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ABSTRACT

A large class of time series processes can be modeled by linear processes, including a subset

of the fractional ARIMA process. Transformation of time series is one of the most popular

topics in recent years. In this dissertation, we study the memory properties of transforma-

tions of linear processes. Our results show that transformations of short-memory time series

still have short-memory and transformations of long-memory time series may have differ-

ent weaker memory parameters which depend on the power rank of the transformation. In

particular, we provide the memory parameters of transformations of the FARIMA(p, d, q)

processes. As an example, the memory properties of call option processes at different strike

prices are discussed in details.

When we develop the memory properties of transformations of linear processes, we

use the Pearson correlation to measure memories. Correlation analysis is another big topic

in statistics, which is used to measure the dependence of stochastic processes or random

variables. Standard Gini correlation is one of the correlations to measure the dependence

between random variables with heavy tailed distributions. However, the asymmetry of Gini

covariance and correlation brings a substantial difficulty in interpretation. In this disserta-

tion, we propose a symmetric Gini-type covariance and correlation (ρg) based on the joint

rank function. The proposed correlation ρg is symmetric and is more robust than the Pearson

correlation but less robust than the Kendall’s τ correlation in terms of influence functions.

Furthermore, we establish the relationship between ρg and the linear correlation ρ for a class

of random vectors in the family of elliptical distributions, which allows us to estimate ρ
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based on estimation of ρg. We compare asymptotic efficiencies of linear correlation estima-

tors based on the symmetric Gini, and the proposed measure ρg shows superior finite sample

performance, which makes it attractive in applications.
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1 INTRODUCTION

1.1 MEMORY PROPERTIES OF TRANSFORMATIONS OF LINEAR PROCESSES

Dittmann and Granger [9] studied the memory properties of polynomial transforma-

tion of Gaussian FARIMA(0, d, 0) processes

Xn = (1−B)−dεn =
∑
i≥0

aiεn−i, (1.1.1)

where ai = Γ(i+d)
Γ(d)Γ(i+1)

, εi ∼ i.i.d. N(0, σ2), −1 < d < 1/2 and d 6= 0. d = 0 gives the

i.i.d. process {εn}. They applied the orthonormality of the Hermite polynomials under the

measure for the standard normal distribution. That is,

∫ ∞
−∞

Hm(x)Hn(x)dP (Z ≤ x) = I(m = n), (1.1.2)

where Hermite polynomials Hj(x) are defined by

(
d

dx

)j
e−x

2/2 = (−1)j
√
j!Hj(x)e−x

2/2, j = 0, 1, 2, · · · ,

Z ∼ N(0, 1) and I(m = n) is the indicator function, m,n = 0, 1, 2, · · · . For example, see

[5]. In the continuous case, [43] and [16] studied the nonlinear transformations of fractional

Brownian motions. Nevertheless, this nice orthogonal property (1.1.2) does not hold in

general when the distribution is not Gaussian. On the other hand, it is witnessed and well

known in the financial field that quite many financial data like stock prices have heavier tails

than the tail of the normal distribution, for example, see [35]. For the non-Gaussian case,
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based on the innovations εi, [19, 20] developed an expansion with orthogonal terms which is

akin to the Hermite expansion for the Gaussian case.

We focus on the transformations of linear processes

Xn =
∞∑
i=0

aiεn−i, n ∈ N, (1.1.3)

which are not necessarily Gaussian in this dissertation. To explore the memory properties

of transformations K(Xn) with EK2(Xn) < ∞ of linear processes (1.1.3), we shall ap-

ply the decomposition of K(Xn) proposed by [19, 20]. See also the review paper by [24].

This method has been applied to the expansion of K(Xn) for linear processes Xn in the

study of many subjects, for examples, weak convergence theorems including central limit

theorem, functional central limit theorem, convergence to Wiener-Ito integral and Hermite

process ([19, 20, 23, 49, 51]), the kernel density estimation ([22, 48, 28]), the empirical

processes of long memory sequences ([50]), the U-statistics ([21, 25]) and the moderate de-

viations ([52, 34]). Under the condition proposed by [51], we obtain results both in time

domain and frequency domain. The results in time domain are consistent with the limit

theorems in [20] and [51] via the order of normalization. The results are applicable not

only to FARIMA(0, d, 0) processes as studied in [9] for Gaussian case, but also to general

FARIMA(p, d, q) processes for some special transformations. The results hold not only for

smooth transformations, they also hold for functions which are not differentiable. In partic-

ular, we study the memory properties of option time series (Xn−C)+ in finance for different

strike price C > 0.

We also study the properties of nonlinear transformations of non-stationary time

series Xn with the form

Xn =
n∑
j=1

Yj, where Yj =
∞∑
i=0

aiεj−i,

ai = Γ(i+d−1)
Γ(d−1)Γ(i+1)

, 1/2 < d < 1. Again, we do not assume that the innovations are Gaussian.
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More details are discussed in Chapter 2.

1.2 SYMMETRIC GINI CORRELATION

In Chapter 3, we propose a symmetric Gini correlation. Let X and Y be two non-

degenerate random variables with marginal distribution functions F and G, respectively,

and a joint distribution function H. To describe the correlation between X and Y , the

Pearson correlation (denoted as ρp) is probably the most frequently used measure. This

measure is based on the covariance between two variables, which is optimal for describing

the linear association between bivariate normal variables. However, the Pearson correlation

performs poorly for variables with heavily-tailed or asymmetric distributions, and may be

seriously impacted even by a single outlier (e.g., [42]). Under the assumption that F and G

are continuous, the Spearman correlation, a robust alternative, is a multiple (twelve) of the

covariance between the cumulative functions (or ranks) of two variables; the Gini correlation

is based on the covariance between one variable and the cumulative distribution of the other

([2]). Two Gini correlations can be defined by

γ(X, Y ) =
cov(X,G(Y ))

cov(X,F (X))
, γ(Y,X) =

cov(Y, F (X))

cov(Y,G(Y ))
(1.2.1)

to reflect different roles of X and Y. The representation of Gini correlation γ(X, Y ) indicates

that it has mixed properties of those of the Pearson and Spearman correlations. It is similar

to Pearson in X (the variable taken in its variate values) and similar to Spearman in Y (the

variable taken in its ranks). Hence Gini correlations complement the Pearson and Spearman

correlations ([36, 37, 38]). Two Gini correlations are equal if X and Y are exchangeable

up to a linear transformation. However, Gini covariances are not symmetric in X and Y

in general. On one hand, this asymmetrical nature is useful and can be used for testing

bivariate exchangeability ([39]). On the other hand, such asymmetry violates the axioms of

correlation measurement ([30]). Although some authors (e.g., [53]) dealt with asymmetry by
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a simple average (γ(X, Y ) + γ(Y,X))/2, it is difficult to interpret this measure, especially

when γ(X, Y ) and γ(Y,X) have different signs. The asymmetry of γ(X, Y ) and γ(Y,X)

stems from the usage of marginal rank function F (x) or G(y). A remedy is to utilize a joint

rank function. Based on this joint rank function, we are able to propose a symmetric Gini

covariance (denoted as covg) and a corresponding symmetric correlation (denoted as ρg).

That is, covg(X, Y ) = covg(Y,X) and ρg(X, Y ) = ρg(Y,X).

We study properties of the proposed Gini correlation ρg. In terms of the influence

function, ρg is more robust than the Pearson correlation ρp. However, ρg is not as robust

as the Spearman correlation and Kendall’s τ correlation. Kendall’s τ is another commonly

used nonparametric measure of association. The Kendall correlation measure is more robust

and more efficient than the Spearman correlation ([6]). For this reason in this dissertation

we do not consider Spearman correlation for comparison.

As Kendall’s τ has a relationship with the linear correlation ρ under elliptical distri-

butions ([27, 29]), we also set up a function between ρg and ρ under elliptical distributions.

This provides us an alternative method to estimate ρ based on estimation of ρg. The asymp-

totic normality of the estimator based on the symmetric Gini correlation is established.

Its asymptotic efficiency and finite sample performance are compared with those of Pearson,

Kendall’s τ and the regular Gini correlation coefficients under various elliptical distributions.

As any quantity based on spatial ranks, ρg is only invariant under translation and

homogeneous change. In order to gain the invariance property under heterogeneous changes,

we provide an affine invariant version.

Simulations studies are conducted to compare our proposed symmetric Gini corre-

lation with the Pearson correlation and the Kendall’s τ , so we present the two current

correlations below: the Pearson’s correlation measure is

ρp(X, Y ) =
cov(X, Y )√

var(X)
√

var(Y )
=

EXY − EXEY√
(EX2 − (EX)2)(EY 2 − (EY )2)

4



and the Kendall’s τ is

τ(X, Y ) = E[sign{(X1 −X2)(Y1 − Y2)}],

where Xi and Yi, i = 1, 2, are i.i.d copies of X and Y , respectively.

1.3 OVERVIEW

1.3 Contribution of the dissertation

The contribution of this dissertation is as follows:

• We derive the memory properties of nonlinear transformation of linear processes which

are not necessarily Gaussian both in covariance sense and frequency domain. We

conduct the simulation on the FARIMA(p, d, q) processes to confirm the theoretical

results, and apply our results in econometrics and financial data analysis when the

time series observations have non-Gaussian heavy tails. As an example, the memory

properties of call option processes at different strike prices are discussed in details.

• We propose a symmetric Gini correlation and have studied its properties. When the

scatter matrix Σ is homogeneous, the relationship between the proposed symmetric

Gini correlation and the linear correlation is established. We also propose the affine

invariant version of the symmetric Gini correlation to deal with the case hen Σ is

heterogeneous. We calculate the influence function of the symmetric Gini correlation,

which reveals that the proposed correlation is more robust than the Pearson correlation.

1.3 Dissertation Structure

The structure of this dissertation is organized in the following way. In Chapter 2 we

discuss the memory properties of transformations of linear processes for both stationary and

non-stationary processes. The conducted simulation study and the application to option

5



processes in finance are illustrated to confirm the theoretical results. The symmetric Gini

correlation is proposed in Chapter 3. We present properties of the new proposed correlation

in terms of robustness and efficiency, and we also present a real data application of the

proposed correlation in Chapter 3.
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2 MEMORY PROPERTIES OF TRANSFORMATIONS OF LINEAR PROCESSES

2.1 PRELIMINARIES

In this section, we introduce some basic ideas and elements of time series analysis.

The definitions and remarks below about time series are from [4] and readers can refer to [4]

for more details about time series analysis.

2.1 Stationarity

Loosely speaking, stationary time series are those whose statistical properties remain

constant over time. It plays a crucial role in the analysis of time series. In application, many

observed time series, e.g., population of the U.S.A., strikes in the U.S.A., monthly accidental

deaths in the U.S.A. and so on, are not stationary in appearance but such date sets can be

transformed by some techniques into series which can reasonably be modelled as realizations

of some stationary process. The techniques for transforming the non stationary observations

into a stationary process are out of the scope of this dissertation, and the reader can refer to

[4] for more details. The theory of stationary processes can be used for the analysis, fitting

and prediction of the resulting series. So stationarity is one important topic in time series.

The definition of stationarity is based on the following autocovariance function.

Definition 2.1.1 (The Autocovariance Function). If {Xt, t ∈ Z} is a process such that

var(Xt) <∞ for each t ∈ Z, then the autocovariance function γX(·, ·) of {Xt} is defined by

γX(r, s) = cov(Xr, Xs) = E[(Xr − EXr)(Xs − EXs)], r, s ∈ Z.

7



Definition 2.1.2 (Stationarity). The time series {Xt, t ∈ Z}, with index set Z = {0,±1,±2, ...},

is said to be stationary if

(i)E|Xt|2 <∞ for all t ∈ Z,

(ii)EXt = m for all t ∈ Z,

(iii)γX(r, s) = γX(r + t, s+ t) for all r, s, t ∈ Z.

Another important and frequently used notion of stationarity is:

Definition 2.1.3 (Strict Stationarity). The time series {Xt, t ∈ Z} is said to be strictly

stationary if the joint distributions of (Xt1 , ..., Xtk) and (Xt1+h, ..., Xtk+h) are the same for

all positive integers k and for all t1, ..., tk, h ∈ Z.

Remark 2.1.4. The relation between stationarity and strict stationarity: Under the as-

sumption of the existence of the second moment, a strictly stationary process is stationary;

The converse of the statement is not true. For example, if {Xt} is a sequence of indepen-

dent random variables such that Xt is exponentially distributed with mean one when t is

odd and normally distributed with mean one and variance one when t is even, then {Xt} is

stationary with γX(0) = 1 and γX(h) = 0 for h 6= 0. however since X1 and X2 have different

distributions, {Xt} cannot be strictly stationary.

Remark 2.1.5. In the literature, Definition 2.1.2 is often referred to as weak stationarity,

covariance stationarity, stationarity in the wide sense or second-order stationarity. In this

dissertation, the term stationarity will always refer to the properties specified by Definition

2.1.2.

Remark 2.1.6. For a stationary process {Xt, t ∈ Z}, the autocovariance function can be

redefined as the function of just one variable

γX(h) = cov(Xt+h, Xt) for all t, h ∈ Z .
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2.1 FARIMA(p, d, q) Processes

The autoregressive moving average (ARMA) processes is an extremely important

class of stationary time series.

Definition 2.1.7 (The ARMA(p, q) Process). The process {Xt, t = 0,±1,±2, ...} is said to

be an ARMA(p, q) process if {Xt} is stationary and if for every t,

Xt − φ1Xt−1 − · · · − φpXt−p = Zt + θ1Zt−1 + · · ·+ θqZt−q, (2.1.8)

where {Zt} are i.i.d with mean 0 and standard deviation σ. We say that {Xt} is an ARMA(p,

q) process with mean µ if {Xt − µ} is an ARMA(p, q) process.

Symbolically, we can rewrite the equation (2.1.8) as

φ(B)Xt = θ(B)Zt, t = 0,±1,±2, ...,

where φ and θ are the pth and qth degree polynomials

φ(z) = 1− φ1z − · · · − φpzp

and

θ(z) = 1 + θ1z + · · ·+ θqz
q

and B is the backward shift operator defined by

BjXt = Xt−j, j = 0,±1,±2, ....

The polynomials φ and θ will be referred to as the autoregressive and moving average poly-

nomials, respectively.
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The well-known moving average process and autoregressive process are two examples

of ARMA processes.

Example 2.1.9 (The MA(q) Processes). When φ(z) ≡ 1, then (2.1.8) can be rewritten as

Xt = θ(B)Zt (2.1.10)

which is said to be a moving average process of order q (MA(q)). Obviously, (2.1.10) has a

unique solution.

Example 2.1.11 (The AR(p) Processes). If θ(Z) ≡ 1 then

φ(B)Xt = Zt (2.1.12)

and the process is said to be an autoregressive process of order p (AR(p)). In order to explore

the existence and uniqueness of the solution for (2.1.12), we do the following investigation

for a simple case with φ(z) = 1− φ1z, that is,

Xt = Zt + φ1Xt−1. (2.1.13)

Iterating (2.1.13) we get

Xt = Zt + φ1Zt−1 + · · ·+ φk1Zt−k + φk+1
1 Xt−k−1.

If |φ1| < 1 we can conclude that

Xt =
∞∑
j=1

φj1Zt−j,

which is a linear process.

10



For a general ARMA(p, q) process, we use the causality to keep the convergence of a

linear process form.

Definition 2.1.14 (Causality). An ARMA(p, q) process defined by the equation φ(B)Xt =

θ(B)Zt is said to be causal (or more specifically to be a causal function of {Zt}) if there

exists a sequence of constants {ψj} such that
∑∞

j=0 |ψj| <∞ and

Xt =
∞∑
j=1

ψjZt−j, t = 0,±1, ...

When we incorporate a wide range of non-stationary series, we obtain ARIMA pro-

cesses which reduce to ARMA processes after differencing finitely many times.

Definition 2.1.15 (The ARIMA(p, d, q) Process). If d is a non-negative integer, then {Xt}

is said to be an ARIMA(p, d, q) process if Yt = (1−B)dXt is a causal ARMA(p, q) process.

If d can be some fractional number, we have the FARIMA processes.

Definition 2.1.16 (The FARIMA(p, d, q) process). The model of an autoregressive frac-

tionally integrated moving average process of a time series of order (p, d, q), denoted by

FARIMA(p, d, q) is defined as

φ(B)Xt = θ(B)(1−B)−dεt. (2.1.17)

Here, −1 < d < 1/2, p, q are nonnegative integers, φ(z) = 1 − φ1z − · · · − φpzp is the AR

polynomial and θ(z) = 1 + θ1z + · · · θqzq is the MA polynomial.

Remark 2.1.18. For the Definition 2.1.16, under the conditions that φ(z) and θ(z) have

no common zeros, the zeros of φ(·) lie outside the closed unit disk and −1 < d < 1/2, the

FARIMA(p, d, q) process has linear process form

Xt =
∞∑
i=0

aiεt−i, t ∈ N,
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with ai = θ(1)
φ(1)

id−1

Γ(d)
+O(i−1) and O(i−1)/i−1 means all the values satisfying that O(i−1)/i−1

is bounded. .

