - stabilization characteristics. Particle size 

and surface properties such as charge, morphology, hydrophilicity and surface modification with 

targeting ligand functionalization are the major controlling factors for interactions with the 

biological milieu (120, 121).  Reports suggest that surface modification of nanoparticles by coating 

with hydrophilic substances such as PEGs could further improve ocular bioavailability, mainly 

due to enhanced interaction with ocular mucosal epithelium and decreased phagocytic uptake (122, 
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123). Fresta et al formulated PEG-6000 coated polyalkyl-2-cyanoacrylate nanosphere 

encapsulated acyclovir formulations and reported that the higher ocular bioavailability was 

achieved by polyalkyl-2-cyanoacrylate colloidal carrier, but no significant difference was observed 

between coated and uncoated nanospheres (124). These results may have resulted from a weak 

interaction of PEG molecules with the surface of colloidal particles. In the present project we 

explored the effect of nanoparticle surface modification, by adsorption of Chitosan chloride or by 

firmly surface anchored PEG moieties, on ocular distribution and disposition. Also, the 

characteristics of the PEG’s, optimal molecular weights and their relative concentrations needed 

to achieve improved penetration, was studied.  

Drug release from the nanoparticles appears to be controlled by erosion and diffusion 

mechanisms through lipid matrix (125, 126). Interaction between nanoparticles and ocular 

epithelial cells could be attributed to endocytosis mechanism. Based on the transcorneal 

permeation data obtained, it could be said that penetration of CIP depends upon the molecular 

weight of grafted PEG’s rather than it’s carbon chain length (127). The permeability was not 

improved with PEG-1K and a decrease in the transmembrane flux was observed with PEG-20K, 

indicating the required range of molecular weights is between 2-10K for optimal penetration 

characteristics. The in vitro transcorneal permeability, an experimental set-up wherein the mucus 

layer is absent, data suggests that the PEGylation not only affects penetration across the mucus 

layer but also influences penetration across the corneal epithelial layers. When the PEG molecular 

weight went above 10K the penetration enhancing effect was lost, which could probably be 

because of the increased hydrophilicity and steric interference of the molecules.  

PEGylation range within which the formulations exert the optimal penetration and steric 

stabilization characteristics was further confirmed by the in vivo ocular distribution of CIP from 
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the PEG-CIP-NLCs (Figure 3.6). PEGylated NLCs were able to deliver CIP, but penetration of 

CIP into posterior and anterior ocular tissues decreased as a function of increasing molecular 

weight of the PEG’s (128, 129). These results indicate that the lipid conjugated PEGs with 

relatively higher molecular weights (greater than 5K) impart higher surface hydrophilicity onto 

the nanoparticles, which limits the penetration and partition of drugs across the surface mucus 

layer and epithelial membrane. The results were consistent with the in vitro observations. PEG-

CIP-NLCs generated higher CIP concentrations in all ocular tissues except for the cornea – in 

which case ChCl-NLCs were observed to be slightly better (Figure 3.6). This, suggests that surface 

modification with chitosan favors retention of the nanoparticles at the superficial ocular layers 

(charge-charge interaction), whereas PEG grafting facilitates transport of the molecules across the 

mucus layers as well as the cornea and other ocular tissue, consistent with earlier reports (122, 

130, 131).  

Tai-Lee ke et al prepared two sustained release formulations of CIP using marketed CIP 

solution (0.3% w/v) with Dodecyl Maltoside as a penetration enhancer and carbopol/HPMC as 

viscosity enhancers. Two hours post-topical instillation (30 µL), AH and corneal CIP 

concentrations obtained with HPMC and carbopol formulation were 0.5 µg/mL and 4.2 µg/g, 

respectively (132). Taha et al prepared ciprofloxacin loaded liposomes (0.3% w/v) and evaluated 

AH concentration after 2 h following topical application (50 µL) in conscious rabbit model. The 

AH level was increased by ~0.3-fold when compared to marketed ophthalmic solution (133). In 

another study, 50 µL of CIP loaded pluronic micelles (0.3 % w/v) enhanced AH concentration of 

CIP by 10%, 2 h post topical application, when compared to commercial CIP eye drops (134). In 

the present study ocular bioavailability of CIP was enhanced in the anterior and posterior segment 

ocular tissues, ranging from ~3-5-fold increase with PEG-CIP-NLC formulation, in comparison to 
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control marketed formulation. This is significantly better than all earlier reports as well as the 

currently marketed ophthalmic formulation. 

All ophthalmic products need to be sterilized. Autoclavable products are preferred, from a 

manufacturability point of view, over products that need aseptic processing or sterilization by 

filtration. Reports suggest that phospholipids undergo acidic / basic hydrolysis (pH < 5; pH > 9) 

and hence should be aseptically processed (135, 136). Our studies here demonstrate that selection 

of NLC formulation components can have a significant impact on the formulation stability during 

the sterilization process. Whereas long chain triglycerides components were stable, shorter chain 

length fatty acids and triglyceride containing NLCs could not withstand the autoclaving step. 

When a fraction of the phospholipids, in the heat unstable NLCs, were replaced with PEGylated 

phospholipids, the formulations are stabilized, suggesting that PEGs are able to preserve the 

supramolecular and molecular structure of colloids and protect the lipid environment. Addition of 

PEG externally or other known stabilizers to the NLCs did not impart thermal stability during the 

autoclave cycle. Additionally, it was observed that PEG-CIP-NLCs with PEG molecular weights 

of up to 10K stabilize the NLCs during the sterilization process, whereas PEG 20K fails to do so. 

Steric stabilization of liposomal formulations using PEG conjugated lipids is well documented in 

the literature (137-139). PEG has also been reported to be a surface modifying agent for improving 

permeability characteristics and decreasing phagocytic uptake of particulate drug carriers (52, 

140). To the best of our knowledge, however, this is the first report that establishes the importance 

of the molecular weight and surface density of the PEG for preparing autoclave stable NLCs with 

enhanced transepithelial penetration and delivery characteristics, especially to the back-of-the eye 

tissues.  
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Interestingly, whereas chitosan chloride coated NLCs produced higher CIP concentrations in the 

cornea and sclera, the outer tunic of the eye, this did not translate into higher CIP penetration into 

the inner ocular layers. This, along with the observation that the CIP-NLCs (no surface 

modification) produced low CIP levels in all ocular tissues, suggests that PEGylation within the 

specified ranges improve transepithelial penetration of the CIP-NLCs into the deeper ocular 

tissues.  

3.6. Conclusion 

Surface functionalized NLCs appear to be a promising and effective platform for topical 

ocular delivery. Surface modification strategies could improve ocular retention and intraocular 

penetration of therapeutics agents; thus enhancing ocular bioavailability and distribution. In 

conclusion, PEG grafted phospholipids / amphiphilic di-block copolymers with molecular weights 

in the range of 2K - 5K lead to optimal ocular penetration and autoclave stability. 
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CHAPTER 4 

MELT CAST NONINVASIVE OCULAR INSERTS FOR POSTERIOR SEGMENT DRUG 

DELIVERY 
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4. Introduction  

Prolonged ocular inflammation/infection could precipitate several sight threatening 

disorders including, but not limited to, keratitis, conjunctivitis, iritis, uveitis, endophthalmitis, 

cystoid macular edema and choroidal neovascularization (141, 142). A host of different ocular 

tissues are involved in these complications, and the intricate barriers in the ocular milieu, which 

are essential and exclusive to the ocular anatomy and physiology, limit the penetration of 

therapeutic agents. Delivery of drugs to the posterior segment of the eye through oral/parenteral 

routes is highly challenging because of the expression of blood ocular barriers. Topical 

administration is promising in terms of safety and patient compliance but the delivery of 

therapeutic agents to the posterior ocular tissues through this route is also an extremely difficult 

task (143, 144). Although various technological advances enhanced drug delivery into the front-

of-the eye, back-of-the eye delivery through the topical route needs innovative strategies to 

improve pre-corneal residence and trans-ocular permeation characteristics of drug molecules (85, 

145). The complex interplay between static, dynamic, efflux barriers in the eye and their 

remarkable barrier functionalities, severely impedes the penetration and distribution of drug 

molecules into the inner ocular tissues. Delivering the drugs to the posterior segment of the eye, 

in effective concentrations, using conventional formulations like topical solutions, viscous 

solutions and gels, surfactant based systems, emulsions, suspensions has not been successful so 

far (83, 146). The topical solution based dosage form typically has the inherent drawback that most 

of the instilled volume is eliminated from the pre-corneal area, resulting in poor ocular 

bioavailability, ranging from 1-10%, of the total administered dose (147). Maurice et al calculated 

that bioavailability in vitreous cavity following topical instillation of solutions range from 0.0001 

to 0.0004%. Viscous mucoadhesive solutions and ophthalmic ointments prolongs the ocular 
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residence time, forming drug depot on the ocular surface (148). Various colloidal nanoparticulate 

systems have been designed/developed to prolong the ocular residence of drugs for delivery to the 

back-of-the eye (149).  

