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ABSTRACT 

 

This Ph.D. dissertation aims to develop a 3-D numerical model of dam-break flows on 

movable beds. Three tasks are defined to accomplish the goal of this study.  

The first task is developing a 3-D hydrodynamic model to simulate dam-break flow on 

fixed beds with simple geometry and test the water surface tracking technique. This model solves 

the Reynolds-Averaged Navier-Stokes (RANS) equations using a finite-difference method on 

rectilinear, staggered grids. The Volume-of-Fluid (VOF) technique with SOLA-VOF advection 

scheme is used to capture the free surface motion. The developed model is tested using several 

experimental dam-break flows and the VOF technique is found to be able to effectively treat the 

rapidly-varying water surface boundary of dam-break flows.  

As the second task of this dissertation, a 3-D finite-volume model is developed to 

simulate dam-break flows on irregular fixed beds. Developing this model is necessary to 

accomplish the major goal of this dissertation since the finite-difference model explained above, 

which uses the rectilinear staggered grid, is not convenient to extend to the case of irregular and 

movable beds and integrate with sediment transport calculations. This model solves the RANS 

equations using a finite-volume method on irregular hexahedral, collocated meshes and adopts 

the Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM) as the VOF 

advection method. The model is tested by means of experimental dam-break flows on fixed beds 

with simple and irregular geometries. 

The final task is extending the 3-D finite-volume model to a dam-break flow model 
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applicable on movable beds. Therefore, it is integrated with a sediment transport model 

developed in this study.  The sediment transport model solves the non-equilibrium transport 

equations of suspended load and bed load separately and in turn calculates the resulting bed 

change, based on the flow properties calculated by the hydrodynamic model. Since the time 

evolution of bed topography affects the hydrodynamic calculations, the model uses a moving 

grid technique to update the computational grid to fit on the calculated bed topography at every 

time step. The grid moving velocity and the computational cell volume change generated by the 

moving mesh are taken into consideration when the governing equations of the hydrodynamic 

and sediment transport models are discretized. The integrated model is tested using several 

experimental dam-break flows on movable beds. The calculated spatial and temporal variations 

of water and bed surfaces are generally in good agreement with the measured data. 

 

Keywords: Numerical Modeling, Dam-Break Flow, Sediment Transport, Movable Bed, 

Moving Mesh, Water Surface Capturing, Volume of Fluid.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Water is the vital liquid to support all forms of life on the earth. It is the essential element 

for the health of the world’s environment. Although seventy percent of the Earth is covered with 

water, a significant portion of the world population suffers water shortage. This is because 96.5% 

of the water resources are salt water found in oceans (Gleick 1993). On the other hand, 98.8% of 

the Earth’s freshwater is in ice and groundwater and only a small portion is in rivers and lakes. 

The demand for water as a result of the expanding world population and economic growth has 

increased the importance of freshwater resources. Therefore, it is essential to collect and store 

available freshwater water resources on the Earth. Building dams is one way of storing 

freshwater in large quantities.  

Dams are one of the common ways to collect and store waters streaming in rivers, and 

provide essential benefits including drinking water, power generation, flood protection, 

irrigation, and recreation. In ancient times, dams were built for the single purpose of water 

supply or irrigation. As civilizations developed, there was a need in having multipurpose dams 

for water supply, irrigation, flood control, navigation, water quality, sediment control and 

energy. Dams store not only water streaming in rivers but also sediment particles. In general, 

rivers carry sediments and when a river is stilled in the reservoir behind a dam, the sediments
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deposit to the bottom of the reservoir. Therefore, depending on the reservoir size, a considerable 

volume of water and accumulated sediments exist behind a dam. Storing this amount of water 

and sediment mixture creates liabilities. Thus, it is important to ensure that a dam and its 

reservoir are well-designed, well-constructed, well-maintained, and well-operated. Otherwise a 

dam failure may result in sudden release of the mixture behind a dam, which creates a 

destructive muddy flood. 

Despite the efforts to promote dam safety, dam failures sometimes occur as a result of 

overtopping due to an intense storm and associated runoff, foundation defects, piping and 

seepage, human error, earthquake, terrorism attacks, etc. Dam failure is a catastrophic event that 

may cause significant loss of life, and property and environmental damages due to uncontrolled 

release of large amount of water and sediment mixture from the reservoir which leads to a 

destructive flood propagating downstream. According to consequences of the failure, the hazard 

classification of a dam can be high hazard, significant hazard, and low hazard (Interagency 

Committee on Dam Safety, 2004). Dams assigned the high hazard potential classification are 

those whose failure will probably cause loss of human life, serious damage to homes, industrial 

or commercial buildings, important public utilities, and transportation systems or roads. 

Significant hazard dam failure results in no probable loss of human life but may cause significant 

property loss and environmental damages such as damage to main roads, minor railroads, or 

cause interruption of use or service of relatively important public utilities. Dams assigned the 

low hazard potential classification are those whose failure results in no probable loss of human 

life but may cause low economic and/or environmental losses such as damage to farm buildings, 

agricultural lands, and minor roads. Losses are principally limited to the owner’s property. The 

total number of dams with the classification of high hazard potential is increasing as they reach 
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their lifespan. For example, the number of dams with high-hazard potential has increased from 

10,118 dams in 2002 to 13,991 in 2012 (American Society of Civil Engineers, 2013). Therefore, 

devastating outcomes of dam break necessitate the study of dam-break flows which provides the 

information for risk assessment and management of river valleys downstream of a dam. 

Basically, dam-break flow studies can be categorized as analytical, experimental/field, 

and numerical studies. Analytical study focuses on solving the governing equations using 

calculus, trigonometry, and other mathematical techniques. Since the governing equations of 

dam-break flow are complicated and usually non-linear, analytical approaches use a number of 

assumptions to simplify the governing equations. In case of movable bed, the governing 

equations of sediment transport bring extra complexity and therefore extra assumptions. These 

assumptions limit the application of exact analytical solutions to a narrow range of dam-break 

flow studies. Experimental study of dam-break flow overcomes the limitation of analytical 

approaches by using physical models and measuring information in laboratory. The advent of 

new technology and measurement tools has facilitated the experimental study of dam-break 

flows in which it is now feasible to simulate more complicated cases. Although experimental 

study of dam-break flow is financially expensive and time-consuming especially for large scale 

cases, they provide a reliable set of data to verify and validate numerical models. Numerical 

study of dam-break flow overcomes the limitations of analytical and experimental approaches. 

With increasing computer processing capacity, numerical simulations have become attractive 

and cost-effective. 

 

1.2 Numerical Study of Dam-Break Flows 

Numerical simulations of dam-break flow has received considerable attention such that 
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several techniques have been developed over the years to solve one-dimensional (1-D), two-

dimensional (2-D), and three-dimensional (3-D) equations of dam-break flow. Appreciable 

efforts have been dedicated to the development of 1-D and depth-averaged 2-D numerical 

models to simulate dam break flows. Because these models solve the shallow water equations 

based on a number of assumptions, such as hydrostatic pressure distribution and insignificant 

free surface curvature, they are inadequate to simulate flows involving significant variations of 

velocity and pressure in the vertical direction, e.g., in the initial stages of dam-break flow, at 

dam-break wave front, and near in-stream structures. Therefore, it is vital to simulate such flows 

by a 3-D model, which solves the Reynolds-Averaged Navier-Stokes (RANS) equations, to 

obtain meaningful and correct numerical results. On the other hand, most of the existing models 

focus on hydrodynamic studies of dam-break flow over fixed beds without considering sediment 

transport and bed morphology changes. The field survey, however, suggests that during the dam-

break process, especially in the early stage of the dam failure, the flow is fast and it is strongly 

coupled with sediment motion and bed changes. The accurate simulation of dam-break flow must 

consider adequately sediment motion during this period (Lin et al. 2011).  

 

1.3 Research Objectives 

In this PhD dissertation, the interest is focused on the development of a numerical model 

for dam-break flows over movable beds. In particular, the main research objectives of this study 

are divided to the following major parts: 

1- The first task is developing a 3-D finite-difference model of dam-break flow over fixed 

beds based on rectilinear and staggered grids. The model simulates only the 

hydrodynamic features of dam-break flows over non-erodible beds without considering 
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sediment transport. The SOLA-VOF scheme is used to track the free surface boundary. 

The aim of developing the 3-D finite-difference model is assessment of the VOF 

technique to track the free surface boundary in dam-break flows. To investigate the 

efficiency and accuracy of the Volume-of-Fluid (VOF) technique, the developed model is 

verified by several experimental dam-break flows. 

2- Development of a 3-D hydrodynamic finite-volume model to simulate dam-break flows 

over fixed beds is the second aim of this dissertation. The developed finite-volume model 

is superior to the above finite-difference model because it uses irregular, collocated 

meshes, which can be conveniently used for fitting on irregular beds. Moreover, it can be 

extended to use moving meshes to simulate dam-break flows over movable beds where 

the bed topography may change with time due to sediment transport.  

3- The final goal is developing a 3-D non-equilibrium sediment transport model which can 

be linked to the 3-D hydrodynamic model. In other words, the final scope is to develop a 

3-D finite-volume model for dam-break flows over movable beds which comprises 

decoupled hydrodynamic and sediment transport modules. 

 

1.4 Dissertation Contents 

The remainder of the dissertation contains 5 chapters. Chapter 2 reviews the past and 

recent works on numerical simulation of dam-break flows over fixed and movable beds. It also 

includes a literature review of common interface tracking methods. In Chapter 3, the 

development of the 3-D finite-difference model is described. The model is tested using several 

experimental dam-break flows over fixed beds. Chapter 4 describes the development of the 3-D 

finite-volume model for dam-break flows over fixed beds and the test results are demonstrated. 
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In Chapter 5, the 3-D non-equilibrium sediment transport model is developed and linked to the 

hydrodynamic model presented in Chapter 4. The model is tested using experimental dam-break 

flows over movable beds. Finally, Chapter 6 provides summary, conclusions, and future 

research. 
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CHAPTER 2 

LITERATURE REVIEW 

 

This chapter presents a comprehensive review of existing dam-break flow models. The 

basic theories and numerical methods used in the models are described briefly. In the last 

sections, the interface tracking approaches are introduced as well. 

 

2.1 Dam-Break Flow Studies 

Studies related to dam-break flows have been an interesting topic to environmental and 

hydraulic engineers and researchers for several decades. There have been substantial efforts to 

understand and simulate the mechanism of dam-break flows. Although the earliest study by 

Ritter (1892) was based on an analytical solution of the simplified dam-break problem, the 

complexity of governing equations caused researchers to be more interested in experimental and 

numerical approaches.  

In recent decades, computer modeling has become available and many investigators have 

devoted their research to simulate and predict dam-break flows and their consequences 

numerically. Numerical models simulate and calculate the characteristics of flood resulting from 

the failure of a dam using finite-difference, finite-volume, or finite-element methods. The 

calculated data, including the water surface level, velocity, pressure, forces, etc., are used to 

identifying and predicting areas where are in danger of inundation and losses. Although most 
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 natural reservoirs contain a significant volume of accumulated sediment, the early developed 

models simulated dam-break flows over non-erodible beds without sediment transport 

computations. On the other hand, when a dam fails, the accumulated sediments in the reservoir 

are washed out by the released flood and deposit in downstream reach. Therefore, the released 

flood from the reservoir of a failed dam may cause the downstream lands considerable bed and 

bank erosion and/or deposition. The morphological changes of river may strongly affect the 

hydrodynamic behavior of the dam-break flood. Therefore, the interaction between flow and 

sediment transport has raised a strong motivation to study dam-break flows over movable beds. 

In the subsequent sections, a review of developed numerical models for dam-break flow 

simulation on fixed and movable beds are presented.  

 

2.2 Dam-Break Flow Models for Fixed Beds 

Numerical models developed for dam-break flow simulation on fixed beds assume that 

the bed is non-erodible and thus the sediment transport process is negligible. Depending on the 

development purposes of these models, they solve the 1-D, 2-D, and 3-D governing equations of 

incompressible flows. 

1-D dam-break flow models solve the St. Venant equations, which are a set of nonlinear 

hyperbolic equations derived by integrating the 3-D continuity and momentum (Navier-Stokes) 

equations over the cross section with the assumption of hydrostatic pressure distribution. 

Therefore, the governing equations are solved in the stream-wise direction of the channel without 

considering the flow details over the cross section. 2-D models can be categorized in horizontal 

and vertical models. The 2-D horizontal models solve the shallow water equations in the 

horizontal plane whereas the 2-D vertical models solve the Navier-Stokes equations in the 
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longitudinal and vertical directions. The shallow water equations are derived from depth-

integrating the 3-D continuity and momentum equations. The derived equations are valid where 

the vertical length scale is negligible compared to the horizontal length scale. Under this 

condition, the vertical component of the fluid velocity is insignificant and the vertical pressure 

gradient is hydrostatic. 

The St. Venant and shallow water equations have been solved by numerous approaches 

but the most widely-used ones among them are shock-capturing schemes, such as approximate 

Riemann solvers and Total Variation Diminishing (TVD) schemes. Rajar (1978) proposed a 1-D 

mathematical model based on the diffusive and Lax-Wendroff schemes for highly nonperismatic 

channels. Katopodes and Wu (1986) developed a 1-D explicit finite-element model that was 

second-order accurate in time and fourth-order in space. Bellos and Sakkas (1987) studied the 1-

D dam-break flood wave on a broad rectangular channel using the MacCormack finite-difference 

algorithm. Savic and Holly (1993) considered the dam-break wave as a flow regime with strong 

shocks in such a way that the 1-D governing equations were solved with two Godunov methods 

based on linear and piecewise parabolic interpolations. Hicks et al. (1997) developed a 1-D 

model which solved the conservative and non-conservative forms of the St. Venant equations 

using the Characteristic Dissipative Galerkin (CDG) finite-element and the four-point implicit or 

Box Finite-Difference (BFD) methods. Jha et al. (1995) developed a model to investigate the 

accuracy of the Roe’s first-order scheme and its second-order extension based on the Lax-

Wendroff numerical flux, the MUSCLE, and the modified flux approach for dam-break flow 

problems. Wang et al. (2000) developed a model based on a hybrid type of second-order TVD 

scheme for dam-break problems. The proposed scheme combines the first-order upwind and the 

second-order Lax-Wendroff schemes with the optimum-selected limiter. Their scheme was 
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originally developed for 1-D problems and the extension for the 2-D shallow water equations 

was presented by an operator splitting technique. Ying et al. (2004) proposed a numerical 

method to solve the St. Venant equations. They developed a model based on the proposed 

scheme which used an upwind conservative scheme with a weighted average water-surface-

gradient approach. Ying and Wang (2008) developed a model which solved the St. Venant 

equations using their proposed schemes based on the HLL approximate Riemann solver to treat 

the discontinuities of the dam-break waves. Kuiry et al. (2008) solved the shallow water 

equations using the finite-volume method over triangular cells. The diffusion of momentum due 

to viscosity and turbulence was neglected and the fluid flux across a cell was approximated using 

the Roe’s approximate Riemann solver. Altinakar et al. (2012) developed two state-of-the-art 

models called DSS-WISE and WGFEM to simulate dam/levee break/breaching floods and/or 

fluvial floods over complex topography. They solved the 2-D shallow-water equations using a 

shock-capturing finite-volume scheme that accepted regular DEM-based grids. Their models 

were parallelized using OpenMP and GPU programing to accelerate the computations. 

Due to the assumptions used in 1-D and horizontal 2-D dam-break flow models, these 

models are inadequate to simulate flows involving significant variations of flow depth, velocity, 

and pressure in the vertical direction, such as dam-break flow near in-stream structures. 

Simulating these complex flows must rely on vertical 2-D or 3-D models which solve the RANS 

equations. Although the vertical 2-D models are applicable where the lateral changes of flow is 

negligible, the 3-D models are appropriate to study dam-break flows with rapid changes in the 

horizontal and vertical directions. Mohapatra et al. (1999) developed a vertical 2-D model for 

incompressible inviscid dam-break flows in the vertical plane. They used the GENSMAC 

Navier-Stokes Solver and the VOF technique to solve the governing equations and track the free 
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surface, respectively. The governing equations were discretized using the finite-difference 

approach on a staggered grid. The effects of turbulence and bed friction were neglected in their 

model. Kleefsman et al. (2005) investigated the water impact and green water loading using a 3-

D model. The RANS equations were solved on a fixed Cartesian staggered grid using the finite-

volume method and the VOF technique with a height function was applied to track the water 

surface changes. The surface tension was taken into account by calculating the total curvature of 

the free surface. The Poisson equation of pressure was solved using the SOR method.  Ferrari et 

al. (2010) developed a 2-D dam-break model based on the shallow water assumptions and also a 

3-D model based on the Smooth Particle Hydrodynamics (SPH) approach. Their 3-D SPH model 

considered the weakly compressible Navier-Stokes equations which enabled the model to use the 

Tait equation of state instead of the Poisson relation for the determination of pressure. The 

models were tested by an experimental dam-break flow released from a partial opening to 

duplicate a dam collapse in an open valley. The comparisons showed that the results calculated 

by the 3-D SPH model are superior to those calculated by the 2-D shallow water model. Yang et 

al. (2010) studied the dam-break flows by developing a 3-D model which solved the continuity 

and RANS equations using the finite-difference method in the Cartesian staggered grid. They 

applied the VOF technique to track the water surface and the k-ε model for turbulence closure of 

the RANS equations. Pressure-velocity coupling in the governing equations was achieved by 

using a two-step projection method. Marsooli et al. (2011) developed a vertical 2-D model for 

dam-break flows. Their model solved the 2-D RANS equations in the longitudinal and vertical 

directions using a finite-difference method on the Cartesian staggered grid. The Smagorinsky 

sub-grid model was used for turbulence closure of the RANS equations and the free surface was 

tracked by means of the VOF technique. 
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2.3 Dam-Break Flow Models for Movable Beds 

Simulation of dam-break flow over movable beds is much more challenging than that 

over fixed beds. One of the problems encountered in the movable-bed case is that the transported 

sediment load by the dam-break wave is so high and the bed varies so rapidly that the effects of 

sediment transport and bed change on the flow cannot be ignored. Another problem is that the 

sediment transport in the higher flow regime, such as dam-break flow, is little understood and the 

existing sediment transport formulas may not be applicable (Wu 2007, p363). In such regions, 

the assumption of equilibrium sediment transport capacity is violated and the sediment transport 

is in non-equilibrium condition.  