2.1 Long-memory Processes

In this section we present a particular class of linear time series: long-memory or long-

range-dependent-processes. Long-memory (long-range dependent) processes can be defined

in many ways. Here we only focus our attention on the following two definitions in the

covariance sense and in the frequency domain, respectively.

Definition 2.1.19. Let γX(h) be the autocovariance function at lag h of the stationary

process {Xn : n ∈ Z}. If
∑∞

h=−∞ |γX(h)| = ∞, then we say Xn has long memory in the

covariance sense; otherwise, Xn has short memory in the covariance sense.

There are alternatives definitions to Definition 2.1.19. In particular, long memory

can be defined by specifying a hyperbolic decay of the autocovariances

γX(h) ∼ h2d−1L1(h), as h→∞,

where d is the long-memory parameter and L1(·) > 0 is a slowly varying function, i.e.,

limx→∞ L(λx)/L(x) = 1 for any λ > 0.

Definition 2.1.20. In the frequency domain, a stationary time series Xn with a spectral

density function f(λ) is called a long memory process in a restricted spectral density sense

if f(λ) is bounded on [δ, π] for every δ > 0, and f(λ)→∞ as λ→ 0+.

The spectral density function f(·) is defined as

Definition 2.1.21. If a time series {Xt} has auto covariance γ satisfying
∑∞

h=−∞ |γX(h)| <

∞, then we define its spectral density as

f(λ) =
∞∑

h=−∞

γX(h)e−i2πλh

12



for −∞ < λ <∞.

Remark 2.1.22. These two definitions 2.1.19, 2.1.21 are not always equivalent. In partic-

ular, for d < 1/2, [9] called a stationary time series Xn ∼ LM(d) if the spectral density

function f(λ) behaves like a power function at low frequencies, that is as |λ|−2d as λ ap-

proaches zero. For d ≥ 1/2, Xn ∼ LM(d) if and only if (1 − B)kXn ∼ LM(d − k) for

k = [d+ 1/2], where [x] denotes the largest integer smaller or equal to x. B is the backward

shift operator, BXi = Xi−1. The cases d > 0, d = 0 and d < 0 correspond to long memory,

short memory and negative dependence (antipersistence), respectively.

Throughout this chapter, the innovations εi, i ∈ Z, of the linear process (1.1.3) are

i.i.d. random variables with mean zero and finite variances. Without loss of generality, we

assume that Eε2
i = 1, i ∈ Z. The coefficients ai satisfy

∑∞
i=0 a

2
i <∞, under which the linear

process (1.1.3) is well defined by the three series theorem. ||X|| = [E(X2)]1/2 is the L2 norm

of the random variable X. Define the shift process Fi = (. . . , εi−1, εi), and let

Xn,k = E(Xn|Fk),

Kn(w) = E[K(w +Xn −Xn,0)],

K∞(w) = E[K(w +Xn)],

K(r)
n (w) =

dr

dwr
E[K(w +Xn −Xn,0)],

K(r)
∞ (w) =

dr

dwr
E[K(w +Xn)]

for any nonnegative integer r. Part of our results will be related with the following definition

is from [20].

Definition 2.1.23. A transformation K(·) has power rank k with respect to the linear process

Xn for some positive integer k if K
(k)
∞ (0) 6= 0 and K

(r)
∞ (0) = 0 for all 1 ≤ r < k.
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We will use k to denote the power rank of K(·) with respect to the linear process Xn

throughout this dissertation. One of our assumptions on the transformation function K(·)

is obtained from [51].

Condition 2.1.24. Let E(|ε1|q) <∞ for some 2 < q ≤ 4 and Kn ∈ Ck+1(R) for all large n.

Assume that for some λ > 0,

k+1∑
α=0

‖K(α)
n−1(Xn,0;λ)‖+

k−1∑
α=0

‖|ε1|q/2K(α)
n−1(Xn,1)‖+ ‖ε1K

(k)
n−1(Xn,1)‖ = O(1),

where K
(α)
n−1(Xn,0;λ) = sup|y|≤λ|K

(α)
n−1(Xn,0 + y)| is the local maximal function for

K
(α)
n−1(Xn,0). As [51] mentioned, Condition 2.1.24 is quite mild, which only imposes certain

smoothness requirements on Kn−1. Additional notations are defined as follow: we use am∼bm

instead of the notation am/bm → 1; for positive sequences, the notation am � bm or bm � am

and the Vinogradov symbol O mean that am/bm is bounded; the notation am ' bm means

that there exist constants c1 an c2 such that 0 < c1bm < am < c2bm for m large enough.

C > 0 is a generic constant which may vary in different context.

2.2 TRANSFORMATIONS OF STATIONARY PROCESSES

We first consider the transformation K(Xn) of the stationary process (1.1.3). First

of all, K(Xn), n ∈ N, is strictly stationary since the time series Xn is strictly stationary. By

the condition EK2(Xn) <∞, K(Xn) is also (covariance) stationary.

2.2 Transformations of Long-memory Processes

We consider the case a0 = 1 and ai = i−βL(i), i > 0, 1/2 < β < 1, for the linear

process (1.1.3). Notice that in this case the covariance function γX(h) = EX0Xh of the

original series Xn is regularly varying with exponent −1 < 1 − 2β < 0 and hence Xn has

long memory in the covariance sense. The FARIMA(p, d, q) process as in (2.1.17) with

0 < d < 1/2 is a particular example of this case, β = 1− d.
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Theorem 2.2.1. Assume that Condition 2.1.24 holds with q = 4 and that K has power rank

k ≥ 1. Let a0 = 1 and ai = i−βL(i), i > 0, 1/2 < β < 1, in model (1.1.3). If the power rank

k of a transformation K(·) with respect to the linear process (1.1.3) satisfies k < (2β− 1)−1,

then K(Xn) has long memory in the covariance sense. K(Xn) has short memory in the

covariance sense if k > (2β − 1)−1.

Proof. Define the projection operator

PiX = E(X|Fi)− E(X|Fi−1).

We adopt the notations from [51] as follows: For j ≥ 2, let An(j) =
∑∞

t=n |at|j, θn =

|an−1|[|an−1|+ A
1/2
n (4) + A

k/2
n (2)].

Recall that K(·) is a measurable function with the power rank of k. By [20], K(Xn)−

EK(Xn) can be decomposed as U(Fn) + S(Fn), where

U(Fn) = K(k)
∞ (0)

∑
0≤j1<j2<···<jk<∞

k∏
s=1

ajsεn−js

and

S(Fn) = K(Xn)− EK(Xn)− U(Fn).

We also have the decomposition U(Fn+h)+S(Fn+h) forK(Xn+h). Therefore, cov (K(Xn), K(Xn+h))

can be represented by

cov(U(Fn), U(Fn+h)) + cov(U(Fn), S(Fn+h))

+ cov(S(Fn), U(Fn+h)) + cov(S(Fn), S(Fn+h)). (2.2.1)
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We first find the bounds of cov(U(Fn), U(Fn+h)), which are useful in the proofs of Theorem

2.2.1, Corollary 2.2.2 and Theorem 2.2.3. By Stirling’s approximation,

 h

k

 ' hk/k!, if h

is large enough. If jk ≤ h, the quantity
∏k

s=1 L(js)j
−β
s L(h+ js)(h+ js)

−β at least has order

h−2kβLk(h) min1≤s≤h L
k(s). Therefore for the lower bound,

cov(U(Fn), U(Fn+h)) = [K(k)
∞ (0)]2

∑
0≤j1<j2<···<jk<∞

k∏
s=1

ajsah+js (2.2.2)

≥ [K(k)
∞ (0)]2

∑
1≤j1<j2<···<jk≤h

k∏
s=1

L(js)j
−β
s L(h+ js)(h+ js)

−β

� [K(k)
∞ (0)]2

 h

k

h−2kβLk(h) min
1≤s≤h

Lk(s)

' (k!)−1[K(k)
∞ (0)]2hkh−2kβLk(h) min

1≤s≤h
Lk(s)

= (k!)−1[K(k)
∞ (0)]2hk(1−2β)Lk(h) min

1≤s≤h
Lk(s).

On the other hand,

cov(U(Fn), U(Fn+h)) (2.2.3)

≤ [K(k)
∞ (0)]2(

∑
0≤i<∞

aiah+i)
k

= [K(k)
∞ (0)]2(

h∑
i=0

aiah+i +
∞∑

i=h+1

aiah+i)
k

= O[hk(1−2β)L2k(h)].

We shall estimate the other covariances in (2.2.1) for each case. In the case that k(2β−1) < 1,

we first apply the projection operator to the terms in the covariances and then apply the
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Cauchy-Schwarz inequality. Then

|cov(S(Fn), S(Fn+h))|

= |
n−1∑
i=−∞

n+h−1∑
j=−∞

cov(Pi+1S(Fn),Pj+1S(Fn+h))|

= |
n−1∑
i=−∞

n+h−1∑
j=−∞

E[Pi+1S(Fn)Pj+1S(Fn+h)]|

= |
n−1∑
i=−∞

E[Pi+1S(Fn)Pi+1S(Fn+h)]| (2.2.4)

≤
n−1∑
i=−∞

‖Pi+1S(Fn)‖‖Pi+1S(Fn+h)‖

=
n−1∑
i=−∞

‖P1S(Fn−i)‖‖P1S(Fn+h−i)‖

=
n−1∑
i=−∞

O(θn−iθn+h−i) =
∞∑
i=1

O(θiθi+h). (2.2.5)

Equality (2.2.4) is true because if i 6= j, suppose i < j, then

E[Pi+1S(Fn)Pj+1S(Fn+h)] = E
{
E[Pi+1S(Fn)Pj+1S(Fn+h)|Fi+1]

}
= E

{
Pi+1S(Fn)E[Pj+1S(Fn+h)|Fi+1]

}
= E

{
Pi+1S(Fn)E

[
(E[S(Fn+h)|Fj+1]− E[S(Fn+h)|Fj])|Fi+1

]}
= E

{
Pi+1S(Fn)

(
E[S(Fn+h)|Fi+1]− E[S(Fn+h)|Fi+1]

)}
= 0.

Equality (2.2.5) is the result of Theorem 5 (Reduction principle) of [51]. By Karamata’s

theorem ([40]), An(j) = O[n1−jβLj(n)] for j ≥ 2. Therefore, under the condition k(2β−1) <
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1,

∞∑
i=1

O(θiθi+h)

=
∞∑
i=0

aiai+hO
{

[(i+ 1)1−2βL2(i+ 1)(i+ h+ 1)1−2βL2(i+ h+ 1)]k/2
}

=
∞∑
i=1

O[i−β+k(1−2β)/2(i+ h)−β+k(1−2β)/2Lk+1(i)Lk+1(i+ h)]

=
h∑
i=1

O[i−β+k(1−2β)/2h−β+k(1−2β)/2(1 + i/h)−β+k(1−2β)/2Lk+1(i)Lk+1(i+ h)]

+
∞∑

i=h+1

O[i−2β+k(1−2β)(1 + h/i)−β+k(1−2β)/2Lk+1(i)Lk+1(i+ h)].

Applying Karamata’s theorem again, we have

(i)
∑∞

i=1O(θiθi+h) = O[Lk+1(h)h
k(1−2β)−2β

2 ] if (k + 1)(2β − 1) > 1;

(ii)
∑∞

i=1O(θiθi+h) = O[L2k+2(h)h(k+1)(1−2β)] if (k + 1)(2β − 1) < 1;

(iii)
∑∞

i=1O(θiθi+h) = max
{
O[L2k+2(h)h−1],O[Lk+1(h)h−1

∑h
i=1 i

−1Lk+1(i)]
}

if

(k + 1)(2β − 1) = 1.

By the calculation in (2.2.2), each of the above terms (i), (ii) and (iii) is less than

cov(U(Fn), U(Fn+h)). Thus,

|cov(S(Fn), S(Fn+h))| < cov(U(Fn), U(Fn+h)).

With the same arguments as in |cov(S(Fn), S(Fn+h))|,

|cov(U(Fn), S(Fn+h))| =
∞∑
i=1

‖P1U(Fi)‖O(θi+h).
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Obviously, O(θi+h) = O[(i+ h)−β+
k(1−2β)

2 Lk+1(h+ i)]. Also

P1U(Fi)/K(k)
∞ (0)

= E
( ∑

0≤j1<···<jk<∞

k∏
s=1

ajsεi−js|F1

)
− E

( ∑
0≤j1<···<jk<∞

k∏
s=1

ajsεi−js|F0

)
=

∑
i−1≤j1<···<jk<∞

k∏
s=1

ajsεi−js −
∑

i≤j1<···<jk<∞

k∏
s=1

ajsεi−js

= ai−1ε1

∑
i≤j2<···<jk<∞

k∏
s=2

ajsεi−js .

Then

||P1U(Fi)||2 = E[P1U(Fi)]2

= [K(k)
∞ (0)]2a2

i−1E(ε2
1)E
( ∑
i≤j2<···<jk<∞

k∏
s=2

ajsεi−js
)2

≤ [K(k)
∞ (0)]2a2

i−1A
k−1
i (2)[E(ε2

1)]k.

See also [51]. Hence

||P1U(Fi)|| = O[i−β+(k−1)(1−2β)/2Lk(i)].
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In consequence, using Karamata’s theorem, we have

∞∑
i=1

||P1U(Fi)||O(θi+h)

=
∞∑
i=1

O
[
(i+ h)−β+

k(1−2β)
2 Lk+1(h+ i)i−β+(k−1)(1−2β)/2Lk(i)

]
= h−β+

k(1−2β)
2

h∑
i=1

O
[
(1 + i/h)−β+

k(1−2β)
2 Lk+1(h+ i)i−β+(k−1)(1−2β)/2Lk(i)

]
+

∞∑
i=h+1

O
[
i−2β+(2k−1)(1−2β)/2(1 + h/i)−β+

k(1−2β)
2 Lk+1(h+ i)Lk(i)

]
= O[h(1−2β)(k+1/2)L2k+1(h)],

which is less than cov(U(Fn), U(Fn+h)). So

|cov(U(Fn), S(Fn+h))| < cov(U(Fn), U(Fn+h)).

Similarly, |cov(U(Fn+h), S(Fn))| =
∑∞

i=1 ‖P1U(Fi+h)‖O(θi), which is (i)O
[
h(k+ 1

2
)(1−2β)L2k+1(h)

]
if (k+1)(2β−1) < 1; (ii) O

[
h−β+ k−1

2
(1−2β)Lk(h)

]
if (k+1)(2β−1) > 1;

(iii) max
{
O[h−

2k+1
2(k+1)Lk(h)

∑h
i=1 i

−1Lk+1(i)],O[h−
2k+1
2(k+1)L2k+1(h)]

}
if (k + 1)(2β − 1) = 1.

Each of the terms (i), (ii) and (iii) is less than cov(U(Fn), U(Fn+h)) by the analysis in (2.2.2).

Hence |cov(U(Fn+h), S(Fn))| < cov(U(Fn), U(Fn+h)).

So under the condition k < (2β − 1)−1,

cov(K(Xn), K(Xn+h)) ' cov(U(Fn), U(Fn+h)).

But by (2.2.2),

cov(U(Fn), U(Fn+h)) ≥ (k!)−1[K(k)
∞ (0)]2hk(1−2β)Lk(h) min

1≤s≤h
Lk(s),
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which is not summable. Therefore K(Xn) has long memory in the covariance sense if k(2β−

1) < 1.

Now, we consider the case k > (2β − 1)−1. With similar arguments as the case

k(2β − 1) < 1, we have

|cov(U(Fn), S(Fn+h))| = O[h−2βL2(h)] if (k − 1)(2β − 1) > 1,

|cov(U(Fn), S(Fn+h))| = O
{
h−2β max[L2(h), Lk+1(h)]

}
if (k − 1)(2β − 1) = 1,

|cov(U(Fn), S(Fn+h))| = O[h−β+k(1−2β)/2Lk+1(h)] if (k − 1)(2β − 1) < 1; (2.2.6)

|cov(S(Fn), S(Fn+h))| = O[h−2βL2(h)] if (k − 1)(2β − 1) > 1,

|cov(S(Fn), S(Fn+h))| = O{h−2β max[L2(h), Lk+1(h)]} if (k − 1)(2β − 1) = 1,

|cov(S(Fn), S(Fn+h)| = O[h−β+(1−2β)k/2Lk+1(h)] if (k − 1)(2β − 1) < 1; (2.2.7)

and

|cov(S(Fn), U(Fn+h))| = O[h−β+(k−1)(1−2β)/2Lk(h)], (2.2.8)

which are all summable. Additionally, (2.2.3) is also summable in this case k(2β − 1) > 1.

Therefore K(Xn) has short memory in the covariance sense if k(2β − 1) > 1.