Topical formulation approaches targeting the retina through the trans-scleral pathway is 

still in its infancy. Effective strategies will require candidates with ideal physicochemical 

characteristics and novel strategies capable of increasing the retention and absorption on the ocular 

surface. Ointments, gels and conjunctival films are dosage forms that provide close proximity to 

the conjunctiva and sclera and high, localized, concentration gradient generated in the conjunctival 

cul-de-sac, which favors ocular penetration, probably via the trans-conjunctiva-scleral pathway. 

Solvent casting method is typically used in the preparation of ocular inserts/films. The dried 

solvent cast formulations prepared using this technique can contain trace amounts of residual 

solvents, which could present safety issues (147, 150). Melt-cast or melt-extrusion technique 

particularly overcomes this disadvantage of solvent cast method while maintaining all the 

advantages. Additionally, the technique can be easily transferred to the manufacturing floor 

employing melt-extruders. The ocular inserts/films offers an attractive approach to prolong the 

pre-ocular residence time as well as prolong the duration of the ocular absorption phase through 

the controlled release characteristics of the films - thus increasing drug exposure to the posterior 

ocular tissues.  

The goal of the current research was to develop, characterize and evaluate the drug loaded 

topical inserts. Indomethacin (IN), prednisolone sodium phosphate (PSP) and ciprofloxacin 

hydrochloride (CIP) commonly employed in treatment of ocular inflammation and infections, and 

representing a wide range of physicochemical characteristics, were chosen for investigating ocular 

disposition from these topical, melt-cast films.  
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4.1. Materials and Methods 

4.1.1. Chemicals 

PEO [PolyOx® WSR N-10 (PEO N-10), MW: 100,000 Daltons] was kindly donated by 

Dow Chemical Company (Midland, MI). IN (Indomethacin), CIP (Ciprofloxacin hydrochloride) 

and PSP (Prednisolone sodium phosphate) were purchased from Sigma Aldrich (St. Louis, MO). 

All other chemicals were purchased from Fisher Scientific (St. Louis, MO).  

4.1.2. Animal tissues 

Whole eye globes of New Zealand albino rabbits were purchased from Pel-Freez 

Biologicals® (Rogers, AK), shipped overnight in Hanks Balanced Salt Solution (HBSS) over wet 

ice. Corneas and whole eye globes were used on the day of receipt. 

4.1.3. Animals 

Male New Zealand albino rabbits (2-2.5 kg) procured from Harlan laboratories® 

(Indianapolis, IN) were used for all the studies. All animal experiments conformed to the tenets of 

the Association for Research in Vision and Ophthalmology statement on the Use of Animals in 

Ophthalmic and Vision Research and followed the University of Mississippi Institutional Animal 

Care and Use Committee approved protocols (UM protocol no: 14-022). 

4.1.4. Formulations 

Preparation of ocular inserts / films 

Melt-cast technique was utilized for the preparation of the polymeric ocular inserts. PEO 

N10, a thermoplastic polymer was selected as the matrix forming material because of its excellent 

pliability and thermogelation characteristics. Physical mixtures of IN or CIP or PSP and PEO N10 

were prepared by geometric dilution. Drug load in all the inserts was maintained at 10% w/w. 

Polymeric films were cast using 13 mm die placed over a brass plate heated to 70°C using a hot 
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plate. The physical mixture of drug and polymer was introduced into the center of the die and 

compressed with the 13 mm punch to form a flat solid pre-mix. The mixture was further heated 

for 2-3 min. After cooling, 4 mm x 2 x 0.2 mm rectangular inserts weighing approximately 8 mg, 

providing a drug load of 0.8 mg, were cut and used for further studies.  

IN control solution (IN-CS-SOL) 

IN control formulation was prepared by dissolving IN in an aqueous solution containing 

1% w/v Tween 80® and 29.3% w/v propylene glycol. Cationic polymer namely chitosan chloride 

(Mol wt < 200kDa) (0.25% w/v) was added into the formulation and pH was adjusted to 6.8.  

PSP and CIP control solutions 

Marketed PSP 1% w/v ophthalmic solution (Mfg. By: Bausch and Lomb®) and CIP 0.3% 

w/v ophthalmic solution (0.35 mg of CIP equivalent to 0.3 mg ciprofloxacin (base)) (Mfg. By: Hi-

Tech Pharmacal) were used as control formulations to compare with PSP and CIP inserts. CIP 

control solution (0.2% w/v) prepared by dissolving CIP in phosphate buffer (pH 6.0) was used for 

in vitro studies. CIP marketed formulation (0.3% w/v) served as the control for the in vivo studies.  

4.1.5. Analytical procedure for in vitro samples 

Analysis of drug molecules was carried out using Waters HPLC system with 600 E pump 

controller, 717 plus auto sampler and 2487 UV detector. Data handling was carried out using an 

Agilent 3395 integrator. IN stock solution was prepared in methanol. A 71:29.5:0.5 mixture of 

methanol, water and o-phosphoric acid was used as mobile phase with Phenomenex Luna® 5 

µm C18 100 Å, 250 x 4.6 mm column at a flow rate of 1 mL/min and 270 nm (42). 

Analysis of CIP was carried out using mobile phase mixture of Acetonitrile and water 

(50:50), pH was adjusted to 3.0 with o-phosphoric acid. Phenomenex Luna® 5 µm C18 100 

Å, 250 x 4.6 mm column used at a flow rate of 1 mL/min and 299 nm (151). 
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PSP was analyzed using a mixture of 18 mM phosphate buffer: methanol (38:62) and 0.1% 

w/v trimethylamine (pH 2.5) as the mobile phase. Phenomenex Luna® 5 µm C8 100 Å, 250 x 4.6 

mm column was used at a flow rate of 1 mL/min and detection wavelength 218 nm. The reported 

analytical method was modified and validated prior to sample analysis (152). The linearity 

regression correlation coefficient in the constructed calibration curves was within the limit (≥0.99). 

Percentage relative standard deviation (RSD) values for the precision were found to be less than 

2%. The percentage RSD for peak area response and retention were found within the prescribed 

limits. The linearity, accuracy and precision were observed to be acceptable over the working 

standard ranges in the all of the analytical methods.    

4.1.6. Assay and content uniformity 

IN content in polymeric inserts was determined using methanol and dimethyl sulfoxide 

(DMSO) 50:50 mixture as an extraction solvent. CIP and PSP was extracted from the films using 

50:50 water and methanol. Content uniformity was determined from four, randomly cut, units from 

a single 13 mm insert, and analyzed as described under analytical procedure using a high 

performance liquid chromatography – UV (HPLC-UV) method. 

4.1.7. Differential scanning calorimetry (DSC) and Fourier transform infrared (FT-IR) 

Spectroscopy  

DSC thermograms for pure IN or CIP or PSP, PEO N10 and the 10% w/w inserts were 

collected using a Diamond Differential Scanning Calorimeter (Perkin-Elmer Life and Analytical 

Sciences) (153).The samples were weighed and sealed in aluminum pans and were heated from 

0oC to 270oC at a heating rate of 10oC/min under nitrogen purge (20 mL/min). Infrared spectra 

(IR) for PEO N10, drug/polymer physical mixture, IN or CIP or PSP, and melt cast inserts (10% 
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w/w) were obtained using a Cary 660 series FTIR (Agilent technologies) and MIRacle ATR 

(Attenuated Total reflectance). 

4.1.8. In vitro release and transcorneal permeability studies 

In vitro release of CIP, IN and PSP from the ocular inserts was tested across standard US 

100 mesh sieve in 20 mL scintillation vials. The insert was placed in the vial and the sieve was 

placed over the films and 10 mL of 5% w/v RMβCD in IPBS (pH 7.4) was added as the 

release/dissolution media. A stir bar was placed on the sieve and the whole assembly was placed 

over a hot plate maintained at 34°C under stirring (spin bar) for 2 h. Aliquots (600 µL) were 

collected at specific intervals and replaced with fresh medium. Samples taken were analyzed using 

HPLC-UV.  