Capart and Young (1998) developed a 1-D shallow-water model for dam-break flow over 

movable beds. They considered the non-equilibrium sediment transport and the effects of 

sediment on the flow calculations. Fraccarollo and Capart (2002) proposed a 1-D dam-break 

flow model over mobile beds based on a shallow-water approach. Their model divided the water 

column into two layers in which the clear water in the upper layer and the mixture of sediment 

and water in the lower layer. They assumed that the sediment concentration of the mixture layer 

is equal to the bed material concentration in the bed which can overestimate the sediment 

concentration. Capart and Young (2002) and Spinewine (2005) developed 1-D two-layer models 

with variable concentration in the mixture layer.  

Cao et al. (2004) developed a dam-break flow model over erodible beds. They solved 1-D 

mass and momentum equations of water-sediment mixture for channel with rectangular cross 

sections of constant width, over mobile beds covered by uniform and non-cohesive sediments. 

The numerical scheme used to approximate fluxes was the total-variation-diminishing (TVD) 

version of the second-order weighted average flux method in conjunction with the HLLC 
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approximate Riemann solver and SUPERBEE limiter. Wu and Wang (2007) established a 1-D 

model to simulate the fluvial processes under dam-break flow over movable beds. They 

considered the interaction of flow, sediment transport, and bed change by solving 1-D unsteady 

sediment-laden flow in rivers. The 1-D shallow water equations were derived by section 

integrating the 3-D shallow water equations with longitudinally varying flow density. The effects 

of sediment concentration and bed change were taken into account by using the density of water 

and sediment mixture in the governing equations and including the bed change rate in the 

continuity equation. The non-equilibrium transport of bed-load and suspended-load was used in 

the sediment transport computations. The bed-load transport capacity and the suspended-load 

near-bed concentration in the sediment transport equations were estimated by introducing a 

correction factor in Van Rijn (1984a,b) formulas. They replaced the water density with the flow 

and sediment mixture density near the bed to make these formulas applicable to situations of 

high sediment transport. The flow and sediment transport equations were solved by an explicit 

finite-volume method with the first-order upwind scheme. A 1-D finite-volume model was 

developed by Zhang et al. (2013) for simulating non-equilibrium sediment transport in dam-

break flows. 

Xia et al. (2010) proposed a 2D morphodynamic model for predicting dam-break flows 

over movable beds. Their model solved the shallow-water and non-equilibrium sediment 

transport equations based on a finite-volume method on unstructured triangular meshes. Their 

model solved the suspended and bed load transport equations separately. They also considered 

the effects of sediment concentration and bed evolution on the flood wave propagation. Wu et al. 

(2012) developed a depth-averaged 2D model to simulate the flow, sediment transport and 

morphological changes induced by embankment break/breach. The model solved the governing 
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equations using a finite-volume method with the HLL approximate Riemann solver on structured 

rectangular grids. Their model considers the non-equilibrium total-load non-cohesive sediment 

transport. 

3-D numerical modeling of dam-break flow over movable beds is more challenging than 

1-D and 2-D modeling. In a 3-D model, as erosion and deposition occur over time the 

computational mesh must be specially treated in order to track the time evolution of bed surface 

boundary.  To the author’s knowledge, no successful numerical study of 3-D dam-break flow 

over movable beds has been reported up to now. The present dissertation may be the first study 

on 3-D numerical simulation of dam-break flows over movable beds. 

 

2.4 Water Surface Tracking Methods 

In vertical 2-D and 3-D dam-break flow models, the water depth is not explicitly included 

either in the momentum equations or the continuity equation, and therefore, efforts must be 

devoted to trace the free surface boundary. To track the movement of free surface, a fluid-fluid 

interface tracking technique must be used. Basically, two classes of methodologies, called 

surface tracking methods and volume tracking methods, have been used to track the moving 

boundaries. In surface tracking methods, the interface is specified by an ordered set of marker 

points. As shown in Fig. 2.1, the marker points may be represented either by a height function or 

line segments (a parametric function). The height function method represents the interface by 

defining its distance from a reference plane. The time evolution of the height function h=f(x, y, t) 

is governed by the following kinematic equation expressing the fact that the surface moves with 

the fluid (Hirt and Nichols, 1981): 
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where t is the time,  x and y are the horizontal coordinates, and u, v, and w are the velocity 

components in x, y and z directions, respectively. Note that this method does not work for 

multiple-valued surfaces, such as the breaking wave shown in Fig. 2.1(b), which have more than 

one h value for a given point of the reference plane.   

The line segments approach (Nichols and Hirt, 1971) uses chains of short line segments, 

or in other words, points connected by line segments. This method is not limited to single-valued 

surfaces but requires more storage since coordinates for each point must be stored and for 

accuracy it is best to limit the distance between neighboring points to less than the minimum 

mesh size. The time evolution of line segments can be accomplished by simply moving each 

point with the local fluid velocity. This method is not convenient when two surfaces intersect or 

a surface folds over on itself. In this case, segment chains must be reordered possibly with 

adding or removing some chains. Detection of intersections, reordering of the line segments, and 

extension of the line segment approach to 3-D surfaces are not trivial (Hirt and Nichols, 1981). 

 

 

Fig. 2.1 Marker points on the interface: (a) height function; (b) line segments 
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In volume tracking methods, the domain is divided to disjoint solution regions such that 

the boundary between them is the interface. Since this approach follows regions rather than 

surfaces, all logic problems associated with intersecting surfaces are avoided. The regions can be 

distinguished by either marker points, such as the Marker and Cell (MAC) method, or a fraction 

function, such as Volume-of-Fluid (VOF) method, and can be advanced in time using an 

auxiliary kinematic equation. The MAC method, proposed by Harlow and Welch (1965), was the 

earliest volume tracking method. In this technique, marker particles are distributed initially in the 

computational cells and convected with the local fluid velocity. Distribution of particles 

determines the interface configuration, as shown in Fig. 2.2(a). The main shortcoming of the 

MAC method is that a massive number of particles distributed throughout the domain are needed 

in order to estimate the interface accurately. This would lead to an expensive computational 

effort especially for large scale and 3-D cases. 

The VOF method provides the same hypothesis available in the MAC method but it 

requires only one storage variable. The VOF method treats the fluid-fluid interface by 

introducing a step function F(x,y,t) that is defined to be unity at any point occupied by a 

particular fluid and zero at points occupied by other fluid. When averaged over the cells of a 

computing mesh, the average value of F in a cell is equal to the fractional volume of the cell 

occupied by each fluid and simply called F-function. Therefore, for example, consider two 

different types of fluid A and B, a cell filled by fluid A has a unit value of F whereas a zero 

value of F indicates a cell filled by fluid B. Cells with F value between zero and one contain the 

interface separating fluids A and B. In surface waters problems, water can be assumed as fluid A 

and air as fluid B. 

For an incompressible flow, the time evolution of the F-function is calculated using the 
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following advection equation: 
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Since the F-function is a step function which changes between zero and one abruptly, 

regular advection techniques cannot be used because numerical diffusion and dispersion errors 

destroy the sharp nature of the F-function distribution and rapidly smear and diffuse the surface. 

Therefore, special care must be taken to determine its derivatives. Widespread research has been 

devoted to define the advection scheme in such a way that the sharp definition of fluid surface is 

preserved and diffusion errors are avoided. Basically, advection schemes are categorized in 

interface-tracking and interface-capturing methods.  

In interface-tracking methods the interface is reconstructed in each computational cell 

and advected based on the local velocity in a Lagrangian way. The accuracy of these methods 

strongly depends on the reconstructed interface in each single computational cell. Several 

piecewise constant and piecewise linear interface reconstruction methods have been developed. 

In piecewise constant algorithms the interface within each cell is assumed to be parallel with one 

of the local mesh coordinates. The SLIC method of Noh and Woodward (1976) reconstructs the 

interface using the piecewise constant method. Piecewise linear methods reconstruct the interface 

by estimating the slope and intercept of the interface in each computational cell. These methods 

can be named PLIC (Piecewise Linear Interface Calculation) methods. Among PLIC methods 

the Youngs (1982 and 1984) methods are notable. However, many extensions to the early work 

of Youngs have reported in literature. For example, Kothe et al. (1996) extended Youngs method 

to unstructured meshes. Pilliod and Pukett (2004) introduced two 2-D methods for determining 

the normal vector, which are second-order and called LVIRA (Least-square Volume-of-fluid 

Interface Reconstruction Algorithm) and ELVIRA (Efficient Least-square Volume-of-fluid 
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Interface Reconstruction Algorithm). Both methods are based on generating a linear interface 

which minimizes the volume fraction error in the neighboring cells and has zero error in the 

central cell. 

In interface-capturing methods, the exact shape of the interface in each computational 

cell is not necessarily required and the main care must be taken in calculating the F-function at 

cell faces. Generally, these methods use a switching strategy between a compressive and a high-

resolution scheme to preserve the interface resolution. The switching function is based on the 

angle between the interface and the grid orientation. In the first VOF technique introduced by 

Hirt and Nichols (1981), called SOLA-VOF, a combination of donor-acceptor formulation was 

used to advect the F-function. Torey et al. (1985) modified the advection scheme to make the 

early proposed VOF method more mass conservative. Muzaferija and Peric (1998) and 

Muzaferija et al. (1998) introduced the High-Resolution Interface-Capturing scheme (HRIC), 

which was based on a blending strategy between the Bounded Downwind and Upwind 

Differencing schemes. The Compressive Interface Capturing Scheme for Arbitrary Meshes 

(CISCAM) scheme proposed by Ubbink and Issa (1999) is an interface-capturing scheme based 

on the HYPER-C and ULTIMATE-QUICKEST (UQ) schemes.  

 

 

Fig. 2.2 Mesh setup for volume tracking methods: (a) MAC and (b) VOF 
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In addition, several other interface tracking methods, such as level set method and SPH, 

can be applied to handling the complex dam-break flows. The level set method uses a scalar 

function with opposite signs in either side of the interface and a value of zero on the interface 

(Osher and Sethian, 1988). The SPH method, which was introduced by Lucy (1977) and Gingold 

and Monaghan (1977), solves the governing equations without using a computational mesh by 

replacing the fluid with a set of particles that move with the flow motion, and thus can simulate 

the evolution of the free surface. 

Among the aforementioned interface tracking methods, the VOF method is one of the 

most mature and widely used methods for vertical 2-D and 3-D dam-break flow simulations. 

Therefore, it is chosen in the present study.   
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CHAPTER 3 

3-D FINITE-DIFFERENCE MODEL OF DAM-BREAK FLOW OVER FIXED BEDS 

 

This chapter presents the development of a 3-D finite-difference model to simulate 

unsteady flows due to dam-break over fixed beds. The developed model solves the 3-D 

Reynolds-averaged Navier-Stokes equations (RANS) equations using a finite-difference method 

on rectilinear, staggered grids. The Smagorinsky sub-grid model is used for turbulence closure of 

the RANS equations. The developed model tracks the movement of water surface by means of 

the VOF method, which uses the 3-D Parker and Youngs method and the SOLA-VOF approach 

for interface reconstruction and evolution, respectively.  

 

3.1 Governing Equations  

In the present model, the pressure and velocity fields are calculated by solving the 3-D 

RANS equations for incompressible flows, which are written in the Cartesian coordinate system 

as follows: 
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where xi (i=x,y,z) are the components of the coordinate system, ui are the components of the flow 

velocity, fi are the components of the external forces, p is the pressure, ρ is the water density, and
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τij (j=x,y,z) are the stresses. The stresses are determined using the Boussinesq’s eddy viscosity 

concept: 
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where μ is the viscosity including the molecular (dynamic) and turbulent viscosities (μ=μm+μt). 

The turbulent viscosity is determined by the Smagorinsky (1963) sub-grid model: 

2 2 22t s ijC S    (3.4) 

where Cs is a coefficient between 0.1 and 0.25,   2ij i j j iS u x u x      and ∆=(ΔxΔyΔz)
1/3 

with Δx, Δy, and Δz being the grid spacing in x, y, and z directions, respectively. 

 

3.2 Numerical Methods 

The governing equations are discretized by means of finite-difference method. Fig. 3.1 

shows a computational cell that is a hexahedron embraced by six perpendicular faces. The 

staggered grid system is used such that the velocity components are defined across the cell faces 

while other variables, such as pressure, are specified at the cell center. 

 

 

Fig. 3.1 3-D finite-difference computational cell (staggered grid) 
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In the momentum equation, Eq. (3.2), the time derivative term is discretized using the 

Euler scheme, the convection fluxes are approximated using the upwind difference scheme, and 

the diffusion term is discretized using the central difference scheme. The discretized RANS 

equation in the x direction can be written in the following explicit form: 

 
1, , , ,

1 2, , 1 2, ,

1

FUX FUY FUZ VISX TUX

t t

i j k i j kt t t

i j k i j k

i i

p p
u u t

x x



 



 
       

  
 (3.5) 

where t is the time, Δt is the time step, VISX and TUX are the viscous and turbulent components 

of the diffusion term, and FUX, FUY, and FUZ are the convection terms defined as 

FUX , FUY , FUZ
u u u

u v w
x y z

  
  

  
 (3.6) 

Analogously, the RANS equations in y and z directions can be similarly discretized. After 

the RANS equations are solved explicitly, the velocity and pressure fields must be corrected to 

satisfy the continuity equation. Herein, a 3-D extension of the 2-D Successive-Over-Relaxation 

(SOR) iterative method (Nichols et al., 1980) is adopted to correct the pressure and velocity 

fields. In this method the pressure is corrected in every computational time step by the following 

pressure correction relation 

1

, , , , , ,

n n

i j k i j k i j kp p p    (3.7) 

where  

, ,i j k

S
p

S p


 

 
 (3.8) 

and S is the continuity equation. Superscript n stands for iteration index. The above pressure 

correction is calculated only for cells which are full of fluid.  The pressure boundary condition 

on the water surface, which is elaborated later on, is used to calculate the pressure field of cells 

which contain the free surface. The calculated pressure correction , ,i j kp  updates the flow velocity 
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components as:  
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The divergence of the velocity field, i.e. the continuity equation (3.1), is calculated based 

on the corrected values of velocity and the iteration is continued until a divergence less than a 

small value, for example 0.001, is reached. 

 

3.3 Water Surface Tracking  

In the present model the water surface movement is tracked using the VOF method. The 

VOF method treats the water surface by introducing the F-function to be unity at any cell 

occupied by fluid and zero at empty cells. This implies that a fluid cell (F cell) filled by water 

has the F-function of a unit value, whereas a zero value indicates an empty cell (E cell) which is 

filled by air. Cells with F-function between zero and one contain the water surface and called 

surface cells (S cell).  Basically, The VOF algorithm consists of two steps: advection and 
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reconstruction. In VOF methods such as SOLA-VOF which are based on algebraic algorithms 

rather than geometric ones, the advection step computes the advection of the F-function and the 

surface reconstruction is not necessary.  

For an incompressible flow, the VOF algorithm solves the following advection equation 

to compute the time evolution of the F-function: 

( ) ( ) ( )
0

F uF vF wF

t x y z

   
   

   
 (3.10) 

 

3.3.1 SOLA-VOF Advection Scheme  

The SOLA-VOF scheme proposed by Nichols et al. (1980) is used to trace the changes of 

water surface boundary. Time evolution of Eq. (3.10) is achieved using an operator split method 

since the scheme was originally developed for 1-D flows. The operator splitting method applies 

the 1-D advection equation in separate steps for every coordinate direction. Therefore, the 

problem is split into sequential updates of the F-function in each spatial dimension as follows: 

* ** * **

, , , , , , , , , , , ,, ,t t t

i j k i j k i j k i j k i j k i j k

uF vF wF
F F t F F t F F t
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  
     

  
 (3.11) 

Fluxes across the cell faces can be approximated using the donor-acceptor schemes 

introduced by Nichols et al. (1980) and Torey et al. (1985). The scheme proposed by the latter is 

a modified version of the former one and estimates the F-function fluxes, for example in the 

longitudinal direction, as: 

   1 2, , 1 2, , 1 2, , 1 2, ,min ,i j k i j k i j k AD i j k D Du F t sign u F u t CF F x          (3.12) 

where 

 1 2, ,max ,0AD i j k D DCF F F u t F F x
        
   

 
(3.13) 
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and FD is the F-function value of the donor cell which is always upstream of the face under 

consideration and can be determined according to the flow direction (note that in the staggered 

grid the flow direction is determined based on the calculated velocity vector at the cell face), FA 

is the F-function value of the acceptor cell which is always downstream, F =max(FD,FDM,0.1), 

FDM is the F-function value of the cell upstream of the donor cell, ΔxD is the grid size of the 

donor cell in the longitudinal direction, and FAD is a cell face value of F-function which can be 

either FD or FA. When the donor cell is a cell full of fluid FAD= FD, whereas if the donor cell is a 

surface cell then FAD is determined by inspecting whether the convection of fluid in the donor 

cell across the cell face is primarily normal or tangential to the fluid interface. FAD= FA when the 

convection is primarily normal to the surface, while FAD= FD when the convection is primarily 

tangential to the surface. Furthermore, if the acceptor cell or the DM cell is a cell occupied by air 

(E cell), then FAD= FA. To determine whether the convection is more normal or tangential to the 

water surface, the biggest normal vector component of the surface cell is taken as the surface 

orientation. Therefore, it is necessary to define the free surface orientation. Next sub-section 

describes the method used to determine the free surface direction. 