This theorem shows that K(Xn) has long memory as long as the power rank of K(·)

satisfies k < (2β− 1)−1. Hence K(Xn) keeps the long memory property for a wide range (in

terms of the power rank k) of transformations if the parameter β of the original series Xn

is close to 1/2 and therefore Xn has very strong long memory. Nevertheless, K(Xn) losses

the long memory property for a wide range of transformations if β is not close to 1/2. For
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example, if 3/4 < β < 1, only Xn and other transformations with power rank k = 1 keep

the long memory property.

Remark 2.2.9. [19, 20] studied the limit theorems by assuming EK2(Xn) < ∞, Eε8 < ∞

and the condition C(t, τ, λ) there. [51] studied the functional limit theorems under the

improved condition Eε4 < ∞ and the Condition 2.1.24. The memory property in Theorem

2.2.1 is consistent with the above limit theorems via the order of normalization. Theorem

2.2.1 only requires the Condition 2.1.24 with q = 4.

Remark 2.2.10. It is well known that both long memory and heavy tail parameters play

roles in the asymptotic behaviors of partial sums of time series. See e.g.,[31]. As in [51],

for the major results in this chapter, we assume that the innovation of the linear process

has fourth moment, although not necessary Gaussian. Therefore, the memory parameter

dominates the growth of the partial sum, which is the case in the upper right hand region

of Figure 1 in [31].

The next corollary shows that if the slowly varying function L(x) is a constant asymp-

totically, K(Xn) has long memory also in the case that (2β−1)−1 is an integer and the power

rank k = (2β − 1)−1.

Corollary 2.2.2. In the case that limn→∞ L(n) = L for some constant L > 0, under the

same conditions as in Theorem 2.2.1, K(Xn) has long memory in the covariance sense if

k ≤ (2β − 1)−1. K(Xn) has short memory in the covariance sense if k > (2β − 1)−1.

Proof. We just need consider the case that (2β − 1)−1 is an integer and the power rank

k = (2β − 1)−1. In this case, since limn→∞ L(n) = L, by (2.2.2), we have

cov(U(Fn), U(Fn+h))� (k!)−1[K(k)
∞ (0)]2h−1.

Hence K(Xn) has long memory in the covariance sense in this case.
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Corollary 2.2.2 is applicable to FARIMA(p, d, q) process. Recall that in this case,

β = 1 − d and limn→∞ L(n) = θ(1)
φ(1)Γ(d)

. Furthermore, we have detailed knowledge on the

memory parameter of K(Xn) from the following Theorem 2.2.3 if the linear process is a

FARIMA(p, d, q) process.

Theorem 2.2.3. Let Xn be a stationary FARIMA(p, d, q) process (2.1.17) with 0 < d <

1/2 and Condition 2.1.24 holds with q = 4. K(·) has power rank k with respect to the

FARIMA(p,d,q) process. Then K(Xn) is a long-memory process LM(d̃) with d̃ = (d −

1/2)k + 1/2 when k(1 − 2d) < 1, and a short-memory process LM(0) if k(1 − 2d) > 1 but

(k − 1)(1− 2d) < 1.

Proof. Since limj→∞
aj
jd−1 = θ(1)

φ(1)Γ(d)
, we have β = 1− d and the slowly varying function is a

constant asymptotically. Hence, applying (2.2.2) and (2.2.3) yields

cov(U(Fn), U(Fn+h)) ' hk(1−2β) = hk(2d−1) = h2d̄−1 (2.2.11)

with d̄ = (d− 1/2)k + 1/2 > 0.

We first consider the case k < (2β−1)−1. By (2.2.11) and the proof of Theorem 2.2.1,

cov(K(Xn), K(Xn+h)) ' cov(U(Fn), U(Fn+h)) ' hk(1−2β). Then by the same argument as in

Proposition 1 of [9], K(Xn) is a long-memory process LM(d̃) when k(2β − 1) < 1.

In the case that k(2β − 1) > 1 and (k− 1)(2β − 1) < 1, from (2.2.11), (2.2.6), (2.2.7)

and (2.2.8), cov(K(Xn), K(Xn+h)) is dominated by cov(U(Fn), U(Fn+h)). So,

cov(K(Xn), K(Xn+h)) ' h2d̄−1

with d̄ = (d− 1/2)k + 1/2 < 0. Therefore the process K(Xn) has the same autocorrelation

delay pattern as an FARIMA(0, d̄, 0) process. But we shall show that it is a short-memory

LM(0) process. Denote fK(λ) as the spectral density of K(Xn). Since cov(K(Xn), K(Xn+h))
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is dominated by cov(U(Fn), U(Fn+h)), which is positive and summable, then

0 < fK(0) = var(K(Xn)) + 2
∞∑
h=1

cov(K(Xn), K(Xn+h)) <∞.

Therefore K(Xn) is a LM(0) process.

This theorem shows that K(Xn) can never have stronger long range dependence than

the original process since d̃ ≤ d and d̃ = d if and only if k = 1.

2.2 Transformations of Short-memory Processes

Now we study the transformations of short memory linear processes in the form of

(1.1.3). The following theorem provides a result in the general setting
∑∞

i=0 |ai| <∞.

Theorem 2.2.4. Assume
∑∞

i=0 |ai| <∞ in the model (1.1.3) and

‖Kn−1(Xn,1)−Kn−1(Xn,0)‖ = O(|an−1|). (2.2.12)

Then K(Xn) has short memory in the covariance sense for any transformation K(·) with

EK2(Xn) <∞.

Proof. Again, using the projection operator and the Cauchy-Schwarz inequality, we have

cov(K(Xn), K(Xn+h)) = cov(
n−1∑
i=−∞

Pi+1K(Xn),
n+h−1∑
j=−∞

Pj+1K(Xn+h))

=
n−1∑
i=−∞

E[Pi+1K(Xn)Pi+1K(Xn+h)] ≤
n−1∑
i=−∞

‖Pi+1K(Xn)‖‖Pi+1K(Xn+h)‖

=
n−1∑
i=−∞

‖P1K(Xn−i)‖‖P1K(Xn+h−i)‖

=
n−1∑
i=−∞

O(|an−i−1an+h−i−1|) (2.2.13)

=
∞∑
i=0

O(|aiai+h|),
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where equality (2.2.13) is obtained from [51]: ‖P1K(Xn)‖ = O(|an−1|), if condition (2.2.12)

holds. Thus

∞∑
h=1

cov(K(Xn), K(Xn+h)) =
∞∑
h=1

∞∑
i=0

O(|aiai+h|),

which is finite. This finishes the proof.

As Condition 2.1.24, the condition (2.2.12) is proposed by [51] and only requires

certain smoothness requirements on Kn−1. Theorem 2.2.4 shows that we can never get long

memory process from transformations if the original process has short memory.

It is an open question that whether K(Xn) is a short memory LM(0) process if Xn is

a stationary FARIMA(p, d, q) process with −1 < d < 0. The following Theorem 2.2.5 gives a

confirmative answer to this question for the special case, the FARIMA(0, d, 0) process with

−1 < d < 0, if K(x) = x2. The FARIMA(0, d, 0) is not necessarily Gaussian.

Theorem 2.2.5. Let Xn be a stationary FARIMA(0, d, 0) process, −1 < d < 0, defined as

in (1.1.1). Then X2
n is a short-memory process LM(0).

Proof. Denote fK(λ) as the spectral density of K(Xn) = X2
n, then

fK(0) = var(K(Xn)) + 2
∞∑
h=1

cov(K(Xn), K(Xn+h))

=
∞∑
i=0

a4
i var(ε2

1) + 4
∑

0≤i<j<∞

a2
i a

2
j + 2

∞∑
h=1

∞∑
i=0

a2
i a

2
h+ivar(ε2

1)

+ 8
∞∑
h=1

∑
0≤i<j<∞

aiah+iajah+j.

=
∞∑
i=0

a4
ivar(ε2

1) + 4
∑

1≤i<j<∞

a2
i a

2
j + 2

∞∑
h=1

∞∑
i=0

a2
i a

2
h+iVar(ε2

1)

+ 8
∞∑
h=1

∑
1≤i<j<∞

aiah+iajah+j + 4
∞∑
i=1

a2
i + 8

∞∑
h=1

ah

∞∑
i=1

aiai+h.
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We shall show that fK(0) > 0. The condition −1 < d < 0 implies ai < 0 for all

i > 0. Therefore only the last term of the above decomposition of fK(0) is negative. To

prove fK(0) > 0, it suffices to show that

∞∑
i=1

a2
i + 2

∞∑
h=1

ah

∞∑
i=1

aiai+h (2.2.14)

is positive. In fact,

(2.2.14) =
∞∑
i=1

a2
i + 2

∞∑
h=1

ah

∞∑
i=1

aiai+h

=
∞∑
i=1

Γ2(i+ d)

Γ2(d)Γ2(i+ 1)
+ 2

∞∑
h=1

Γ(h+ d)

Γ(d)Γ(h+ 1)

∞∑
i=1

Γ(i+ d)Γ(i+ h+ d)

Γ2(d)Γ(i+ 1)Γ(i+ h+ 1)

=
∞∑
i=1

Γ2(i+ d)

Γ2(d)Γ2(i+ 1)
+ 2

∞∑
h=1

Γ2(h+ d)

Γ2(d)Γ2(h+ 1)
[F (d, h+ d;h+ 1; 1)− 1] (2.2.15)

=
∞∑
h=1

Γ2(h+ d)

Γ2(d)Γ2(h+ 1)
[2F (d, h+ d;h+ 1; 1)− 1]

=
∞∑
h=1

Γ2(h+ d)

Γ2(d)Γ2(h+ 1)

2Γ(h+ 1)Γ(1− 2d)

Γ(h+ 1− d)Γ(1− d)
−
∞∑
h=1

Γ2(h+ d)

Γ2(d)Γ2(h+ 1)
(2.2.16)

=
2Γ(1− 2d)

Γ2(1− d)
[F (d, d; 1− d; 1)− 1]− [F (d, d; 1; 1)− 1]

=
2Γ(1− 2d)

Γ2(1− d)
[
Γ(1− d)Γ(1− 3d)

Γ2(1− 2d)
− 1]− Γ(1− 2d)

Γ2(1− d)
+ 1 (2.2.17)

=
3Γ(−3d)Γ(−d)− dΓ2(−d)Γ(−2d)− 6Γ2(−2d)

−dΓ(−2d)Γ2(−d)
. (2.2.18)

The notation F (a, b; c; z) from (2.2.15) and thereafter is the hypergeometric series. (2.2.16)

and (2.2.17) are obtained by applying the Gauss’s theorem for hypergeometric series ([13]),

see also page 2 of [1]. The denominate of the last equation (2.2.18) is positive since −1 <

d < 0. Hence it suffices to prove that

3Γ(−3d)Γ(−d)− dΓ2(−d)Γ(−2d)− 6Γ2(−2d) > 0.
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Define f(x) = 3Γ(3x)Γ(x) + xΓ2(x)Γ(2x) − 6Γ2(2x), 0 < x < 1. The function f(x) is

continuous for x > 0. Straight forward numerical calculation shows that f(x) > 1/4 > 0 for

all 0 < x < 1. Thus, (2.2.14) is positive. Hence, X2
n is a LM(0) process.

Similar to the Gaussian case, Theorem 2.2.5 shows that antipersistence is a much

more fragile property than long memory property. The antipersistence is immediately lost

for the square transformation.

2.2 Simulation Study

To verify the main results in this section, in particular Theorem 2.2.3 and Theorem

2.2.5, we conduct simulation study for the memory of some common transformations of

FARIMA(p, d, q) processes. These transformations include K(x) = x2, x3, x4, x3 − 3x,

x4 − 6x2, sin x, ex and the non-continuous indicator function I(x ≤ c) for some constant

c. First of all, we calculate the power rank of K(·) with respect to Xn and then find the

theoretical memory parameter of each transformed process from Theorem 2.2.3. Although

the power rank of K(X) is identical to its Hermite rank if X has standard normal distribution

([20]), it may be different under different distributions. Nevertheless, one can easily find

the power rank of a specific transformation under different distributions by the Definition

2.1.23. For example, provided that
∫

cos ydF (y) 6= 0 or
∫
eydF (y) < ∞, the power rank of

K(x) = sinx or K(x) = ex is 1 since

K∞(x) = sin x

∫
cos ydF (y) + cos x

∫
sin ydF (y)

or K∞(x) = ex
∫
eydF (y) satisfies K ′∞(0) 6= 0. By similar analysis as above, the transfor-

mations K(x) = x2, x3, x4, x3 − 3x, x4 − 6x2, sin x and ex have power rank 2, 1, 2, 3,

4, 1 and 1 respectively under some regular conditions on Xn (the conditions for different

transformations may be different). For the indicator function K(x) = I(x ≤ c), the power

rank depends on the value of the constant c by the following argument: Let F (x) be the
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distribution function of X and assume that the density function f(x) of X exists. Then

K∞(x) =

∫
I(x+ y ≤ c)dF (y) = F (c− x)

and K
′
∞(x) = −f(c−x). We then have K

′
∞(0) = −f(c) 6= 0 if f(c) is quite far away from 0.

Under this condition, the power rank of the indicator function is 1. If f(c) is very close to 0

but f
′
(c) exists and is quite far away from 0, we can say that the power rank of this indicator

function K(·) is 2. Under certain smoothness condition, we can continue this procedure to

find the power rank of K(·) for c in different ranges.

Secondly, to compare with the theoretical memory parameters, we perform simulation

study for these transformations of FARIMA(p, d, q) processes Xn with memory parameters

d = 0.2 and 0.4. The three processes in the simulation study are FARIMA(0, d, 0) process

(when K(x) = x2, we also consider the cases that d = −0.8, −0.4, −0.2), FARIMA(1, d, 0)

process with the AR coefficient φ1 = −0.3, and FARIMA(1, d, 1) process with the AR coef-

ficient φ1 = −0.4 and the MA coefficient θ1 = 0.7.

Since our results require EK2(X) < ∞, Eε4 < ∞ and some transformations involve

x4, we take the Student t distribution with degree freedom 10 as the innovations of the

FARIMA(p, d, q) processes for all transformations in our study except the last one K(x) = ex.

We choose the Gaussian FARIMA(p, d, q) processes in the transformation K(X) = eX since

Ee2X < ∞ is required. For each of these three processes and for each d, we conduct N =

2, 000 simulations with n = 2, 000 observations in each process by applying the algorithm in

[12]. The memory parameters of each process and their transformations are estimated by

the Fourier regression method proposed in [14]. As studied in [26], we choose the bandwidth

[n4/5] for each estimation. The theoretical memory parameters and the estimated values

are listed in Tables 2.2.1 and 2.2.2 respectively for each of these three processes. We also

report the empirical standard error of the N = 2, 000 estimates for each process in these

tables. When d is negative, d = −0.8,−0.4 and −0.2, the theoretical memory parameters
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of all transformations of FARIMA(0, d, 0) except the square of the FARIMA(0, d, 0), are

left in blank since we do not have theoretical results for these cases. When d = 0.2, we

need k ≤ 2 by the condition on d in Theorem 2.2, so the theoretical memory parameters of

transformations with rank greater than 2 are left blank.

Table 2.2.1: Average estimated memory parameters of some transformations of 2, 000 sim-
ulated stationary FARIMA(0, d, 0) processes with 2, 000 observations in each process and
t(10) innovations (except the transformation ex, for which we use Gaussian innovations since
Ee2X <∞ is required).

K(X) and its Memory parameter of the original series X

power rank d = −0.8 d = −0.4 d = −0.2 d = 0.2 d = 0.4

X Theory -0.8 -0.4 -0.2 0.2 0.4

(rank 1) Simulation −0.7674 −0.4008 −0.2005 0.2042 0.4075

Std error 0.0496 0.0335 0.0333 0.0319 0.0332

X2 Theory 0 0 0 0 0.3

(rank 2) Simulation 0.0387 0.0250 0.0094 0.0405 0.2755

Std error 0.0330 0.0323 0.0322 0.0364 0.0648

X3 Theory 0.2 0.4

(rank 1) Simulation −0.1501 −0.0895 −0.0540 0.0960 0.2824

Std error 0.0462 0.0383 0.0353 0.0372 0.0561

X4 Theory 0 0.3

(rank 2) Simulation 0.0330 0.0144 0.0038 0.0157 0.1855

Std error 0.0329 0.0329 0.0292 0.0360 0.0790

X3 − 3X Theory 0.2

(rank 3) Simulation −0.0757 −0.0160 −0.0029 0.0087 0.2049

Std error 0.0481 0.0345 0.0321 0.0347 0.0800

X4 − 6X2 Theory 0.1

(rank 4) Simulation 0.0257 0.0051 0.0020 0.0008 0.1138

Std error 0.0301 0.0294 0.0317 0.0322 0.0882

sinX Theory 0.2 0.4

(rank 1) Simulation −0.1651 −0.1863 −0.1365 0.1841 0.3167

Std error 0.0349 0.0347 0.0334 0.0320 0.0439

eX Theory 0.2 0.4

(rank 1) Simulation −0.0486 −0.0919 −0.0796 0.1432 0.2952

Std error 0.0339 0.0348 0.0321 0.0385 0.0603

I(X ≤ 0.1) Theory 0.2 0.4

(rank 1) Simulation −0.1408 −0.1342 −0.0961 0.1579 0.3124

Std error 0.0316 0.0319 0.0326 0.0325 0.0371
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Table 2.2.2: Average estimated memory parameters of some transformations of 2, 000 simu-
lated FARIMA(1, d, 0) and FARIMA(1, d, 1) processes with 2, 000 observations in each pro-
cess and t(10) innovations (except the transformation ex, for which we use Gaussian innova-
tions since Ee2X <∞ is required). The FARIMA(1, d, 0) processes have φ1 = −0.3 and the
FARIMA(1, d, 1) processes have φ1 = −0.4, θ1 = 0.7.