Corneas excised from whole rabbit eyes were used for the determination of in 

vitro transcorneal flux of the compounds from the various formulations. Whole eyes were shipped 

overnight in HBSS, over wet ice, and were used immediately upon receipt. The corneas were 

excised with some scleral portion adhering to help secure the membrane between the donor and 

receptor compartments during the course of a transport study. The temperature was maintained at 

34°C with the help of a circulating water bath. In vitro permeability of IN, PSP, CIP across the 

corneal membrane was investigated using the Valia-Chien cells (PermeGear, Inc., Hellertown, 

PA). The in vitro permeability studies were carried out for a period of 3 h. All the formulations 

were tested for transcorneal permeability at equivalent doses. Four hundred microliters of IN 

Control solution and IN Insert (5% w/w) (Dose: 400 µL (400 µg); 400 µg), PSP Control marketed 

solution (1% w/v) and PSP Insert (10% w/w) (Dose: 80 µL (800 µg); 800 µg), CIP Control (0.2% 

w/v) and CIP Insert (10% w/w) (Dose: 400 µL (800 µg); 800 µg) formulations were placed in the 

donor compartment. The inserts were slightly wetted, by adding 50 µL of IPBS in the donor 
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compartment, at the start of the experiment. Aliquots were withdrawn at specific time intervals 

and analyzed for CIP, PSP or IN content using HPLC-UV method.  

4.1.9. Data Analysis 

The transcorneal flux was obtained by dividing the rate of drug transport by the surface 

area exposed to permeant and rate of transport was obtained from slope of linear regression 

analysis plot between cumulative amounts of drug transported versus time. Transcorneal flux was 

calculated using the equation below.   

Flux (J) =

dM
dt
A

 

Where M is cumulative amount of drug and A is the surface area of the corneal membrane 

(0.636 cm2) exposed to the permeant (drug).  

4.1.10. In vivo bioavailability studies 

In vivo ocular bioavailability of IN, PSP and CIP was determined in conscious Male New 

Zealand albino rabbits weighing between 2.0-2.5 kgs. In these studies, IN-CS-SOL, PSP and CIP 

solutions (control; 100 µL) were instilled as instilled as two doses (50 µL each dose) at two 

different time points, -30min and 0 min, to reduce pre-corneal loss. 10% w/w loaded IN insert 

(Dose: 0.8 mg) was placed in the cul-de-sac of the rabbit eyes. Ocular bioavailability of PSP and 

CIP was investigated following the instillation of 1% w/v PSP marketed topical ophthalmic 

formulation (control; 100 µL: 1 mg) (Bausch & Lomb), 0.3% w/v CIP marketed solution (Control; 

100 µL: 300 µg) and administration of PSP insert (Dose: 0.8 mg), CIP insert (Dose: 0.8 mg) in 

conjunctival sacs of the rabbit eyes. At the end of 2 h, following topical application of the 

aforementioned formulations, the rabbits were euthanized with an overdose of pentobarbital 

injected through the marginal ear vein. The eyes were washed with ice cold IPBS and immediately 
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enucleated and washed again. Ocular tissues were separated, weighed and preserved at -80°C until 

further analysis. All experiments were carried out in triplicate.  

4.1.11. Bio analytical method and samples preparation 

The in vitro analytical HPLC-UV methods described above was employed for bio-sample 

analysis following method validation. Protein precipitation technique was used for determining 

drug concentrations in the ocular tissue homogenates. Briefly, tissues such as cornea, sclera, iris-

ciliary (IC), retina-choroid (RC) were cut into very small pieces and added into Eppendorf® tubes. 

A mixture of ice-cold acetonitrile and 0.1% w/v formic acid (1 mL) was then added to precipitate 

proteins from each individual tissue. The supernatant was then collected after centrifugation for 1 

h at 13,000 rpm prior to analysis. Aqueous humor (AH) (200 µL) and Vitreous humor (VH) (500 

µL) were precipitated by adding an ice-cold mixture of 200 µL for AH and 500 µL for VH in the 

ratio (1:1). Quantification was carried out using calibration curves constructed from respective 

ocular tissues such as cornea (20-500 ng), sclera (20-500 ng), AH (10-200 ng), VH (10-200 ng), 

IC (10-200 ng), RPE (10-200 ng). All the standard curves had a coefficient of determination r2 ≥ 

0.96. Recovery of the drugs was quantitated by spiking drug in blank AH, VH, and comparing the 

expected drug concentration with standard concentration. Recovery values were determined in AH 

(93.1-94.7) and VH (91.5-93.2). Interference was not observed from co-eluted protein residues 

with respect to drug peaks in all the tissues.  

4.1.12. Statistical analysis 

All the data presented in these experiments was reported as an average of triplicate for the 

same time points. One way ANOVA was carried out to test and compare treatment groups at 

different levels of significance and Student t-test was used to compare differences within two 

groups. A ‘p’ value less than 0.05 was considered to express statistically significant difference. 
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4.2. Results 

4.2.1. Assay and content uniformity 

IN / CIP / PSP content in all the inserts was approximately between 90% and 95% of the 

theoretical value. The compounds were observed to be uniformly distributed within the polymeric 

framework (RSD < 2.3%) and the films exhibited good pliability and tensile strength.  

4.2.2. DSC and FT-IR studies 

The polymeric inserts were studied for thermal characteristics and excipient compatibility 

using DSC. DSC thermograms of pure PEO N10, PEO N10 film, pure drug, physical mixture and 

polymeric insert are presented in Figures 4.1 and 4.2. IN (Fig. 4.1) and CIP (Fig. 4.2) exhibited an 

endothermic peak at 162°C and 153°C corresponding to their melting points. PEO N10 and PEO 

N10 film exhibited a melting point temperature of 68°C. The characteristic peaks of IN and CIP 

were absent in the polymeric inserts indicating that there was significant reduction in crystallinity.  

FTIR spectra of pure IN exhibited characteristic bands of secondary carbonyl groups 

(C=O) at 1710 cm-1, (C=O amide) at 1687 cm-1, phenyl groups (C=C stretch vibration) at 1593 

cm-1 and (O-H stretch vibration) at 2964 cm-1. Pure PEO revealed –CH stretching at 2880 cm-1 

(Fig. 4.3). FTIR spectra of PSP showed two carbonyl stretching peaks at 1708 cm-1 and 1654 cm-

1   while peaks at 1596 cm-1 and 1100 cm-1 correspond to the NH and OH bending (Fig. 4.4). The 

FTIR spectra of CIP showed characteristic peak at 3500 and 3450 cm-1 corresponding to OH 

stretching vibration. The band at 1701 cm-1 indicated carbonyl C = O stretching, while the peak at 

1617 cm-1 belongs to quinolone. The band at the 1445 cm-1 represented carbonyl group and the 

peak at 1250 cm-1 suggested bending vibration of O-H group which indicated the presence of 

carboxylic acid (Fig. 4.5). The FTIR spectra of physical mixtures were similar to those of 

respective drugs and PEON10 individual spectra, which suggest that there was no chemical 
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interaction between drug and PEON10 in physical mixtures. However, characteristic bands of the 

IN (carbonyl, amide and phenyl functional groups), CIP (quinolone group) and PSP (carbonyl 

group) displayed lesser degree of intensities / disappeared in the insert formulations indicating 

chemical interaction between drug and the carrier occurred during the formulation processing 

steps.  

     

Figure 4.1: DSC thermograms of IN Insert, IN physical Mixture, pure IN, PEO Insert and pure 

PEO.   
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Figure 4.2: DSC thermograms of CIP Insert, CIP physical Mixture, pure CIP, PEO Insert and 

pure PEO.   
 

 

      
Figure 4.3: FT-IR spectra of IN Insert, IN Physical Mixture, pure IN, PEO Insert and pure PEO 

N10. 
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Figure 4.4: FT-IR spectra of PSP Physical Mixture, PSP Insert, pure PSP, PEO Insert and pure 

PEO N10. 
 

        
Figure 4.5: FT-IR spectra of CIP Physical Mixture, CIP Insert, PEO N10 Insert, pure CIP and PEO 

N10.  

4.2.3. In vitro release 

Percentage release of IN, PSP, CIP from the polymeric films was determined to be 100.2 

± 6.9, 92.7 ± 4.8 and 85.3 ± 9.4 %, respectively, at the end of 2 h (figure not presented).   

4.2.4. Transcorneal permeability studies    
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In vitro transcorneal flux profiles obtained from different topical insert formulations, 

compared to their respective control solutions at an equivalent dose, is presented in Figure 4.6. 

Transcorneal flux of IN, PSP, CIP were enhanced by ~ 3.5, ~ 3.6 and ~ 2.9-folds, respectively, 

from the polymeric inserts when compared to their control formulations.  