 

3.3.2 Reconstruction Method  

The Youngs (1982) reconstruction method is used to determine the direction of the water 

surface in surface cells. The direction of water surface must be estimated in order to solve the 

advection scheme and also to choose an appropriate neighbor cell to determine the boundary 

values of pressure on the water surface boundary. In other words, the calculated pressure of the 

neighbor cell, which must be a fluid cell, is used to compute the pressure of surface cells as is 

explained in the next section.  
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Available reconstruction methods can be typically categorized into piecewise constant 

and piecewise linear/planar methods. Piecewise constant methods represent the water surface 

using a horizontal or vertical line/plane aligned with the coordinate system. Piecewise 

linear/planar methods adopt the idea that a normal vector, m=mxi+myj+mzk, determines a 

linear/planar surface cutting the cell. Fig. 3.2 shows an example of a 2-D reconstructed surface 

using piecewise linear and piecewise constant methods. The piecewise linear/planar 

reconstruction method is applied to the present model. In the 3-D computational domain, the 

interface of each surface cell is represented by a unique plane as follows: 

x y zm x m y m z B    (3.14) 

where mx, my, and mz are the normal vector components in x, y, and z directions of a Cartesian 

coordinate system, respectively, and B is the plane constant. The normal vector and the plane 

constant must be calculated in such a way that the cut volume under the planar surface be equal 

to the multiplication of F-function and the volume of computational cell.  

 

 

Fig. 3.2 (a) exact (b) piecewise linear and (c) piecewise constant 2-D reconstructed free surface 

 

The present model estimates the normal vector using the Youngs (1982) method. This 

method was first introduced for 2-D problems (also see Aulisa et al., 2007). The orientation of 
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the normal vector is evaluated as the gradient of F-function. In a 3×3×3 symmetric stencil, the 

normal vector is first estimated on all vertices of the central cell, as shown in Fig. 3.3, and then 

the cell-centered normal vector is obtained by averaging the normal vectors computed at the 

vertices. The normal components of a vertex, for example the vertex (i+1/2, j+1/2, k+1/2), is 

estimated as 

11 1, ,
j ji i k k

x y z

F FF F F F
m m m

x y z

 
 

  
  

 (3.15) 

where, for example,  , , , 1, , , 1 , 1, 1 4i i j k i j k i j k i j kF F F F F       .  

 

 

Fig. 3.3 Normal vectors of vertices in a 3×3×3 Youngs’ stencil 

 

The estimated normal vector is used in the advection scheme and also to identify the 

neighbor cell of each surface cell in order to define the pressure of the surface cells which is 

elaborated in Section 3.4. Although it is not necessary but the developed model is able to 

compute the plane constant B, which is a parameter related to the smallest distance from the 

origin of the cell under consideration. Scardovelli and Zaleski (2000) proposed a forward and 

inverse analytical approach for computing the plane constant based on the local fractional 
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volume and the estimated normal vector. In their 3-D forward approach, the volume below a 

planar surface is computed as: 

   
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where V is the cut volume under the free surface, mi (i=1,2,3) are the normal vector components 

in x, y, and z directions, respectively, 
3

max 1 i ii
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 (3.17) 

A standard root-finding approach, such as bisection or Newton’s method, can be used to 

iteratively find the particular value of B for a given value of the cut volume V based on Eq. 

(3.16). Instead, one can also use the inverse analytical approach suggested by Scardovelli and 

Zaleski (2000), which usually is computationally cheaper. In the inverse method, the plane 

constant is calculated directly from the given cut volume and normal vector in a surface cell as 

follows: 
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 (3.18) 

where m12=m1+m2, m=min(m12,m3),  2

1 1 2 3max 6 ,V m m m epsilon  with epsilon being an 

arbitrary small number,  2 1 2 1 32V V m m m   , and 
3 32 12 32V V m m   when m=m12 or 

       2 2 2

3 31 3 12 3 1 1 3 2 2 3 1 2 33 3 3 6V V m m m m m m m m m m m m          when m=m3. The 

coefficients of the two cubic polynomials are 
3 1a   , 

2 123a m  ,  2 2

1 1 23a m m     , 
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3 3

0 1 2 1 2 36a m m m m m V    , 
3 2a   , 

2 3a  ,  2 2 2

1 1 2 33a m m m    , and 

3 3 3

0 1 2 3 1 2 36a m m m m m m V     . Note that Eq. (3.18) only summarizes the analytical solution of 

the inverse problem and more logical details can be found in the original work. The inverse 

method is applied to the present model. 

 

3.4 Boundary Conditions 

Accurate solution of discretized governing equations can be obtained by using 

appropriate boundary conditions. Basically, there are two types of boundary conditions: Dirichlet 

and Neumann conditions. The Dirichlet boundary condition specifies the variables at the 

boundary by predefined values. The Neumann boundary condition prescribes the gradient normal 

to the boundary. In the following sub-sections, boundary conditions applied to inlet, outlet, and 

solid walls are presented. In addition, special boundary conditions are described on the water 

surface. 

 

3.4.1 Inlet Boundary Condition 

The pressure of the inlet cells are defined using the Neumann condition with zero 

gradient.  For supercritical flow, the water surface elevation at inlet needs to be defined and in 

turn the F-function is specified accordingly. Predefined velocity should be assigned to inlet cells. 

 

3.4.2 Outlet Boundary Condition 

The Neumann condition with zero gradient is used to determine the boundary values of 

pressure and velocity. For supercritical flow or free outflow, the water surface elevation and 

therefore the F-function at outlet is a copy of adjacent interior cells. For subcritical flow, the 
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water surface elevation is given and in turn the F-function is specified accordingly at outlet cells. 

 

3.4.3 Solid Wall Boundary Condition 

Solid walls are considered as impenetrable boundaries such that the velocity normal to 

the boundary is set equal to zero and the tangential velocities can be defined using either the no-

slip or free-slip conditions. In free-slip condition the boundary is frictionless and the fluid 

velocity on the solid boundary is equal to the velocity of the interior neighbor cell. No-slip 

condition states that the fluid velocity at the solid boundary is zero relative to the boundary. The 

bed and solid wall friction is considered by adding the bed shear stress in the momentum 

equations integrated over the near-bed control volumes. The bed shear stress is determined with 

bi fb iC Uτ u  (3.19) 

where Cfb is the bed friction coefficient and 2 2U u v  . The bed friction coefficient can be 

calibrated using measured data. For the test cases presented in this chapter, which the flume beds 

are made of smooth materials, the friction coefficient Cfb is specified equal to 0.001. 

Similar to inlet and outlet boundaries the pressure of solid walls is calculated using the 

Neumann condition. The zero gradient condition is used to determine the F-function. 

 

3.4.4 Water Surface Boundary Condition 

Special boundary conditions are required for surface cells. The pressure in a surface cell 

is calculated by interpolation (or extrapolation) between the pressures at the water surface (the 

atmospheric pressure) and a neighbor fluid cell as follows: 

 , , 1i j k n sp p p     (3.20) 
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where Pn is the pressure in the neighbor fluid cell, Ps is the water surface pressure, Pa is the 

atmospheric pressure, and η is a coefficient illustrated in Fig. 3.4(a). The neighbor cell is chosen 

using the direction of water surface. The second term in Eq. (3.21) can be neglected. 

The velocity component between a surface cell and an empty cell can be calculated using 

two different methods. In the first method, the divergence of every surface cell is set to zero. In 

other words, conservation of mass is applied in each Cartesian direction. The second method 

determines the boundary velocities by linear or constant extrapolating interior velocities. Fekken 

(2004) showed that the second approach provide a smooth behavior of the velocities near the free 

surface. Therefore, the second approach with constant extrapolation is adopted herein. The 

interior velocities are taken from the neighbor cell. For instance, consider the central cell (with 

F=0.2) shown in Fig. 3.4(b) which is surrounded by two empty cells. The velocity components 

across the right and top faces are specified using the known velocity components of the neighbor 

cell located below the bottom face. 

 

 

Fig. 3.4 (a) Definition of parameters used in the pressure interpolation of the surface cells and (b) 

free surface velocity components (2-D view) 
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3.5 Model Stability 

Since the governing equations are solved explicitly, the computational time step should 

be limited by the stability conditions. The time step is restricted by the Courant-Friedrichs-Lewy 

(CFL) condition that prevents the mass and momentum to advect more than one cell in a single 

time step. Furthermore, a Courant-type restriction proposed by Weymouth and Yue (2010) is 

taken into account to assure that the time evolution of F-function does not overfill or over-empty 

the computational cells in each time step. Therefore, the stability condition can be written as 

follows: 

1
min ,

2

i i

i i

x x
t

u u

  
   

  
  (3.22) 

The first term on the right side of the inequality (3.22) is the CFL condition and can be 

restricted by a constant coefficient between zero and one, which is chosen to be 0.2 in the present 

study. The second term is the F-function stability condition. Depending on the constant 

coefficient used to restrict the CFL condition, either CFL or VOF condition can be the dominant 

stability condition to control the time step. In this study the VOF condition was found as the 

dominant stability condition.  

 

3.6 Computational Procedure 

Shown in Fig. 3.5, the solution procedure of the present model starts with generating an 

appropriate computational grid for the entire physical domain. The computational grid adopted 

by the model is the rectilinear structured mesh with constant or variable grid spacing in the 

Cartesian coordinate system. It is also necessary to provide the initial conditions in the first step. 

The second step includes the turbulence model and calculates the eddy viscosity using the 

Smagorinsky sub-grid model. The RANS equations are solved in the third step using the 
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calculated variables from the previous time step as an initial guess. Since the calculated velocity 

field may not satisfy the continuity equation, the SOR method is used in the next step to correct 

the pressure and velocity fields such that the free divergence can be obtained from the continuity 

equation. The advection equation of F-function is solved in step 5 and the new F-function field is 

used to reconstruct the interface of surface cells in step 6. The estimated normal vector of the 

interface provides the orientation of the free surface in each surface cell. In step 7, the new time 

step is calculated using the stability conditions of the model and then the new computations start 

from the second step. This procedure continues until the elapsed time reaches the predefined 

simulation time.  
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Fig. 3.5 Solution steps of the present model 

 

3.7 Model Test 

The developed 3-D finite-difference model has been tested using five laboratory 

experiments of dam-break flow. The first three cases concern the initial stages of 2-D dam-break 

flows over dry and wet flat beds and a dry bed with a rectangular obstacle. The other two cases 

investigate 3-D dam-break flows due to partial dam break and over an obstacle. The simulation 
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results are presented in the following sub-sections. 

 

3.7.1 Initial Stage of Dam-Break Flow over a Wet Flat Bed 

The first case aims to investigate the ability of the present model to simulate the initial 

stage of dam-break flow over a wet bed. The experiment was conducted by Stansby et al. (1998) 

in a flume 15.24 m long, 0.4 m wide, and 0.4 m high with a flat bed. The gate was located 9.76 

m downstream of the upper flume end. The initial water depth in the reservoir, h0, was 10 cm and 

the downstream depth was 4.5 cm. A fine computational grid spacing equal to 0.75 cm is used in 

the model. In the experiment, A 7 kg weight attached to a wire rope was used to pull up the gate 

rapidly. To investigate the effects of non-instantaneous gate removal, the simulations used two 

gate removal scenarios: instantaneous and gradual lift. In the gradual lift of the gate, it was 

assumed that the gate is pulled up in 0.1 s, which is shorter than 1.25(h0/g)
0.5

 recommended by 

Lauber and Hager (1998). Here, g is the acceleration due to gravity. Fig. 3.6 compares the 

measured and calculated water surface profiles at several initial instants after dam break. Spatial 

scales are normalized by h0, and x/h0=0 corresponds to the gate location. One can see the effects 

of the gradual lift of the gate on the wave speed. The front wave propagates slightly faster when 

the gate is lifted instantaneously. This is perhaps because of the fact that when the gate is 

released instantaneously the potential energy (due to gravity) of the entire water column becomes 

kinetic energy, whereas in the gradual gate release this process takes place gradually. The wave 

shape is relatively the same for both scenarios. The water surface profiles calculated by both 

scenarios are generally in a good agreement with the measured ones.  
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Fig. 3.6 Measured and calculated water surface profiles caused by dam break over wet bed 

(measurements from Stansby et al., 1998) 

 

3.7.2 Initial Stage of Dam-Break Flow over a Dry Flat Bed 

The second test is the initial stage of dam-break flow over a dry bed. The experiment was 

carried out by Kocaman (2007) and the data published by Ozmen-Cagatay and Kocaman (2010). 

The laboratory flume was 9 m long, 0.3 m wide, and 0.34 m high. The gate was located 4.65 m 

from the upstream flume end. The computational grid spacing is 0.75 cm. Similar to the previous 

case with a downstream wet bed, the dam breaking process was simulated by instantaneous and 

gradual dam removal scenarios. Fig. 3.7 shows a good agreement between the measured and 

calculated water surface profiles at several instants. It is observed that the gradual dam removal 

does not affect the calculated results in the dry bed case. Note that spatial scales are normalized 

by h0, and x/h0=0 corresponds to the gate site. 
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Fig. 3.7 Measured and calculated water surface profiles caused by dam break over dry bed 

(legend similar to Fig. 3.6, measurements from Ozmen-Cagatay and Kocaman, 2010) 

 

3.7.3 Initial Stage of Dam-Break Flow over a Rectangular Obstacle  

The third case investigates the initial stage of 2-D dam-break wave over a dry bed with a 

rectangular obstacle downstream of the dam. Experiments were conducted by Oertel and Bung 

(2012) in a rectangular flume that was 22 m long, 0.30 m wide and 0.50 m high. A gate of 

thickness 0.015 m was installed at a distance of 13 m from the upstream end. Herein, the selected 

experiment included an initial water depth equal to 0.2 m in the reservoir and the downstream 

bed was dry. An obstacle of height 0.06 m was placed 0.2 m downstream of the gate. The 

dimensionless gate lift time, T, is 1.12. Here, T=t(g/h0)
0.5

. The computational grid spacing is 

equal to 0.5 cm. 

Fig. 3.8 depicts the time evolution of dam-break wave observed in the physical model 

and calculated by the present numerical model. After the dam-break wave hits the obstacle, it is 

redirected and splashes upward. Then, the splash falls down, the wave overtops the obstacle and 

moves toward downstream. The numerical model is able to predict this process well, particularly 
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the redirected splash height and shape. The model predicts a slower upward splashing and faster 

falling stage. This may be due to the appearance of air bubbles and water drops created by wave 

and obstacle collision, which makes the simulation of flow motion very complex at the initial 

stages.  

 

 

Fig. 3.8 Initial stages of dam-break wave over a rectangular obstacle (left: experimental images 

from Oertel and Bung, 2012 and right: present model results) 
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3.7.4 Partial Dam-Break Flow 

The developed model is tested by a partial dam-break flow experiment conducted by 

Fraccarollo and Toro (1995) to simulate the dam-break flow in an open valley. The experiment 

was conducted in a 3 m long and 2 m wide flume, shown in Fig. 3.9. The partially broken dam 

was represented by two impervious vertical walls and a 0.4 m wide gate located between the 

walls, at 1 m from the upstream end of the flume. The downstream bed was dry with open 

boundaries. The breaking of the dam was simulated by the rotation of the gate on a fixed hinge in 

a very short lapse of time, less than 0.1 s, as shown in Fig. 3.10 (picture from Fraccarollo and 

Toro, 1995). The temporal evolution of water level, pressure, and velocity were measured at 

several gages sketched in Fig. 3.9. The gages G-5A, G-3A, and G-2A are placed inside the 

reservoir, G0 at the gate location, and G1A immediately downstream of the gate. These gages are 

located at 0.18, 0.58, 0.78, 1.0, and 1.02 m from the upstream end, respectively. 

 

 

Fig. 3.9 Plan view of the partial dam-break experiment 
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Fig. 3.10 Photograph of the experimental dam-break carried out by Fraccarollo and Toro (1995) 

 

The computational domain is meshed by an equal grid spacing of 1.6 cm in the 

longitudinal, lateral, and vertical directions. Fig. 3.11 shows the snapshots of the calculated water 

surface at several elapsed times. The propagated wave at time 0.5 s shows a significant 

longitudinal crest on the free surface profile. The sharp crest was also observed in the experiment 

shown in Fig. 3.10. A spade-like flood downstream of the opening can be recognized in both 

calculated and observed results. These outcomes were also reported using a 3-D SPH model 

developed by Ferrari et al. (2010).  

Fig. 3.12 shows the 2-D distribution of bottom pressure and longitudinal velocity near the 

bed at different instants. The bottom pressure inside the reservoir decreases with time. The 

pressure distribution on the bottom shows a spade-like evolution over time, which is consistent 

with time evolution of water level stated above. The pressure magnitude in front of the opening 

is larger than other spots downstream of the exit during the simulation. This is reasonable since 

the water surface level, as shown in Fig 3.10, is higher there. The velocity distribution reveals 

that the areas around the walls adjacent to the gate experience the velocity less than 0.2 m/s. 

Therefore, the impacts of the flood caused by the partial dam-break flow are insignificant on 

these areas. 

Figs. 3.13(a)-(h) show a good agreement between the measured and calculated time series 
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of the water surface level and pressure. Figs. 3.14(a)-(i) compare the time evolution of the flow 

velocity component in the longitudinal direction at gages G0, G-2A, and G-3A. The calculated 

velocities in the reservoir show a similar oscillatory behavior to the measured velocities. When 

the gate is opened, the progressive dam-break wave propagates downstream and a rarefaction 

wave propagates upstream into the reservoir. The rarefaction wave hits the upstream and side 

walls of the reservoir and generates reflected waves which cause the oscillatory pattern of flow 

velocity. The effects of the reflected waves on water surface can be also seen in Fig. 3.13. 

The velocity time series shown in Fig. 3.14 reveal a phase lag between the measured and 

calculated velocities in which the calculated velocity reaches the peak value about 0.3 s prior to 

the measured one. Moreover, a discrepancy between measured and calculated peak velocities can 

be seen. These might be due to the rotational motion of the gate removal process in the 

experiment but a sudden removal of the gate in the numerical simulation. The adhesion of water 

to the gate causes an upward velocity boundary at the gate location which can affect the flow 

properties. The adhesion of water is not considered by the model. Another reason might be the 

existence of experimental errors. According to Fraccarollo and Toro (1995), the velocity was 

measured using a four quadrant electromagnetic velocity meter. The measurement instrument 

was supported by a rounded rod in order to avoid possible vibrations induced by the flow. 