K(X) and its Memory parameter of the original series X

power rank FARIMA(1, d, 0) FARIMA(1, d, 1)

d = 0.2 d = 0.4 d = 0.2 d = 0.4

X Theory 0.2 0.4 0.2 0.4

(rank 1) Simulation 0.1624 0.3663 0.2136 0.4188

Std error 0.0325 0.0332 0.0329 0.0317

X2 Theory 0 0.3 0 0.3

(rank 2) Simulation 0.0212 0.2107 0.0646 0.3007

Std error 0.0329 0.0635 0.0376 0.0615

X3 Theory 0.2 0.4 0.2 0.4

(rank 1) Simulation 0.0640 0.2173 0.1237 0.3083

Std error 0.0350 0.0542 0.0374 0.0563

X4 Theory 0 0.3 0 0.3

(rank 2) Simulation 0.0084 0.1119 0.0356 0.2214

Std error 0.0308 0.0696 0.0372 0.0778

X3 − 3X Theory 0.2 0.2

(rank 3) Simulation 0.0087 0.2049 0.0406 0.2582

Std error 0.0347 0.0800 0.0384 0.0695

X4 − 6X2 Theory 0.1 0.1

(rank 4) Simulation 0.0004 0.0425 0.0144 0.1800

Std error 0.0302 0.0633 0.0378 0.0905

sinX Theory 0.2 0.4 0.2 0.4

(rank 1) Simulation 0.1417 0.2996 0.1868 0.2896

Std error 0.0323 0.0433 0.0328 0.0412

eX Theory 0.2 0.4 0.2 0.4

(rank 1) Simulation 0.1042 0.2672 0.1482 0.2856

Std error 0.0364 0.0504 0.0392 0.0696

I(X ≤ 0.1) Theory 0.2 0.4 0.2 0.4

(rank 1) Simulation 0.1145 0.2728 0.1712 0.3228

Std error 0.0327 0.0366 0.0331 0.0374
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The simulation study with these polynomial or non-polynomial transformations clearly

confirms the theoretical results in Theorem 2.2.3 and Theorem 2.2.5 for FARIMA(0, d, 0)

processes with −1 < d < 1/2 or in general FARIMA(p, d, q) processes with 0 < d < 1/2.

One can also compare the result in Table 2.2.1 with the simulation study performed in

[9]. They obtained the theoretical results for the memory parameters of the polynomial trans-

formations of stationary Gaussian FARIMA(0, d, 0) processes. But there were no theoretical

results for the FARIMA(p, d, q) processes with p or q not zero or for the non-polynomial

transformations, such as K(x) = sin x, ex, even in the Gaussian case. They performed

simulation study for all the transformations in the Table 2.2.1 of Gaussian FARIMA(0, d, 0)

processes. As expected, due to the heavy tail innovation, the result in Table 2.2.1 is slightly

worse than the one in[9]. The innovation t(10) used here has heavier tail than Gaussian

innovation.

2.3 TRANSFORMATIONS OF NON-STATIONARY PROCESSES

In this section, we explore the memory properties of polynomial transformations of

one type non-stationary processes. In the case 1/2 < d < 3/2, a non-stationary process Xn

can be defined as the sum of a FARIMA(0, d− 1, 0) processes, i.e.,

Xn = X0 +
n∑
j=1

Yj, (2.3.1)

where the distribution of the random variable X0 does not depend on n,

Yj =
∞∑
i=0

aiεj−i, (2.3.2)

ai = Γ(i+d−1)
Γ(i+1)Γ(d−1)

and εt are i.i.d. random variables with mean 0 and variance 1. ai ∼

id−2/Γ(d − 1) for large i ∈ N. As in [44, 45], one can define Xn analogously in the case

d ≥ 3/2. In the literature, Xn defined in this way is called Type I process.
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In the following theorem we obtain the memory property of X2
n for type I processes

Xn. The memory property of K(Xn) with a general transformation K(·) of type I processes

Xn is complicate and we leave it as an open question.

Notice that Xn −Xn−1 = Yn is a FARIMA(0, d − 1, 0) process. Thus Xn ∼ LM(d).

In the following theorem, we show that this is also true asymptotically for X2
n in the case

1/2 < d < 1.

Theorem 2.3.1. Let Xn be a type I non-stationary process with 1/2 < d < 1. Assume that

X0 = 0 and Eε4 <∞. Then X2
n is asymptotically LM(d).

Proof. By (2.3.1) and (2.3.2), Xn can be written in the form

Xn =
∞∑
j=0

bn(j)εn−j,

where bn(j) =
∑j

i=0 ai, if 0 ≤ j ≤ n, and bn(j) =
∑j

i=j−n+1 ai, if j > n. By convention,

define bn(j) = 0 for j < 0. Let Zn = Xn +Xn−1. Then X2
n −X2

n−1 = YnZn and

Zn =
∞∑
j=0

[bn(j) + bn−1(j − 1)]εn−j. (2.3.3)

i). Denote γy(h) = cov(Yn, Yn+h) as the autocovariance function of the stationary process

Yn. We first show that, in the case d < 5/4,

cov(YnZn, Yn+hZn+h)

= γy(h)cov(Zn, Zn+h) + cov(Yn, Zn+h)cov(Zn, Yn+h) + C(n, h) (2.3.4)

as n→∞ for some constant C(n, h) with uniform bound 0 < C <∞. In fact, by (2.3.3),

YnZn =
∞∑
i=0

∞∑
j=0

ai[bn(j) + bn−1(j − 1)]εn−iεn−j
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and by the change of variables,

Yn+hZn+h =
∞∑

i=−h

∞∑
j=−h

ai+h[bn+h(j + h) + bn+h−1(j + h− 1)]εn−iεn−j.

Hence by the independence of the innovations εi, i ∈ Z,

cov(YnZn, Yn+hZn+h)

=
∞∑
i=0

∞∑
j=0

{aiah+i[bn(j) + bn−1(j − 1)]

×[bn+h(h+ j) + bn+h−1(h+ j − 1)]var(εn−iεn−j)}

+
∞∑
i=0

∞∑
j=0

{aiah+j[bn(j) + bn−1(j − 1)]

×[bn+h(h+ i) + bn+h−1(h+ i− 1)]var(εn−iεn−j)} .

On the other hand,

γy(h)cov(Zn, Zn+h) = cov(Yn, Yn+h)cov(Zn, Zn+h)

=
∞∑
i=0

∞∑
j=0

aiah+i[bn(j) + bn−1(j − 1)][bn+h(h+ j) + bn+h−1(h+ j − 1)]

and

cov(Yn, Zn+h)cov(Zn, Yn+h)

=
∞∑
i=0

∞∑
j=0

aiah+j[bn(j) + bn−1(j − 1)][bn+h(h+ i) + bn+h−1(h+ i− 1)].
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Since var(ε1ε2) = 1, we have

cov(YnZn, Yn+hZn+h)− γy(h)cov(Zn, Zn+h)− cov(Yn, Zn+h)cov(Zn, Yn+h)

= 2
∞∑
j=0

ajah+j[bn(j) + bn−1(j − 1)][bn+h(h+ j) + bn+h−1(h+ j − 1)]

× [var(ε2)− 1]

= 2
n∑
j=0

ajaj+h

[
j∑
i=0

ai +

j−1∑
i=0

ai

][
h+j∑
i=0

ai +

h+j−1∑
i=0

ai

]
[var(ε2)− 1]

+ 2
∞∑

j=n+1

ajaj+h

[
j∑

i=j−n+1

ai +

j−1∑
i=j−n+1

ai

][
h+j∑

i=j−n+1

ai +

h+j−1∑
i=j−n+1

ai

]

× [var(ε2)− 1]. (2.3.5)

In the above equations, since ai ∼ id−2

Γ(d−1)
,

∣∣∣∣∣ajaj+h
[

j∑
i=0

ai +

j−1∑
i=0

ai

][
h+j∑
i=0

ai +

h+j−1∑
i=0

ai

]∣∣∣∣∣ < Cj2d−4

for some 0 < C <∞. Similarly,

∣∣∣∣∣ajaj+h
[

j∑
i=j−n+1

ai +

j−1∑
i=j−n+1

ai

][
h+j∑

i=j−n+1

ai +

h+j−1∑
i=j−n+1

ai

]∣∣∣∣∣ < Cj4d−6

for some 0 < C <∞. So that (2.3.5) converges as n→∞ if d < 5/4. Consequently, in this

case d < 5/4, (2.3.4) holds as n→∞.
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ii). Now we consider the second term of (2.3.4), cov(Yn, Zn+h)cov(Zn, Yn+h).

|cov(Yn, Zn+h)| =

∣∣∣∣∣
∞∑
j=0

aj[bn+h(h+ j) + bn+h−1(h+ j − 1)]

∣∣∣∣∣
=

∣∣∣∣∣
n∑
j=0

aj[

h+j∑
i=0

ai +

h+j−1∑
i=0

ai] +
∞∑

j=n+1

aj[

h+j∑
i=j−n+1

ai +

h+j−1∑
i=j−n+1

ai]

∣∣∣∣∣
< C

(
n∑
j=1

jd−2 +
∞∑

j=n+1

j2d−3

)

for some constant C > 0. Therefore in the case d < 1, the series for cov(Yn, Zn+h) converges

as n → ∞. By the same argument, the series for cov(Zn, Yn+h) converges and hence the

series for the product cov(Yn, Zn+h)cov(Zn, Yn+h) converges as n → ∞ if d < 1. So in the

case d < 1,

cov(YnZn, Yn+hZn+h) = γy(h)cov(Zn, Zn+h) + C(n, h) (2.3.6)

as n→∞ for some constant C(n, h) with uniform bound 0 < C <∞. As a particular case

of (2.3.6),

var(YnZn) = var(Yn)var(Zn) + C(n) as n→∞ (2.3.7)

for some constant C(n) with uniform bound 0 < C <∞.

iii). Next we prove that the non-stationary process Zn satisfies:

corr(Zn, Zn+h)→ 1 as n→∞ (2.3.8)

and

var(Zn)→∞ as n→∞. (2.3.9)
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We first show that (2.3.8) holds under the condition (2.3.9). In fact,

cov(Zn, Zn+h) = cov(Xn +Xn−1, Xn+h +Xn+h−1)

= cov(2
n−1∑
j=1

Yj + Yn, 2
n+h−1∑
i=1

Yi + Yn+h)

= 4
n+h−1∑
i=1

n−1∑
j=1

γy(i− j) + 2
n−1∑
j=1

γy(n+ h− j)

+ 2
n+h−1∑
i=1

γy(n− i) + γy(h). (2.3.10)

Let h = 0 in (2.3.10), we have

var(Zn) = 4
n−1∑
i=1

n−1∑
j=1

γy(i− j) + 4
n−1∑
j=1

γy(n− j) + γy(0) (2.3.11)

By replacing the n in (2.3.11),

var(Zn+h) = 4
n+h−1∑
i=1

n+h−1∑
j=1

γy(i− j) + 4
n+h−1∑
j=1

γy(n+ h− j) + γy(0)

= 4
n−1∑
i=1

n−1∑
j=1

γy(i− j) + 4
n−1∑
j=1

γy(n− j) + γy(0)

+ 8
n−1∑
i=1

n+h−1∑
j=n

γy(i− j) + 4
n+h−1∑
i=n

n+h−1∑
j=n

γy(i− j) + 4
h−1∑
j=0

γy(n+ j)

= var(Zn) + C(n, h)

for some constant C(n, h) with uniform bound 0 < C < ∞ since Yn is a short memory

process. Therefore,

var(Zn)var(Zn+h) = var2(Zn)

[
1 +

C(n, h)

var(Zn)

]
. (2.3.12)
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On the other hand, by (2.3.10) and (2.3.11),

cov(Zn, Zn+h)

= 4
n−1∑
i=1

n−1∑
j=1

γy(i− j) + 4
n−1∑
j=1

γy(n− j) + γy(0)

+ 4
n+h−1∑
i=n

n−1∑
j=1

γy(i− j)− 2
n−1∑
i=n−h

γy(n− i)

+ 2
h−1∑
i=0

γy(n+ i) + 2
n+h−1∑
i=n

γy(n− i) + γy(h)− γy(0)

= var(Zn) + 4
n+h−1∑
i=n

n−1∑
j=1

γy(i− j) + 2
h−1∑
i=0

γy(n+ i)− γy(h) + γy(0)

= var(Zn) + C(n, h), (2.3.13)

where C(n, h) is bounded uniformly by some constant C > 0.

Provided that (2.3.9) holds, i.e., var(Zn)→∞, by (2.3.12) and (2.3.13),

corr(Zn, Zn+h) =
cov(Zn, Zn+h)√

var(Zn)var(Zn+h)

=
var(Zn) + C(n, h)

var(Zn)
√

[1 + C(n,h)
var(Zn)

]

→ 1 as n→∞,

which proves that (2.3.8) is true.

Now we show that the second property (2.3.9) of the non-stationary process Zn also

holds. Since Yn ∼ FARIMA(0, d − 1, 0) with 1/2 < d < 1, we have γy(h) < 0 for all h > 0

and the spectral density at frequency zero

f(0) = γy(0) + 2
∞∑
h=1

γy(h) = 0. (2.3.14)
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For computational convenience, we assume Yn ∼ FARIMA(0, d, 0) with −1/2 < d < 0

in the following process. Brockwell and Davis [4] gave the autocovariance function and

autocorrelation function for FARIMA(0, d, 0) processes with −1/2 < d < 1/2,

γy(0) =
σ2Γ(1− 2d)

Γ2(1− d)

and

ρy(h) =
Γ(h+ d)Γ(1− d)

Γ(h− d+ 1)Γ(d)
, h ∈ N,

where σ2 = 1 is the variance of innovation ε. Thus,

γy(h) =
Γ(1− 2d)σ2

Γ(1− d)Γ(d)

Γ(h+ d)

Γ(h+ 1− d)
. (2.3.15)

To prove (2.3.9), it suffices to prove that the first quantity in (2.3.11) goes to infinity as

n→∞ since Yn is a short memory process in the covariance sense and therefore the second

and third terms in (2.3.11) are bounded. By collecting terms, we get

n−1∑
i=1

n−1∑
j=1

γy(i− j) = (n− 1)γy(0) + 2
n−1∑
h=2

(n− h)γy(h− 1)

= (n− 1)[γy(0) + 2
n−2∑
h=1

n− 1− h
n− 1

γy(h)]

= (n− 1)[γy(0) + 2
n−2∑
h=1

γy(h)− 2
n−2∑
h=1

h

n− 1
γy(h)]

= (n− 1)[−2
∞∑

h=n−1

γy(h)− 2
n−2∑
h=1

h

n− 1
γy(h)] (2.3.16)

= −2(n− 1)
∞∑

h=n−1

γy(h)− 2
n−2∑
h=1

hγy(h). (2.3.17)
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The equality (2.3.16) is from (2.3.14). Both of the two terms in equation (2.3.17) are positive

since γy(h) < 0 if h > 0. So we prove that (2.3.17) goes to infinity by showing that the first

term of (2.3.17) goes to infinity as n→∞.

− 2(n− 1)
∞∑

h=n−1

γy(h)

= −2σ2 Γ(1− 2d)

Γ(1− d)Γ(d)
(n− 1)

∞∑
h=n−1

Γ(h+ d)

Γ(h+ 1− d)
(2.3.18)

' (n− 1)α
∞∑

h=n−1

e−h−d(h+ d)h+d−1/2

e−h+d−1(h+ 1− d)h−d+1/2
(2.3.19)

= αe1−2d(n− 1)
∞∑

h=n−1

(
1 +

1− 2d

h+ d

)−(h+d−1/2)

(h+ 1− d)2d−1

' αe1−2d(n− 1)e2d−1

∞∑
h=n−1

(h+ 1− d)2d−1 (2.3.20)

→∞ as n→∞ since 2d+ 1 > 0.