Figure 4.6: In vitro transcorneal flux obtained from different topical formulations at equivalent 

doses using valia-chien cells at 34°C. Formulation tested include IN Control (0.1% w/v), IN insert 

(5% w/w) (Dose: 400 µL (400 µg); 400 µg). PSP Control solution (1% w/v), PSP Insert (10% 

w/w) (Dose: 80 µL (800 µg); 800 µg). CIP Control (0.2% w/v), CIP Insert (10% w/w) (Dose: 400 

µL (800 µg); 800 µg). Symbolic representation on the formulation indicate the statistically 

significant difference in flux compared to control.  

 

4.2.5. In vivo bioavailability studies  

Ocular tissue concentrations obtained with drug loaded polymeric inserts were evaluated 

in conscious rabbit model, 2 h post topical application. IN-CS-SOL did not deliver drug into RC 

but delivered into the cornea (0.9 ± 0.09 µg/g), sclera (0.4 ± 0.19 µg/g), IC (0.12 ± 0.04 µg/g) and 

AH (0.15 ± 0.03 µg/g) whereas IN insert delivered drug into RC (1.08 ± 0.26 µg/g). Furthermore, 

IN insert enhanced IN levels by ~10 folds (AH), ~27-folds (IC) and ~8.5-folds (cornea) when 

compared to IN-CS-SOL formulation (fig.4.7.).  
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Figure 4.7: In vivo IN concentrations (µg/gm of tissue) obtained from 0.1% w/v IN-CS-SOL, and 

10% w/w IN Insert (Dose: 0.1 mg, 0.8 mg & 0.8 mg respectively), 2 h post topical application in 

conscious rabbit model. All experiments were performed in triplicate. AH: Aqueous Humor; RC: 

Retina-Choroid; IC: Iris-Ciliary. No levels were detected in VH. ND-not detectable. * Symbol 

represented on ocular tissues indicate statistical significance of IN concentrations obtained from 

the IN insert in comparison to control (p<0.05).  

PSP control solution delivered drug into ocular tissues namely AH (0.3 ± 0.04 µg/mL), IC 

(1.07 ± 0.5 µg/g), cornea (1.55 ± 0.85 µg/g) and sclera (0.77 ± 0.41 µg/g). While the PSP control 

solution couldn’t deliver drug into the RC and VH, the insert - even at a lower dose compared to 

the PSP control - delivered PSP into the VH (0.09 ± 0.008 µg/mL) and RC (1.28 ± 0.52 µg/g). 

Moreover, the insert generated significantly greater PSP in all the other ocular tissues tested 

(fig.4.8.). 
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Figure 4.8: In vivo PSP concentrations (µg/gm of tissue) obtained from 10% w/w PSP Insert and 

PSP control solution (1% w/v) (Dose: 0.8 mg, 1 mg respectively), 2 h post application in conscious 

rabbit model. All experiments were in triplicates. AH: Aqueous Humor; RC: Retina-Choroid; IC: 

Iris-Ciliary; VH: Vitreous Humor. Low levels were detectable in VH. (N.D - Not detectable). 

Symbol representation on ocular tissues indicate the statistical significance of PSP concentrations 

obtained from the insert formulation in comparison to control (p<0.05). 

Similarly, CIP concentrations obtained with the control solution in the AH (0.51± 0.2 

µg/mL), IC (0.47 ± 0.17 µg/g), cornea (0.86 ± 0.16 µg/g) and sclera (0.15 ± 0.01 µg/g) were 

significantly lower than that obtained with the inserts. The control solution formulations did not 

deliver CIP to the VH and RC, whereas the insert successfully delivered CIP into the VH (0.13 ± 

0.05 µg/mL) and RC (0.6 ± 0.17 µg/g) (fig.4.9.).   
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Figure 4.9: In vivo ocular tissue concentrations of CIP obtained from 0.3% w/v CIP control 

solution (Dose: 100 µL; 350 µg), 10% w/w CIP Insert (Dose: 0.8 mg) in conscious rabbit model 

following 2 h post topical application. AH: Aqueous Humor; RC: Retina-Choroid; IC: Iris-Ciliary; 

VH: Vitreous humor. ND: Not detectable. Symbolic representation on ocular tissues indicate the 

statistical significance of CIP concentrations obtained from the insert formulation in comparison 

to control (p<0.05).  

4.3. Discussion 

The overall objective of the current research is to develop a standard prototypical, 

noninvasive, ocular drug delivery platform, effective for molecules representing a wide spectrum 

of physico-chemical properties, for back-of-the eye drug delivery. The melt-cast / melt-extrusion 

technology is a simple, solvent free, continuous process, for preparing unit dosage forms, which 

undergo gelation upon contact with tear fluid, prolonging the release and retention on the ocular 

surface. The compound to be delivered can possess a range of hydrophilicity/lipophilicity, as 

demonstrated in the present project, and could be formulated at significantly higher loading. 

Compounds embedded in the carrier matrix will be transformed into an amorphous state or get 

entrapped as a molecular dispersion after fabrication using thermal technique. Moreover, 

preservatives and solubilizers are not required, eliminating unnecessary excipients and processing 

* 
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steps. Furthermore, modified release platforms could be designed by varying the thermoplastic 

polymers or molecular weights and combinations.  

The solubility of CIP, a zwitterion, is greatly reduced at the pH 7.4, which is close to its 

isoelectric point. This may cause CIP to crystalize when the ophthalmic solutions (formulated in 

the acidic pH range) come into contact with the tear fluid. In the melt-cast inserts, for all three 

drugs, absence of detectable crystalline domains in the DSC thermograms demonstrate that the 

drug was completely dispersed or solubilized in the carrier polymer, at this 10% w/w drug loading.  

An interaction between drug and polymer could be reflected by a change in the position of 

C=O vibration and disappearance of O-H stretching in the FT-IR spectra depending on the extent 

of the interaction. The FT-IR spectra of the insert formulations exhibited lower peak intensities / 

were masked indicating slight interaction with the polymer PEO N10. The release studies, 

however, indicated that 100% of the drug was released within 2 hours. Moreover, in vitro 

transcorneal flux of the three actives from the inserts was increased by ~ 2.5 to 3.5-folds when 

compared to the respective control solutions. This could be due to enhanced drug retention and 

accumulation in the corneal and conjunctival epithelial layers from the transformed gel (in vitro).  

Penetration of drugs through the conjunctival scleral pathway is reported in the literature 

(154, 155). Ocular tissue concentrations attained with the polymeric inserts in AH, IC and cornea 

was increased by ~6-8 folds in comparison to the control formulations. Cationic mucoadhesive 

polymer (CS) was used at a concentration of 0.1% w/v to improve corneal penetration 

characteristics and thereby intraocular bioavailability of IN from control solution. However, IC 

levels obtained with IN control solution was ~27-fold lower at 1/8th dose of insert formulation. IN 

control Retinal concentrations were obtained in vivo with the IN insert (1.08 ± 0.27 µg/g), PSP 

insert (1.28 ± 0.52 µg/g) and CIP insert (0.60 ± 0.17 µg/g) formulations, whereas control solutions, 
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couldn’t deliver drug into RC. The inserts form localized drug depots, in close proximity to the 

conjunctival-scleral tissues, and thus helps drive the molecules to the retinal tissue, through the 

conjunctival-scleral route. Thus, advantage of inserts, as a platform providing access to the trans-

scleral pathway, could be exploited to overcome the physico-chemical limitations of molecules. 

Additionally, feasibility of higher drug loading and use of penetration enhancers, if needed, 

provides even greater flexibility to the dosage form. The melt-cast technique can be easily 

translated or scaled up for manufacturing using melt-extrusion technology, which also minimizes 

the exposure time to higher temperatures (2-3 minutes) allowing processing of some thermolabile 

compounds also. 

There have been a few reports attempting back-of-the eye delivery of therapeutic agents 

through the topical route. In an earlier study, IN was loaded into nanostructured lipid carrier (NLC) 

at 0.8% w/v and was evaluated in conscious rabbits, 2 h post-topical administration of 100 µL 

(Dose: 800 µg). Retinal levels (0.89 ± 0.31 µg/g) were also observed with the NLC formulation 

(156). In another report, an IN (0.1% w/v) ophthalmic solution made up of poloxamer® 407 (10% 

w/w) enhanced AH concentrations by ∼2-fold when compared to Indocollyre® (marketed 

ophthalmic solution), 2 h post-topical administration of 150 µL formulation (Dose: 150 µg) (40). 

Schultz et al impregnated prednisolone into hydrogel contact lenses by placing them in diluted 5 

mg/mL prednisolone suspension. These contact lenses were evaluated for posterior segment 

(retina, choroid, and macula) concentrations in anesthetized rabbits following 4 h 

treatments/application on days 1, 2, 5, 8 and 10. On day 11 retinal concentrations obtained were 

in range of 26-166 ng/g (157). Taha et al evaluated CIP loaded liposomes (0.3% w/v) in conscious 

rabbits following topical application of 50 µL formulation (Dose: 150 µg) (158). The authors 

report that AH concentrations was increased by ~0.3-folds when compared to CIP marketed 
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ophthalmic formulation. The polymeric noninvasive inserts developed in this study, delivered 

significantly higher drug levels to all the ocular tissues tested, in comparison to the control and 

other literature reports. 