Vibration of the rod and in turn experimental errors might be arisen by the gate rotation and 

reflected waves in the reservoir.  
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Fig. 3.11 3-D Snapshots of calculated water surface elevation 

 

 



43 

 

 

Fig. 3.12 2-D Snapshots of calculated bottom pressure and velocity (left: bottom pressure in m, 

and right: longitudinal velocity near the bed in m/s) 
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Fig. 3.13 (a)-(d): Measured (–) and calculated (---) water surface levels; (e)-(h): measured (–) 

and calculated (---) pressures at the bottom (measurements from Fraccarollo and Toro, 1995) 

 

 

 

 

 

Time (s)

W
a
te

r
le

v
el

(m
)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

(a) G1A

Time (s)

W
a
te

r
le

v
el

(m
)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

(b) G0

Time (s)

W
a
te

r
le

v
el

(m
)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

(c) G-2A

Time (s)

W
a
te

r
le

v
el

(m
)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

(d) G-5A

Time (s)

P
re

ss
u

re
(m

)

2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

(e) G1A

Time (s)

P
re

ss
u

re
(m

)

2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

(f) G0

Time (s)

P
re

ss
u

re
(m

)

2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

(g) G-2A

Time (s)

P
re

ss
u

re
(m

)

2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

(h) G-5A



45 

 

 

Fig. 3.14 Measured (–) and calculated (---) longitudinal velocities at 0.1, 0.2, and 0.35 m above 

the bed (measurements from Fraccarollo and Toro, 1995) 

 

3.7.5 Dam-Break Flow over a Rectangular Block 

A laboratory experiment of dam-break flow carried out at the Maritime Research Institute 

of the Netherlands (MARIN) (Kleefsman et al., 2005) is applied to test the model as the final 

case. The flume was 3.22 m long, 1 m wide, and 1 m high and a gate was placed 1.23 m from the 

upstream end. A rectangular block of 0.403×0.161×0.161 m was placed downstream of the 

reservoir. The initial water surface depth inside the reservoir was 0.55 m and the downstream 

region was dry. Fig. 3.15 shows the configuration of the tank and the location of measurement 

gages. 
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Fig. 3.15 Sketch of the MARIN dam-break experiment (H4 and H2: water surface level 

measurement gages; P1, P3, P5, and P7: pressure measurement gages around the block) 

 

The computational grid consists of 161×50×50 cells. Fig. 3.16 shows 3-D views of wave 

front propagation and reflection during the simulation period. The initial water body in the 

reservoir and the obstacle located downstream of the reservoir are shown at t=0.0 s. Removing 

the gate, which separates the reservoir and the downstream flume, generates a wave propagating 

downstream monotonously. The progressive wave hits the obstacle and the downstream wall and 

is then reflected toward the upstream. 

Fig. 3.17 compares the water surface time series at gages H2 and H4. The comparison 

shows similar patterns in the temporal evolution of measured and calculated water surface levels. 

The progressive wave front reaches gage H2 at t=0.4 s and the water surface level increases until 

t=2.4 s when the reflected wave from the obstacle and the downstream wall moves toward the 

upstream. This causes a decrease in the water surface level until the second reflected wave 

reaches the gage and the water level increases again. At gage H4, the water surface level 

decreases as the reservoir drains smoothly until t=2.9 s. At this time the first reflected wave 

reaches and approaches the upstream wall. The reflected wave hits the wall and the second 

reflected wave shows a peak level around t=3.9 s and propagates toward the downstream.  
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Fig. 3.16 3-D view of wave propagation process 

 

The measured and calculated pressure time series at gages P1, P3, P5, and P7 are shown 

in Fig. 3.18. Both measurement and simulation show sudden increase in pressures at gages P1 

and P3 when the wave hits the obstacle. The calculated pressures exhibit spurious spikes, 

particularly on gages P5 and P7. This is due to the appearance of air pockets in the water and the 

model has difficulty in handling an isolated empty cell surrounded by fluid cells. When the water 

enters the isolated empty cell, this cell becomes a fluid cell in one time step without being a 

surface cell in between. Since the free divergence condition was not satisfied by the empty cell in 

the previous time step, the sudden change from being an empty cell to a fluid cell results to a 

pressure peak over the calculated pressure field. Similar situation occurs in the model results of 
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Kleefsman et al. (2005). Nevertheless, the comparisons in Fig. 3.18 reveal the capability of the 

developed model to simulate the general pressure changes caused by the progressive and 

reflected waves. 

 

 

Fig. 3.17 Time evolution of water surface level: measured (–), calculated (---) (measurements 

from Kleefsman et al., 2005) 

 

 

Fig. 3.18 Time evolution of pressure: measured (–), calculated (---) (measurements from 

Kleefsman et al., 2005) 
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3.8 Summary 

In this chapter, the VOF interface tracking method was applied to develop a 3-D model of 

dam-break flows. The model solved the RANS equations in the Cartesian coordinate system 

using an explicit finite-difference method based on rectilinear, staggered grid. The convection 

and diffusion terms were discretized using the upwind and central difference schemes, 

respectively. The flow velocity field calculated from the RANS equations based on an assumed 

pressure were corrected using the SOR method to satisfy the continuity equation. The turbulent 

viscosity was calculated by means of the Smagorinsky sub-grid model. A VOF algorithm was 

adopted to track the free surface, including the SOLA-VOF scheme modified by Torey et al. 

(1985) to calculate F-function fluxes and the Youngs reconstruction method to estimate the 

normal vector of water surface and consequently the free surface orientation.  

The model was tested by using five laboratory experiments, including 2-D dam-break 

flows over wet and dry flat beds and a dry bed with rectangular obstacle, and 3-D dam-break 

flows caused by a partial dam break and over an obstacle. The computed water surface 

evolutions and velocity and pressure distributions agree generally well with the measurements. 

The dam-break wave fronts over dry and wet flat beds, partial dam-break wave spreading, wave 

splash redirected by the obstacles and reflection from the solid walls are reasonably well 

reproduced by the model. The results revealed that the VOF method is an efficient tool to track 

the water surface elevation of dam-break waves. 
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CHAPTER 4 

3-D FINITE-VOLUME MODEL OF DAM-BREAK FLOW OVER FIXED BEDS 

 

In this chapter the governing equations, numerical solutions, and test results of a 3-D 

finite-volume model of dam break flows over irregular fixed beds are presented. The model 

solves the RANS equations using a finite-volume method on Cartesian coordinate system and 

collocated grids. The model is able to simulate dam-break flow on irregular beds since the 

computational mesh can fit on the bottom. The water surface tracking method is based on a 

method introduced by Ubbink and Issa (1999) for capturing sharp fluid interfaces on arbitrary-

shaped meshes.   

 

4.1 Governing Equations  

Similar to the model described in the previous chapter, the governing equations are 3-D 

continuity and RANS equations for incompressible flows. The governing equations of flow in 

tensor form are: 

0i

i

u

x





 (4.1) 

1 1 1 iji i
j i

j i j

u u p
u f

t x x x



  

  
   

   
 (4.2) 

where xi (i=x,y,z) are the components of the coordinate system, ui are the components of the flow 

velocity, fi are the components of the external forces, p is the pressure, ρ is the water density,
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and τij (j=x,y,z) are the stresses defined as: 

i
ij

j

j i

uu

x x
 

 
  

   

 (4.3) 

where μ is the viscosity which includes molecular, μm, and turbulent, μt, viscosities. The 

molecular viscosity of water is equal to 10
-3

 Ns/m
2
 and the turbulent viscosity is determined 

using the Smagorinsky (1963) sub-grid model described by Eq. (3.4).  

The governing equations can be also written as follows: 

0 u  (4.4) 

 
1 1 1

p
t   


      



u
uu f τ  (4.5) 

Eq. (4.4) can be used to simplify the stress tensor relation, Eq. (4.3), and consequently the 

momentum equation as: 

   
1 1 1

p
t


  


       



u
uu f u  (4.6) 

Eqs. (4.4) and (4.6) are the flow governing equations in Cartesian coordinate system. 

As described in Chapter 3, the advection of F-function in VOF method is governed by 

Eq. (3.10) which can be rewritten as follows: 

( ) 0
F

F
t


 


u  (4.7) 

 

4.2 Computational Grid 

The governing equations are discretized using a finite-volume method. The 

computational cells are numbered in an unstructured index. To preserve the efficiency of the 

numerical solutions on irregular unstructured grids, the collocated or non-staggered approach is 

used, which stores all primary variables at the center points and fluxes at the faces of 
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computational cells. This approach simplifies the computer programming and minimizes the 

amount of geometrical information required at each computational cell. 

The computational domain is represented by a mesh of hexahedral cells that fits the solid 

boundaries, such as bed. Each cell is embraced by flat faces. Fig. 4.1 shows the 3-D sketch of a 

hexahedral cell where point P is the center of the control volume under consideration and point N 

is the center of a neighbor cell. Vector A is the outward-pointing face area vector normal to the 

face located between cell P and N. Vector PNd  shown in Fig. 4.1 as the dashed line connects 

points P and N. Vector d does not necessarily go through the centroid of the cell face where 

vector A starts. The angle between vectors A and d determines if the mesh is orthogonal or non-

orthogonal. The mesh is defined as non-orthogonal if the angle is not zero. The orthogonality and 

non-orthogonality of faces are taken into account by over-relaxed approach proposed by Jasak 

(1996) and applied by Ubbink (1997), in which vectors D and K are introduced as follows: 

2


d
D A

d A
 (4.8) 

-K A D  (4.9) 

where orthogonality means that K is equal to zero. 

 

 

Fig. 4.1 Sketch of a hexahedral computational cell (points P, N, and face centroid may not 

necessarily make a straight line) 
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In order to mesh a physical domain with irregular beds, the computational grid is 

generated in two steps. First, a 2-D horizontal mesh, which fits on the bed surface boundary, is 

generated. The horizontal mesh contains quadrilateral cells with edges parallel to the coordinate 

axes x and y. The average longitudinal and lateral slopes of the cell face are calculated using the 

bed elevation at the center points of cell edges. The second step is meshing the domain in the 

vertical direction. This is accomplished by copying the 2-D horizontal mesh in the vertical 

direction. The number of vertical layers depends on the grid spacing in z direction. The 

horizontal mesh and vertical layers of the computational domain adopt constant and varying grid 

spacing. 

 

4.3 Numerical Solutions of Continuity and RANS Equations 

In the finite-volume method the governing equations are integrated in each computational 

cell. The divergence theorem can be used to integrate terms which contain vector divergence and 

scalar gradient. The divergence theorem, more commonly known, especially in older literature, 

as Gauss's theorem, defines the volume integral of the divergence of an arbitrary vector φ  as: 

 
V S

dV d  φ φ S  (4.10) 

where V is the volume of the control volume and S is the surface boundary of the control volume. 

Eq. (4.10) can be written for a control volume with n faces as follows: 

 
1

n

f f
V

f

dV


  φ A φ  (4.11) 

where subscript f  is the face number and variables with index f determine the values on the face. 

Similarly, for an arbitrary scalar variable  we have: 
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 
1

n

f f
V

f

dV 


  A  (4.12) 

A second-order accurate approximation of the gradient of flow properties can be 

calculated based on Eqs. (4.11) and (4.12) as follows: 

 
1

1 n

f fP
fPV 

  φ A φ  (4.13) 
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1 n

f fP
fP

A
V

 


    (4.14) 

In the next sub-sections the discretized form of momentum equation is explained first and 

then the pressure equation is derived based on the continuity equation. The discretization 

approach of the pressure equation is also described in detail. 

 

4.3.1 Discretization of Momentum Equation 

The momentum equation (4.6) can be integrated over the control volume as: 

     
1 1 1

V V V V V

dV dV p dV dV dV
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    
u

uu f u  (4.15) 

Integrating the temporal, pressure gradient, and the external force terms over the control 

volume and using Eqs. (4.11) and (4.12) leads to: 

   
1 1

1n n
P P

P f f f f f
f f

V V
V p

t


   
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
 

u
A u u f A u  (4.16) 

The only external force that we consider is the gravitational body force, which on unit 

volume is ρg, where g is the vector acceleration of gravity. Also, by replacing the dynamic 

viscosity μ with the kinematic viscosity υ, Eq. (4.16) becomes: 
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Discretization form of each term in Eq. (4.17) is presented in the next sub-sections. 

 

4.3.1.1 Convection Term 

The second term on the left side of Eq. (4.17) is the convection term. The dot product of 

face area vector and velocity vector determines the volumetric flux at the face, thus: 

 
1 1

n n

f f f f f

f f

Flux
 

 A u u u  (4.18) 

To approximate the velocity at the face, several well-known upwinding schemes, 

including the first-order upwind scheme, hybrid upwind/center scheme and exponential 

difference scheme (Patankar 1980), are adopted by the model.  

 

4.3.1.2 Diffusion Term 

The diffusion term in Eq. (4.17) can be written as: 

   
1 1

n n

f f ff f
f f

 
 

   A u A u  (4.19) 

The viscosity in the diffusion term is the total viscosity which includes molecular and 

eddy viscosities. The eddy viscosity is calculated using the Smagorinsky sub-grid model 

formulated by Eq. (3.4). The important issue for the diffusion term is how to treat the dot product 

of the face area and the velocity gradient at the face for non-orthogonal meshes. As shown in 

Fig. 4.1 and Eqs. (4.8) and (4.9) the orthogonal and non-orthogonal contributions can be taken 

into account by introducing vectors D and K. Therefore, the diffusion term can be written in the 

following form: 
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where the first and second terms in the bracket are the orthogonal and non-orthogonal 

contributions, respectively. The viscosity at the face is approximated by linear interpolation. 

Since the angle between vector D and vector d which connects points P and N is zero, the 

orthogonal contribution can be computed as: 

  N P
f ff

f


 

u u
D u D

d
 (4.21) 

In the term accounting for the non-orthogonal contributions, the velocity gradient at the 

cell centers and faces are estimated based on the method described in Section 4.3.3. The non-

orthogonal contribution is included in the source term. 

 

4.3.1.3 Temporal Term 

The temporal term in Eq. (4.17) is discretized using the first-order Euler scheme as 

follows: 

t t t

P P
P PV V

t t

 


 

u uu
 (4.22) 

The velocity contribution of the previous time step is included in the source term of Eq. 

(4.17).  

 

4.3.1.4 Final Discretization Form  

The discretized terms shown in the previous sub-sections are combined to obtain a 

general discretized equation. For example, if the upwind scheme is used for the convective term, 

the general discretized equation is written as follows: 
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where the source term is 

  
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t n
U P
u P P f f f

f

S V V
t




   



u

g K u  (4.24) 

By rearranging the velocity terms of the cell under consideration P on the left side and 

terms of the neighbor cells on the right side, Eq. (4.24) can be written in the following form: 

1

nb
U U UP
P P N N P u

N

V
a a p S



   u u  (4.25) 
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

 
D

d
 (4.26) 

where nb denotes the number of neighbor cells or in other words the number of faces. Eq. (4.25) 

is the general discretized finite-volume form of the momentum equation. 

Eq. (4.25) shows linear dependence of velocity on pressure and vice versa. Therefore, the 

RANS equation calculates the correct values of velocity field only when the pressure field in the 

new time step is given. Since the new time step pressure is unknown, the RANS equation is 

solved using a guessed pressure field which can be the initial or previous time step pressure. The 

velocity field calculated based on the guessed pressure may not necessarily satisfy the continuity 

equation. This reveals that a velocity-pressure coupling scheme is required. Several coupling 

methods have been developed in the literature, such as MAC algorithm (Harlow and Welch 

1965), projection method (Chorin 1968), Semi-Implicit Method for Pressure Linked Equations 

(SIMPLE) (Patankar and Spalding 1972), SIMPLE-Revised (SIMPLER) (Patankar 1980), 

SIMPLE-Consistent (SIMPLEC) (van Doormaal and Raithby 1984) and Pressure Implicit 

solution by Split Operator (PISO) (Issa 1986). Jang et al. (1986) and Yin and Chow (2003) 
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compared the SIMPLE, SIMPLER, SIMPLEC, and PISO methods and concluded that PISO 

yields more stable results and takes less computational time. Therefore, the PISO method is used 

in this study. To couple velocity and pressure we need to derive a pressure equation. Derivation 

of the explicit version of the PISO method is the subject of next section.  

 

4.3.2 Pressure Equation 

We shall now derive the pressure equation from the continuity equation. By volume 

integrating Eq. (4.4) and using the Gauss’ theorem we have: 

1

0
n

f f

fV

dV u


   u A  (4.27) 

For deriving the pressure equation it is needed to approximate the face velocity values. In 

the collocated grid, which is adopted in the present study, estimating the face velocity using 

simple linear interpolation leads to numerical oscillations in the pressure and velocity fields. In 

order to avoid the decoupling of the pressure and velocity, the momentum interpolation method 

introduced by Rhie and Chow (1983) is used. This interpolation technique improves the 

pressure-velocity coupling on the non-staggered grids (Wu 2007). 