In the above equations, α = −2σ2 Γ(1−2d)
Γ(1−d)Γ(d)

; (2.3.18) is obtained by using (2.3.15); (2.3.19)

is from the Stirling’s approximation; and (2.3.20) is obtained from the fact that limn→∞(1 +

1
n
)n = e. Consequently, (2.3.9) is true.

From the above analysis, in particular (2.3.6), (2.3.7), (2.3.8) and (2.3.9),

corr(YnZn, Yn+hZn+h)

=
cov(YnZn, Yn+hZn+h)√

var(YnZn)var(Yn+hZn+h)

=
cov(Yn, Yn+h)cov(Zn, Zn+h) + C(n, h)√

var(Yn)var(Zn) + C(n)
√

var(Yn+h)var(Zn+h) + C(n, h)

' γy(h)cov(Zn, Zn+h)√
γy(0)var(Zn)

√
γy(0)var(Zn+h)

since var(Zn), var(Zn+h)→∞

=
γy(h)

γy(0)

cov(Zn, Zn+h)√
var(Zn)var(Zn+h)

→ corr(Yn, Yn+h) as n→∞.
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As Yn ∼ FARIMA(0, d− 1, 0), X2
n ∼ LM(d) when 1/2 < d < 1.

Theorem 2.3.1 shows that taking the square of a non-stationary long memory process

does not change the size of the long memory parameter, which is contrast to the result of

stationary FARIMA(p, d, q) processes.

The simulation study in Table 2.3.1 is to confirm the result in Theorem 2.3.1. We sim-

ulate FARIMA(0, d− 1, 0) processes for each of the d values, d = 0.55, 0.65, 0.75, 0.85, 0.95.

The i.i.d. innovations have Student t distribution with degree of freedom 5. By the Definition

2.3.1, the partial sum gives a type I process. The method to produce FARIMA(0, d − 1, 0)

processes and the method to estimate the memory parameters are same as the ones in Section

2.2.1. It is clear from Table 2.3.1 that X2
t is asymptotically LM(d) process. Also the rest part

of Table 2.3.1 seems to confirm one conjecture: under suitable moment conditions, any poly-

nomial transformations of non-stationary FARIMA(0, d, 0) processes are LM(d) processes,

1/2 < d < 1. The memory property of polynomial transformations of FARIMA(0, d, 0)

processes is not related to the power ranks of these transformations.
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Table 2.3.1: Average estimated parameters of some polynomial transformations of 2, 000
simulated FARIMA(0, d, 0) processes with 2, 000 observations in each process. For the trans-
formation K(x) = x2, the innovation of the original process Xn has Student t distribution
with degree of freedom 5. For other transformations, the innovation of the original process
Xn has Student t distribution with degree of freedom 10.

K(X) Memory parameter d of the original series X

0.55 0.65 0.75 0.85 0.95

X2 Theory 0.55 0.65 0.75 0.85 0.95

Simulation 0.4826 0.6170 0.7433 0.8629 0.9647

Std error 0.0673 0.0592 0.0530 0.0531 0.0456

X3 Simulation 0.4845 0.6102 0.7308 0.8479 0.9598

Std error 0.0637 0.0639 0.0620 0.0597 0.0554

X4 Simulation 0.4265 0.5702 0.7066 0.8087 0.9441

Std error 0.0913 0.0873 0.0821 0.0757 0.0678

X3 − 3X Simulation 0.4667 0.6029 0.7298 0.8502 0.9564

Std error 0.0781 0.0671 0.0637 0.0628 0.0554

X4 − 6X2 Simulation 0.4037 0.5585 0.7024 0.8280 0.9452

Std error 0.1053 0.0969 0.0854 0.0785 0.0675

Remark 2.3.21. The decomposition in Section 2.2.1 is not applicable for the non-stationary

process with 1/2 < d < 1. In fact, the result in Theorem 2.3.1 is not related to the ranks of

the transformations.

2.4 APPLICATION IN OPTION PROCESSES

The transformation K(x) = (x − C)+ itself has independent interest. It is x − C if

x ≥ C > 0. Otherwise it is 0. Notice that this K(x) is not differentiable at C. For the

reason to be clear later, let X ≥ 0 be a random variable with mean µ. Then Y = X −µ has

mean 0 and

K(X) = (X − C)+ = (Y − (C − µ))+ := H(Y ).

41



Let G(y) be the distribution function of Y . Assume that the density function of Y exists

and let it be g(y). Then

H∞(y) =

∫
(y + z − (C − µ))+dG(z)

=

∫ ∞
C−µ−y

(y + z − (C − µ))dG(z)

= (y − C + µ)[1−G(C − µ− y)] +

∫ ∞
C−µ−y

zdG(z)

and

H ′∞(y)

= 1−G(C − µ− y) + (y − C + µ)g(C − µ− y) + (C − µ− y)g(C − µ− y)

= 1−G(C − µ− y).

We then have H ′∞(0) = 1 − G(C − µ) 6= 0 if C − µ is small enough. Therefore in

this case the power rank of this H(·) is 1. If a larger C − µ > 0 is in the range such that

H ′∞(0) = 1 − G(C − µ) ≈ 0 and at the same time g(C − µ) is quite far away from 0, we

can say that the power rank of this H(·) is 2 since H ′′∞(y) = g(C − µ − y) and therefore

H ′′∞(0) = g(C−µ) > 0. If G(y) is smooth enough (measured by the order of differentiability),

we can continue this procedure to find the power rank of H(·) for C−µ in different ranges. In

particular, if G(r)(y) exists for any r ∈ N, and for C − µ > 0 large enough, G(r)(C − µ) ≈ 0,

then we say the power rank is ∞ since H
(k)
∞ (y) = (−1)kg(k−2)(C − µ − y) and therefore

H
(k)
∞ (0) = (−1)kg(k−2)(C − µ) ≈ 0.

We conduct simulation study for transformations (Xn − C)+ with C = 0.3, 1.5, 5,

9, 44.8 and 45.5 where Yn = Xn − µ are FARIMA(0, d, 0) processes with d = 0.2 and 0.4

as in Section 2.2.1. The innovations of Xn are the absolute values of Student t random

variables with degree of freedom 10. The way to estimate the memory parameters of the

transformations including the selection of the bandwidth [n4/5] is same as the one in Section
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2.2.1. For each d = 0.2 and 0.4, we conduct N = 2, 000 simulations with n = 220 observations

in each process. Notice that the mean µ of Xn changes for different memory parameters d.

Therefore the power rank of (Xn − C)+ = (Yn − (C − µ))+ also varies with µ for each

fixed C > 0. The result is listed in Table 2.4.1. Again, If d = 0.2, the theoretical memory

parameters of transformations of the FARIMA(0, d, 0) processes with rank greater than 2

are left in blank. In the table, there are no estimates if C − µ > 5 since the length of each

simulated process Xn is finite and therefore the transformed values are all zeros if C − µ is

too large. We use NA to denote them. Theoretically, the memory of a degenerate time series

is zero. The simulation study confirms the results in Theorem 2.2.3 and the above analysis.

The study of the memory parameter of K(x) = (x−C)+ has direct application to call

option time series in finance. Suppose Xn is the price process of the underlying asset and

C is the strike price, then K(Xn) is the value of the call option. Our result shows that the

memory parameter of (Xn−C)+ is same as the memory parameter of the underlying asset Xn

if C−µ is small. The power rank of (Xn−C)+ = (Yn−(C−µ))+ is 2 approximately if C−µ

is in some moderate range. In this case, according to Theorem 2.2.3 (which is confirmed by

the simulation study), the memory parameter of K(Xn) is 2d−1/2 if the memory parameter

d of the original mean adjusted asset price process Xn − µ ∼ FARIMA(0, d, 0) satisfies

1/4 < d < 1/2.

Similar analysis can be conducted for the truncation function K(x) = (C − x)+ and

the put option time series (C −Xn)+ at different C > 0.
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Table 2.4.1: Average estimated memory parameter of some transformations (Xn − C)+ of
2, 000 simulated FARIMA(0, d, 0) processes Xn − µ with |t(10)| innovations and 220 obser-
vations in each process Xn. C = 0.3, 1.5, 5, 9, 44.8 and 45.5 and Yn = Xn − µ.

Memory parameter of the original series X

d = 0.2 d = 0.4

(Y − (0.3− µ))+ (Y + 6.89)+ (Y + 44.74)+

Rank 1 1

Theory 0.2 0.4

Simulation 0.1999 0.3998

Std error 0.0024 0.0025

(Y − (1.5− µ))+ (Y + 5.69)+ (Y + 43.24)+

Rank 1 1

Theory 0.2 0.4

Simulation 0.1999 0.3998

Std error 0.0025 0.0024

(Y − (5− µ))+ (Y + 2.19)+ (Y + 39.74)+

Rank 1 1

Theory 0.2 0.4

Simulation 0.1999 0.3999

Std error 0.0025 0.0024

(Y − (9− µ))+ (Y − 1.81)+ (Y + 35.74)+

Rank 2 1

Theory 0 0.4

Simulation 0.0246 0.3998

Std error 0.0027 0.0025

(Y − (44.8− µ))+ (Y − 37.61)+ (Y − 0.06)+

Rank ∞ 1

Theory 0.4

Simulation NA 0.3332

Std error NA 0.0049

(Y − (45.5− µ))+ (Y − 38.31)+ (Y − 0.76)+

Rank ∞ 2

Theory 0.3

Simulation NA 0.2541

Std error NA 0.0074
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2.5 CONCLUSION

Under the condition proposed by [51], we have obtained memory properties of trans-

formation of stationary processes both in time domain and frequency domain. The results

in time domain is consistent with the limit theorems in [20] and [51] via the order of normal-

ization. The results are applicable not only to FARIMA(0, d, 0) processes as studied in [9]

for Gaussian case, but also to general FARIMA(p, d, q) processes for some special transfor-

mation. The results hold not only for smooth transformations, they also hold for functions

which are not differentiable. In particular, we study the memory properties of option time

series (Xn − C)+ in finance for different strike price C > 0. We have also derived the

memories of the square transformation of an non-stationary process.
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3 SYMMETRIC GINI COVARIANCE AND CORRELATION

3.1 PRELIMINARIES

When we develop the memory properties for a time series process, we always apply

the autocorrelation to measure those memories. Correlation analysis is another popular topic

in statistics, and the standard Gini correlation is one of the important type of correlations

which are used to measure the dependence of random variables or processes. Standard Gini

correlation is developed based on the Gini’s mean difference.

3.1 Gini Mean Difference

Gini’s mean difference (GMD) was introduced by Gini [15] as an alternative measure

of variability to the standard deviation. The original definition of the GMD is the expected

absolute difference between two realizations of i.i.d. random variables. That is,

Definition 3.1.1 (Gini Mean Difference). For a random variable X from a univariate dis-

tribution F , the GMD of X (or F ) is

σg = σg(X) = σg(F ) = E|X1 −X2|,

where X1 and X2 are independent random variables from F .

The variance of X (or F ) is σ2
v(F ) = var(X) = 1

2
E(X1 − X2)2. Apparently, GMD

only needs the existence of the first moment of the distribution F , so it is more robust

than the variance and is often used for heavy-tailed asymmetric distributions. GMD has

more than 14 different alternative representations, and there are four types of formulas for
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GMD. Among all the formulations of GMD (L1 metric, integrals of cumulative distribution

functions, covariance and Lorenz curves), we are interested in the covariance formulations.

One representation of GMD based on the covariance is

σg(F ) = 4cov(X,F (X)).

While the variance is the covariance of X with itself, the GMD is (four times) the covariance

of X with F (X). In this spirit, two Gini-type alternatives to the usual covariance for

measuring the dependence of a random variable X and another random variable Y with

distribution function G are

covg(X, Y ) = 4cov(X,G(Y )), covg(Y,X) = 4cov(Y, F (X)). (3.1.2)

Based on (3.1.2), the Gini correlations defined by (1.2.1) are not equal in general. An even

worse part is that γ(X, Y ) and γ(Y,X) may have different signs in some cases ([54]), which

brings substantial difficulty in interpretation. The asymmetry stems from the usage of F (X)

or G(Y ), which can be thought as a standardized marginal rank. A symmetry one calls for

a joint rank of X and Y . The other covariance type formulation for GMD is

σg(F ) = 2cov(X, 2F (X)− 1),

allowing an insightful interpretation: σg(X) is twice the covariance of X and the centered

rank function r(X) = 2F (X) − 1. r(X) is centered because Er(X) = 0 if F is continuous.

So

σg(F ) = 2cov(X, r(X)) = 2E(Xr(X)). (3.1.3)
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A nice generalization of the centered rank in high dimensions provides a joint rank, and

along with the representation of GMD in (3.1.3) yields a natural extension of GMD for a

multivariate distribution F .

3.1 Spatial Rank Function

Let X be a d-variate random vector from continuous distribution F with a finite first

moment and the expected Euclidean distance from x to X be D(x, F ) = EF‖x−X‖. Then

the gradient of D is denoted as the centered spatial rank function ([32]), that is,

r(x) = ∇xD(x, F ) = E
x−X

‖x−X‖
= E{s(x−X)},

where s(x−X) = x/‖x‖ (s(0) = 0) is the spatial sign function in Rd. The spatial rank

function is the expected direction from X to x. We call it centered because a random rank is

centered at 0, that is, Er(X) = 0. The solution of x in r(x) = 0 is called the spatial median

of F , which minimizes D. In the univariate case, the derivative of D(x, F ) = E|x − X|

with respect to x leads to the univariate centered rank function r(x) = Esign(x − X) =

2F (x)− 1 ∈ [−1, 1] if F is continuous. Clearly, the median of F has a center rank 0.

3.2 SYMMETRIC GINI CORRELATION

Given a random vector Z in Rd with distribution H, the spatial rank of z with respect

to the distribution H is defined as

r(z, H) := Es( z-Z) = E
z- Z

||z- Z||
.

For a more comprehensive account of the spatial rank, see [33].
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In particular, for d = 2 with Z = (X, Y )T , the bivariate spatial rank function of

z = (x, y)T is

r(z, H) = E
(x−X, y − Y )T

‖z− Z‖
:= (R1(z), R2(z))T ,

where R1(z) = E(x − X)/‖z − Z‖ and R2(z) = E(y − Y )/‖z − Z‖ are two components of

the joint rank function r(z, H).

3.2 Symmetric Gini Covariance

Our new symmetric covariance and correlation are defined based on the bivariate

spatial rank function. Replacing the univariate centered rank in (3.1.3) with R2(z), we

define the symmetric Gini covariance as

covg(X, Y ) := 2EXR2(Z). (3.2.1)

Note that covg(X, Y ) = 2cov(X,R2(Z)) if H is continuous. Dually, covg(Y,X) =

2EY R1(Z) can also be taken as the definition of the symmetric Gini covariance between X

and Y . Indeed,

covg(X, Y ) = 2EXR2(Z) = 2E(X1E
[ Y1 − Y2

||Z1 − Z2||
∣∣Z1]) = 2EX1

Y1 − Y2

||Z1 − Z2||

= −2EX2
Y1 − Y2

||Z1 − Z2||
= E[

(X1 −X2)(Y1 − Y2)

||Z1 − Z2||
] = covg(Y,X), (3.2.2)

where Z1 = (X1, Y1)T and Z2 = (X2, Y2)T are independent copies of Z = (X, Y )T from H.

In addition, we define

covg(X,X) := 2EXR1(Z) = E
(X1 −X2)2

‖Z1 − Z2‖
; (3.2.3)

covg(Y, Y ) := 2EY R2(Z) = E
(Y1 − Y2)2

‖Z1 − Z2‖
. (3.2.4)
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We see that not only the Gini covariance between X and Y but also Gini variances of X and

of Y are defined jointly through the spatial rank. [7] considered the Gini covariance matrix

Σg = 2EZrT (Z). The covariances defined in (3.2.1), (3.2.3) and (3.2.4) are elements of Σg

for two dimensional random vectors. Rather than the assumption of a finite second moment

in the usual covariance and variance, the Gini counterparts assume only the first moment,

hence being more suitable for heavy-tailed distributions. A related covariance matrix is the

spatial sign covariance matrix (SSCM), which requires a location parameter to be known

but no assumption on moments ([46]).

Particularly if Z is a one dimensional random variable, we have covg(Z,Z) = E|Z1−

Z2|, which reduces to GMD. In this sense, we may view the symmetric Gini covariance as a

direct generalization of GMD to two variables.

3.2 Symmetric Gini Correlation

Using the symmetric Gini covariance defined by (3.2.1), we propose a symmetric Gini

correlation coefficient as follows.

Definition 3.2.5. Z = (X, Y )T is a bivariate random vector from the distribution H with

finite first moment and non-degenerate marginal distributions, then the symmetric Gini cor-

relation between X and Y is

ρg(X, Y ) :=
covg(X, Y )√

covg(X,X)
√

covg(Y, Y )
=

EXR2(Z)√
EXR1(Z)

√
EY R2(Z)

. (3.2.6)

Theorem 3.2.1. For a bivariate random vector (X, Y )T from H with finite first moment,

ρg has the following properties:

12. ρg(X, Y ) = ρg(Y,X).