It is widely acknowledged that IN acts as an anti-inflammatory agent through the inhibition 

of COX-2 enzyme, abundantly present in ocular tissues namely cornea, iris, ciliary body and retina 

(159). Mitchell et al reported half-maximal inhibitory concentration (IC50) of IN required for 

COX-2 activity in endotoxin activated J774.2 macrophages to be 0.6 µg/mL (160). MIC90 of 

ciprofloxacin is reported to be 0.5 µg/mL (161). Therapeutic concentration of prednisolone 

required to inhibit inflammatory mediated processes in AH (humans) is reported to be 25 ng/mL 

(162). Drugs levels for optimal activity are reported in terms of solution concentrations, which 

reflects the therapeutic levels needed in AH and VH tissues. Ocular tissues namely IC and RC are 

in dynamic equilibrium with AH and VH, so the therapeutic levels required in AH and VH could 

be interpreted to be good therapeutic response indicators in the ocular tissues. Drug levels obtained 

in all the ocular tissues, post 2 h, with inserts were several folds higher than the reported minimal 

concentrations, demonstrating that inserts could maintain therapeutic drug levels for prolonged 

durations following topical application.  

4.4. Conclusion 

In conclusion, the results from these studies suggest that the development of solvent free, 

melt-cast or melt extruded ocular inserts is a highly feasible, noninvasive approach for the delivery 

of a wide range of drugs, with different physico-chemical properties, to the ocular tissues. The 

high localized drug loads, intimate contact with the conjunctiva, increased retention time and quick 

transformation into a gel form make this efficient for delivering to the back-of-the eye tissues also. 

These formulations would be marketed as unit dosage forms and do not need any preservatives or 

solubilizers. Penetration enhancers may be incorporated to further increase ocular bioavailability. 
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Thus, the melt-cast / melt-extruded films could shift the paradigm for drug delivery to the back-

of-the eye.   
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                                                      CHAPTER 5 

 

NON-INVASIVE CATIONIC COLLOIDAL NANOCARRIERS FOR OCULAR 

DELIVERY OF NATAMYCIN: PREPARATION AND EVALUATION 
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5. Introduction 

Ocular drug delivery appears to be one of the most interesting and challenging fields for 

the pharmaceutical scientist. Topical application of drugs to the eye is the most favored, safest and 

popular route of administration for the treatment of various ocular disorders/complications. The 

ophthalmic bioavailability of topically instilled drugs is, however, very poor due to efficient 

protective mechanisms encountered in the ocular milieu (163-165). Ocular fungal infection, 

namely mycotic keratitis (MK), is characterized by feathery-edged infiltrates and satellite lesions 

across the cornea, which could lead to vision loss and blindness, if left untreated (166). Fungal 

keratitis may attack orbit, lids, lacrimal apparatus, conjunctiva, sclera, and other ocular structures 

during the progression (167). Natamycin (NT) is a macrolide polyene antifungal agent with a broad 

spectrum of activity against various infectious fungi such as Fusarium, Aspergillus, and Candida 

species. NT has been considered as the first line of therapy for filamentous MK (168, 169). NT 

suffers from poor aqueous solubility but is effective at very low concentrations with MIC 

(minimum inhibitory concentration) of less than 10 ppm. NT elicits its activity by binding to 

ergosterol, a sterol unique to fungal cytoplasm (170, 171). Currently, Natacyn® (NT 5% w/v 

suspension) is the only commercially available US-FDA approved ophthalmic formulation for the 

treatment of MK. The frequency of administration of NT suspension is prescribed as one drop 

instilled in the conjunctival sac at hourly or two hourly intervals for several days. The shortcomings 

of the current therapy include high dosing frequency, long treatment duration (4–6 weeks), and 

low pre-ocular residence time. The current NT therapy may not attain optimal concentration at the 

site of infection, resulting in treatment failure and increased resistance (172, 173). Hence, there is 

a urgent clinical need to improve patient compliance and efficiency of therapy, with reduced 

frequency of administration, by designing a corneal targeted, prolonged release delivery system of 
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NT. There were a few reports in the literature on ocular delivery of NT using novel approaches 

(174, 175). To overcome the shortcomings associated with the marketed preparation, cationic lipid 

based nanoparticles (CLBN) were developed, which could prolong pre-ocular residence and 

improve mucoadhesion for efficient delivery of NT into the ocular tissues.  Reports indicate that 

cationic nanoparticles exhibit greater corneal affinity and interaction compared to the negatively 

charged nanoparticles. The applicability of these nanoparticles as ocular delivery vehicles was 

investigated in this work. The goal of the present project is to prepare NT loaded CLBN, evaluate 

in vitro permeability and ocular tissue distribution in vivo, using Natacyn® 5% w/v Ophthalmic 

Suspension as the control.  

 

Figure 5.1: Chemical structure of Natamycin 
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5.1. Materials and Methods 

5.1.1. Chemicals 

Natamycin and di-dodecy dimethyl ammonium bromide was obtained from Sigma Aldrich 

(St. Louis, MO). Glyceryl Monostearate was obtained as a gift sample from Gattefossé (Paramus, 

NJ). Amicon® Ultra centrifugal filter devices with regenerated cellulose membrane (molecular 

weight cut off 100 kDa), Poloxamer 188, Tween®80, high performance liquid chromatography 

(HPLC) - grade solvents, and other chemicals (analytical grade) were obtained from Fisher 

Scientific (Hampton, NH). Whole eyes of male albino New Zealand rabbits were obtained from 

Pel-Freez Biologicals (Rogers, AR). Male albino New Zealand rabbits were procured from Harlan 

Labs (Indianapolis, IN). 

5.1.2. Preparation of NT loaded CLBN  

NT loaded CLBN were fabricated using ultra sonication method. Solid lipids, namely 

Glyceryl monostearate (GMS) and di-dodecyl dimethyl ammonium bromide (DDAB), were 

melted and NT was dissolved in it to obtain the lipid phase. An aqueous phase, prepared using 

surfactants such as Poloxamer 188 (0.25% w/v), Tween® 80 (0.75% w/v) and glycerin (2.25% 

w/v) in bidistilled water, was heated. The hot aqueous phase was then added to the melted lipid 

phase, under stirring, to form a premix (600 rpm, 1–2 min).  The premix was then subjected to 

emulsification at 16,000 rpm for 6 min using T 25 digital Ultra-Turrax to form a hot pre-emulsion. 

The pre-emulsion obtained was subjected to ultrasonication resulting in the formation of hot 

emulsion dispersion. The temperature during the entire process was maintained at 80±2°C. The 

hot emulsion obtained was slowly cooled to room temperature to form NT-CLBN.  

5.1.3. Analytical method for in vitro sample analysis  



  

93 
 

Samples were analyzed for NT content using an HPLC-UV method. The system comprised 

of Waters 717 plus Autosampler, Waters 2487 Dual λ Absorbance detector, Water 600 controller 

pump, and Agilent 3395 Integrator. A Phenomenex Luna® C8 4.6 mm x 250 mm column was used 

under isocratic elution for chromatographic analysis. The mobile phase used was mixture (70:30) 

of phosphate buffer (pH 5.5) and acetonitrile.  The flow rate was set at 1 mL/min with 

λmax (detection wavelength) of 304 nm during the analysis (176).  

5.1.4. Physico-chemical Characterization  

The hydrodynamic radius and the PDI of the NT CLBN formulation was determined by 

photon correlation spectroscopy, using Zetasizer Nano ZS Zen3600 (Malvern Instruments, Inc.) at 

25°C and 173° backscatter detection, in disposable clear cells. The measurements were obtained 

using a helium-neon laser of 633 nm, and the particle size analysis data was evaluated using 

volume distribution.  

Zeta potential measurements were carried out at 25°C in disposable cells using the same 

instrument. For measurement of particle size distribution and zeta potential, CLBN samples were 

diluted (1:500) with water. Bi-distilled and 0.2 μM filtered water was used for these measurements, 

and were performed in triplicates. 

5.1.5. Assay and Entrapment Efficiency  

The lipid in the NT CLBN formulation was precipitated using methanol and, drug content 

in the supernatant after centrifugation (13,000 rpm for 20 min), was measured using an HPLC 

system following appropriate dilution. 