The discretized momentum equation (4.25) at node P can be rewritten as: 

( )P P
P U U

P P

V
p

a a 
  

H u
u  (4.28) 

where 

1

( )
nb

U U

P N N u

N

a S


 H u u  (4.29) 

Using the momentum interpolation, the velocity at face f is approximated by: 
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Substituting Eq. (4.30) into Eq. (4.27) leads to: 

1

( )
0
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f U U
f P Pf f

V
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    
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The quantity  ( ) U

P
f

aH u  is evaluated by linear interpolation of ( ) U

PaH u  at node P and 

the corresponding adjacent node N.  The pressure gradient at a cell face is calculated by taking 

into account the orthogonal and non-orthogonal contributions as follows: 

      
1 1

n n

f f ff f f
f f

p p p
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where 
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p p
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
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d
 (4.33) 

In the non-orthogonal term, the face value of pressure gradient is calculated similarly to 

the face value of velocity gradient in the non-orthogonal diffusion term of the momentum 

equation described in Section 4.3.1.2. The non-orthogonal contribution is considered as the 

source term of the pressure equation. Substituting Eq. (4.32) into Eq. (4.31), the general form of 

the pressure equation can be formulated as: 
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4.3.3 Gradient of Flow Properties  

A second-order accurate approximation of the gradients at the centroid of control volume can be 

calculated based on the Gauss’s theorem, as shown in Eqs. (4.13) and (4.14).The gradient at a 

cell face can be computed using linear interpolation between the gradients at the cell under 

consideration (P) and the neighbor cell (N). Haselbacher and Blazek (2000) demonstrated that 

the linear interpolation leads to a wide stencil which allows for the decoupling of the solution on 

quadrilateral or hexahedral grids. Crumpton et al. (1997) and Weiss et al. (1999) modified the 

face gradient as 

      N P
n nf f f

 
  

 
      

  
d d

d
 (4.38) 

where  
f

  is the average value of gradients at cells P and N, and dn is the unit vector of d. 

Since there is no flow information in the computational domain outside the water surface 

boundary, the average value of gradients in cells which contain the water surface and also cells 

adjacent to the water surface may cause unsmooth pressure and velocity fields and water surface 

profile. Therefore, in this study the gradient at cell face is calculated as 

  N P
nf

 



  d

d
 (4.39) 

which is also computationally cheaper than Eq. (4.38). 
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4.3.4 Pressure-Velocity Coupling Algorithm 

The solution procedure in a single time step is summarized as follows: 

Step 1: The RANS Eq. (4.25) is solved based on the pressure field of the previous time 

step. This step calculates the velocity field which does not necessarily satisfy the 

continuity equation. 

Step 2: New values of H(u) are calculated using Eq. (4.29) based on the velocity field 

calculated by the RANS equation in the first step. 

Step 3: Using the new values of H(u) the pressure Eq. (4.34) is solved to compute a new 

pressure field. 

Step 4: The flow fluxes Ff=Af.uf are calculated using the new H(u) calculated at step 2 

and new pressure field from step 3. The face value of velocity is computed by Eq. 

(4.30). 

Step 5: Velocity field is corrected using Eq. (4.28) based on the new H(u) and pressure 

field.  

Step 6: If the corrected velocity field satisfies the continuity equation (error less than a 

small value), the most recent calculated variables are the final values in the current 

time step, otherwise a new iteration starts from step 2 by using the most recent 

updated variables. 

 

4.4 Boundary Conditions  

Boundary values of water surface elevation and flow velocity are determined similar to 

the finite-difference model elaborated in Section 3.4. The Neumann condition with constant 

gradient -g is used to determine the pressure of cells located at inlet, outlet, and solid wall. The 
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pressure in a cell which contains the water surface is calculated by interpolation (or 

extrapolation) between the pressures at the water surface (the atmospheric pressure) and an 

appropriate neighbor fluid cell as follows: 

 , , 1i j k n sp p p     (4.40) 

where Pn is the pressure in the neighbor fluid cell, Ps is the water surface pressure and is equal to 

the atmospheric pressure, and η is a coefficient illustrated in Fig. 3.4(a). The neighbor cell is 

chosen using the direction of water surface. The Neumann condition with zero gradient is used to 

define other flow properties at the water surface. 

 

4.5 Surface Capturing Method   

In the finite-difference model developed in Chapter 3, the SOLA-VOF technique was 

adopted to track the water surface. The SOLA-VOF was originally derived for 1-D flow and its 

implementation in 2-D and 3-D flows requires the operator splitting approach as used in the 

finite-difference model developed in this study. The SOLA-VOF scheme is not applicable to 

meshes which contain cells with complicated shapes and unstructured meshes. Ubbink and Issa 

(1999) developed an interface capturing technique called CICSAM (Compressive Interface 

Capturing Scheme for Arbitrary Meshes), which is applicable in the context of multi-

dimensional applications and avoids the need to use operator splitting. Since the CICSAM 

scheme was originally an implicit solution, an explicit version of CICSAM used in this study is 

presented below. 

As described before, the time evolution of F-function is calculated using the scalar 

advection Eq. (2.2). The advection equation can be rewritten as: 



63 

 

  0
F

F
t


 


u  (4.41) 

Integrating over control volume gives: 
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t
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Applying the Euler explicit scheme for the temporal derivative term and the Green’s 

theorem for the convection term leads to 
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Since F is a scalar variable, Eq. (4.43) can be reformulated as the following: 
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in which the term in the parenthesis is the volumetric flux. Then, 

1
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t t t

P P f f

fP
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F F Flux F

V
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


    (4.45) 

As it was mentioned before, F is a step function which changes between zero and one 

abruptly and special care must be taken to estimate the face values of F. In the CICSAM scheme, 

which was developed on arbitrary meshes, a switching strategy between HYPER-C and 

ULTIMATE-QUICKEST (UQ) schemes is used to handle this.  

The face value Ff is estimated based on the F values of donor cell D, acceptor cell A, and 

upwind cell U. The donor cell is always upstream and the acceptor cell is always downstream of 

the face under consideration. The upwind cell U is the cell upstream of the donor cell. A 

schematic representation of donor, acceptor, and upwind cells for a 1-D flow is depicted in Fig. 

4.2. Basically, the face value Ff should lie between the F values of the donor and acceptor cells. 

Therefore, the face value can be estimated as 
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(1 )f f D f AF F F     (4.46) 

where βf is the weighting factor. In the CICSAM scheme the weighting factor is calculated based 

on normalized F values as    1f D Df F F F    . The normalized F value of the donor cell 

is calculated as 

D U
D

A U

F F
F

F F





 (4.47) 

The normalized face value fF  is estimated using a switching strategy between the 

HYPER-C and ULTIMATE-QUICKEST (UQ) schemes as follows: 

( ) ( )(1 )f f Hyper C f UQf fF F F     (4.48) 

where f  is the switching factor, and ( )f HYPER CF   and ( )f UQF  are the normalized face values 

computed using the HYPER-C and UQ schemes, respectively. The switching factor varies 

between zero and one based on the angle between the interface and the direction of flow motion 

as 
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. Vector df connects the centroids of the donor and acceptor 

cells. The HYPER-C and UQ normalized face values are computed as  
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where CD is the summation of the Courant number for outflow faces of the donor cell, 

1

max(0, )
n

D f

f

C C


 . 

 

Fig. 4.2 Definition of donor, acceptor, and upstream cells (the arrow shows the flow 

direction at the face under consideration) 

 

4.6 Model Stability 

Time step is controlled by the Courant-Friedrichs-Lewy (CFL) and VOF conditions 

described in Eq. (3.22). 

 

4.7 Model Test 

The developed finite-volume hydrodynamic model is tested using six laboratory 

experiments. The first test case investigates the capability of the model to simulate initial stages 

of dam-break flows over wet and dry beds. In the second test case the model simulates the 

breaking process of a solitary wave on a sloping beach, which can be seen as the propagation of 

dam-break wave over an inclined channel. The ability of the model to simulate dam-break flows 

over uneven beds is further investigated using dam-break flows over trapezoidal and triangular 

steps in the third and fourth test cases. The fifth test case is simulation of dam-break flow over a 
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3-D isolated block. In the last test the model is validated by simulating the 3-D dam-break flow 

caused by partial dam failure. 

The simulations are carried out on a desktop computer with Windows 7 operating system, 

Intel Core i7-3.20 GHz processor, and 24 GB memory (RAM). The source code of the developed 

model is written serial in FORTRAN 90 and runs on single core CPU processor. 

 

4.7.1 Initial Stage of Dam-Break Flow over Wet and Dry Flat Beds 

The developed model is first tested using the experiments of initial stage of dam-break 

flow described in Sections 3.7.1 and 3.7.2. Herein, it is assumed that the gate is lifted 

instantaneously. The computational grid spacing is 0.75 cm. The computational mesh contains 

26 and 40 vertical layers in the wet and dry bed cases, respectively. Figs. 4.3 and 4.4 show the 

comparison between measured and calculated water surface profiles at different instances for 

dam-break flows over wet and dry beds, respectively. The calculated results reveal that the 

developed 3-D finite-volume model can simulate the initial stages of dam-break flow well. 

 

 

Fig. 4.3 Measured and calculated water surface profiles caused by dam break over wet bed 

(measurements from Stansby et al., 1998) 
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Fig. 4.4 Measured and calculated water surface profiles caused by dam break over dry bed 

(measurements from Ozmen-Cagatay and Kocaman, 2010)  

 

4.7.2 Breaking Solitary Wave on a Sloping Beach 

Synolakis (1986) carried out a series of experiments to investigate runup/rundown and 

breaking of a solitary wave propagating on a sloping beach. The topography consisted of a plane 

beach with a slope of 1:19.85 adjacent to a constant depth region, as shown in Fig. 4.5 (a). The 

initial condition was still water of h=0.2 m in depth.  The experimental run with H/h =0.3, in 

which H is the wave height, is selected here to test the developed model’s capability of 

simulating breaking waves on a sloping beach. The first-order solitary wave theory is used to 

define the initial water surface profile zs and longitudinal flow velocity u as follows (Synolakis 

1987, Li and Raichlen 2002, Que and Xu 2006, and Mahdavi and Talebbeydokhti 2009): 
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where the initial wave crest is located at x=X. In the experiment, the initial wave crest was 
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located at X=14h (Mahdavi and Talebbeydokhti 2009). The computational domain is represented 

by a mesh containing hexahedral cells with grid spacing equal to 0.75 cm. The computational 

mesh consists of 56 vertical layers. Fig. 4.5 (b) shows the side view of mesh fitted on the flat bed 

as well as the sloping beach. For convenience, the measured and calculated data are compared in 

non-dimensional forms: x x h  ,  
*z z h ,  and t t g h  . 

 

 

Fig. 4.5 Schematic side view of (a) solitary wave runup on a sloping beach (b) computational 

mesh 

 

Figs. 4.6 shows the water surface profiles obtained at different times. At t
*
 = 5 and 10 

(Figs. 4.6(b) and (c)), the wave shoals and the front face becomes steeper. These two snapshots 
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indicate that the breaking process can be simulated by the numerical model accurately. As can be 

seen, the wave speed and wave height are well-simulated as well. When the breaking process 

terminates at t
*
=15 (Fig. 4.6(d)) the attenuated wave forms a tongue propagating up the sloping 

beach at t
*
 = 20, 25, and 30 (Fig. 4.6(e) to (g)). After the broken wave reaches the highest point 

around t
*
 = 35 (Fig. 4.6(h)), rundown takes place in which a thin layer of water accelerates down 

the beach, and at approximately t
*
 = 40 (Fig. 4.6(i)) the receding supercritical flow impacts the 

wave tail near the still water shoreline. The model approximates this flow pattern as a hydraulic 

jump. Figs. 4.6(i) and (j) show that the simulated rundown process takes place faster than the 

observed process. This might be because of the surface tension force which is not considered by 

the model. The surface tension exerts a resistance force which slows down the rundown process 

of the thin layer of water. 

The solitary wave breaks in between t
*
=10 and t

*
=15. It is important to investigate the 

ability of the model to simulate the breaking process of the solitary wave; however there is no 

measured data to evaluate the accuracy of the simulated breaking process. Fig. 4.7 shows the 

solitary wave propagating on the sloping beach from t
*
=11 to t

*
=14. At t

*
=11 the wave amplitude 

reaches a critical level and the wave shoaling process terminates. The breaking process starts at 

t
*
=12 and wave breaking occurs at t

*
=13. Finally, at t

*
=14 the wave crest deformation finishes 

and the crest collides with the sloping beach.  
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Fig. 4.6 Propagation of breaking solitary wave on a sloping beach (solid red line: calculated, blue 

circles: measurements from Synolakis, 1986) 
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Fig. 4.7 Simulated wave breaking process on a sloping beach 

 

4.7.3 Dam-Break Flow over a Trapezoidal Step 

The developed model is tested using the experiment conducted by Kocaman (2007). The 

measured data are reported by Ozmen-Cagatay and Kocaman (2011). The laboratory flume was 

9 m long, 0.3 m wide, and 0.34 m high. The flume bed and walls were made of glass. A gate was 

located 4.65 m from the channel entrance. The initial water depth in the reservoir, h0, was 25 cm 

and the downstream was dry. A trapezoidal shaped step was placed downstream of the flume. 

Fig. 4.8(a) shows the 3-D sketch of the laboratory flume and Fig. 4.8(b) shows the step 

dimensions and the computational mesh around the step. The bottom line of the mesh fits along 

the step surface. The computational mesh uses 28 vertical layers and the computational grid 

spacing is equal to1 cm.  

Fig. 4.9 compares the measured and calculated water surface profiles at different 

instances. When the dam-break wave reaches the step, the flow forms a hydraulic jump and 

overtops the step at t=1.9 s. The wave height rises till t=2.8 s when the reflected wave starts 

propagating upstream. The dam-break and reflected waves are simulated well by the model. 
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Fig. 4.8 (a) 3-D sketch of the laboratory flume; (b) side view of the trapezoidal shaped 

step and the computational mesh around the step 

 

 

Fig. 4.9 Measured (circles) and calculated (solid line) water surface profiles (measurements from 

Ozmen-Cagatay and Kocaman, 2011) 
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4.7.4 Dam-Break Flow over a Triangular Step 

The model is tested using laboratory dam-break flows over a triangular step selected from 

the Concerted Action on Dam-Break Modeling project, CADAM, (Kao and Chang 2012). The 

experimental set-up consisted of a rectangular channel 38 m in length, 1 m in width, and 1 m in 

height with a gate located 15.5 m from the channel entrance to separate the upstream reservoir 

and the downstream channel. A triangular step 6 m long, 1 m wide, and 0.4 m high was placed 

13 m downstream of the gate. The initial water depth in the reservoir was 0.75 m and the reach 

between the gate and the step was dry. In the experiments, different initial and boundary 

conditions were used for the channel reach between the step and the outlet. Herein two runs are 

chosen to test the present model. In the first run, the channel reach downstream of the step was 

initially dry and the boundary condition at the end of the channel was open outlet. In the second 

run, the downstream boundary condition was closed, and the channel reach between the step and 

downstream boundary was wet in which the water depth was 0.15 m initially, as shown in Fig. 

4.10(a). Measuring gages G4, G10, G13, and G20 were placed at the center line of the channel 

and 4, 10, 13, and 20 m downstream from the gate, respectively, to record the time evolution of 

water surface. The computational domain is represented by a mesh containing hexahedral cells 

with grid spacing equal to 2 cm. The computational mesh contains 40 vertical layers.  The 

bottom layer of the mesh fits the step surface, as shown in Fig. 4.10(b). 

Fig. 4.11 shows the comparison between the measured and calculated time evolutions of 

the water surface at four measuring gages for the run with dry bed downstream of the step. At 

gage G4, the progressive dam-break wave leads to a rapid increase in the water level in about the 

first 3 seconds, and then the water level varies slowly  till about t=13 s when the reflected wave 

caused by the step arrives and leads to the second rapid increase in the water level. Then, the 
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water level decreases smoothly till the second reflected wave caused by the upstream wall of the 

reservoir arrives at t=36 s. The water level at gage G10 increases rapidly due to the progressive 

dam-break wave and the reflected wave from the step in the first 8 s, varies slowly in the next 8 s 

when the reflected wave travels upstream, and then starts decreasing at t=16 s till the second 

reflected wave arrives at t=39 s. Since the downstream boundary condition is open outlet, the 

water surface elevation at gages G13 and G20 rises only because of the progressive wave and no 

wave reflection is observed. Simulated time evolution of water surface level for the run with wet 

bed downstream of the step is compared with the measured data in Fig. 4.12. Similar to the run 

with dry bed, it can be seen that the model is able to simulate the changes of the water surface 

caused by the progressive and reflected waves well. The water levels are influenced additionally 

by the reflected wave from the downstream end, particularly at gages G13 and G20. 

 

 

Fig. 4.10 (a) 3-D sketch of the laboratory flume; (b) side view of the triangular shaped step and 

the computational mesh around the step 
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Fig. 4.11 Measured and calculated water surface time series for the run with dry bed downstream 

of the step (measurements from Kao and Chang, 2012) 

 

 

Fig. 4.12 Measured and calculated water surface time series for the run with wet bed downstream 

of the step (measurements from Kao and Chang, 2012) 
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4.7.5 Dam-Break Flow over an Isolated Block 

The model is validated using the laboratory experiment of dam-break flow over a 3-D 

isolated block carried out at the Maritime Research Institute of the Netherlands (MARIN) 

(Kleefsman et al. 2005). The laboratory tank was 3.22 m long, 1 m wide, and 1 m high. A 

rectangular block of 0.403×0.161×0.161 m was placed 1.17 m downstream of the reservoir. The 

initial water depth inside the reservoir was 0.55 m and the downstream region was dry. Fig. 4.13 

shows the configuration of the tank and the locations of measurement gages.  Two water level 

gages (H2, H4) were installed in the downstream and upstream of the gate, and four pressure 

gages (P1, P3, P5, P7) were on the upstream side and top of the block. The computational mesh 

consists of 50 vertical layers and the grid spacing is equal to 2 cm. 

Fig. 4.14 shows the water level time series at gages H2 and H4. Similar time evolution 

patterns are shown in the measured and calculated water levels. The dam-break wave front 

reaches to gage H2 at t=0.4 s and the water level increases until t=2.4 s when the reflected waves 

from the block and the downstream wall arrive. Then the water level decreases until the reflected 

wave from upstream wall reaches the gage. The reflected wave height is somehow over-

predicted. At gage H4, the water level decreases as the reservoir drains smoothly until t=2.9 s 

when the first reflected wave arrives and travels toward the upstream wall. The reflected wave 

hits the wall and is reflected back downstream, showing a peak water level around t=3.9 s. The 

measured and calculated pressure time series at gages P1, P3, P5, and P7 are shown in Fig. 4.15. 