22. −1 ≤ ρg(X, Y ) ≤ 1.

32. If X, Y are independent, then ρg(X, Y ) = 0.
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42. If Y = aX + b and a 6= 0, then ρg = sgn(a).

52. ρg(aX + b, aY + d) = ρg(X, Y ) for any constants b, d and a 6= 0. Measure ρg is

sensitive to a heterogeneous change, i.e., ρg(aX, cY ) 6= ρg(X, Y ) for a 6= c. In particular,

ρg(X, Y ) = −ρg(aX,−aY ) = −ρg(−aX, aY ).

Proof. The first property is obvious. Hölder’s inequality implies∣∣E (X1−X2)(Y1−Y2)
‖Z1−Z2‖

∣∣ ≤√E (X1−X2)2

‖Z1−Z2‖ E
(Y1−Y2)2

‖Z1−Z2‖ and hence |ρg(X, Y )| ≤ 1.

Let (Xi, Yi), i = 1, 2, be independent copies of (X, Y ), then covg(X, Y ) = 2EX1(Y1−Y2)
‖Z1−Z2‖ =

2E X1Y1
‖Z1−Z2‖ − 2E X1Y2

‖Z1−Z2‖ = 0 by symmetry. Hence ρg(X, Y ) = 0.

If Y = aX + b, then

ρg(X, Y ) =
E (X1−X2)(Y1−Y2)

‖Z1−Z2‖√
E (X1−X2)2

‖Z1−Z2‖ E
(Y1−Y2)2

‖Z1−Z2‖

=

a√
a2+1

E|X1 −X2|
|a|√
a2+1

E|X1 −X2|
= sgn(a).

ρg(aX + b, aY + d) = ρg(X, Y ) can be obtained from

covg(aX + b, aY + d) = E
a2(X1 −X2)(Y1 − Y2)

|a|‖Z1 − Z2‖
= |a|covg(X, Y ),

covg(aX + b, aX + b) = |a|covg(X,X),

covg(aY + d, aY + d) = |a|covg(Y, Y ).

By (3.2.2), (3.2.3) and (3.2.4), it is easy to see the remainder of property 5.

Theorem 3.2.1 shows that the symmetric Gini correlation has all of the properties

of the Pearson correlation coefficient except Property 5. It loses the invariance property

under heterogeneous changes because of the Euclidean norm in the spatial rank function.

To overcome this drawback, we give the affine invariant version of the ρg in Section 3.5.

Compared with the Pearson correlation, as we will see in Section 3.3, the Gini correlation is

more robust in terms of its influence function.
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3.2 Symmetric Gini Correlation for Elliptical Distributions

The relationship between Kendall’s τ and the linear correlation coefficient ρ, τ =

2/π arcsin(ρ), holds for all elliptical distributions. So ρ = sin(πτ/2) provides a robust

estimation method for ρ by estimating τ ([29]). This motivates us to explore the relationship

between the symmetric Gini correlation ρg and the linear correlation coefficient ρ under

elliptical distributions.

Definition 3.2.7 (Elliptical Distribution). A d-dimensional continuous random vector Z

has an elliptical distribution if its density function is of the form

f(z|µ,Σ) = |Σ|−1/2g{(z− µ)TΣ−1(z− µ)}, (3.2.8)

where Σ is the scatter matrix, µ is the location parameter and the nonnegative function g is

the density generating function.

An important property for the elliptical distribution is that the nonnegative random

variable R = ||Σ−1/2(Z−µ)|| is independent of U = {Σ−1/2(Z−µ)}/R, which is uniformly

distributed on the unit sphere. When d = 1, the class of elliptical distributions coincides

with the location-scale class. For d = 2, let Z = (X, Y )T and Σij be the (i, j) element

of Σ, then the linear correlation coefficient of X and Y is ρ = ρ(X, Y ) := Σ12√
Σ11Σ22

. If the

second moment of Z exists, then the scatter parameter Σ is proportional to the covariance

matrix. Thus the Pearson correlation ρp is well defined and is equal to the parameter ρ in

the elliptical distributions. If Σ11 = Σ22 = σ2, we say X and Y are homogeneous, and Σ

can then be written as Σ = σ2

1 ρ

ρ 1

. In this case, if ρ = ±1, Σ is singular and the

distribution reduces to an one-dimensional distribution.

The following theorem states the relationship between ρg and ρ under elliptical dis-

tributions.
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Theorem 3.2.2. If Z = (X, Y )T has an elliptical distribution H with finite first moment

and the scatter matrix Σ = σ2

1 ρ

ρ 1

, then we have

ρg = k(ρ) =


ρ ρ = 0,±1,

1

ρ
+
ρ− 1

ρ

EK( 2ρ
ρ+1

)

EE( 2ρ
ρ+1

)
, otherwise,

(3.2.9)

where

EK(x) =

∫ π/2

0

1√
1− x2 sin2 θ

dθ and EE(x) =

∫ π/2

0

√
1− x2 sin2 θ dθ

are the complete elliptic integral of the first kind and the second kind, respectively.

Proof. To prove the theorem, we need a result from [7]. They consider the Gini covari-

ance matrix Σg = 2EZrT (Z). Their Theorem 2.1 states that if the scatter matrix Σ

has the spectral decomposition V ΛV T with Λ = diag(λ1, λ2), then Σg = V ΛgV
T with

Λg = diag(λg,1, λg,2) and

λg,i = c(H)E
[

λiu
2
i√

λ1u2
1 + λ2u2

2

]
, i = 1, 2 (A1)

where u = (u1, u2)T is uniformly distributed on the unit circle, λi’s are the eigenvalues of

Σ and c(H) is a constant depending on the distribution H. Here the eigenvalues of Σ are

λ1 = σ2(1 − ρ) and λ2 = σ2(1 + ρ), and the corresponding eigenvectors are (1,−1)T and

(1, 1)T . Consequently, ρg = λg,2−λg,1
λg,2+λg,1

. Obviously, if ρ = ±1, either λ1 or λ2 is zero. With

(A1), we have ρg = ±1 = ρ. If ρ = 0, then λ1 = λ2, and hence we have λg,1 = λg,2 and

ρg = 0 = ρ. When |ρ| < 1 and ρ 6= 0, let u1 = cosθ and u2 = sinθ, then θ is uniformly
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distributed in [0, 2π]. With (A1), we have

ρg =

∫ 2π

0
1

2π
(1−ρ) cos2 θ−(1+ρ) sin2 θ√

(1−ρ) cos2 θ+(1+ρ) sin2 θ
dθ∫ 2π

0
1

2π

√
(1− ρ) cos2 θ + (1 + ρ) sin2 θdθ

=

∫ π/2
0

ρ−cos 2θ√
1−ρ cos 2θ

dθ∫ π/2
0

√
1− ρ cos 2θdθ

=
1

ρ
+
ρ− 1

ρ

EK(2ρ/(ρ+ 1))

EE(2ρ/(ρ+ 1))
.
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Figure 3.2.1: Pearson ρp, Kendall’s τ and symmetric Gini ρg correlation coefficients versus ρ,
the correlation parameter of homogeneous elliptical distributions with finite second moment.

The relationship (3.2.9) holds only for Σ with Σ11 = Σ22 because of the loss of

invariance property of ρg under the heterogeneous changes (Theorem 3.2.1). Note that for

any elliptical distribution, the regular Gini correlations are equal to ρ. [36] proved that

γ(X, Y ) = γ(Y,X) = ρ for bivariate normal distributions, but their proof can be modified

for all elliptical distributions. Based on the spatial sign covariance matrix, [10] considered a

spatial sign correlation coefficient, which equals to ρ for elliptical distributions.
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Figure 3.2.1 plots the proposed symmetric Gini correlation ρg as a function of ρ under

homogeneous elliptical distributions with finite second moment. In comparison, we also plot

Pearson ρp and Kendall’s τ against ρ. All correlations are increasing in ρ. It is clear that

|τ | < |ρg| < |ρp| = |ρ|.

With (3.2.9), the estimate ρ̂g of ρg can be corrected to ensure Fisher consistency by

using the inversion transformation k−1(ρ̂g), denoted as ρ̂g. In the next section, we study

the influence function of ρg, which can be used to evaluate robustness and efficiency of the

estimators ρ̂g in any distribution and that of ρ̂g under elliptical distributions.

3.3 INFLUENCE FUNCTION

The influence function (IF) introduced by Hampel ([17]) is now a standard tool in

robust statistics for measuring effects on estimators due to infinitesimal perturbations of

sample distribution functions ([18]).

Definition 3.3.1 (Influence Function). For a cdf H on Rd and a functional T : H 7→

T (H) ∈ Rm with m ≥ 1, the IF of T at H is defined as

IF(z;T,H) = lim
ε↓0

T ((1− ε)H + εδBz)− T (H)

ε
, z ∈ Rd,

where δz denotes the point mass distribution at z.

Under regularity conditions on T ([18, 41]), we have EH{IF(Z;T,H)} = 0 and the

von Mises expansion

T (Hn)− T (H) =
1

n

n∑
i=1

IF(zi;T,H) + op(n
−1/2), (3.3.2)
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where Hn denotes the empirical distribution based on sample z1,...,zn. This representation

shows the connection of the IF with robustness of T , observation by observation. Further-

more, (3.3.2) yields asymptotic m-variate normality of T (Hn),

√
n(T (Hn)− T (H))

d→ N(0,EH(IF(Z;T,H)IF(Z;T,H)T ) as n→∞. (3.3.3)

To find the influence function of the symmetric Gini correlation defined in (3.2.6),

let T1(H) = 2EXR1(Z), T2(H) = 2EXR2(Z), T3(H) = 2EY R2(Z) and h(t1, t2, t3) =

t2/
√
t1t3. Then ρg = T (H) = h(T1, T2, T3). Denote the influence function of Ti as Li(x, y) =

IF((x, y)T ;Ti, H) for i = 1, 2, 3.

Theorem 3.3.1. For any distribution H with finite first moment, the influence function of

ρg = T (H) is given by

IF((x, y)T ; ρg, H) =− ρg
2

(
L1(x, y)

T1

− 2L2(x, y)

T2

+
L3(x, y)

T3

)
=− ρg

2

(
1

T1

∫
2(x− x1)2√

(x− x1)2 + (y − y1)2
dH(x1, y1)

− 1

T2

∫
4(x− x1)(y − y1)√
(x− x1)2 + (y − y1)2

dH(x1, y1)

+
1

T3

∫
2(y − y1)2√

(x− x1)2 + (y − y1)2
dH(x1, y1)

)
.

Proof. Let H̃ = (1− ε)H + εδ(x,y), then

T1(H̃) = 2

∫∫
x1(x1 − x2)√

(x1 − x2)2 + (y1 − y2)2
dH̃(x2, y2)dH̃(x1, y1)

= 2(1− ε)2T1(H) + 2ε(1− ε)
∫

(x− x2)2√
(x− x2)2 + (y − y2)2

dH(x2, y2).

We have
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L1(x, y) = 2

∫
(x− x2)2√

(x− x2)2 + (y − y2)2
dH(x2, y2)− 4T1(H),

L2(x, y) = 2

∫
(x− x2)(y − y2)√

(x− x2)2 + (y − y2)2
dH(x2, y2)− 4T2(H),

L3(x, y) = 2

∫
(y − y2)2√

(x− x2)2 + (y − y2)2
dH(x2, y2)− 4T3(H).

Hence,

IF((x, y)T ; ρg, H) =
3∑
i=1

∂h

∂ti

∣∣
T
Li(x, y)

= − T2

2
√
T 3

1 T3

L1(x, y)− T2

2
√
T1T 3

3

L3(x, y) +
1√
T1T3

L2(x, y).

Replacing T2/
√
T1T3 with ρg completes the proof.

Note that each of Li(x, y) is approximately linear in x or y. Comparing with the

quadratic effects in the Pearson’s correlation coefficient ([8]),

IF((x, y)T ; ρp, H) =
(x− µX)(y − µY )

σXσY
− 1

2
ρ

[
(x− µX)2

σ2
X

+
(y − µY )2

σ2
Y

]
,

ρg is more robust than the Pearson correlation. However, ρg is not as robust as Kendall’s

τ correlation since the influence function of ρg is unbounded. Kendall’s τ correlation has

a bounded influence function ([6]), which is IF((x, y)T ; τ,H) = 2{2PH [(x − X)(y − Y ) >

0]− 1− τ}. In this sense, ρg is more robust than ρp but less robust than τ .

IF of ρp IF of ρg IF of τ

Figure 3.3.1: Influence functions of correlation correlations ρp, ρg and τ for the bivariate
normal distribution with µx = µy = 0, σx = σy = 1 and ρ = 0.5.
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Figure 3.3.1 displays the influence function of each correlation coefficient for the

bivariate normal distribution with µX = µY = 0, σX = σY = 1 and ρ = 0.5. Note that scales

of the value of the influence functions in the three plots are quite different.

3.4 ESTIMATION

Let zi = (xi, yi)
T , and Z = (z1, z2, ..., zn) be a random sample from a continuous

distribution H with an empirical distribution Hn. Replacing H in (3.2.6) with Hn, we have

the sample counterpart of the symmetric Gini correlation coefficient ρg(Hn) = ρ̂g:

ρ̂g =

∑
1≤i<j≤n

(xi−xj)(yi−yj)√
(xi−xj)2+(yi−yj)2√∑

1≤i<j≤n
(xi−xj)2√

(xi−xj)2+(yi−yj)2

√∑
1≤i<j≤n

(yi−yj)2√
(xi−xj)2+(yi−yj)2

.

Using the same notation as in Section 3.3, we have the following central limit theorem

of the sample symmetric Gini correlation ρ̂g.

Theorem 3.4.1. Let z1, z2, ..., zn be a random sample from 2-dimensional distribution H

with finite second moment. Then ρ̂g is an unbiased,
√
n-consistent estimator of ρg. Further-

more,
√
n(ρ̂g − ρg)

d→ N(0, vg) as n→∞, where

vg = E[IF((X, Y )T , ρg, H)]2 =
ρ2
g

4

(
1

T 2
1

E[L2
1(X, Y )] +

4

T 2
2

E[L2
2(X, Y )]

+
1

T 2
3

E[L2
3(X, Y )]− 4

T1T2

EL1(X, Y )L2(X, Y ) +
2

T1T3

EL1(X, Y )L3(X, Y )

− 4

T2T3

EL2(X, Y )L3(X, Y )

)
.

Proof. Let Σg be the Gini covariance matrix of Z = (X, Y )T and Σ̂g =

G2
x Gxy

Gxy G2
y

 be the

sample Gini covariance matrix for sample {Zi}ni=1. Let vec(M) be the operator that stacks
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the columns of M to form a vector. According to Theorem 4.1 of [7], we get

√
n(vec(Σ̂g)− vec(Σg))

d→ N4(0,V),

where V = 4E[ψ(Z)ψT (Z)], ψ(z) = vec

(
E[ (z−Z)(z−Z)T

‖z−Z‖ ]−Σg

)
. Then

√
n
{

(G2
x, Gxy, G

2
y)
T − (covg(X,X), covg(X, Y ), covg(Y, Y ))T

} d→ N3(0,V ∗)

with V ∗ being the matrix of V deleting the third row and third column. Now, since ρ̂g =

h(G2
x, Gxy, G

2
y) = Gxy/

√
G2
xG

2
y, and the derivative of h is ḣ(a, b, c) = −b/(2

√
ac)(1/a,−2/b, 1/c),

we have

ḣ(covg(X,X), covg(X, Y ), covg(Y, Y )) =
−ρg

2

(
1

covg(X,X)
,

−2

covg(X, Y )
,

1

covg(Y, Y )

)
,

which is denoted as B. Applying the delta method yields the asymptotic normality of ρ̂g

with the asymptotic variance vg = BV∗BT . Working out the explicit form of vg completes

the proof.

Although (3.3.3) implies Theorem 3.4.1, it is hard to check regularity conditions for

the von Mises expansion (3.3.2). Instead, we prove it using the multivariate delta method

and the asymptotic normality of the sample Gini covariance matrix, which is based on the

U -statistics theory ([7]).

For an elliptical distribution H, Theorem 3.2.2 shows that ρ̂g is not a Fisher consistent

estimator of ρ. We need to consider the inverse transformation ρ̂g = k−1(ρ̂g), where the

function k is given in (3.2.9). Applying the delta method, we obtain the
√
n-consistency of

estimator ρ̂g for ρ.