The percentage of NT entrapped (% EE) in CLBN was determined by measuring the 

concentration of free drug in the aqueous phase of an undiluted formulation. The EE was evaluated 

by an ultrafiltration technique with a 100 kDa centrifugal filter device (Amicon Ultra). An aliquot 
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(500 μL) of the corresponding formulation was added to the sample reservoir and centrifuged at 

5,000 rpm for 10 min. The filtrate was analyzed for drug content using HPLC. The %EE was 

calculated using Eq. (1) below. All the measurements were carried out in triplicates.                                                                                                                         

                                                           %EE=[(Wi-Wf)/Wi]×100                               (1) 

Where Wi =total drug content, and Wf =amount of free drug in aqueous phase. 

5.1.6. In vitro release studies  

In vitro release of NT from marketed ophthalmic formulation (Natacyn®) and CLBN was 

evaluated by dissolution method using scintillation vials. Randomly methylated beta-cyclodextrin 

(RMβCD) solution (2.5% w/v; 10 mL) prepared in isotonic phosphate buffer (pH 7.4) was used as 

receiver medium during the course of the study (30 min).  Twenty microliters of the control 

formulation and 500 µL of CLBN was added into the medium. Aliquots (600 µL) were withdrawn 

from the receiver medium at predetermined time points and analyzed using HPLC-UV system. 

5.1.7. Transcorneal permeability studies  

Transmembrane permeability of NT from the formulations was evaluated across isolated 

rabbit cornea (Pel-Freez Biologicals®) using side-by-side diffusion cells. Three milliliters of 0.1% 

w/v NT-CLBN formulation, or, 1 mL of 5% w/v Natacyn® diluted with 2 mL of phosphate buffered 

saline (pH 7.4) were used as the donor formulations. Phosphate buffered saline containing 2.5% 

RMβCD was used as receiver medium (3.2 mL) during the experiment (3 h).  Aliquots (0.6 mL) 

were withdrawn from the receiver side at predetermined time points and immediately replaced 

with an equal volume of fresh RMβCD solution. Steady state flux, rate and permeability of NT 

was calculated following sample analysis by HPLC-UV. 

5.1.8. Biosample preparation and analysis 
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In vivo sample analysis was carried out using the HPLC-UV method mentioned above 

following method validation. Mixture of ice cold methanol and 0.1% formic acid (1 mL) was added 

to the sample to precipitate proteins and extract the drug from individual, tissues namely cornea, 

sclera, iris-ciliary (IC) and retina-choroid (RC), after cutting them into small pieces. The samples 

were centrifuged for 1 h at 13,000 rpm and the supernatant was then collected for further analysis. 

Aqueous humor (AH) (200 µL), vitreous humor (VH) (500 µL) tissues were precipitated by adding 

an ice cold mixture of acetonitrile & formic acid; 200 µL for AH and 500 µL for VH in the ratio 

(1:1). Standard calibration curves constructed from various ocular tissues such as cornea (20-500 

ng/mL), sclera (20-500 ng/mL), AH (10-200 ng/mL), VH (10-200 ng/mL), IC (10-200 ng/mL), 

RPE (10-200 ng/mL) were used to determine the drug concentration in the samples. All the 

standard curves had a coefficient of determination r2 ≥ 0.96. Interference was not observed from 

the co-eluting proteins during analysis.  System configuration was as described for the in vitro 

analysis. 

5.1.9. In vivo bioavailability studies 

In vivo bioavailability of NT was determined in conscious Male New Zealand albino 

rabbits weighing between (2-2.5 kg), procured from Harlan labs. All the animal studies conformed 

to University of Mississippi Institutional Animal Care and Use Committee (IACUC) approved 

protocols and Association for Research in Vision and Ophthalmology (ARVO) guidelines. NT 

formulations, namely marketed ophthalmic control suspension and CLBN formulation, were 

evaluated in vivo at doses of 5 mg and 100 µg, respectively. These topical formulations (100 µL) 

were instilled as two application (50 µL each application), at -30 min and 0 min, to reduce pre-

corneal loss. At the end of 1 h post application of the second drop (0 min), rabbits were euthanized 

with an overdose of pentobarbital, injected through a marginal ear vein. The eyes were washed 
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thoroughly with ice cold DPBS and were immediately enucleated. The intraocular tissues were 

separated and stored at -80 °C until further analysis using an HPLC-UV system. Ocular disposition 

of NT from NT CLBN formulation was also evaluated at an additional time point - 2 h post dosing. 

All experiments were carried out in triplicate. 

5.1.10 Statistical analysis 

One way ANOVA with Post-hoc test was carried out to analyze the difference between the 

groups. Statistically significant difference was considered at a level of p<0.05.  

5.2. Results  

5.2.1. Physico-chemical characteristics and in vitro release 

NT content in the formulations was observed to be in the range of 92-95% of the theoretical 

value. Mean hydrodynamic radius, zeta potential, polydispersity index & entrapment efficiency of 

the NT-CLBN were 159.6 ±12.5; 1.24 ± 0.07 mV; 0.28 ± 0.03 and 76.4 ± 2.1 %, respectively. 

Percentage release of NT from CLBN was observed to be 65 ± 1.14 in 30 minutes, whereas 94.1 

± 1.93 % NT dissolved within 5 minutes from the Natacyn® ophthalmic suspension. 

5.2.2. In vitro corneal permeability 

Transcorneal permeability of NT was enhanced ~ 3-folds from the CLBN formulation 

when compared to Natacyn® control suspension formulation. The results from these studies 

suggest that cationic lipid based NT loaded nanoparticles could enhance transmembrane delivery 

of the drug molecule.  
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Figure 5.2: Transcorneal permeation characteristics of NT from CLBN (donor 1mg/mL)                           

and Natacyn® (donor 17 mg/mL) suspension across isolated rabbit cornea at 34° C (n=3).  

5.2.3. In vivo bioavailability studies  

The NT suspension formulation produced significantly higher corneal concentrations than 

the NT CLBN. Interestingly, however, the AH NT concentration achieved with both formulations 

were similar, even though there was a 50-fold dose difference. Moreover, the NT CLBN was the 

only formulation that could deliver NT to the retina-choroid. Understandably, NT concentrations 

at the 2 h time point was significantly lower compared to that at the end of 1h.  
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Figure 5.3: Ocular tissue concentrations of NT obtained from marketed control suspension 

(Dose: 100 µL; 5 mg) and NT CLBN (Dose: 100 µL; 100 µg) 1 & 2 h post topical application 

in a conscious rabbit model.  * symbol represents statistically significant difference of NT 

control in comparison to all the formulations. $ symbol represents statistically significant 

difference of NT CLBN 1h compared to NT CLBN 2h. £ symbol represents statistically 

significant difference of NT CLBN 1h in comparison to all the formulations in RC.    

 

5.3. Discussion 

Nanotechnology revolutionized the field of ocular drug delivery by overcoming the 

limitations of rapid clearance and poor bioavailability into the deeper ocular tissues (177, 178). 

Nanoparticles owing to their smaller particle sizes may lessen ocular shear force during blinking 

elimination process, reduce discomfort and improve precorneal residence time thereby reducing 

the dose and dosing frequency, making them interesting candidates for ocular delivery (179-181). 

NT is amphipathic molecule with an isoelectric point of 6.5. Bulk of the NT molecule is 

hydrophobic, whereas carboxyl group and mycosamine moieties are hydrophilic. NT has a 

molecular weight of 665.73 g/mol and conjugated double bond structure with poor aqueous 
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solubility, therefore it is formulated as a conventional ophthalmic suspension formulation (181-

183). Currently, NT is the only FDA-approved antifungal for the treatment of mycotic or fungal 

keratitis (MK/FK). The typical frequency of dosing is one drop at hourly or 2 hourly intervals for 

the first 48 hours depending on the severity of the infection and may be reduced subsequently. The 

therapy is generally continued for 6 weeks or until resolution of FK (184).  

MK is an infection where the drug needs to localized and maintained at the target site for 

prolonged periods for management of disease condition. Polyene antibiotics with higher dose and 

dosing frequency may cause corneal irritation and systemic toxicity (due to naso-pharyngeal 

systemic absorption) with long term usage. Also, poor ocular bioavailability of NT from the 

marketed formulation could be attributed due to its low corneal permeability (185, 186). NT 

formulations with lower strength and higher penetrating ability across ocular mucosa would be 

more beneficial for the anti-fungal therapy. The objective of present study is to develop cationic 

lipid nanoparticulate delivery system of NT with a low payload and compare it with Natacyn in 

terms of in vitro transcorneal permeability and in vivo ocular disposition.  