Both measurement and simulation show sudden increase in pressures at gages P1 and P3 when 

the wave hits the block at about t=0.5 s. The calculated results exhibit a few spurious spikes at 

the gages on the top of the step (P5 and P7). This is due to the isolated empty cells (air pockets) 

in the water as described in Section 3.7.5. The air pockets arise when the progressive wave hits 
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the block, gets redirected upward and falls onto the top of the block. Similar problem was also 

observed by Kleefsman et al. (2005). Nevertheless, the comparisons in Fig. 4.15 reveal the 

capability of the developed model to predict the pressure changes caused by the progressive and 

reflected waves. 

 

 

Fig. 4.13 (a) 3-D sketch of the MARIN dam-break experiment; (b) the rectangular block 

 

 

Fig. 4.14 Time evolution of water surface level (measurements from Kleefsman et al., 2005) 
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Fig. 4.15 Time evolution of pressure (measurements from Kleefsman et al., 2005) 
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G-5A, G-3A, G0 and G2A are compared with measured ones in Fig. 4.18 and reveals the model 

is accurate. Fig. 4.19 compares the measured and calculated time evolutions of the longitudinal 

flow velocities at 5, 15, 25, and 35 cm above the bed at gages G-2A and G0. The comparison 

shows a temporal gap in which the calculated velocity reaches to the peak value about 0.3 s prior 

to the measured one. As described in Section 3.7.4, this might be due to the rotational motion of 

the gate removal process in the experiment whereas the model assumes sudden removal. After 

reaching the maximum value, the measured and calculated velocities decrease with similar 

behavior. 

 

 

Fig. 4.16 Sketch of the partial dam-break experiment 
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Fig. 4.17 Measured and calculated water surface levels (measurements from Fraccarollo and 

Toro 1995) 

 

 

Fig. 4.18 Measured and calculated pressures at the bottom (measurements from Fraccarollo and 

Toro 1995) 
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Fig. 4.19 Measured and calculated velocities in the longitudinal direction at different vertical 

distances from the bed (measurements from Fraccarollo and Toro 1995) 
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method. An explicit version of CICSAM-VOF surface-capturing method is formulated and used 

to track the changes of water surface. 

The developed model has been tested using six sets of classical laboratory experiments. 

The initial stage of dam-break flows over dry and wet beds were examined in the first test case. 

The results of the second test case showed that the propagation of breaking solitary wave over 

sloping beach can be simulated well using a boundary-fitted mesh. Moreover, the ability of the 

model to simulate dam-break flows over irregular beds using solid boundary-fitted meshes was 

validated in the third and fourth test cases. The fifth test case was simulation of dam-break flow 

over an isolated rectangular block. Finally, the model was tested using a 3-D partial dam-break 

flow. The calculated water levels, pressures and velocities are in good agreement with the 

measured data. 
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CHAPTER 5 

3-D FINITE-VOLUME MODEL OF SEDIMENT TRANSPORT UNDER DAM-BREAK 

FLOW OVER MOVABLE BEDS 

 

The developed model in Chapter 4 is extended to simulate dam-break flow over movable 

beds. In other words, this chapter presents a 3-D sediment transport model integrated with the 3-

D hydrodynamic model of dam-break flow developed in Chapter 4. Therefore, the model 

comprises two parts; hydrodynamic module and sediment transport module. The hydrodynamic 

module, which developed and validated in Chapter 4, calculates the flow velocity, pressure, and 

eddy viscosity. The sediment transport module solves the sediment transport and bed change 

equations based on the results calculated by the hydrodynamic module. In this chapter the 

governing equations and numerical solutions of the sediment transport module are first described 

and then the developed model is tested using several experimental dam-break flows over 

movable beds. 

 

5.1 General Concepts and Definitions 

Sediment particles in natural rivers transported by flow are called the total load. The total 

load usually contains bed-material load and wash load. Sediment particles which can be found in 

appreciable quantities in the river bed are categorized as the bed-material load. In contrast, the 

wash load consists of only those sediment particles that move mainly in suspension and cannot 
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be found in the river bed in appreciable quantities. The wash load originates from upland sources 

instead of the river bed. Since the wash load consists of fine particles suspended in the flow and 

made up of grains that are only found from the local bed in small quantities, the bed-material 

load is typically considered as the total load in a fluvial system. 

The bed-material load can also be divided into bed load and suspended load. The bed 

load consists of sediment particles that slide, roll, or saltate in a thin layer above the river bed 

shown in Fig. 5.1. It usually accounts for 5-25 percent of the total load for fine particles and 

more for coarse particles in natural rivers (Wu 2007). On the other hand, the suspended load 

consists of sediment particles that are suspended in the water column above the bed-load layer. 

The suspended-load sediments are supported by the flow turbulence.  

Because of the different behaviors of bed load and suspended load, the water column can 

be divided into a bed-load zone and a suspended-load zone. The bed-load zone, shown in Fig. 

5.1, is a thin layer between the bed elevation zb and zb+δb, whereas the suspended-load zone is a 

thicker layer between zb+δb and water surface zs. The thickness of the bed-load layer is usually 

assumed to be about twice the sediment particle diameter or half the bed-form height in natural 

rivers.  

Because of variations in flow conditions and channel morphology, sediment transport is 

usually in non-equilibrium state. Sediment cannot reach new equilibrium states instantaneously 

due to temporal and spatial lags between the flow and sediment transport (Wu 2007). Therefore, 

the non-equilibrium sediment transport should be taken into account in a model of sediment 

transport under rapidly-varying flow conditions. In the next section the governing equations of 

non-equilibrium sediment transport in the suspended-load and bed-load layers are presented. 
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5.2 Governing Equations of Sediment Transport 

The governing equation of single-sized sediment transport in the suspended-load zone 

with a thickness of h-δb is formulated as 

 3j s j

s

j j j

u cc c

t x x x

 


               

 (5.1) 

where c is the suspended-load concentration, εs is the turbulent diffusivity of sediment, ωs is the 

settling velocity, and δj3 is the Kronecker delta with “3” indicating the vertical direction. The 

turbulent diffusivity of sediment and the settling velocity are explained later in the next sections.  

 

 

Fig. 5.1 Schematic view of flow and sediment transport (c(z)=vertical distribution of sediment 

concentration, τ(z)=vertical distribution of shear stress, u(z)=vertical distribution of stream-wise 

velocity, cb=near-bed sediment concentration, 
bc =averaged near-bed sediment concentration, 

and τb=bed shear stress) 
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Because the bed-load layer is a thin layer near the bottom, the bed-load transport equation 

in the 3-D model has the same formulation as that in the horizontal 2-D model as follows (Wu 

2007): 

     
 *

1by bb b bx b

b b

qq u q
q q

t x y L

  
   

  
 (5.2) 

where 
bq  and 

*bq  are the actual and equilibrium (capacity) transport rates of bed load, ub is the 

bed-load velocity, αbx and αby are the direction cosines of bed-load movement that is assumed to 

be along the near-bed flow direction, and L is the adaptation length of sediment particles. The 

direction cosines αbx and αby are calculated using the near-bred flow velocity vector as αbx=u/U, 

αby=v/U, where U is the velocity magnitude, U=(u
2
+v

2
)
0.5

.The velocity and equilibrium 

(capacity) transport rate of bed load are determined using empirical formulas described later.  

The bed change due to total load is calculated using the following relation: 

   *

1
1 b

m b b b b

z
p D E q q

t L


    


 (5.3) 

where 
mp is the porosity of sediment deposit, and Db and Eb are the deposition and entrainment 

fluxes of sediment, respectively, at the interface between bed load and suspended load. Db and Eb 

are determined as 

b s bD c , 
*b s bE c  (5.4) 

where cb and cb* are the actual and equilibrium (capacity) suspended-load concentrations, 

respectively, at the interface between bed load and suspended load. The equilibrium (capacity) 

near-bed suspended-load concentration is calculated using an empirical equation described later.  

 

5.3 Boundary Conditions 

In the sediment transport module the boundary values of bed-load transport rate and 
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suspended-load concentration may be required. In the inflow boundary the bed-load transport 

rate and suspended-load concentration must be given. At the outflow boundary, calculating the 

bed load does not require any boundary condition, and the suspended-load concentration is 

determined using the Neumann condition in which the concentration gradient in the flow 

direction is set to zero. At solid wall boundary the Dirichlet and Neumann conditions are used to 

define the bed-load rate and suspended-load concentration, respectively. The bed-load rate is set 

to zero and the suspended-load concentration is determined using zero gradient condition. At the 

water surface boundary the net vertical flux across the water surface should be zero (Wu, 2007). 

Thus, the suspended-load boundary condition at the water surface is 

0

s

s s

z z

c
c

z
 



 
  

 
 (5.5) 

At the interface between the bed load and suspended load zones, the net sediment 

exchange flux Db-Eb is applied. The sediment entrainment flux is rewritten as  

*

b b

b s s b

z z

c
E c

z 

 
 


  


 (5.6) 

which is used as the suspended-load concentration boundary condition at the interface near the 

bed. 

 

5.4 Numerical Solution Methods 

The suspended-load transport equation, Eq. (5.1), is applied in the suspended-load zone 

h-δb, whereas the bed-load transport equation, Eq. (5.2), is valid over the bed-load zone δb. 

Because the suspended-load domain is different from the flow domain, the arrangement of the 

flow and suspended-load control volumes near the bed is an important issue (Wu, 2007). If the 

bed-load layer is thinner than the first near-bed flow cell, the near-bed suspended-load cell is 
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only part of the first flow cell. This needs special care of the suspended-load cell geometry and 

cell flux computation. For simplicity, in this study the suspended-load zone starts from the 

second row of computational cells, and the bed-load transport equation is solved in the first row 

(δb is set equal to the z-grid spacing of the first vertical layer).  Because Eq. (5.2) does not 

include the bed-load layer thickness, therefore δb and the z-grid spacing Δz of the first row of 

cells are not necessarily the same.  However, it is a good practice to set up the z-grid spacing of 

the first layer of the computational mesh close to the bed-load layer thickness. This is important 

for suspended load calculation and sediment mass balance. The z-grid spacing of mesh layers 

above the first layer can be constant as the first layer or varying as a function of z. 

 

 

Fig. 5.2 Schematic definition of the bed-load and suspended-load zones in the finite-

volume computational mesh 

 

5.4.1 Discretization of Suspended-Load Transport Equation 

The suspended-load transport equation, Eq. (5.1), can be written in the following form: 
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  
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 (5.7) 

and integrating it over the control volume and using the Gauss's theorem yields 

   
 3

1 1

( ) n n
s jP

f f sf f
f f j

ccV
c c dV

t x

 
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 
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   

 
  A u A  (5.8) 

The convection term is rewritten as 

 
1 1

n n

f f ff
f f

c Flux c
 

 A u  (5.9) 

The fluxes are known from the hydrodynamic calculations. In the case of movable bed, 

the mesh moving velocity is considered, which is described later. The exponential scheme 

(Patankar, 1980) is used to estimate the face values of concentration. 

Similar to the hydrodynamic model developed in the previous chapter, we consider the 

mesh orthogonality and non-orthogonality by dividing the diffusion term into two separate terms 

as follows: 

     
1 1

n n

s f f s f f ff f f
f f

c c c 
 

     
  A D K  (5.10) 

where the first and second terms in the bracket are the orthogonal and non-orthogonal 

contributions, respectively. The non-orthogonal contribution is included in the source term. The 

orthogonal contribution can be written as 

  N P
f ff

f

c c
c


 D D

d
 (5.11) 

where cN and cP are the concentration of neighbor cell and cell under consideration, respectively, 

To discretize the last term on the right-hand side of Eq. (5.8), it is assumed that the 

settling velocity is a vector variable ωs=(0,0,ωs,z). This assumption and using the Gauss's 
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theorem yields 
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Eq. (5.12) is included in the source term. The upwind scheme is used to estimate the face 

concentration.  

The temporal term in Eq. (5.8) is discretized using the first-order explicit Euler scheme as 

follows: 

( ) t t t t t t

P P P P PcV c V c V

t t

  


 
 (5.13) 

In which the contribution of the previous time step is included in the source term.  

The final discretized equation of suspended-load sediment transport can be formulated in 

the general form as follows: 

1

nb
c c c

P P N N u

N

a c a c S


   (5.14) 

where 
c

Na  are the coefficients of neighbor cells and  

1
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c c c

P N p

N

a a S


   (5.15) 

and the source terms are 

    
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,
t t t tn n

c cP P P
u f s s f f pf f

f f
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 

     
 

 A ω K  (5.16) 

Because of the upwind scheme used for the settling velocity term, if the face value of 

concentration in the second term of 
c

uS  takes the value of neighbor cell, it is kept in the source 

term 
c

uS ; otherwise it is included in c

pS .  

Eq. (5.14) is solved explicitly. The calculated concentrations of neighbor cells at the 
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previous time step are used to calculate the first term on the right hand side of Eq. (5.14). The 

source terms are also calculated based on the values calculated at the previous time step. 

 

5.4.2 Discretization of Bed-Load Transport Equation 

To integrate Eq. (5.2) over the control volume, the direction cosines are defined as a 

vector variable αb=(αbx,αby,0). Thus, the bed-load transport equation can be written as 

 
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1b b

b b b b

q u
q q q

t L
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α  (5.17) 

The direction cosine components are calculated using the near-bred (first vertical layer of 

computational mesh) flow velocity vector. The bed-load velocity ub is formulated in Section 5.5. 

Integrating Eq. (5.17) over the control volume and using the Gauss's theorem yields 
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A α  (5.18) 

The term on the right-hand side of Eq. (5.18) is included in the source term. In addition, 

the bed-load rate of the previous time step is included in the source term as well. The face value 

of bed-load rate in the second term on the left-hand side of Eq. (5.18) is estimated using the 

upwind scheme.  

The final discretized equation of bed-load sediment transport can be formulated as 

follows: 
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b b b
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where the coefficients are  
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where ϕupwinding is the up-winding coefficient which depends on the flow direction. When the flux 

at the face is negative ϕupwinding=-1; otherwise ϕupwinding=0. The source terms of the discretized 

equation are 

 , *,
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,b b

t t t t tnb
q qtP P P P
P b P b P P f f
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
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 

 A α  (5.21) 

Similar to the suspended-load calculations, Eq. (5.19) is solved explicitly.  

 

5.4.3 Discretization of Bed Change Equation 

The bed change equation (5.3) is discretized as 
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 (5.22) 

and the calculated bed change is used to update the bed elevation as 
, , ,

t t t

b P b P b Pz z z   . 

The near-bed concentration must be calculated in order to determine the near-bed 

sediment exchange flux in Eq. (5.22). Using the near-bed suspended-load boundary condition, 

Eq. (5.6), Wu et al. (2000a) derived the following relation for the near-bed concentration: 

  2

2 * 1 b b s sz z

b bc c c e
    

    (5.23) 

where subscript 2 stands for the cell above the boundary between the bed-load and suspended-

load zones as shown in Fig. 5.2.  

 

5.4.4 Computational Grid Adjustment 

The bed changes calculated using Eq. (5.22) result in time evolution of bed topography 

which can affect the water surface profile and wave speed significantly. There are two 

approaches to handle this movable bed problem.  The first approach is to use a fixed mesh with 
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immersed boundary techniques (Peskin, 1972 and 1977) for the irregular and movable bed. In 

this approach, the mesh resolution near the bed is usually very fine, so that the flow calculation 

can provide smooth bed shear stress profile and in turn sediment entrainment flux. The second 

approach is to use a moving or adaptive mesh to conform with the irregular and movable bed. 

This approach does not need to refine the mesh near the bed as the first approach. Since a 

boundary fitted grid is used, the calculated flow field can have smooth bed shear stress required 

by sediment transport calculation. The second approach is used in this study, so that the mesh 

moves up and down to fit on the bed boundary.  Therefore, at each time step, it is necessary to 

update the computational grid based on the calculated bed elevation and the flow and sediment 

transport equations are solved on the updated grid.   

Figs. 5.3(a) and (b) indicate that the side faces of the computational cells comprise 

constant unit normal vectors, whereas the top and bottom faces may adopt new unit normal 

vectors imposed by the local bed slopes.  Therefore, the top and bottom cell faces at the new 

computational time step may not hold the same geometrical properties as the previous time step, 

because of mesh moving. According to Fig. 5.3(a) and (b), if 
top

t
n  is the unit normal vector of the 

top face at time t, a new unit normal vector 
top

t t
n needs to be calculated at time t=t+Δt. To 

calculate the unit normal vectors, the face slopes must be estimated. As shown in Fig. 5.3 (c), the 

longitudinal and lateral bed slopes of every cell can be estimated using bed elevations at cell 

faces as formulated below: 

,e ,w ,n ,s

P P

P P

SlopeX , SlopeY
b b b bZ Z Z Z

x y

 
 

 
 (5.24) 

where the bed elevations at cell faces are estimated using linear interpolation between bed 

elevations of cell under consideration P and the neighbor cell which possesses the same face. 
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The new estimated unit normal vectors are used to calculate the area of cell faces and the 

cell volume. The updated geometrical properties of computational cells, including the cell 

volume, face area and unit normal vector, are then used to discretize and solve the governing 

equations at the next time step. The cell volume changes must be taken into account when the 

temporal term of the governing equations are discretized. Therefore, for example, the discretized 

temporal term of the momentum equation, Eq. (4.22), is amended as 

 P P P P P

t t t t t tV V V

t t

  


 

u u u
 (5.25) 

Another outcome of moving mesh which must be addressed is the effect of the mesh 

velocity on the flow and consequent sediment transport calculations. Mesh adjustment in every 

time step introduces an external velocity added to the system with a magnitude depending on the 

updated coordinates of each control volume. For example, consider the individual cell P with 

coordinate 
t

Pr  at time t and 
t t

P


r  at time t+Δt, the velocity vector associated with the change of 

coordinate of cell P can be calculated by ( ) /t t t

P P t  r r . The imposed mesh velocity must be 

taken into consideration when the convective fluxes in the governing equations are determined. 

Therefore, the convection term of the momentum equation, Eq. (4.18), is rewritten as 
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 (5.26) 

where the mesh velocity vector umesh,f  includes only the vertical velocity, umesh,f =(0,0,wmesh,f), 

since the mesh moves only up and down. 