Theorem 3.4.2. Let z1, z2, ..., zn be a sample from elliptical distribution H with finite sec-

ond moment and Σ = σ2

1 ρ

ρ 1

. Then ρ̂g = k−1(ρ̂g) is unbiased and a
√
n-consistent

estimator of ρ. Moreover,
√
n(ρ̂g − ρ)

d→ N(0, [1/k′(ρ)]2vg) as n→∞, where the function k
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is given in (3.2.9), vg is given in Theorem 3.4.1, and k′(ρ) is

k′(ρ) =
−3(ρ+ 1)EE2( 2ρ

ρ+1
) + 4EE( 2ρ

ρ+1
)EK( 2ρ

ρ+1
) + (ρ− 1)EK2( 2ρ

ρ+1
))

2(ρ+ 1)ρ2EE2( 2ρ
ρ+1

)
.

Theorem 3.4.2 provides an estimator based on ρ̂g for the correlation parameter for

elliptical distributions. The asymptotic variance [k′(ρ)]−2vg can be used to evaluate the

asymptotic efficiency of ρ̂g.

3.4 Asymptotic Efficiency

To compare relative efficiency, we present the asymptotic variances (ASV) of the other

three estimators of ρ including Pearson’s estimator ρ̂p, the regular Gini correlation estimator

ρ̂γ, and Kendall’s estimator ρ̂τ .

Witting and Müller-Funk [47] established asymptotic normality for the regular sample

Pearson correlation coefficient ρ̂p:

√
n(ρ̂p − ρ)

d→ N(0, vp) as n→∞,

where

vp = (1 +
ρ2

2
)
σ22

σ20σ02

+
ρ2

4
(
σ40

σ2
20

+
σ04

σ2
02

− 4σ31

σ11σ20

− 4σ13

σ11σ02

),

and σkl = E[(X − EX)k(Y − EY )l]. The Pearson correlation estimator requires a finite

fourth moment on the distribution to evaluate its asymptotic variance. For bivariate normal

distributions, the asymptotic variance vp simplifies to (1− ρ2)2.

An estimator ρ̂γ of the regular Gini correlation γ(X, Y ) is

ρ̂γ =

(
n
2

)−1∑
1≤i<j≤n h1(zi, zj)(

n
2

)−1∑
1≤i<j≤n h2(zi, zj)

,
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where

h1( z1, z2) = [(x1 − x2)I(y1 > y2) + (x2 − x1)I(y2 > y1)]/4,

h2( z1, z2) = |x1 − x2|/4.

Using U-statistic theory, Schechtman and Yitzhaki [36] provided the asymptotic normality:

√
n(ρ̂γ − ργ)

d→ N(0, vγ) as n→∞,

with

vγ = (4/θ2
2)ζ1(θ1) + (4θ2

1/θ
4
2)ζ2(θ2)− (8θ1/θ

3
2)ζ3(θ1, θ2),

where

θ1 = cov(X,G(Y )), θ2 = cov(X,F (X)),

ζ1(θ1) = Ez1 {E z2 [h1(Z1,Z2)]}2 − θ2
1,

ζ2(θ2) = Ez1 {E z2 [h2( Z1, Z2)]}2 − θ2
2,

ζ3(θ1, θ2) = E z1 {E z2 [h1( Z1, Z2)]E z2 [h2( Z1, Z2)]} − θ1θ2.

Under elliptical distributions, γ(X, Y ) = γ(Y,X) = ρ, hence the asymptotic variance of ρ̂γ

is vγ. For a normal distribution, [53] provided an explicit formula for vγ, given by vγ =

π/3 + (π/3 + 4
√

3)ρ2 − 4ρ arcsin(ρ/2)− 4ρ2
√

4− ρ2.

Borovskikh [3] presented the asymptotic normality of the estimator τ̂ :

√
n(τ̂ − τ)

d→ N(0, vτ ) as n→∞,
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with

vτ = 4E{E2
z1
{sgn[(X2 −X1)(Y2 − Y1)]}} − 4E2{sgn[(X2 −X1)(Y2 − Y1)]}.

Applying the delta method to ρ̂τ = sin(πτ̂/2), we obtain the asymptotic variance of ρ̂τ to be

π2

4
(1 − ρ2)vτ . Under a normal distribution, the asymptotic variance of ρ̂τ is π2(1 − ρ2)[1

9
−

4
π2 arcsin2(ρ

2
)] ([6]).

We compare the asymptotic efficiency of the four estimators ρ̂g, ρ̂γ, ρ̂τ and ρ̂p under

three bivariate elliptical distributions (3.2.8): the normal distributions with g(t) = 1
2π
e−t/2;

the t-distributions with g(t) = 1
2π

(1 + t/ν)−ν/2−1, where ν is the degrees of freedom; and

the Kotz type distribution with g(t) = 1
2π
e−
√
t. The normal distribution is the limiting

distribution of the t-distributions as ν → ∞. The Kotz type distribution is a bivariate

generalization of the Laplace distribution with the tail region fatness between that of the

normal and t distributions ([11]). We consider only elliptical distributions because all four

estimators ρ̂g, ρ̂γ, ρ̂τ and ρ̂p are Fisher consistent for parameter ρ. The estimators for

non-elliptical distributions may estimate different quantities, resulting in their asymptotic

variances being incomparable.

Table 3.4.1: Asymptotic relative efficiencies (ARE) of estimators ρ̂g, ρ̂γ and ρ̂τ relative to ρ̂p
for different distributions, with asymptotic variance (ASV(ρ̂p)) of Pearson estimator ρ̂p.

Distribution ARE(ρ̂g, ρ̂p) ARE(ρ̂γ, ρ̂p) ARE(ρ̂τ , ρ̂p) ASV(ρ̂p)

ρ = 0.1 0.9321 0.9558 0.9125 0.9816
Normal ρ = 0.5 0.9769 0.9398 0.8925 0.5631

ρ = 0.9 0.9601 0.9004 0.8439 0.0361
ρ = 0.1 1.0182 1.0304 1.0146 1.1558

t(15) ρ = 0.5 1.0560 0.9852 0.9896 0.6643
ρ = 0.9 1.0289 0.9468 0.8804 0.0427
ρ = 0.1 2.0095 1.9502 2.2586 2.8800

t(5) ρ = 0.5 1.9795 1.7666 2.1060 1.5961
ρ = 0.9 1.8629 1.5346 1.7940 0.1019
ρ = 0.1 1.2081 1.1385 1.2171 1.6382

Kotz ρ = 0.5 1.1850 1.0854 1.1510 0.9378
ρ = 0.9 1.1599 0.9789 1.0256 0.0602
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Without loss of generality, we consider only cases with ρ > 0. Listed in Table 3.4.1

are asymptotic variances (ASV) of Pearson estimator ρ̂p, and asymptotic relative efficiencies

(ARE) of estimators ρ̂g, ρ̂γ and ρ̂τ relative to ρ̂p for different elliptical distributions under

the homogeneous assumption, where the asymptotic relative efficiency of one estimator with

respect to another is defined as ARE(ρ̂1, ρ̂2) = ASV(ρ̂2)/ASV(ρ̂1). The asymptotic variance

of each estimator is obtained using a combination of numeric integration and Monte Carlo

simulation.

Table 3.4.1 shows that the asymptotic variances of ρ̂p, ρ̂
g, ρ̂γ and ρ̂τ all decrease

as ρ increases. When ρ = 1, every estimator is equal to 1 without any estimation error.

Asymptotic variances increase for t distributions as the degrees of freedom ν decrease. Under

normal distributions, the Pearson correlation estimator is the maximum likelihood estimator

of ρ, thus is most efficient asymptotically. The symmetric Gini estimator ρ̂g is high in

efficiency with ARE’s greater than 93%; it is more efficient than Kendall’s estimator ρ̂τ .

For heavy-tailed distributions, the symmetric Gini estimator is more efficient than Pearson’s

estimator ρ̂p. The AREs of the symmetric Gini estimator are close to those of Kendall’s

estimator ρ̂τ for Kotz samples. Comparing with the regular Gini correlation estimator, the

proposed measure has higher efficiency for all cases except for ρ = 0.1 under normal and

t(15) distributions, in which cases the efficiency is about 2.4% and 1.2% lower, respectively.

These results may be explained by the fact that the joint spatial rank used in ρ̂g takes more

dependence information than the marginal rank used in ρ̂γ.

In summary, the proposed symmetric Gini estimator has nice asymptotic behavior

that well balances between efficiency and robustness. It is more efficient than the regular

Gini, which is also symmetric under elliptical distributions.

3.4 Finite Sample Efficiency

We conduct a small simulation to study the finite sample efficiencies of the symmetric

Gini, regular Gini, Kendall’s τ and Pearson correlation estimators. M = 3000 samples of
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two different sample sizes, n = 30, 300, are drawn from t-distributions with 1, 3, 5, 15 and

∞ degrees of freedom and from the Kotz distribution. We use the R Package “mnormt”

to generate samples from multivariate t and normal distributions (referred to as t(∞) in

Table 3.4.2). For the Kotz sample, we first generate uniformly distributed random vectors

on the unit circle by u = (cos θ, sin θ)T with θ in [0, 2π], and then generate r from a Gamma

distribution with α = 2 (the shape parameter) and β = 1 (the scale parameter). Hence

Σ1/2ru +µ is a sample from a bivariate Kotz(µ,Σ) distribution. For additional details, see

Dang et al. [7].

For each sample m, each estimator ρ̂(m) is calculated and the root mean squared error

(RMSE) of the estimator is computed as

RMSE(ρ̂) =

√√√√ 1

M

M∑
m=1

(ρ̂(m) − ρ)2.

The procedure is repeated 100 times for computing the mean and the standard deviation of

√
nRMSE. In Table 3.4.2, we report the mean and standard deviation (in parentheses) of

√
nRMSEs of correlation estimators ρ̂g, ρ̂γ, ρ̂τ and ρ̂p when the scatter matrix is homogeneous

with Σ = σ2

1 ρ

ρ 1

. The case of n =∞ corresponds to the asymptotic standard deviation

of each estimator that can be obtained from Table 3.4.1. Since ρ̂g cannot be given explicitly

due to the inverse transformation involved in ρ̂g = k−1(ρ̂g), we numerically obtain ρ̂g by

creating a correspondence between s and t, where s = k(t) and t is a very fine grid on [0, 1].

ρ̂g is computed using the R package “ICSNP” spatial.rank function.

In Table 3.4.2, the
√
nRMSEs demonstrate an increasing trend as ρ decreases or as

the degrees of freedom ν decrease for t distributions. For n = 300, the behavior of each

estimator is similar to its asymptotic efficiency behavior. For example, for n = 300 and

ρ = 0.5 under the normal distribution, the
√
nRMSE of ρ̂p is 0.7534 which is close to the

asymptotic standard deviation 0.7504. We include heavy-tailed t(1) and t(3) distributions in
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Table 3.4.2: The mean and standard deviation (in parentheses) of
√
nRMSE of ρ̂g, ρ̂γ, ρ̂τ

and ρ̂p under different distributions with a homogeneous scatter matrix.

Dist ρ n
√
nRMSE(ρ̂g)

√
nRMSE(ρ̂γ)

√
nRMSE(ρ̂τ )

√
nRMSE(ρ̂p)

ρ = 0.1 n = 30 0.7767 (.0115) 1.0418 (.0115) 1.0785 (.0120) 1.0095 (.0120)
n = 300 0.9648 (.0104) 1.0184 (.0121) 1.0427 (.0139) 0.9925 (.0121)

t(∞) ρ = 0.5 n = 30 0.7887 (.0110) 0.8150 (.0115) 0.8517 (.0126) 0.7827 (.0115)
n = 300 0.7638 (.0087) 0.7777 (.0104) 0.8002 (.0104) 0.7534 (.0104)

ρ = 0.9 n = 30 0.2147 (.0044) 0.2306 (.0044) 0.2541 (.0049) 0.2103 (.0044)
n = 300 0.1957 (.0017) 0.2026 (.0035) 0.2113 (.0035) 0.1923 (.0017)

ρ = 0.1 n = 30 0.8013 (.0120) 1.0828 (.0120) 1.1026 (.0115) 1.0735 (.0115)
n = 300 1.0011 (.0104) 1.0669 (.0121) 1.0721 (.0139) 1.0756 (.0121)

t(15) ρ = 0.5 n = 30 0.8177 (.0115) 0.8506 (.0126) 0.8731 (.0131) 0.8347 (.0126)
n = 300 0.7985 (.0104) 0.8227 (.0104) 0.8279 (.0104) 0.8193 (.0104)

ρ = 0.9 n = 30 0.2251 (.0044) 0.2432 (.0044 ) 0.2635 (.0164) 0.2262 (.0044)
n = 300 0.2044 (.0035) 0.2165 (.0035) 0.2200 (.0035) 0.2078 (.0035)

ρ = 0.1 n = 30 0.8698 (.0137) 1.2083 (.0126) 1.1562 (.0131) 1.2987 (.0137)
n = 300 1.1085 (.0121) 1.2246 (.0156) 1.1310 (.0139) 1.5155 (.0242)

t(5) ρ = 0.5 n = 30 0.9032 (.0110) 0.9580 (.0126) 0.9202 (.0126) 1.0221 (.0159)
n = 300 0.9007 (.0121) 0.9492 (.0121) 0.8764 (.0121) 1.1535 (.0208)

ρ = 0.9 n = 30 0.2569 (.0164) 0.2859 (.0066) 0.2832 (.0164) 0.2908 (.0088)
n = 300 0.2338 (.0069) 0.2615 (.0035) 0.2408 (.0069) 0.2996 (.0087)

ρ = 0.1 n = 30 0.9706 (.0137) 1.3923 (.0170) 1.2050 (.0142) 1.6459 (.0214)
n = 300 1.2921 (.0156) 1.5329 (.0191) 1.1865 (.0156) 2.7782 (.0554)

t(3) ρ = 0.5 n = 30 1.0231 (.0131) 1.1201 (.0170) 0.9651 (.0148) 1.3343 (.0246)
n = 300 1.1068 (.0173) 1.2142 (.0208) 0.9284 (.0121) 2.1876 (.0675)

ρ = 0.9 n = 30 0.3127 (.0104) 0.3642 (.0131) 0.3051 (.0066) 0.4289 (.0236)
n = 300 0.2944 (.0104) 0.3672 (.0173) 0.2615 (.0035) 0.6564 (.0658)

ρ = 0.1 n = 30 1.7418 (.0301) 2.7222 (.0285 ) 1.3704 (.0170) 3.3104 (.0279)
n = 300 4.3423 (.0814) 6.7879 (.0918) 1.3735 (.0173) 10.256 (.0918)

t(1) ρ = 0.5 n = 30 1.6706 (.0153) 2.3892 (.0361) 1.1184 (.0164) 2.9687 (.0466)
n = 300 4.2574 (.0485) 5.9357 (.1057) 1.0999 (.0156) 9.1781 (.1472)

ρ = 0.9 n = 30 0.9065 (.0361) 1.2083 (.0586) 0.4004 (.0088) 1.5917 (.0728)
n = 300 2.1616 (.1074) 2.9947 (.1784) 0.3464 (.0052) 4.9589 (.2182)

ρ = 0.1 n = 30 0.8692 (.0126) 1.2083 (.0148) 1.1842 (.0148) 1.2389 (.0148)
n = 300 1.0947 (.0139) 1.2055 (.0173) 1.1639 (.0156) 1.2713 (.0173)

Kotz ρ = 0.5 n = 30 0.9037 (.0137) 0.9569 (.0148) 0.9465 (.0142) 0.9711 (.0170)
n = 300 0.8903 (.0121) 0.9318 (.0121) 0.9059 (.0121) 0.9665 (.0121)

ρ = 0.9 n = 30 0.2563 (.0164) 0.2832 (.0164) 0.2952 (.0060) 0.2706 (.0060)
n = 300 0.2304 (.0035) 0.2529 (.0035) 0.2494 (.0035) 0.2477 (.0035)
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the simulation to demonstrate finite sample behavior of Pearson and Gini estimators when

their asymptotic variances may not exist.
√
nRMSE of ρ̂p is about twice that of ρ̂g for

n = 300 with both t(1) and t(3) distributions. For the t(1) distribution, ρ̂τ is much better

than the others in terms of
√
nRMSE. When the sample size is small (n = 30), ρ̂g performs

the best. The
√
nRMSEs of ρ̂g are smaller than that of ρ̂τ even under heavy-tailed t(3)

distributions. ρ̂g has a smaller
√
nRMSE than the Pearson correlation estimator for the

normal distribution with ρ = 0.1 and all other distributions. The symmetric Gini estimator

ρ̂g has smaller
√
nRMSE than the regular Gini estimator ρ̂γ for all cases we consider. The

simulation demonstrates superior finite sample behavior of the proposed estimator.

3.5 THE AFFINE INVARIANT VERSION OF SYMMETRIC GINI CORRELATION

The proposed ρg in Section 3.2 is only invariant under translation and homogeneous

change. We now provide an affine invariant version of ρg, denoted as ρG, in order to gain

the invariance property under heterogeneous changes. This is based on the affine equivariant

(AE) Gini covariance matrix ΣG proposed by Dang et al. [7].