The physico-chemical characteristics of NP namely particle size, zeta potential and 

encapsulation efficiency play a crucial role in mucoadhesivity, penetration ability, and stability of 

the formulation (187, 188). The particle size obtained with NT loaded nanoparticles was below 

200 nm, which could cross the corneal barrier, as per previously published reports in the literature 

(189-191). Also, zeta potential was slightly positive indicating that cationic lipid (DDABB) 

imparted surface charge onto the nanoparticles. Release studies conducted in aqueous media (10 

mL) without use of artificial membrane indicate/simulate drug release into the ocular tear fluid. It 

was observed that lipid nanoparticles prolonged the NT released when compared to suspension in 

the dissolution medium.  
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Compared to Natacyn® control, transcorneal permeability of NT was enhanced ~3-folds 

from the CLBN formulation which could be due to transcytosis/endocytosis mechanisms across 

ocular epithelial layers. Also, due to the mucoadhesivity of the nanoparticles, lipid systems may 

prolong the pre-ocular residence of NT, when compared to suspension formulations. The MIC90 

values were found to be 1.56 and 3.12 µg/mL for A. fumigatus and C. albicans strains respectively. 

Marketed suspension formulation was able to deliver ~3 and 4-fold higher concentrations to 

superficial tissues such as corneal and sclera when compared to NT nanoparticles at 50-fold higher 

dose 1 h post topical instillation. Lower concentrations were obtained in AH and IC tissues and 

NT was undetectable in RC with marketed formulation. However, NT lipid formulations delivered 

drug into RC 1 h post topical application. Cornea and sclera NT levels decreased by ~6 and 5-folds 

at the end of 2h when compared to 1hr from the lipid formulation. Also, retinal levels of NT were 

undetectable at the end of 2 h when compared to 1 h from the lipid formulation. NT lipid 

nanoparticles maintained MIC 90 levels (aspergillus) in the cornea and RC whereas marketed 

suspension formulation maintained 3, 1.7-folds over above the MIC90 levels in the cornea and 

sclera at 50-fold higher dose till 1hr time point.  

5.4. Conclusion 

Ultra-sonication method can be used to fabricate NT loaded cationic SLNs. The 

nanoparticles exhibited optimal physico-chemical characteristics with lower hydrodynamic radius 

and higher entrapment efficiency. Cationic lipid based nanoparticles of NT demonstrated better 

corneal permeability characteristics and higher ocular bioavailability at lower dose when compared 

to marketed suspension formulation. However, further studies are required to evaluate the clinical 

efficacy of NT nanoparticles. The results from the studies suggest that NT loaded nanoparticles 



  

101 
 

are feasible platforms for topical delivery with lower dose and dosing frequency of NT with 

improved patient compliance.   
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                                                    CHAPTER 6 

OCULAR DELIVERY OF RESVERATROL FOR THE TREATMENT OF DIABETIC 

RETINOPATHY 
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6. Introduction 

Diabetic retinopathy (DR) is the most common diabetic eye disease and a leading cause of 

blindness in American adults. From 2000 to 2010, the number of cases of DR increased 89%, from 

4.06 million to 7.69 million, and is projected to increase to 14.6 million by 2050 (83, 84, 192).  

Oxidative stress and inflammation play a critical role in the initiation and progression of DR which 

could lead to progressive loss of vision and blindness if untreated (193, 194). Etiology of DR 

involves multiple pathological mechanisms. Current treatment strategies of DR involve surgical 

intervention, laser therapy and direct intravitreal drug administration. These extreme invasive 

therapies, may cause retinal detachment, conjunctival blebs, cataracts, endophthalmitis and 

increased intraocular pressure and many severe side effects (195-197). A major shortcoming of 

the current pharmacological approaches is that no one candidate appears to be capable of 

reversing/blocking the multifactorial pathology of DR. Multiple reports suggest that 

phytochemicals, with their antioxidant and anti-inflammatory properties, may have a potential role 

in the prevention and treatment of DR (198-200). Among the several other phytochemicals there 

is an increasing interest in the therapeutic effects of resveratrol (RES) on the eye, particularly in 

terms of intervention of DR (201-206). RES (3,5,41-trihydroxy-trans-stilbene) is a stilbenoid, a 

type of natural phenol, and a phytoalexin produced naturally by several plants in response to injury 

or when the plant is under attack by pathogens, such as bacteria or fungi (207). RES is present in 

abundant concentrations in grape juice, peanuts, mulberries and in other plant extracts (208, 209). 

The aqueous solubility of RES is reported as 300 µg/mL. RES acts as inverse agonist (cannabinoid 

ligand) with high nanomolar affinities to CB1 receptors (Ki=45 nM) and micromolar affinities 

towards CB2 receptors (210, 211). Inverse agonists antagonize the inflammatory properties of 

endocannabinoids, specifically 2-AG and also elicit neuroprotective action by downregulating 
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neurodegeneration associated processes (212). Moreover, Retina expresses CB1 and CB2 

receptors, through which RES could elicit its activity (213, 214). Retinal protective effects of RES 

on conditions such as oxygen and antibody-induced retinopathy, retinal neovascularization, 

hyperglycemia-induced inflammation have recently been reported. Numerous reports 

demonstrated neuroprotective, anti-inflammatory, anti-oxidant, antiangiogenic, anti-apoptotic and 

anti-proliferative effects of RES in various pathological animal models and corresponding cell 

lines (215). RES is also reported to be well tolerated with no associated toxicity and adverse effects 

in humans following oral or systemic administration (216). Few reports indicated that RES did not 

exert toxicity on human corneal epithelial cell lines (ATCC-CRL-11515) and human retinal 

pigmented cell lines (ARPE- 19) even at higher concentrations (100 µM) (217). Furthermore, what 

makes RES particularly attractive is the fact that it acts on multiple pathways involved in DR.  

Minimum Inhibitory (MIC50) and Minimum Effective concentrations (MEC50) of RES, 

2.5-6.5 µM (0.72-3.25 µg/mL) are to be maintained in the retina for exertion of the relevant 

pharmacological activities, which is challenging in terms of delivery angle (218, 219). Lipid 

nanoparticles (NPs) can prolong pre-ocular residence, impart mucoadhesivity and improve corneal 

penetration when compared to conventional ocular drug delivery systems. The objective of present 

study is to formulate, characterize and evaluate the corneal permeability of the lipid nanoparticles 

loaded with RES.    

6.1. Materials and Methods 

RES was obtained from Cayman chemical (Ann Arbor, MI). Gelucire lipids (Gelucire® 

44/14 and Gelucire® 50/13 was obtained as a gift sample from Gattefossé (Paramus, NJ). 

Amicon® Ultra centrifugal filter devices with regenerated cellulose membrane (100 kDa), 

Poloxamer 188, Cremophor® EL, Tween® 80, high performance liquid chromatography (HPLC) - 
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grade solvents, and other chemicals (analytical grade) were obtained from Fisher Scientific 

(Hampton, NH). Whole eyes of male albino New Zealand rabbits were obtained from Pel-Freez 

Biologicals (Rogers, AR).  

6.1.1. Saturation solubility studies 

Saturation solubility of RES was studied using the standard shake-flask method. An excess 

amount of RES was added to screw-capped glass vials containing different surfactants namely 1% 

w/v Tween® 20, Tween® 80, Cremophor® RH 40, Cremophor® EL and Brij® 97. To achieve 

uniform mixing, samples were stirred at 100 rpm for 24 h at 25°C in a reciprocating water bath 

(Fisher Scientific). After 24 h, the samples were centrifuged (AccuSpin 17R®), and the supernatant 

was analyzed for drug content. 

6.1.2. In vitro chromatographic analysis 

Chromatrographic analysis was carried out using HPLC-UV system. The system consists of 

Waters 717 plus Autosampler, Waters 2487 Dual λ Absorbance detector, Waters 600 controller 

pump, and Agilent 3395 Integrator. The desired chromatographic separation was achieved on a 

Pheneomenex C18 column under isocratic elution using UV detection wavelength at 306 nm. 

The mobile phase consisted of a mixture of methanol: 10 mM potassium dihydrogen phosphate 

buffer (pH 6.8): acetonitrile (63 : 30 : 7, v/v/v) at a flow rate of 1 mL/min (220).  

6.1.3. Preparation of RES loaded SLN 

RES (0.7% w/v) was dissolved under stirring in melted lipid phase (Gelucire® 44/14 F-1 

or Gelucire® 50/13 F-2 4% w/v). Simultaneously, an aqueous phase consisting of surfactants 

namely Tween 80 (0.75% w/v), Cremophor EL (1% w/v) and glycerin (2.25% w/v) was heated to 

80° C. Then, aqueous phase was added into the lipid phase, dropwise, under heat to form a coarse 

emulsion. The emulsion was subjected to ultra-turrax at 16000 rpm to form pre-mix. The pre-
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emulsion was then ultra-sonicated (40% amplitude; 6 min) to form hot final emulsion. Then the 

formulation was allowed to cool down to room temperature to form RES SLNs.    