Described in the previous chapter the pressure equation is derived by replacing the face 

velocity values calculated by the momentum equation into the continuity equation. Therefore, 

since the momentum equation is corrected for moving mesh, the necessary amendments caused 
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by the moving mesh are also addressed by the pressure equation of PISO method. 

  

 

Fig. 5.3 (a-b) Side views of unit normal vector of cell faces, and (c) Plan view of stencil used to 

estimate bed slopes (black dots: bed elevation at cell centers, crosses: bed elevation at cell faces) 

 

5.5 Model Parameters 

In order to close the developed sediment transport model, several parameters, such as the 

suspended-load near-bed equilibrium concentration, bed-load transport capacity, bed shear stress, 

critical shear stress, sediment turbulent diffusivity, settling velocity, and adaptation length need 

to be determined. Next sub-sections elaborate the model parameters in details.  

 

5.5.1 Equilibrium Transport Rate of Bed Load 

The equilibrium transport rate of single-sized bed load, qb*, is computed by the Wu et al. 

(2000b) equation: 
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  3 2.2

* 0.0053 1b sq gd T    (5.27) 

where qb* is by volume per unit time and width (m
2
/s), γs is the specific weight of sediment, γ is 

the specific weight of water, d is the sediment diameter assumed to be d50 of the sediment 

particles since the model adopts single-sized sediment, and T is the transport stage number 

defined as follows: 

1b

cr

T



   (5.28) 

where τb, which is the (effective) bed shear stress, and τcr, which is the critical shear stress 

allowing erosion, are described later. 

 

5.5.2 Near-Bed Equilibrium Concentration of Suspended Load 

In general, the near-bed equilibrium concentration of suspended load is related to the bed-

load transport rate as 

*
*

b
b

b b

q
c

u 
  (5.29) 

where ub is the bed-load velocity determined using the modified van Rijn formula (Wu, 2007) as 

0.51.64 1s
bu T gd


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 
  

 
 (5.30) 

where ρs is sediment density.  

Using Eqs. (5.29) and (5.30) the near-bed equilibrium suspended-load concentration is 

determined as  

1.7

*

0.0053

1.64
b

b

c T d


  (5.31) 

where cb* is the volumetric concentration of suspended load at the interface of the bed-load and 



97 

 

suspended-load zones. 

 

5.5.3 Effective Bed Shear Stress 

The effective bed shear stress τb can be defined as 

2 2

, , , ,, with andb b x b y b x fb b y fbC uU C vU           (5.32) 

where τbx and τby are the longitudinal and lateral components of the effective bed shear stress, 

respectively, Cfb is the bed friction coefficient, and ρ is the water density. 

In this study, the effective bed shear stress is modified to address the effects of local 

hydrodynamic pressure gradient, steep slope, and high sediment concentration on sediment 

transport. These effects can be ignored in steady flows in rivers with gentle bed slope and low 

sediment concentration but are not negligible in rapidly-varied flows such as dam-break flow on 

movable beds. In rapidly varied flows, the gradient of dynamic pressure causes a pressure-

difference force on sediment particles. The effects of dynamic-pressure-difference force, gravity 

force over a steep slope, and high sediment concentration are taken into account as (Wu 2007): 
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(5.33) 

where φx and φy are the bed slope angles in the x- and y-directions with the horizontal (positive 

values denoting downslope beds) respectively, φr is the sediment repose angle, pd is the dynamic 

(non-hydrostatic) pressure near the bed and a is a coefficient assumed as 4/π. Factor kt was 

introduced by Wu and Wang (2007) due to high sediment concentration at the lower layer near 

the bed under dam-break flow conditions. Therefore, replacing the water density in the bed shear 

stress components, Eq. (5.32), with the mixture density near the bed leads to the following 
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correction factor: 
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 (5.34) 

 

5.5.4 Critical Shear Stress 

The critical shear stress is calculated using the Wu et al. (2000b) relationship which was 

derived based on laboratory and field data as 

 0 0.03cr s d     (5.35) 

Since the original critical shear stress criterion was proposed for steady flows, estimating 

the critical shear stress in rapidly varied flows needs more considerations. The vertical 

component of the pressure-difference force changes the effective weight of particles in water and 

therefore the critical shear stress. Thus, the critical shear stress is corrected by introducing a 

correction factor as τcr=Kpτcr,0, where Kp is determined as (Wu 2007): 
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The submerged weight of moving particles above the bed produces a normal stress which 

is added to the critical shear stress (Bagnold 1954, Savari and Zech 2006, Zech et al. 2008). 

Therefore, the final relation for estimating the critical shear stress is: 

0 ( ) tancr p cr s s rK gH        (5.37) 

where Hs is the thickness of moving particles above the bed. Because the model calculates the 

suspended-load concentration and the bed-load transport rate separately, one can determine Hs as 
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5.5.5 Sediment Turbulent Diffusivity  

The vertical profile of sediment turbulent diffusivity, εs, is usually related to the eddy 

viscosity by εs=νt/σc, with σc being the Schmidt number which is between 0.5 and 1. This 

approach is adopted in the present model. An alternative way is the vertical profile of sediment 

diffusivity derived by van Rijn (1984b), which assumes a parabolic distribution in the lower half 

of the flow depth and a constant value in the upper half of the flow depth: 
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 (5.39) 

where κ is the von Karman constant which typically is equal to 0.41 for clear water flow. Van 

Rijn (1984b) applied a damping factor to the von Karman constant in order to account for the 

effect of sediment concentration on the sediment-laden flow: 

   
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 

 (5.40) 

where c is the sediment concentration by volume and c0 is the maximum sediment concentration 

(=0.65). 

 

5.5.6 Sediment Settling Velocity  

The settling velocity in clear water is calculated using the following relation proposed by 

Wu and Wang (2006): 
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 (5.41) 

where D*=d[(ρs/ρ-1)g/νm
2
]

1/3
, νm is the molecular viscosity of water, d is the nominal diameter or 

representative diameter in single-sized sediment transport calculations (in meter), M=53.5e
-0.65SP

, 

N=5.65e
-2.5SP

,  and n=0.7+0.9SP with SP being the sediment particle shape factor. The effect of 
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sediment concentration on the settling velocity is taken into account by the Richardson and Zaki 

(1954) relation as follows: 

 
4

1sm sc    (5.42) 

where ωsm is the settling velocity of sediment particles in turbid water. 

 

5.5.7 Sediment Adaptation Length  

The adaptation length is a characteristic distance for sediment to reach the equilibrium 

state from the non-equilibrium transport. It is an important parameter in the non-equilibrium 

sediment transport models. Several methods have been proposed to calculate the adaptation 

length. For example, the adaptation length of suspended load can be estimated as (Wu 2007) 

s

s

uh
L


  (5.43) 

where α is the adaptation coefficient which is determined by calibration. Bell and Sutherland 

(1983) suggested that the bed load adaptation length Lb is related to the length of scour hole as a 

function of time t. Phillips and Sutherland (1989) proposed that Lb is a function of the particle 

size and the excess shear stress. The bed load adaptation length may take the average saltation 

step length of sand or the length of sand ripples if the bed is mainly covered by sand ripples. This 

approach was adopted by Nakagawa and Tsujimoto (1980) and Wu et al. (2000a). On the other 

hand, the bed-load adaptation length can be determined by model calibration based on measured 

data.  

The existing formulas for calculating the adaptation length are based on experiments 

conducted in steady or quasi-steady flow conditions and thus may not be applicable to rapidly 

varied unsteady flows such as dam-break flow. The model developed in this study takes a 
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constant calibrated value for the adaptation length of sediment. 

 

5.5.8 Calibration Parameters 

The developed model contains several uncertain parameters which can be investigated by 

sensitivity analysis.  The most important parameters are the bed friction coefficient Cfb and the 

sediment adaptation length L. Savary and Zech (2006) showed that the bed friction coefficient 

can take a broad range of values based on the flow conditions and diameter of sediment particles. 

They calibrated the bed friction coefficient between about 0.07 and 0.25. Wu et al. (2012) 

calibrated the bed-load adaptation length as 0.025 m in their 2-D movable-bed dam-break flow 

model. Zhang et al. (2013) derived a theoretical relation to estimate the bed-load adaptation 

length. They used the proposed relation in a 1-D model and concluded that the bed-load 

adaptation length takes a small and approximately constant value at high shear stress zones. In 

this study, the bed friction coefficient and adaptation length are calibrated based on experimental 

measured data of dam-break flow. 

 

5.6 Model Test 

The developed model is tested using several laboratory experiments. The first test 

investigates the net entrainment of sediment by steady flow in a straight flume. In the second test 

case the model is tested using initial stages of dam-break flow over movable beds covered by 

sand and PVC pellets. Dam-break flow over movable bed in an abruptly expanded channel is the 

third case tested by the model. The last test is a partial dam-break flow over movable bed. 

The simulations are carried out using two different computers including a desktop 

computer with operating system Windows 7, processor Intel Core i7-3.20 GHz, and Memory 
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(RAM) 24 GB, and a local server computer “Styx” at the National Center for Computational 

Hydroscience and Engineering, The University of Mississippi. The operating system of the 

server computer is Microsoft Windows Server 2012 Standard with processor Intel Xeon Core 

E5-3.10 GHz, and Memory (RAM) 128 GB. The source code is written in FORTRAN 90 

programming language and runs on single CPU core. 

 

5.6.1 Net Entrainment in a Straight Flume 

The model is tested using an experiment reported by van Rijn (1981). The experimental 

study employed a flume 30 long, 0.5 m wide and 0.7 m deep. Clear water was initially flowed 

over the sand bed of the flume and entrained sediment into suspension until the full transport 

capacity was acquired. The bed material consisted of sand particles with d50=0.23. The water 

depth in the flume was 0.25 m and the mean velocity 0.67 m/s. Since the model considers single-

sized sediment transport, a representative particle size of 0.2 mm is used, following Wu et al. 

(2000a). The computational domain is divided to 252,000 hexahedral cells. The model uses the 

sediment density, shape factor, and porosity equal to 2650 kg/m
3
, 0.7, and 0.4, respectively. The 

Schmidt number is equal to 0.8 in this test and other tests in the next sub-sections. The 

coefficient Cfb is calibrated as 0.05. The bed-load adaptation length is 0.025 m.  

Fig. 5.4 compares the calculated and measured vertical profiles of sediment concentration 

at four different cross sections. It can be seen that the general agreement is fairly good. The 

sediment concentration at the boundary between the suspended-load and bed-load zones tends to 

a high concentration, whereas it tends to zero at the water surface. 
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Fig. 5.4 Vertical distribution of sediment concentration at (a) x/h=4, (b) x/h=10, (c) x/h=20, and 

(d) x/h=40 (solid line: calculated, squares: measurements from Van Rijn 1981) 

 

5.6.2 Initial Stage of Dam-Break Flow over Movable Beds 

The model is tested using two experimental cases of small-scale dam-break flows on 

movable beds. These cases are chosen to investigate the ability of the model to predict the near-

field response of a movable bed to dam-break waves. The first experiment was carried out at the 

Université Catholique de Louvain (UCL) (Spinewine and Zech, 2007). The experiment was 

performed in a flume 6 m long, 0.25 m wide and 0.7 m high and the entire bed was covered by 

natural sand. A gate was located at the center of the flume. The gate was 6 mm thick and made of 

a layered aluminum structure fitted on its circumference with a hollow PVC seal. In the 

experiment the instantaneous dam collapse was duplicated by a lowering of the gate to minimize 

perturbation to the sediments and water during the gate removal. Different initial conditions were 

investigated by adjusting the upstream and downstream water and sediment depths. Herein 

experiment ‘sand (a)’ which is shown in Fig. 5.5, is chosen to validate the ability of the 
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developed model to simulate initial stages of dam-break flow over movable beds. The initial 

water depth in the reservoir was 0.35 m and the downstream reach was dry. The flume was 

covered by saturated uniform coarse sand. The sediment particles had the following properties: 

d50=1.82 mm, density=2683 kg/m
3
, friction angle=30

°
, and porosity=47%. 

 

 

Fig. 5.5 Initial dam-break configuration conducted by Spinewine and Zech (2007) 

 

The computational domain contains 37 vertical layers and the grid spacing is equal to 1.5 

and 1 cm in the horizontal and vertical directions, respectively. The bed friction coefficient Cfb 

and the adaptation length L are set equal to 0.15 and 0.025 m, respectively. These values were 

chosen by a calibration process. The same adaptation length was used by Wu et al. (2012) in 

their 2-D dam-break flow model on movable bed covered by sand with nearly similar properties 

to the sand used in this experimental case. The simulations were carried out on the desktop 

computer and the average execution time was about 25 min for 1.6 s simulation. 

The comparisons between the measured and calculated water surface and bed profiles are 

shown in Fig. 5.6 and 5.7. The comparison demonstrates the ability of the model to simulate the 

initial stages of water surface profile, bed changes, and bed forms caused by dam-break flow 

fairly well.  
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Fig. 5.6 Comparison between measured and calculated (using Cfb=0.15 and L=0.025 m) water 

surface and bed profiles (measurements and snapshots from Spinewine and Zech, 2007) 
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Fig. 5.7 Comparison between measured and calculated (using Cfb=0.15 and L=0.025 m) bed 

profiles (measurements from Spinewine and Zech, 2007)  

 

The sensitivity of the model to the adaptation length is investigated. The comparison of 

calculated bed profiles for adaptation lengths of 0.025, 0.05, and 0.1 m are shown in Fig. 5.8. 

The friction coefficient was kept equal to 0.15. The comparison reveals that the effect of 

adaptation length on bed elevation is considerable. A larger adaptation length results in less bed 

erosion. Moreover, when the model uses a smaller adaptation length, the bed forms generated by 

the dam-break wave are more intense.  

Sediment transport caused by dam-break flow is in strongly non-equilibrium state and it 
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is necessary to estimate the sediment adaptation length carefully. 

The model sensitivity to the bed friction coefficient is investigated by changing the bed 

friction coefficient while the adaptation length is kept the same. Fig. 5.9 shows the comparison 

of the bed profiles calculated with different values (0.1, 0.15, and 0.2) of bed friction coefficient. 

As the bed friction coefficient increases, the effective bed shear stress increases and in turn more 

erosion occurs. The effect of bed friction coefficient on the bed elevation change is more 

significant during the initial stages of dam break (until t=0.5 s) when the sediment transport 

process is highly in non-equilibrium state. After the sudden opening of the gate, the dam-break 

wave front, which contains of clear water, entrains considerable amount of sediment particles 

from the bed and causes deep erosion near the gate site. As the wave propagates downstream, the 

water continues to entrain more sediment particles and thus acts as a debris flow with high 

sediment contraction, in which the difference between the actual and equilibrium sediment 

concentrations becomes less. In other words, the actual sediment concentration in the 

downstream wave front is closer to the equilibrium state, which results to less bed erosion, 

compared with the significant erosion near the gate site.  
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Fig. 5.8 Sensitivity analysis of bed elevation change to varying adaptation length  

(Cfb=0.15, measurements from Spinewine and Zech, 2007) 
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Fig. 5.9 Sensitivity analysis of bed elevation change to varying bed friction coefficient 

 (L=0.05 m, measurements from Spinewine and Zech, 2007) 

 

The model is also tested using the small-scale experimental dam-break flow on movable 

beds performed in Louvain-la-Neuve, UCL (Fraccarollo and Capart, 2002). The test reach was 

2.5 m long, 0.1 m wide, and 0.35 m high. The flume bed was covered by light cylindrical 

Polyvinyl Chloride (PVC) pellets with an equivalent spherical diameter of 3.5 mm, density of 

1540 kg/m
3
, and fall velocity of 18 cm/s. The sediment porosity was not reported in the original 

paper and herein it is assumed to be equal to 50%. This value falls in the range of porosity of 

PVC pellets used by Spinewine and Zech (2007) and Capart and Young (1998).The initial water 



110 

 

depth in the reservoir was 0.1 m and the downstream was dry. The computational domain 

contains hexahedral cells with grid spacing equal to 0.75 cm in horizontal and vertical directions. 

The computational mesh uses 16 vertical layers. The friction coefficient and adaptation length 

are calibrated as 0.35 and 0.05 m, respectively. The bigger values of friction coefficient and 

adaptation length are because the PVC pellets are bigger in diameter compared to the natural 

sand used in the previous test. A bigger adaptation length was used by Wu and Wang (2007) for 

PVC pellets. The simulations were carried out on the desktop computer and the average 

execution time was about 5 min for 1.1 s simulation. 

The calculated water surface and bed profiles are compared with measured ones in Fig. 

5.10. The bed profiles are predicted by the model accurately. The water surface forms a 

hydraulic jump at the gate location. It can be seen that the model underestimates the height of the 

jump especially in the very beginning of the simulation. Since the bed is covered by light PVC 

particles, the bed is eroded significantly immediately after gate opens. The eroded particles are 

entrained by the flow and transported with high intensity near the wave front. The trapped 

particles by the dam-break wave occupy the whole flow depth densely near the wave front which 

can be interpreted as nearly water and debris. Therefore, the wave front behaves as debris flow 

(Capart and Young 1998). Under debris flow condition, intense grain-grain interactions occur 

which leads to an injection of vorticity and air bubbles into the water. Figure 5.11 shows the 

existence of dense particles near the wave front. 

The sensitivity of calculated bed profiles to the adaptation length and the bed friction 

coefficient is shown in Figs. 5.12 and 5.13. A smaller adaptation length results in more erosion. 

The sensitivity analysis of the bed friction coefficient indicates that using a small value results in 

a reduction of the effective shear stress and in turn underestimation of the erosion magnitude, 
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especially in the vicinity of the dam location. However, the bed profiles downstream of the dam 

location are not significantly different, because of the fact that the wave front carries sediment 

particles with a high concentration acting as a debris flow, the difference between the actual and 

equilibrium sediment concentrations is less (or the actual sediment concentration is close to the 

equilibrium state). 