The basic idea of ΣG is that the Gini covariance matrix for standardized data should

be proportional to the identity matrix I. That is, E(Σ
−1/2
G Z)rT (Σ

−1/2
G Z) = cI, where c is

a positive constant. In other words, the AE version of the Gini covariance matrix is the

solution of

E
Σ
−1/2
G (Z1 − Z2)(Z1 − Z2)TΣ

−1/2
G√

(Z1 − Z2)TΣ−1
G (Z1 − Z2)

= c(H)I, (3.5.1)

where c(H) is a constant depending on H. In this way, the matrix valued functional ΣG(·) is

a scatter matrix in the sense that for any nonsingular matrix A and vector b, ΣG(AZ+b) =

AΣG(Z)AT .
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Let Z = (X, Y )T be a bivariate random vector with distribution function H and

ΣG :=

G11 G12

G21 G22

 be the solution of (3.5.1). Then the affine invariant version of ρg is

defined as ρG(X, Y ) = G21√
G11
√
G22

. Since the value of c(H) in (3.5.1) does not change the

value of ρG(X, Y ), without loss of generality, assume c(H) = 1.

Theorem 3.5.1. For any bivariate random vector Z = (X, Y )T having an elliptical distri-

bution H with finite first moment, ρG(aX, bY ) = sgn(ab)ρG(X, Y ) for any ab 6= 0.

Proof. The proof is straightforward. Let A be the diagonal matrix with the diagonal ele-

ments being a and b. Since ΣG is affine equivariant, ΣG(AZ) = AΣG(Z)AT . As a result,

ρG(aX, bY ) = abG21√
a2G11

√
b2G22

= sgn(ab)ρG(X, Y ).

Remark 3.5.2. Under elliptical distributions, ρG = ρ. This is true since ΣG = Σ for

elliptical distributions.

When a random sample z1, z2, ..., zn is available, replacing H with its empirical distri-

bution Hn in (3.5.1) yields the sample counterpart Σ̂G, and hence the sample ρ̂G is obtained

accordingly. We obtain Σ̂G by a common re-weighted iterative algorithm:

Σ̂
(t+1)

G ←− 2

n(n− 1)

∑
1≤i<j≤n

(zi − zj)(zi − zj)
T√

(zi − zj)T (Σ̂
(t)

G )−1(zi − zj)

.

The initial value can take Σ̂
(0)

G = Id. The iteration stops when ‖Σ̂
(t+1)

G − Σ̂
(t)

G ‖ < ε for a

pre-specified number ε > 0, where ‖ · ‖ can take any matrix norm.

Next, we study finite sample efficiency of ρ̂G under the same simulation setting as

in Section 3.4.2 except that the scatter matrix is heterogeneous. The scatter matrix of

each elliptical distribution is Σ =

 1 2ρ

2ρ 4

. Table 3.5.1 reports
√
nRMSE of correlation

estimators ρ̂G, ρ̂γ, ρ̂τ and ρ̂p. The numbers in the last three columns are very close to

those in Table 3.4.2 because ρ̂γ, ρ̂τ and ρ̂p are affine invariant.
√
nRMSEs of ρ̂G are also
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Table 3.5.1: The mean and standard deviation (in parentheses) of
√
nRMSE of ρ̂G, ρ̂γ, ρ̂τ

and ρ̂p under different distributions with a heterogeneous scatter matrix.

Dist ρ n
√
nRMSE(ρ̂G)

√
nRMSE(ρ̂γ)

√
nRMSE(ρ̂τ )

√
nRMSE(ρ̂p)

ρ = 0.1 n = 30 1.0171 (.0126) 1.0401 (.0126) 1.0768 (.0131) 1.0073 (.0120)
n = 300 1.0011 (.0139) 1.0133 (.0139) 1.0392 (.0156) 0.9890 (.0139)

t(∞) ρ = 0.5 n = 30 0.7887 (.0120) 0.8123 (.0126) 0.8501 (.0137) 0.7800 (.0120)
n = 300 0.7621 (.0104) 0.7794 (.0104) 0.8002 (.0104) 0.7534 (.0104)

ρ = 0.9 n = 30 0.2125 (.0022) 0.2306 (.0044) 0.2541 (.0049) 0.2098 (.0044)
n = 300 0.1940 (.0035) 0.2026 (.0035) 0.2113 (.0035) 0.1923 (.0017)

ρ = 0.1 n = 30 1.0582 (.0126) 1.0839 (.0131) 1.1042 (.0126) 1.0741 (.0126)
n = 300 1.0496 (.0121) 1.0687 (.0121) 1.0739 (.0121) 1.0756 (.0121)

t(15) ρ = 0.5 n = 30 0.8221 (.0099) 0.8506 (.0099) 0.8731 (.0110) 0.8353 (.0099)
n = 300 0.7967 (.0104) 0.8210 (.0121) 0.8279 (.0104) 0.8175 (.0121)

ρ = 0.9 n = 30 0.2224 (.0049) 0.2437 (.0049) 0.2635 (.0060) 0.2262 (.0049)
n = 300 0.2026 (.0035) 0.2165 (.0035) 0.2200 (.0035) 0.2078 (.0035)

ρ = 0.1 n = 30 1.1727 (.0164) 1.2072 (.0148) 1.1557 (.0153) 1.2981 (.0192)
n = 300 1.1847 (.0156) 1.2246 (.0156) 1.1310 (.0139) 1.5155 (.0242)

t(5) ρ = 0.5 n = 30 0.9169 (.0120) 0.9585 (.0115) 0.9213 (.0120) 1.0226 (.0137)
n = 300 0.8989 (.0139) 0.9492 (.0139) 0.8764 (.0121) 1.1553 (.0242)

ρ = 0.9 n = 30 0.2520 (.0060) 0.2865 (.0071) 0.2832 (.0060) 0.2919 (.0110)
n = 300 0.2304 (.0035) 0.2615 (.0035) 0.2408 (.0035) 0.2979 (.0087)

ρ = 0.1 n = 30 1.3540 (.0519) 1.3918 (.0159) 1.2039 (.0142) 1.6475 (.0203)
n = 300 1.4497 (.0225) 1.5346 (.0225) 1.1847 (.0156) 2.7782 (.0606)

t(3) ρ = 0.5 n = 30 1.0670 (.0159) 1.1190 (.0170) 0.9629 (.0148) 1.3321 (.0219)
n = 300 1.1033 (.0139) 1.2090 (.0173) 0.9249 (.0121) 2.1910 (.0606)

ρ = 0.9 n = 30 0.3095 (.0099) 0.3681 (.0137) 0.3062 (.0066) 0.4376 (.0230)
n = 300 0.2841(.0069) 0.3655 (.0156) 0.2615 (.0035) 0.6461 (.0675)

ρ = 0.1 n = 30 2.7622 (.0274) 2.7244 (.0268) 1.3693 (.0192) 3.3148 (.0268)
n = 300 6.8381 (.0970) 6.7879 (.0797) 1.3770 (.0173) 10.259 (.0901)

t(1) ρ = 0.5 n = 30 2.4133 (.0433) 2.3831 (.0372) 1.1206 (.0164) 2.9643 (.0466)
n = 300 5.8768 (.1386) 5.9132 (.1178) 1.0947 (.0139) 9.1522 (.1455)

ρ = 0.9 n = 30 1.1875 (.0608) 1.2148 (.0537) 0.4009 (.0088) 1.6015 (.0635)
n = 300 2.7747 (.2148) 2.9930 (.1853) 0.3481 (.0052) 4.9727 (.2113)

ρ = 0.1 n = 30 1.1672 (.0131) 1.2066 (.0131) 1.1831 (.0142) 1.2368 (.0142)
n = 300 1.1674 (.0139) 1.2038 (.0139) 1.1605 (.0139) 1.2731 (.0156)

Kotz ρ = 0.5 n = 30 0.9136 (.0148) 0.9574 (.0148) 0.9454 (.0153) 0.9706 (.0148)
n = 300 0.8885 (.0121) 0.9336 (.0121) 0.9059 (.0121) 0.9665 (.0121)

ρ = 0.9 n = 30 0.2503 (.0049) 0.2815 (.0060) 0.2941 (.0060) 0.2684 (.0055)
n = 300 0.2269 (.0035) 0.2546 (.0035) 0.2511 (.0035) 0.2477 (.0035)
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close to
√
nRMSE of ρ̂g for n = 300, but are larger than those for n = 30 and ρ = 0.1.

The loss of finite sample efficiency of ρ̂G for a small sample size under low dependence ρ is

probably caused by the iterative algorithm in the computation of ρ̂G. The problem is even

worse with the t(1) distribution where the first moment does not exist. As the value of ρ

increases, the
√
nRMSE of each estimator decreases for all distributions. Under Kotz and

t(15) distributions, the affine invariant Gini estimator ρ̂G is the most efficient; under t(5)

distribution, the
√
nRMSE of ρ̂G is smaller than that of Kendall’s ρ̂τ when ρ = 0.9. For

the normal distributions, ρ̂G is almost as efficient as ρ̂p when ρ = 0.9. The affine invariant

Gini correlation estimator shows a good finite sample efficiency. Again, the proposed Gini

correlation estimator has smaller
√
nRMSEs than the regular Gini correlation estimator in

all cases.

3.6 APPLICATION

For the purposes of illustration, we apply the symmetric Gini correlations to the

famous Fisher’s Iris data which is available in R. The data set consists of 50 samples from

each of three species of Iris (Setosa, Versicolor and Virginica). Four features are measured in

centimeters from each sample: sepal length (Sepal L.), sepal width (Sepal W.), petal length

(Petal L.), and petal width (Petal W.). The mean and standard deviation of each of the

variables for all data and each species data are listed in Table 3.6.1. All the three species

have similar sizes in sepals. Setosa has a much smaller petal size than the other two species.

We shall study the correlation of the variables for each Iris species.

Table 3.6.1: Summary Statistics of Variables in Iris Data.

Mean Standard Deviation
All Setosa Vesicolor Virginica All Setosa Vesicolor Virginica

Sepal L. 5.843 5.006 5.936 6.588 0.828 0.352 0.516 0.636
Sepal W. 3.057 3.428 2.770 2.974 0.436 0.379 0.314 0.322
Petal L. 3.758 1.462 4.260 5.552 1.765 0.174 0.470 0.552
Petal W. 1.199 0.246 1.326 2.026 0.762 0.105 0.198 0.275
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For each Iris species, we compute different correlation measures for all pairs of vari-

ables. Since standard deviations of four features are quite different, the affine equivariant

version of symmetric gini correlation estimator ρ̂G is used. For each pair of variables X and

Y , we also calculate the Pearson correlation, Kendall’s τ and the two regular gini correlation

estimators, denoted as γ̂1,2 (γ̂(X, Y )) and γ̂2,1 (γ̂(Y,X)). All correlation estimators are listed

in Table 3.6.2.

Table 3.6.2: Pearson correlation, Kendal’s τ , Affine equivariant symmetric Gini correlation
and Regular Gini correlations of variables for the Iris data set.

Sepal L. Sepal L. Sepal L. Sepal W. Sepal W. Petal L.
Species Correlations & & & & & &

Sepal W. Petal L. Petal W. Petal L. Petal W. Petal W.

ρ̂p 0.743 0.267 0.278 0.178 0.233 0.332
τ̂ 0.597 0.217 0.231 0.143 0.234 0.222

Setosa ρ̂G 0.742 0.274 0.285 0.182 0.256 0.312
γ̂1,2 0.759 0.283 0.261 0.211 0.214 0.280
γ̂2,1 0.781 0.295 0.358 0.174 0.350 0.384
ρ̂p 0.526 0.754 0.546 0.561 0.664 0.787
τ̂ 0.398 0.567 0.403 0.430 0.551 0.646

Versicolor ρ̂G 0.546 0.756 0.551 0.584 0.687 0.790
γ̂1,2 0.533 0.744 0.542 0.580 0.658 0.787
γ̂2,1 0.523 0.766 0.559 0.572 0.682 0.809
ρ̂p 0.457 0.864 0.281 0.401 0.538 0.322
τ̂ 0.307 0.670 0.219 0.291 0.419 0.271

Virginica ρ̂G 0.687 0.820 0.455 0.621 0.623 0.519
γ̂1,2 0.406 0.867 0.278 0.467 0.567 0.304
γ̂2,1 0.476 0.832 0.315 0.308 0.548 0.355

From Table 3.6.2 we see that compared with the other two species, Iris Setosa has

higher correlation between sepal length and sepal width, but has lower correlation between

sepal length and petal length. Versicolor has much larger correlation between petal length

and petal width than the other two species. Virginica has the highest correlation between

sepal length and petal length among the three species.

Kendall’s τ correlation estimate is the smallest among all correlation estimates across

all pairs and across all species. Two regular Gini correlation estimates are quite different

especially between sepal width and petal length in Iris Virginica species. The difference is as

high as 0.159. One might perform a hypothesis test on exchangeability of two variables by
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testing γ1,2 = γ2,1 ([39]). The p-value of the test is 0.0113, which provides strong evidence

to reject the hypothesis of exchangeability of two variables sepal width and petal length in

Iris Virginica. We also observe that ρ̂G and ρ̂p tend to have a similar pattern across variable

pairs and across species. For example, for all six pairs of variables in Iris Setosa, ρ̂G is

large or small whenever ρ̂p is large or small. In other words, the correlation ranking across

variable pairs provided by the Pearson correlation is the same as the ranking by the proposed

symmetric Gini correlation. However, such a pattern is not shared by any two correlations

from ρ̂G, τ̂ , γ̂1,2 and γ̂2,1. Also, values of ρ̂G are larger than values of ρ̂p in most cases.

3.7 CONCLUSION

In this chapter we have proposed a symmetrized Gini correlation ρg and have studied

its properties. The relationship between ρg and ρ is established when the scatter matrix, Σ,

is homogeneous. The affine invariant version ρG is also proposed to deal with the case when

Σ is heterogeneous. Asymptotic normality of the proposed estimators are established. The

influence function reveals that ρg is more robust than the Pearson correlation while it is less

robust than Kendall’s τ correlation. Comparing with the Pearson correlation estimator, the

regular Gini correlation estimator and the Kendall’s τ estimator of ρ, the proposed estimators

balance well between efficiency and robustness and provide an attractive option for measuring

correlation. Numerical studies demonstrate that the proposed estimators have satisfactory

performance under a variety of situations. In particular, the symmetric Gini estimators are

more efficient than the regular Gini estimators. This can be explained by the fact that the

multivariate spatial rank used in the symmetrized Gini correlations takes more dependence

information than the marginal ranks in the traditional ones.

We comment that the symmetric Gini correlation ρg is not limited to elliptical distri-

butions. Theorems 3.2.1, 3.3.1 and 3.4.1 hold for any bivariate distribution with a finite first

moment. Under elliptical distributions, the linear correlation parameter ρ is well defined and

71



all four estimators are Fisher consistent. Hence their asymptotic variances are comparable

and can be used for evaluating relative asymptotic efficiency among the estimators.

The proposed symmetric Gini correlation has some disadvantages. Although its for-

mulation is natural, the symmetric Gini loses an intuitive interpretation. It is more difficult

to compute than the Pearson correlation, especially when X and Y are heterogeneous. In

this case, an iterative scheme is required to obtain the affine invariant version of symmet-

ric Gini correlation. When applying the proposed measure, one may consider the trade-off

among efficiency, robustness, computation and interpretability.

72



BIBLIOGRAPHY

73



[1] Bailey, W. N. (1935). General Hypergeometric Series. Cambridge Tracts in Mathematics
and Mathematical Physics.

[2] Blitz, R.C. and Brittain, J.A. (1964). An extension of the Lorenz diagram to the corre-
lation of two variables. Metron XXIII (1-4) 137-143.

[3] Borovskikh, Y.V. (1996). U-statistics in Banach spaces, VSP, Utrecht.

[4] Brockwell, P. J. and Davis, R. A.(1987). Time Series: Theory and Methods. Springer.

[5] Cramér, H. (1946). Mathematical Methods of Statistics. Princeton University Press,
Princeton, NJ.

[6] Croux, C. and Dehon, C. (2010). The influence function of the Spearman and Kendall
correlation measures. Stat. Methods Appl. 19 (4) 497-515.

[7] Dang, X., Sang, H. and Weatherall, L. (2015). Gini Covariance Matrix and its Affine
Equivariant Version. Statist. Papers Accepted.

[8] Devlin, S.J., Gnanadesikan, R. and Kettering, J.R. (1975). Robust estimation and out-
lier detection with correlation coefficients. Biometrika 62 531-545.

[9] Dittmann, I. and Granger, C. (2002). Properties of nonlinear transformations of frac-
tionally integrated processes. J. Econometrics 110 113-133.

[10] Dürre, A., Vogel, D. and Fried, R. (2015). Spatial sign correlation. J. Multivariate Anal.
135 89-105.

[11] Fang, K.T., Kotz, S. and Hg, K.W. (1987). Symmetric Multivariate and Related Distri-
butions, Chapman & Hall, London.
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