6.1.4. RES control formulation 

RES control solution was formulated by dissolving RES (0.7% w/v) in the mixture of 2.5% 

w/v Randomly methylated β-Cyclodextrin (RMβCD), 5% v/v poly (ethylene) glycol 400 and 1% 

w/v Brij® 97 solution.  This RES control solution was used for further studies.  

6.1.5. Physico-chemical Characterization  

The particle size and the PDI of the RES formulation was determined by using Zetasizer 

Nano ZS Zen3600 (Malvern Instruments, Inc.) in disposable clear cells. The measurements were 

obtained using a helium-neon laser of 633 nm, and the particle size analysis data was evaluated 

using volume distribution. Zeta potential measurements were carried out at 25°C in disposable 

cells using the same instrument. For measurement of particle size distribution and zeta potential, 

RES samples were diluted (1:500) with water. Bi-distilled and 0.2 μM filtered water was used for 

these measurements, and were performed in triplicates. 

6.1.6. Assay and Entrapment Efficiency  

The lipid in the RES formulation was precipitated using methanol and, RES content in the 

supernatant after centrifugation (13,000 rpm for 20 min), was measured using an HPLC system 

following appropriate dilution. 

The percentage of RES entrapped (% EE) in nanoparticles was determined by measuring 

the concentration of free drug in the aqueous phase of an undiluted formulation. The EE was 

evaluated by an ultrafiltration technique with a 100 kDa centrifugal filter device (Amicon Ultra). 

An aliquot (500 μL) of the corresponding formulation was added to the sample reservoir and 
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centrifuged at 5,000 rpm for 10 min. The filtrate was and analyzed for drug content using HPLC. 

The %EE was calculated using Eq. (1) below. All the measurements were carried out in triplicates.                                                                                                                         

                                                           %EE=[(Wi-Wf)/Wi]×100                                

Where Wi =total drug content, and Wf =amount of free drug in aqueous phase. 

6.1.7. In vitro release and transcorneal permeability studies  

RES release kinetics was studied through Spectra/Por® dialysis membrane (MWCO: 3.5 

kDa) at 34°C using Valia-Chien cells. Formulations, RES loaded SLNs (F-1 and F-2) and RES 

control solution, were evaluated for in vitro release upto 6 h. Spectra/por® membrane is mounted 

onto diffusion cells and fastened with airtight clamps. 500 µL (0.7%w/v) of formulation was added 

into the donor chamber. Five milliliters of 2.5% w/v RMβCD in IPBS pH 7.4 was used as media 

in the receiver chamber. Samples were taken at predetermined time points and analyzed using 

HPLC-UV system.    

Transcorneal permeability of RES formulations was determined across isolated rabbit 

cornea using valia-chien cells (3 h). Ocular globes were shipped overnight and used for isolating 

cornea. The corneal membrane was excised with some scleral portion to help secure the membrane 

onto the diffusion cells and fastened between donor/receiver compartments with air tight clamps. 

Five hundred microliters of 0.7% w/v RES SLNs and control solution were added into donor 

chamber. Receiver chamber consisted of 2.5% w/v RMβCD in IPBS (5 mL). The samples were 

taken at predetermined time points and analyzed using HPLC-UV system.  

6.2. Results 

6.2.1. Physico-chemical characterization  

RES SLNs exhibited lower hydrodynamic radius and higher entrapment efficiencies at a 

drug load of 0.7% w/v. Particle size and PDI of two RES formulations did not show any significant 
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difference. However, zeta potential and entrapment efficiency of F-2 formulation was marginally 

higher when compared to F-1 formulation. The physico-chemical characteristics of SLN 

formulations are presented below. 

Table 6.1: Physico-chemical characteristics of RES loaded SLN formulations 

Characteristics RES-SLN F-1 RES-SLN F-2 

Particle size (nm) 120 ± 12.3 131 ± 9.6 

 PDI 0.23 ± 0.02 0.26 ± 0.04 

Zeta potential (mV) -0.6 ± 0.01 -6.5 ± 0.05 

EE (%) 87.4 ± 1.6 90.2 ± 3.8 

Assay (%) 91-95 92-96 

 

6.2.2. Saturation solubility studies 

RES exhibited lower solubility in Tween 80® and predominantly higher solubility in 

Cremophor EL® and Brij 97® compared to other solvents. Solubility profile of RES is presented 

in figure 1.  
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Figure 6.1: Saturation solubility of RES (µg/mL) obtained from various surfactants (1% w/v).  

6.2.3. In vitro release and transcorneal permeability studies 

Percentage release of RES SLNs was lower when compared to control formulation, due to the slow 

degradation of carrier matrix. Transcorneal flux of RES, however, was increased to ~ 1.5-folds 

with SLN formulation, when compared to control formulation. Transcorneal permeability of the 

two RES loaded SLN formulations was not significantly different from each other under 

comparison. In vitro release and transcorneal permeability of RES from the formulations is 

presented in figures 6.2 and 6.3 respectively. 
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Figure 6.2: In vitro release of RES from the topical ocular formulations and diffusion  

across Spectra/Por® membrane  (MWCO 3.5kDa) at 34°C obtained using Valia-chien cells.  

 

 
Figure 6.3: In vitro transcorneal permeability of RES from the topical ocular formulations  

obtained using Valia-chien cells at 34°C.  

 

6.3. Discussion 

The objective of the present study was to formulate and characterize the RES loaded lipid 

nanoparticulate formulations. Topical, non-invasive colloidal carriers are designed to act as a drug 

reservoir to modulate/tailor the drug release from the lipid core, and are endocytosed by the corneal 
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epithelial cells. These carriers change the tear dynamics by decreasing tear washout/drainage and 

sustain the release of drugs on the ocular surface into inner barriers (221). Lipid based nanoparticle 

systems are particulates in the size range of 50-1000 nm whose matrix is made of biocompatible 

solid lipids or their appropriate mixtures which are generally recognized as safe (GRAS) excipients 

(222). Solid lipid nanoparticles (SLN) are considered to be among the most effective lipid-based 

colloidal vehicles. They are constituted of a solid lipid matrix surrounded by a layer of surfactants 

in an aqueous dispersion. Hot high-pressure homogenization, melt-emulsification, and 

ultrasonication methods are generally used to fabricate the lipid nanoparticle formulations   

 SLNs are reported to increase the mucoadhesion and prolong pre-ocular residence when 

compared to solution/suspension formulations. The particle size of nanoparticles play an important 

role in the penetration across ocular mucosa (223, 224). Nanoparticles with size ranging between 

50-400 nm are better tolerated than larger ones, because of their ability to penetrate across the 

corneal and conjunctival barriers (225). Nanoparticles with particle size (<20 nm) are cleared by 

blood and lymphatic system without achieving any ocular effect (226). The polymeric NP system 

showed slow and prolonged in vitro release of the RES when compared to control formulation. 

The release was slow because of the lower degradation and corrosion rate of Gelucire lipids. The 

release of RES from the control formulation was higher indicating that solution formulation could 

overcome the barrier resistance. Better corneal permeation characteristics for targeting intraocular 

diseases such as DR is highly desirable (227). Cornea is a major and formidable barrier to the 

penetration of small molecules into the inner/deeper ocular tissues. SLNs are made up of bio-

compatible and bio-degradable lipids which are generally recognized as safe (GRAS). In the 

corneal permeation study, higher amount of RES penetrated across the excised rabbit cornea from 

the Gelucire® lipid nanoparticulate formulations compared to control formulation. Transmembrane 
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flux of RES was enhanced ~1.5 folds from the lipid formulations when compared to control 

solution. Reports suggest that lipid nanoparticles can cross the ocular barriers by 

endocytosis/transcytosis mechanisms. The higher order of permeation was observed due to 

permeation enhancement characteristics of lipid nanoparticles with their inherent mucoadhesive 

properties.  

6.4. Conclusion 

RES loaded SLNs are successfully prepared by ultra-sonication method. The physico-

chemical characteristics such as lower hydrodynamic radius and higher entrapment efficiencies 

are achieved for lipid formulations at a higher drug load 0.7% w/v. From the in vitro study, RES 

was released from the lipid nanoparticles in a slow and sustained manner than the RES control 

formulation possibly due to the slow degradation of carrier matrix. Ex vivo corneal permeation 

study demonstrated that the RES-loaded nanoparticles are more permeable than the control 

formulation. These results suggest that RES loaded lipid systems are viable carriers for topical 

ocular delivery.  
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