 

 

Fig. 5.10 Comparison between measured (symbols) and calculated (using Cfb=0.35 and L=0.05 

m; solid lines) water surface and bed profiles (measurements from Fraccarollo and Capart, 2002) 
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Fig. 5.11 Wave front with high sediment load at the initial stage of gate removal t=0.25 s 

(picture from Fraccarollo and Capart, 2002) 

 

 

Fig. 5.12 Sensitivity analysis of bed elevation change to varying adaptation length  

(Cfb=0.2, measurements from Fraccarollo and Capart, 2002) 
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Fig. 5.13 Sensitivity analysis of bed elevation change to varying bed friction coefficient  

(L=0.05 m, measurements from Spinewine and Zech, 2007) 

 

5.6.3 Dam-Break Flow over Movable Bed in an Abruptly Expanded Channel 

The model is also tested using an experiment of dam-break flow over a movable bed in 

an abruptly expanded channel to investigate the far-field responses of an erodible bed to dam-

break waves. The experiment was conducted at the UCL, Belgium (Goutiere et al. 2011) by 

means of a 6 m long flume with an abrupt expansion from 0.25 to 0.5 m, located 1 m 

downstream of the gate as shown in Fig. 5.14. The side walls of the flume were made of glass. 

The dam break was simulated by a rapid downward movement of a thin gate located 1 m 
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upstream of the expansion. The entire flume bed was covered by 0.1 m thick uniform coarse sand 

which was fully saturated. The sediment properties were: a median diameter of 1.72 mm, a 

specific density of 2.63, and a deposit porosity of 39%. The initial water depths upstream and 

downstream of the gate were 0.25 and 0 m, respectively. The downstream end of the flume was a 

free outlet. The horizontal grid spacing is equal to 1 cm downstream of the gate and increased 

gradually in upstream direction. The vertical grid consists of 27 layers with the grid spacing 

equal to 1 cm. The calibrated bed friction coefficient and adaptation length are 0.2 and 0.025 m, 

respectively. The simulations were carried out on the desktop computer. The average execution 

time was about 107 hr to simulate this experimental test which lasted 12 s. 

The water surface time series were measured by nine ultrasonic gages placed downstream of 

the gate. The positions of gages are summarized in Table 5.1. The morphological changes 

generated by the dam-break flow were also measured downstream of the expansion. 

 

 

Fig. 5.14 Plan view of experimental setup (dam-break flow over movable bed in an abruptly 

expanded channel) 
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Table 5.1 Location of measurement gages 

Position 
(m) U1 U2 U3 U4 U5 U6 U7 

x 3.75 4.2 4.2 4.45 4.45 4.7 4.7 

y 0.125 0.375 0.125 0.375 0.125 0.375 0.125 
 

Fig. 5.15 shows the calculated water surface level at t=2.3 s. Once the dam-break wave 

arrives at the expansion it spreads to the left side of the flume. The diverted wave hits the left 

wall downstream of the expansion and generates a hydraulic jump. Fig. 5.16 shows the 

comparison between measured and calculated water surface time series at gages U1, U2, U3, U6, 

and U7. It can be seen that the peak value of water level and the propagation trend of the wave 

are predicted well by the model. 

Fig. 5.17 and 5.18 show the magnitude of resultant velocity near the flume bed and the 

flow pattern at t=3.3 s, respectively. The velocity magnitude is big at the expansion zone and 

becomes small downstream of the expansion. Flow recirculation occurs at the corner of 

expansion. 

The final bed topography calculated by the model is compared with the measured one in 

Fig. 5.19. Both measured and calculated maps show erosion near the corner of the expansion and 

deposition at downstream of the expansion zone. As the dam-break wave propagates in the 

straight flume before the expansion, the lateral component of shear force is insignificant. When 

the wave reaches to the expansion zone, the wave is diverted to the left side of the flume and the 

lateral component of shear force becomes significant. The bed shear force magnitude and 

gradient increase and therefore bed erosion occurs in regions close to the expansion. As the wave 

propagates farther downstream, the flow strength decreases and the entrained sediment particles 

deposit. Figs. 5.20 and 5.21 compare the measured and calculated final bed level profiles at six 
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cross sections downstream of the expansion for different values of adaptation length and bed 

friction coefficient. The comparisons show that the model is able to predict generally well the 

magnitude and distribution of erosion and deposition, and in turn the bed topography. 

 

 

Fig. 5.15 Calculated water surface level (in meter) downstream of the expansion zone at t=2.3 s 

(Cfb=0.2 and L=0.025 m) 
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Fig. 5.16 Measured and calculated water surface time series (Cfb=0.2 and L=0.025 m) 
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Fig. 5.17 Magnitude of calculated resultant velocity (in m/s) near the bed downstream of the 

expansion zone at t=3.3 s (Cfb=0.2 and L=0.025 m) 

 

 

Fig. 5.18 Flow pattern downstream of the expansion zone at t=3.3 s (Cfb=0.2 and L=0.025 m) 
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Fig. 5.19 Final bed topographies (units in meter) downstream of the expansion, top map: 

calculated (using Cfb=0.2, L=0.025 m), bottom map: measured (measurements from Goutiere et 

al. 2011) 
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Fig. 5.20 Measured and calculated cross sections of final bed 

 (Cfb=0.2, dotted line: initial bed level) 
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Fig. 5.21 Measured and calculated cross sections of final bed 

 (L=0.025 m, dotted line: initial bed level) 

 

5.6.4 Partial Dam-Break Flow over Movable Bed 

The model is also tested using a benchmark experiment carried out at the Hydraulic Unit 

of the Mechanical and Civil Engineering Laboratory, UCL, to investigate partial dam-break flow 

over movable bed (IAHR working group, 2012). The flume was 36 m long and 3.6 m wide, as 

shown in Fig. 5.22. The partial dam break was represented by two impervious blocks and a 1-m 

wide gate placed between the blocks 12 m from the upstream flume end. The gate was pulled up 

rapidly to mimic an instantaneous dam break event. The rigid bed of the flume was covered with 

an 85-mm-thick sand layer extended from 1 m upstream of the gate to 9 m downstream of the 

gate. The used sand was uniform, fully saturated and uncompacted. The median diameter of 
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sediment was 1.61 mm, specific gravity 2.63, and initial porosity 0.42. The physical boundaries 

consisted of a closed wall at the upstream flume end and a weir and sediment entrapment system 

at the downstream end. The experiment lasted for 20 s. The initial water depth inside the 

reservoir was 0.47 m and the downstream reach was dry. The time evolution of water level was 

measured using BaumerTM ultrasonic probes at eight gages located downstream of the gate shown 

in Fig. 5.18. At the end of the experiment the bed elevation was measured using a Delft bed 

profiler over the whole flume width between 0.5 m and 8 m downstream of the gate. The 

repeatability of the experiment was investigated by comparing the measured water level time 

series and bed profiles from different experimental runs. The computational mesh consists of 

about 700,000 hexahedral cells with non-uniform horizontal grid spacing between 25 and 5 cm 

and of 21 uniform vertical layers with grid spacing equal to 2.5 cm. The horizontal grid spacing 

near the gate is 5 cm and increases in downstream and upstream directions. The calibrated bed 

friction coefficient and adaptation length are 0.2 and 0.025 m, respectively. The simulations were 

carried out on the local server computer and the average execution time was about 136 hr for 20 

s simulation. 

Fig. 5.23 shows the snapshot of the calculated water surface level downstream of the 

partial opening at t=3 s. As the dam-break wave propagates downstream of the dam it spreads to 

the sides of the flume, hits the side walls, and generates hydraulic jumps. The time evolution of 

water surface is shown in Fig. 5.24. The water surface time series show slightly oscillatory 

behavior at gages 2 and 3 which might be because of the rapid changes of bed elevation in the 

vicinity of the partial opening. The oscillatory behavior of measured and calculated water 

surfaces is more significant at the corner of partial opening where gages 1 and 4 are located. 

IAHR working group (2012) demonstrated that the measured water surface level at gage 1 shows 
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similar oscillatory pattern in different experimental runs. 

The magnitude of the resultant velocity near the bed at t=3 s is shown in Fig. 5.25. It 

indicates that the velocity magnitude is high near the opening which leads to high bed shear 

stress and strong bed erosion as shown in Fig. 5.26 which compares the measured and calculated 

final bed topographies. Both measured and calculated results show significant erosion 

downstream of the dam and deposition at zones near the side walls of the flume. The significant 

erosion occurs in front of the partial opening as a result of high bed shear stress. As dam-break 

wave spreads to the sides of the flume the flow strength decreases and deposition occurs at 

downstream and sides of the flume.  

Fig. 5.27 shows the measured and calculated bed profiles along the longitudinal sections 

of y=0.2, 0.7 and 1.45 m away from the flume center. The measured bed profiles are plotted for 

two different experimental runs. IAHR working group (2012) showed that the measured bed 

profiles differ in different runs with the same experiment setup. The calculated bed profiles are 

plotted for two different values of adaptation length. The comparison between measured and 

calculated bed profiles reveals that the magnitude of bed erosion in front of the opening and 

deposition at downstream calculated by L=0.05 m is slightly smaller than the calculated ones by 

L=0.025 m.  

Fig. 5.28 shows the sensitivity of calculated bed profile to bed friction coefficient, which 

is set as 0.1 and 0.2. The change in bed friction coefficient from 0.2 to 0.1 results in significantly 

less bed erosion and deposition. The smaller value of bed friction coefficient leads to 

underestimating the effective bed shear stress which is the driving force to erode the bed, and 

consequently generates less deposition at downstream of the flume. Therefore, calibrating the 

bed friction coefficient plays an important role in predicting the magnitude of bed erosion and 
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deposition. In addition, the discrepancy in bed profiles measured by different experimental runs 

reveals the fact that sediment transport under dam-break flows is highly complex and depends on 

probabilistic factors. 

Considering the complicated aspects of sediment transport under dam-break flow, the 

model reproduces the erosion and deposition patterns generally well. 

 

 

Fig. 5.22 Plan view of experimental setup (partial dam-break flow over movable bed) 

 

 

Fig. 5.23 Calculated water surface level (in meter) downstream of the dam at t=3 s 

 (Cfb=0.2 and L=0.025 m) 
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Fig. 5.24 Measured and calculated water surface time series (Cfb=0.2 and L=0.025 m) 

 

 

Fig. 5.25 Magnitude of calculated resultant velocity (in m/s) near the bed downstream of the dam 

at t=3 s (Cfb=0.2 and L=0.025 m) 
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Fig. 5.26 Final bed topographies (units in meter) downstream of the dam, top map: calculated 

(using Cfb=0.2, L=0.025 m), bottom map: measured (IAHR working group, 2012) 
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Fig. 5.27 Measured and calculated final longitudinal bed profiles (Cfb=0.2) 
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Fig. 5.28 Measured and calculated final longitudinal bed profiles (L=0.025 m) 

 

5.7 Summary 

In this chapter, a 3-D sediment transport model was developed to calculate bed changes 

induced by dam-break flows. The model solves governing equations of suspended-load, bed-load 

transport, and bed change. The developed sediment transport model is integrated with the 3-D 

finite-volume hydrodynamic model presented in Chapter 4 in order to simulate dam-break flows 

on movable beds. To consider the effects of bed changes on hydrodynamic calculations, the 

model uses a moving grid technique to update the computational grid to fit with the calculated 



129 

 

bed topography at every time step. The grid vertical velocity generated by the moving mesh is 

added to the convective terms, and the cell volume change is considered in discretization of the 

temporal terms. 

The integrated hydrodynamic and sediment transport model is tested using several 

experimental dam-break flows on movable beds. The model is tested using two small scale 

experimental dam-break flows on beds covered by natural sand and PVC pellets. The model was 

also tested using two 3-D experimental dam-break flows on movable beds covered by natural 

sand. The comparisons showed a good agreement between measured and calculated water 

surface time series and bed profiles. 
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CHAPTER 6 

SUMMARY, CONSLUSIONS, AND FUTURE RESEARCH 

 

6.1 Summary and Conclusions 

In this PhD dissertation dam-break flows on fixed and movable beds were studied 

numerically. The first achievement, as presented in Chapter 3, was developing a 3-D numerical 

model based on the finite-difference method with rectilinear grid to study propagation of dam-

break waves over non-erodible beds with simple geometry. The model solves the RANS 

equations explicitly by means of SOR method and uses the Smagorinsky turbulence model to 

calculate the eddy viscosity. The SOLA-VOF technique is adopted to track the water surface 

movements. It was found that the VOF stability condition is dominant to control the 

computational time step. The model was tested using several experimental dam-break flows. The 

calculated results revealed the capability of VOF technique to treat the moving boundary 

problem raised by rapid movements of water surface in dam-break flows.  

The major goal sought by this dissertation was developing a 3-D numerical model of 

dam-break flows over irregular and movable beds. The finite-difference model explained above, 

which uses the rectilinear grid, is not convenient to extend to the case of irregular and movable 

beds and integrate with sediment transport calculations. Therefore, as presented in Chapter 4, a 

new 3-D numerical model was developed to simulate dam-break flows on irregular fixed beds. 

The model solves the RANS equations using an explicit finite-volume method based on 
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collocated mesh that fits on irregular beds. The velocity and pressure coupling is achieved using 

the PISO algorithm and the Rhie and Chow’s momentum interpolation. The Smagorinsky 

turbulence model is used to estimate the eddy viscosity. At the free surface boundary the VOF 

technique is adopted to trace the changes of water surface due to strong unsteady behavior of 

dam-break flows. An explicit version of the CICSAM algorithm is proposed and used to solve 

the VOF advection equation since it is applicable to arbitrary meshes.  

The newly developed 3-D finite-volume hydrodynamic model was tested successfully 

using several experimental dam-break flows on flat and irregular beds. The model was tested 

first by small-scale dam-break flows over flat beds to investigate the accuracy of the model to 

simulate the initial stages of dam-break flows. The second test was the propagation of breaking 

solitary wave over sloping beach using a boundary-fitted mesh. The model was also tested using 

the dam-break flows on irregular beds consisted of trapezoidal and triangular steps. Finally the 

developed model was tested using a dam-break flow over an isolated rectangular block and a 

partial dam-break flow. The comparisons between measured and calculated water levels, 

pressures and velocities, which were in good agreement, indicated the successful application of 

the proposed explicit versions of PISO and CICSAM methods. These solution methods are 

originally implicit approaches. 

To extend the finite-volume model to a dam-break flow model applicable on movable 

beds due to sediment transport, the bed changes caused by erosion and sediment deposition must 

be calculated. Therefore, the final achievement of this dissertation was developing a sediment 

transport model integrated with the above 3-D finite-volume hydrodynamic model, as presented 

in Chapter 5. The sediment transport model solves the governing equations of suspended-load 

and bed-load transport separately based on the flow properties calculated by the hydrodynamic 
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model. Bed shear stress and critical shear stress were modified for rapidly-varying flows and bed 

with steep slopes. The calculated sediment concentration and transport rate are used to estimate 

the bed changes. Since the time evolution of bed topography affects the hydrodynamic 

calculations, the model uses a moving grid technique to update the computational grid to fit on 

the calculated bed topography at every time step. The grid vertical velocity generated by the 

moving mesh is added to the convective terms of the governing equations. Furthermore, any 

volume change of computational cells due to updating the grid is taken into consideration when 

the temporal terms of the hydrodynamic and sediment transport equations are discretized.  

The integrated 3-D finite-volume flow and sediment transport model was further tested 

by several experimental dam-break flows on movable beds and the results were discussed in 

Chapter 5. In the first two cases the model was tested using small-scale dam-break flows on 

erodible beds covered by sand and PVC pellets. The model was tested using additional two 

experiments of dam-break flows on movable beds with strong 3-D features. The 3-D cases 

included a dam-break flow over movable bed in an abruptly widening channel and a partial dam-

break flow over movable bed. The comparisons between the measured and calculated bed and 

water surface profiles revealed the validity of the developed model to simulate dam-break flows 

on movable beds.  

The successful application of the model to experimental dam-break flows on movable 

beds validated the innovative approach used by this dissertation to divide the computational 

domain into bed-load and suspended-load zones. The bed-load transport equation was solved in 

the first layer of the computational mesh whereas the suspended-load was solved in the 

computational domain above the first layer. Moreover, the proposed moving grid technique to 
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track the bed surface boundary changes showed a successful implementation along with the VOF 

technique, which tracks the water surface boundary changes.  

In conclusion, the present dissertation is a pilot study on 3-D numerical modeling of dam-

break flows over movable beds. The successful application of the model to the experimental 

cases promises the future achievements in 3-D numerical modeling of rapidly-varying flows on 

movable beds in field cases. 

 

6.2 Future research 

The future research related to this dissertation can be suggested as follows: 

1) The accuracy and performance of the hydrodynamic model developed in this 

dissertation can be investigated by adopting other existing solution methods. Firstly, 

it is suggested to adopt other classes of turbulence models instead of the Smagorinsky 

model. Secondly, higher-order time and space discretization methods might be used 

to increase the model accuracy. Thirdly, instead of the PISO method, other pressure-

velocity coupling methods can be used. 

2) In rivers, streams, lakes, reservoirs, and coastal waters, the bed may be made of 

multiple-sized sediments, whereas the developed sediment transport model in this 

study deals with single-sized sediment particles. By extending the developed model to 

a multiple-sized sediment transport model, the effects of bed-material sorting, mixing 

layer thickness, presence of armor layer, and hiding and exposure mechanism on 

sediment transport under dam-break flows can be studied. 
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3) The developed sediment transport model deals only with non-cohesive sediment 

particles, whereas fine cohesive sediments, such as clay and fine silt, exist in rivers, 

streams, lakes, reservoirs, estuaries and coastal waters. Therefore, the developed 

model can be extended to simulate non-cohesive/cohesive sediment transport under 

dam-break flows. 

4) In real dam-break flow events, it is crucial to provide accurate and fast simulation to 

meet the time constraints in emergency situations. Since the presented models in this 

dissertation have been developed based on serial programming in single-core CPU 

without any parallelization, simulation of a large-scale dam-break flow can be 

computationally expensive. Therefore, another future research related to this 

dissertation is to reduce the computational expenses by taking advantages of parallel 

programming in GPU or OpenMP programming in multi-core processors. 
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